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Abstract

In this article, we investigate systems of generalized Schrodinger operators and their
fundamental matrices. More specifically, we establish the existence of such funda-
mental matrices and then prove sharp upper and lower exponential decay estimates
for them. The Schrédinger operators that we consider have leading coefficients that are
bounded and uniformly elliptic, while the zeroth-order terms are assumed to be nonde-
generate and belong to a reverse Holder class of matrices. In particular, our operators
need not be self-adjoint. The exponential bounds are governed by the so-called upper
and lower Agmon distances associated to the reverse Holder matrix that serves as the
potential function. Furthermore, we thoroughly discuss the relationship between this
new reverse Holder class of matrices, the more classical matrix A p.oo Class, and the
matrix Ay class introduced by Dall’ Ara (J Funct Anal 268(12):3649-3679, 2015).

1 Introduction

In this article, we undertake the study of fundamental matrices associated to systems
of generalized Schrodinger operators; we establish the existence of such fundamental
matrices and we prove sharp upper and lower exponential decay estimates for them.
Our work is strongly motivated by the papers [2] and [3] in which similar exponential
decay estimates were established for fundamental solutions associated to Schrédinger
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operators of the form
—A+pu,
and generalized magnetic Schrodinger operators of the form
—(V—ia)l A(V—ia)+V,

respectively. In [2], u is assumed to be a nonnegative Radon measure, whereas in [3],
A is bounded and uniformly elliptic, while a and V satisfy a number of reverse Holder
conditions. Here we consider systems of generalized electric Schrodinger operators
of the form

Ly =Dy (A" Dg) +V, (D)

where A% = A%P(x), for each o, B € {1, ...,n}, is ad x d matrix with bounded
measurable coefficients defined on R” that satisfies boundedness and ellipticity condi-
tions as described by (25) and (24), respectively. Moreover, the zeroth order potential
function V' is assumed to be a matrix B, function. We say that V is in the matrix B),
class if and only if (Vé, €) := ¢! V¢ is uniformly a scalar B, function for any ¢ € RY.
As such, the operators that we consider in this article fall in between the generality of
those that appear in [2] and [3], but are far more general in the sense that they are for
elliptic systems of equations.

Many of the ideas in Shen’s prior work [4—6] have contributed to this article. In
particular, we have built on some of the framework used to prove power decay estimates
for fundamental solutions to Schrodinger operators —A + V, where V belongs to the
scalar reverse Holder class B, for p = coin [4] and p > % in [5], along with the
exponential decay estimates for eigenfunctions of more general magnetic operators as
in [6].

As in both [2] and [3], Fefferman—Phong inequalities (see [7], for example) serve
as one of the main tools used to establish both the upper and lower exponential bounds
that are presented in this article. However, since the Fefferman—Phong inequalities
that we found in the literature only apply to scalar weights, we state and prove new
matrix-weighted Fefferman—Phong inequalities (see Lemma 15 and Corollary 2) that
are suited to our problem. To establish our new Fefferman—Phong inequalities, we
build upon the notion of an auxiliary function associated to a scalar B, function that
was introduced by Shen in [4]. More specifically, given a matrix function V € B, we
introduce a pair of auxiliary functions: the upper and lower auxiliary functions. (Sect. 3
contains precise definitions of these functions and examines their properties.) Roughly
speaking, we can, in some settings, interpret these quantities as the auxiliary functions
associated to the largest and smallest eigenvalues of V. The upper and lower auxiliary
functions are used to produce two versions of the Fefferman—Phong inequalities. Using
these auxiliary functions, we also define upper and lower Agmon distances (also
defined in Sect. 3), which then appear in our lower and upper exponential bounds for
the fundamental matrix, respectively. We remark that the original Agmon distance
appeared in [8], where exponential upper bounds for N-body Schrodinger operators
first appeared.
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Given the elliptic operator Ly as in (1) that satisfies a suitable set of conditions,
there exists a fundamental matrix function associated to Ly, which we denote by
I'V. The fundamental matrix generalizes the notion of a fundamental solution to the
systems setting; see for example [9], where the authors generalized the results of [10]
to the systems setting. To make precise the notion of the fundamental matrix for our
systems setting, we rely upon the constructions presented in [11]. In particular, we
define our bilinear form associated to (1), and introduce a well-tailored Hilbert space
that is used to establish the existence of weak solutions to PDEs of the form Ly = f.
We then assume that our operator Ly satisfies a natural collection of de Giorgi—Nash—
Moser estimates. This allows us to confirm that the framework from [11] holds for
our setting, thereby verifying the existence of the fundamental matrix I'V. Section 6
contains these details.

In Sect. 7, assuming very mild conditions on V, we verify that the class of systems
of “weakly coupled” elliptic operators of the form

—div(AV) + V

satisfy the de Giorgi—-Nash—Moser estimates that are mentioned in the previous para-
graph (see the remark at the end of Sect.7 for details). Consequently, this implies
that the fundamental matrices associated to weakly coupled elliptic systems exist and
satisfy the required estimates. In fact, this additionally shows that Green’s functions
associated to these elliptic systems exist and satisfy weaker interior estimates, though
we will not need this fact. Further, we establish local Holder continuity of bounded
weak solutions i to
—div(AVu) + Vu =0

under even weaker conditions on V. Specifically, V doesn’t have to be positive semidef-
inite a.e. or even symmetric, see Proposition 10 and Remark 10. Finally, although we
will not pursue this line of thought in this paper, note that the combination of Propo-
sition 10 and Remark 10 likely leads to new Schauder estimates for bounded weak
solutions # to (1). We remark that this section on elliptic theory for weakly coupled
Schrodinger systems could be of independent interest beyond the theory of funda-
mental matrices. A “weakly coupled (linear) elliptic operator” typically refers to an
operator of the form

—div(AV)+ BV +V, 2)

where B is a d x d matrix function and

Aq
A: .
Ag

where the matrices A1, .. ., Ay are uniformly elliptic. We refer the reader to [ 12—14] for
boundedness and regularity results for weak solutions to — div (AVi)+ BVii+ Vi =
0 under very different conditions on the coefficients of matrices Ay, ..., Ag, B, and
V.
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Assuming the set-up outlined above, we now describe the decay results for the
fundamental matrices. We show that there exists a small constant ¢ > 0 so that for
any ¢ € S471,

—ed(x,y,V) —ed(x,y,V)
e ¢ R e
s 5 |{rreome)

lx —yI"

S 3

lx — y"%’

where d and d denote the upper and lower Agmon distances associated to the potential
function V' € B, (as defined in Sect.3). That is, we establish an exponential upper
bound for the norm of the fundamental matrix in terms of the lower Agmon distance
function, while the fundamental matrix is always exponentially bounded from below
in terms of the upper Agmon distance function. The precise statements of these bounds
are described by Theorems 11 and 12. For the upper bound, we assume that V € B),
along with a quantitative cancellability condition QC that will be made precise in
Sect. 2.3. On the other hand, the lower bound requires the scalar condition |V| € B,
and that the operator Ly satisfies some additional properties—notably a scale-invariant
Harnack-type condition. In fact, the term d(x, y, V) in the lower bound of (3) can be
replaced by d(x, y, |V|), see Remark 15.

Interestingly, (3) can be used to provide a beautiful connection between our upper
and lower auxiliary functions and Landscape functions that are similar to those defined
in [15]. Note that this connection was previously found in [16] for scalar elliptic
operators with nonnegative potentials. We will briefly discuss these ideas at the end
of Sect.9, see Remark 17.

To further understand the structure of the bounds stated in (3), we consider a simple
example. For some scalar functions 0 < vy < v, € B, define the matrix function

v O
)

A straightforward check shows that V € B, and satisfies a nondegeneracy condition
that will be introduced below. Moreover, the upper and lower Agmon distances satisfy
d(,-,V) =d(,,v)and d(-,-, V) = d (-, -, v2), where d (x, y, v) denotes the
standard Agmon distance from x to y that is associated to a scalar function v € B.
We then set

Ly=—-A+V.

Since u satisfies Lyu = fif and only if u; satisfies —Au; + vju; = f; fori = 1,2,
then Ly satisfies the set of elliptic assumptions required for our operator. Moreover,
the fundamental matrix for Ly has a diagonal form given by

rv 0
\%4
oo 0],
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where each I'Vi is the fundamental solution for —A + v;. The results of [2] and [3]
show that for i = 1, 2, there exists &; > 0 so that

e—cid(x.y.v)) e Eid(x.y.v)

y|r2 ST S

x — lx —y["2

Restated, fori = 1, 2, we have

e Eid(x.y.v) e Eid(x.y,v)

T slrvaa) s
lx — y|"~2 Ix — y|"~2

where {€], ¢2} denotes the standard basis_for R2. Since v; < vy implies that
dx,y,V)y=d(x,y,v) <d(x,y, 1) =d(x,y, V), then we see that there exists
e > 0 so that for any ¢ € S!,

e—ed(x,y,V) e—ed(x,y,V)

_______<<rvag)<______<
lx — y|" 2 lx — y|" 2

Compared to estimate (3) that holds for our general operators, this example shows
that our results are sharp up to constants. In particular, the best exponential upper
bound we can hope for will involve the lower Agmon distance function, while the best
exponential lower bound will involve the upper Agmon distance function.

As stated above, the Fefferman—Phong inequalities are crucial to proving the expo-
nential upper and lower bounds of this article. The classical Poincaré inequality is one
of the main tools used to prove the original Fefferman—Phong inequalities. Since we
are working in a matrix setting, we use a new matrix-weighted Poincaré inequality.
Interestingly, a fairly straightforward argument based on the scalar Poincaré inequality
from [2] can be used to prove this matrix version of the Poincaré inequality, which is
precisely what is needed to prove the main results described above.

Although the main theorems in this article may be interpreted as vector versions of
the results in [2] and [3], many new ideas (that go well beyond the technicalities of
working with systems) were required and developed to establish our results. We now
describe these technical innovations.

First, the theory of matrix weights was not suitably developed for our needs. For
example, we had to appropriately define the matrix reverse Holder classes, 5,. And
while the scalar versions of B, and A, have a well-understood and very useful
correspondence (namely, a scalar weight v € B, iff v” € Ay), this relationship was
not known in the matrix setting. In order to arrive at a setting in which we could
establish interesting results, we explored the connections between the matrix classes
B, that we develop, as well as Ay, and A, o, that were introduced in [1] and [17],
[18], respectively. The matrix classes are introduced in Sect.2, and many additional
relationships (including a matrix version of the previously mentioned correspondence
between Ao, and B ) are explored in Appendices A and B.

Given that we are working in a matrix setting, there was no reason to expect to work
with a single auxiliary function. Instead, we anticipated that our auxiliary functions
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would either be matrix-valued, or that we would have multiple scalar-valued “direc-
tional” Agmon functions. We first tried to work with a matrix-valued auxiliary function
based on the spectral decomposition of the matrix weight. However, since this set-up
assumed that all eigenvalues belong to B, and it is unclear when that assumption
holds, we decided that this approach was overly restrictive. As such, we decided to
work with a pair of scalar-valued auxiliary functions that capture the upper and lower
behaviors of the matrix weight. Once these functions were defined and understood,
we could associate Agmon distances to them in the usual manner. These notions are
introduced in Sect. 3.

Another virtue of this article is the verification of elliptic theory for a class of elliptic
systems of the form (1). By following the ideas of Caffarelli from [19], we prove that
under standard assumptions on the potential matrix V, the solutions to these systems
are bounded and Holder continuous. That is, instead of simply assuming that our
operators are chosen to satisfy the de Giorgi—-Nash—Moser estimates, we prove in
Sect.7 that these results hold for this class of examples. In particular, we can then
fully justify the existence of their corresponding fundamental matrices. To the best of
our knowledge, these ideas from [19] have not been used in the linear setting.

A final challenge that we overcame has to do with the fact there are two distinct and
unrelated Agmon distance functions associated to the matrix weight V. In particular,
because these distance functions aren’t related, we had to modify the scalar approach
to proving exponential upper and lower bounds for the fundamental matrix associated
to the operator Ly := Lo + V. The first bound that we prove for the fundamental
matrix is an exponential upper bound in terms of the lower Agmon distance. In the
scalar setting, this upper bound is then used to prove the exponential lower bound.
But for us, the best exponential lower bound that we can expect is in terms of the
upper Agmon distance. If we follow the scalar proof, we are led to a standstill since
the upper and lower Agmon distances of V aren’t related. We overcame this issue by
introducing £ := Lo + | V| I4, an elliptic operator whose upper and lower Agmon
distances agree and are comparable to the upper Agmon distance associated to Ly . In
particular, the upper bound for the fundamental matrix of £, depends on the upper
Agmon distance of V. This observation, along with a clever trick, allows us to prove the
required exponential lower bound. These ideas are described in Sect.9, using results
from the end of Sect. 8.

The motivating reasons for studying systems of elliptic equations are threefold, as
we now describe.

First, real-valued systems may be used to describe complex-valued equations and
systems. To illuminate this point, we consider a simple example. Let 2 € R” be an
open set and consider the complex-valued Schrodinger operator given by

L, =—div(cV) + x,

where ¢ = (c"‘ﬁ )Z p=1 denotes the complex-valued coefficient matrix and x denotes

the complex-valued potential function. That is, foreach o, 8 =1, ..., n,
P = q%F 4 p*P,
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where both a®? and b*f are R-valued functions defined on  C R”, while
Xx=v+iw,

where both v and w are R-valued functions defined on 2. To translate our complex
operator into the language of systems, we define

A:[a —b:|7 V:[v —w:|.
b a w v
That is, each of the entries of A is an n X n matrix function:

Ann=Ap=a, Ap=-b, Ay =D,
while each of the entries of V is a scalar function:

Vii=Va=v, Vh=—-w, WV =w.
Then we define the systems operator

Ly = —Dqy (A" Dg) + V. )

If u = uy + iup is a C-valued solution to Lyu = 0, where both u; and u, are R-

u

valued, then it = is an R?-valued vector solution to the elliptic system described

by Evﬁ = 6

This construction also works with complex systems. Let C = A + i B, where each
A% and BYP is RY*4 _yalued, for a, Bef{l,...,n}.If wetake X = V +iW, where
V and W are R?>4 _yalued, then the operator

Lx = =Dy (C*’Dg) + X

describes a complex-valued system of d equations. Following the construction above,
we get a real-valued system of 2d equations of the form described by (4), where now

i N

In particular, if X is assumed to be a d x d Hermitian matrix (meaning that X = X*),
then V is a 2d x 2d real, symmetric matrix. This shows that studying systems of
equations with Hermitian potential functions (as is often done in mathematical physics)
is equivalent to studying real-valued systems with symmetric potentials, as we do in
this article. Moreover, X is positive (semi)definite iff V is positive (semi)definite. In
conclusion, because there is much interest in complex-valued elliptic operators, we
believe that it is very meaningful to study real-valued elliptic systems of equations.
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Our second motivation comes from physics and molecular dynamics. Schrédinger
operators with complex Hermitian matrix potentials V naturally arise when one seeks
to solve the Schrodinger eigenvalue problem for a molecule with Coulomb interactions
between electrons and nuclei. More precisely, it is sometimes useful to convert the
eigenvalue problem associated to the above (scalar) Schrodinger operator into a sim-
pler eigenvalue problem associated to a Schrodinger operator with a matrix potential
and Laplacian taken with respect to only the nuclear coordinates. See the classical ref-
erences [20, p. 335-342] and [21, p. 148—153] for more details. Note that this potential
is self-adjoint and is often assumed to have eigenvalues that are bounded below, or
even approaching infinity as the nuclear variable approaches infinity. See for example
[22-26], where various molecular dynamical approximation errors and asymptotics
are computed utilizing the matrix Schrodinger eigenvalue problem stated above as
their starting point.

With this in mind, we are hopeful that the results in this paper might find applications
to the mathematical theory of molecular dynamics. Moreover, it would be interesting
to know whether the results of Sects. 6 and 7 are true for “Schrodinger operators” with
a matrix potential and nonzero first order terms. Note that such operators also appear
naturally when one solves the same Schrodinger eigenvalue problem for a molecule
with Coulomb interactions between electrons and nuclei, but only partially performs
the “conversion” described in the previous paragraph. We again refer the reader to [20,
p- 335-342] for additional details. It would also be interesting to determine whether
defining a landscape function in terms of a Green’s function of a Schrédinger operator
with a matrix potential would provide useful pointwise eigenfunction bounds.

Third, studying elliptic systems of PDEs with a symmetric nonnegative matrix
potential provides a beautiful connection between the theory of matrix-weighted norm
inequalities and the theory of elliptic PDEs. In particular, classical scalar reverse
Holder and Muckenhoupt A, assumptions on the scalar potential of elliptic equations
are very often assumed (see [4-6] for example). On the other hand, while various
matrix versions of these conditions have appeared in the literature (see for example [1,
17, 18, 27, 28]), the connections between elliptic systems of PDEs with a symmetric
nonnegative matrix potential and the theory of matrix-weighted norm inequalities
is a mostly unexplored area (with the exception of [1], which provides a Shubin—
Maz’yatype sufficiency condition for the discreteness of the spectrum of a Schrodinger
operator with complex Hermitian positive-semidefinite matrix potential V on R").
This project led to the systematic development of the theory of matrix reverse Holder
classes, BB, as well as an examination of the connections between 55, Aoo, and A2 .
By going beyond the ideas from [1], [17], [18], we carefully study A, and prove that
Aoo = A2 00

Unless otherwise stated, we assume that our d x d matrix weights (which play
the role of the potential in our operators) are real-valued, symmetric, and positive
semidefinite. As described above, real symmetric potentials are equivalent to complex
Hermitian potentials through a “dimension doubling” process. In fact, because of
this equivalence, our results can be compared with those in mathematical physics,
where systems with complex, Hermitian matrix potentials are considered. To reiterate,
we assume throughout the body of the article that V is real-valued and symmetric.
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However, in Appendix B, we follow the matrix weights community convention and
assume that our matrix weights are complex-valued and Hermitian.

1.1 Organization of the article

The next three sections are devoted to matrix weight preliminaries with the goal of stat-
ing and proving our matrix version of the Fefferman—Phong inequality, Lemma 15. In
Sect. 2, we present the different classes of matrix weights that we work with through-
out this article, including the aforementioned matrix reverse Holder condition B, for
p > 1 and the (non-Muckenhoupt) quantitative cancellability condition QC that will
be crucial to the proof of Lemma 15. These two classes will be discussed in relationship
to the existing matrix weight literature in Appendix B. Section 3 introduces the auxil-
iary functions and their associated Agmon distance functions. The Fefferman—Phong
inequalities are then stated and proved in Sect.4. Section 4 also contains the Poincaré
inequality that is used to prove one of our new Fefferman—Phong inequalities. The
following three sections are concerned with elliptic theory. Section5 introduces the
elliptic systems of the form (1) discussed earlier. The fundamental matrices associated
to these operators are discussed in Sect. 6. In Sect. 7, we show that the elliptic systems
of the form (1) satisfy the assumptions from Sect. 6. The last two sections, Sects. 8 and
9, are respectively concerned with the upper and lower exponential bounds for our
fundamental matrices. Further, we discuss the aforementioned connection between
our upper and lower auxiliary functions and Landscape functions at the end of Sect. 9.

Finally, in our first two appendices, we state and prove a number of results related
to the theory of matrix weights that are interesting in their own right, but are not
needed for the proofs of our main results. In Appendix A, we explore the quantitative
cancellability class QC in depth, providing examples and comparing it to our other
matrix classes. In Appendix B, we systematically develop the theory of the various
matrix classes that are introduced in Sect. 2. In particular, we provide a comprehensive
discussion of the matrix B, class and characterize this class of matrix weights in terms
of the more classical matrix weight class A, o from [17, 18]. This discussion nicely
complements a related matrix weight characterization from [28, Corollary 3.8]. We
also discuss how the matrix Ao, class introduced in [1] relates to the other matrix
weight conditions discussed in this paper. In particular, we establish that Ase = A2 0.
Further, we provide a new characterization of the matrix A2 ~, condition in terms of a
new reverse Brunn—Minkowski type inequality. We hope that Appendix B will appeal
to the reader who is interested in the theory of matrix-weighted norm inequalities
in their own right. The last appendix contains the proofs of technical results that we
skipped in the body.

We have attempted to make this article as self-contained as possible, particularly
for the reader who is not an expert in elliptic theory or matrix weights. In Appendix B,
we have not assumed any prior knowledge of matrix weights. As such, we hope that
this section can serve as a reference for the A, theory of matrix weights.
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1.2 Notation

As is standard, we use C, c, etc. to denote constants that may change from line to line.
We may use the notation C(n, p) to indicate that the constant depends on n and p, for
example. The notation a < b means that there exists a constant ¢ > 0 so that a < cb.
If c = ¢ (d, p), for example, then we may write a S(q, ) b. We say that a =~ b if both
a < band b < a with dependence denoted analogously.

Let (-,-); : RY x RY — R denote the standard Euclidean inner product on d-
dimensional space. When the dimension of the underlying space is understood from
the context, we may drop the subscript and simply write (-, -). For a vector v € R¢,
its scalar length is |[v] = (v, 1_5)%. The sphere in d-dimensional space is S?~! =
{veR?: |y =1}.

For a d x d real-valued matrix A, we use the 2-norm, which is given by

Al = |A], = sup{IAxI X € Sd_l} = sup{(Ax,y) 1X,y € Sd_l}.

Alternatively, |A| is equal to its largest singular value, the square root of the largest
eigenvalue of AA” . For symmetric positive semidefinite d x d matrices A and B, we
say that A < B if (Ae, &) < (Be, ¢) for every ¢ € R?. Note that both || and |A| are
scalar quantities.

If A is symmetric and positive semidefinite, then |A| is equal to X, the largest
eigenvalue of A. Let v € S?~! denote the eigenvector associated to A and let {¢; }le
denote the standard basis of R?. Observe that 7 = Zf’zl (v, é;) ¢; and for each j,
(v, Ej)2 < Z?:] (3,8;)> = 1. Then, since A? is well-defined, an application of
Cauchy—Schwarz shows that

d
|Al = A = (AD, D) < Z A&, &) . 5)

Let @ € R" and p € [1,00). For any d-vector v, we write [|0]lL»q)
1
(fq 19(x)I” dx) 7. Similarly, for any d x d matrix A, we use the notation || A||.»q) =

(Jq |A(x)|pdx)%. When p = oo, we write ||U]lp(q) = esssup,cq |U(x)| and
|AllLo(@) = esssupycq |A(x)]. We say that a vector v belongs to L? () iff the
scalar function |¥| belongs to L? (2). Similarly, for a matrix function A defined on
Q,AeL?(Q)iff |A| € L? (2). In summary, we use the notation |-| to denote norms
of vectors and matrices, while we use the notations |- ,, |-l », or ||| () to denote
LP-space norms.

We let C2°(€2) denote the set of all infinitely differentiable functions with compact
support in Q. If ¢ : Q@ — R? is a vector-valued function for which each component
function ¢; € C°(Q2), then ¢ € C°(Q).

For x € R" and r > 0, we use the notation B(x, r) to denote a ball of radius
r > 0 centered at x € R". We let Q(x, r) be the ball of radius r and center x € R”
in the £°° norm on R” (i.e. the cube with side length 2r and center x). We write Q to
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denote a generic cube. We use the notation £ to denote the sidelength of a cube. That
is, £(Q (x,r)) = 2r.

We will assume throughout that n > 3 and d > 2. In general, | < p < oo, but we
may further specify the range of p as we go.

2 Matrix classes

Within this section, we define the classes of matrix functions that we work with, then
we collect a number of observations about them.

2.1 Reverse Holder matrices

Recall that for a nonnegative scalar-valued function v, we say that v belongs to the
reverse Holder class B, if v € L{Z)C (R™) and there exists a constant Cy, so that for

every cube Q in R",
1
(7[ [v(x)]” dx)p < cv][ v(x)dx. 6)
0 0

Let V be ad x d matrix weight on R". That s, V is ad x d real-valued, symmetric,
positive semidefinite matrix. For such matrices, we define B, the class of reverse
Holder matrices, via quadratic forms as follows.

Definition 1 (Matrix B,) For matrix weights, we say that V belongs to the class of
reverse Holder matrices, V € B, if V € Lf:)c (R™) and there exists a constant Cy

so that for every cube Q in R” and every ¢ € R? (or S~ 1),

1
<][ (V(x)2, )P dx)p < cv<<][ V(x)dx> 2, z>. %)
0 0

This constant is independent of Q and ¢, so that the inequality holds uniformly in Q
and e. We call Cy the (uniform) B), constant of V. Note that Cy depends on V as well
as p; to indicate this, we may use the notation Cy .

Now we collect some observations about such matrix functions. The first result
regards the norm of a matrix 55, function.

Lemma 1 (Largest eigenvalue is B,) If V € B, then |V| € B, with Cy| S, p) Cv.

Proof Letey, ..., ey denote the standard basis for R?. Using that | V| < d Zle (Ve;, e;)
(as explained in the notation section, see (5)) combined with the Holder and Minkowski
inequalities shows that

1
(7[ IV(x)Ide>p < f d
0 o\ “

J

d P ’
(Ve é;) | dx
=1
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< A Z |:][ (V(x)éj, é»j)p dx:|p
0

2
dar =1

d
§d2_11’CVZ<(][ V(x)dx) éj,zj>
j=11e
<dFey f velds,
0

where we have used the reverse Holder inequality (7) in the fourth step. O

Lemma 2 (Gehring’s Lemma) If V € B, then there exists ¢ (p, Cy) > 0 so that
V € Bpie. In particular, V- € By for all g € [1, p 4 €]. Moreover, if g < s, then
CV,q =< CV,s-

Proof Since (V (x)é, ¢) is a scalar B, weight (with B,, constant uniform in & € RY),
then it follows from the proof of Gehring’s Lemma (see for example the dyadic proof
in[29]) that V' € B, implies that there exists ¢ > Osuchthat V € B,,..Letq < p+e,
¢ € R?. Then by Holder’s inequality,

1

1 o !
(7{2<V(x)5, E)‘fdx)" < |:(/Q(V(x)2, 2>P+8dx>”*” |Q|1p"+s}
gL
= :
= <][ (V(x)e, E)P+adx>” < CV,p+£<(]Z V(x)dx) e, 2>,
¢ 0

showing that V € B,.If ¢ < s < p + ¢, then the same argument holds with Cy ; in
place of Cy pie. O

Now we introduce an averaged version of V that will be extensively used in our
arguments.

Definition 2 (Averaged matrix) Let V be a function, x € R", r > 0. We define the
averaged matrix as

1
Vx,r; V)= r,,—_z/Q( )V(y)dy- ®)

These averages have a controlled growth.

Lemma3 (Controlled growth, cf. Lemma 1.2in [S]) If V € B, then forany 0 < r <
R < o0,

y_n
vy scy () v RY),
where Cy is the uniform B, constant for V.
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Proof Let0 < r < R. Then for any ¢ € R", applications of the Holder inequality and
the reverse Holder inequality described by (7) show that

1
! P

Vindyee) < (— 1 VeE B d
<<][Q<xvr> v y>”><<|Q<x,r>|/Q(x,r>< e y)

n

R\ 7 . 7
< (—) (7[ <V<y>e,e>f’dy)
r 0(r.R)
R\ 7? o
<Cy <—> <(][ V(y)dy) e, e>.
r Q(x,R)

As é € R" was arbitrary, then fQ(X’r) V(y)dy < Cy (%)7 fQ(X’R) V(y)dy, which
leads to the conclusion of the lemma. O

Furthermore, the B, matrices serve as doubling measures.

Lemma4 (Doubling) If V € B, then V is a doubling measure. That is, there exists
a doubling constant y = y (n, p, Cy) > 0 so that for every x € R" and every r > 0,

/ V(y)dy < 7// V(y)dy.
0(x,2r) 0(x,r)

Proof Since each (Ve,e) belongs to B, then by the scalar result, (Ve,e) defines
a doubling measure. Moreover, since the B, constant is independent of ¢ e Sl
then so too is the doubling constant associated to each measure defined by (Ve, é). It
follows that V' defines a doubling measure. O

2.2 Nondegenerate matrices

Next, we define a very natural class of nondegenerate matrices.

Definition 3 (Nondegeneracy class) We say that V belongs to the nondegeneracy
class, V € N'D, if V is a matrix weight that satisfies the following very mild non-
degeneracy condition: For any measurable |E| > 0, we have (in the usual sense of
semidefinite matrices) that

V(E) :=/EV(y) dy > 0. ©)

First we give an example of a matrix function in 3, but not in N'D.

Example 1 (B, \ N'D is nonempty) Take v : R” — R in B, and define

v 0 0

0 0 0
V= .

0 0 0
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It is clear that V € B,. However, since V and its averages all have zero eigenvalues,
then V ¢ N'D.

Now we produce a number of examples in both B, and N'D.

Example 2 (3, N N'D polynomial matrices) Let V be a polynomial matrix.

(a) If V is symmetric, nontrivial along the diagonal, and positive semidefinite, then
V satisfies (9). It follows from Corollary 5 in Appendix A that V € B, as well.

(b) If forevery é € RY, there exists i € {1,...,d} so that Z?:l Vijej # 0, then

d d 2 2

d
(vivee)=veve) =3 [ Y Vies | = [ D Vies | =0
j=1

k=1 \j=1

so that VTV satisfies (9). Since V1V is symmetric and polynomial, then V7'V ¢
ND N B,. A similar condition shows that VVT € N'D N B, as well.

As we will see below, the nondegeneracy condition described by (9) facilitates
the introduction of one of our key tools. However, there are also practical reasons
to avoid working with matrices that aren’t nondegenerate. For example, consider a
matrix-valued Schrodinger operator of the form —A + V, where V is as given in
Example 1. The fundamental matrix of this operator is diagonal with only the first entry
exhibiting decay, while all other diagonal entries contain the fundamental solution for
A. In particular, since the norm of this fundamental matrix doesn’t exhibit exponential
decay, we believe that the assumption of nondegeneracy is very natural for our setting.

2.3 Quantitative cancellability condition

As we’ll see below, the single assumption that V € B » will not suffice for our needs,
and we’ll impose additional conditions on V. To define the quantitative cancellability
condition that we use, we need to introduce the lower auxiliary function associated to
VeB,NND.

If V € N'D, then by (8) and (9), foreach x € R" andr > 0, we have ¥ (x,r; V) >
0.IfVeB pand p > % then the power 2 — % > 0 and it follows from Lemma 3 that

lim (¥ (x,r;V)é,é) =0 forany e € R?,

r—0+t

lim min (¥ (x, R;V)eé,é) = oo.
R—00 geSd-1

These observations allows us to make the following definition of m, the lower auxiliary
function.

Definition 4 (Lower auxiliary function) Let V. € B, N N'D for some p > 5. We
define the lower auxiliary function m (-, V) : R" — (0, co) as follows:

1
— =sup{r: min (¥ (x,r;V)e,e) <1}.
m(x,V) r>13{ zeSd—l( ( Jee) }
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We investigate this function and others in much more detail within Sect. 3. For now,
we use m to define our next matrix class.

Definition 5 (Quantitative cancellability class) If V. € B, N N'D, then we say that V
belongs to the Quantitative Cancellability class, V € OC, if there exists Ny > 0 so
that for every x € R” and every ¢ € RY,

ik = [ (Viow@ Vi) . (10)
0

where Q = Q (x, m)

For most of our applications, we consider QC as a subset of 5 p N ND in order to
make sense of m (-, V). However, if V ¢ Bp NND orm (-, V) is not well-defined, we
say that V € QC if (10) holds for every cube Q € R”.

To show that this class of matrices is meaningful, we provide a non-example.

Example 3 (QC is a proper subset of B, N N'D) Define V : R” — R2*2 by

I |x|2} I e
Vix)= = .
) [|x|2 ] T a2 (4 eex2)
By Example 2, V € B, N N'D. However, as shown in Appendix A, V ¢ QC.

In Sect. 8, we prove one of our main results: an upper exponential decay estimate
for the fundamental matrix of the elliptic operator Ly, where V € B, N NDNQC.
A further discussion of these matrix classes and their relationships is available in
Appendix A.

2.4 Stronger conditions

To finish our discussion of matrix weights, we introduce some closely related and
more well-known classes of matrices. Note that these assumptions are stronger and
more readily checkable.

Definition 6 (Ao, matrices) We say that V belongs to the A-infinity class of matrices,
V € A, if for any ¢ > 0, there exists § > 0 so that for every cube Q,

> -9l0l. (In

{x cQ:V(x) 25][ V(y)d)’}
o

This class of matrix weights was first introduced in [1], where the author proved
a Shubin—Maz’ya type sufficiency condition for the discreteness of the spectrum of
a Schrodinger operator —A + V, where V € Ay. Interestingly, and somewhat sur-
prisingly, we show in the Appendix B that the condition V € Ay is equivalent to
V € Aj . The class Ay « is the readily checkable class of matrix weights intro-
duced in [17, 18], which we now define.
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Definition 7 ( Ay o matrices) We say V € Aj o, if there exists Ay > 0 so that for
every cube Q, we have

det (f V(x)dx) < Ay exp (7[ lndetV(x)dx) .
0 o

We briefly discuss the relationship between 53, and .A.. First, we have the following
application of Gehring’s lemma.

Lemma5 (Ay C By)IfV € Aw, then 'V € B, for some q > 1.

Proof Since (Vé, &) € Au uniformly in ¢ € S?~!, then by [30, Lemma 7.2.2], there
exists ¢ > 1 so that (Vé,é) € B, uniformly in é € S?=1. In particular, V € B, as
required. O

On the other hand, when V' € B, there is no reason to expect that V € Aq.
If V € B, then for each ¢ € R?, (V(x)é, é) is a scalar B, function, which means
that (V(x)e, e) is a scalar Ay, function. As the B, constants are uniform in ¢, then
for any ¢ > 0, there exists § > 0 so that for every cube Q, if we define Q; =

{x €0 (V(0)E.2) = 8 f, (V). o) dy}, then | Q3] > (1 — &) | Q|. However, this
doesn’t guarantee any quantitative lower bound on |ﬂg OF; | In fact, Example 3 above
gives a matrix function that belongs to N'D N 3, for every p, but has zero determinant
everywhere. Therefore, for every x, there exists ¢, for which (V(x)éy, éx) = 0,
while the nondegeneracy condition ensures that <( fQ V(y)d y) éx, Ex> > 0. From this
observation, we see that the .4, condition (11) is impossible to satisty. Alternatively,
as shown in Appendix A, V ¢ QC and therefore by Lemma 6 below, V ¢ A.
Recall that ; = | V| denotes the largest eigenvalue of V. As we saw in Lemma 1,
if V e B, then 14 belongs to B,,. Let A denote the smallest eigenvalue of V. That is,

-1 . . .
A= | v-! | . Under a stronger set of assumptions, we can also make the interesting
conclusion that A1 is in B ,.

Proposition 1 (Smallest eigenvalue is scalar B,) If V € B, N Ao, then L1 € B),.

The proof of this result appears in the appendix of [31]. Although the assumption
that V € B, N Ay implies that the smallest and largest eigenvalues of V belong to
B, itis unclear what conditions would imply that the other eigenvalues belong to this
reverse Holder class.

The next result and its proof show that the QC condition can be thought of as a
noncommutative, non-.A., condition that is very naturally implied by the noncommu-
tativity that is built into the A, definition.

Lemma6 (A NND C QC)IfV € AxoNND, then V € QC.

In the following proof, we establish that (10) holds for all cubes Q € R”, not just
those at the special scale which are defined by Q = Q (x, m)
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Proof Since V € Ay, we may choose § > 0 so that (11) holds with ¢ = % That is,
forany Q C R”, if we define § = {x €OV 26§, V(y)dy},then NER]
Observe that since V (Q) is invertible, then

S = {x €0 VWIV(Q) Vvt = il},

10|
then
/ V@)IV () V(x)2dx z/V(xﬁWQ)—IV(x)%dx z/izdx =2
0 s s 10| 2
showing that V e QOC. O

Next we describe a collection of examples of matrix functions in B, N A . Let

A= (aij)f,j=1 be ad x d Hermitian, positive definite matrix and let I = (Vij)?,j=1

be some constant matrix. We use A and I' to define the d x d matrix function V :
R" — R4 by
ary [x"" Lo agg x|
Vx) = : : . (12)
agy |x|" ... aga |x|"

By [32, Theorem 3.1], a matrix of the form (12) is positive definite a.e. iff y;; = y;; =
% (vii +vjj) fori, j = 1,...,d. Moreover, in this setting, [32, Lemma 3.4] shows
that V=1 : R” — R9*? is well-defined and given by

Vi)~ = (a"f |x|—Vﬁ)d o (13)

i,j=1
where A=l = (a’-’ )l. =1 Under the assumption of positive definiteness, these matrices
provide a full class of examples of matrix weights in B, N A3 .

Proposition 2 Let V be defined by (12)) where A = (aij)d is a d x d Hermitian,

i,j=1
positive definite matrix and y;; = % (yi + )/j)forsome y eRUIfp > landy; > —%
foreach 1 <i <d, thenV € B, N Az o0.

The proof of this result appears in Appendix C.

The classical Brunn—Minkowski inequality implies that the map A +— (det A)é,
defined on the set of d x d symmetric positive semidefinite matrices A, is concave.
An application of Jensen’s inequality shows that

1
<det][ V(x)dx)d z][ [det V (x)]7 dux: (14)
0 [

see [17, p. 48] for a proof. Accordingly, we make the following definition of an
associated reverse class.
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Definition 8 (Rpy) We say that a matrix weight V belongs to the reverse Brunn—
MinkowskKi class, V € Rpw, if there exists a constant By > 0 so that for any cube
Q0 C R”", it holds that

(det][ V(x)dx)d < Bv][ [det V (x)]7 dx. (15)
0 0

In Appendix C, we also provide the proof of the following*non-.4,” condition for

V e OC.

Proposition 3 If'V € N'D and there exists a constant By > 0 so that (15) holds for
every cube Q C R" then V € QC.

Even for ad xd diagonal matrix weight V with a.e. positive entries A1 (x), ..., Ag(x),
itis not clear when (15) holds. If each 1. (x) € Ay for 1 < j < d, then (15) holds. In
particular, since every diagonal matrix weight V with positive a.e. entries belongs to
QC, then (15) doesn’t provide a necessary condition for QC. It would be interesting to
find an easily checkable sufficient condition for V € OC that is at least trivially true
in the case of diagonal matrix weights.

For a much deeper discussion of the classes B, Aoo, A2.00, and their relationships
to each other, we refer the reader to Appendix B. We don’t discuss matrix .4, weights
in Appendix B since they play no role in this paper. However, [33] serves as an excellent
reference for the theory of matrix .4, weights and the boundedness of singular integrals
on these spaces.

3 Auxiliary functions and Agmon distances

Now that we have introduced the class of matrices that we work with, we develop the
theory of their associated auxiliary functions. In the scalar setting, these ideas appear
in [4], [5], [2], and [3], for example. As we are working with matrices instead of scalar
functions, there are many different ways to generalize these ideas.

We assume from now on that V &€ Bp N ND for some p € [%, oo]. By Lemma 2,
there is no loss in assuming that p > 5. Since V ¢ ND, then by (8) and (9), for each
x € R"andr > 0, we have ¥ (x, r; V) > 0. Since p > 7, then the power 2 — % >0

and it follows from Lemma 3 that for any ¢ € R4 ,

lim+ (W (x,r; V)e,e) =0

r—0

lim (¥ (x, R; V)e,eé) = co.
R—o0
This allows us to make the following definition.

If Ve B, NND for some p > 5, then forx € R" and ¢ € S9=1, the auxiliary
functionm (x, e, V) € (0, 00) is defined by

1 .
————— =supf{r: (W (x,r; V)e,e) < 1}.
m(x,e, V) r>0

@ Springer



Exponential decay estimates for fundamental matrices of...

Remark 1 If v is a scalar B,, function, then we may eliminate the é-dependence and
define

1
=supf{r: ¥ (x,r;v) <1}.
m(x,v) r>0

See [4], [5], [2], for example.

We recall the following lemma from [5], for example, that applies to scalar func-
tions.

Lemma7 (cf. [5, Lemma 1.4]) Assume that v € B, for some p > 5. There exist
constants C, c, kg > 0, depending on n, p, and C,, so that for any x,y € R",

(a) If|x_y| g m(i V)’ thenm(x U) :(anv) m(y,v),
®) m@y,v) <C|[ 1+|x—y|m(x v)]kom(x v),

cmix, U
(C) m ()’7 U) ~ [+|x— ylm(x U)]kO/(kOJrl)

As the properties described in this lemma will be very useful below, we seek aux-
iliary functions that also satisfy this set of results in the matrix setting. We define two
auxiliary functions as follows.

Definition 9 (Lower and upper auxiliary functions) Let V € B, N N'D for some
p > 5. We define the lower auxiliary function as follows:

1
— =sup{r: min (¥ (x,r;V)e,e) <1¢. 16
m(x, V) rfé{ i (P e } (1o

The upper auxiliary function is given by

1 SN
——— =sup {r :max (W (x,r; V)e,e) < 1} =sup{r: |V (x,r; V) <1}.
m(x,V) r>0 eeSd-1 r>0

a7

Remark 2 Since |V (x, r; V)| satisfies Lemma 3 whenever V € B,,, then for the upper
auxiliary function, 712 (x, V'), we do not need to assume that V € N'D.

For V fixed, we define

Yx)=Ww <x, ;; V)
m(x,V)

T() = (x, . v),
m((x,V)

then observe that W(x) < I < W(x). In particular, for every ¢ € sa-1
(Tx)e,é) <1 < (W, é). (18)
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With this pair of functions in hand, we now seek to prove Lemma 7 for both m
and m. The following pair of observations for each auxiliary function will allow us to
prove the desired results.

Lemma 8 (Lower observation) Ler V. € B, N ND for some p > 5. If ¢ >
. - .
(W (x,7r; V)e,e) for some e € S then r < max {1, (Cyc)2r—n } m

1
Proof If r < m,

from (18) and Lemma 3 that for any ¢ € S?~!,

S 1 ) N
1< (2()6)6, e) = <\IJ <x, m, V) e, e>

1\ - Ly
<C _— V(x,r; Ve, <C _— .
= V(m(x,vw) W vyee Vc(m(x,vw)

The conclusion follows after algebraic simplifications. O

then we are done, so assume that m < r. Then it follows

As we observed in Lemma 1, if V € B, then |V| € B,. Thus, it is meaningful to
discuss the quantity m (x, |V|). For m (x, V), we rely on the following relationship
regarding norms. Note that by Remark 2, we do not need to assume that V € ND for
this result.

Lemma 9 (Upper auxiliary function relates to norm) If V € B), for some p > 7, then

2
e, V) < mx, |V)) < (dzcv)z”*" (e, V).

Proof For any r > 0, choose ¢ € S¢~! so that

- 1 -
W (x,rs V)| = (W(x,r; Ve, e) = 2/ (V(y)e,e)dy
e
Q(x.r)

Smce (V(y)é,é) < |V|, then W (x,r; V)| < W(x,r;|V]). It follows that =~ 7()( v =
—m(x"w) so that

m(x,|V|]) >m(x, V).

Let {e,} — denote the standard basis of R?. For any r > 0, it follows from (5) that

d
e V=, [ oy =2 [ ay vmEg)dy
Q(x,r) Q(x,r) j=1
) (19)
=d )y (W(x.r.V)Ej. ¢j) <d* [W(x.r: V).
Jj=1
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Combining the fact that W (x, m; |V|) = 1 with the previous observation,
Lemma 3, and the definition of m shows that

1=\I/<x L |V|> W(x,;;V)‘
m(x,|V])’ m(x, |V])

< 2oy | V). 2”\11 v— v =a2c, [P V) o
=0y mevy )T T e v

m(x, |V])
and the second part of the inequality follows. O

Since |V | = A4, the largest eigenvalue of V, then this result shows thatm (x, V) =~
m (x, Aq), indicating why we call m the upper auxiliary function.

Now we use these lemmas to establish a number of important tools related to the

functions m (x, V) and m (x, V). From now on we will assume that |-| on R” refers
to the £~ norm.
Lemma 10 (Auxiliary function properties) If V- € B, N N'D for some p > 5, then
both m(-, V) and m(-, V) satisfy the conclusions of Lemma 7 where all constants
depend on n, p, and Cy. Form(-, V), the constants depend additionally on d and we
may eliminate the assumption that V € ND.

Proof First consider m(-, V). Lemma 9 combined with Lemma 1 implies that all of
these properties follow immediately from Lemma 7

Now consider m(-, V). Suppose |[x — y| for some j € N. Then

< Ao

0 (y, e V)) cQ ( , m(ifv)).ChooseE € §¢-1 sothat<\ll (x, m; V) e, e) =
1. Then

1 . . .
<ll’ <y,m, V) e,e> =m(x, V) 2/Q<y1 (V (Z)e, e)dz

’m(x,V))

sm(x,wH/  (V(2)é,é)dz
0(v. 52

x’m(x,V))

<m(x,V)"? yj/
o(

(V(@eé e dz=y! (W(x)e,e) =y,

where we have used Lemma 4 and y denotes the doubling constant. It then follows
max{l (Cyy/ )p/(ZP ")]

from Lemma 8 that - XI’V) < TICAG or
p/@2p—
m vy < (cvr’)" " m v, (20)
. i Cyy )PP
Since [x —y| =< 7,,,12—(;"3) and m(xl’v) < ( ;()y 7y then |x —y| <
2/ —1)(C p/Q2p—n) 2_1)(Cy p/2p— n)+1 )
( )(mfyyv{ - Thus, 0 (x’ m> c oy, BN o )V) . Setting
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j=1Tln [(Zj —1) (vaj)p/@p—n) + 1] /In 2], it can be shown, as above, that

1 - S ¥
<\Il (x, _ V) €,€> <y,
m(y,V)

where now ¢ € S?7! is such that (¥(y)é, é) = 1. Arguing as above, we see that

=\ p/@2p—n)
| max 1,(va-’)

novy = e, V) » OF

7)17/(217—")

m(x. V) = (Cvy’ m(y. V). @

When |[x — y| < ﬁ, we have that j ~ 1 and j ~ 1. Then statement (a) is a
consequence of (20) and (21).
Iflx —yl < m, then part (a) implies that m (y, V) < m (x, V) and the con-

o .
Vol gy ) < 2l

clusion of (b) follows. Otherwise, choose j € N so that ey = FIEARE

From (20), we see that

m(x, V)

plny
) 2p—n)In2

m(y, V) = (Cyy) 7 (207!

plny
< (Cyy) T [1+|x — ylm (x, V)] @D m (x, V).

i
Setting C = (Cyy) 2" and kg = (zpp_l% gives the conclusion of (b).
1 1 . .

If |x —y| < mGvy Of lx —y| < FICAGE then part (a) implies that m (x, V) <
m (y, V), and the conclusion of (c) follows. Thus, we consider when |x — y| > m
and |[x — y| > m Repeating the arguments from the previous paragraph with x
and y interchanged, we see that

mE V)= Cl1+x —ym V] m (. V) =20 1x =y m (v, V)H
Rearranging gives that

2-ko/kot D o=/ kot Dy (3, V) 27ko/kot D o=/ kot Dy (3, V)
m . m

m(y, V)= > ni V)
(100 V) b — )T (1 o V) e — )/

Taking ¢ = 2~%0/ko+D) c=1/ko+1D Jeads to the conclusion of (c). o

Using these auxiliary functions, we now define the associated Agmon distance
functions.
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Definition 10 (Agmon distances) Let m(-, V) and m(-, V) be as in (16) and (17),
respectively. We define the lower Agmon distance function as

1
dx,y,V) :i‘;f/o m(y (), V) |y )| dt,

and the upper Agmon distance function as

1
dx,y, V) =inf /0 Ay (). V) |y ()] dr.

where in both cases, the infimum ranges over all absolutely continuous y : [0, 1] —
R" with y(0) = x and y (1) = y.

We make the following observation.

Lemma 11 (Property of Agmon distances) If |x —y| < then d (x,y,V)

c
_ m(x,V)’
Stp.cy) CIf1x = y| < 555, thend (x,, V) S p.cy) C-

Proof We only prove the first statement since the second one is analogous. Let x, y €
R” be as given. Define y : [0, 1] - R" by y (t) = x + ¢ (y — x). By Lemma 10(a),
m(y ), V) Sm.p.cy) m(x, V) forall ¢t € [0, 1]. It follows that

1 1
d(x,y, V)S/0 m(y (), V) |y ()| dt S<n,p,cv>/0 m(x,V)lx —y|dt

Sa.p.cv) €
as required. O

In future sections, the lower Agmon distance function will be an important tool
for us once it has been suitably regularized. We regularize this function d(-, -, V)
by following the procedure from [2]. Observe that by Theorem 10(c), m (-, V) is a
slowly varying function; see [34, Definition 1.4.7], for example. As such, we have the
following.

Lemma 12 (cf. the proof of Lemma 3.3 in [2]) There exist a sequence {xj }jo | S R"s0

~ 1
that with Q; = Q (xj, m(xj,v))’ we have R" = U?‘;l Q; and 2311 X0, Stnp.Cy)
1. Moreover, for each j, there exist ¢; € C3° (Qj) sothat0 < ¢; <1, 27021 ¢ =1,
and [V; ()| Sp.cy) m(x. V).

Remark 3 Since m (-, V) is also a slowly varying function, the same result applies to
m(-, V) with constants that depend additionally on d.

Using this lemma and [34, Theorem 1.4.10], we can follow the process from [2,
pp- 542] to establish the following pair of results.

@ Springer



J. Isralowitz, B. Davey

Lemma 13 (Lemma 3.3 in [2]) For each y € R", there exists nonnegative function
ov (-, y) € C®°R") such that for every x € R",

lov(x, ) —d(x, v, V)| Spcy 1
IVioy (x, M| S, p.cy) m(x, V).

Lemma 14 (Lemma 3.7 in [2]) For each y € R", there exists a sequence of nonnega-
tive, bounded functions {(pv,j ¢, y)} C C*®(R") such that for every x € R",

oy, i(x,y) <ov(x,y)
ov,j(x,y) = gy(x,y)as j — o0

|Viov, i, M| Sep.cy) mx, V).

To conclude the section, we observe that under the stronger assumption that V €
B, N Axo, We can prove a result analogous to Lemma 9 for the smallest eigenvalue.
By Proposition 1, A1 € B, so it is meaningful to discuss m (x, A1). In subsequent
sections, we will not assume that V € Ao, so this result should be treated as an
interesting observation. Its proof is provided in [31].

Proposition 4 (Lower auxiliary function relates to 1) If V.€ B, N N'D N A for
some p > % then

m(x, ) <m(x, V) Sm(x, ry),

where the implicit constant depends on n, p, Cy and the Aso constants.
This result leads to the following observation.

Corollary 1 If V € B, N N'D N Ay for some p > %, then m (x, A1) satisfies the
conclusions of Lemma 7 where the constants have additional dependence on the Ao
constants.

Remark 4 1In fact, if we assume that V € B, N N'D N A, then we can show that
Lemma 10 holds for m (-, V) in the same way that we show it holds for iz (-, V). That
is, we apply Lemma 7 to A1, then use Proposition 4.

4 Fefferman-Phong inequalities

In this section, we present and prove our matrix versions of the Fefferman—Phong
inequalities. The first result is a lower Fefferman—Phong inequality which holds with
the lower auxiliary function from (16). This result will be applied in Sect. 8 where we
establish upper bound estimates for the fundamental matrices. A corollary to this lower
Fefferman—Phong inequality, which is used in Sect.9 to prove lower bound estimates
for the fundamental matrices, is then provided. In keeping with [2], we also present
the upper bound with the upper auxiliary function from (17).
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Before stating and proving the lower Fefferman—Phong inequality, we present the
Poincaré inequality that will be used in its proof. Additional and more complex matrix-
valued Poincaré inequalities and related Chanillo-Wheeden type conditions appear in
a forthcoming manuscript.

Proposition 5 (Poincaré inequality) Let V € B%. For any open cube Q € R" and any
i€ CHQ), we have

2
/Q/Q\(WQ))—iv%(y)(ﬁ(x)—ﬁ(y)) dxdy 5<d,n,cv>|Q|5/Q|Dﬁ<x)|2 dx.

We prove this result by following the arguments from the scalar version of the
Poincaré inequality in Shen’s article, [2, Lemma 0.14].

Proof Fix a cube Q and define the scalar weight v (y) = ‘V(Q)’% V(y)V(Q)’% .

First we show that vy € B% with a comparable constant. For an arbitrary cube P,
observe that by (5)

2

2 d 2 !

(]{);UQ@)\zdy) <[ { X tvoverte.g)| o
j=1

d

=d’y” (]i (viorivevoé.6) dy)

j=1

n

d
<dcy ]i S (v vevo e ¢ ) ay
j=1
<d’Cy ]{) lvo ()] dy,

where we have used that V' € By to reach the third line. This shows that vg € Bx.
Since vg € Bn then it follows from [2, Lemma 0.14] that

1 2
|, [ lvortvimae —ion| axa

s/Q/Q]<V(Q>)—%v5(y)\2|ﬁ<x)—ﬁ(y)|2 dx dy
d
=//Z|u,-<x)—uj<y)|2 vo()dy dx
eloiH
d
Sy 101} vQ<Q>/QZWu,-<x)|2 dx
Jj=1
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_ ok vQ(Q>/Q Dii(0)[? dx.

Since
vQ(Q>=/Q\V<Q>—5V(y>V(Q>—5 dy
d 1 1
=a) [ (vortvoverte.a)a=a
j=1
the conclusion follows. |

Now we present the lower Fefferman—Phong inequality. This result will be applied
in Sect. 8 to prove the exponential upper bound on the fundamental matrix. Note that
we assume here that V belongs to the first three matrix classes that were introduced
in Sect.2.

Lemma 15 (Lower Auxiliary Function Fefferman—Phong Inequality) Assume that V €
B, N N'D N QC for some p > 5. Then for any i € CJ(R™), it holds that

v%(x)mx)‘2 dx.

- 2 >
/ e, VY|P dx Sidmp.Co vy / D) dx + /
R)‘l R)‘l

Rn

Proof For some xo € R”, let ro = m and set Q = Q(xp, rg). Property OC in
(10) shows that N

wo [laeok ax < [ [ (viow@ vimiw, i) dyds
0 0JQ
= [ [ v@ i) avax
0JQ
2
§/Q/Q\V(Q>%Vi(y)@(x)—ﬁ(y))j dydx
2
+ [ [ o vimio| da
0J0

2 PN n N
Sancn 1§ [ 1DE@P dx+rf [ V@ VE@E)| dy,
Y Y
(22)
where the last line follows from an application of Proposition 5. Now we multiply

this inequality through by r; 2= m (xo, V)2, then apply Lemma 10 to conclude that
m (x0, V) =, p,cy) m(x, V) on Q. It follows that

- 2 -
/!m(x,V)u(x)\ dx 5(,1,n,p,cv,zvv)/ |Dii (x)|* dx
0 0
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+r6"2\V<Q>‘\/Q)V%(y)ﬁ(w\zdy.

Since 7 "V(Q) = W(xo,70,V) > I implies that ry *|[(V(Q)~!| =
|\Il(xo, ro, V)_1| < 1, then for any Q = Q (xo, m), we have shown that

1 . 2
/Q}m(x,V)ﬁ(x)|2dx s(d,n,p,cv,Nv)/Qwﬁ(x)F dx—i—/Q‘Vz(x)u(x)) dx.
(23)

According to Lemma 12, there exists a sequence {x; }jo:]

define Q; = Q (xj, M), then R" = (U7, Q; and 372, X0, Sw.p.cv) 1
Therefore, it follows from (23) that

C RR” such that if we

/ m (2. V)i (o) dx < Z/ m (x, V) ii(x)|” dx
Rn j:l Qj
o0 1 ) ’
S(don,p,Cv.Ny) Z (/Q |Dii (x)|* dx +/Q )Vf(x)u(x)‘ dx)
j=1 J J

S(n,p,CV) / |Dﬁ(x)|2 dx +/
R? R®

as required. O

' 2
Vf(x)ii(x)‘ dx,

Remark 5 1f we assume that # = 1 on Q, then the condition QC is necessary for (22)
to be true on all such cubes. As such, the condition QC is very natural assumption to
impose. In fact, as we show in Appendix A, there are matrix weights V € (B » NN D) \
QC for which this Fefferman—Phong estimate fails to hold.

Finally, if we replace V by |V| I, we are essentially reduced to the scalar setting
and we only need that |V| € B,. In particular, we don’t need to assume that V € QC.
As shown in Sects. 8 and 9, this result will be applied to prove the exponential lower
bound on the fundamental matrix.

Corollary 2 (Norm Fefferman—Phong Inequality) Assume that |V| € B, for some
p > 5. Then for any ii € CJ(R"), it holds that

/R I (e, VD AP dx S /R DiOP dx + /IR V()P dx.

To conclude the section, although we will not use it, we state the straightforward
upper bound which is similar [2, Theorem 1.13(b)]. The proof is very similar to that
of [2, Theorem 1.13(b)], so we omit it. Notice that for this result, we only assume that
VeB,NND.
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Proposition 6 (Upper Auxiliary Function Fefferman—Phong Inequality) Assume that
V € B, for some p > 5. For any ii € Cé (R™), it holds that

J.

5 The elliptic operator

2
V%(x)ﬁ(x)‘ dx f,(d,n,p,Cv) / |DL7()C)|2 dx +/ [m(x, V)ﬁ(x)|2 dx.
R’l R’l

In this section, we introduce the generalized Schrodinger operators. For this section
and the subsequent two, we do not need to assume that our the matrix weight V
belongs to B, and therefore work in a more general setting. In particular, to define
the operator, the fundamental matrices, and discuss a class of systems operators that
satisfy a set of elliptic theory results, we only require nondegeneracy and local p-
integrability of the zeroth order potential terms. The stronger assumption that V € B),
is not required until we establish more refined bounds for the fundamental matrices;
namely the exponential upper and lower bounds. As such, the next three sections are
presented for V in this more general setting.

For the leading operator, let AP = A%P (x), for each «, B € {1,...,n}, be an
d x d matrix with bounded measurable coefficients defined on R”. We assume that
there exist constants 0 < A, A < oo so that A%? satisfies an ellipticity condition of
the form

d n d n
PIDIHCIEYS IS

i,j=1la,p=1 i=1 a=1

.12
gl =g VxeRYEeRPY (24)

and a boundedness assumption of the form

d n d n
Yo X AT mEll <A Y Y gLl < AlEll), Vx e R £ ¢ e RO
ij=1a,p=I1 i j=1a,p=1
(25)

For the zeroth order term, we assume that

VelL?

loc

(R”) NND. (26)
In particular, since V is a matrix weight, then V is ad x d, a.e. positive semidefinite,
symmetric, R-valued matrix function.

Remark 6 Note that if V € B, N N'D for some p € [}, 00], then since V € B,

2
implies that V € Lﬁc (R™) for some p > 7, such a choice of V satisfies (26). This

more specific assumption on the potential functions will appear in Sects. 8 and 9.

The equations that we study are formally given by

Lyii = —Dy (A’ Dgii) + Vii. 27)
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To make sense of what it means for some function i to satisfy (27), we introduce
new Hilbert spaces. But first we recall some familiar and related Hilbert spaces. For
any open 2 C R", W1’2(Q) denotes the family of all weakly differentiable functions
u € L*(Q) whose weak derivatives are functions in L?(£2), equipped with the norm
that is given by

+11Dull7 5 -

letlly120) = ll72q
The space W(}’2(Q) is defined to be the closure of C2°(€2) with respect to ||-|| W12(Q)-
Recall that C2°(€2) denotes the set of all infinitely differentiable functions with com-
pact support in €2.
For any open Q C R”, the space Y :2() is the family of all weakly differentiable
functions u € Lz*(Q) whose weak derivatives are functions in L2(2), where 2* =
nzT"z. We equip Y 1-2(€2) with the norm

2 . 2 2
”u”Yl*z(Q) o ”ulle*(Q) + ”Du”LZ(Q) .

Define Y% (%) as the closure of C°(R) in Y12(Q). When @ = R”, Y12 (R") =
Yy * (R") (see, e.g., Appendix A in [11]). By the Sobolev inequality,

leell o# @y < €n 1 Dutll 2y forallu € Yy ().

It follows that Wol‘z(Q) - YOI’Z(Q) with set equality when €2 has finite measure. The
bilinear form on Y(}~2(sz) that is given by

= DyuD
(u,v)Y(}_z(Q) /gz e Dy v

defines an inner product on YOI’Z(Q). With this inner product, Yol’z(Q) is a Hilbert
space with norm

1/2

u =u,u
” ”YOIZ(Q) < >Y01.2(

o= [ Dullz2q) -

We refer the reader to [11, Appendix A] for further properties of ¥1-2(2), and some
relationships between Y12(Q) and W'2(Q). These spaces can be generalized to
vector-valued functions in the usual way.

Towards the development of our new function spaces, we start with the associ-
ated inner products. For any V as in (26) and any 2 € R” open and connected, let

(- .>?}Vl’2(52) 1 C°(R) x C°(2) — R be given by
Vv

-

(@ 9) 120 = /Q (Vii, §) + (Di, D).
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This inner product induces a norm, ”'Hivl*z ) 1 C2°(2) — R that is defined by
Vv

«Q

2
=02 . 1/2-
u =|V'u
i1 = |

Dii||? 5,0, = Vii, i) + (Dii, Dii) .
poiey T 1Pl /Q< i, i) + (Dii, Dii)

The nondegeneracy condition described by (9) ensures that this is indeed a norm and
not just a semi-norm. In particular, if || Dii||;2(q) = 0, then ii = ¢ a.e., where ¢ is a
1727112 — |v12z)? — O R —
V2|2 = [V12E] 2 = 0iff ¢ = 0.
For any 2 C R” open and connected, we use the notation L%,(Q) to denote the
space of V-weighted square integrable functions. that is,

-

constant vector. But then by (9),

L(Q) = {ﬁ Q> RY: HVl/zii

< OO¢.
L2(R)

For any V as in (26) and any 2 C R” open and connected, define each space

W‘l,’zo(Q) as the completion of CZ°(€2) with respect to the norm ||-|| Wi (@) That is,
’ \4

— Il
Wyh(@) =CE@ e
The following proposition clarifies the meaning of our trace zero Sobolev space.

Proposition7 Let V be as in (26) and let @ C R”" be open and connected. For every
sequence {iik},‘?o:l C CZ°(R) that is Cauchy with respect to the W‘l,’z(Q)—norm, there

existsau € L%,(Q) N YOI’Z(Q) for which

1 2
tim g~ il ) = tim ([ VG- /Dﬁ _pil?) =o.
Jim Vi =5 0, = tim ([ V4 i~ + [ i~ i

Proof Since {uy} C C2°(R2) is Cauchy in the W‘l,’Z(Q) norm, then {V1/2ﬁk} and
{Duiy} are Cauchy in L?(£2), so there exists 4 € L?(2) and U € L?(2) so that

V20, > h in LX) (28)
Diiy > U in L*Q). (29)

By the Sobolev inequality applied to iy — i j, we have
H’Zk — i ”L2*(Q) =Cn ”D (ﬁk - ﬁj)”Lz(Q) =Cn ”ﬁk — i ” Wit (Q)
In particular, {iiz} is also Cauchy in L2 () and then there exists i € L2 (£2) so that
iy - in L7 (Q). (30)
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For any ' € R", observe that another application of Holder’s inequality shows that

1
2
V20 — v 5(/ |V||ﬁk—ﬁ|2) <WVI*y ik —iill 2+ (g -
H HLZ(QQQ) Qngy Lj(Q/) L (Q)

Since V e L2 _(R"), then |V =z < oo and we conclude that V1/2i; — V124 in

loc L2 (Y
L* (N Q) forany Q' € R". By(ccimparing this statement with (28), we deduce that
V12 = hin L2(S) and therefore a.e., so that (28) holds with 7 = V'1/2ii. Moreover,
i€ Ly (Q).

Next we show that Du = U weakly in €. Letg € C*(Q2). Thenfor j =1,...,n,
we get from (30) and (29) that

/Q<‘7(x)’Dj§(x)) dx = lim /Q (00, DjE ) dx

= tim [ (Do Ew) dx == [ (00,8 dx,

where U; denotes the j™ column of U. That is, Di = U € L*(S). In particular,
(29) holds with U = Du. Finally, in combination with (29) and (30), this shows that
- 1,2

u €Yy (Q). O

B 2y Proposition 7, associated to each equivalence class of Cauchy sequences [{iix}] €
Wy 5(S2) is a function ii € L3, (2) N Y% () with

klgrgo lup — u||W‘1/.z(Q) =0

so that
Iy 12y = Jim Nkl ys2.g) = lilly2 g, -

In fact, this defines a norm on weakly-differentiable vector-valued functions # for

which (][, 1.2 (@ < oo It follows that the function u is unique and this shows that
\%4

W‘l,’%)(Q) isometrically imbeds into the space L%,(Q) N Yol’z(Q) equipped with the
norm H'”W\I,J(Q)'

Going forward, we will slightly abuse notation and denote each element in W‘I,’%(Q)
by its unique associated function u € L%, ()N YO1 ’Z(Q). To define the nonzero trace
spaces that we need below to prove the existence of fundamental matrices, we use
restriction. That is, define the space

W) = {ﬁm e W‘l,’f)(R”)]
and equip it with the W‘],’Z(Q)-norm.
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Note that W‘l/’z(R") = W%,:%(]R”). Moreover, when Q # R”, W‘l,’Z(Q) may not be

comylete so we simply treat it as an inner product space. We stress that in general,

W‘l, (£2) should not be thought of as a kind of “Sobolev space,” but should instead

be viewed as a convenient collection of functions used in the construction from [11].
Specifically, the construction of fundamental matrices from [11] uses the restrictions
of elements from appropriate “trace zero Hilbert—Sobolev spaces” defined on R”.
For us, W&,’%(R”) plays the role of the trace zero Hilbert—Sobolev space. Also, as an
immediate consequence of Proposition 7 we have the following.

Corollary 3 LetV beas in (26) andlet 2 C R" be open and connected. Ifu € W\l,’z(Q),
thenii € L3, () N Y'2(Q) and there exists {ii}3°, C C°(R") for which

. - -2 _
Jim i =12 ) =0.
We now formally fix the notation and then we will discuss the proper meaning
of the operators at hand. For every ii = (ul, R ud)T in W‘l,’2(§2) (and hence in
Y12 (Q)), we define Loii = —Dy (A*P Dgii). Component-wise, we have (Loit)! =

—Dy, (Azﬂ D,guj ) foreachi =1, ..., d. The second-order operator is written as
Ly =L+ V,

see (27). Component-wise, (Evﬁ)i = —D, (A?jﬁDgu/> + V,-juj for each i =
1,...,d.
The transpose operator of Lo, denoted by Lf, is defined by Liu = —D,
*
[(A“ﬁ)* Dﬁii], where (A"‘ﬁ)* = (Aﬂ"‘)T, or rather (Al.f) = Allsla Note that the

adjoint coefficients, (Ai ; ) satisfy the same ellipticity assumptions as A; ; given by

(24) and (25). Take V* = VT (= V, since V is assumed to be symmetric). The adjoint
operator to Ly is given by

Vi o= Lhi+ Vi = — Dy [(4%)" Dyi] + V7. 31)

All operators, Lo, L, Ly, L}, are understood in the sense of distributions on €.

Specifically, for every i € W‘I,’Z(Q) and v € C2°(2), we use the naturally associated
bilinear form and write the action of the functional £y i on v as

(v, ) = By [i, ﬁ]:/(A"‘ﬂD/gﬁ, D) + (V i1, 5)
Q

Z/QA?fDﬂufDo,vf+v,~jufv".

It is straightforward to check that for such v, i and for the coefficients satisfying (25),

the bilinear form above is well-defined and finite since V € L2

loc- We explore these
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details in the next section. Similarly, B*{, [-, -] denotes the bilinear operator associated
to L7}, given by

(Lo, 5) = By [.7] = /<(Aﬁ°‘)T Dy, Do) + (V7 i 5)

- /Aff‘DﬁufDav" + Vil
Clearly, By [1'5, fi] = By [ﬁ, 5].

For any vector distribution f on  and u as above, we always understand Lii = f
on € in the sense of distributions; that is, as B[u, v] = @) forall ¥ € CX(Q).
Typically f will be an element of some Lf(Q) space and so the action of f on v is
then simply [ f - v. The identity £*i = f is interpreted similarly.

We define the associated local spaces as

o () = {u weakly differentiable on €2 : < oo forevery Q' € Q},

el 1.2 g,

where the tilde notation here is meant to emphasize that this notion of local differs
from the standard one. Note that W‘l,’Z(Q) - W‘l,ﬁoc(ﬁ). Moreover, the operators and
bilinear forms described above may all be defined in the sense of distributions for any
il € Wyt ().

6 Fundamental matrix constructions

We maintain the assumptions from the previous section. That is, A*? is a coefficient
matrix that satisfies boundedness (25) and ellipticity (24), and V is a locally integrable
matrix weight that satisfies (26). The elliptic operator Ly is defined formally by (27).
For any open, connected 2 € R”, V is used to define the Hilbert spaces W‘l,”% ()
and the inner product spaces W‘l,’2 (RQ) = W‘L"%) R |q.

To justify the existence of fundamental matrices associated to our generalized
Schrodinger operators, we use the constructions and results presented in [11]. By
the fundamental matrix, we mean the following.

Definition 11 (Fundamental Matrix) We say that a matrix function I'V (x,y) =

(o),

- defined on {(x, y) € R" x R" : x # y} is the fundamental matrix
of Ly if it satisfies the following properties:

(a) 'V (-, y) is locally integrable and Ly TV (-, y) = 8,1 for all y € R" in the sense
that for every ¢ = (o', ...,¢>d)T € CX® R,

/R AP DT, () Dad’ + ViiT ), (. y) ¢ = ¢k (y).
(b) Forally e R" andr > 0,V (-, y) € YL2 (R"\B (v, 1)).
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(c) Forany f = (r1, ...,fd)T € L (R"), the function i = (u', ...,ud)T given
by

uh(y) = /]R Fje (. 3) f7 () dx

belongs to W‘l,’f)(R”) and satisfies L},i = f in the sense that for every ¢ =
(@', ....01)" e c @y,

/A?;?Dau"Dﬂqswviju"w:/R e’

We say that the matrix function I'V (x, y) is the continuous fundamental matrix if
it satisfies the conditions above and is also continuous.

We restate the following theorem from [11]. The stated assumptions and properties
will be described below.

Theorem 8 (Theorem 3.6 in [11]) Assume that (A1)—(A7) as well as properties
(IB) and (H) hold. Then there exists a unique continuous fundamental matrix,

d

Vx,y) = (Fl.‘;(x,y))' . {x # y}, that satisfies Definition 11. We have
L, ]=

I'Vix,y) = I'V*(y,x)T, where T'V* is the unique continuous fundamental matrix

associated to LY, as defined in (31). Furthermore, I'V(x, y) satisfies the following
estimates:

rve. ‘ HFV . H <cr'-% 32
‘ CIMy2@nsem TIT F N yie@npen, =€ 32)
Ve, ‘ HFV . <C, P,y e[l,L) 33
ey pesorn 1TV @ Ly = Car ge|l2) 33
prY(, HDFV - <Cr' v 6[1,L)
orve.m| I @)ooy = Cor g el

(34)
[x eR": ‘Fv(x,y)) > rH—i—HyER":

rv (x,y)) . rH <Cr 2 (35)

{x eR": ‘DXFV (x,y)‘ > ‘L'H + Hy eR": ‘D),FV (x,y)‘ > rH < Cr T
(36)

rv(, y)‘ <Cle—y™", Vx#y, 37)

where (32)—(34) hold for all r > 0, and (35)—(36) hold for all T > 0. Moreover; each
constant depends on d,n, A, A, and Cig, and each C, depends additionally on q.
Moreover, forany 0 < R < Ry < |x — y|,

%4 v lx —z\" 2-n
Ve y) —T (z,y))gcRoc ) R
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FV Vv Iy—zl 7 2—n
@, y) =TT, 2)| = CroC | = R

whenever |x — z| < % and |y — z| < g, respectively, where Cg, and n = n(Ry) are
the same as in assumption (H).

To justify the existence of I'V satisfying Definition 11 and the results in Theorem 8, it
suffices to show that for our Hilbert space W‘l,”%) (R™) (and the associated inner product

spaces W‘l,’Z(Q) where Q C R"), operators Ly, E"{,, and bilinear forms By, Bj, that
were introduced in the previous section, the assumptions (A1)—(A7) from [11] hold.

In addition to properties (A1)—-(A7), we must also assume that we are in a setting
where de Giorgio-Nash—Moser theory holds. Therefore, we assume the following
interior boundedness (IB) and Holder continuity (H) conditions:

(IB) We say that (IB) holds if whenever u € W‘l,’z(B (0,4R)) is a weak solution to
Lii = f or L*ii = f in B(0,2R), for some R > 0, where f € L*(B(0,2R))
for some ¢ € (%, oo], then for any g > 1,

lll Lo (B0,R)) < C1B [Ri? liill o Bo,2r)) + R* ¢ ||f||L‘3(B(0,2R))]s (33)

where the constant Cig > 0 is independent of R > 0.

(H) We say that (H) holds if whenever u € W‘l,’z(B(O, 2Rp)) is a weak solution to
Lii = 0 or £*i = 0 in B(0, Ry) for some Ry > 0, then there exists ne@1)
and Cg, > 0, both depending on Ry, so that whenever 0 < R < Ry,

- el L
— * 2*
wup MsCROR”(][ |;,|2> - 49
B(0,R)

x,yeBOR/D)xzy X = Y[

For systems of equations, the assumptions (IB) and (H) may actually fail. However,
for the class of weakly coupled Schrodinger systems that are introduced in the next
section, we prove that these assumptions are valid. To establish (IB) in that setting,

(R™) N N'D, while our validation of (H) requires

. i+ . .
the stronger assumption that V- € L = (R") N N'D. For the simpler, scalar setting,

we refer the reader to [11, Section 5] for such a discussion of validity. For many of
the scalar settings discussed in [11, Section 5], one must assume, as is standard, that

VelLl ®RM.
Now we proceed to recall and check that (A1)—(A7) from [11] hold for our setting.
Since we are working with fundamental matrices, we only need the following condi-
tions to hold when 2 = R". However, we’ll show that the assumptions actually hold
in the full generality from [11].
Recall that V € lec (R™) N N'D and for any < R" open and connected,

—l, 12

Wyo(2) = C2() "V and Wy?(Q) is defined via restriction as Wy (2) =
W‘l,’2(R”)|Q. Moreover, by Proposition 7 and Corollary 3, these spaces consist of

weakly-differentiable, vector-valued LlloC functions.

it suffices to consider V € L2
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(A1) Reistric;tion property: Fgr any U C Q,if u € W‘l,’2 (Q), then u|y € W‘l,’z(U)
with ||M|U||W‘1/~2(U) < ||u||W¢.2(Q)~
The restriction property holds by definition. That is, for any U € Q < R”,
ifu e W‘l,’z(Q), then there exists v € W‘l,’Z(R") for which v|g = u. Since
- - - 1,2 - -
Sl = iily. then iily € Wy (U) and [lu 2., < 1l 12 g
(A2) Containment of smooth compactly supported functions: CZ°(2) functions
belong to W‘l,’2 (R2). The space W‘I,”% (2), defined as the closure of CZ°(2)
with respect to the W‘l,’2 (2)-norm, is a Hilbert space with respect to some
- T - 1,2
Il - ”W\‘,’%(Q) such that ||u||W‘1/,.%(Q) ~ ”””W“,’Z(Q) forallu € Wy, ((€2).
To establish that C2°(Q) C W,,*(R), we’ll show that C2(R) C W‘I/’,%)(Q)
and W‘l,’%)(SZ) C W‘l,’z(Q). The first containment follows from the definition:

W‘l,’ZO(Q) is defined as the closure of C2°(£2) with respect to the W\l,’z(Q)-norm

and is a Hilbert space with respect to that same norm. To establish the second
containment, let i € W‘l,%) (€2). Then there exists {ux}e; € C2° (2) such that
iy — @ in W,(Q). It follows that ii € W,,*(R") since {iix}32, € C (R")
and iy — uin W‘l,’z(R").However, it|g = i, so we conclude thatu € W‘l,’z(Q),

as required.
(A3) Embedding in YO1 -2 (R™): The space W‘l,%) (R2) is continuously embedded into

Yg1 2 () and respfctively, there exists ¢y > 0 such that for any u € W‘l/%) (),
liilly 120 < colilly12 -

Proposition 7 shows that W‘l,%(Q) is contained in Yol’z(Q). In fact, for any
ue W&,’%(Q), since

liilly12 0 S il 12 0, (40)

then W&,’%(Q) is continuously embedded into Yg’z(Q). Moreover, a Sobolev
embedding implies that for any i € W&,’%(Q),

Il 2 () < 1Dl 2 -

(A4) Cutoff properties:For any U C R" open and connected

N

e WA (Qandé € CO(U) = iiE € Wy (RN U),
e Wy (Qandé € CX(QNU) = iiE € Wyp(@nU),
€ Wy o(Qandé € COR") = ii& € Wy (). (41)

<

<L

with ||u|| w2 Ce |lull W) in the first two cases.

@nu) =
To establish (41), first let u € W‘l,’z(Q). Since u € W‘l,’z(Q), then there exists
ve W‘l,”zo (R™) such that v|g = u. Moreover, there exists {Ux};o; € C (R")
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such that ||v; —
first show that

Uy 2, = 0.1F& € C2° (U). then (5} € C (R"). We

kli)ngo ”vké - Ué:”W‘l/z(Rn) =0.

Observe that

2
1348 = 5602 gy = [ V172 Gt = 90|

> - 2
oy 1D € = T

2
S H V1/2 (vk — U)E L2(]Rn) —+ ||D (vk — U)EH%Z(Rn) + ||(Uk - U) DS”%}(Rn)
S 18 = Bl 2 + 1 = g

where the constants depend on &. An application of Holder’s inequality shows
that

> o 5 o 22 .
”Uk - v”Lz(suppS) S ||Uk - v”LZ*(Rn) |Supp?§| 22 5 ||Uk - v”YOI'Z(R") .
Combining the previous two inequalities, then applying (40), we see that

- -2
S e =l

W",'Z(R") — 0.

= Se02
56 = €N 12 g
In particular, v§ € W‘l,”% (R™). Since & is compactly supported on U, then

(VE)|anu = V|qé = ué and we conclude that ié € W‘l/’2 (NU).

Now assume that £ € C° (QNU). For each k € N, define iy = vilq €

C®(2).Then {ugg} € C° (RN U). Since || k& — 17E||W1,2(R,,> — 0, as shown
|4

above, then by the restriction property (A1), ||i& — Oaswell.

— uElly 12 on,
It follows that u& € W‘I,’%) (2N U), as required.
The third line of (41) follows immediately from the arguments above.

We require that B and B* can be extended to bounded and accretive bilinear forms
on W‘l,”%(Q) X W&,’%(Q) so that the Lax—Milgram theorem may be applied in W‘l/”%(Q).
The next two assumptions capture this requirement.

(A5) Boundedness hypotheses: There exists a constant I’ > 0 so that B [ii, ﬁ] <
T i v i, v e W2 (Q).
liily 2 WSl for all i, € Wy'g ()

For any it, vV € W‘I,”%(Q), we may set I’ = A + 1 since it follows from (25) that
U, | < A Dii, Dv u,v) < (A+1|u v .
Blu,v] < /( u, Dv) + / (Vu,v) < (A+1) ||M||W¢-2 ||U||W‘1/42

(A6) Coercivity hypotheses: There exists a y > 0 so that y ||ii||€vm < B|u, i] for
|4
any il € W‘l,‘ﬁ%) ().
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For any i € W&,’%(Q), it follows from (24) that A ||12||€VL2 < Bli, ii], so we
take A = y. '

Using (A1)-(A6), a standard proof, which we omit, leads to the final assumption
from [11]:

(A7) The Caccioppoli inequality: If i € W‘l/’2 (Q) is a weak solution to Lii = 0
in ¢ and ¢ € C®(R") is such that D¢ € CX(R), ¢ii € Wy (), and
E)ig“ ue LZ(Q), i =1, ..., n, then there exists C = C (n, A, A) so that

/|Dﬁ|2;2 < c/|ﬁ|2|D;|2.

Note that C is independent of the set on which ¢ and D¢ are supported.

In conclusion, the fundamental solution for the operator Ly defined in (27), denoted
by I'V, exists and satisfies Definition 11 as well as the properties listed in Theorem 8
whenever we assume that assumptions (IB) and (H) hold for Ly .

In fact, given that assumptions (A1) through (A7) hold for general 2 € R", not just
Q = R”, the framework here allows us to also discuss Green’s matrices as defined in
[11, Definition 3.9], for example. That is, whenever we assume that assumptions (IB)
and (H) hold for Ly, the results of [11, Theorem 3.10] hold for the Green’s matrix. As
we show in the next section, there are many examples of vector-valued Schrodinger
operators that satisfy assumptions (IB) and (H). However, for the boundary bounded-
ness assumption (BB) introduced in [11, Section 3.4], it is not clear to us when any
vector-valued Schrodinger operators satisfy this assumption. As such, determining
whether the global estimates for Green’s matrices as described in [11, Corollary 3.12]
hold for operators Ly is an interesting question, but is beyond the scope of this current
investigation.

7 Elliptic theory for weakly coupled systems

In this section, we introduce a class of elliptic systems called weakly coupled
Schrodinger operators and show that they satisfy the elliptic theory assumptions from
Sect. 6. In particular, these are elliptic systems for which the fundamental matrices
that were described in the previous section may be directly proven to exist without
having to assume that (IB) and (H) hold. That is, for the class of weakly coupled
Schrodinger operators that we introduce in the next paragraph, we prove here that
local boundedness and Holder continuity actually hold.

We introduce the class of weakly coupled Schrodinger operators. As above, let the
leading coefficients be given by A% = A% (x), where foreach e, Befl, ..., n}, AP
is ad x d matrix with bounded measurable coefficients. Here we impose the condition
that A%?(x) = a*P (x)1;, where each a®® is scalar-valued and I, is the d x d identity
matrix. That is, A?‘f (x) = a*?(x)8; j- As usual, we assume that there exist constants

0 < A, A < oo so that A%# satisfies the ellipticity condition described by (24) and
the boundedness condition (25). For the zeroth-order term, let V satisfy (26). That

@ Springer



Exponential decay estimates for fundamental matrices of...

is V is a nondegenerate, symmetric, positive semidefinite d x d matrix function in

Ly (R™). The equations that we study are formally given by (27). With our additional
conditions on the leading coefficients, the operator takes the component-wise form

(Lvid)' = =D (A7 DpuT) + Vigu = ~D (a* Dy’ ) + Vi (42)

foreachi =1,...,d.
We begin with a lemma that will be applied in the Moser boundedness arguments
below.

Lemma 16 (Local boundedness lemma) Ifu e WV (Bz) then for any k > 0, it holds
that w = w (k) := SR (Bz) as well.

A i P4k

Proof Since i € W‘l,’z(Bz), then i is the restriction of an element i € W‘l,’z(R”), SO
there exists {ﬁj}j‘;l C C®(R") sothatii; — i in W‘l,’z(R”). For each j € N, define

17)/‘ = I/_t)j (|ﬁj|2+k2)

1 1
To simplify notation, let v; = <|ﬁj \2 + k2> “andv = <|1'4'|2 + k2) * . Observe that

_1
‘e C2°(R"). We will show that w; — w in W‘l/,2(32).

B A T T S o 7
w,—w:—’——:v.l[uj—u+w<u u—]>] (43)
. . J v+ v

*+ﬁj

vt | < landv; > kforall j € N, then |i; — w| < 2k~ | — iif and
it follows from a Sobolev embedding that

n=2 n=2
- 25\ " _ - 26\ * _ - -2
‘wj—w| §k2 }uj—u <k 2¢, |Duj—Du
BZ Rn n

Since ii; — i in W‘l,’2(R"), then Dii; — Dii in L*(R"), so we deduce that both
wj — Wwin LY (B) and ii ; j— uin L% (Bs). Therefore, there exists subsequences
{wj}:2, and { i} o, sothat ) ji > Wae.andiij — ii a.e. In particular, we relabel
sothatw] — W a.e. andu] — i ae.

From (43) and that k < v;, we have

R 2 e I 7 N Y S T )
k2’V2 .—w)‘ §<V(uj—u+w<u—uj, j>>,u./—u+w<u—uj, j>>

Since ||,

v+v; v+,
1 2 L u+i
52‘V7(u]—u) +2|V||u—uj| |w|2 v—f—iv]

Lo 2 I
52‘V2 (uj—u)‘ —|—2|V|‘u~,~—u’ ,
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u+u;

where we have applied Cauchy—Schwarz and that ||, ; e
J

< lforall j € N. It

follows from Holder and Sobolev inequalities that

/ (V(J)j—zb),zbj—ﬁ))szk_z/ vi(i; - i)
By

2
+2k—2/ WV |idj — il
B> By
) 2 n=2
§2k_2/ +2k—2</ |V|'£) </ |ﬁj—ﬁz>
B> B> R~
) 1. - 2 2 - -2

<2k / vz(uj—u)‘ + 2k %c, ||V||L%(Bz)/Rn\Du,~—Du\ .
Since iij — i in W\l,’z(R"), this shows that V%J}j — VIdin L%(By),orw; — W
inL? (B,).

Now we consider the gradient terms. Since

V2 (i) — i)

- - v ! [Diij — ib; (Dii. )]

pis; = 2 (Dii;. ii )

and analogously for Dw, then Dw; — Dw = A; + B;, where

Aj =v;"'[Diij — Dii — w; (Dii; — Di, )]
i~ ﬁj+a>

vjiv v +v
+v ' [(@ — w;) (Dii, w) + ; (Dii, ¥ — ;)] .

B; = (w; (D, J)j)—Dﬁ)<

This shows that

lim [ |Di;— Db < tim [ A7+ tim [ |B;[*.
Jj—= /B, : J—>o0 JB, ’ J—JB,

Since vj, v >k, |w;|, |w| < 1forall j € N, and Dii; — Dii in L2(B,), then
. 2 R - -2
lim |A;|" k7% lim |Dii; — Dii|” = 0.
j—o00 B j—o00 B>

On the other hand, since |B‘,~| < 8k~ |Dii| and |Dii|2 € L'(R"), then the Lebesgue
Dominated Convergence Theorem shows that

lim |Bj|2=/ lim [B;[*.
B

j—o00 B> > j—o00
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Because vj, v > k, |w;], |0l

w forall j € N, |Dii| < oo ae., w; — W a.e., and
uj — uae., thenlimj_, o B;

<1
= 0 a.e. and we deduce that

‘lim/ 1B;|” =o0.
] J By

Thus, we conclude that Dw; — Dw in L2(B5). In combination with the fact that
wj — win L%,(Bz), we have shown that w; — w in W\I,’Z(Bg), as required. O

With the above lemma, we prove local boundedness of solutions to weakly coupled
systems.

Proposition 9 (Local boundedness of vector solutions) With B, = B(0, r), assume
that Bsg < S2. Let Ly be as given in (42), where A is bounded and uniformly elliptic
as in (25) and (24), and V satisfies (26). Assume that f € L*(Bag) for some £ > 5
Let i € W‘l,’z(B4R) satisfy Lyil = f in the weak sense on Byg. That is, for any
¢ € Wy o (Bag), it holds that

/BzR a*’ <Dﬂﬁ’ Da$> + /BzR <Vﬁ’ (z;> - /32R <f’ (Z> ’ (44)

Then, for any q > 1, we have

]l oo gy < C [R_E liill o (Bygy + R*T ||f||Lf(32R)] ) (45)

where the constant C depends onn, d, A, A, q and £.

Remark 7 Note that the constant C in Proposition 9 is independent of V and R. There-
fore, this result establishes that estimate (38) in (IB) holds for our weakly-coupled
systems.

Remark 8 This statement assumes that V € L2 (R") N N'D, but the proof only
uses that V' is positive semidefinite. As described in previous sections, the additional
conditions on V ensure that each W‘l,’2 (R2) is a well-defined inner product space over
which we can talk about weak solutions. As such, we maintain that V satisfies (26).
However, if a different class of solution functions were considered, this proof would
carry through assuming only that V > 0 a.e.

Remark 9 There is nothing special about the choice of R, 2R and 4R here except for
the ordering R < 2R < 4R, the scale of differences 4R — 2R,2R — R >~ R, and
that this statement matches that of (38) in (IB). In applications of this result, we may
modify the choices of radii while maintaining the ordering and difference properties,
keeping in mind that the associated constants will change in turn.

Proof We assume first that R = 1.
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For some k > 0 to be specified below, define the scalar function

1
v = k) = (|ﬁ|2 +k2)2

and the associated vector function

w=wk) :=uv "\

Observe that v > k > 0 and since v > |u|, then |w| < 1. In fact, since v < |u| + k
and u € W‘I,’Z(Bz) implies that # € L?(B»), then v € L*(B,). Moreover, since
Dgv = (Dgii, w), then | Dgv| < | Dgii| and we deduce that each Dgv € L? (Bg). In
particular, v € W'2(By). An application of Lemma 16 implies that w € W‘l/’z(Bz).

That is, since @ and v~! are bounded, then D, = [Daii — w (Dyii, 17))] vl e
L%(By). Let ¢ € C2°(B) satisfy ¢ > 0 in B, and note that D (0 ¢) € L?(B,). Then

/ a*’ Dgv Dy = / a“f (Dgii, W) Dyg
B> By
= / a®f (Dﬂﬁ, D, (17)90)) — / a“f (Dﬁﬁ, v Daﬁ}> vl
By By
To simplify the last term, observe that
(Dgii, v Do) = (Dgii, Dyii — W (Dgii, W)) = (Dgii, Dyii) — (Dpii, W) (D, W) ,
while

(v Dpw, v Do) = (Dgii — w (Dgii, W), Dyii — W (Dyil, W))
= (Dpit, D) = (1 + K2v™2) (D, ) (Do, )
By combining the previous two expressions, we see that

a*f (Dﬂﬁ, v DaJ)>v_1(p = q*f [(v Dgw, v Daﬁ)> v lo + (Dﬂﬁ, J)) (Dyit, W) kzv_3<p] ,

where all of the terms in these expressions are integrable since Dii, v Dw € L?(B>)
and w, v™!, ¢, a®® € L°°(B,). Then (46) becomes

/a“ﬁDﬁvDMp:/ a“ﬁ<Dﬂﬁ,Da(ﬁ}q)))—/ a®? (D, Du) ve
B> By B>
_/ o (Dyit, &) {Dait, ) K203
By
< / a* (Dgii, Dy (i09)).
B
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where we have used that a®? is elliptic to eliminate the last two terms. )
Since ¢ € C2°(By) and w € W‘l,’z(Bg), then (A4) implies that ¢ := Wy = 5 €
W‘l,’,zo(Bz), so we may use (44) with (7) to get

/Bza“ﬁwﬂﬁ, D, (W))=/B2 (7)o - Bzw’m%f/gz (7 i)e.

since V is positive semidefinite. By setting F' = < f , J)) € L*(By) and combining the
previous two inequalities, we see that for any ¢ € C2°(B) with ¢ > 0, it holds that

/a“ﬁDﬁvDaq)g/ Fo. 47)
B> By

An application of Lemma 17 implies that (47) holds for any ¢ € Wé’z (By) withgp >0
a.e., and we then have that — div (AVv) < F in the standard weak sense on B;. Then
[35, Theorem 4.1], for example, shows that for any ¢ > 1,

]l oo ) < N0l zoosy) < C [IvliLacsy + I1FlLecsy ]
< C[liillLapy + Ikl Lacpy) + ||F||Ll(32)],

where C depends on n,d, A, A, g, £. With ¢ = 2, the righthand side is finite and

therefore # € L°°(By). Setting k = M, noting that || F|¢(p,) < ||f||Le(32),

2C|By |4
we get

il = 2€ [Niillzocay + 17 o |

as required.

For the general case of R # 1, we rescale. That is, we apply the result above with
iig(x) = ii(Rx), Ag(x) = A(Rx), Vg(x) = R2V(Rx), and fr(x) = R2f(Rx) to
get (45) in general. O

Lemma17 Ler CX(Q)T = CX(Q) N{p:¢9>0inQ} and let W01’2(§2)Jr
Wol’z(Q)ﬁ{u cu > 0a.e. in Q). Foranyball B C R", C2°(B)™ isdensein W01’2(B)+.

Proof Assume that B = Bj and let u € W()l’z(Bl)+. Let ¢ € C°(By) be a standard
mollifier and set ¢, =t "¢ (3) € C2°(B,). For every k € N, define vy = ¢—1 *u €
C (By44-1), then set ug = vy ((1+ %) 1) € C (B). Since u € W01'2(81)+, then
ur > 0in B; so that {uk},fil c C® (B1)T. The aim is to show that u;y — u in
W2(By).

Let ¢ > 0 be given. Since u may be extended by zero to a function defined on
all of R”, then regarding u € L% (R"), there exists g = g, € C. (R") such that
lu — gll 2R < €. As g is uniformly continuous, then there exists K € N so that
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Hg ((1 + %) ) — g||L2(R") < ¢ whenever k > K. By extending all functions to R”,
we see that

|17 —u||L2(B|)
< o (0 2) ) = u (U 2) M oy + T (L 7)) =g ((L+2) ) 2y
+g((1+7)) - g||L2(R") + g — ull2wn
lok — ull 2wy + llu — gll L 2wn
= saLi 7 LR le ((1+ %) ) - g||L2(R") +llg — ullp2we) -

0+

Since vy — u in L?(By), then there exists M € N so that lvg — u”LZ(Rn) < €
whenever k > M. In particular, if k > max {K, M}, then ||u; — ulle(Bl) < 4e,sowe
deduce that ux — u in L? (R") and hence in L? (By).

Since Vg = ¢y -1 % Vu in By, -1, then an analogous argument shows that Vi, —
Vu in L? (By), completing the proof. O

The next main result of this section is the following Holder continuity result.

Proposition 10 (Holder continuity) With B, = B(0, r), assume that Byp, C . Let
Ly be as given in (42), where A is bounded and uniformly elliptic as in (25) and

(24), and V € L2t (R™Y N N'D. Assume that u € W‘l,’z(BzRo) is a weak solution to

loc
Lyviu =0in B3Ry /2. Then there exist constants c1, c2, c3 > 0, all depending on n, p,

A, and A, such that if

~1
N O S ! 0.1
n := —c | log | min R_0||VHL”(BR0)’C3’§ € (0, 1),

then for any R < Ry,

| (x) — u(y)|

X,YEBR2 |)C _}’|n
oty

< AR7"uill Lo (BR)- (48)

In fact, for any q > 1, there exists c4 (n, q) so that

| (x) — u(y)]

X,YEBR)2 |x _)’|n
X7y

< C4R_n_5||ﬁ||Lq(B3R/2)‘ (49)

Remark 10 We point out that the assumption on V' in this proposition is stronger than
. . . 5+ 5.
in previous statements. First, we now need V € LI%)C ,asopposedtoV € Llf)c, in order
to apply the Harnack inequality—a crucial step in the proof. Second, the assumption
that V is positive semidefinite is used in the application of Lemma 9. Finally, the full

power of V € N'D s used to ensure that the spaces W‘]/’2 are well-defined. However, if
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we were to use the spaces W2 or Y12 in place of W‘l,’2 to define our weak solutions,
it may be possible to drop the requirement that V € ND and establish (49) by only
assuming that V is positive semidefinite. In fact, if we knew a priori that the weak
solution is bounded (and therefore didn’t need to resort to Lemma 9), we could prove

(48) by only assuming that V € L
anywhere.

Toc * without imposing that V is positive semidefinite

Remark 11 Although the choice radii in this statement do not match those in the
statement of the Holder continuity assumption (39) from (H), this presentation suits
the proof well. As usual, the the radii may be modified to give precisely (39) from (H),
but we will not do that here.

The proof was inspired by the arguments in [19] (see also [36] for a more detailed
account of this method), which proves Holder continuity for very general nonlinear
elliptic systems. To prove this result, we will carefully iterate the following lemma.

Lemma 18 (Iteration lemma) Let B, = B(0, r). Let p < 1 and v, € R? with [v,| < 2.
Let Ly be as glven in (42), where A is bounded and umformly elliptic as in (25) and
24), and V € L10C (R™) N ND. Assume that i € WV (B3p) is a weak solution to
Lyii = =V, in By, If||u||LoO(B y < M <1, then there exists § = §(n, p, A, A) €
(0, 1) and a universal constant co > 0 so that for any 0 < 6 < 1, it holds that

- - 1 1—4 1
sup i (x) — 8aps,, | < M(1 —8) +coM?2 (6p) "2 |V},

xX€Bgp)

@y G0

Before we prove this lemma, let us briefly discuss its application. To run the argu-
ments in [19], we look at functions of the form iy = 1 — vy for constant vectors vy to
be inductively selected, where here Ly u = 0. However, we then have

Ly = —div(AViu) +V (i — V) = Lyu — Vi = —Viy.
Proof For some constant vector p € "1 U {6} to be determined later, set
I 5 - N
h(x) = —M +M—= |u(x)| —(i(x), ) = 0.

Since i € W‘l,’z(sz) N L*°(B,) by assumption, then h € W1-2(B,) N L>(B,,). For

any ¢ € C° (Bp)+, it holds that
a“f (Dﬁii, 172) Dy — / a®P (D,gii, f)) Dy

/ a“ﬂDﬂh Dyg = —/
B, B, r

_ / o (Dyii, Dy [ (i + 0)]) + / o (Dyii. Dyi) ¢.
B, B

P
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Since ¢ (i + ) € W‘l,”%(Bp) by (41) in A4) and Lyii = — Vv, weakly in B,,, then

/ a“? Dgh Dy
By

=/ (Vﬁ,<p(ﬁ+0))+/ (VT)*,<p(ﬁ+f)))+/ 4 (Dgii. Dyi)
B, B,

B,

=/ [(Vid, i) + (Vii, D) + (Vs it) + (Vs )]g0+/ a®f (Dgii, Dyii) ¢
BP

Bp
—5/ Ve,
B

0

v

A

since |u|, |V
—div (AVh) > —5]V| weakly on B,. By the weak Harnack inequality [35, Theorem
4.15], since |V| € L? (Bp) for some p > 75, then there exists §;(n, p, A, A) > 0 so
that

. 21 . 2
81aps,sh < inf h+5p" 7 ||VilLr(g,) < inf h+5p~ 7 [|[VIiLr(s))-
B2 By

Since %(M2 — |i|%) > 0, then for any x € B2,

81 [M — (a,, i (x), D)] < 81apy,,h

1 1 . N R _n
< M+ M — AP = (i), )+ 50 7 VLo,

i)/ lii(x)| i i (x) # 0

otherwise
and define & = 6 (x) so that <a33p/4ﬁ, u(x)) = |u(x)| |aB3p/4u| cos 6. Then the previous
inequality may be written as

Now we fix x € B,/ and set D = { L, r(x) = lu(x)| /M,

|aBy, 4| M hon
Ms |1 — Tcos@ <M1 —rx)) > A+r@x)+1]+50" ?[IVILr(s)-

Since M [%M 14+rx)+ 1] <M(M+1)and M < 1, then

o <1 — —|61ng/4;¢} cos@) < il (1 — ‘aB3”/4ﬁ| cos@)
2 M M+ 1 M

_n
2-5

5p
MM +1)

IA

I —rx)+ 1ViLe -
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Since r(x) € [0, 1] and §; < 2, then %’ (1 —-r()) < 1—r(x) or, equivalently,
%‘ <l-—rkx)+ r(x)%'. Therefore, it follows from the previous inequality that

b aBs il b ap, i

El <l —r(x)% cos@) <1-—r(x) —i—r()c)i1 <l — %cos@)
)| 11+ 2y

—r(x)+r(x —rx _— ] .

= MM+1)" A

Rearranging this equation and using that 7 (x) < 1, we see that

8 ags, 4l S Spi
r()c)2 — Elr()c)|Bju#/4| cosf <1-— ?1 + 'OM

IV ILe(B)-

Since —— < 1, with § := %1, this implies that

- S\ 2
# ‘ﬁ(X) — 8a33p/4ﬁ‘2 = r(x)2 _ 28r(x)|a334¢u|c050 + (8 |aB;(,4/4u|>

5,02_%

<(1-8*+ IVILe ()

As this inequality holds for any x € B, 2, it follows that

o 12 _n
sup |ii(x) — dag,, ,ii|” < M*(1 —8)> +5Mp” 7 |VILocay).

X€By)2

Taking a square root gives (50) when 6 = 1. As all of the above arguments still hold
with p replaced by 6p for any 0 < 6 < 1, we get (50) in general. O

This lemma is used to recursively define a sequence of functions and constant
vectors and establish bounds for them.

Lemma 19 (Sequence lemma) Let B, = B(0, r). Let Ly be as given in (42), where
A is bounded and uniformly elliptic as in (25) and (24), and V € L2 (R N ND.

loc
Assume that u € W‘l,’2(B3) is a weak solution to Lyii = 0 in By. Assume further
that ||ii|| L) < 1. Let § = 8 (n, p, A, A) € (0, 1) and co > 0 be as in Lemma 18.
Recursively define the sequences {Vi}i C R? and {ur}iey C W‘I,’z(Bl) as follows:
Let Vo = 0, iig(x) = ii(x), and for all k € Z>, set

U

Vel = Ve +8ag, o) iy

U1 (X) = U(xX) — Vgg.
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, then for all k € N, it holds

1

=2 z
If6 < min 2 2(1-8)"7 1
7o = <2co|vn1/3(31)> (1-5)
that

k—1 S\! k
%kl < 82(1 - 5) . osup k()| < <1 — 5) (51)
i=0 *€B g ok

Proof Since 6 < 1, then Lemma 18 is applicable with p = 1, M = 1, and v, = 6, SO

from (50) we get that
- - 1—2L 1
sup [i(x) — Sagy, il < (1= ) + b F VI, -

X€By2

§
/2

1
. "2 . . 1— % 5
Since 6 < YT implies that cof~ 27 ||V||L,,(Bl) < 5, then
ol VIl p g,

- - )
sup |ii(x) — 8ap,,,ii| < (1 - —> :
X€By)» 2
By defining ¥ = 8ag,,,ii and ii; = ii(x) — V1, we get that |[ii1[|zoo(8,,) < (1 — 5).

V1] <6, and Ly = —Vy.
We have proved (51) for k = 1, so we now prove it for k>2 via induction. Assume

that (51) holds for some k£ > 1, and then

. 8\ .
<
uk‘ <$ ) +34 ||Mk||Loo(B3/2(0/2)k+l)

™I
N
P
|
N |

k1l < [vel 46 ‘aB3/2(9/2)k+1

Since
el <8

then an application of Lemma 18 with ii = iix, p = (0/2)F, M = (1-

Uy = Vg gives us

sup up(x) — 8033/2<9/2>k+l uk)
1

XEB(Q/Z)kJr]
k ki
8\2 j_n k=2 5
0% (5 V15,

S k
<(1—-) (1—5)+c0<1—§>
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The choice of 6 ensures that (%)172"7 < (1 — %)% and (%)17% < (l — %)7, so it

follows from uy4| = uy — 3333/2(9/2)k+1 uy that

S k S k S S k+1
sup g1 ()] < (1 = —) (1-8)+ (1 - —) (—) — (1 = —) :
KBy 2 2) 2 2

which completes the proof of (51). O
Using Lemma 19, we give the proof of Proposition 10.

Proof of Proposition 10 Assume first that Ry = 2. Then u € W‘l,’2(B4) is a weak
solution to Ly i = 0 in B3. An application of Proposition 9 with modified radii (see
Remark 9) implies that it € L (By).

For any R < 2 and xo € B (0, %), since B (xo, %) C B(0,2), then u €
L (B (xo, %)) Define

- - R -
ur(x) =u <XO + 5x> / ”””LO@(B(XO,Q))

and note that ||ug| Lop,) = 1. Since u € W‘l,’2(B4) is a weak solution to Ly = 0
in B3 by hypothesis, then it holds that ug € W‘l,’z(Bg) is a weak solution to

- . 2
Lyyur = 0in By, where Vp(x) = (%) V(xo + %x). Because [|Vgllpr(p,) =

R 2-1 . . .
(7) » ||V”LP(B(x0,§)) < IVllLr(gy), then with § > 0 is as in Lemma 18, we

1 1 1
szln{<2—C0> IVl gy -2 1—5 J17. (52)

It follows that the hypotheses of Lemma 19 are satisfied for any such i .
Define ) = log (1 — §) [log (%)]_1 > 0sothat (1 —3) = (%)n. Since § € (0, 1),
thend <1 < 2 (l — %), so that n < 1. Observe that since § € (0, 1), then (%)n =

(1-3)"" <2
For 0 < r <1, choose k € Zx( so that

5 ==

Withany xo € B(0, 1),letosciig = sup, ,cp, liig(x) — iig(y)| and observe that with
r £} r

set

the notation from Lemma 19, we have

osc g < sup  Jup(x) —ur(| = sup [(UR(X) — v) — (UR(Y) = vx)|
Xs}'EB(Q/z)k vaEB(e/z)k
= sup |ugk(x) —idri(y)|.
X.YEB g ok
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It then follows from an application of (51) in Lemma 19 that

s\ 2\ /g \1k+D
osciip <2(1—=) =2(= Z < 477,
r 2 0 2

Take x,y € B (0, %) and set 7 = 222~ % For any ¢ > 1, it holds that

2R

+5% € B(0, cF), so we choose ¢ € (1, 2] for which 7 < 1. Then we have

i (=) —ag (222
R\ 2R R\ 2R

cr

With xo = (x + ) € B (0, %), we have iig (53) = i(x)/ 10 oo (g xg. &

)

iig (5 ) =)/ ”L_i”Loo(B(x()’g)). Therefore,

i (x) —id(y)| =

e (=) —ig (=2
R\ 2R R\ 2R

_ "
<oscig < 4(cF)" < 4<|x Ry|) .

) and

7)

”l/t ”LOO(B(Xm %))

lx—y\" -
<4 Uy oo .
< ( R lll oo (0, R))

Since x,y € B (0, %) were arbitrary, the proof of (48) is complete for any R <
2 = Ry. Estimate (49) follows from (48) and an application of Proposition 9 with a

modified choice of radii (again).

As usual, the case of Ry # 2 follows from a scaling argument. With Vg, (x) =

2
(%) \%4 (%x), we have

.
7ﬁ R() 27% 27%
[ Veoll Loy = <3) IV ILr By

so the definition of 8 in (52) changes accordingly.

- R_O ”V”LP(BRO) ’

O

Propositions 9 and 10 (after modifying the choice of radii) show that assumptions
(IB) and (H) hold for any operator in the class of weakly coupled Schrodinger sys-
tems. Accordingly, the results of Sect. 6 hold for all such elliptic systems. That is, the
fundamental matrices associated to these systems exist and satisfy Definition 11 as

well as the statements in Theorem 8.

Finally, we point out that many of these results may be extended to weakly cou-
pled elliptic systems with nontrivial first-order terms. Since we do not consider such

operators in this article, we don’t include those details.
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8 Upper bounds

We now prove an exponential decay upper bound for the fundamental matrix associated

to our elliptic operator. Going forward, the elliptic operator Ly is given by (27),

where the matrix A satisfies ellipticity and boundedness as described by (24) and (25),

respectively. For the zeroth order term, we assume now that V € B, N ND N QC for
n

some p > 5. As pointed outin Remark 6, the assumption that V € B, NND for some

p > 5 implies that (26) holds. Therefore, this current setting is more restrictive than

that of the last three sections. Since V € B), for some p > 7, then Lemma 2 implies

that V e LE): This is meaningful since the Holder continuity results for weakly
coupled systems given in Proposition 10 hold in this setting. As such, there is no loss
in assuming that p > 5 and we will do that throughout. We impose the additional
condition that V € B, N QC so that we may apply the Fefferman—Phong inequality
described by Lemma 15. We also require that assumptions (IB) and (H) hold so that
we can meaningfully discuss our fundamental matrices and draw conclusions about
them.
We follow the general arguments of [2]. Our first lemma is as follows.

Lemma 20 (Upper bound lemma) Let Ly be given by (27), where A satisfies (24)
and (25), and V € B, N ND N QC for some p > % Let B € R" be a ball.
Assume that u € W‘l,’z(R"\B) is a weak solution to Lyii = 0 in R"\B. Let ¢ €
C°(R™) satisfy ¢ = 0 on 2B and let g € C'(R") be a nonnegative function satisfying
Vg S, p,cy) m(x, V) forevery x € R". Then there exists gy, Co, both depending
ond,n, p,Cy, Ny, A, A, such that whenever ¢ € (0, &), it holds that

/ m(-, V)2 |gii|* e*8 < Cy / i |V|? €8,
n R}l

The proof is a modification of the proof of Proposition 6.5 in [3].

Proof Since u € W‘l,’Z(R”\B), then by the definition of W‘l,’z(Q), there exists v €
W‘l,’f)(R") such that ¥|gn\g = u. Define the function U = ¢e*$T = fii. By a
modification to the arguments in 6, since ¢ € C°(R") and g € C L (R™), it holds that
1/7 € WJ,’%(R"). A similar argument shows that f2i € W‘],”% (R™) as well.

We adopt notation used in [37]: For R9-valued functions # and , and for a scalar
function f, we write

ADﬁDﬁ:A?fDﬂuiDavf, @RV f)ig=uDgf.

By uniform ellipticity (24), we have
-2 RN - s> S
[ #|pif +{vi.i)= [ apioi+{vi.i).
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Using that
Dy = D(fii) =i ® Vf + fDii,
we get
/ A’Dw‘ < Vi, 1}>§/RnA(ii®Vf)(ii®Vf)+A(ﬁ®Vf)(fDﬁ)

+/ A(fDii)(ii ® V f) + A(f Did)(f Dii) + (Vii, f2ii).
Rn
(53)

Since v € W‘l/’% R"), Ulgrm\p = U € W‘l,’2 (R™\B) is a weak solution away from B,
and f2i € W 3 (R") is supported away from B, then B [i, f2i] = 0. That is,

():/ ADuD(fzu)+<Vu fu>
:/ 2ADﬁ(fﬁ®Vf)+ADiif2Dﬁ+<Vii,f2ﬁ>.
Rn

Plugging this into (53) gives

J.

-2 -
DI +(Vi i) <o [ AG® VNG +AG© V(DI
—/ A(fDu)u ®Vf). (54)
R~

Now we obtain an upper bound for the right hand side of (54). Using the bounded-
ness of A from (25) and Cauchy’s inequality, we get that for any 8’ > 0,

()ﬁ

A ® V)(fDi)| < Alul|f||Dul Vf’<5/|f| |Di|* + —=al* |V f1?

and similarly

IA(F DG ® V)| < 8| |Dil? +¥|*| VP2,

while
AR VUV < Aldl*IVfI*.

Then with § >~ §’, we see that

J.
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Since ¥ = fii, then

‘Dw‘ (i@ Vf + fDii,i ® Vf + fDii)y
= |fPP|Dil* +2f (D, i @ V f) + li|* |V fI*.

The Cauchy inequality implies that

/ |f|2|Dﬁ|2§/
n Rn
=/

Rﬂ

Since fRn | f 12 IDﬁl2 < 00, then we can absorb the third term into the left to get

) N .
+ 1@ IVFI>+21f1|1Diil i @ V f|

2 1 . -
+ A VP + 3 |f1? 1D 42 1id|* |V f12.

512
[ ispivit < [ 2|pif vl vre.
Rn R”

Plugging this expression into (55) shows that

/n 2+<V&,¢7>525/n

Setting § = % we see that

J.

To apply Lemma 15 to J, we require that 1/7 € Cé R"M? soweusea limiting argument.
o IR %)

Since Y € W‘],"%) (R™), then 6 gives that there exists {l/fk }k=1 ccr (]R”)d for which

&k — 1; in W\l,% (R™). Moreover, since 1};( — 1} in L2 (R") (as shown in the proof

of Proposition 7), there exists a subsequence that converges a e to 1// After relabeling
the indices, we may assume that wk — 1// a.e. and in WV o (R™). Fatou’s Lemma

-

Dy

- |2 =2 2
Dy +Can) [ TR IVSP,
R)l

>

Dy

2+(V&, *>sc<A,A>/ il V£ (56)
Rl‘l

followed by Lemma 15 applied to lﬁk € CX (R") gives

J.

v

2 2 . . - 12 2
m( V)2 < liminf / Ay
k— 00
< liminf ¢, (/ (Dwk Vt/7k,x/7k>)
k— o0 n

= ([ el +{v-5))

-

Dlﬂ
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where the last line uses convergence in W‘l/% R"y and ¢y = ¢y (d,n, p,Cy, Ny).
Combining this inequality with (56) shows that

/ |gii|* m(-, V)2e*8 < ¢ (/
Rn n

526282/ Vgl 2 |¢ii|2+2cz/ P |V ¢
Rn Rn

pi[ +(vi. w)) e [ WRIVIE dx

< 26362 / m, VY2 (i % + 20, / P |V 2%,
n Rn

where ¢ = ¢c2 (d,n, p,Cy, Ny, A, A)and c3 = c3(d,n, p,Cy, Ny, r, A). If e is
sufficiently small, we may absorb the first term on the right into the left, completing
the proof. O
Remark 12 This proof uses that i, f2i € W‘l,’,% (R™) in order to make sense of the
expression B [ii, f2i]. It also uses that f € Cj (R") and ii € W‘l,% (R™) to say
that fDii € L? (R"). Other assumptions on # would still allow these ar%uments to
carry through. More specifically, we can apply Lemma 20 with u € Yli)’c (R™) and

f e C(} (R™). To see this, let supp f < 2 where Q & R" and observe that since

B[a. %] = /R (4 Dyi. D, (£20)) + (v, 1)
:/QfZ(A“ﬂDﬁﬁ, Daii) +2.f A% Dpii i Do f) + f2(V it i)

then by applications of Holder’s inequality,

< Ao 1PN + 1 ey 1V 5 ) 11720 g

. 7]
+2A || fll ooy 1Dl L2y lidll 2% ) IDS Nl )
<2001 f e 1Dl g + (||Df||%n(9) + 11w ||V||L%(Q)) 1172+

=12
Sy Nillyiag, -

In particular, this shows that 5 [ﬁ , f Zii] is well-defined and finite. Moreover, since
Dii € L}, (R") and supp f € R”, then fDu € L* (R").

Remark 13 Going forward, we say that a constant C depends on Ly to mean that C
has the same dependence as the constants in Theorem 8. That is, C = C (Ly) means
that C depends on the package d, n, A, A, and Cip.

We now prove our upper bound.

Theorem 11 (Exponential upper bound) Let Ly be given by (27), where A satisfies
(24) and (25), and V € B, "N N'D N QC for some p > 5. Assume that (IB) and
(H) hold. Let TV (x, y) denote the fundamental matrix of Ly and let g be as given
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in Lemma 20. For any € < &, there exists C = C(Ly, p, Cy, Ny, &) so that for all

x,y €R",
Ce—¢dx,y.V)

o] = S

The following proof is similar to that of [3, Theorem 6.7].

Proof Fix x,y € R" withx # y.Ifd (x, ¥, V) S, p,cy) 1, thene™ Ce < g=ed(x.y, V),
so the result follows from (37) in Theorem 8. Therefore, we focus on x,y € R”
for which d (x, ¥, V) Z.p.cy) 1. By Lemma 11, we can assume |[x — y| > m(ﬁv)

since otherwise d(x, y, V) S, p.Cy) 1. Likewise, we can assume |x — y| > ﬁ
Finally, we can assume o
4 4
Blx, —— |NB|y, —— | =0 (57)
m(x, V) m(y9 V)
for if not, then the triangle inequality shows that
1 1
|x —y| < 8max ,
m(x, V) m(y, V)

so that again d(x . V) S@p.cny 1

Letr = m( NG and pick M > 0 large enough so that B(y,4r) € B(0, M). Let
¢ € C°(R") be such that ¢ = 0 on B(y,2r),¢ = 1 on B(0, M)\B(y,4r),¢ =0
on R"\B(0,2 M),

Vol < 4i on B(y,4r)\B(y,2r) and |V¢| < % on B(0,2M)\B(0, M).
r

The next step is to apply Lemma 20. We take B = B(y, r), u to be each of the individual
columns of 'V (-, y), and g = ov,j (-, y), where gy ; € C°(R") is as in Lemma 14.
Since I'V (-, y) € Y12 (R™ \ B), then it can be shown that ¢>T'" (-, y) e2¢V.i(:Y) ¢
YOI’2 (R™\B). Since C (R"\ B) is dense in YOI’2 (R"\B), then the expression
B[FV G y), 6TV (-, y) ezs‘pvvf('*”] is meaningful and equals zero, see Defini-
tion 11(a). Moreover, since I'V (-, y) € Y12 (R*\B), then ¢ DTV (-, y) e*#V-i(-¥) ¢
L? (R™). In particular, according to Remark 12, we can apply Lemma 20. Doing so,
we see that for any ¢ < &,

2
/ (e, V2TV )| e2eovs
B(0,M)\B(y,4r)

< / m(-, V)?
Rn

Co/
]Rn

Co

2
269v.i(-Y)

IA

B(y,4r)\B(y.2r)
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Co
+ R
M? g0, 2m0\BO, M)

2
g2eev. iy

For each fixed j, ¢v ; (-, y) is bounded on R". Applying (37) then shows that

1

2
W/ TV (| 290060 S M2 (M= |y)* " = 0as M — oo,
B(0,2M)\ B(0,M)

and so

2
/ m(, V)2 [V (| e2eovatn
RM\B(y.4r)
< CO

=)

2
< FV(.’ y)) 628§0V.j(',y)' (58)
r B(y,4r)\B(y,2r)

By Lemma 11 and our choice of r,if z € B(y, 4r)\B(y, 2r),thend(z, y, V) S, 2.Cy)
1. It follows from Lemmas 14 and 13 that v ;(z) < ¢v(2) Su,p,cy) 1. Combining
this observation with (37), (58), Fatou’s Lemma, and Lemma 14 shows that

/ m(z, V)? ‘Fv(z, y)‘ 2#VENdz oy oy "
R"\ B(y,4r)

If weset R = m(x 7 then (57) shows that B(x, R) € R"\B(y, 4r). Consequently,

/ m(z, V)2 ‘FV(Z’ y)‘2 L N
B(x,R)
An application of the triangle inequality and Lemma 11 shows that for z € B(x, R),
d(x,y,V)=d(x,z,V)+d(z,y,V) =L +d(zy V),
where L = L (n, p, Cy), so that
e26d@y.V) > © (n, p.Cy, ) 26d(x.y, V).
Furthermore, Lemma 10(a) shows that R~} = m(x, V) >~u p.cy) m(z, V) so that

1
2 2
(][ ) dZ) Svop CoNy.ey e, Vom(y, V)] 0D 2o V),
B(x,R)

(59)
Choose y : [0, 1] - R" so that y (0) = x, y (1) = y and

1
2d (x. y. v>z/0 m(y ). V) |y 0|d.
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It follows from Lemma 10(c) that

! ! 1 7
a1 = g/ 2Dl (I)|dtko/(ko+1> - %/ |y(;)‘dtkov
* Ay O =ximo ] O [+ @)@

where J : [0, 1] — R" isashifted, rescaled version of y. Thatis, y(0) = Oand y (1) =
m (x, V) (y — x). This integral is bounded from below by the geodesic distance from
0tom (x, V) (y — x) in the metric

dz
(1 + |z]ko/ko+D) "

A computation shows that the straight line path achieves this minimum. Therefore,

d(x,y,V) =

g/l m(x, V)ly — x|dt
“2h 7

L m G, V) ey — (]9
_clko+ 1)

5 [(1 +m (e, V) |y — x[) 7T — 1} > C (m (x, V) |y — x[) 57,

where we have used that |x — y| > ﬁ to reach the final line. In particular, for any
¢ > 0, it holds that

1 1 /
m (V) Iy = x| = opapd ey, VIO < g Coet 4002, (60)

where C,s > 0 depends on &’. A similar argument shows that

Lefdx.y,V)/2
Chot Cye .

m(y,V)ly —x| =
Multiplying these two bounds gives
m(x’ V) m(y’ V) < C—Z(ko+1)c3,e‘9/4(x,y,v) |y _ X|_2 .
Define & = -£5. We then substitute this upper bound into (59) and simplify to get

y 2 \? o—ed(x.y.V)/2
(7[ Ve )| dz) SCvpCoNye) —e (6D
B(x,R) lx =yl

Finally, since we assume that y ¢ B(x, R), then LyT'V (-, y) = 0 in B(x, R). In
particular, (38) from assumption (IB) is applicable, so that

1

2 2

V| = |V eyl <CIB(][ INJER] a’z> ,
B(x,R)

L®(B(x,R/2)) —
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and the conclusion follows by combining the previous two inequalities. O

Remark 14 As in [3], if instead of assuming (IB) and (H), we assume that 'V exists
and satisfies the pointwise bound described by (37), then (61) holds.

Define the diagonal matrix A = |V| I, where |V| = A4 € B, is the largest eigen-
value of V and I denotes the d x d identity matrix. Thenset L, = —Dy (A“ﬁ D,g) +A
to be the associated Schrodinger operator. We let ' denote the fundamental matrix
for L. Since the assumptions imposed to make sense of I'V are inherited for I',
then I'* exists and satisfies the conclusions of Theorem 8 as well. Because A is
diagonal, then its upper and lower auxiliary functions coincide and are compara-
ble to m (x, V) by Lemma 9. That is, m (x, A) = m(x, A)~m (x, V) so that
d (x,A) =d (x, A)~d (x, V). As such, we can obtain an upper bound for I'’* without
having to assume that V € OC or even that V € N'D, see Remark 2. We accomplish
this by applying the following lemma in place of Lemma 20.

Lemma 21 (Upper bound lemma for V = A) Let L be as defined above, where
A satisfies (24) and (25), and |V| € B) for some p > % Let B € R" be a
ball. Assume that u € W‘l‘;i (R™\B) is a weak solution to Lau = 0 in R"\B. Let
¢ € C(R") satisfy ¢ = 0 on 2B and let g € CY(R™) be a nonnegative function
satisfying |V g(x)| S, p,cy) m(x, |V]) for every x € R". Then there exists €1, C1,
both depending ond, n, p, C\y|, A, A, such that whenever € € (0, €1), it holds that

/ m( V]2 gil? 2% scl/ i [V P 5.
n Rn

The proof of this result exactly follows that of Lemma 20 except that the Fefferman—
Phong inequality described by Corollary 2 is used in place of Lemma 15. We arrive
at the following corollary to Theorem 11.

Corollary 4 (Exponential upper bound for V.= A) Let L, = — D, (A”‘ﬂ Dﬁ) + VI,
where A satisfies (24) and (25), and |V| € B), for some p > % Assume that (IB) and
(H) hold. Let T (x, ) denote the fundamental matrix of L, and let 1 be as given
in Lemma 21. For any ¢ < ¢, there exists C = C(Ly, p, C|v|, €) so that for all
x,y €R",

Ce—sd(x,y,V)

I (x, S SE——
| (x y)| = |x_y|n—2

This result will be used to obtain lower bounds in the next section.
9 Lower bounds
Here we prove an exponential decay lower bound for the fundamental matrix asso-
ciated to our elliptic operator. As before, the elliptic operator Ly is given by (27),
where the matrix A satisfies ellipticity and boundedness as described by (24) and

(25), respectively. For the zeroth order term, we assume that V € B, N N'D for some
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p > 7. In contrast to the upper bound section, we will not require that V € QC. In
fact, many of the results in this section hold when we assume that |V| € B, (instead
of V € B,) and accordingly replace all occurrences of 7 (-, V') with m (-, [V]). The
assumption that V € N'D ensures that the spaces W‘l,’f) (R™) are Hilbert spaces and
we require this for Lemma 22, for example. Moreover, the Hilbert spaces are crucial
to the fundamental matrix constructions in Sect. 6.

We also assume that conditions (IB) and (H) hold so that we can meaningfully
discuss our fundamental matrices and draw conclusions about them. Further on, we
will impose a pair of additional assumptions for fundamental matrices. As with (IB)
and (H), these assumptions are known to hold in the scalar setting.

Let I'(x, y) denote the fundamental matrix for the homogeneous operator £ that
we get when V = 0. That is, Lo := — Dy (A“ﬂ D,g). Since the assumptions imposed
to make sense of I'V are inherited for ', the conclusions of Theorem 8 hold for
'Y Recall that L2 = Lo + A, where A = |V|I and T'® denotes the associated
fundamental matrix.

In [2], a clever presentation of ' — 'V is used to prove bounds for that difference
function. Here, we take a slightly different approach and look at both ' — ' and
' — TV, then combine the bounds. Using the fundamental matrix associated to the
operator with a diagonal matrix as an intermediary allows us to prove the bounds that
we require for the lower bound estimates without having to assume that V € QC or
impose other conditions.

We begin with the representation formula. To establish this result, we follow the
ideas from [3].

Lemma 22 (Representation formula) Assume that the coefficient matrix A satisfies
boundedness (25) and ellipticity (24), and that V is a locally integrable matrix weight
that satisfies (26). Assume also that conditions (IB) and (H) hold. Let T°, T'®, and T'V
denote the fundamental matrices of Lo La, and Ly, respectively. Then

P0G y) — TV (x, y) = /R PO, ) A () T y)
+/ M, )V =A1OTY ).
1,2 ! 1,2 2 1,2 !
Proof Let (WV”O(R”)) denote the dual space to Wy, 5 (R"). Given f € (WV”O(R”)) :

an azpplication of the Lax-Milgram theorem shows that there exists unique i €
Wy o(R") so that for every 5 € Wy o(R"), By [ii,v] = f(¥). We denote ii by

- /
ﬁalf, so that ﬁ‘_,l : (Wé’%(R”)) — W&,’%(R”) and

By [L;lf, 5] — f@) forevery ¥ € WLA(R". (62)
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I
Note that the inverse mapping Ly : W‘l,’f)(R”) — (W&”%(R”)) satisfies (Ly i) (V) =

By [ii, v] for every v € W‘l/’% (R™). In particular,
(LyLy' F)(@) = By [L;l 7 a] = J@) forevery € Wh2(R")

/
showing that £V£,‘_,l acts as the identity on (W‘l,”%(R")) . On the other hand, if
f = Lyii, then f(¥) = By [ii, V] forany ¥ € W‘l/’!%)(R"). It follows that

i =Ly f=Ly'Lyi

and we conclude that E;l Ly is the identity on W‘l,”%) (R™). Since By [v, i] = B}, [u, V]

for every i, v € W&,’%(R"), then analogous statements may be made for £}, and

(cy)™".

Since il . then Wyb(R") < Wyo(RY) so that
L : :

/ / - I N
(W%(R")) c (W}\”%(R”)) Tt follows that for any f ¢ (W&,%(R")) LyLy'fe
/
(W3R . Observe thatif i, i € WG (R"), then

[(;CA - [.:V) ﬁ] (5) == BA [l:i, l_}] - BV [ﬁ, 1_5] == <(A - V)ﬁ, lj)LZ(Rn) .
2 1,2 !
Thus, with f € (WV‘yO(IR{")> , we deduce that
F—Lyly f=n—L) L' F=(a-V)Ly'f. (63)

- - / -
Since f,[lvﬁj\lf € (W&”%(R”)) as noted above, then (A — V)£X1f €

/ -
(W&,’%(R”)) as well. It follows that £,'(A — V)L f € Wy 5(R"). By applying
E‘_,l to both sides of (63), we see that

Ly F =L f Ly A =Ly (64)

. / . .
For¢ € C°(R") C (W&,’%(R")) that acts via ¢ (i) = <z?, ¢>L2(Rd)’ we see from
(62) that

By [c;l(A L o)™ q?] - ((A . V)£X1f> ((t‘;)‘l &)
_ ((A —L F () ¢3>

L2(Rm)

@ Springer



Exponential decay estimates for fundamental matrices of...

and
By [y a = VLR 7o (ep) 7 8] = By [(7) 7 b £y (4 = Ly 7]
=4 (L' =Ly ) = (L' =Ly, &)LZ(RH) .
Combining these observations shows that
(et a = 7og) = (=g R ey) ), (69)

L2(R") L2(R")

Pairing (64) with qqﬁ in an inner product, integrating over R”, and using (65) then
gives

'7.9) A=VLF L)), (66)

LZ(IR”)

(017 8) 3, = 1179,

Recall from Definition 11 that E;lf(x) = Jgn " (x,y) f(y)dy for any f €
L2® (R")?. By taking f, 43 e C°(R™) with disjoint supports, it follows that

(6017, = [T o 2ty 00 as

:/n/n@v(x’y) F. 6)) dydx,

where the application of Fubini is justified by the fact that ' is locally bounded away
from the diagonal. A similar equality holds for the second term in (66). For the last
term in (66), observe that

((a=wiL Fo(ep) ¢7>L2 .

/’1<(A(z) V(Z))/ rY (z y)f(y)dy/ I“V*(z,x)q;(x)dx>dz

= /n /n /n IV* (2, )" (MA@ = VT (2, ) J?(y),(];(x)>dzdydx

=/n/”<[/wrv(x,z) (A(z)—V(z»FV(z,y)dz} f(y>,q3<x)>dydx,

where we have used the property that 'V (x, z) = I'V*(z, x)T. Putting it all together
gives

/n/nqrv(x’” —FA(x,y)] f(y)mi(x)) dydx

=/n Aﬂ([énrv<x,z><A<z>—V(z»rA(z,y)dz} f(y>,¢3(x>> dy dx.
67)
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By (36) in Theorem 8, the functions I'V (x, y) and ' (x, y) are locally bounded on
R" x R"\ A. As shown in Lemma 23 below, [, 'V (x,2)(A(z) = V)T (z, y)dz
is also locally bounded on R” x R" \ A. It follows that 'V (x, y) — I'*(x, y) —
Jn TV (2, 2)(A(2) — V(@)T2(z, y)dz € L] (R" x R"\A). As (67) holds for all
f , (]_5 € C°(R") with disjoint supports, then an application of the fundamental lemma
of calculus of variations for matrix-valued functions shows that for a.e. (x,y) €
R" x R",

IY(x,y) =T, y) - /R IV, 2)[V(@) - A@IT @z, y)dz.  (68)

Since ||ﬁ||Y1,z <
0

®Hy = ||11||W‘1/%(R,,) implies that WI]\’,%)(R") C Y()],2(Rn), then

I I
(YOI’Z(R”)) C (W[l\”%) (R”)) . In particular, all of the arguments from above hold
with V replaced by 0, so we get that for a.e. (x,y) € R” x R”,

MO, y) =T, y) + / I, 2) AT (2, y) dz. (69)
Rn

Subtracting (68) from (69) leads to the conclusion of the lemma. O

Next, we establish that the integral functions in Lemma 22 are locally integrable
away from the diagonal.

Lemma 23 (Local integrability on R” x R" \ A) Assume that A satisfies bound-
edness (25) and ellipticity (24), and that V. € B, N ND for some p > 3
Assume also that (IB) and (H) hold so that T°, T2, and TV, the fundamental
matrices of Lo La, and Ly, respectively, exist and satisfy the conclusions of The-
orem 8. Define G(x,y) = [pa TV (x,2) [V(2) — AT (z, y)dz and H(x,y) =
Jen T, )AT™ (2, y)dz. Then G, H € L . (R" x R"\A).

Proof Throughout this proof, we write < in place of <. since the dependence on
constants is not important here. We show that G € LllOC (R™ x R™\ A) and note that
the argument for H is analogous. Set 7 = |[x — y| and let ¢ = 871, where 1 > 0 is as
in Lemma 21. An application of Lemma 22 followed by Corollary 4 along with the

bound (37) from Theorem 8 applied to I'V shows that

e=¢d@2V) |y (2) — A(2)|
|G(x,y)|5/ )Fv(x,J\IV—AI}FA("”'5/ "l
» R? |Z_x| |Z—y|

V(z V(z
< / ,Lz( )| Lz / n|72( )| _—
B, p) lz—x[""7 [z =yl B(.5) lz—x[" "z =yl

e—sE(z,x,V) |V(Z)|
+ / , , _ e n=2, _ yh—=2""
R\ (B(x.5)UB(.5)) |z = x|""" ]z =yl

(70)
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For the first term, an application of Holder’s inequality shows that

/ [V(2)| dz < rz_”/ [V(2)| dz
Bw.j) Iz —x["Fz—y"2 Y B.p) Iz — x["?

p—1

r/2 _
_ 1 p(2—n) r (71)
<r¥n IVIiLe (B, 5)) (/0 P d,O)

pn
p—1

4-2n+
S V”LP(B(x,%)) r

An analogous bound holds for the second term in (70).

We now turn to the third integral in (70). Observe that with R = 1

mx, V)’
/ e—cd(@x,V) V(@)
R\ (B(r.5)UB(.5)) |2 — x|" 2 |z — y[" 2 .
S ve) eIV V(o)
~ P 4z
B(x.R\B(x.5) |2 — x| RMBGR) 12 —

Assuming that R > g,choosel € Zso sothat2’~1r < R < 2’r.Letq =pifn>4

and g € (%, min {p, 3}) if n = 3. Since ¢ < p, then by Lemma 2, V € B, as well
with the same uniform B3, constant. Let ¢” denote the Holder conjugate of ¢ and note
that n — 2¢g’ (n — 2) < 0. Therefore, an application of Holder’s inequality shows that

V() 4—p—n
/ ——-—2dz S WV llLase,ry " e g
B(x,R\B(x,5) 12 — x|

where we use that V € B, and (19) to get

% n_o 1 n_o
V(@)I?dz) <Re — V()ldz ) S R
B(x,R) R" B(x,R)

For the exterior integral, with the notation A; = B(x, 27 R)\B(x, 2/=1R), we have

/ D V@, i / e IEE Y V@)
RN\B(.R) |z — x| PR VR (e x4
1

o 1 7 ed(z,x,V) é
< —— 42 / e”PEER TV (2)|T dz 74
; /Aj Iz — x|q (2n—4) A (74)
1
i .o \4-2n+ 242 = q
S Z (2] R) q "q ][ efqed(Z,X,V) |V(Z)|q dz )
. A
/:l J
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We may repeat the arguments used to reach (60) and conclude that if |x —z| >
2/-1R = WZ(JX—_IV), then for any &’ > 0, ef'd@xV) >m(x,V)|x —z| 2 2/.Fore& to
be specified below, it follows that with ¢ = 5 In2,

1

1
— q : g
][ e—aed(@.x.V) [V(2)|?dz <e 9 <][ [V(2)|? dz)
A B(x,2/R)

<e 9Cy 7[ [V(2)|dz S e 9y! (ZJR) / |V (2)|dz
JB(x,2/R) B(x,R)

J J
=R (L) v RV s R (20)
ec2n ec2n

where we have used that V € B, and ¥ (x, R; |V]) < d>. By choosing &’ ) €
sufficiently small, we can ensure that ¢ = ¢ (y, n) is large enough for the series to
converge when we substitute this expression into (74), and then we get

—ed(z,x,V) 1%
[ e s v, 15)
RM\B(x,R) |z — x|

Combining (70) with (71), (72), (73) and (75) then shows that

I 2 e G, VIR o (x, V)

|G (x, WIS ||V||LP(B(X,%)UB()~,%)) r

A standard argument shows that G (x, y) is locally integrable away from the diag-
onal, as required. O

Using the representation formula from Lemma 22 and many arguments from the
proof of Lemma 23, we can now bound the difference between I' and I'’. We use
I'A as an intermediary because this allows us to use the upper bound described by
Corollary 4 instead of the one for I'V given in Theorem 11. The advantage to this
approach is that we don’t need to assume that V € OC.

Lemma 24 (Lower bound lemma) Let Ly be given by (27), where A satisfies (24) and
(25), and V € B,NND for some p > 5. Assume that (IB) and (H) hold. Let 'Vix,y)

denote the fundamental matrix of Ly. Let x, y € R" be such that |x — y| < m

Seta =2 — g, where ¢ = pifn >4 and q € (%,min{p,ﬁ%}) if n = 3. Then there
exists a constant Co = C (Ly, p, Cy) for which

[lx — ylm(x, V)]
x —y"=2

My -, y)| < 6

Proof Setr = |x — y|andlete = %1, where &1 > O1isasin Lemma21. An application
of Lemma 22 followed by Corollary 4 along with the bound (37) from Theorem 8§

applied to 'Y and IV shows that
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INEROE SIe]

=< /Rn T, 2| 1A T (2. y)| dz +/Rn ITA(x, 2] IV(2) = A2)] ‘Fv(z,y)‘dz

<rren / eV A /e—“’WZvV) V@ - AQI
VPV Jon |z — x| |z — yI" 2 "

Vi(z Vi(z
5/ n|—2( )| n—2dz+/ nl_z( )| 4
B, %) lz—x[""" |z =yl B(y,5 lz—x""" |z =yl

e—aﬁ(z,y,V) Viz e—eﬁ(x,z,V) Vi(z
+/ 2 a 12 + ) e 3|72 dz.
R\(B(x, 5UB(y,5) \ 12 —x"" [z — | lz = x"" |z — yl

(76)

|z —x|""2 |z — y|"~2

For the first term in (76), we get

/ [V (2)] dz <o rg,n/ [V (2)] dz
~(n =)
Be.5) |z —x|" 2 |z — y["? Bu.p) |z —x|"2

o]

=2 / Mdz
=B B 2= a1
N > r
< 2 (—) / V)ldz=r>"Yy w (x, — |V )
< 22] o,V @) Z S VI
Jj=1 0 j=1

00 — 2_n
2en rm(x,V) P 1 )
<r ;Cv [—zj v maay V1)

where we have applied Lemma 3 to reach the last line. (We remark that a version of
this inequality was established in [2, Remark 0.13] using a different argument.) By

(19) in the proof of Lemma 9, W (x, s |V|) <d? ‘\y (x, s V)‘ )

Since p > %, the series converges and we see that

V@ldz rm e, VIPTr e, VP
n—2 n—2 ~(d.n,p,Cy) n—2 = n—2 ’
B(.§) lz —xI"" |z =y r r

(77)

since ¢ < p. An analogous argument shows that the second term in (76) satisfies the
same bound since Lemma 10 and the assumption that [x — y| < m imply that
m(x, V) =@n.p.cy) My, V).
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We now turn to the fourth integral in (76). By the arguments in the proof of
Lemma 23, we combine (72) with (73) and (75) to get

/ efsg(x,z,\/) |V (2)| dz
RI\(B(x.5)UB(y.)) |2 = x|" 2 |z — y|" ™2

_ / V@ldz / e @xV) 1y (g)] P
~ JernBes) Iz —xP 0 Jrnpaory 2 —x

Sty P (x, VP4 4 (x, V)2

An analogous argument applied to the third integral in (76) gives the same bound where
we have again applied Lemma 10 to conclude that 7 (x, V) ~g.n,p,cy) M (¥, V).
Substituting (77), (78), and analogous estimates into (76) shows that

7 (x, V)P4
o R

_ 2_n
< [rm (x, V)™ ¢

-
~ pn—2

(9 =T, 0| Sieyopew) + 77 (x, V)2

where we have used that

7 (x, VY2 = P2 e (e, VIR < 2 i (x, VP

sincerm(x,V)<landn (1 + %) > 4 by definition. The conclusion of the lemma

follows. O

We now prove our lower bound. To do this, we assume that the following scale-
invariant Harnack inequality holds for the fundamental matrix associated to our
operator.

(SIH) If U is a d x d matrix for which each u; € W‘l,’z(ZB) is a weak solution to
Lvi; = 0fori = 1,2...,d, then we say that (SIH) holds for U if there

exists a small constant cg so that whenever xo € R” and r < m, with
B = B(xg, r), it holds that
sup [(Ue, €)| < Cu ing l(Ue,e)|, (79)
X€E

xeB

for every ¢ € R, where the constant Cy depends only ond, n, A, A, and V.

The standard Harnack inequality has a constant that typically grows with the size
of the domain and the norm of V. Since the constant here is independent of r, we refer
to this as the “scale-invariant” version of the inequality.

As observed in [3, p. 4349], the estimate (79) holds for nonnegative solutions to the
scalar elliptic equation — div (AVu) +vu = 0, where A is a uniformly elliptic matrix
and v € B, satisfies v > 0 a.e. However, it is unclear when the fundamental matrix
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satisfies (79), even in the Schrodinger case Ly = —A + V with a matrix potential V.
In [14], a Harnack inequality is proved for vector solutions (with nonnegative entries)
to (2) under conditions very different than those discussed in this paper. It is reasonable
to ask whether the ideas in [14] can be used to provide conditions on Ly to ensure that
(79) holds for the fundamental matrix ', and we plan to investigate this question in
the future.

Of course, since we are working in a systems setting, there is no guarantee that this
estimate, or any of the standard de Giorgi—Nash—Moser results, necessarily hold. As
such, we assume that Ly is chosen so that (IB), (H), and (SIH) all hold. To convince
ourselves that these are reasonable assumptions to make, we refer the reader to [3]
and [11], where the validity of these assumptions in the scalar setting is shown.

Finally, we also need to assume the following lower bound on the fundamental
matrix of the homogeneous operator.

(LB) We say that (LB) holds if there exists a constant c( so that for every ¢ € 41,

(roc, ve.e)| = | <0 (80)

x — yln—Z

In [9], the fundamental and Green’s matrices for homogeneous elliptic systems
are extensively studied. Although such a bound does not necessary follow from the
collection of results presented in [9], this result is shown to hold in the scalar setting
and therefore also in the case Lo = —divAV when A is uniformly elliptic; see [10,
Theorem 1.1].

Theorem 12 (Exponential lower bound) Let Ly be given by (27), where A satis-
fies (24) and (25), and V € B, N ND for some p > 5. Assume that (IB), (H),
and (LB) hold. Let TV (x, y) denote the fundamental matrix of £y and assume
that (SIH) holds for I'V. Then there exist constants C = C (Ly, p,Cvy, Cy,cs, co),
& = ¢ (d,n, p, Cy, Cq, cs) so that for every ¢ € S¢~1,

. e—2dx.y.V)
‘(Fv(x,y)e, €>‘ ZCW (81)

Remark 15 1f we make the weaker assumption that |V | € B, (instead of assuming that
V € B)), then all of the statements in this section still hold with 7z (-, V) replaced by
m (-, |V1]). Accordingly, the conclusion described by (81) still holds with d(x, y, V)
replaced by d(x, y, |V ]).

Remark 16 Versions of this result still hold with either [TV (x, y)| or [TV (x, y)é| on
the left side of (81) in place of |(T'V (x, )¢, €)| if we replace the assumptions (SIH)
and (LB) accordingly.

We follow the arguments from [2, Theorem 4.15] and [3, Theorem 7.27], with
appropriate modifications for our systems setting.
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Proof By Lemma 10 and the proof of [3, Proposition 3.25], there exists A =
A (d,n, p, Cy) large enough so that

x ¢ B < 2 ) whenever | y| > A (82)
X —
m(y, V) ~ V)

o\ 1/«
Similarly, with ¢; = min {(2‘7"2) , 1}, where ¢ is from (LB) and C> (Ly, p, Cy)

and o (n, p) are from Lemma 24, an analogous argument shows that there exists
¢y =c2(d,n, p,Cy,cy) sufficiently small so that

¢ B < 26‘2
Z, =
' iz, V)
Since ¢y = ¢1 (Ly, p, Cy, co), thency = 2 (Ly, p, Cy, co) as well.
We prove our bound in three settings: when |x — y| is small, medium, and large.
The constant A is used to distinguish between the medium and the large settings, while

c1 is used to distinguish between the small and medium settings. The small setting is
used as a tool to prove the medium setting, so we start there.

1
“m(y, V)

) whenever |z — y| > (83)

Assume that we are in the small-scale setting where |z — y| < m(z 7 By (80) in
(LB), the triangle inequality, and Lemma 24, since |z — y| < m(; 7 then for any
¢Sl

C - 5> >
ﬁ < ‘<F (z,y)e, e>) < ‘((FO (z,y) - TV (z y)) e, e>‘ + KFV (z,y)e, e>‘
=Yy

< ‘FO @y -1 (z,y)) n KFV (2 )&, z)‘

[Iz —ylm(z, V)]*
— | |n 2

+ ‘(rv (2. 9) @, z)‘ .

Since ¢ is defined so we may absorb the first term into the left, it follows that for any
¢Sl
co

> > Cl
rv (z,y)e, e>‘ > —————  whenever |z —y| < —
K 2|z — y|"? m(z, V)’

(84)

Lemma 10implies that#i(z, V) >~ n, p,cyy) m(y, V),soafterredefiningcy (Ly, p, Cy, co)
if we need to, we also have that for any ¢ € sd-1,

KFV (z,y)e E)’ > 0 Whenever lz—yl < _a (85)
T 2z =y = my. V)
We now consider the midrange setting where [x — y| € [ﬁ, ﬁ] There is

no loss in assuming that ¢ < cg, where cg is the small constant from (SIH). Construct
a chain {zi}lN: , of N elements along the straight line connecting x and y so that

Iy =21l = 555, lzis1 — zil = sfori=1,...,N,and |x —zy| <

m(z — m(zN V)"
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Since Lemma 10 implies that m(z, V) ~q u,p,cy) m(x, V) for any point z along the
line between x and y, then N Sa.n, p,Cy c1,c0) A- Since |zj — y| > |y —z1l = m(;IV)

forall j = 1,..., N, then (83) shows that y ¢ B (zj, mé—) In particular, with
U = TY(,y) then Lyii; = 0 weakly on each B (z], m(z

repeatedly applying (79) from the scale-invariant Harnack 1nequality (SIH) that for
any ¢ € S471,

). Then we see by

Iz, e

B(ZN m(&N V))

2cq' s ([P w2 ot |(rYen. a2

B(zw, *mzy, V))

> cg! inf (rve. we.e)

172
Bln-1 oy )

>or s [[MMewed| =M e wee)
Bav-1 ey 7y
CiNC()
Z ZC_N‘(FV(Zlay)gng Z H—v
! 2021 =y

where the last bound follows from (85). However,

| [y pp— Calx —yl
11—y S A——— = AlX — Y.
m(y. V)~ e, V)

Therefore, for any ¢ € S?~1,

CI;NC()
2(Cqlx — y])" 2

cl A
KF (x, y)e, e>‘ whenever |x — y| € .

m(x, V) m(x,V)
Combining this observation with (84) shows that for any ¢ € S¢~1,

KFV(x, y)e, EH > G whenever |x — y| < L (86)
"=yttt = mx, V)

An application of Lemma 10 implies that for any ¢ € S?~1,

v N C3 A
' (x,y)e,e)| > —— whenever |[x —y| < ———, 87)
[x — y|"~2 m(y, V)

where C3 = C3 (Ev P, Cv, CH, co) is possibly redefined. By the proof of Lemma 11,
if [x —y|] < 7(x 7 then d(x, y, V) Sdon,p,cy)y 1. In particular, this observatlon

combined with (86) gives the result (81) in the setting where |x — y| < m.
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Now consider the final (large-scale) setting where |x — y| > *(x - Choose y :
[0, 1] = R" with y(0) = x, (1) = y, and

1
/O A (0, V) [y 0 di < 2d(x.y. V).

Let

A
szmm{te[ql]:u-—VONS;%@’V)}<1

1
If |y (t0) = ¥ = 50077y then

1 A
M + — < — ,
m(x, V) m(y(tp),V) ~ m(x,V)

[x —yl < |x —y@o)| + |y (to) —

since Lemma 10 implies that m(y (t0), V) ~@n,p,cy) m(x, V). In this case, we
may repeat the arguments from the previous paragraph to reach the conclusion of the
theorem.

To proceed, we assume that [x — y| > 7(}( ) and |y (tp) — y| > m Since
m(-, V)islocally bounded above and below, we can recursively define a finite sequence
O<ry<ty <---<tg <lasfollows.For j =0,1,...,¢,let

1
tj=inf{f€[fj1, ‘V(l‘)—)/(f] 1)|_W}
J

Then set B; = B (v (1)), sy )- Define £ = [1j, 5. for j =0,1,.... £~ 1,
and set Iy = [ty, 1]. Observe thatfor j =0, 1,...,¢,

y() € Bjforallt € I;.

In particular, Lemma 10 implies that 72 (y (t), V) ~@.n,p,cy) M (v (). V) when-
evert € Ij. Moreover, for j =0,1,...,£—1,

1

ly(tjp1) —y ()| = m

Thus,

1 -1
/0m<y<r>,V)|y’<z>|drzZ/l my @), V) |y' ()] di
j=0""1
-1
Nunpcv)Zm(y(m V)/ ly'(0)] ar

=0
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-1
= my ), V) |y ) — v @] = ¢
=0
Recalling how we defined y, this shows that
€< Cyd(x,y, V), (88)

where C4 = C4 (d, n, p, Cy).

We defined 7y so that whenever t > 1y, |[x — y(¢)| > m( ) . Therefore, by the
choice of A from (82), foreach j = 0,...,¢, x ¢ 2B;. ThlS means that if U =
I'V(-,x) then Lyu; = 0 weakly on each ZB j. Thus, repeated applications of the
scale-invariant Harnack inequality from (SIH) show that for any ¢ € S?~1,

(U (v (10)) €, &)l < Cul{U (y (1)) &, &) < --- < CHIU (v (1)) &, &)
<CH' U (v ()€, e,

where 51{ = Cfl and B depends on cg from (SIH). Since y (1) = y, then

C3

e e omias = = ~—(0+1
KFV 0. x)e, e>‘ Z CH( o KFV (y (t0), x) e, 6)‘ = CH( * )—H’
ly (10) — x|

where (87) was applicable since |y () — x| Continuing on, since

< A
= W vy-
ly (t9) — x| < |x — y|, we get that for any ¢ € s-1,

C3 exp ( £log EH) - C3 exp (—C4 log 51{ d(x,y, V))
Culx—y"? = Cu e =y 2 ’

KFV (v, x) 2, E)

where we have applied (88) in the final step. As this bound is symmetric in x and y,
the conclusion (81) follows. ]

Finally, let us briefly discuss the connection between our upper and lower auxiliary
functions and the Landscape functions that were mentioned in the introduction.

Remark 17 For all x € R", define

2 (o) =/ Ty (. y)| dy.
Rn

We decompose R” into the disjoint union of the ball B ( , m) and the annuli

B (x, mé—JVJ \B ( , mz(x V)> for j € N, thenassuming the conditions of Theorem 11,

we argue as in Lemma 23 to show that u(x) < m (x, V)~ =2 for all x € R". On the
other hand, for all x € R, Remark 16 tells us that (under appropriate conditions)

—sE(x,y,V)

Iy(x, d —_— > 7 (x, V)72,
”(X)Z/B(x e yZ/B(xW)) Az )

m(x,V)
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As mentioned in the introduction, this connection was previously found in [16] for
scalar elliptic operators £, with a nonnegative scalar potential v on R”. In the scalar
setting, it holds that m (x, v) = m (x, v) for all x € R". If we denote this common
function by m(-, v), it follows that u(x) ~ m(x,v)~2 for all x € R". Moreover,
since the fundamental solution of such an operator is positive, we see that u satisfies
Lyu = 1, which means that u inherits desirable qualities that are not satisfied by
m(-, v). We refer the reader to Theorems 1.18 and 1.31 in [16] for additional details.
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A The quantitative cancellability condition

In this section, we are trying to further motivate the QC condition that was introduced
in Sect.2. To do this, we show that the set of matrix weights (B, N N'D)\QC is
nonempty and that there is a matrix function in this space that fails to satisfy the
Fefferman—Phong inequality described by Lemma 15. As such, we hope to convince
our reader that the additional assumption V € OC is justified for our purposes.

We explore the properties of the matrix function that was introduced in Example 3.

With x = (x1,...,x,) € R", and |x| = \/x} 4+ -+ +x2 > 0, recall that V : R" —

R2%2 is defined as

1 |x|2} ! X (89)
= 2
] T 2 a2 (24 xd)

Vix) = [

We begin with a result regarding polynomial matrices.

Proposition 13 Ler V : R" — R4 be any d x d matrix with polynomial entries.
Then V*V € B, for every p > 1.

Proof First, if P : R" — R is any nonnegative polynomial, then as shown in [7],
for any p > 1, P is a scalar B, function with a B}, constant that depends only on n
and the degree of P.

Let k = max {deg (Vij)}?,j=l and observe that for any ¢ € RY, P(x;e) =
(V*(x)V(x)é, é) is a nonnegative polynomial of degree at most 2k. By the conclusion
of the previous paragraph, for any p > 1, P(x;¢) belongs to B, with a constant
depending only on n and the degree of P(x; €). In particular, for any p > 1 and any
¢ € RY, P(x; €) belongs to B, with a constant that is independent of ¢. Since V*V is
symmetric and positive semidefinite, then we conclude that V*V belongs to B,. O
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We immediately have the following.

Corollary 5 Let V : R" — R¥*4 be any d x d, symmetric positive semidefinite matrix
with polynomial entries. Then V € B, for every p > 1.

It follows that for V as defined in (89), V € B,,. Since V also satisfies (9), then
V € N'D. Now we show that V is an example of positive definite polynomial matrix
that doesn’t satisfy our quantitative cancellability condition.

Lemma 25 (QC is a proper subset of B, N N'D) For V as defined in (89), V ¢ QC.
Proof We need to show that the condition (10) doesn’t hold. For any x € R”,

verv = [ vor = [ [ ! |y|2}dy
o "2 Joc.rn =2 Joer Iy 1yl* ’

Computing, we have

5 5 n Xp+r X1+r 5
0(x,r) j=17% X1—=r

n—r

- 1 A 2 2, a2
_ n— 2 SV i
= ;:1 2r) / Vi dy; =2"r <|x| + 3)r )

Xj—r

and a similar computation shows that

2 n
/ (442 dy=2/
Q(x,r) j=17%

Xp+r

(2 2
/ yj(y1+---+yn)dy1.-.dyn
xX1—r

=2"r"f(x;7),

n—r

where f(x;r) = |x|* + 2"T+2 Ix|>r? + Wr“. Therefore,

2 2
W (x. V):2”r2|: Lo+ 5r ]

x>+ 4r2 Q)

We choose r = r(x) optimally so that W (x, r; V) > [. That is, we want both
eigenvalues of W (x, r; V) to exceed 1, so we solve

4 2.2 4n .4
2| X7+ gz
1:2"’112(1—1-]‘();;1)) 1 — 1_43||——45—2
(1+f(x:n)

or

T+ x|t , 45
iz, L T omt2, T

(90)

x> r* — 45

2
£8+(15|x| 5n+4>£6_15(n+2) N

n ont2 o+,
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1 1
If x| > 1, say |x| > (%)4, then r > cn|x|%, where ¢, = (#)4 In partic-
ular, r — oo when |x| — oo. Therefore, we may construct an increasing sequence
{Rn}5r_; such that whenever |x,| = Ry, r(xm)? = m. That is, we solve (90) with
|x| = Ry, and r = /m to get

+1,..2 n+2 Sn+4 45 45
2" m (1 — ) n (1 - 2n+2y 2n+2nm3 + 22n+2nm4)

n+1
R = 1 ;
Smon (1 - szﬁm)
Therefore, |x,,| = ¢um, for some sequence, {c, )5, of bounded constants. With

rm = r(xm), we have r, = /m.
Now we set Q,, = Q(xy,, ') and calculate

1 |xm|2+ﬂr2i|
1% = Vv dy = 2r,,))" 3tm
(Qm) /Q Mdy = Q2rm) [| w42 (il )
so that
3,2 FUxmlirm) = (ol + 2r )]
V 1 m milst™m m g rn .
(Qm) 2n+2 (|x |2 1"57'%) |:_(|xm|2+%rr%1) 1

Since v/1 + [y[* V2 (y) = V(y), then

n+2
i (bl 4+ 1zm) (14 151 VOO v@m vt
=|:1 |y|2][ Sxm! 5 7m) (lxm|2+n 2)][1 |)’|2i|
V2 Iyt ] L= (Ixml? + 5r2) 1 2 Iyl
2
= (rnadirm) =2 (a4 572 0+ 01) [ Lo D]

and we see that

(VO V@ VO3] s ) — 2 (bl + 352) I + I

3 - 4r2 (|xm|2 1n5 m)|an|(1+|y|4)
Therefore,
i (bon P + = 2)/ (vorrvomvinie.é)d
— | |X —r el, e
3 m 15 ™ on y m y)zeyp,ep)ay

= (] ) = 1) 1 dy =2 (Ix |2+ﬁr2>][ E gy i1
o Qm]+|)7|4 " 3 Qm1+|Y|4
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Fonlirm) =1 ol + 282 el 2+ S5 4 (x| — )
N 1+(|xm|_rm)4 1+(|xm|_rm)4

Recalling that |x,,| = ¢;;m and rp,, = /m, it follows that

lim [ (vorrvien Ve Ter ) dy
Om

m—0oQ

3 (Il + 2252 1 212+ S 4 (] — 1))

< lim
m—00 4r2 (lxml* + 457 m)[1+(|xm|—rm)]
4
i - 1))

= lim

—00 4
a6+ ) [t (o )]

In particular, there is no constant ¢ > 0 so that for all cubes Q = Q(x, m) and
alle e RY,

/Q<V(y>5V<Q>—IV<y)5E, é)dy = el

showing that this choice of V € BB, does not belong to N'C. O

Next, we show that this choice of V violates the Fefferman—Phong inequality
described by Lemma 15.

Lemma 26 (Failure of the Fefferman—Phong inequality) For V as defined in (89),
there is no choice of constant C so that for every ii € C(% (R™), it holds that

/m(x,V)2|ﬁ|2§C</ |Dii|2+/ (Vﬁ,ﬁ)). o1

Proof We will construct a sequence {iig} C Cé (R™) that violates this inequality as
R — oco. Withii = [— Ix|?, I]T, we see that Vii = 0. For any R >> 1, define
&r € C3° (R") so that &g = 1 when x € Byg\Bg and supp&r S B3g\Bg,2. In
particular, supp V&g € (B3g\Bag) U (Bg\Bg/2) with [VEg| < %. Then if we define
g = ukp, we see that ug € Cé (R™) and for any choice of R > 0, Viig = 0. In
particular,

/ (Viig,ug) =0.

Now

Diig = [—2§$R] N [— |xv|;vsR}
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so that

JRCTGEY T (1ol 4+ 1) 1VERP?
" B3r\Bg)2 (B3r\B2r)U(BR\BR/2)

< |B3g| R* = R"*?

and then

/ \Dii> + / (Vi &) Sam R™. ©92)
n Rn

Recall from the proof of Lemma 25 that there is a bounded sequence {c;, }5_; € R so
that if |x,,| = ¢,ym forall m € N, then r(x,,,) = +/m. In other words, r(x,,) = ./ lf::

Since r(x) = then we conclude that m (x) =~ ,/ whenever |x] > 1. Thus, we

m(x) >
see that

/ m(x,V>2|ﬁR|2z/ m(x,V>2|ﬁR|22/ m (R, V)* R* =~ R"F3.
R» Byr\Bg Bypr\Bg

If (91) were to hold, then there is a C > 0 so that R"T3 < CR"2 forall R > 1. As
this is impossible, the proof is complete. O

B The A3, o, Ao, RBm, and By, classes of matrices

The goal of this appendix is to provide precise and concrete connections between the
classes of matrix weights that were introduced in Sect.2: 42 « (and more generally
A p,00» Which will be defined momentarily), Rgm, Ao, and B - For the reader who is
unfamiliar with the theory of A}, o, matrix weights, see [31] for proofs of well known
results that are stated but not proved in this appendix.

Throughout this section, unless otherwise stated, we assume that 1 < p < oo.
Let V be a complex-valued matrix weight defined on R”; that is, V is a Hermitian
positive semidefinite d x d matrix function with |V| € 1OC (R™). Note that in the
body of this paper, we assume that V is real-valued and symmetric. As pointed out in
the introduction, for our purposes, there is no loss of generality in replacing “complex
Hermitian” with “real symmetric”. However, here within the appendix, we follow
the standard convention in matrix weight theory and work with complex Hermitian
matrix weights. It should be noted that a matrix weight V is (unless otherwise stated)
not necessarily positive definite a.e. on R”.

We use the notation ag V' to denote the average of the matrix function V over the
cube Q € R". Thatis, agV = fQ V(x)dx.

We begin by stating some useful and well known results regarding matrix weights.
First we have what is known as the “matrix Jensen’s inequality”, which says that for
any matrix weight V and any measurable Q C R” with [Q| > 0 we have

det(agV) > exp (ag(Indet V)) (93)
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We refer the reader to [17, p. 48] for a proof.
The next inequality is sometimes called the “Hadamard determinant inequality”.
See [38, p. 389] for a proof.

Lemma 27 (Determinant lemma) If A is a positive semidefinite Hermitian matrix and
{e; }3{:1 is any orthonormal basis of C?, then det A < ]_[7:1 (Aej,e;) < ]_[?:1 |Aé;|.

Definition 12 (p-nondegenerate) We say that a matrix weight V is p-nondegenerate
if for every ¢ € C, it holds that

1
‘VF(x)Z‘ >0 ae.on R".

In the setting where V is p-nondegenerate, for any cube Q, the map ¢ >

1
Lo P » L L
( fQ ‘ Ve (x)e‘ dx) 1 defines a norm on C¢. Thus, the John ellipsoid theorem implies

the existence of a “reducing matrix”, defined as follows.

Definition 13 (Reducing matrix) If V is a p-nondegenerate matrix weight, then for
every cube Q C IR”, there exists a positive definite, Hermitian d x d matrix R’Q’(V),

called a reducing matrix. This matrix R g (V) has the property that for any ¢ € C¢,

<f ‘vé(x)z‘pdx); < ’R’é(V)E‘ < ﬂ(f ’VIl’(x)E’pdx>;. (94)
0 0

See [17, p. 79] for a proof with the same lower bound and a slightly worse upper bound
of d. The reducing matrix need not be unique, but the choice of Rg (V) is insignificant.
Note that if p = 2, then

3 . 2
‘(][ V(y)dy) ¢ :7[ ‘Vf(x)é‘ dx.
0 0

1
That is, if p = 2, then (aQ V) 2 is a reducing matrix for V.
Also, observe that

1
2 2p
(][ ‘V%(x)é" pdx) ' < ‘RZQ”(VP)E
0

2

1
< «/E(f ‘V%(x)é"zp dx) T 95)
0

1

showing that R2QP (V?)is areducing matrix for the norme — (JCQ (V(x)e,e)? dx) .
We now introduce the A, o class from [17, 18]. In contrast to the scalar setting
where there is a single class of Ay, weights, in the matrix setting, there is such a class

for each p.
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Definition 14 (A, ) WesaythatV € A, « if V isa p-nondegenerate matrix weight
and there exists a constant Ay = Ay , > 0 so that for every cube 9 C R”", it holds
that

det RY(V) < Ay exp (7[ In det Vll’(x)dx> . (96)
0

For example, when p = 2, it follows from the observation above that V € Aj  if
there exists a constant Ay > 0 so that for every cube Q C R", we have

det(agV) < Ay exp (ap(Indet V)) . (97)

Note that if V € Aj o NND then V is positive definite a.e. For if there were a
bounded A € R” with |[A| > 0 and det V = 0 on A, then picking any cube Q D A
forces the right hand side of (96) to be zero while the left hand side is positive.

Now we give another useful characterization of the A,  class of matrices from
[18, p. 451].

Lemma 28 (A, o characterization) Let V be a p-nondegenerate matrix weight. Then
V e Ap 0 iff V is positive definite and there exists a constant C > 0 so that for every
Q C R" and every é € C%, it holds that

exp (][ m‘V‘%(x)é” dx> <cC ’(R’é(V))’lé' . (98)
0

While we will not need it, it should be noted that the reverse inequality in (98) is also
true for all matrix weights with C = 1. See [18, p. 451] for a proof of that direction.
We also need the following elementary Lemma from [17, p. 49].

Lemma 29 (Determinant to norm lemma) Let A be a d x d matrix for which |det A| <
C < oo and |Ae| > |e| forany e € C. Then ||A| < C.

If V € N'D, where N'D is the “nondegenerate” class of matrix weights introduced
and discussed in Sect.2, then for any measurable set E with |E| > 0, it holds that
fE V > 0. That is, for any ¢ € C4, we have

' <(/ V(x)dx> ¢ E> =/ (V2. &) dx =/ \V%u)é"z dx.
E E i

It follows that V7 is 2 p-nondegenerate. In particular, for each cube Q € R", there
exists a reducing matrix RZQP (VP). We now state and prove a determinant characteri-
zation of the matrix class ).

Lemma 30 (B, determinant characterization) If V. € N'D, then the following are
equivalent:

(1) There exists a constant C > 0 so that for every cube Q C R",

det[RY (V)] = C det (agV)? . (99)
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(ii) There exists a constant C > 0 so that for every cube Q C R" and every ¢ € C¢,

1/p
(][ (V(x)e, 2>de) <C{(agV)é.é). (100)
0

Remark 18 Notice that the condition described by (100) is our classical definition
of V e B, as presented in Sect.2. Therefore, this proposition gives an alternative
definition in terms of determinants and reducing matrices.

Proof We first prove that (99) implies (100). Observe that for any ¢ € C¢, we have by
Holder’s inequality and the property of the reducing matrix in (94) that

2 1
— f [vher ax = (]z e o)
Q Q

[Ré”(vp)] (agV) 7

1

(agV)? e

1
2p P 2
dx> < ’[RzQP(V”)] é

Thus, for any ¢ € C?, > |€|, while the assumption of (99)

implies that
det {[RZQP(V”)] (an)‘ﬁ} <c.

An application of Lemma 29 shows that

1
H [RzQp(V”)] (agV) 2| < C.
Therefore, it follows from (95) that
1 2
- 7 p2p iyl — 2 = > -
][ (V(x)e,e)? dx < ‘RQ (VPye| <cC (aQV)2e =C ((aQV)e,e>,
o

showing that (100) holds.
For the converse, assume that (100) holds. As demonstrated above, this assumption
is equivalent to

2 2
‘Ré”(vl’)é’ sc(an)%z ve e ¢
2
& ‘Ré”(vp) (an)*%é <C|?? VvéecH
1T 2 _1 2 o,
& (o) [RFWN] (agv) ™ :HRQ VP (agV) 2| <2

It follows that
1 1

2 [RZQ”(VP)]Z (aQV)Z} <c¥

det [(aQ V)
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which implies (99), as required. O

Recall the classical assertion that for p > 1, a scalar weight v € B, iff v € A.
The following proposition connects the classes 13, with A, , and provides a matrix
analogue to the aforementioned scalar result. See also [28, Corollary 3.8] for a related
result.

Proposition 14 If V € N'D, then VP € Azp oo iff V € Az 00 N Bp.

Proof AssumethatV € NDNAy o NB,.Since V€ N'DN B, then the conclusions
1

from Lemma 30 hold. As (aQ V) 2 is a p = 2 reducing matrix, then (96) holds with

1
RZQ(V) = (aQ V)7 since V € Ay o. Combining (99) and (96) shows that for any
cube Q C R", we have

1
det R (V)] = Cdet (agV)” = Cexp (7[ In det vi(x)dx> .
0

Comparing with (96), this shows that V* € Ay}, «.
Conversely, assume that V? € Aj, o and V € N'D. By the definition of Aj) o
as in (96), then by an application (93), we see that for any cube Q € R”,

det [R2QP(VI’)] < Cexp (7[ Indet V2 (x) dx>
0
1 1
=C [exp (aQ(ln det V))]7 < det (aQ V)i .
Since V € N'D, Lemma 30 implies that V € B3,,.
For any ¢ € C¢, we have by Holder’s inequality and (94) that

— (f ioodf ax)" = (f [viee” )" < [ ()
o 0

1

(CZQV)z e

so that

—1 2

‘(Ré”(v"))1 (agV) (ngp(vp))l‘ N ‘(RZQ”(V”)) (@gV)?

2
<1

1

(aov)? (RY ()

Therefore, for any cube O C R",

1
det (agV)? < det Ry (V) < Cexp <][ In det V2 (x) dx) ,
0

1
where the second inequality uses (96) since V7 € A3, . In particular, since (aQ V) 2

is a reducing matrix for p = 2, it follows from (96) that V € Ay .

O
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Now that we have discussed the A, o, classes of matrices, we seek the connections
between the classes A, o and As,. We first recall the definition of Ay from [1].

Definition 15 (Ay) We say that V € A if for any ¢ > 0, there exists § > 0 so that
for any cube Q C R”, it holds that

> -9l0l. (101)

{x €eQ:Vx) > 3][ V(y)dy}
o

Note that when A and B are Hermitian, positive definite matrices, A > B iff
H B%A_% H < 1. As observed in [1], we have that for V positive definite a.e., V € A
iff for any & > 0 there exists y > 0 such that for any cube Q C R”", it holds that

1
{x e Q: H(][ V(y) a’y)2 V_%(x) > y}
0

Our next pair of results examine the relationship between A3 o, Rpm, and Ax.
We first prove the following more general result which implies the first inclusion.

<¢l0l. (102)

Proposition 15 Ifp > 1and VP € A oo, then V € Ano. Inparticular, Az oo € Axc.

Proof Let Q C R”" and let {¢; }fz | be the standard orthonormal basis of C4. For any
A > 0and C > 0, let J;(Q) denote the collection of maximal dyadic subcubes J of
Q satisfying

Cx

[R?"(v")]*1 (RGP vD)]ei| > e

It was proved in [18, Lemma 3.1] that if C > 0 is sufficiently large (independent of
Q and J), then

d
> |J|<%|Q|. (103)

i=1JeJi(Q)

We now complete the proof using (103). If x € O\ (Ule Usez 0 J), then for
any dyadic subcube L of Q containing x, we must have that

Cx

ol |- o] o] s

It follows that for any ¢ € C¢,

< VaeCH (][ (v%(né\zp dy)z” . (104)
L

‘RZQP(V”)E

< e |RIP (Ve

where we have applied (95) in the last inequality. Applications of Holder’s inequality,
(95), then (104) combined with the Lebesgue differentiation theorem show that for
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any ¢ € C4,

1

(agVv)? e

l _)2 % l _)2[) i
= <][ ‘VZ(y)e‘ dy) < (][ ‘VZ(y)e‘ dy)
0 0

< [RG vPe| = VdeH Vil

However, this implies that, modulo a set of measure zero,

(agV)? Vi)

0\ LdJ U v g{er:

i=17eJ:(0)

=< ﬁecx} .

In particular, an application of (103) shows that

d
1 1 1
. ) — Ch -
{er. (agV)? V7 2(x)| > Vde } 52 > 171 < 10l
i=1JeJi(Q)
The proof is complete since (102) holds with A = é and y = /de®*. O

Next we show that the inclusion may be reversed. In fact, for the final result of this
appendix, we prove three equivalent conditions for nondegenerate matrices. But first,
we recall the following definition of the reverse Brunn—Minkowski class of matrices.

Definition 16 (Rpm) We say that a matrix weight V belongs to the reverse Brunn—
Minkowski class, V € Ry, if there exists a constant By > 0 so that for any cube
Q C R”", it holds that

(detaQ V)i’ By ][ [det V(x)]é dx.
0

Proposition 16 If V € N'D, then the following are equivalent:
(a) V S Az,OOy

(b) Ve A, 1

(¢) VeRpyand (detV)d € Ax.

Proof That a) = b) was proved in Proposition 15.

We now prove b) = ¢).Let V € NDNAy. Forany ¢ > 0,let§ = §(¢) be as given
in the definition of A.,. Let {€) ()C)}Z:l be an orthonormal basis of eigenvectors for
V(x) and let S € Q be the set on the lefthand side of (101) so that |[S| > (1 — &) |Q].
Then for any x € S, we have that

QU

d
det V(x) = ]_[ (V(x)ex(x), & (x)) > ]—[ (agV) & (x), & (x))
k=1 k=1 (105)

d
> §det (agV) > <][ [det V (y)]7 dy) ,
0
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where here we have used both Lemma 27 and (14). In other words,

=[S =d—e) 0],

{x €Q: detV(x) ][ [detV(y)]d dy}

which shows that (det Vﬁ € Ax.
Next, to show that V € Ry, we use the first line of (105) withe = 1 and§ = & (1)
to get

I \/

1 1 1
det V —_ 84 |d V|4
|Q|/[et Sl IQI/ [det (agV)]

Szd [det (aQ V)]

][ [det V()14 dy
0

I V

as required.

Finally we prove that ¢) = a). If (det Vﬁ € Ao, then by the classical reverse
Jensen characterization of scalar Ay, weights (again see [30, Theorem 7.3.3]), there
exists C > 0 so that for any O C R", we have

1
][ [det V()] dx < Cexp (7[ In [det V (x)] dx) = C [exp (ap(ndet V))]7 .
0 0
However, combining this bound with V € Rpy gives us
1 1
(det(apV))? < vi [det V (x)]7 dx < ByC [exp (ag(Indet V))]?
0

which by (97) shows that V € A, « and completes the proof. O

C Technical proofs

This final appendix provides the technical proofs that were skipped in the body of the
paper. First we prove Proposition 2, which we recall states that a matrix weight of the
form A = (a;; le”"i);d’j=1 belongs to Ay o N B, if A = (aij)?,]:l is a Hermitian,
positive definite matrix and y;; = % (y,- + yj) for some y € RY with y; > —%.

Proof of Proposition 2 First observe that since V is positive definite, then V € N/D.
By Proposition 14, V € Ay oo N B, iff VP € Asp o. Therefore, we will show that
VP € A2p oo- By Lemma 28, VP € Ay, o iff there exists a constant C > 0 so that
for every ¢ € C¢ and every cube Q C R”, it holds that

exp <][Q In ‘v—%(x)z‘ dx) <c ‘[RZQ”(VP)]_1 ;

k]
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where RZQP is a reducing matrix of V7; see (94). This condition is equivalent to the

existence of C > 0 so that for every unit vector ¢ € C¢ and every cube Q C R”, it
holds that

exp <][ In ‘V_%(x)RZQp(V”)E
o

) <C. (106)

Therefore, to prove this proposition, we will show that there exists a constant C > 0
so that (106) holds for every unit vector € € C and every cube Q € R".

First, using the facts thatlnx < |Inx| = |ln+ x—Intx! | <IntTx+Intx!and
lae|~! < |A_1E | for any invertible Hermitian matrix A and any unit vector €, we get

2
[ex‘)(él“\”(’“”g(v”ﬁ "’“ﬂ :e"p[él“()”(x)#g"(vp)z 2) dx]
SexPH {ln+ (‘V_%(X)RZQP(VW >+ln (V_f(x)R Py >}dX]
0
2
56""[7[ {ln+ (‘ ) (’ 2”<V”>] Ve )}dx]
0

= El X Ez.
(107)
We estimate E». If {e j}?:l is any orthonormal basis of C4, then since Int x < x

for x > 0, we get
2 -1y P
E» = exp ][m+ ‘[RQP(VP)] Viwe| | dx
0

2
< exp (7[ ‘Vi(x) [Rzg”(vl’)] : dx)
2
dx) (108)

d

(gt
[e (f‘vzm 2”(vf’>] ¢
o

d
where we have applied Holder’s inequality followed by the reducing matrix property

[1
from (94).

2 p

I A

gus

j=

Ry Ry o] g

—_
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Next, we estimate E1. We start with some preliminary estimates. For any unit vector
¢ € C? and any x € Q, observe that by another application of (94),

’V—%(x)RQQP(vP)E

d
2 2 _1 2 2 12
< |Rgvrv @[ =Y [RFVVime
j=I

d . )
=42 (J[Q ’V%(y)v—%(x)gj 2pdy>p S@ <][Q ‘Vé(y)V‘é(x)‘zde)l
j=1

~@) <][ o (vovi@)| dy)p,
¢ (109)

where in the final line we have used the fact that whenever B and C are Hermitian, pos-
2

= |BiCB}| = v (BICBY) =
tr (BC). Using the explicit presentation of V and V! from (12) and (13), respectively,
we see that

.. . . . . 11
itive semidefinite matrices, it holds that ‘B 2C2

1 d p 5
4 ..
(][ u[vorvtm][ dy) = £ |2 ava i | ay
’ Te L= (110)
d 1
- 4
Sy Y Il <f |fij()’)|pdy> :
ij=1 0

where we have introduced the notation f;;(y) = |y|"/. Since py;; = 5(y; + ;) >
—n, then flf € Ay = qul Ay (see [30, p. 506],) which implies that f;; € B,. In
particular, it holds that

14
][ | fii D[ dy Sonpap (7[ fij()’)dY> :
0 0

Thus, combining this final observation with (109) and (110) shows that there exists
C=C(,n, p,A,y)sothat

2 d
<C Y x[7 (fQ ﬁ,-(y)dy). (111)

ij=1

‘V—%(x)Rg(vf’)E

To estimate E;, we use that for any C,xj,x2,...,x4 > 0, it holds that
In* (Z;’zl x,-) < d+ Y% InTx and Int(Cx) < Int C + Int x. (The proofs
of these results follow from induction and case analysis.) Therefore, from (111) we
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see that

E; =exp []{2 In™ (‘V_é(x)RzQp(Vp)E

)]

d
< exp ][lnJr C Z x| Vi (“inj) dx
0

i,j=1
d
< exp ][ d(1+In*C)+ > In*[|x|7 (ag fij)] { dx
0 i j=1
d
Sampan |1 eXP{][an+ [1xI77 (ag £ij)] dx}

i,j=1

: 1
—Vij P + Yij L\
S-EleXp{][an[ixl (@) dx-+ f, W [l (aa ) J ax.

l

where in the last line we used that InT x = Inx + Int x~!. Since In* x < x, then
][ n* [1x" (ag i)~ dx = ][ X% (ag fij) " dx :][ fij)dx (ag fiy) " = 1.
(@) (9] (9]

On the other hand, since y;; = %(yi + yj) > —% > —n, then fi; € Ax. An
application of the reverse Jensen inequality (see [30, p. 525]) shows that there exists
C(n, p, vij) > 0 so that for any Q € R", it holds that

exp {][ In [|x|_y"/ (an,-j)] dx} = (anij) exp I:][ In (|x|_7”'/') dx] <C.
0 0
It follows that E1 S(g.n,p,4,7) 1, which, when combined with (107) and (108) shows
that (106) holds, as required. O

Next we prove Proposition 3, which states that if V € ND and there exists a

1
constant By > 0 so that (detaQ V) 4 < By JCQ (det Vﬁ for every cube Q € R”, then
V e OC.

Proof of Proposition 3 Observe that if {e j}‘f‘:1 is any orthonormal basis of C¢, then

’v%(x) (agv)™" V%(x)’ - ‘vi(x) (agV) ™2 [Vi(x) (agV) 5]

1

2} VI(x) (agV)

1
2

2

(agV) 2 V() (agV)

= ‘[Vi(x) (agV)

d
= Z<V(x) (agV) * 2, (agV)* é’,->.
=1
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Thus, we have

d

‘][ Vi(x) (agV)~ V2 (x)dx <(][ V(x)dx) (GQV)_égj’(aQV)_%Zj>5d
0 0

j=1
which implies that the largest eigenvalue of fQ V% (x) (aQ V) ! V% (x)dx is bounded
above by d for every cube O C R”.

Assume that V ¢ QC. Looking at (10), this means that there exists a sequence

—1
of cubes {Qx}52, € R” so that if we define Vi := ka V%(x) (ka V) V%(x)dx,
then each Vj has a smallest eigenvalue Ax 1 := A1 (V) with the property that Ay 1 — 0

ask — oo.Forj=1,...,d,let A j := A;(Vy), the jth eigenvalue of Vi, and note
that Ay ; < dfor j =2,...,d. Then

inf {det [][ V%(x) (aQV)_1 Vi(x)dx:| 0 C ]R”} < inf {det V; : k € N}
0

d
—inf { [Taej:keNt < inf[kk’ldd_l ke N] —0.
j=1
(112)
However, for any Q € R”, an application of (14) applied to V2 (aQ V)_l V2
shows that

1 d
det [][ Vi) (agv)™ Vé(x)dx] > {][ [det (Vi) (agv) ™' Vi) | dx}
0 0
d
= (7[ [detV(x)]fzdx) det (aQV)*1 > B;d,
)

where we have applied the assumption in the last inequality. This contradicts (112),
and therefore gives the desired conclusion. O
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