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Abstract
As a result of our study of the hyperbolicity of the moduli space of polarized manifold,
we give a general big Picard theorem for a holomorphic curve on a log-smooth pair
(X , D) such thatW = X \D admits a Finsler pseudometric that is strongly negatively
curved when pulled back to the curve. We show, by some refinements of the classical
Viehweg–Zuo construction, that this latter condition holds for the base space W , if
nonsingular, of any algebraic family of polarized complex projective manifolds with
semi-ample canonical bundles whose induced moduli map φ to the moduli space of
such manifolds is generically finite and any φ-horizontal holomorphic curve in W .
This yields the big Picard theorem for any holomorphic curves in the base spaceU of
such an algebraic family by allowing this base space to be singular but with generically
finite moduli map. An immediate and useful corollary is that any holomorphic map
from an algebraic variety to such a base space U must be algebraic, i.e., the corre-
sponding holomorphic family must be algebraic. We also show the related algebraic

B Kang Zuo
zuok@uni-mainz.de

Ya Deng
deng@ihes.fr

Steven Lu
lu.steven@uqam.ca

Ruiran Sun
ruiran.sun@mcgill.ca

1 Institut des Hautes Études Scientifiques, Université Paris-Saclay, 35 route de Chartres, 91440
Bures-sur-Yvette, France

2 Département de Mathématiques, Universitédu Québec à Montréal, Case postale 8888, succursale
centre-ville, Montreal, Québec H3C 3P8, Canada

3 Department of Mathematics & Statistics, McGill University, Burnside Hall, 805 Sherbrooke
Street West, Montreal, Quebec H3A 0B9, Canada

4 School of Mathematics and Statistics, Wuhan University, Luojiashan, Wuchang, Wuhan 430072,
Hubei, People’s Republic of China

5 Institut für Mathematik, Universität Mainz, 55099 Mainz, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-023-02779-4&domain=pdf


Y. Deng et al.

hyperbolicity property of such a base space U , which generalizes previous Arakelov
inequalities and weak boundedness results for moduli stacks and offers, in addition to
the Picard theorem above, another evidence in favor of the hyperbolic embeddability
of such an U .

Mathematics Subject Classification 32Q45 · 32A22 · 53C60
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1 Introduction

The paper of Viehweg and Zuo [49] pioneered the investigation of the analytic hyper-
bolicity of the moduli space of polarized varieties by showing that, for any algebraic
family of canonically polarized complex manifolds with quasi-finite moduli map to
the moduli space, the base space U of the family is Brody hyperbolic, i.e., U admits
no non-constant holomorphic maps from C.1

For compact spaces, Brody hyperbolicity is equivalent by Brody’s reparametriza-
tion theorem to being hyperbolic in the sense of Kobayashi. However, most parameter
spaces considered above are not compact. In the non-compact setting, the strongest
notion of complex hyperbolicity (short of the existence of a hyperbolic compactifica-

1 The term “moduli space” used above should more properly be written as “moduli stack” though we will
not belabour this point in this paper. Hence hyperbolicity of moduli space is taken to mean in the sense of
stacks.
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tion) is that of hyperbolic embeddability, meaning that there exists a compactification
in which the space hyperbolically embeds.2

This paper offers two evidences of this hyperbolic embeddability in the moduli
setting: we obtain for the said parameter spaces that (I) the Picard extension property
of holomorphic maps from curves to them holds, generalizing the Brody hyperbolicity
result of [49], and that (II) they are algebraically hyperbolic in the sense of Demailly,
see Definition 1.5. In fact, we generalize these results, after a suitable recall and
recasting of the construction in the above paper ofViehweg andZuo, from the setting of
canonically polarizedmanifolds to the setting ofmanifolds with semi-ample canonical
bundle. It is fitting to remark here that hyperbolic embeddability generalizesKobayashi
hyperbolicity and that property (I) and (II) are implied by it though the converses
corresponding to (I) and (II) are open, see e.g. [30, II§2], [27, Theorem (6.3.7)] and
[37].

More precisely, consider an algebraic family of polarized complex projective man-
ifolds with semi-ample canonical divisors and Hilbert polynomial h given by an
equivalence class of pairs ( f : V → U ,L) ∈ Mh(U ), i.e. f is a proper and smooth
morphism between algebraic varieties V and U with a relatively ample line bundle L
over V having h as the fibrewiseHilbert polynomial (modulo the obvious equivalence).
Suppose that the induced map from the parameter spaceU to the coarse moduli space
Mh , also called the moduli map, is quasi-finite. Let Ū be an algebraic compactification
of U , C ⊂ C̄ an open subset of a complex curve with codimension one complement
and γ : C → U a holomorphic map. We show that γ has a holomorphic extension
γ̄ : C̄ → Ū and, as a well-known consequence, that the result generalizes to the case
when C is replaced by a complex space and holomorphic by the word meromorphic,
obtaining in particular that γ is algebraic when C is an algebraic variety. Our proof
of this proceeds in two major steps, comprising the two major parts of substance of
the paper, the first extracts the necessary curvature conditions via a detailed recall
and some necessary extensions of the Viehweg–Zuo paper [49] while the second uses
Nevanlinna theory to prove our key technical theorem of independent interest, Theo-
rem A. We offer two proofs of this technical theorem. The first offers a simplification
and strengthening of some techniques developed by and used in Griffiths-King [19]
to generalize a classical big Picard theorem in the setting of moduli spaces and fol-
lows a metric approach to Nevanlinna theory as espoused by Chern and Ahlfors. The
second is inspired by the proof of the fundamental vanishing theorem of Siu-Yeung
and Demailly ([11, 43]) for jet-differentials on holomorphic curves and proceeds by
a reduction to the logarithmic derivative lemma. As a natural consequence of the first
part of the paper, we show in the last section the algebraically hyperbolicity of U ,
generalizing previous Arakelov inequalities and weak boundedness results of moduli
stacks (see Remark 5.1).

The Shafarevich problem from the 60’s and its higher dimensional generalizations
(cf. [29, 46] for an introduction), motivated the very extensive modern study of the

2 Hyperbolic embedding characterizes the Bailey–Borel compactifications of the moduli spaces of abelian
varieties, a classical theorem of Borel. Since we are mainly interested in the more algebraic aspects of
hyperbolicity in this paper, we do not give the definition of Kobayashi hyperbolicity, nor of hyperbolic
embedding. The interested reader should consult standard references such as the books of Lang and of
Kobayashi on complex hyperbolic geometry.
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hyperbolicity properties of the moduli space of polarized manifolds with many major
advances. We will only touch upon a couple of the recent advances that generalize the
result of [49] below.

By refining a part of Viehweg–Zuo’s construction of negatively curved pseudomet-
rics, Popa–Taji–Wu in [38] proved the Brody hyperbolicity for the case of the moduli
space of polarized manifold with nef and big canonical bundle. In [44] and [45], To
and Yeung proved that the moduli spaces of canonically polarized and Ricci flat man-
ifolds are Kobayashi hyperbolic by constructing negatively curved Finsler metrics on
U . This is stronger than Brody hyperbolicity for a noncompact U , but still weaker
than having a hyperbolic embedding (cf. [30, Chapter 2] or [27, Chapter 3, §3]).
More recently, the first named author in [12] proved in addition that the moduli space
of polarized varieties whose canonical divisors are semi ample and big is Kobayashi
hyperbolic and that the moduli space without the bigness condition is Brody hyper-
bolic, both of which were conjectured by Viehweg and the fourth named author ([49,
Question 0.2]). This was done via negatively curved Finsler metrics onU obtained by
adding, at the end of the Viehweg–Zuo construction of Finsler pseudo-metrics in [49],
two natural ingredients in the hyperbolic context: a pointwise argument plus a convex
linear combination of components of the Viehweg–Zuo Finsler pseudo-metrics. This
allowed the Viehweg–Zuo construction to extend to the semi-ample case and and is
adapted here for some necessary improvements of the Viehweg–Zuo construction in
this paper.

Another important motivation for our current investigation comes from the fact
that many well-studied moduli spaces such as the moduli space of abelian varieties
suitably rigidified and that of marked K3 surfaces are actually locally symmetric of
non-compact type and such locally symmetric varieties admit the famous Baily–Borel
compactifications (cf. [1]). Borel showed in [4] that, given such a locally symmetric
variety, this compactification yields a hyperbolic embedding of the variety. In partic-
ular, the big Picard theorem holds on these moduli spaces.

Theorem 1.1 (Borel) Let X be a torsion-free arithmetic quotient of a bounded sym-
metric domain. Denote by X∗ the Baily-Borel compactification of X. Then X is
hyperbolically embedded in X∗.

For moduli spaces of canonically polarized varieties, the KSBA compactifications
(see the survey [28]) are natural candidates for the hyperbolic embeddings and Borel’s
theorem leads us to pose:

Question 1.2 Let f̄ : X → Y be a KSBA stable family over a projective variety
Y . Denote by U ⊂ Y the open subset over which f is smooth. Is U hyperbolically
embedded in Y?

Also inspired by this theorem, Javanpeykar and Kucharczyk in [24] formulated the
following:

Definition 1.3 A finite type scheme X over C is Borel hyperbolic if, for every finite
type reduced scheme S over C, any holomorphic map from S to X is algebraic.

It is easy to see that Borel hyperbolicity implies Brody hyperbolicity and that
hyperbolic embeddability implies Borel hyperbolicity. As observed in [19], Borel
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hyperbolicity can be verified by restricting to the case S is one dimensional. The
following is a natural question in our context:

Question 1.4 Is every Brody hyperbolic moduli space of polarized manifolds Borel
hyperbolic?

Very recently, Bakker, Brunebarbe and Tsimerman have obtained some sweeping
partial results in this direction, see [2, Corollary 7.1]. For a family with local Torelli
injectivity, i.e. the period map is quasi-finite, the Borel hyperbolicity is a direct corol-
lary of a conjecture of Griffiths. More precisely, let B be an algebraic variety with
a polarized variation of Hodge structures (PVHS) and � : B → �\D the induced
period map. Here D is the period domain (namely the classifying space of Hodge
structures with fixed Hodge numbers) and � is the monodromy group of the PVHS
on B. In [23], Griffiths conjectured that the image �(B) ⊂ �\D is quasi-projective.
Note that the quotient space �\D is in general a highly transcendental object. The
paper [2] confirms this conjecture assuming that � is arithmetic as a corollary of its
deep results on the o-minimal GAGA theorem. We remark that this conjecture with
arbitrary monodromy group � was established when dim�(B) = 1 (cf. [6, 42]) and
dim B = 2 (cf. [18, Theorem 1.2.6]).

Nevertheless, families of polarized varieties where the local Torelli injectivity fails
abounds.

1.1 The big Picard theorem and Borel hyperbolicity

Let f̄ : X → Y be an analytic family of projective manifolds over a projective base Y
with degeneration locus S ⊂ Y . Hence f̄ is a compactification of the smooth family
f : V → U with U = Y \ S and V = f̄ −1(U ). Griffiths introduced in [20–22]
the notion of polarized variation of Hodge structure on U = Y \ S. Schmid, Deligne
and Cattani–Kaplan–Schmid ([8, 9, 39]) have studied the asymptotic behavior of the
Hodge structures and the Hodge metric near the degeneration locus. Their results are
of fundamental importance in the study of the geometry of families. Kawamata and
Viehweg’s positivity theorems on the direct image f∗ ων

X/Y of powers of the relative
dualizing sheaf are examples that play crucial roles in the investigation of the Iitaka
conjecture. Another is Viehweg’s work on constructing the moduli space of varieties
with semi-ample dualizing sheaves.

As mentioned, the Torelli-type theorem fails in general for such a family. As a
substitute, Viehweg and the fourth named author constructed in [49] a non-trivial
comparison map between the usual Kodaira–Spencer map and the Kodaira–Spencer
map on the Hodge bundles associated to some new family built from certain cyclic
coverings of X . Consequently, using the semi-negativity of the kernels of the Kodaira–
Spencer maps on the Hodge bundles (proven in [51]) and the positivity results on
the direct image sheaves, the maximal non-zero iteration of Kodaira–Spencer map
yields the “bigness" of the so-called Viehweg–Zuo subsheaves in symmetric powers
of �1

Y (log S). These subsheaves give rise analytically to negatively curved complex
Finsler pseudometrics on U = Y \ S.
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In the paper [19], Griffiths and King studied the higher dimensional generalization
of value distribution theory. With it, they obtained a Nevanlinna-theoretic proof of
Borel’s theorem via negative curvature (cf. [19, Corollary (9.22)]). Our negatively
curved Finsler pseudometrics led us naturally to this approach of Griffiths-King in
generalizing Borel’s theorem, which we manage to simplify and strengthen to yield
the first proof of the key technical theorem of this paper below.

Theorem A (Criterion for the big Picard theorem) Let X be a projective manifold, ω a
Kähler metric on X and D a simple normal crossing divisor on X. Let γ : D

∗ → X \D
be a holomorphic map. Assume that there is a Finsler pseudometric h on TX (−log D)

(in the sense ofDefinition 2.14) such that |γ ′(z)|2h �≡ 0 and that the following inequality
holds in the sense of currents

ddclog |γ ′(z)|2h ≥ γ ∗ω. (1.1)

Then γ extends to a holomorphic map γ̄ : D → X.

We give a second perhaps more modern proof of this theorem in Sect. 4, see also the
remark just before that section. We mention that this criterion is also used by the first
named author in [16] to prove the big Picard theorem for varieties having a quasi-finite
period map. In addition, although the Nevanlinna theoretic tools involved are quite
standard, our approaches in the two proofs of Theorem A are not and have further
implications beyond the criterion proper. In particular, our proof can be modified to
yield Corollary C below, omitted for simplicity as it follows from a deep theorem of
Siu (the Borel hyperbolicity part there being a simple corollary of Theorem B).

As indicated above, the construction of [49] generalizes from the case of canonically
polarized manifolds to the case of manifolds with semiample canonical bundle. This
includes recent key observations from the paper of Popa–Taji–Wu [38] and from the
first named author in [12] and is worked out in Sect. 2, where we construct the required
metric h over a desingularization of the base space of the family, i.e., one that satisfies
(1.1) of Theorem A. This yields our main theorem.

Theorem B [Big Picard theorem] Let ( f : V → U ,L) ∈ Mh(U ) be an algebraic
family of polarized projective manifolds of Hilbert polynomial h and semi-ample
canonical bundle. Suppose that the moduli map U → Mh from U to the coarse
moduli space Mh is quasi-finite. Given a completion Ū of U, any holomorphic map
γ : D

∗ → U extends to a holomorphic map γ̄ : D → Ū . In particular, any
holomorphic map from an algebraic curve T to U is necessarily algebraic.

Corollary C Let ( f : V → U ,L) ∈ Mh(U ) be as given in Theorem B. Let Y be a
projective compactification of U. Then any holomorphic map γ : D

p × (D∗)q → U
extends to a meromorphic map γ : D

p+q ��� Y . In particular, U is Borel hyperbolic:
Any holomorphic map from an algebraic variety T to U is necessarily algebraic;
I.e., over an algebraic variety, any such holomorphic family of polarized projective
manifolds is actually algebraic.

Proof of part 1 of Corollary C By [41, Theorem 1], any meromorphic map to a com-
pact Kähler manifold extends across a subvariety of codimension 2. As U embeds in
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CPN , ∃ N , it suffices to prove the extension property for a holomorphic map of the
form γ : D

r × D
∗ → U . Now, the key result [41, p.442, (∗)] of Siu states that γ

extends to a meromorphic map γ : D
r+1 ��� Y if for all z in a subset ofD

r of nonzero
Lebesque measure, the holomorphic map γ |{z}×D∗ : {z} × D

∗ → U can be extended
to a holomorphic map from {z} × D to Y . But this latter follows from Theorem B.

Note that, by the first part of TheoremB, respectively that of Corollary C, the holomor-
phic map γ : T → U extends to a meromorphic map between any of their projective
compactifications, which is thus a rational map by Chow’s theorem. The last parts of
Theorem B and Corollary C follow.

In fact Theorem B can be modified to a Lang conjecture type statement: for a
family of polarized manifolds f : V → U with maximal variation in moduli, i.e.
with generically finite moduli map, there is a proper subvariety of the base U so that
any punctured disk whose image is not contained in this proper subvariety satisfies
the big Picard theorem. See Remark 3.5 for details.

1.2 Algebraic hyperbolicity

Algebraic hyperbolicity for a compact complex manifold X was introduced by
Demailly in [10, Definition 2.2]. It is shown in [10, Theorem 2.1] that X is alge-
braic hyperbolic if it is Kobayashi hyperbolic. The notion of algebraic hyperbolicity
was generalized to the case of smooth log-pairs (X , D) by Chen [7]. It naturally gen-
eralizes further to the case of arbitrary singular pairs of (reduced) projective varieties:

Definition 1.5 (Algebraic hyperbolicity) Let X be a projective variety and 	 an alge-
braic subset. For a reduced irreducible curve C ⊂ X with C �⊂ 	 and ν : C̃ → C
its normalization, let iX (C,	) be the number of points in ν−1(	). The pair (X ,	)

is algebraically hyperbolic if there is a Kähler metric ω on X such that, for all curves
C ⊂ X as above,

2g(C̃) − 2 + i(C,	) ≥ degωC :=
∫
C

ω. (1.2)

It is easily seen, just as the fore-mentioned observation by Demailly in the case
	 = ∅, that if X\	 is hyperbolically embedded into X , the pair (X ,	) is algebraically
hyperbolic (c.f. [37]).

Note that 2g(C̃)− 2+ i(C,	) depends only on the complement X \	. Hence the
above notion of hyperbolicity also makes sense for quasi-projective varieties: we say
that a quasi-projective varietyU is algebraically hyperbolic if it is birational to Y \ D
for a smooth log pair (Y , D) with a Kähler metric ω on Y satisfying the inequality
(1.2) for all curves C ⊂ Y such that C \ D is finite over U .

The last main theorem in this paper is the algebraic hyperbolicity of the moduli
spaces considered.

Theorem D (Algebraic hyperbolicity) Let ( f : V → U ,L) ∈ Mh(U ) be a polarized
family as that given in Theorem B. Then the base U is algebraically hyperbolic.
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1.3 Outline

In Sect. 2, we explain in some detail the construction of Viehweg and the fourth
named author in [48, 49] with some necessary additions in our more general setting.
In Sects. 3 and 4, we give two distinct Nevanlinna theoretic proofs of Theorems A
and B, the first being self-contained and based on the method of metric and curvature
while the second is based on the lemma on logarithmic derivatives. Sect. 5 proves our
theorem on algebraic hyperbolicity.

1.4 Notation

In general we follow the notations of [48, 49] on the construction of Higgs bundles.
Let u,v be real non-negative valued functions on a set S. We write u � v if there exists
a constant c > 0 such that u(s) ≥ c · v(s) for all s ∈ S.

2 Recollections on the Viehweg–Zuo construction

In [48, 49], Viehweg and the fourth named author constructed two graded logarith-
mic Higgs bundles for any smooth family of projective manifolds f0 : V → U in
order to prove the hyperbolicity of the base U . We recall the construction with some
simplifications and extensions.

We first note that f0 is of maximal variation if Var( f0) = dim Y , cf. [25, Section 1],
where Var( f0) is the dimension of the image of the moduli map. Therefore, if the base
U of the original family is not smooth,which is the case considered inSect. 1 in general,
we can always pull back the family by a desingularization of the base to one of smooth
base with maximal variation. Since all the arguments from Viehweg–Zuo allow for
such birational modifications, we assume from now on unless stated otherwise that
the base U of our family is non-singular, relaxing the quasi-finite hypothesis to that
of maximal variation. We also assume, replacing U when necessary by the Zariski
closure of the holomorphic curveC , that the holomorphic curveC under consideration
is Zariski dense inU . Our proof of TheoremB then proceeds without loss of generality
(see Remark 3.1).

2.1 Cyclic covering and the comparisonmap

Let f : V → U be a smooth algebraic family of polarized projective manifolds with
semi-ample canonical bundles and with U nonsingular. Then there is a partial good
compactification f̄ : X → Y of the this family, meaning by definition that:

1) X and Y are quasi-projective manifolds, and U ⊂ Y .
2) S := Y \U and 	 := ( f̄ ∗S)red are normal crossing divisors.
3) f̄ is a log smooth projective morphism between the log pairs (X ,	) and (Y , S),

and f̄ −1(U ) → U coincides with the original family V → U .
4) Y has a non-singular projective compactification Ȳ such that Ȳ \ U is a normal

crossing divisor and codim(Ȳ \ Y ) ≥ 2.
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We fix such a compactification and adopt the notations as given in this definition.
The strategy of Viehweg and Zuo [48, 49] is to exploit the Kawamata-Viehweg

positivity result of the direct image sheaves, which they used to first construct cyclic
coverings over the total space X that are natural with respect to the family. This
construction is accomplished through:

Theorem 2.1 [ [49, Corollary 4.3] or [48, Proposition 3.9]] Denote by L :=
�n

X/Y (log	) the sheaf of top relative log differential forms (n is the relative

dimension ). Suppose that f = f̄ |U is of maximal variation. Then there exists an
ample line bundle A on Ȳ and an integer ν � 1 such that Lν ⊗ f ∗A−ν is globally
generated over V0 := f −1(U0), where U0 is some open dense subset of U.

It follows that the invertible sheaf Lν ⊗ f ∗A−ν has plenty of nontrivial sections for
ν large. A cyclic covering of X is thus obtained by taking the ν-th roots of such a
section s. We choose Z to be a desingularization of this cyclic covering and denote the
induced morphisms by ψ : Z → X and g : Z → Y . The new family g has in general
a larger discriminant locus than S given by S ∪ T where T is the discriminant of the
zero divisor H = (s) over Y . Thus the restriction of g over Y \ (S ∪ T ) is smooth,
which we denote by g0 : Z0 → U0.

2.1.1 The Higgs bundle coming from the variation of Hodge structures

Consider the VHS onU0 induced by the local system V0 =Rng0∗CZ0 . By blowing up
the closure S̄ + T̄ of S + T in Ȳ if necessary and replacing S̄ + T̄ by its preimage,
we assume that S̄ + T̄ is a simple normal crossing divisor. Deligne’s quasi-canonical
extension (cf. [39, §4]) then applies and we get a locally free sheaf V on Ȳ extending
V0 with the Gauss-Manin connection:

∇ : V → V ⊗ �1
Ȳ
(log (S̄ + T̄ )).

By the nilpotent orbit theorem (in [39] and [8]), the Hodge filtration {F p
0 } of V0

extends as a filtration by subbundles {F p} of V so that the associated Hodge bundle
E := GrF•V is locally free on Ȳ . The induced Higgs map

θ := GrF•∇ : E → E ⊗ �1
Ȳ
(log (S̄ + T̄ ))

has logarithmic poles along S̄ + T̄ . One can write the Hodge bundle summands as
higher direct image sheaves of log forms if the divisor S̄ + T̄ is smooth (cf. [50]).
More precisely, we have

E p,q |Y0 ∼= Rqg∗�p
Z/Y (log�)|Y0

for Y0 := Y \ Sing(S̄ + T̄ ) and (q := n − p), where � := g−1(S ∪ T ) (� is assumed
to be normal crossing after birational modification of Z ). Clearly, codim(Ȳ \Y0) ≥ 2.
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Remark 2.2 In the construction above we have already changed the birational model
of U since we have to blow up T inside U . As mentioned, this is allowed in our
application.

2.1.2 The Higgs bundle coming from deformation theory

The Hodge bundle (E, θ) so constructed above has in general extra, artificially intro-
duced logarithmic poles along T ∩U . To study the hyperbolicity of the original base
space U , we shall construct a Higgs bundle directly from the original family of max-
imal variation, whose Higgs map has logarithmic poles only along the boundary S.
Recall that we have assumed that U is smooth.

As in [49] and [48], we shall use the tautological short exact sequences

0 → f ∗�1
Y (log S) ⊗ �

p−1
X/Y (log	) → gr(�

p
X (log	)) → �

p
X/Y (log	) → 0

(2.1)

where

gr(�
p
X (log	)) := �

p
X (log	)/ f ∗�2

Y (log S) ⊗ �
p−2
X/Y (log	).

Note that the short exact sequence can be established only when f : (X ,	) → (Y , S)

is log smooth. Denote by L = �n
X/Y (log	) as before. We define on Y the reflexive

Higgs sheaf

F p,q
0 := Rq f∗(�p

X/Y (log	) ⊗ L−1)/torsion

together with the edge morphisms

τ
p,q
0 : F p,q

0 → F p−1,q+1
0 ⊗ �1

Y (log S)

induced by the exact sequence (2.1) tensored with L−1.

Remark 2.3 It is easy to see that τ n,0
0 |U is nothing but the Kodaira–Spencer map of the

family. So the Higgs maps τ
p,q
0 can be regarded as the generalized Kodaira–Spencer

maps.

We denote by F p,q the reflexive hull of F p,q
0 on Ȳ . The Higgs maps τ

p,q
0 extends

automatically since codim(Ȳ \ Y ) ≥ 2. So we get the extended reflexive Higgs sheaf
(F, τ ), defined on Ȳ .

2.1.3 The comparison maps

In [48, 49] Viehweg and Zuo constructed the following comparison maps ρ p,q , which
connect (F, τ ) and (E, θ).
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Lemma 2.4 Using the same notations as introduced above, let

ι : �1
Ȳ
(log S̄) → �1

Ȳ
(log (S̄ + T̄ ))

be the natural inclusion. Then there exists morphisms ρ p,q : F p,q → A−1 ⊗ E p,q

such that the following diagram commutes.

F p,q τ p,q

ρ p,q

F p−1,q+1 ⊗ �1
Ȳ
(log S̄)

ρ p−1,q+1⊗ι

A−1 ⊗ E p,q id⊗θ p,q

A−1 ⊗ E p−1,q+1 ⊗ �1
Ȳ
(log (S̄ + T̄ ))

(2.2)

Remark 2.5 A priori, our comparison map ρ p,q is defined only on Y0. That is, it is a
morphism between F p,q |Y0 ∼= Rq f∗(�p

X/Y (log	) ⊗L−1)|Y0/torsion and E p,q |Y0 ∼=
Rqg∗�p

Z/Y (log�)|Y0 . But as F p,q is reflexive, E p,q locally free and codim(Ȳ\Y0) ≥
2, each comparison map ρ p,q extends to Ȳ .

2.1.4 Injectivity of the comparison map

In order to use the comparison map to construct a negatively curved Finsler pseudo-
metric, one needs some pointwise injectivity of the comparison map

(ρn−1,1 ⊗ ι) ◦ τ n,0 : OȲ = Fn,0 → A−1 ⊗ En−1,1 ⊗ �1
Ȳ
(log S̄)

on U \ T as maps between vector bundles, as well as that of the induced map

τ 1 : TȲ (−log S̄) → A−1 ⊗ En−1,1. (2.3)

Denote by ρ
p,q
y the restriction of ρ p,q |U\T , as a map between vector bundles, at a

point y ∈ U\T . In [49], the following fact on the injectivity of ρ
p,q
y are obtained:

1) ρ
n,0
y is injective for every y ∈ U \ T .

2) If the family is canonically polarized, then ρ
p,q
y is an injection for each (p, q)with

p + q = n and for every y ∈ U \ T .

We remark that the injectivity of ρ p,q for all p, q follows from the Kodaira–
Akizuki–Nakano vanishing theorem, but that the injectivity ofρn−1,1 (as first observed
in [38]) only needs the Bogomolov-Sommese vanishing theorem. As the latter van-
ishing theorem holds for projective maniofolds of general type, and as the canonical
bundle of such a manifold is semiample if and only if it is nef, one obtains:

Theorem 2.6 Let ( f : V → U ,L) ∈ Mh(U ) be a maximally varying family of
polarized projective manifolds with nef and big canonical bundle. Then (ρn−1,1 ⊗ ι)◦
τ n,0|U\T , as a map of vector bundles, is injective at every point in U \ T where the
Kodaira–Spencer map is injective.
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In our general setting of families of polarized manifold with semi-ample canonical
divisors, we have the following key theorem ofViehweg–Zuo (cf. [48, Corollary 4.5]).

Theorem 2.7 (Viehweg–Zuo)Let ( f : V → U ,L) ∈ Mh(U ) be the polarized family
as that in Theorem B. Then the map (ρn−1,1 ⊗ ι) ◦ τ n,0 along any algebraic curve
γ : C → U does not vanish.

We briefly outline the proof of this theorem, which used a global argument relying on
the Griffiths curvature computation for Hodgemetrics: Suppose that (ρn−1,1⊗ι)◦τ n,0

vanishes along γ (C). Then the imageOY = Fn,0 ⊂ En,0⊗ A−1 lies in Ker(θn−1,1)⊗
A−1. Note that Ker(θn−1,1) is semi-negatively curved for the degenerated Hodge
metric (cf. [51]), which essentially follows from the Griffiths curvature computation.
By taking integration of the curvature form of Hodge metric restricted to OY one
shows that the trivial line bundle is strictly negative because of the curvature decreasing
property for holomorphic subbundles. This is of course a contradiction.

Very recently, the first named author observed that the argument of Viehweg–Zuo
can be made pointwise, combining with a usual maximal principle argument. His
argument runs as follows: instead of taking integration of the curvature form of Hodge
metric, he evaluated the curvature form on a special point y0 in U , where the norm
function of the constant section ofOY with respect to the Hodge metric of En,0⊗ A−1

restricted to OY via ρn,0 : OY ↪→ En,0 ⊗ A−1 takes the maximal value, the metric
being in fact a natural modification by Popa–Taji–Wu in [38] of the Viehweg–Zuo’s
metric on U to remove its singularities on T . This implies that the curvature form on
OY is semi-positive at this point. On the other hand, if themap (ρn−1,1⊗ι)◦τ n,0 at this
specific point evaluated in some tangent vector vanishes, then the Griffiths curvature
formula and the strict negativity of A−1 implies that the the curvature form on OY at
y0 is strictly negative along this tangent vector, which gives us a contradiction. We
thus have:

Theorem 2.8 ([13]) Let f : V → U be a family of polarized projective manifolds with
semi-ample canonical sheaf over a nonsingular quasiprojective varietyU.Assume that
f is of maximal variation. Then the map τ 1 defined in (2.3) is a vector bundle injection
on a Zariski open subset U ◦ of U. In particular, the analytic version of Theorem 2.7
holds true; I.e., the map (ρn−1,1 ⊗ ι) ◦ τ n,0 does not vanish identically along any
holomorphic curve γ : C → U with γ (C) ∩U ◦ �= ∅.

Conjecture 2.9 With the assumption as that in Theorem 2.8, the map (ρn−1,1⊗ι)◦τ n,0

is a vector bundle injection over the open subset of U with quasi-finite moduli map.

Conjecture 2.9 has been verified for such a family withmembers of Kodaira dimension
one in a joint paper of the third and fourth named authors with Xin Lu [31].

2.2 Iteration of generalized Kodaira–Spencer maps

We iterate the Higgs maps to get

τ n−q+1,q−1 ◦ · · · ◦ τ n,0 : Fn,0 → Fn−q,q ⊗
q⊗

�1
Ȳ
(log S̄).
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Since the Higgs field τ satisfies τ ∧ τ = 0, this iterated composition factors through
the map

τ q : Fn,0 → Fn−q,q ⊗ Symq �1
Ȳ
(log S̄).

As OȲ is a subsheaf of Fn,0, the following composition of maps makes sense

Symq TȲ (−log S̄)
⊂

Fn,0 ⊗ Symq TȲ (−log S̄)
τq⊗id

Fn−q,q ⊗ Symq �1
Ȳ
(log S̄) ⊗ Symq TȲ (−log S̄)

id⊗<,>

Fn−q,q .

We will still denote this map as τ q by abuse of notation.
Composing this τ q with the comparison map ρn−q,q , we get the iterated Kodaira–

Spencer map

Symq TȲ (−log S̄)
τq−→ Fn−q,q ρn−q,q

−−−−→ A−1 ⊗ En−q,q . (2.4)

2.2.1 Maximal non-zero iteration

We define the maximal non-zero iteration of Kodaira–Spencer map to be the the m-th
iterated Kodaira–Spencer map with ρn−m,m ◦ τm(Symm TȲ (−log S̄)) �= 0 and with
m being the largest number m f satisfying this property, if it exists. More precisely,

Symq TȲ (−log S̄)
ρn−m,m◦τm �=0

=0

A−1 ⊗ En−m,m

id⊗θn−m,m

A−1 ⊗ En−m−1,m+1 ⊗ �1
Ȳ
(log (S̄ + T̄ )).

Note that {0} �= Im(ρn−m,m ◦ τm) ⊂ A−1 ⊗ Ker(θn−m,m). We call this number m f

the maximal length of iteration or the maximal iteration length.

Lemma 2.10 Keeping the assumptions as 2.8, we have that ρn−1,1 ◦ τ 1 is injective at
the generic point of U, evaluated at each nonzero tangent vector.

Proof This follows from Theorem 2.7 when the canonical divisor of a general fiber of
the family is semi-ample and big and from Theorem 2.8 in general. ��
Corollary 2.11 Non-zero such iteration onY existswithmaximal iteration lengthm f ≤
n.

Proof ρn−1,1 ◦ τ 1 is non-zero by Lemma 2.10. The upper bound of m follows from
θ0,n = 0. ��
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2.2.2 Maximal non-zero iteration of Kodaira–Spencer map along an analytic curve

Let V → U be the smooth family as that in Theorem 2.8. In our application we
only need to consider an analytic map γ from a complex analytic curve C to the base
manifold U so that γ (C) ∩ U ◦ �= ∅, where U ◦ is the dense Zariski open set of U in
Theorem 2.8. All the Higgs bundles can be pulled back to C , as well as the iteration
process. We define the composition

τ p,q
γ : γ ∗F p,q γ ∗τ p,q

−−−−→ γ ∗F p−1,q+1 ⊗ γ ∗�1
Ȳ
(log S̄)

id⊗dγ−−−→ γ ∗F p−1,q+1 ⊗ �1
C

as the Higgs map along γ . We define θγ similarly. Then (γ ∗F, τγ ) and (γ ∗E, θγ ) are
holomorphic Higgs bundles on the curve C . The iterated Kodaira–Spencer maps on
C are also defined similarly:

T⊗q
C

τ
q
γ−→ γ ∗Fn−q,q γ ∗ρn−q,q

−−−−−→ γ ∗A−1 ⊗ γ ∗En−q,q .

Corollary 2.12 Non-zero iteration of suchmaps along γ exists. I.e., it has lengthm′ ≥1.

Proof Since one can always replace the baseU by the Zariski closure of the image of
γ : C → U and desingularize it, we may and do assume that γ (C) ⊂ U is Zariski
dense. Then from Lemma 2.10 we know that ρn−1,1 ◦τ 1 is injective at all the points of
γ (C) contained in a Zariski open subset of U , evaluated at all the tangent directions
at those points. This implies that at least γ ∗(ρn−1,1) ◦ τ 1γ (TC ) is non-zero. ��

By its definition, the maximal non-zero iteration of Kodaira–Spencer map along γ

of lengthm′ has the properties: γ ∗(ρn−m′,m′ ◦ τm
′

γ )(T⊗m′
C ) �= 0 and Im(γ ∗(ρn−m′,m′ ◦

τm
′

γ )) ⊂ γ ∗A−1 ⊗ Ker(θγ ). These properties are crucial for creating a negatively
curved Finsler pseudometric along γ in Sect. 2.3.

Remark 2.13 One should be warned that the maximal length of iteration along γ could
be shorter than the maximal length of iteration of the original family. This is because

the iterated Kodaira–Spencer maps Symq TȲ (−log S̄)
ρn−q,q◦τq−−−−−−→ A−1 ⊗ En−q,q with

q > 1 are not injective in general.

2.3 The Finsler (pseudo)metric

Definition 2.14 (Finsler metric) Let E be a holomorphic vector bundle on a complex
manifold X . A Finsler pseudometric on E is a continuous function h : E →[0,+∞[
such that

h(av) = |a|h(v)

for any a ∈ C and v ∈ E . We call h a Finsler metric if it is nondegenerate, i.e, if
h(v) = 0 only when v = 0.
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As in [49], we construct a Finsler pseudometric via the maximal iterated Kodaira–
Spencer map

Symm TȲ (−log S̄)
ρn−m,m◦τm−−−−−−→ A−1 ⊗ En−m,m . (2.5)

It is given as follows. Consider gA−1 ⊗ ghod on A−1 ⊗ En−m,m , where gA is the
Fubini-Study metric of the ample line bundle A and ghod is the Hodge metric on the
Hodge bundle E . Pulling it back via ρn−m,m ◦ τm and taking them-th root, we get our
desired Finsler pseudometric on TȲ (−log S̄).

We use the notation Palg(TȲ (−log S̄)∨) to denote the projective log tangent bundle
of (Ȳ , S̄), and use O

Palg(TȲ (−log S̄)∨)(−1) to denote the tautological line bundle. Then

any Finsler (pseudo)metric h on TȲ (−log S̄) is equivalent to a (semi)norm on the
tautological line bundle O

Palg(TȲ (−log S̄)∨)(−1), which we will denote as | · |h .
Now we consider a holomorphic map γ : C → U = Ȳ\S̄ from a Riemann surface

(for instance, C = D
∗ or the analytification of some smooth quasi-projective curve)

to the base U . Then the tangent map of γ induces a holomorphic map from C to
Palg(TȲ (−log S̄)∨), which we will denote as Pγ :

Palg(TȲ (−log S̄)∨)

C
γ

Pγ

Ȳ .

Moreover, the tangent map dγ : TC → γ ∗TȲ (−log S̄) naturally lifts to

TC → (Pγ )∗O
Palg(TȲ (−log S̄)∨)(−1),

which we denote as Pγ ′.
Therefore, one can use the map Pγ ′ to pull back the (semi)norm | · |h on

O
Palg(TȲ (−log S̄)∨)(−1) and obtain a (semi)norm on TC . We will use the notation

(Pγ ′)−1(| · |h ◦ γ ∗) to denote it.

2.3.1 Modification along the boundary

In fact, Viehweg and the fourth named author used some modified version of the
Finsler pseudometric described above in order to have the right kind of curvature
property. This method of modifying metrics on the log-tangent bundle appeared first
in the second named author’s thesis on extending meromorphic maps [33].

Firstwe construct an auxiliary function associated to the boundary divisor S̄. Denote
by S̄1, . . . , S̄p the components of S̄. Let Li be the line bundle with section si such that
S̄i = div(si ). Equip each Li with a smooth hermitian metric gi . Let li := −log |si |2gi
and lS := l1l2 · · · l p. Recall that the Hodge metric ghod has extra degeneration along T̄
since the Hodge bundle (E, θ) has logarithmic poles along T̄ . To control the asymp-
totic behaviour of ghod near T̄ , we construct another auxiliary function associated to
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the divisor T̄ , in a similar manner as for lS : Denote by T̄1, . . . , T̄q the non-singular
components of T̄ . Let L ′

i be the line bundlewith section ti such that T̄i = div(ti ). Equip
each L ′

i with a smooth hermitian metric g′
i . Let l

′
i := −log |ti |2g′

i
and lT := l ′1l ′2 · · · l ′q .

By compactness of Ȳ , one can rescale gi ’s and g′
i ’s to ensure that li ’s and l ′i ’s are

positive functions on Ȳ .
Now for each positive integer α, we define a new singular hermitian metric gα :=

gA · lαS · lαT on A.
Before entering our setting of the Viehweg–Zuo construction, we remark that by

suitably modifying a (pseudo)metric on the tautological line bundle of the projective
log tangent bundle satisfying the hypothesis of Theorem A, one can already obtain
the strongly negative curvature property that the holomorphic sectional curvature is
bounded from above by a negative constant.

Proposition 2.15 Let (X , D), γ : D
∗ → X \ D be the same as in Theorem A.

Let h be the Finsler pseudometric on TX (−log D) (or equivalently, a semi-norm on
OPalg(TX (−log D)∨)(−1)) satisfying the curvature inequality (1.1). Then there is aFinsler

pseudometric hα defined as h · l−α
D , where lD is the above auxiliary function of the

boundary divisor D and α is some positive integer, such that its holomorphic sectional
curvature is bounded from above by a negative constant, i.e.:

−ddclog |γ ′(z)|2hα
� −μα

where μα is the semi-positive (1, 1) form associated with the possibly degenerate
hermitian metric (Pγ ′)−1(| |hα◦γ∗)2 = ((Pγ ′)−1hα)|γ∗|2 on D

∗ and the inequality
above holds in the sense of currents.

Proof By direct computation we have

ddclog |γ ′(z)|2hα
= ddclog |γ ′(z)|2h−αγ ∗� ddcli

li
+

√−1
2π αγ ∗� ∂li∧∂li

l2i

≥ ddclog |γ ′(z)|2h−αγ ∗� ddcli
li

≥ γ ∗
(
ωFS − α�

ddcli
li

)
.

(2.6)

Here we have used the inequality ddclog |γ ′(z)|2h≥ γ ∗ωFS . By the same argument
in [33, §4, Proposition 1] (see also the proof of Lemma 7.1 in [49]), we can find a
positive definite Hermitian form ωα on TX (−log D) such that

ωFS − α�
ddcli
li

≥ l−2
D · ωα.

Note that l−2
D · ωα can also be regarded as a semi-norm on the dual of the tautological

line bundle. So if we choose α > 2, then l−2
D · ωα � hα by the compactness of X .

Therefore, we get the desired bound on the negative holomorphic sectional curvature
−ddclog |γ ′(z)|2hα

� −(Pγ ′)−1hα. ��
Now we come back to our setting of the Viehweg–Zuo construction. We first note

that
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Lemma 2.16 �(A, gα) dominates the Kähler form ωFS := �(A, gA) on Ȳ as cur-
rents.

Proof This follows from the computation

�(A, gα) = �(A, gA · lαS · lαT )

= �(A, gA) − α�
ddcli
li

− α�
ddcl ′i
l ′i

+
√−1

2π
α�

∂li ∧ ∂li
l2i

+
√−1

2π
α�

∂l ′i ∧ ∂l ′i
l ′2i

≥ �(A, gA) − α�
ddcli
li

− α�
ddcl ′i
l ′i

≥ c · �(A, gA),

which holds for some positive constant c. Note that one can rescale gi (respectively
g′
i ) to make li (respectively l ′i ) sufficiently large and leave ddcli (respectively ddcl ′i )

unchanged. ��
Remark 2.17 (1) The same computations as above show, by the hypothesis on h, that
ddclog | f ′(z)|2hα

dominates ddclog | f ′(z)|2h and f ∗ωFS as currents. (2) As we men-
tioned above, the second named author used this type of modification of metrics to
prove his extension theorem (cf. [33, §4]). Later, Viehweg and the fourth named author
applied it in [49, §7] to the Viehweg–Zuo metric of the family over U and obtained
the curvature estimate in Lemma 2.16. Since the family concerned in [49] is canoni-
cally polarized, one can move the branch divisor of the cyclic covering such that the
discriminant locus T intersects with the analytic curve γ (C) only at the smooth part
of T , and the intersection is transversal. Then, the monodromy of the pull-back local
system around γ ∗T is finite, and the pull-back Hodge metric γ ∗ghod is bounded (see
Sect. 5 of [49] for details). Popa–Taji–Wu also observed that a similar modification
along T̄ applies without violating the curvature estimate and chose α sufficiently large
such that the singular hermitian metric g−1

α ⊗ ghod is bounded (in fact continuous)
near T̄ without the canonically polarized hypothesis (cf. [38, §3.1]). This means that
the Finsler pseudometric on the log tangent bundle induced by g−1

α ⊗ghod is bounded,
which is important for our curvature estimate. Note that here we use the property that
the Hodge metrics have at most logarithmic growth along S̄ + T̄ , which is guaranteed
by the study of the higher dimensional asymptotic behavior of the Hodge metric in
[8].

2.3.2 The curvature inequalities

Nowwe consider an analytic map γ from a Riemann surfaceC (for instance,C = D
∗)

to the base manifold U . Let m be the maximal length of iteration along γ .
It is very natural to use the hermitian metric g−1

α ⊗ ghod and the iterated Kodaira–
Spencer map to construct a Finsler pseudometric Fα on TȲ (−log S̄):

|v|2Fα
:= |ρn−m,m ◦ τm(v⊗m)|2/m

g−1
α ⊗ghod

, for v ∈ TȲ (−log S̄). (2.7)
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We first state a curvature inequality associated to Fα which validates the hypothesis
in our criterion for big Picard theorem. This inequality is given, though not explicitly,
in [49, §7] and holds in general once we have Theorem 2.8 in hand. We repeat the
proof here only for consistency.

Theorem 2.18 (The curvature inequality) Let V → U be the same family as that in
Theorem 2.8. Fix the analytic map γ : C → U so that γ (C)∩U ◦ �= ∅whereU ◦ is the
dense Zariski open set of U in Theorem 2.8 so that τ 1|U◦ : TU◦ → A−1 ⊗ En−1,1|U◦
is injective. Then for any positive integer α, the Finsler (pseudo)metric Fα constructed
above satisfies the following curvature inequality

ddclog |γ ′(z)|2Fα
� γ ∗ωFS .

Proof By the Poincaré-Lelong formula, we know that ddclog |γ ′(z)|2Fα
=

−�(TC , (dγ )∗Fα) + R ≥ −�(TC , (dγ )∗Fα), where R is the ramification divisor
of γ . Denote by N the saturation of the image of dγ : TC → γ ∗TY (−log S). Then
we have the following curvature current estimate

�(TC , (dγ )∗Fα) ≤ �(N , γ ∗Fα) = 1

m
�(N⊗m, γ ∗F⊗m

α )

≤ 1

m
γ ∗�(SymmTY (−log S), (ρn−m,m ◦ τm)∗(g−1

α ⊗ ghod))|N⊗m

≤ 1

m
γ ∗�(A−1 ⊗ E, g−1

α ⊗ ghod)|γ ∗(ρn−m,m◦τm )(N⊗m )

= − 1

m
γ ∗�(A, gα) + 1

m
γ ∗�(E, ghod)|γ ∗A⊗γ ∗(ρn−m,m◦τm)(N⊗m ).

(2.8)

Recall thatm is themaximal length of the iteration along γ so that γ ∗A⊗γ ∗(ρn−m,m ◦
τm)(N⊗m) lies in the kernel of θγ . Therefore, as the last term in the estimate (2.8)
is semi-negative by the Griffiths curvature computation (see [39, Lemma (7.18)] or
[51]), we have as currents that

�(TC , (dγ )∗Fα) ≤ − 1

m
γ ∗�(A, gα).

Hence, we have

ddclog |γ ′(z)|2Fα
≥ 1

m
γ ∗�(A, gα) � γ ∗ωFS,

the last inequality being given by Lemma 2.16. ��
Using the curvature inequality in Theorem 2.18 and the estimate in Proposition 2.15,
Viehweg and the fourth named author showed that Fα is strongly negatively curved
along the analytic curve.
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Theorem 2.19 (Viehweg–Zuo) Keeping the assumptions on the family V → U the
same as in Theorem 2.8. Fix the analytic map γ : C → U. Then there exists a positive
integer α (depending on the maximal length along γ ) and cα > 0 (depending on α)
such that the curvature of Fα satisfies

KFα (v) ≤ −cα

for any nonzero tangent vector v := γ ′(z) of γ .

Remark 2.20 (1) Although C = C in [49], all the arguments above work for a general
Riemann surface C , except the final step in [49, Lemma 7.9] where the Ahlfors-
Schwarz lemma is used.

(2) Since (dγ )∗Fα is locally bounded on TC by construction, the inequality above
entails an inequality in the sense of currents just as that in Theorem 2.15.

Before entering the next section, we list two crucial points to the the arguments we
present there:

• logarithmic growth of the Hodge metric near boundary: In fact this is the crucial
point of Viehweg–Zuo’s curvature estimates; and those estimates are crucial to our
argument.

• local boundedness of the Finsler pseudometric: Used in defining the order function
T (r).

3 Big Picard theorem via negative curvature

In this section we shall prove Theorem A and Theorem B by using the negative
curvature method inspired by the argument in §9 of Griffiths-King [19]. Now, we
have two negatively curved Finsler pseudometrics: hα of Proposition 2.15 and Fα

of Theorem 2.19. Since hα shares the same curvature properties as Fα thanks to
Proposition 2.15, we only present the proof of Theorem B using Fα . The proof of
Theorem A using hα is verbatim.

We identify D
∗ with the inverted punctured unit disk D

◦ := {z ∈ C : |z| > 1}
in order to match the usual notations in Nevanlinna theory for entire curves. We set
Dr0,r := {r0 ≤ |z| < r} ⊂ C

∗ and Dr := {z ∈ C : |z| < r}. Denote by γ : D
◦ → U

the analytic map in question. Then we want to show that γ extends over the point at
infinity. We fix an r0 > 1 from now on.

By the constructions in Subsect. 2.3, there is a Finsler pseudometric Fα on
TY (−log S) (resp. hα on TX (−log D)), or equivalently a semi-norm on the tauto-
logical line bundleOPalg(TY (−log S)∨)(−1), with the following inequalities of curvature
currents

γ ∗ωFS � ddclog (Pγ ′)−1| |2Fα

ωγ � ddclog (Pγ ′)−1| |2Fα
,
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by Theorems 2.18 and 2.19 (or by the hypothesis in Theorem A and Proposition 2.15)
respectively. Here ωγ is the semi-positve (1,1)-form associated to the semi-norm
(Pγ ′)−1(| |Fα◦γ∗) on TD◦ .

Remark 3.1 For the construction of Fα , remember that one needs to change the bira-
tional model ofU in the construction of those two Higgs bundles (F, τ ) and (E, θ). In
our application, we can always assume that the image of γ is Zariski dense by replac-
ing Ȳ by the Zariski closure of γ (D◦). Then the analytic map lifts to γ̃ : D

◦ → Ũ ,
where Ũ is the new birational model for the new zariski closure base space. Clearly,
it suffices to prove the extension property for γ̃ .

By the above argument, the following Nevanlinna characteristic (or order) func-
tions

Tγ ∗ωFS (r) :=
∫ r

r0

dρ

ρ

∫
Dr0,ρ

γ ∗ωFS (3.1)

Tωγ (r) :=
∫ r

r0

dρ

ρ

∫
Dr0,ρ

ωγ

are both dominated (i.e. �) by

∫ r

r0

dρ

ρ

∫
Dr0,ρ

ddclog (Pγ ′)−1| |2Fα
≤

∫ r

r0

dρ

ρ

∫
Dr0,ρ

ddclog |γ ′(z)|2Fα
. (3.2)

It is elementary and classical that the asymptotic behavior of Tγ ∗ωFS (r) as r → ∞
characterizes whether γ can be extended over ∞ (see e.g. [11, 2.11. cas local] or [36,
Remark 4.7.4.(ii)]).

Lemma 3.2 Tγ ∗ωFS (r) = O(log r) if and only if γ can be extended holomorphically
over ∞. ��
We will need the following Green–Jensen formula for the punctured disk.

Proposition 3.3 (Green–Jensen formula on punctured disk) Let φ be function on D
◦

such that φ is differentiable outside a discrete set of points disjoint from Dr0 and dd
cφ

exists as a current. Then for 0 < r0 < r ,

∫ r

r0

dρ

ρ

∫
Dr0,ρ

ddcφ =
∫

∂Dr

φ · dclog |z|−
∫

∂Dr0

φ · dclog |z| − (log
r

r0
) ·

∫
∂Dr0

dcφ.

(3.3)

��
By using (3.3), we have for a fixed r0 > 1 that,

∫ r

r0

dρ

ρ

∫
Dr0,ρ

ddclog |γ ′(z)|2Fα
=

∫
∂Dr

log |γ ′(z)|2Fα
·dclog |z| + O(log r). (3.4)
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We define the first term of the right hand side of (3.4) to be the modified proximity
function mωγ (r).

Lemma 3.4 Denote by d
ds := r · d

dr the logarithmic derivative. Then

mωγ (r) ≤ log
d2Tωγ (r)

ds2
+ O(log r).

Proof Note that we can write ωγ = |γ ′(z)|2Fα
·
√−1
2π dz ∧ dz̄. Denote by ξ := |γ ′(z)|2Fα

for simplicity. By direct computation one finds that

1

r

d

dr

(
r
d

dr
Tωγ (r)

)
=

∫
∂Dr

ξ · dclog |z|.

Using the concavity of the logarithmic function, we obtain

mωγ (r) =
∫

∂Dr

log ξ · dclog |z| ≤ log
∫

∂Dr

ξ · dclog |z|

= log

{
1

r

d

dr

(
r
d

dr
Tωγ (r)

)}
= log

{
r−2 · d2

ds2
Tωγ (r)

}

= −2 log r + log
d2Tωγ (r)

ds2
.

��
Applying the Calculus lemma (cf. Lemma 4.4) twice, we obtain for some ε, δ > 0

that

d2Tωγ (r)

ds2
≤ r2+ε · Tωγ (r)2+δ ||,

where ||means that the inequality holds for r outside a set of finite Lebesque measure.
Thus

mωγ (r) ≤ (2 + δ) · log Tωγ (r) + O(log r) ||.

Combining (3.2) and (3.4), we get the inequalities

Tωγ (r) � mωγ (r) + O(log r) � log Tωγ (r) + O(log r) ||;
Tγ ∗ωFS (r) � mωγ (r) + O(log r) � log Tωγ (r) + O(log r) ||.

The first implies that Tωγ (r) = O(log r), which then combines with the second to
yield

Tγ ∗ωFS (r) = O(log r).
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By Lemma 3.2, γ extends holomorphically over infinity and completes our proof of
Theorem A.

Remark 3.5 One can see that the assumption on the family in TheoremBcan be relaxed
to a family of polarized manifolds with maximal variation of moduli if we require the
image of the holomorphic map γ : D

∗ → U to be not contained in a proper subvariety
of U . We choose such a family whose base is nonsingular and a proper subvariety Z
so that the map τ 1 defined in Subsect. 2.1.4 is injective outside Z . Since our γ (D∗),
being zariski dense, is not contained in Z , the arguments in Sects. 2 and 3 go through,
giving the extension of γ ; see out setup just before Sect. 2.1. This completes the proof
Theorem B.

Remark 3.6 It is a classical fact, up to adding the term O(log r), that the characteristic
function

T(Pγ ′)∗O(1) :=
∫ r

2

dρ

ρ

∫
D◦

ρ

ddclog (Pγ ′)−1| |2hα

is independent of a non-degenerate Finsler metric hα chosen on O(−1) =
OPalg(TY (−log S)∨)(−1). So the estimate above also gives us the so called tautologi-
cal inequality in our case in the form:

T(Pγ ′)∗O(1)(r) = O(log r). (3.5)

In fact, the tautological inequality was first established byMcQuillan for entire curves
and requires no hypothesis on curvature, albeit with extra terms on the right side of
(3.5). It generalizes easily to the case of punctured disks and we state a version where
the holomorphic curve lies outside the boundary divisor (cf. [47, §29], which has a
nice proof more amenable to arithmetic geometry).

Theorem 3.7 (Tautological Inequality for the punctured disk) Let X be a projective
manifold with a Fubini-Study metric ωFS and let D be a simple normal crossing
divisor on X. Let γ : D

◦ → X \ D be a holomorphic map. Then T(Pγ ′)∗O(1)(r) ≤
O(log+Tγ ∗ωFS (r)) + O(log r) ‖. ��

Our proof of Theorem A in the next section also proves this inequality, but more
geometrically. Note that Theorem A can be derived easily from this ineqality and
(3.5) by choosing a hermitian metric h dominating the possibly degenerate hα . (The
proximity function with respect to the former then dominates that of the latter and so,
up to an O(log r) term, so does the characteristic functions.)

4 Big Picard theorem via the lemma on the logarthmic derivative

In a similar vein as that in establishing the fundamental vanishing theorem for (symmet-
ric or jet) differentials, pioneered byGreen-Griffiths [17] and completed by Siu-Yeung
[43] and Demailly [11] via the logarithmic derivative lemma, we give another proof
of Theorem A in this section. Theorem B is then an immediate corollary given our
setup, as shown in Remark 3.5.
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4.1 Preliminary in Nevanlinna theory

Let (X , ω) be a compact Kähler manifold. Consider a holomorphic map γ : D
∗ → X .

We identify D
∗ with D

◦ := {z ∈ C; |z| > 1} via z �→ 1
z as before. We can extend γ

to a γ : D
∗ ∪ D

◦ → X by setting γ (z) = γ ( 1z ) for z ∈ D
◦.

Fix any r0 > 1. Recall that the characteristic function in (3.1) is defined by

Tγ ∗ω(r) :=
∫ r

r0

dρ

ρ

∫
Dr0,ρ

γ ∗ω.

Let us first state a couple of useful inequalities.

Lemma 4.1 Write log+x := max(log x, 0). Then

log+
(

N∑
i=1

xi

)
≤

N∑
i=1

log+xi + log N , log+
N∏
i=1

xi ≤
N∑
i=1

log+xi for xi ≥ 0.

(4.1)

��
The following lemma is well-known (see e.g. [11, Lemme 1.6]).

Lemma 4.2 Let X be a projective manifold equipped with a hermitian metric ω and
let u : X → P

1 be a rational function. Then for any holomorphic map γ : D
◦ → X,

one has

T(u◦γ )∗ωFS (r) ≤ CTγ ∗ω(r) + O(1) (4.2)

where ωFS is the Fubini-Study metric for P
1. ��

The following logarithmic derivative lemma for the punctured disk, see e.g. [35,
Lemma 2.12], is crucial in our proof.

Lemma 4.3 Let u : D
◦ → P

1 be any meromorphic function. Then we have

1

2π

∫ 2π

0
log+

∣∣∣∣∣
u(1)(reiθ )

u(reiθ )

∣∣∣∣∣ dθ ≤ C(log+Tu∗ωFS (r) + log r) ‖, (4.3)

for some constant C > 0 which does not depend on r. Here the symbol ‖ means that
the inequality holds outside a Borel subset of (r0,+∞) of finite Lebesgue measure. ��

We also need an elementary lemma (due to E. Borel), called the calculus lemma.

Lemma 4.4 Let φ(r) ≥ 0(r ≥ r0 ≥ 0) be a monotone increasing function. For every
δ > 0,

d

dr
φ(r) ≤ φ(r)1+δ ‖. (4.4)

��
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4.2 Criterion for big Picard theorem

Now we are ready to give a new proof of Theorem A.

Proof Via the isomorphism D
◦ ∼→ D

∗ by setting z �→ 1
z as before, we assume that

γ : D
∗ → X − D is a holomorphic map from D

◦ to X − D. We take a finite
affine covering {Uα}α∈I of X and rational functions (xα1, . . . , xαn) on X which are
holomorphic on Uα so that

dxα1 ∧ · · · ∧ dxαn �= 0 on Uα,

D ∩Uα = (xα,s(α)+1 · · · xαn = 0).

Hence

(eα1, . . . , eαn) :=
(

∂

∂xα1
, . . . ,

∂

∂xαs(α)

, xα,s(α)+1
∂

∂xα,s(α)+1
, . . . , xαn

∂

∂xαn

)
(4.5)

is a basis for TX (−log D)|Uα . Write

(γα1(z), . . . , γαn(z)) := (xα1 ◦ γ, . . . , xαn ◦ γ )

so that γα j : D
◦ → P

1 is a meromorphic function over D
◦ for any α and j . With

respect to the local trivialization of TX (−log D) induced by the basis (4.5), γ ′(z) can
be written as

γ ′(z) = γ ′
α1(z)eα1 + · · · + γ ′

αs(α)(z)eαs(α)

+ (log γα,s(α)+1)
′(z)eα,s(α)+1 + · · · + (log γαn)

′(z)eαn

over Uα . Let {ρα}α∈I be a partition of unity subordinated to {Uα}α∈I .
Since h is Finsler pseudometric for TX (−log D) which is continuous and locally

bounded from above by Definition 2.14, and I is a finite set, there is a constant C > 0
so that

ρα ◦ γ · |γ ′(z)|2h ≤ C

⎛
⎝s(α)∑

j=1

|γ ′
α j (z)|2 +

n∑
i=s(α)+1

|(log γαi )
′(z)|2

⎞
⎠ ∀z ∈ D

∗

(4.6)

for any α. Hence

Tγ ∗ω(r) :=
∫ r

r0

dρ

ρ

∫
Dr0,ρ

γ ∗ω
(1.1)≤

∫ r

r0

dρ

ρ

∫
Dr0,ρ

ddclog |γ ′|2h
(3.3)≤ 1

2π

∫ 2π

0
log |γ ′(reiθ )|hdθ + O(log r)
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≤ 1

2π

∫ 2π

0
log+ ∑

α

|ρα ◦ γ · γ ′(reiθ )|hdθ + O(log r)

(4.1)≤
∑
α

1

2π

∫ 2π

0
log+|ρα ◦ γ · γ ′(reiθ )|hdθ + O(log r)

(4.6)+(4.1)≤
∑
α

n∑
i=s(α)+1

1

2π

∫ 2π

0
log+|(log γαi )

′(reiθ )|dθ

+
∑
α

s(α)∑
j=1

1

2π

∫ 2π

0
log+|ρα ◦ γ · γ ′

α j (re
iθ )|dθ + O(log r)

(4.3)≤ C1

∑
α

n∑
i=s(α)+1

(
log+Tγαi ,ωFS (r) + log r

)

+
∑
α

s(α)∑
j=1

1

2π

∫ 2π

0
log+|γ ′

α j (re
iθ )|dθ + O(log r) ‖

(4.2)≤ C2(log
+Tγ ∗ω(r) + log r) +

∑
α

s(α)∑
j=1

1

2π

∫ 2π

0
log+|γ ′

α j (re
iθ )|dθ ‖.

(4.7)

Here C1 and C2 are two positive constants which do not depend on r . ��
Claim For any α ∈ I , any j ∈ {1, . . . , s(α)}, one has

1

2π

∫ 2π

0
log+|ρα ◦ γ · γ ′

α j (re
iθ )|dθ ≤ C3(log

+Tγ ∗ω(r) + log r) + O(1) ‖ (4.8)

for a positive constant C3 which does not depend on r.

Proof of Claim The proof of the claim is borrowed from [36, eq.(4.7.2)]. Pick C > 0
so that ρ2

α

√−1dxα j ∧ dx̄α j ≤ Cω. Write γ ∗ω := √−1B(t)dt ∧ dt̄ . Then

1

2π

∫ 2π

0
log+|ρα ◦ γ · γ ′

α j (re
iθ )|dθ = 1

4π

∫ 2π

0
log+(|ρ2

α ◦ γ | · |γ ′
α j (re

iθ )|2)dθ

≤ 1

4π

∫ 2π

0
log+B(reiθ )dθ + O(1) ≤ 1

4π

∫ 2π

0
log (1 + B(reiθ ))dθ + O(1)

≤ 1

2
log

(
1 + 1

2π

∫ 2π

0
B(reiθ )dθ

)
+ O(1)

= 1

2
log

(
1 + 1

2πr

d

dr

∫
Dr0,r

r Bdrdθ

)
+ O(1)

= 1

2
log

(
1 + 1

2πr

d

dr

∫
Dr0,r

γ ∗ω
)

+ O(1)
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(4.4)≤ 1

2
log

⎛
⎝1 + 1

2πr

(∫
Dr0,r

γ ∗ω
)1+δ

⎞
⎠ + O(1) ‖

= 1

2
log

(
1 + r δ

2π

(
d

dr
Tγ ∗ω(r)

)1+δ
)

+ O(1) ‖

(4.4)≤ 1

2
log

(
1 + r δ

2π

(
Tγ ∗ω(r)

)(1+δ)2
)

+ O(1) ‖
≤ 4log+Tγ ∗ω(r) + δlog r + O(1) ‖.

Here we pick 0 < δ < 1 and the last inequality follows. The claim is proved.

Putting (4.8) to (4.7), one obtains

Tγ ∗ω(r) ≤ C(log+Tγ ∗ω(r) + log r) + O(1) ‖
for some positive constant C . Hence Tγ ∗ω(r) = O(log r). We apply Lemma 3.2 to
conclude that γ extends to the ∞.

5 Algebraic hyperbolicity for moduli spaces of polarizedmanifolds

In this section we will prove the algebraic hyperbolicity of the moduli spaces stud-
ied above. The question was posed to the first named author by Erwan Rousseau in
February 2019 at the CIRM.

Proof of TheoremD Since the moduli map of the polarized family ( f : V → U ,L) ∈
Mh(U ) is quasi-finite, the family f is of maximal variation and we let U ◦ ⊂ U be
the Zariski open set given in Theorem 2.8. We first take a projective compactification
Z0 of the baseU and let D = Z0 −U . Let Z1, . . . , Zm be the irreducible components
of Z0 − U ◦ whose intersections with U are nonempty. Let μi : Xi → Zi be a
desingularization so that Di := μ−1

i (D) is of simple normal crossing. For eachUi :=
Xi − Di , as the moduli map of the new family ( fi : V ×U Ui → Ui ,L|V×UUi )

is generically finite, fi is also of maximal variation and so yields a Zariski open
subset U ◦

i ⊂ Ui by Theorem 2.8 that allows us to repeat for i ≥ 1 the construction.
Iterating using Theorem 2.8 and applying Theorem 2.18, we construct a set of log
pairs {(X j , Dj )} j=0,...,N with the following properties.

(1) There are morphisms μi : Xi → Z0 with μ−1
i (D) = Di , so that each μi : Xi →

μi (Xi ) is a birational morphism.
(2) There are smooth Finsler pseudometrics hi1, . . . , hin for TXi (−log Di ).
(3) μi |U◦

i
: U ◦

i → μi (U ◦
i ) is an isomorphism.

(4) There are smooth Kähler metrics ωi1, . . . , ωin on Xi such that for any curve
γ : C → Ui with C an open set of C and γ (C) ∩ U ◦

i �= 0, there exists some hi j
so that |γ ′(t)|2hi j �≡ 0, and

ddclog |γ ′|2hi j ≥ γ ∗ωi j . (5.1)

123



Picard theorems for moduli spaces of polarized varieties

(5) For any i ∈ {0, . . . , N }, either μi (Ui ) − μi (U ◦
i ) is zero dimensional, or there

exists I ⊂ {0, . . . , N } so that

μi (Ui ) − μi (U
◦
i ) ⊂ ∪ j∈Iμ j (X j )

For any irreducible and reduced curve C ⊂ Y with C �⊂ D. By the above construc-
tion, there is some log pair (Xi , Di ) so that C ⊂ μi (Xi ) and C ∩ μi (U ◦

i ) �= ∅. By
(3), C is not contained in the exceptional locus of μi , and let Ci ⊂ Xi be the strict
transform of C under μi . Denote by νi : C̃i → Ci ⊂ Xi the normalization of Ci , and
set Pi := (μi ◦ νi )

−1(D) = μ−1
i (Di ). Then one has

dνi : TC̃i
(−log Pi ) → ν∗

i TXi (−log Di ).

By (4), there is a Finsler pseudometric hi j for TXi (−log Di ) so that (5.1) holds. Con-
sider h̃i := ν∗

i hi j , which is a complex semi-norm over TC̃i
(−log Pi ). By (5.1), there

is a Kähler metric ωi j on Xi so that the curvature current satisfies

√−1

2π
�h̃−1

i
(KC̃i

(log Pi )) ≥ ν∗
i ωi j

Since μi ◦ νi : C̃i → C is the normalization of C , one has

2g(C̃i ) − 2 + i(C, D) =
∫
C̃i

√−1

2π
�h̃−1

i
(KC̃i

(log Pi )) ≥
∫
C̃i

ν∗
i ωi j

Fix a Kähler metric ωY on Y . Then there is a constant ε > 0 so that ωi j ≥ εμ∗
i ωY for

any i = 0, . . . , N and j = 1, . . . , n. We thus have

2g(C̃i ) − 2 + i(C, D) ≥ ε

∫
C̃i

μ∗
i ωY = ε degωY

C

This shows the algebraic hyperbolicity of the base U .

Remark 5.1 The algebraic hyperbolicity in Theorem D generalizes the Arakelov-type
inequalities in [34] by Möller, Viehweg and the fourth named author, as well as the
weak boundedness of moduli stacks of canonically polarized manifolds in [26] by
Kovács-Lieblich. In [34, Theorem 0.3], the authors obtained Arakelov-type inequali-
tieswith sharp bounds for semistable families of projectivemanifoldswith semi-ample
canonical sheaf over P

1. In [26, Definition 2.4], the authors introduced the notion of
weak boundedness for quasi-projective varieties (which is weaker than the notion of
algebraic hyperbolicity) and they proved that the moduli stacks of canonically polar-
ized manifolds are weakly bounded.
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