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Abstract

We show a new blow up criterion for regular solutions of the Navier—Stokes—Fourier
system in terms of uniform bounds on the density and integral bounds on the absolute
temperature. In comparison with the existing results, we remove the technical condi-
tions relating the values of the shear and bulk viscosity coefficients. The result can
be seen as a rigorous justification of Nash’s conjecture concerning the character of
possibly singularities in the equations of fluid dynamics.
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1 Introduction

As pointed out by Nash in his seminal paper [21], mathematical problems arising in
continuum fluid dynamics consist in vast majority of systems of parabolic/hyperbolic
nonlinear equations. Nash also realized that solvability of these problem is intimately
related to available a priori bounds. Standard examples among these models are the
Euler and Navier—Stokes equations describing the motion of an inviscid and viscous
fluid, respectively. In this paper, we focus on the Navier—Stokes—Fourier system gov-
erning the time evolution of a general compressible, heat conducting, and linearly
viscous fluid. Here again, it is Nash’s truly pioneering contribution [21, 22] that rep-
resents the very first step in understanding the well posedness of this problem, see
also [8]. Nash also makes a remarkable statement that might be interpreted as Nash'’s
conjecture, see [21]:

Probably one should first try to prove a conditional existence and uniqueness
theorem for flow equations. This should give existence, smoothness, and unique
continuation (in time) of flows, conditional on the non-appearance of certain
gross types of singularity, such as infinities of temperature or density.

The results of the present paper can be seen as the ultimate step in the proof of Nash’s
conjecture in the context of compressible, viscous Newtonian flows. It is interesting
to note that possible singularities must first appear at the level of thermodynamic
variables—the density and the temperature—and not for the fluid velocity as often
conjectured in the context of incompressible fluids, see e.g. Prodi [23], Serrin [24].
Moreover, in view of the recent results by Merle et al. [20] and Buckmaster et al. [3]
on blow up for the isentropic Navier—Stokes system, the regularity criterion proved
below seems sharp.

The time evolution of the density p = p(x,?), the (bulk) velocity u =
(u1,uz,u3)(x,t) and the total energy E = E(x, t) of a viscous, compressible, and
heat conducting fluid is governed by the following system of field equations:

pr + div(pu) =0,
(pu); + div(pu ® u) = div(7), (1.1)
(PE); +div(pEu) = div(Tu) — div(g).

For the sake of simplicity, we have deliberately ignored the effect of external
mechanical and heat sources.

For linearly viscous fluids, the Cauchy stress 7 is given by Newton’s rheological
law

T =pu(Vu+ (Vu)') + rdivulz — P13,
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where (Vu)’ denotes the transpose of the matrix Vu; I3 is a 3 x 3 unit matrix, and
P = P(p, 0) is the pressure determined in terms of the density p and the (absolute)
temperature 0 = 6 (x, t). Accordingly, the heat flux ¢ is given by Fourier’s law

qg = —kV0.

The shear viscosity coefficient i, the bulk viscosity coefficient A + %“, and the heat
conductivity coefficient x are supposed to be constant satisfying

2
w0, x+?“zo,;<>o. (1.2)

Finally, we write the total energy E as the sum of the kinetic and internal energy,

oy P
=e€ —_.
2

For definiteness, we consider Boyle’s law of a perfect gas,
P = pb.
Similarly, the internal energy is a linear function of the temperature,
e=C,0,

where C, is a positive constant representing the specific heat at constant volume.

There has been a long way in understanding the precise meaning of “certain gross
types of singularity” suggested in Nash’s seminal work. It turns out that the analysis
depends considerably on the type of physical domain © C R> occupied by the fluid.
There are essentially two types considered in the literature: (i) 2 = R> representing
a mathematical idealization of a fluid not influenced by the effects of the kinematic
boundary and complying with suitable far field conditions, (ii) a more realistic situation
€2 a bounded/exterior domain supplement with suitable boundary conditions.

e One of the first results due to Cho et al. [4] states a blow up criterion:

lim sup (||p||W1.sz1,q + ||u||D(1)) — o,
(AT

where the definition of the function space D(l) is given in “Notation” right before
Sect. 1.1. This and several other blow up criteria (see [14, 27] for instance), how-
ever, refer to possible gradient singularity and therefore remain far from the original
Nash statement.

e Fan et al. [9] obtained the following blowup criterion for the strong solution to
(1.1) in three dimensions:

lim sup (||9||L°°(0,1;L°°) + ”VM”LI(OJ;LOO)) = 0o0. (L.3)
tT*
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Obviously, a bound on the amplitude of the velocity gradient implies boundness
of the fluid density as well. The result is conditioned by a technical but physically
irrelevant restriction

T > A. (1.4)

It is worth-noting, however, that (1.4) is still compatible with Newton’s hypothesis
of vanishing bulk viscosity relevant to the monoatomic gas.

e Sunetal. [26] obtained a blow up criterion of strong solutions in terms of the density
and the temperature for the initial-boundary value problem in three dimensions,
where u|yn = 0 and %bg =0:

. 1
tim sup (10102 + lol~ore= + |- | ) =00, (15)

T L2(0,;1%)

still under the technical condition (1.4).

e The term [|1/p| L0, 1) has been removed from (1.5) by Wen and Zhu [29] for
the Cauchy problem with vanishing far field conditions 5 = § = 0 under even
more restrictive condition

3u > A.

The condition “7u > A” in the criterion (1.5) for the initial-boundary value prob-
lem and “3u > A” for the Cauchy problem used in [26] and [17, 29], respectively,
are crucial for the bound on fQ plul>*? dx with “c > 0" necessary for controlling
some super-critical nonlinear terms.

Our main goal in this work is to remove completely any technical assumption
relating the two viscosity coefficients and relax slightly the blow up conditions in
terms of the temperature. From this perspective, the result gives an ultimate affirmative
answer to Nash’s conjecture. Besides, it is interesting to note that the blow up results
obtained recently by Merle et al. [20] and Buckmaster et al. [3] in the context of
isentropic flows assert a simultaneous blow up of the density and the velocity in the
L°°-norm for the Cauchy problem with zero/positive far field density. As the isentropic
flow in the context of viscous fluids seems physically less realistic but still a widely
used approximation, the effect of temperature changes in possibly blow up mechanism
represents a challenging open problem.

Last but not least, removing the hypothesis on smallness of the bulk viscosity
coefficient is not only academic. As observed by Graves and Argrow [7](cf. also
Cramer [6]): “Several fluids, including common diatomic gases, are seen to have
bulk viscosities which are hundreds or thousands of times larger than their shear
viscosities.”

@ Springer



On Nash'’s conjecture for models of viscous, compressible...

In the context of smooth solutions considered in the present paper, system (1.1) can
be written in the form:

pr + V- (pu) =0,

oy + pu-Vu+VP(p,0) = uAu + (u + 2)Vdivu,

Cy (06; + pu - VO) + pdivu = % |Vu + (Vu) |* + A(divu)?
+Kk AG,

(1.6)

in 2 x (0, 00), where u, A, and « are constants satisfying (1.2). System (1.6) is
supplemented with the initial conditions:

(o, u, =0 = (po, uo, ), x €, (1.7)

and one of the following boundary/far field conditions:
e © C R3 is a bounded and smooth domain:

a6
ulpga =0, —| =0 fort>0, (1.8)
on a0

where n denotes the outer normal vector.
o O =R3:
(p,u,0) = (5,0,0), as |x| > oo, (1.9)

with constants p, 6 > 0;

Remark 1.1 Note that the above boundary conditions correspond to an energetically
closed fluid system, where the boundary of the physical space is both mechanically
and thermally insulated. This fact facilitates considerably the analysis, in particu-
lar obtaining the uniform bounds, performed below. Extension to more complicated
boundary conditions would definitely require a more elaborate treatment notably of
the estimates presented in Sect. 3 below.

Notation:

off:AfM.

e For 1 <[ < oo, we use the following notation for the standard Lebesgue and
Sobolev spaces:

L' =1/Q), D¢ = {u e Ll (@) IVEull, < oo},
whi — 1 pkl, gk — wk2, pk_ pk2,
1%:{ueL@uvmup<w,mm=0}

k
lull pra = IV ull i
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e For 3 x 3 matrices E = (E;;), F = (Fj;), we denote the scalar product of E with
F by

3
E:F= Z E;j Fij, |E|2=E CE, u®@u = (uiuj)3x3.
ij=1

o it =u;+u-Vu.

1.1 Main result

Before presenting our main result, we introduce the concept of strong solution to (1.6)
used throughout the paper.

Definition 1.2 (Strong solution) Given a time T > 0, a trio (p, u, 0) is called strong
solution to the Navier—Stokes—Fourier equations (1.6), (1.7), (1.9), or (1.6), (1.7) (1.8)
in Q x [0, T'] if:

p=0,p—peC(l0,TEWH@NH(Q), peC(I0,TT; L*(Q) N LI (),
,0 —8) e C([0, T1; D*(2) N DY) N L2(0, T; D*1()),
(s, 6) € L2(0, T; DE(Q)),  (/pur, /08r) € L=(0, T; LA()),

for some g € (3, 6], and (p, u, 6) satisfies (1.6) a.a. in 2 x (0, T'], together with the
associated initial and boundary conditions.

Initial data. In agreement with the regularity class specified in Definition 1.2, the
initial data satisfy pg > 0, pg — p € WH4(Q) N H'(Q) for some g € (3, 61, (uo, o —
6) € D*(Q) N D} (). In addition, we suppose polugl? + poldy — 01> € L (), and
that the following compatibility conditions:

:MAMO + (+ 1) Vdivig = VP (po, 00) = /Py81, (110)

KAy + 4 Vo + (Vu)|* + divug)> = /poga. x € Q

for some g; € LYXQ),i = 1,2. Finally, we require (i, 6p) to satisfy the relevant
boundary condition specified in (1.8) if €2 is bounded.

Remark 1.3 Under the above stated assumption on the initial data, the local existence of
strong solutions was obtained in [5, 31] except for the boundary condition % lag = 0.
However, it turns out that the local existence in this case can be established in a way
similar to [5, 31]. In particular, the strong solution always exists on a non—empty time
interval for the initial data belonging to the class specified above. Moreover, the life
span can be always extended beyond the existing one as long as uniform bounds are
available. Thus any strong solution is defined up a maximal existence time 7* > 0.

Now we are in a position to state our main result:
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Theorem 1.4 Let (p, u, 0) be a strong solution to the initial-boundary value problem
(1.6), (1.7), (1.8), or to the Cauchy problem (1.6), (1.7), (1.9) defined on a maximal
existence time interval [0, T™).

If T* < +o00, then

i sup (161, o spier) + 19 =By or@)) = (011D

foranyr € (%, oo] and s € [1, oo] satisfying % + % <2.

Remark 1.5 Apparently at odds with the basic physical principles, we do not require
the (absolute) temperature 6 to be strictly positive. Similarly, although the Navier—
Stokes—Fourier system is derived as a model of non—dilute fluids, we allow the density
to vanish at some parts of the physical space. From the pure analysis point of view,
however, omitting these physically grounded hypotheses we obtain a mathematically
stronger result. In addition, it is easy to see that positivity of both the density p and
the temperature 6 is inherited by any strong solution from the initial/boundary data.

Remark 1.6 In combination with a suitable weak—strong uniqueness result in the spirit
of [12], condition (1.11) can be interpreted as a regularity criterion for a weak or even
more general dissipative measure valued solution introduced in [2]. Note, however
that the existence of a weak solution for the present constitutive relations is a largely
open problem that persists even in the larger class of dissipative weak solutions due to
the lack of suitable a priori bounds notably on the entropy flux, although there have
been some known results on the global existence of weak solutions for the isentropic
flow, see for instance [10, 13, 19].

1.2 Main result and Nash’s conjecture

e In the particular case s = r = oo, Theorem 1.4 yields the no blow up criterion

lim sup ([lo(t, )llzoc@) + 107, )o@y < 00
tT*

that may be interpreted as an affirmative solution of Nash’s conjecture. In contrast
with all previously known results, the conclusion holds without any non—physical
restriction imposed on the viscosity coefficients.

e Theorem 1.4 provides a general criterion on the life span of strong solutions.
Specifically, if there exist r € (%, oo] and s € [1, oo] satisfying % + ; < 2 such
that

+ 16 =8| (1.12)

||p||L°° (0’[;[‘00(9)) LS (O,I;Lr(Q))

remains bounded for ¢+ T, then the life span of the strong solution can be

extended beyond 7. In fact, condition (1.12) has been verified for any positive T
in some special cases such as the Cauchy problem for vacuum solutions with small
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initial energy or small mass, giving rise to the global existence results obtained in
[16, 30]. However, validity of (1.12) for the initial-boundary value problem (i.e.
(1.8)) with the same smallness assumptions is not known.

e Hypothesis polug|> € L' () on boundedness of the initial kinetic energy is rele-
vant only for the Cauchy problem with strictly positive far field temperature § > 0
(see Lemma 4.3). If § = 0, this condition may be replaced by poluol* € L1 ().

e Theorem 1.4 also holds for classical solution in the sense introduced in [16, 30].
As we shall see, given the estimates in Sects. 3 and 4, the higher-order estimates
for the Cauchy problem can be obtained following step by step the arguments of
[16, 30]. For the initial-boundary value problem, one may use the decomposition
of velocity introduced in Sect. 3.

1.3 Main challenges and principal ideas
Main challenge

The main challenge here is to deduce sufficiently strong a priori bounds for a (hypo-
thetical) regular solution under the mere assumption that both the temperature and
and the density are bounded. This may be seen as a counterpart of Nash’s celebrated
conditional regularity statement L*° — C¢ in the context of parabolic equations.

The method originally used in [21] is nowadays known as Nash’s iteration. Nash
naturally conjectured that his new method (see [8] for Klainerman’s comments on
Nash’s work [21]) or some suitable extension, would apply to more complex systems
such as the Navier—Stokes equations in fluid dynamics. The problem turned out to be
more delicate, however, due to the limited applicability of De Giorgi—Nash—Moser
techniques to general systems of equations. In particular, the compressible Navier—
Stokes system is of mixed type of a transport and parabolic equations. In addition, strict
parabolicity of the momentum and internal energy equations may become degenerate
in the nearly vacuum state of very low density.

Main ideas

Let us explain the principal ideas of the proof of Theorem 1.4 that allow us to remove
the technical restrictions imposed on the viscosity coefficients omnipresent in the
existing literature.

On condition that the density and the temperature remain bounded, the higher order
a priori bounds depend in a crucial way on boundedness of the quantity fQ plu3te
for o > 0. In particular, this estimate is necessary to control certain super-critical
quantities arising in the convective terms. The problem is definitely more delicate
than for a simple parabolic equation. To understand the principal stumbling blocks
suppose, for a while, that the velocity solves a linear parabolic “system” of equations:
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fori = 1,2, 3. Multiplying on (3 4 o) |u|' ™ u;, u = (uy, uz, u3), we get

8(|M|3-"_(r) 340 140 2 140 2
= = uAGP) = G+ o)ulul 1 Vul — B+ o)1+ oulul [ Viul .

(1.13)

The desired L3 estimate can be derived by integrating (1.13) over  x (0, ¢) using
the boundary conditions, specifically,

/|u|3+"dx+Do=/ luo| > dx
Q Q

where ug(x) = u(x, 0) for x € Q and

t
D0=(3+G),u/ / |u|1+<’[|W|2+(1+a)|V|u|\2]dxdszo.
0 JQ

The problem becomes more difficult for the linear parabolic system

a .
% = uAu; + (u + 2)d;divu, (1.14)
where u = (u1,up,u3) and 9; = aix, and the viscosity coefficients satisfy (1.2).

Multiplying (1.14) by (3 + o)|u|' T u;, and integrating the result over Q x (0, 1), we
obtain

f|u|3+“dx+01=/ o>+ dx (1.15)
Q Q
where

t
Dlz(3+a)/ /|u|1+0[u|w|2+(x+u)|divu|2+(1+a)u|V|u||2]dxds

0 JQ

+(3+o)(1+o)(u+k)/ lu|®u - V|u| divu dx.
Q

Unlike Dy the integral D; may not be positive depending on the specific values of
the viscosity coefficients. The simplest solution is imposing the technical condition
7 > A. Accordingly, D; becomes non-negative and the desired L317 estimate of u
can be obtained.

The counterpart of (1.15) in the momentum equation reads

t
/,o|u|4dx+D1=/ p0|uo|4dx+4/ /div(|u|2u)deds (1.16)
Q Q 0 JQ

where we choose 0 = 1 for simplicity. To deduce from (1.16) the desired estimate
without imposing any extra restriction on the viscosity coefficients, it is crucial to
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control the divu-related terms in D, see Lemma 3.1. To achieve this, we introduce a
new quantity

Acc ~
plul*(@ — ),

plul* —

for o > 0. It turns out that the integral-in-space of the quantity ‘% olul?@ — 6)
satisfies a new inequality containing divu with an enhanced weight via a nonlinear
term containing velocity in the temperature equation, see Lemmas 3.2 and 3.3. Such a
combination produces the desired cancellation in the divu-related terms in D1 yielding
the estimate of fQ plul* dx without any technical restriction on p and A. To see this,
a series of new associated a priori estimates need to be derived, see Lemmas 3.4
and 3.5, and Corollary 3.6. In the case A < 0, D is non-negative, which can absorb
the corresponding terms on the right-hand side of (1.16) by virtue of Cauchy inequality.

2 Preliminaries

In this section, we recall some useful results used throughout the rest of the paper.

Lemma2.1 [18, 28] Let @ C RN (N = 2,3) be a bounded domain with piece-
wise smooth boundary. Then the following inequality is valid for every function
uewhr(Q):

1—
el () = Calllull 1) + ”VMl'[])iP(Q)”u”L,/O(tQ))’ 2.1

where a = (1/r' — 1/p"Y(1/r" — 1/p + 1/N)~L. If moreover, p < N, then p'
[r',pN/(N — p)] for ¥’ < pN/(N — p), and p' € [pN/(N — p),r'] for r' >
pN/(N — p).If p > N, then p' € [r, o) is arbitrary. The positive constant Cy in
inequality (2.1) depends on N, p, r’, a and the geometry of the domain Q.

Remark 2.2 The first term on the right-hand side of (2.1), specifically, |lu|l;1g), can

be omitted if u € Wé "P(Q). In this case, (2.1) is the well-known Gagliardo—Nirenberg
inequality.

Lemma2.3 [11] Let v € WY2(Q), and let p be a non-negative function such that
0<M§/,0dx, /,o”dxon,
Q Q

where Q C RY is a bounded domain for N > land y > 1.
Then there exists a constant ¢ depending solely on M, E such that

2
10122, < ¢(Eo. M) {nvxvuiz(m + (/ plol dx) } .
Q
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Remark 2.4 For the boundary condition (1.8), the solution in Theorem 1.4 satisfies the

mass conservation,
/p:/po:=M0>O. 2.2)

Thus under the conditions of Lemma 2.3, the following estimate can be obtained by
using the Holder inequality and (2.2):

10132, < €(Eo, M) (1901122, + / plufdx), 2.3)
Q

3 Initial-boundary value problem

Assume that T* < oo and that there exist constants r € (%, oo] and s € [1, 00]
satisfying

such that

+ 16 =8| <M* < o0 (3.1

”p”Loo (O‘T;LOO(Q)) L’ (O,T;Lr (Q)) -

for any T € (0,T7%*). Our aim is to show that under the assumption (3.1) and
the hypotheses of Theorem 1.4, there is a bound C > 0 depending only on
M*, pg, ug, 6y, , A, k, and T* such that

sp (ol + 1 Ol + oo + 1(/Pas, /PO 12)

0<t<T*

T*
+/0 (||<ut,9t)||i,l + ||<u,e)||€vz.q) dr < C. (3.2)

In view of the available local existence results specified in Remark 1.3, it is easy to
check (see for instance [27]) that (3.2) implies the strong solution can be extended
beyond T*, meaning T* is not the maximal existence time, which yields the desired
contradiction.

Throughout the rest of the paper, we denote by C a generic constant that may depend
on M*, po, ug, 6o, 0, 9, W, A, k, and T* but independent of the other parameters €, €|
and § specified below. The symbols C¢ and Cs denote constants that may depend on
€ and 4§, respectively.
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As in [25], we denote w = u — h, where h is the unique solution to

Lh=VP, inQx(,T],
hlasg =0, if € is bounded,
h—0 as |x| » oo, if Q@ =R3,

where Lh = uAh + (u + A)Vdivh. Then we have

Lw=pu, in Qx(0,T],
wlag =0, if € is bounded,
w—0 as |x| — oo, if Q@ =NR3,

where it = u; + u - Vu. Relations (3.3) and (3.4) yield

IVhllLr < CIIP(p,6) — P(f,0)|Lr,
V2h|[r < C|IVP]|Lr,

and
IV2wl|Lr < Cllpitll L,

for any p € (1, 00), see for instance [1, 25].

(3.3)

(34)

(3.5)

(3.6)

The following results (Lemmas 3.1-3.4) hold for both the initial-boundary value
problem and the Cauchy problem. For the sake of simplicity, we include the constants
p and 0 even in the context of the initial-boundary value problem. These results will

be used in the next section.

Lemma 3.1 Under the hypotheses of Theorem 1.4 and (3.1), there holds

d 4 29,12
— \Y
dt/,O|M| +Mf|u| [Vl

2r
sCe/|ve|2+cE (ne—euzc--* +1)/(p|9—9|2+p|u|4>

+C/|Vu|2+C/|divu|2|u|2,

3.7

forany p,0 > 0 and any sufficiently small € > 0 specified in (3.12) below.

Proof Multiplying (1.6), by 4|u|?u, and integrating by parts over €2, we have

d .
Efplul“+/4lu\2<M|W|2+(K+M)|dlvu|2+2ulvlullz)

=4/div(|u|2u)P—8(u+k)/divu|u|u~V|u|

< C/p|9—§||u|2|Vu|+C§/p|u|2|Vu|+2u/|u|2|V|u||2+C/|divu|2|u|2
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< C/pzw—§|2|u|2+cfp2|u|4+cf|vu|2+2uf|u|2|vu\2
+2u/|u|2\V|u|\2+c/|divu|2|u|2. (3.8)

The fourth and the fifth term on the right-hand side of (3.8) can be absorbed by the
integrals on the left-hand side; whence we have

d 4 2 2 2

E/mm +2u/|ul (1vul + 1)
5C/p2|9—§|2|u|2+C/p2|u|4+C/|Vu|2+Cf|divu|2|u|2
< Cllp® = Dliwr IVp© = Ol 2 [Volul| 2 +C/p|u|4

+C/|Vu|2+C/|divu|2|u|2

= CI =0l IVP@ = O o +C1IO =6l

2112
Vol 2,
+c/p|u|“+c/|Vu|2+c/|divu|2|u|2, (3.9)

forr € (%, oo],! where we have used Holder inequality, Cauchy inequality and (3.1).
Using the standard interpolation inequality and (3.1), we have

IVPO =0 2 < IVo® = DIIVD0 = )l 5

—

< Cllv/p© = D)% 10 — 05"
wherea = 1 — % This yields

16 — 8l ll/0©O — 5)|Ii%

~ ~ ~ 2 ]7
< Cl6 =Bl VPO — D) 12%116 — 4150
- . 2 -
<elld =016+ Cello — 0127 1/p @ — D)2,
2r

< Ce(fp|9—é|2+/|ve|2)+ce||9—énz';* IvVp® — )7, (3.10)

for any € > 0, where we have used Young inequality, the Sobolev inequality, and (2.3)
if 2 is bounded.
Similarly to (3.10), for the second term on the right-hand side of (3.9), we have

16 —61lzr

2112
Vplul HL%

1 HererZTr1 =2ifr = oo.
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_3 3
NG AN
Lo
< Cello = 0177 | /plul? |22 + ell/plul?| 6

L2
< Cell§ = 1% | olul? |32 + eCluViul|3. (3.11)

<16 =8l

Substituting (3.10) and (3.11) into (3.9), and choosing € small enough so that

€=

: (3.12)

al=

we get (3.7). The proof of Lemma 3.1 is complete. O

Lemma 3.2 Under the hypotheses of Theorem 1.4 and (3.1), we have, for any given
A >0,

%/|w+<w>’;2|u|2+%/(divu)2|u|2
< %fcvpmﬁ(e—é>+efp|ut|2+2(e+ace)/|u|2|W|2
+Ceca<||9—é||i’fi~* +1>/[p(9—é)2+p|u|“]
+c€/|v9|2+cf|w|2 (3.13)

forany $,0 > 0, any small § > 0, and € > 0 specified in (3.26) below.

Proof Multiplying (1.6)3 by |u|?, and integrating the resulting equation over Q, we
have

%/|w+(vu)’|2|u|2+A/(divu)2|u|2

=Cv/p|u|29,+CU/,o|u|2u-V9+/p9divu|u|2—K/A9|u|2

=L+ L+ 151+ 14 (3.14)

For I, we have

I =C 200 4y - 4 200 _ Gy _ 2.0 _¢@
1=Cy [ plul™® = 0) = | Coplul™(® —0) Colplul1:(0 —6). (3.15)

For I, using integration by parts we have

L= f Coplul’u-V(©O —6) = —fc,,(e — )V - [plul*ul. (3.16)
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On Nash'’s conjecture for models of viscous, compressible...

For I3, using Cauchy inequality and (3.1) we have
I =/p(9—é)divu|u|2+é/pdivu|u|2
Sef(divu)2|u|2+C€/p2(9 —é)2|u|2+6/p|u|4+cf|Vu|2, (3.17)

where the second term on the right-hand side of (3.17) is estimated by virtue of (3.9),
(3.10) and (3.11) as follows:

/p2<9 — ) ul> < ClI6 — bl © —é)ni%

;5 2
+Cllo = Oller | Volul[| 2

sa<f|ve|2+/|u|2|wl|2)

2r
+ Cs <||9 —017 + 1) f [p(6 —6)* + plul*] (3.18)

for any § > 0. Hence (3.17) and (3.18) yield

Iz 56/(divu)2|u|2+8Ce(/|V9|2+/|u|2‘Vu|2)
2r

+CsCe (110 — 01177 + 1)/[,)(9 —é)2+p|u|4]+C/|w|2. (3.19)

For 14, using integration by parts and Cauchy inequality we have
Iy =2K/V9|M|V|u| 56/|u|2|Vu|2+C6/|V9|2. (3.20)
Inserting (3.15), (3.16), (3.19) and (3.20) in (3.14), we have
%/ |Vu+(Vu)’]z|u|2+A/(divu)2|u|2
s% Coplul*(© —6) —/Cv(e — Ol + V- (pluu)]
+e /(divu)2|u|2 + (e + 5c€)f |u|2|w|2 + C. / Vo>
+ c/ |Vu|?> + Cs5C. <||9 - é||§';2.713 + 1) f [p(6 —0)* + plul*].  (3.21)
Recalling that p; + V - (pu) = 0 we have
(olul)e + V- (oulul®) = p(ul*); + pu - V(|ul*)
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=2pu-u; +20Vu :uQu. (3.22)

Substituting (3.22) for the second term on the right-hand side of (3.21), and using
Cauchy inequality and (3.1), we have

—/cv(e—é)[<p|u|2>t+v<p|u|2u>]
=—2Cvf(6—§)pu~u,—2CU/(9—é)qu:u®u

se/p|u,|2+e/|u|2|w|2+cefp|u|2(9—é>2 (3.23)

for any € > 0.
As the density is bounded, relation (3.18) remains valid for p2 on the left-hand side
replaced by p, and (3.23) yields

—/cvw — D[ (plul®: + V- (plul*w)]

se/p|u,|2+<e+sc€)/|u|2|w|z+ace/|ve|2

2,

+ C.Cs <||9 -0l + 1> f [p(6 —6)* + plul*], (3.24)

for any €, 5 > 0.
Plugging (3.24) in (3.21) we have

& [ vt o+ [ a@iveier

<< c,,p|u|2(9—é)+e/p|u,|2+2(e+ace)/|u|2|w|2

~ 2r ~
+CeCs (ue —0177 + 1) / [0(6 — ) + plul*]
+e/|divu|2|u|2+C€/|V«9|2+C/|Vu|2. (3.25)
Choosing € > 01in (3.25) so that

€=

: (3.26)

N >

we get (3.13). The proof of Lemma 3.2 is complete. O

Lemma 3.3 Under the hypotheses of Theorem 1.4 and (3.1), the following estimates
hold depending on the sign of the bulk viscosity coefficient A.
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1. > 0:
/[ = € 2o~ + /|u\ \Vulz<Cef|V9|2+C/|Vu\2+6C/pluz\2
+Ce (w eu,ﬁ’r +1)f(p|9—é|2+p|u|4). (3.27)

for any p, 0 > 0, and any small € > 0 satisfying (3.12), (3.26) and (3.30) below;

2. A<0:
d 4 2 2 2 2
m olul™ +2u | |lu|*|Vu|* < C | |Vu|*+ Ce | |VO|

2 ~
+Ce (ne —0017 + 1) / [06 —6)* + plul], (3.28)

for any p, 0 > 0, and any small € > 0 satisfying (3.34) below.

Proof For any given A > 0, multiplying (3.13) by %, adding the resulting equation
to (3.7), and noticing that the last term on the right-hand side of (3.7) can be absorbed
by the second term on the left-hand side of the updated (3.13), we have

acc -
[olul* = “S= pluP© = )] + 1 [ 9P
2C[L

dr
/|w+<w>| Jue|? —i—C/(dlvu) Jue|?

<C6+C€ )f|ve|2 <C+—>/|Vu|2
4c 2, sC 219,12
+e T plugl + . (€+5Ce) lu]”|Vul
4C ~ 52 512 4
+(Cet CCs ) (10 =017 +1) [ (16 = 0P + plul®). (3.29)

In addition to the smallness assumptions (3.12) and (3.26), let € and & be chosen small
enough so that

8C
e = (3.30)

t\)_l“g

Then the fourth term on the right-hand side of (3.29) can be absorbed by the second
term on the left-hand side. As § in (3.30) depends, in fact, on €, the constant Cs can
be replaced by C.. This completes the proof of (3.27).

For any given A < 0, noticing that u + A = % + 2?“ + A > 0 and using (3.8) and
Cauchy inequality, we have

d .
. / pluf* +/4|u|2 (rIVal + 6.+ ) ldive? + 250191011
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=4/div(|u|2u)P —8(M+A)fdivu|u|u-vm|
< cfp|9| ul*|Vu| +4(M+>»)fldivulzlu|2
+4(M+A)/|M|Q|V|u|’2. (3.31)

The second term on the right-hand side of (3.31) can be absorbed by the left. Hence
we have

d 4 2 2 2 2
[ plut® + [ 1l [4u1Vul + 4G = DIVIP] = € [ plolulVul

Since A < 0, we have u© — A > p > 0 and thus

d 4 2 2 2
g7 | Pl A [l Vul = € [ pl0] |ul"[Vul. (3.32)

Applying Cauchy inequality to the term on the right-hand side of (3.32), and using
(3.1) and (3.18), we have

d
T plul* +4u/ |u|?|Vul*

< c/p|0—é||u|2|w| +Cé/p|u|2|Vul

< u/ |u|2|w|2+c/p2|9 —é|2|u|2+C/p|u|4 +C/ Vul?

SM/|M|Z|VM|2+C/|VM|2+CE (/|V9|2+/IMIZ|V|M||2>

2r

+ C. (||9 -0l + 1) f [p(6 —6)* + plul*], (3.33)

for any small € > 0. The second term on the left-hand side of (3.33) can absorb the
corresponding terms on the right-hand side provided € satisfies

Ce < u. (3.34)
Thus we have shown (3.28). O

Lemma 3.4 Under the hypotheses of Theorem 1.4 and (3.1), there holds

i/(cup|9—é|2+|p—ﬁ|2)+5/|ve|2
dr 2

2r
<c, (ne —a177 + 1) (IVals + 1v/5@ = D)2 + 1o - 512)
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+e1/p|uf|2+e1/|u|2|Vu|2+C||9—é||Lr, (3.35)

forany p,0 > 0, and any small €; > 0 satisfying (3.40) below.
Proof Multiplying (1.6)3 by 6 — 6, and integrating by parts over €2, we have

1d

o Copld — 02 +K/|V9|

—/,0(9 — 6)%divu —é/p(e — 6)divu
+f%|w+(w>’|2(9 —é)+/x(divu)2(9 —0)
scue—énunpw—é)n 2 IVl 2 /p|9—é|2

+ C/ [Vul> + C|l16 — 9~||Lr||VM||227r

scue—énunp(e—é)n x +CI0 - Ol Vul?

r—]

+c/p|9—é|2+c/|w| (3.36)

forr € (%, oo], where we have used (3.1), Holder inequality, and Cauchy inequality.
Recalling u = w + h, where h, w satisfy (3.3), (3.4), respectively, and using (3.5)
and (3.6), we have

IVl 2 < IVRI 2 + IVl 2
Lr—1 Lr=1 Lr-1
< Cllpt = 0l 2+ ClIVwll 2 + CIVwIIg I Vw] 3
=Clp@ =0l 2 +CloGp =PI 2,

+ CIVwll2 + CIIVwI,llpill 5 (3.37)

L2’

wherea = 1 — % In addition, we have the interpolation inequality in terms of Vw,

IVwll 2 < CIVwlz2 + CIVRIE Vw5

see Lemma 2.1 if Q is bounded, or Gagliardo—Nirenberg inequality if @ = R3.
Implementing (3.37) in (3.36), and using Young inequality and (3.1), we have

ifcv,o|9—(§|2+;c/|ve|2
dr

§C|I9—§||Lr||p(9—5)ll 2 +ClI6 — Ol 160 — &>

r—l

+CI0 =Bl IVwIEs + Cll6 — Bl Vw7 ol
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+C/p|9—5|2+C/|Vu|2
<ClO =0l lp® =) 5 +ClO—blrl6(p — DI o
Lr=1 Lr—T1
2 2 2 = 2
+€l/,0|’41| +61/|u| [Vul” + C¢ (IIO—GIIZT3 +1) IVwll;,

+c/p|9—é|2+c/|w|2, (3.38)

for any €1 > 0. In view of the fact that r € (%, o], we get rzTrl > 2. Then using (3.1)
and Young inequality, we obtain

|I§(p—ﬁ)lli% <C(lp—plj.+D. (3.39)
Inserting (3.10) and (3.39) in (3.38), and choosing €1 small enough such that

Cer < —, (3.40)

X

we have

dfc 0 é|2+Kf|ve|2
ar ) v 2

~ 2 ~ ~ -
= Co (16 = 01E7 + 1) IV/p@ = D)2, +Cllo =Bl (Ilo = 5112 +1)

L2
+elfp|ut|2+e1/|u|2|w|2+cel <||9—9||z:3 +1) Vw3,

+c/ |Vul?. (3.41)
Recalling that u = w + h again, and using (3.1) and (3.5), we have

Vw2 < IVull 2 + VA 2
< | Vullz2+ Cllp6 — 562
< |IVull2 + Cll/p©O — 02+ ClA o — )l 2. (3.42)

Inserting (3.42) in (3.41), and using Young inequality, we get

d/c 10 é|2+K/|ve|2
a ] v 2

- 2r - B
< Cq (ne —0177 + 1) (||W||iz + /PO — )72+ llp — p||iz)

+q/p|ut|2+61f|u|2|W|2+C||9—ény, (3.43)
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for any small €; > O satisfying (3.40).

The term ||p — ,5||Lz2 on the right-hand side of (3.43) does not appear if 6 =0,
see (3.39) and (3.42). To handle this term, we rewrite (1.6); as an equation for p — p,
which, multiplied by 2(p — p), yields

[(0 =], +V-[(p = B)*u] + (p — p)*divu + 25(p — p)divu = 0.  (3.44)

Integrating (3.44) over €2, and using (3.1) and Cauchy inequality, we have
d ~2 ~2 2
I lo—pI"<C [ |lp—pI"+C [ |Vul". (3.45)

Adding (3.45) to (3.43), we get (3.35). O

The next lemma is not valid if @ = R3 and § > 0. Here, we prove the result for a
bounded domain, while its counterpart for 2 = R3 will be shown in the next section.
The generic constant C in Lemma 3.5 may depend on the size of the domain.

Lemma3.5 Let @ C R3? be a bounded domain with smooth boundary. Under the
hypotheses of Theorem 1.4 and (3.1), we have

d
5/[/L(|Vu|2+|Vh|2)+(M+A)(|divu|2+ldivh|2)] +/p|ut|2

d s
=5 2(,09—,50)divu+C/|V9|2+C/|u|2|Vu|2+C[|Vu|2
~ 2r ~
+C(||9—0||z:3 + 1) </p<9 —e>2+fp|u|4>
- 2r
+c(lo - 0% +1). (3.46)

Proof Multiplying (1.6), by u,, and integrating by parts over €2, we have

, 1d ) e
plus? + = — (/L|Vu| +(M+A)|d1vu|)

2dt
:—/VP-u[—/pu~Vu~u,
2 2 1 2
== [ VPruw+C [ ulVul”+ 2 | plud”, (3.47)

where we have used Cauchy inequality and (3.1).
For the first term on the right-hand side of (3.47), replacing u by w + A and applying
(3.3) and (3.4), we have

d ~
- / VP u; = 5/(,09 — pO)divu — / Pdivu

2 This term is obviously bounded if the density and 2 are bounded, however, this may not be true on
unbounded domains.
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d ~

=3 /(,09 — pO)divu — / P divw — / P,divh
d ~

=3 /(,09 — pO)divu — / P divw + / Lh; - h
d x .

= — /(,00 — pO)divu — / P, divw

_m/[mvm + (1 + W)divh ], (3.48)

Recalling from (1.6)3 that

P =-V. [(pQ — 5é)u] — 5601 + Ci)divu — Ci (,09 — 5(5) divu
} ;

n / A . K
+ —Vu: [Vu+ (Vu)'| + —divu divu + — A0, (3.49)
C, C, C

v

we get

~ ~ 1
—f P divw = —/ [(,00 — ,59)14] - Vdivw + pf8(1 + —) / divu divw

C (,09 pe) diva divw — 2= / Vi - [Vi + (Vi) Idivw
v

- — / divu divu divw + — / Vo - Vdivw
Cy Cy
< C(Ilp® —Dull2 + 1o — Pull 2 + 1IVOl 2) [ Vdivw] .2

1 ~
+ C|\Vull ;2 IVw|| 2 + N /(p@ — p6)divu divw
v

A
_ K / Vi - [Vu + (Vi) divw — — / divu divu divw, (3.50)
C, Cy

where we have used integration by parts and Holder inequality. Note that we have
used the hypothesis that 6 satisfies the homogeneous Neumann boundary conditions.

For the last three terms on the right-hand side of (3.50), using integration by parts
and the momentum equation, we have

1 - A
= / (00 — pf)divu divw — = / Vu : [Vu + (V)] divw — = / divu divu divw
v

u-[uAu + (u+ A)Vdivu — VP]divw + — / Vu + (Vu) ] Vdivw ® u

Cv
+ — / u - Vdivw divu — — /(p@ — pB)u - Vdivw
= | pu udlvw—l—f/ [Vu+ (Vu)'] : Vdivw ® u
v

+ C—U / u - Vdivw divu — C—U /(p@ — p0)u - Vdivw,
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which combined with Cauchy inequality and (3.1), yields
l ~ . . l’l/ . 12 .
— | (p8 — pB)divudivw — — | Vu: [Vu + (Vu) ]dlvw
C, Cy
A . . .
- — / divu divu divw
Cy
1 . .
< §/p|ut|2+0/p|u|2|dww|2+ce/|u|2|W|2+e/ |Vdivw|?
+ Ce / 100 — p01%|ul?, (3.51)

for any € > 0.
By using (3.1), (3.6), (3.42) and Cauchy inequality, (3.50) and (3.51) yield

- / Pdivw < C(Ip0 — Oullz2 + (o — Pullz2 + 1V0112) [l pit 2
+C/|Vu|2+C/(p|9—67|2+|p—5|2)
+%/p|ut|2+ce/|u|2|w|2+ec/p|ut|2

+C/p|u|2|divw|2+cef|p0—p“é|2|u|2

< %/p|u,|2+c/|v9|2+cf|u|2|vM|2+C/p|u|2|divw|2

+C/p2|9—é|2|u|2+cn(p—ﬁ)uniz

+c/|Vu|2+c/(p|9—é|2+|p—ﬁ|2), (3.52)

for some small € > 0.
Noticing that w = u — h, and using Holder inequality, (3.1) and (3.5), we have

/p|u|2|divw|2

< C/,o|u|2|divu|2+C/p|u|2|divh|2

-
—1

sc/|u|2|w|2+cudivhnundivhuuzi Vol 2

EC/|u|2|VM|2+C||P9—ﬁéHUHP@—ﬁéHL% Vol 2
2 2 ~n ~ N2
scf|u| |Vul* +Cllp0 = pOllr 1106 = 01 2
~F 2
+Cllp0 = 30l |Volul || 2 o= Th +1h+ 11, (3.53)
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For 11>, we have
1L <Clp® =)l llpd — 5é||i% +Clb(o — D)l llpd — ﬁéni%
= Clo@ = Oliellp®@ =OI° o +Cllo® =Dl 160 = AI” 2
+Clbo — P)lerllp® — 5)||i% +Clbp — Pl (o — ﬁ)lli%-
(3.54)

As 2 is a bounded domain and the density is supposed to be bounded, we apply the
standard interpolation inequality and Young inequality to (3.54) to get
~ ~ 2.3 ~ 3 ~
11 = (10 =81l +1)llp® = D7 16 =Bl + Il = Bller +C
2r

<c [+ c(io - 8177 +1)1v50 - 1%,

Lo
+c(le—01%7 +1), (3.55)

where we have used (3.1), Sobolev inequality, and (2.3).
For 115, we have

113 (0@ = D)l + o — bl )

5 2(2-3 2
= pv — L" plul™| 2 plu
= (0@ = D)l +1) [Vl 1 volul

~ 237:3 2 2 2
=c(lo=01E" + 1) |Valul [ + CluVul. (3.56)

3
r
L6

Inserting (3.55) and (3.56) in (3.53), we have

/p|u|2|divw|2

Lo -
sCf|u|2|W|2+C/|ve|2+C(||e—9||z':3 +1)IVPO = )12

2r 2r
|| 2r—3 || 2r—3 2
+c(lo-0nE" + 1) +c(le = 01%" + 1) Vo3 @57
In addition, by virtue of Holder inequality and (3.1), it is easy to get
(o — Pull, < ClIVul3,. (3.58)

The estimates of the fourth, the fifth, and the sixth term on the right-hand side of
(3.52) are similar to (3.57), (3.18), and (3.58), respectively. Hence (3.52) yields

1
—/P,divw < Z/p|u,|2+cf|v9|2+c/|u|2|w|2+c/|w|2
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2r
+C <||9 —0177 + 1) </p(0 —é)2+/p|u|4>

- 2r
+C <||9 -0l + 1) ) (3.59)

Inserting (3.59) and (3.48) in (3.47), we have

d

—f I:;L(|Vu|2+ IVA?) + (4 1) (Idiva)* + |divh|2)] +/,0|u,|2
d 3
—t/(pH—ﬁ@)divu—}-C/|V0|2+C/|u|2|Vu|2+C/|Vu|2

o 2 -
c(ne—enfﬂ " 1) (/p(e —9>2+fp|u|4)
T 1 2
v (lo-a157 +1) + 5 [ ot

The last term on the right-hand side can be absorbed by the integrals on the left—hand
side. We have finished the proof. O

Corollary 3.6 Let Q2 be a bounded and smooth domain in R3. Under the hypotheses of
Theorem 1.4 and (3.1), we have

T
/(p|u|4+p|e—9|2+|w|2) +[0 f[p|ut|2 + |ul?|Vul*+|V6|?] < C,(3.60)

forany T € (0, T™).

Proof Let ). > 0 be given. Multiplying (3.35) by a sufficiently large positive constant
M, and adding the resulting equation to (3.27), we have

d 4ccC - - 3
5 /[mur‘ —~ T”p|u|2<9 —0) + MCypl6 — 61> + M|p — j|*]

" 5 5 MK/ 5
— v — Vo
Jrzflullldl+2 Vol
2r

< McC, (ne — 0177 + 1) (IVul2 + 150 = DI + 1o = 512 )

+ (Me) +€C) / plusl? + Mey / 2 Vul?

+MC||9—5||U+c€/|ve|2+6/|w2

~ 2}’ ~
+ C. <II9—9||2’73 +1>/(p|9—9|2+p|u|4). (3.61)
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Given € > 0, we may choose M = M (e) > 0 big enough and €] = ¢;(M) > 0
small enough so that

Mk
C. < - and Me; <

RS

(3.62)

Consequently, the third term and the fifth term on the right-hand side of (3.61) can be
absorbed by the left-hand side. Hence we have

/[ ul* = 25 020 = ) + MCuplo — 12 + Mip - 5]
+ /Iul |Vu|2+MK/|V0|2
4 4
~ 2r ~
< MC (ne—enz'ﬂ + 1)/(|Vu|2+p|e—9|2+ o= 51)
+(M61+6C)fp|u,|2+MC||9—§||Lr +C/|Vu|2

~ 2}’ ~
Ce (ne —0177 + 1) / (016 =61 + plul®). (3.63)

Multiplying (3.63) by a positive constant M1, and then adding the resulting equation
to (3.46), we have

& [ oo+ 20 [upioup+ 2 [ivop 4 [
< MyMC,, <||6—é||z:3 +1>/(|W|2+p|9—é|2+|p—5|2)

—|—M1(M61+6C)/p|u,|2+C/|V9|2+C/|u|2|Vu|2

+ 1) / (016 =617 + plul)

- 2r
+CM; + 1)/ \Vul? + C(Mi M + 1)(||9 —a157 4+ 1), (3.64)

o2
+ (M Cec +C) <|I9 -0l

where

4cC _ - 3
Glo,u,0, ) = My plul* = === plu*(® = 6) + MCyplo — 6 + Mlp - 5]

+ n(IVul* + VAI?) + (u + 1) (Idivul* + |divh|?)
—2(pb — pb)divu

and

G(p,u,0,h) ~ plul* + pl8 — 81 + |Vul* + |VA* + |p — 5
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for M big enough.
For M; > 1 big enough so that

M
T‘“ > C, (3.65)

the fourth term on the right-hand side of (3.64) can be absorbed by the left-hand side.
Noticing that M and C are independent of € and €], we choose € > 0 small enough
such that

1

MeC < 7 (3.66)
Moreover, in view of (3.62), we may choose €; > 0 so small that
Mk . 1 un

max{2C,C.} < —, and Me; <min{ ——, — . (3.67)
4 4M, 4

Note that the order for fixing the corresponding parameters is
M| — e —> M — €.
By virtue of (3.65), (3.66) and (3.67), the second term, the third term and the fourth

term on the right-hand side of (3.64) can be absorbed by the left-hand side. Hence we
have

d M
S [cw.uom+ %/ PVl

MMk 5 1 2
+ 2 Vo] t5 plugl

L 2
< (M{MC¢, + M{Cc + CM; + C) (||9 -0177 + 1)/G(p,u,9,h)

o
+C(MM + 1)(||9 —A157 1). (3.68)
Applying Gronwall inequality to (3.68) yields (3.60).

Suppose now A < 0. Multiplying (3.28) and (3.35) by % and 4%, respectively,
and adding the results to (3.46), we have

i 2 2 2 2
m Gi(p,u,0,h) + 2Ny | |ul”|Vul"+2Ny | [VO|" + [ plu;l

<(c+ ﬂcts) IVOI* + (C + 4]\/_261) lu?|Vu)?
" K

CNy 2 N T
+ C—i—T |Vu|® + 7C€+C e —ol;— +1
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xf[p(e—é>2+p|u|4]
4N,C o ~ -
+ Té‘ (ne -0157 + 1) (IVullz, + 1@ — D)3, + llo — 5li7,)

4N,C - 4Nse
+ ( — c) (ne — 017 + 1) + %/mmz, (3.69)

where

. . N
Gi(p,u,0,h) = u(IVul> + |VA?) + (u + 2 (idivae? + [divi?) + = pluf*

4N ~ . .
+ Tz(cvme — 0P + 1o = 5I2) = 2006 — pf)divu

and

Gi(p,u,0,h) ~ plul* + pl0 — 01> + |p — pI* + |Vul* + [VA|?,

for N, big enough.
By choosing Ni, N; big enough and €, €1 small enough such that

N1 >2C, N, >2C,

and

N N> 4N, . [1 Ny

—Ce < —, —€ <mny-, ——r,

" 2 K 27 2

the first two terms and the last term on the right-hand side of (3.69) can be

absorbed by the left-hand side. Finally, applying Gronwall inequality in (3.69), we
get (3.60).

O
Corollary 3.6 combined with the Sobolev inequality yields
2
||M||L4(0,T;L‘2(Q)) - |||u|2“L2(0,T;L6(Q)) = C”|u|vu”L2(O,T;L2(Q)) =C,
which together with (3.1) gives
12 e o 7snoeqc) T 1003 7202y) = € (3.70)

Since
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is compatible with Serrin’s condition, the rest of the estimates in (3.2) for the initial-
boundary value problem (1.6), (1.7), and (1.8) can be performed exactly as in [15].
The proof of Theorem 1.4 in the case of a bounded domain is complete.

4 Cauchy problem

Assume that Q = R3 and T* < oo and that there exist constants r € (%, oo] and
s € [1, oo] satisfying

3
_+_§2’
N r

such that (3.1) holds. Our aim is to show that under the assumption (3.1) and
the hypotheses of Theorem 1.4, there is a constant C > 0 depending only on
M*, pg, ug, 6o, 0,60, u, A, k, and T* such that

ZTESU;(IIP = Pllwrr + Mol + 1(our, /PO L2

T*
+ 11, 6 = Ol g2 +f0 (N, 8012 + 100, 0135, ) dr < €. (A

Relation (4.1), together with the available local existence results, implies the desired
contradiction.

The proofs of the next two lemmas are the same as their counterparts stated in
Lemmas 3.3 and 3.4.

Lemma 4.1 Under the hypotheses of Theorem 1.4 and (3.1), the following estimates
depending on the sign of the viscosity coefficient A hold:

1. »>0:
4CccC ~ 7
[p|u|“—T”p|u|2(9—9>]+5/|u|2|w|2

5C6f|V9|2+C/|Vu|2+€C/p|u,|2

2 -
+ C. (||9—e||z:3 +1)f(p|9—9|2+p|u|4), (4.2)

dr

for any small € > 0 satisfying (3.12), (3.26) and (3.30);

2. A<0:
d 4 2 2 2 2
I olul +2u | |ul*|Vul| < C | |Vul|”+ Ce | |V
U -
+ C. <||9 -0l + 1)/[p(9 — )% + plul*], 4.3)
for any small € > 0 satisfying (3.34).
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Lemma 4.2 Under the conditions of Theorem 1.4 and (3.1), it holds that

d 512 ~12 K 2
Ef(cvme—m +1p— Bl )+5/|ve|

2r
<c, (ne —01%7 + 1) (Il + 1V/5@ = D)2 + 1o - 512)

+a/p|ut|2+el/|u|2|w|2+cue—é||u, (44)

for any small €1 > 0 satisfying (3.40).
Lemma 4.3 Under the hypotheses of Theorem 1.4 and (3.1), there holds

06 — 561>

d 5
I / (wIVul? + (u + W)divu|® = 2(p0 — 56)divu + T

+/p|ut|2

L 2 _
<c(le-6a1757 + 1)/G1 +C/|V9|2+C/|u|2|Vu|2, 4.5)

)

where
Gi = |Vul* + pl0 — 61> + 1p — pI> + plul* + plul?. (4.6)

Remark 4.4 Roughly speaking, the main difference between the energy estimate in
Lemma 3.5 for the bounded domain case and that in Lemma 4.3 for the whole space
caseis that the term V/ in (3.46) is replaced by p6 — 50 here, since the effective viscous
flux F can be applied for the whole space case such that the quantity ||o — o]z in
(3.54) and (3.56) does not occur in the proof of Lemma 4.3. Note that || o — || .- might
be unbounded if r € (%, 2) for the whole space.

Proof Similarly to (3.47), we have

2dt
2 2 1 2
== [ VPruw+C [ ulVul”+ 2 plud”, 4.7

1d .
/p|ut|2+—— (rIVal® + G+ 2 ldival?)

where the first term on the right-hand side of (4.7) reads

—/VP~u,:—fV(p6—ﬁ§)~u,

d ~ ~
=3 /(,09 — pO)divu — / (08 — pO)divu
1
2+ A

= % / (00 — pO)divu — / (08 — pO) F
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! d/|e 50> (4.8)
202+ adi ] TP '

with P = pf and F = 2u + A)divu — pf + p6. Integration by parts has been used

from the first equality to the second in (4.8).
Exactly as in (3.49),

Pr=-V. [(,09 — ﬁé)u] —p6(1 + Ci)divu — CL (p@ — ,567) divu
v v

A
+ Civw [Vuk (V)] - divadivit C%Ae;

whence we get

1 ~ 1
0 — p0),F = — P F
f(p 56), 2HH/I

Bl 2+ A
1 - pO+ &)
- 0 — o] -VF+—— S [ divu F
2;1,—}—)\/[('0 p )u] + 2+ A / e
+ ;/ (pe - 5@) divu F — —H* / Vu : [Vu+ (Vu)'|F
Qu+ 2)Cy Qi+ MGy '

A
——/divudiqu++/V9~VF,
Cu+1Cy Cp+1Cy

where we have used integration by parts. This combined with Holder inequality yields

1
- o) F
2,u+)»/(p)t

< C(Ilp® = Dull2 + V61,2 ) IVFll 2 + ClI Vul 21 Fl 2

00 — p)divu F

1
QCu+r1Cy /(
/ Vu - [Vu+ (Vu)'|F —

- 6(pu — pu) - VF
2u+k/ (pu — pu) +

7

_ = /divu divu F. (4.9)
QCu+1C,

Cu+1C,
The first three terms on the right-hand side of (4.9) can be handled as

C(I1p(® = Bullzz + V6112 ) IVFll 2 + ClIVull 2|l 2

1 .
6(pu — pu) - VF
2u+)\f (pu — pu)

) 2 2, 1 2
=C [ Ip@—0ul"+C | [VO"+C P|M|+§ plug

+C [ WPival +-¢ [ (ul + plo ~ 8 + |0 - 4P
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L2 _
cle-a1%> +1)/Gl+Cf|V6|2

+C/|u| |Vul® + /Plutl (4.10)

where G is given by (4.6), and we have used integration by parts, Cauchy inequality,
Holder inequality, (3.1), (3.18), and the standard elliptic estimate:

IVFI2 < Cllpill2 < Cllv/piill 2, (4.11)

as
AF = div(ptt).

For the last three terms on the right-hand side of (4.9), we have

l/L . /

- m/divu divu F

= m/u'[MAu-l-(M—f-k)Vdivu—VP]F
+mf[w+(wy]:vzv®u
+m/u-VFdivu m/(pe PO -VF, (4.12)

where we have used integration by parts. Plugging the momentum equation in the first
term on the right-hand side of (4.12), we have

1 s
v v
A
— m/dlvu divu F
1% v
=;/pﬂ-uF+L/[Vu+(Vu)’]'VF®u
Cu+nCy Qu+nCy '
A 1 ~
+ —(Z,U« ThC /u - VFdivu — —(ZM TC /p(@ —0u-VF
v
—_— VF.
e AR

This, combined with Cauchy inequality and (3.1), yields

M . i
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A
Cup+21)Cy

1
< gfp|ut|2+6/|u|2|W|2+C/p|u|2|F|2
+c/p2(9—é)2|u|2+6/p|u|2—’3—9deivu
QCu+1)Cy
1 -
< §/p|ut|2+6/|u|2|Vu|2+C/p|u|2|p—p|2

+ C/p2<e — 6P + C/ (ol + 06 — ) +1vul + 1o — 5]

/ divu divu F

(4.13)
Inserting (3.18) in (4.13), we have
_ /(p@ — pfydivu F — —H / Vu: [Vu+ (Vu) |F
Cu+1Cy Qu+1Cy '
A
- / divu divu F
Qu+ 1Cy
1
< g/p|ut|2+C/ |u|2|W|2+C/ IVo|?
o2 _
+Cdlo—o0177" + 1)/G1. (4.14)

Relations (4.8), (4.9), (4.10), together with (4.14), (4.7), give rise to

1d
/p|ut|2 a0 [ (pIVaP + et 2y idivp)

<df(9 56)di ! d/|9 50>
S )T T o sy ar ] YT

1 - 2r _
+cf|ve|2+0/|u|2|w|2+5fp|u,|2+0(||9—9||z:3 +1)/G1.

Seeing that the fifth term on the right-hand side can be absorbed by the left-hand side,
we have finished the proof of Lemma 4.3. O

Lemma 4.5 Under the hypotheses of Theorem 1.4 and (3.1), there holds

d ~ -
= pluI2+M/IVu|2SC/<pl9—9|2+Ip—pI2)- (4.15)
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Proof Multiplying (1.6), by 2u, integrating by parts over R>, and using Cauchy
inequality and (3.1), we have

d .

a/p|u|2+2/[M|Vu|2+(u+k)ldlvu|2]
=2 / (p6 — pO)divu
SM/IVuI2+C/p|9—5|2+C/|p—ﬁ|2-

As the first term on the right-hand side can be absorbed by the integral on the left-hand
side, the proof of Lemma 4.5 is complete. O

Corollary 4.6 Under the hypotheses of Theorem 1.4 and (3.1), there holds

sup f (1Vul+ 910 =87 + |0 — 5 + plul* + plul?)

0<t<T

T
+/ /(p|u,|2+|u|2|w|2+|w)|2) <C. (4.16)
0

forany T € (0, T*).

Proof Let) > 0be given. Multiplying (4.4) by a large positive constant M, and adding
the resulting inequality to (4.2), we have

4cC - ’ "
Lot - ——plul*® —0)+M(Cuplo = 0P +1p - 51) |
Mk
+%/|u|2|Vu|2+T/IV9|2

sCG/|ve|2+c/|W|2+<eC+Me1>fp|u,|2

dr

- ~ 2" -
+(Ce+ MCqy) (ne —8177 + 1)[01

+M61/|u|2|Vu|2+MC||9—§||Lr, (4.17)

where G is given by (4.6). B B B
Given € > 0, we may choose M = M(e) > 0 big enough and €] = ¢;(M) > 0
small enough so that

Mk _
Ce < 7 and Me| < —. (4.18)

INES
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Consequently, the first term and the fifth term on the right-hand side of (4.17) can be
absorbed by the left-hand side. Hence we have

d acc o _ ]
= [mur‘—T”p|u|2<e—9>+M(cvp|9—e|2+|p—p|2)]
K 2 2 Mk 2
— \Y% —_ Vo
+4/|u||u|+4/||

< c/ VP + (eC + Mep) f plus? + FIC16 — Bl

2

+ (Ce + MC¢,) <||9 —0177 + 1) f G. (4.19)

Multiplying (4.19) by a positive constant M1, and then adding the resulting equation
to (4.5) and (4.15), we have

d — [,LMl MMU(
5/G+fp|u,|2+Tf|u|2|w|2+Tf|ve|2
5CM1/|Vu|2+1\_41(6C+M61)/p|u,|2+C/|V9|2

+ c/ [u)?|Vul> + MM;C||6 — 6|l r

+ (MM, C¢, + CcM; + C) (||9 - é||§'fi3 + 1) f Gi, (4.20)
where
G = M [plul* — G 6 -6+ M(Cupl6 =07 +1p = 51)]
+ wlVul? + (u + M)|divu|> = 2(p6 — p6)dive + "fﬂ_—ff'z + plul*.
For M; > 1 large enough so that
% > C, (4.21)

the fourth term on the right-hand side of (4.20) can be absorbed by the left-hand side.
Noticing that M and C are independent of € and €1, we choose € > 0 small enough
so that

MieC < (4.22)

1
1
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Moreover, in view of (4.18), €; > 0 can be chosen so small that

_ 1
. and i) < min{ . Ky (4.23)

{ 6} <_ 1K l
max 2(: N (:
M

By virtue of (4.22) and (4.23), the second and the third term on the right-hand side
of (4.20) can be absorbed by the left-hand side. Hence we have

d [ 1 , MMI/ e A‘mm/ ,
— | G+-= Ltk \Y =—= | |ve
o +2/)0|141| + 5 [ P v + == [ vel

§CM1/|Vu|2+MM1C||9—é||Lf

- - —_ ~ 2V -
+ (MM;C¢, + CcM; + C) (ne —0157 + 1) / Gi. (4.24)
where
G(p,u,0,h) ~ |Vul> + pl6 — 01>+ |p — 51> + plu* + plul* = Gy,

for M big enough. Applying Gronwall inequality to (4.24) yields (4.16).
Similarly to the case A > 0, relation (4.3) combined with (4.4), (4.5) and (4.15)
yields (4.16) for A < 0. ]

If 5 = 6 = 0, Corollary 4.6, together with (3.1), and the standard interpolation
inequality, gives rise to

T T
/0 19611 di=C /0 106113 gl 00l 5 gy

T
< [ IVl
0

<C.

This together with (3.1) and (4.16) yields

1
oo .7 L) + ||09||L4(0’T;L%2) + llp%ullpo(0,7;14)

+ || |M||VM| ||L2(O,T;L2) S Ca (425)

for any T € (0, T*). By virtue of Remark 2.4 in [30], we obtain (4.1).

In the case 5 > 0 and § = 0, the remaining estimates in (4.1) may be obtained
following step by step [15]. The proof for the last two cases 5 = 0,0 > 0,and 5 > 0,
6 > 0 is sketched in Appendix modifying the relevant estimates in [29].
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5 Appendix

The estimates presented below lean on the results obtained in Sect. 4, assumption
(3.1), and the hypotheses of Theorem 1.4.

Lemma 5.1 Under the hypotheses of Theorem 1.4 and (3.1), there holds
2 2 r 312 2
sup /(|V9| + plu| )+/ /(,0|9| +[Vul?) < C. (5.1
0<t<T 0
Proof From (4.35) in [29], we have

1d
2dt
:/(Ptdivit+u®VP : vu)+u/ <div(Au®u) — Au- Vu)) i

plii]? +f (rIVal + (u+ ldival?)

3
o+ )\)[ (div (Vdivu ® u) — Vdiv (u - W)) =Y 1L (52)

i=1

For 111y, using (1.6)3 and integration by parts (see also (4.36) in [29]), we have
iii] = / (pédivit — pO(Vu) w),

where § = 6, + u - VO and (Vi) denotes the transpose of the matrix Vu. Then by
virtue of Holder inequality, Sobolev inequality, (3.1), and Corollary 4.6, we have

111 < C|l/pb| 2 |divit]l 2 — / 00 —60)(Vu) : Vit — / 06 (Vu) : Vit

< ClIV/pbll2lldiviill 2 + C0 — 61 16 Vul 13| Vil 2
+ ClIVul 21Vl 2
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< CllVPbl 2 l1diviill 2 + ClIVOI 2 [ Vull 31 Vil g2 + ClI Vil 2. (5.3)
Taking curl on both side of (1.6),, we get
WA (curlu) = curl(ptt). 5.4
In addition, one has
— Au =V x (curlu) — Vdivu. 5.5)

Then using the standard elliptic estimates, the interpolation inequality, Sobolev
inequality, (3.1), (4.11), and Corollary 4.6, we get

IVulls < Clleurlull 5 + Clidiva] 5
< C||curlu||%2||c:ur1u||%6 —+ C||divu||%2||divu||%6
< ClIVeutlul%, + CIVFIZ, + Cllo6 — 3812,
< Cllypil, + CIVe|Z, + C. (5.6)
Inserting (5.6) in (5.3), and using Cauchy inequality, we have
111 < 2Vl + Cll o613
+ CI/pill7: + VO3 IVO7, + C. (5.7)
For 111, and 1115, we obtain (see for instance [25, 26])

<K

115+ 1115 < C||Vill 2| Vulzs < ZIVillz, + ClIVulz. (5.8)

L4
Similarly to (5.6), we have

IVull}s < Clleurlu||7, + Cldivull}.
< Cllcurlu || ;2 eurlu |13 ¢ + Clidiva| ;2| divul|3 6
< Cllv/pill3» + ClIVO|3, + C. (5.9)

Relation (5.8), combined with (5.9) and Young inequality, yields
11D+ 1115 < SVil}, + Cl/pil}, + CIVOI} +C. (5.10)

Substituting (5.7) and (5.10) into (5.2), and using Cauchy inequality and (3.1), we
have

d <12 <12 v 12
mem +/(u|w| et Dldivil)
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< ClIpbl1172 + CUIV/pitl7: + IVOI72)* + C. (5.11)

Multiplying (1.6)3 by @, and integrating by parts over R? (see also (4.41) in [29]),

we have
. Kk d
Coplf> + =— | |VO?
/ vp||+2dt/| |
= —/p@divué—i—/[% ’Vu+(Vu)’}2+)»(divu)2] 0,
+/ £ |Vu+ (Vuy' [+ divay ]u-v9+K/Aeu-v9

4
-3 . (5.12)
i=1

For 1Vy, using Cauchy inequality, Holder inequality, Sobolev inequality, (3.1),
Corollary 4.6, and (5.6), we have

A%

IA

%/mmz +Cl0 = 01|76 lIdivul7 5 + ClIVull7,
< % / pl61” + CIIVOII . (I/pill72 + IVO]7.) + C. (5.13)
As in [29], using integration by parts, we have
vy = %/ [% Vi -+ (V)| + adivin? | 6 — u/ [Vu + (Vu)'] : [Vie + (Vi)'] 6
+ u/ [Vu+ (Vu)] : [Vu - Vu+ (Vu-Vu)']6 — 21 / divu diviid
+ ZA/divu(Vu)’ :Vub — /L/ Wdivu@ — )L/(divu)SG

v V 72
—M/Mu-ve—xfmivuﬁu-ve.

This together with Holder inequality, Sobolev inequality, and Corollary 4.6 yields

d —- -
IVa+1V3 < E/ %|w+(vu)’|2+/\(divu)2 9+C/|Vu| \Vi] 6]

+c/|w|3 o)

d ru /12 . 2] . 5
= E|Vu+(Vu)| + A(divu)* |0 + C||Vul| 3| Vie|| ;21160 — 6] 6
+ CIVull 21 Vit 2 + cnwni% 16 — 616 + ClIVul); 5

d

== %\w + (V) [* + A(divi)® |6 + C I Vull 13 1 Vil 2] VO] 2
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+ Vil 2 + cnwni% IVOll,2 + ClIVull; 5.
Using the interpolation inequality, and (4.16), we have
b vt ;
IVull 15 < ClIVull I Vullys < ClIVulls. (5.14)
Inserting (5.14) to the estimate of 1V, + V3, and using Young inequality, we have
d I'L / 2 . 2 .
IV, +1V; SE [5|Vu + (Vu) | + A(divu) ]9 + C\Vull 13| Vil 211 VO]l 12
8
+ C|Viill 2 + ClIVull;, V01 2 + ClIVull} 5
d

<
—dt
+ Cs 4+ ClIVul4 + CIVOIS, + ClIVull3 5.

7 2 . .
| 51Vu+ (V) [+ divio)? [0 + 81 Vil + G Vull 3 1V6I

Since the estimates of ||Vu|;3 and || Vu|| ;4 have already been obtained in (5.6) and
(5.9), respectively, we proceed to evaluate IV, + IV3 and get

d
1o+ v =50 [ (5190 P 4 acaivo?]o + s19i?,
+ Cs + Cll/piill} + Cs VO . (5.15)

For 1Vy4, using the interpolation inequality, (3.1), (4.16), Sobolev inequality, and
the standard elliptic estimate for (1.6)3:

IV201l 12 <CllV/pbll 2 + ClIO — Ol s lidivull 5 + CIVull;4 +C. (5.16)

we have

1 1
Vel < 1Vel,1v2e],

2

1 . ~ .
< CIIVOI L, [IV/681 2+ 116 = Bl olldivall > + 1 Vull2s + 1]
1 . . 5
< CIVOIL[ VA0l + 1961 2 divull s + 1 Vul}, +1]7, (5.17)
and thus

1Vy = ClAO 2 ]lull s VOl 3

w

IA
ol

1 . ,
CIVOI L[ IVPOIL2 + V6l 2 divull s + [Vl +1]

A

C . )
— IWPOIZ2 + CIVOIT: + CIVOIR ldivlzs + ClIVulzs + €
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C . )
< S IVPBIIL: + CllVpill, + CIIVEI + C, (5.18)

where we have used (5.6), (5.9), and Young inequality.
Plugging (5.13), (5.15), and (5.18) into (5.12), we have

/Cvp|é|2 T %/ [K|V9|2 _ (u}w + v + 2x(divu)2)9]

< CUly/pill?, + IVO13,)* + 28| Vil|3, + Cs. (5.19)

Multiplying (5.19) by % and plugging the result in (5.11), we have

d L, 20k, 2C s .
- [,0|u| + IVl —C—U(MVLH—(Vu)} + 2 (divu) )9]

+ / (Cp|9'|2 Vil + (u+ k)|divz1|2>

< C(lv/pill3> + IVO1|7,)* + 45C || Viil|3, + Cs. (5.20)

— K
For § = 3c> We have

d L, 20k, 2C 5 .
- [,0|u| + IVl —C—v(u|w+(vu)| + 27 (divu) )9]

. "o . .
+f(Cp|9|2+5|w|2) < CI/pill, + IVOI72)* + C. (5.21)

Denoting

i} ., 2C 2C .
Gz(p,u,@):fp|u|2+ K/|V9|2—C—f<M|Vu+(Vu)/|2+2k(d1vu)2>9,
v

o

and noticing

2 2 : 2
IVull® 1, < Clllcurlu||* 1, + lldivul|” ,)
LS LS LS

3 1 3 1 . 3 .1
< Clleurlul) >, |Veurlul| 2, + CIFI2,IVFI?, + Cllo@© = 8)117, 11006 — 8)11 2

_ 3 1

+ClIBG = D) 21000 — Bl 36
1 1

< CllVpill ;, + CIVOI}, + C,
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we have

/ (|Vu+ (V) |* + 22(divn? o

- f (1IVa+ (V' [P+ 22divin?) 6 — 0) + é/ (v + (Vu)' [P + 22(divin?)

< CIVull? L 116 =Bl 6 +C
L5
1 1
< CIVPil 2, IVl 2 + CIVOIZ, VOl 12 + ClIVO 12 + C.

This implies
1 . _ o .
M7f<p|u|2 +1VO?) < Galp,u,0) + Ma < M3 + M3/(p|u|2 + Vo),
3

for some positive constants M> and Ms. This relation, together with (5.21) and
Gronwall inequality, yields (5.1). O

Corollary 5.2 Under the hypotheses of Theorem 1.4 and (3.1), there holds

sup (||VF||L2 + || Veurlul| ;2 + | Vull s + ||u||Loo)
0<t<T

T
+/0 (Idivull7~ + IV20]17,) < C. (5.22)
Proof It follows from (4.11) and (5.4) that

IVFIl.2 < Cllpitll 2 < C,
|Veurlu| 2 < Cllpill 2 < C.

and
T
/||divu||%oc
0
r 2 T a2
gc/ ||F||Loo+c/ 16 =63 +C
0 0

T T T T
scf ||F||§6+f ||VF||iﬁ+C/ ||9—9||iﬁ+/ e
0 0 0 0
T T T T
<C | WVFIE+ | lpile+C [ 1VOI3,+ | V362, +C
= o L2 o 10 LG 0 L2 0 L2

T T T
scfo ||ﬁu||iz+6fo ||W||§2+6/0 IV20)7,+C < C,
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where we have used (3.1), (5.1), Sobolev inequality, and the following elliptic estimate
from (5.16):

IV2011.2 < Cll/P0l 2 + CIIVOIl 2lldivu] 15 + C | Vul 74 + C
< ClV/pbllz2+C. (5.23)

Therefore we have

T
f V2617, < C.
0

By (5.5), we have

Vull 6 < C|\divul| ;6 + Cllcurlu 6
< C||F|lz6 + Cllcurlul| ;6 + Cl|0 — |16 + C
< C|VF| 2 + C||Veurlu| ;2 + C|VO| ;2 + C
<C. (5.24)

By (4.16), (5.24), and Sobolev inequality, we have

lullzee < Cllullgs + CliVullgs < ClIVullp2 + CliVullze < C.

Lemma 5.3 Under the hypotheses of Theorem 1.4 and (3.1), there holds

T
sup /p|9,|2+/ /|ve,|2 <c. (5.25)
0<t<T 0

Proof As in [29], differentiating (1.6)3 with respect to ¢, multiplying the result by 6,
and using integration by parts, we have

Cupl6:|? +x/ V6,

2dt
=— / pr (Cybr + Cyu - VO + 6divu) 6, — / p(Cyuy - VO + 6, divu) 6,
_ / 06 divu, 6; + / (Vu+ (Vu)') : (Vus + (Vuy)') 6
5
+ 22 f divu divu, 6, = Y V;. (5.26)
i=1

For V1, using (1.6); and integration by parts, we have
Vi=-— / pu - V0 (2Cy0; + Cyu - VO + 0divu)
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Cypu - (Vu -VO0 +u-VVo) b,
u - (VOdivu 4+ 6Vdivu) 6,
1

_ f p
3
=Y v (5.27)
i=1
For Vi 1, using Cauchy inequality, (3.1), (4.16), (5.1), (5.6), and (5.22), we have

K ~ .
Vig < 5/|vet|2+C/p|9t|2+0/p2|u|2|9—9|2|d1vu|2

+ C/p2|u|2|divu|2 +C

IA

K ~ .
o / V6, 1* + C/p|9t|2 +Cl0 = 017 6lldivul?; + C

IA

K
o / V6, > + c/pw +C. (5.28)

For V1 2 and Vj 3, similarly to [29], we have
Via < C/p|6?t|2 + C/ IV26)> + C. (5.29)

and

Vis < c/pw2 + CIVOIR, dival s c/pw R

2+ A

1 . 1
- Co | pu-VFo +—C/ 202y . VO
20 /p TSR N ’

|
+ —c/ 20%divu 6,
20u+nJ° '

< c/p|e,|2 + CIV20l 2 + ClIO — Ol ollull Loll6l s IVF Il 2 + C

+ClI0 = 8126 llull 1 VEll 2 + Cllpull 21V, ] 2
+Cl10 — 61126 lidivaell 121161 o

K
< E/|V91|2+C/p|9,|2+C||V29||Lz +C, (5.30)

where we have used Cauchy inequality, Holder inequality, the interpolation inequality,
integration by parts, and the relations (3.1), (4.16), (5.1), and (5.22).
Substituting (5.28), (5.29), and (5.30) into (5.27), we have

v < %/|v0,|2+c/p|9t|2+c/|v20|2+c. (5.31)
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For V, and V3, using Cauchy inequality, Holder inequality, (3.1), (4.16), (5.1), and
(5.22) again, we have

1 1 1 1
Va < CllVpOll 211 Vil 21 VO 2, 192601 2, + Clly/p6: 2 [IVO11 2, V20112,
+ cndivunm/pw

< € (Idivalz + Vi, +1) / plO? + CIV20I%, + C, (5.32)

and

V3l < Cll6 = Ol olldiviill 21106 Il 5 + Clidiviill 21l o6l 2

+C/p|9||Vu|2|0,|+|/p99,u~Vdivu|

L. K ~
sc/p|ez|2+c/|dwu|2+—/|ver|2+cn9—6||Le||pet||u||wniﬁ

+cf|W|4+ |/,099;u VF|+ |/9,u V(p6)?|

2(2u+,\)
sc/p|9t|2+c/|divu|2+—f|ve,|2+cne—énm||9,||Le||u||L6||VF||Lz

2u + A

+C + —|/9,d1vu (00)%| +

20T I/(pG) u-Voy|.

2Qu + 1)

For the last two terms on the right-hand side of V3, we have

som g [ v 0021+ 5 [ 0% e

< Cll6: || s lidivaell 2116 = 61176 + Cll o6 |l 2 l|dive] .2
+Cllo — é”ié”“”Lbnvet“Lz + Clloull21VO Il 2

< 64/|V91|2+C||J_91||
which yields
V3 sC/p|0,|2+c/|diva|2+2”—4/|vef|2+c. (5.33)
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For V4 and Vs, using integration by parts, we have

Vi = M/ (Vu+ (Vu)') : Vu, 6, + u/ (Vu+ (Vu)') : (Vuy)' 6
= —,u/ Vu + (Vu) VO Quy — ZMf (Au + Vdivu) - u; 6;

/L/ Vu + (Vu) Tu @ Vo,,
and

Vs = — ZA/Vdivu U 0 — 2A/divu u; - Vo;.
Hence we have

Va+ Vs SC/IVMIIV9z||MzI+C/pIﬂIqu||9z|+2|V3|+2/p9uz~V9z

< CIVullsIVOli 2 lludl o + Cllv/piill 2 luell Lo /00 | 3 + 2] V3]
+ Cllp® — Ol s llucl s VO N 22 + Cllou |l 21Vl 2

K
5C/p|9,|2+C/|Vu|2+€[|V6‘,|2+C, (5.34)

where we have used (5.1), (5.22), and (5.33).
Putting (5.31), (5.32), (5.33) and (5.34) into (5.26), we have

d . .
& [ comtonit 4 [ 1902 < ¢ (i + 191, + 1) [ o2

+cf(|w|2+ [V261%) + C. (5.35)

By virtue of (5.1), (5.22), (5.35) and Gronwall inequality, the proof of Lemma 5.3 is
complete. O

Corollary 5.4 Under the hypotheses of Theorem 1.4 and (3.1), there holds

sup [|v29|2 <cC. (5.36)
0<t<T

Proof Relation (5.23), together with (3.1), (5.1), (5.22), and (5.25), yields (5.36). O

The remaining estimates in (4.1) can be obtained in the same way as in [29]:
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Lemma 5.5 Under the hypotheses of Theorem 1.4 and (3.1), there holds

sup (Vo1 + llpill s + 1Bl 2+ 192ul2)
0<t<T

r 2 2
[ (i + e o013s,) <

forl =2,q.

The proof of Theorem 1.4 is complete. O
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