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Abstract
Energy (or Lyapunov) functions are used to prove stability of equilibria, or to indicate
a gradient-like structure of a dynamical system.Matano constructed a Lyapunov func-
tion for quasilinear non-degenerate parabolic equations. We modify Matano’s method
to construct an energy formula for fully nonlinear degenerate parabolic equations. We
provide several examples of formulae, and in particular, a new energy candidate for
the porous medium equation.

Mathematics Subject Classification 35K65 · 37L45 · 35A15 · 35A16 · 35B38

1 Main results

We consider the scalar fully nonlinear partial differential equation

f (x, u, ux , uxx , ut ) = 0, (1.1)

for x ∈ (0, 1) and t > 0 with appropriate initial data u0(x). Here indices abbreviate
partial derivatives.We assume that f ∈ C2 satisfies the following degenerate parabolic
conditions

fq · fr ≤ 0, and fr �= 0, (1.2)

for every argument (x, u, p, q, r) := (x, u, ux , uxx , ut ) ∈ [0, 1] × R
4. Conditions

(1.2) imply that only the diffusion coefficient fq may vanish, since fr �= 0 excludes
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time-evolution type degeneracies.1 such as in Trudinger’s equation, (uα)t = uxx , for
α > 0; see [45]. Without loss of generality, we consider fr < 0 and thus fq ≥ 0.
Indeed, if fr > 0, then fr̃ < 0 for r̃ := −r .

Moreover, in order to guarantee that the diffusion fq degenerates in a meagre set,
we also assume that the following set is of (Lebesgue) measure zero in [0, 1] × R

2,

{
(x, u, p) ∈ [0, 1] × R

2 | fq(x, u, p, 0, 0) = 0
}

. (1.3)

In particular, the condition (1.3) prevents that fq(x, u, p, 0, 0) = 0 for all (x, u, p) ∈
[0, 1]×R

2 and degeneracies of the same order as uxx , such as the dual porous medium
equation, ut = |uxx |m−1uxx , for m > 1, see [6, 49].

We consider (1.1) with two types of separated boundary conditions at x = ι ∈
{0, 1}. For each boundary point x = ι, separately, we either assume homogeneous
Dirichlet boundary conditions or nonlinear boundary conditions of Robin type, respec-
tively u = 0, (1.4a)

ux = bι(u). (1.4b)

We assume bι ∈ C1. Neumann boundary conditions occur if bι(u) = 0. See [1, 35]
for abstract settings involving nonlinear boundary conditions of type (1.4b).

Equations (1.1)–(1.4) include classical examples, such as evolution involving p-
laplacian diffusion, the porousmedium equation or certainmean curvature flow. These
classical equations with further nonlinear gradient-dependent forcing did not have any
apparent variational structure, which we are now able to display. It is the scope of
this paper to provide a unifying variational formulation to several degenerate fully
nonlinear parabolic equations in one spatial dimension.

Below we construct a Lyapunov function

E :=
∫ 1

0
L(x, u, ux ) dx such that

d E

dt
< 0 (1.5)

along non-equilibrium solutions u = u(t, x) of (1.1). Therefore, the time-dependent
energy t �→ E(u(t, .)) decreases strictly, except at equilibria, i.e. ut ≡ 0.

Before we present the main result, we rewrite the fully nonlinear equation (1.1)
suitably, following the spirit of [31]. Then we modify of Matano’s original idea in [39]
in order to incorporate degeneracies of the PDE (1.1) for a Lyapunov function E as in
(1.5).

Indeed, we split the Eq. (1.1) in order to emphasize the degenerate diffusion,

F(x, u, ux , uxx , ut ) = fq(x, u, p, 0, 0)uxx , (1.6)

where F(x, u, p, q, r) := − f (x, u, p, q, r) + fq(x, u, p, 0, 0)uxx . The degeneracy
conditions in Eq. (1.2) become

Fr (x, u, p, q, r) > 0, and fq(x, u, p, 0, 0) ≥ Fq(x, u, p, q, r). (1.7)

1 Note time-evolution degeneracies can be transformed into singular diffusion, see [49, Problem 3.6].
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for every argument (x, u, p, q, r) := (x, u, ux , uxx , ut ). Condition (1.3) implies that
F(x, u, p, q, r) = − f (x, u, p, q, r) for a set of measure zero.

Next, we split F into two parts: one which is independent of uxx and ut , whereas
another that depends on them. First, we distinguish a term F0 related to reaction, when
uxx = ut = 0. Second we describe the time evolution term F1, the only term that
depends on ut . Specifically, we define

F0(x, u, p) := F(x, u, p, 0, 0),

F1(x, u, p, q, r) := F(x, u, p, q, r) − F0(x, u, p),
(1.8)

where F0 ∈ C2 and F1 ∈ C1, since f ∈ C2.
The parabolic equation (1.6) can be rewritten as

F1(x, u, p, q, r) = fq(x, u, p, 0, 0)uxx − F0(x, u, p). (1.9)

The degeneracy conditions (1.2) incarnated in (1.7) imply that

F1
r > 0 and fq(x, u, p, 0, 0) ≥ F1

q (x, u, p, q, r). (1.10)

for every (x, u, p, q, r) := (x, u, ux , uxx , ut ).
The main modification of Matano’s method is a different Ansatz for the function

L in (1.5), yet to be found. Matano’s Ansatz is L pp = exp(g(x, u, p)), which yields
a first order PDE for the unknown g(x, u, p) that can be solved by the method of
characteristics. Instead, to accommodate degeneracies, we consider:

L pp := fq(x, u, p, 0, 0) exp(g(x, u, p)), (1.11)

for some function g(x, u, p) to be found. Note (1.11) is not identically zero, since
fq(x, u, p, 0, 0) �≡ 0 due to (1.3). Moreover, whenever fq(x, u, p, 0, 0) = 0, the
Ansatz (1.11) implies that L pp ≡ 0 for any bounded function g(x, u, p). However,
whenever g(x, u, p) is unbounded, then the interplay between fq(x, u, p, 0, 0) and
g(x, u, p) plays a major role in the new Ansatz (1.11), and thus in the construction
and regularity of the energies using the present method, in contrast to [31, 39].

To construct the unknown g(x, u, p), we suppose that along the characteristic equa-
tions given by

ẋ = fq(x, u, p, 0, 0),

u̇ = fq(x, u, p, 0, 0) p,

ṗ = F0(x, u, p),

(1.12)

there is a solution g of the following equation:

ġ = −F0
p(x, u, p) − fqx (x, u, p, 0, 0) − fqu(x, u, p, 0, 0) p. (1.13)
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Note that the characteristic equations (1.12) for degenerate PDEs is different from
the one obtained by Matano in the non-degenerate case. Nevertheless, these equa-
tions can be transformed into each other by a suitable ‘time’ rescaling that absorbs
1/ fq(x, u, p, 0, 0) < ∞ in case of non-degenerate equations. Moreover, global exis-
tence of the characteristic equations (1.12)–(1.13) might fail, in general.

Further issues arise when (1.9) is degenerate, i.e. when fq(x, u, p, 0, 0) = 0 for
some (x, u, p) ∈ [0, 1] × R

2, since at such degeneracy points the first two equations
of the characteristics (1.12) are ẋ = u̇ = 0. On one hand, if F0(x, u, p) �= 0, then
ṗ �= 0, which triggers an eventual fq(x, u, p, 0, 0) �= 0, due to (1.3). On the other
hand, if F0(x, u, p) = 0, then ṗ = 0 and (1.12) encounters an equilibrium. Hence, the
function g(x, u, p) may not be constructed along solutions of (1.9). We call this the
obstacle problem. Therefore, the obstacle problem is crucial to rigorously construct
energies for degenerate equations using the present method. We explore some of these
problems in the examples of Sect. 3.

Theorem 1.1 Assume f ∈ C2 satisfies (1.2). Suppose the characteristic equations
(1.12)–(1.13) have global solutions and that L pp in (1.11) is twice-integrable in p.

Then there exists a Lagrange function L = L(x, u, p) on bounded sets of (u, p) ∈
R
2 such that E := ∫ 1

0 L(x, u, ux ) dx is a Lyapunov function as in (1.5) for the Eq.
(1.1). More precisely, bounded solutions u(t, x) of (1.1) satisfy

d E

dt
= −

∫ 1

0
exp(g(x, u, ux ))F1(x, u, ux , uxx , ut ) · ut dx, (1.14)

where g(·) solves (1.13) and F1 · ut ≥ 0; the equality holds if, and only if, ut ≡ 0.

For non-degenerate quasilinear equations, f (x, u, p, q, r) = −r + a(x, u, p)q +
h(x, u, p), where a > 0, a Lyapunov function E was constructed, independently, by
Zelenyak [50] and Matano [39]. See also [19] for concise expositions of Matano’s
method. This method was extended to fully nonlinear non-degenerate parabolic equa-
tions, when fq · fr < 0, in [31]. An analogous method for Jacobi systems, a spatially
discrete variant, was developed in [20]. For an adaptation to diffusion with singular
coefficients see [29].

We emphasize that the procedure to construct the energy function in (1.5) is for-
mal. Once the Lagrange function L is obtained, one needs to verify various properties
needed for a well-defined Lyapunov function, such as integrability, bounds, regularity,
etc. For this reason, we call the formulae obtained using our method as energy candi-
dates. Thus, the properties and applicability of each candidate still has to be dealt with
on a case-by-case basis. In Sect. 3, we provide several examples of candidates. Note
that even if a Lyapunov function is only well-defined for sufficiently regular initial
data, one may obtain dynamical information on invariant subspaces of regular enough
initial data, see [3, 4, 33, 41, 51]. In particular, non-degenerate equations possess
enough regularity to produce a well-defined and regular energy. For a deeper regu-
larity analysis of degenerate equations, see [7, 14, 15, 27, 44] and references therein.
Similarly, energy candidates can potentially be used to obtain local energy estimates
akin to [14].

We comment on modifications and possible applications of our result.
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Note that our method can potentially treat singular diffusion, i.e., when fq(x, u, p,

0, 0) may be unbounded. An example is ut = (umux/|ux |)x for m ≥ 0, which is
called the total variation flow for m = 0, or the heat equation in transparent media
for m = 1; see [22] and references therein. However, there are two delicate issues to
obtain a Lyapunov function. First, the characteristic equations (1.12) may not have
global solutions. Second, the Ansatz for L pp defined in (1.11) might not be twice
integrable (in p) in order to obtain a well-defined formula for L in (2.12). A further
analysis of singular points must be pursued.

An alternative splitting of the fully nonlinear equationwas pursued in [31], different
than (1.9), yielding an energy that decays according to

d E

dt
= −

∫ 1

0
L pp F̃1u2

t dx (1.15)

for some F̃1 > 0. Instead of the decay in (1.14), one may also be able to obtain a
Lyapunov function that decays according to (1.15), which extracts the L2-gradient
flow with weight L pp F̃1 > 0. However, we believe that these different splittings do
not change the Lyapunov function itself, only the aesthetics of the abstract formulae.

A semiflow treatment of fully nonlinear degenerate equations (1.1) on an appro-
priate phase-space X has been lacking in its full generality, akin to the one for
non-degenerate equations provided by [35]. We expect that additional growth condi-
tions on f , similar to the non-degenerate case in [34, Proposition 3.5] and [46, Chapter
6, Sec. 5], imply that solutions of (1.1) are bounded, global and generate a dissipative
semiflow. In particular, this would guarantee the global existence of the characteristics
(1.12)–(1.13) after an appropriate cut-off of f outside a sufficiently large set, and thus
the existence of a Lyapunov function E in such a bounded set. Inmore general settings,
including solutions which blow-up, boundedness of E from below may fail. In fact, a
delicate analysis of the characteristic equations (2.10) beyond such crude cut-off may
be required in case of blow-up. For the non-existence of grow-up (i.e. infinite time
blow-up) solutions using such Lyapunov functions, see [3, 4].

In addition, it would be desirable to extract dynamic information on the long-term
behavior of solutions of (1.1). Indeed, under certain conditions on f that also guarantee
asymptotic compactness of the semiflow, there should be a global attractor A ⊂ X
as in the non-degenerate case in [23] or [28, Theorem 2.2]. For particular cases of
degenerate type, see [9, 16]. Thus, as a consequence of the Lyapunov function (1.5),
bounded trajectories should converge to (sets of) equilibria, according to the LaSalle
invariance principle; see [24, Section 4.3] and [5, Chapter 5.7] for the non-degenerate
case. However, the complete description of ω-limit sets is a delicate issue for the
degenerate case. See [2, 8, 10, 18, 48] for specific degenerate cases, which are not in
a fully nonlinear setting. In general, see [25, 38, 40, 42, 43] for a broad overview on
the theory of strongly monotone semiflows, when convergence to the set of stationary
solutions can be proved. Finally, the connection problem for the equations (1.1)–(1.2)
that describes which equilibria are connected by means of a heteroclinic orbit remains
open, see [30] and references therein for the non-denegerate case.
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The remainder of the paper is organized as follows. InSect. 2,weproveTheorem1.1.
In Sect. 3, we compute several significant examples of Lyapunov functions.

2 Proof

We recall the equation (1.9),

fq(x, u, p, 0, 0)uxx = F0(x, u, p) + F1(x, u, p, q, r), (2.1)

with degenerate parabolicity conditions F1
r > 0 and fq ≥ F1

q . See (1.10).
Differentiating the definition (1.5) of the Lyapunov function E with respect to time

t along classical solutions u(t, x) of (1.1), we obtain

d E

dt
=
∫ 1

0

(
Luut + L puxt

)
dx . (2.2)

Here we used that uxt = pt . The Lagrange function L depends on (x, u, p) =
(x, u, ux ), only. It remains to determine L such that d E/dt < 0, except at equi-
libria. Integrating the term L puxt in (2.2) by parts, and carrying out the differentiation
of L p with respect to x , we obtain

d E

dt
= L put

∣∣∣
x=1

x=0
+
∫ 1

0

(
Lu − d

dx
L p

)
ut dx

= L put

∣∣∣
x=1

x=0
+
∫ 1

0

(
Lu − L px − L puux − L ppuxx

)
ut dx .

(2.3)

At this point, Matano would plug in the non-degenerate PDE in uxx . However, this
can not be performed for degenerate equations, since we can not isolate uxx in
equation (2.1), as fq may be zero. In order to remedy this, we modify Matano’s
original Ansatz, L pp = exp(g(x, u, p)), which would yield a first order PDE
to be solved for g(x, u, p). Instead, we consider the different Ansatz (1.11) for
some function g(x, u, p), yet to be found. Note (1.11) is not identically zero, since
fq(x, u, p, 0, 0) �≡ 0 due to (1.2). Thus

d E

dt
= L put

∣∣∣
1

0
+
∫ 1

0

(
Lu − L px − L puux − exp(g) fquxx

)
ut dx . (2.4)

We then substitute the PDE (1.1) recast in (2.1), to obtain
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d E

dt
= L put

∣∣∣
1

0
+
∫ 1

0
(Lu − L px − L puux − exp(g)F0)ut dx −

∫ 1

0
exp(g)F1ut dx .

(2.5)

We seek to construct the Lagrange function L such that the boundary terms vanish,
the parenthesis in the first integral (2.5) also vanishes, and satisfies the Ansatz (1.11)
for some function g(x, u, p). This yields a Lyapunov function such that

d E

dt
= −

∫ 1

0
exp(g)F1ut dx . (2.6)

Note F1ut ≥ 0, due the parabolicity condition F1
r > 0. Next, we guarantee that there

exists a function g(x, u, p) such that

Lu − L px − pL pu − exp(g)F0 = 0, (2.7)

for all (x, u, p) ∈ [0, 1] × R
2, and also L put = 0 on the boundaries x = 0, 1. Note

that (u, p) ∈ R
2 are real variables rather than solutions u, ux of PDEs depending on

(t, x). Differentiating (2.7) with respect to p, the terms L pu cancel, yielding

L ppx + pL ppu + exp(g)gp F0 = − exp(g)F0
p . (2.8)

Rewriting (2.8) in terms of g, according to (1.11), amounts to the first order PDE,

fq gx + p fq gu + F0gp = −F0
p − fqx − p fqu . (2.9)

The method of characteristics can solve (2.9): along solutions of the auxiliary ODEs

ẋ = dx

dτ
= fq(x, u, p, 0, 0),

u̇ = du

dτ
= fq(x, u, p, 0, 0) p,

ṗ = dp

dτ
= F0(x, u, p),

(2.10)

the function g must satisfy

ġ = dg

dτ
= −F0

p(x, u, p) − fqx (x, u, p, 0, 0) − fqu(x, u, p, 0, 0) p, (2.11)

with the initial condition g(0, u0, p0), where (u0, p0) := (u(0, 0), ux (0, 0)). Our
differentiability assumptions on f imply g ∈ C0, at least.

Without further assumptions on the nonlinearity f in (1.1), solutions to (2.10) may
not exist on the whole required interval x ∈ [0, 1]. For this reason, we have assumed
the global existence of solutions for the characteristic equations. Moreover, note that
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the global existence of the characteristics is not enough to guarantee the existence
of a Lyapunov function, in general. Indeed, further complications occur when the
diffusion degenerates (i.e. fq(x, u, p, 0, 0) = 0), since ẋ = u̇ = 0 in (2.10). If
F0(x, u, p) �= 0, then ṗ �= 0 and this may trigger an eventual fq(x, u, p, 0, 0) �= 0.
However, if F0(x, u, p) = 0, then (2.10) encounters an equilibrium and the function
g(x, u, p) can not be constructed along solutions of (2.10). We call this the obstacle
problem. Therefore, the obstacle problem is crucial to rigorously construct energies
for degenerate equations using the present method. We explore some of these issues
in the examples of Sect. 3.

After this construction, we now have to reverse gear and ascend from a function g
satisfying (2.9) to a Lagrange function L satisfying (2.7). The general solution L of
L pp = fq exp(g) can be obtained by integrating it twice with respect to p:

L(x, u, p) :=
∫ p

0

∫ p1

0
fq(x, u, p2, 0, 0) exp(g(x, u, p2)) dp2 dp1

+ L0(x, u) + L1(x, u)p.

(2.12)

This solves (2.8). To ensure that L is also a solution of (2.7), we have to determine
the integration “constants” L0 and L1, appropriately. Recall that (2.8) was obtained
through differentiation of (2.7) with respect to p. Conversely, the left-hand side of
(2.7) is therefore independent of p. Hence (2.7) is satisfied for all p, if it holds for
some fixed value p = p∗ ∈ R.

Deriving (2.12) with respect to u and p yields

Lu =
∫ p

0

∫ p1

0

(
fqu + fq gu

)
exp(g) dp2 dp1 + L0

u(x, u) + L1
u(x, u)p, (2.13a)

L p =
∫ p

0
fq exp(g)dp1 + L1(x, u), (2.13b)

where the integrand arguments are suppressed to alleviate the notation. Moreover,
further differentiating L p with respect to x and u produces

L px =
∫ p

0

(
fqx + fq gx

)
exp(g)dp1 + L1

x (x, u), (2.14a)

L pu =
∫ p

0

(
fqu + fq gu

)
exp(g)dp1 + L1

u(x, u). (2.14b)

Note that evaluating the Eq. (2.7) at p∗ yields Lu = L px + p∗L pu + exp(g)F0.
Substituting (2.13a) and (2.14), evaluated at p∗, and isolating L0

u , we obtain that

L0
u(x, u) = L1

x (x, u) + exp(g(x, u, p∗))F0(x, u, p∗)

+
∫ p∗

0

[
fqx + fq gx + ( fqu + fq gu

)
p∗
]
exp(g)dp1

−
∫ p∗

0

∫ p1

0

(
fqu + fq gu

)
exp(g) dp2dp1.

(2.15)
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Note that the right hand side of (2.15) depends only on f , g, L1 evaluated at p∗. Hence,
we can integrate (2.15) with respect to u, which in turn yields the function L0(x, u)

explicitly written as a function of (x, u) for any p∗. Mathematically, we achieve that

L0(x, u) =
∫ u

0

[
L1

x (x, u1) + exp(g(x, u1, p∗))F0(x, u1, p∗)

+
∫ p∗

0

[
fqx + fq gx + ( fqu + fq gu

)
p∗
]
exp(g)dp1

−
∫ p∗

0

∫ p1

0

(
fqu + fq gu

)
exp(g) dp2dp1

]
du1 + L00(x).

(2.16)

To complete the proof, it only remains to show that L put vanishes at the boundaries
x = 0, 1,which is done by appropriately constructing L1. At any boundary ofDirichlet
type (1.4a) this is trivial because r = ut = 0. Thus we can either let L1 ≡ 0, or

L1(x, u) := −
∫ p∗

0
fq(x, u, p, 0, 0) exp(g(x, u, p))dp, (2.17)

which respectively yields that L p is a finite value or zero, according to (2.13b). Note
that the choice of L1 influences the construction of L0 in (2.16).

In the case of a nonlinear Robin boundary condition (1.4b) at only one boundary,
either x = 0 or x = 1, we have to choose L such that L p(ι, u, bι(u)) = 0. By our
construction (2.12) of L , on behalf of (2.13b), this is equivalent to

L1(ι, u) := −
∫ bι(u)

0
fq(ι, u, p, 0, 0) exp(g(ι, u, p)) dp, (2.18)

and we may choose L1 to be independent of x .
For nonlinear Robin boundary conditions (1.4b) at both boundaries, x = 0 and

x = 1, we define L1(ι, u) as in (2.18) for ι = 0, 1. Therefore, the linear interpolation
L1(x, u) := (1−x)L1(0, u)+x L1(1, u)provides L1 ∈ C1 such that L p(ι, u, bι(u)) =
0.

For example, if p∗ = 0, the construction of L yields L p = L1, L px = L1
x and

Lu = L0
u . Evaluating either (2.7) or (2.15) at p∗ = 0 yields L0

u = L1
x + exp(g)F0.

Integrating with respect to u, in agreement with (2.16), we can neglect an irrelevant
additive constant L00(x) for E to obtain that

L0(x, u) :=
∫ u

0

[
L1

x (x, u1) +
(
exp(g(x, u1, p∗))F0(x, u1, p∗)

)
|p∗=0

]
du1.

(2.19)

For p∗ = 0, the choices of L1, which depend on the boundary conditions, yield
L1 ≡ 0 for Dirichlet boundary conditions and (2.18) is unchanged for Robin boundary
conditions.
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Table 1 Comparison of known Lyapunov functions and the new candidate formulae for specific PDEs using
Matano’s method

Section PDE Energy

Section 3.1 ut = a(ux )uxx + h(u)
Old :

∫ 1

0

(∫ p

0

∫ p1

0
a(p2)dp2dp1 −

∫ u

0
h(u1)du1

)
dx

New : Same

Section 3.2 ut = 1+u2x

1−
(
1− u2x

1+u2x

)
uxx

Old : |M2
t |1/2

(
8π −

∫

M2
t

H2dμt

)
, see [36], [37, Prop. 6.1]

New :
∫ 1

0
ux arctan(ux ) − log(1 + u2

x ) − u dx

Section 3.3 ut =
(

ux√
1+u2x

)

x
+ un

x

Old : Unknown

New :
∫ 1

0

(∫ p

0

∫ p1

0

1

|p2|n(1 + p22)
3
2

dp2 dp1

)
− u dx

See Table 2 for n = 1, 2, 3, 4, 5

Section 3.4 ut = (|ux |ρ−2ux )x + un
x

Old : ρ = 2 :
∫ 1

0

( |ux |2−n

(2 − n)(1 − n)
− u

)
dx, see [3, 33]

ρ �= 2 : Unknown, see [4, 41]

New: n �= ρ, ρ − 1 :
∫ 1

0

(ρ − 1)

(ρ − n)(ρ − n − 1)
|ux |ρ−n − u dx

n = ρ − 1 :
∫ 1

0
(ρ − 1)|ux | (log |ux | − 1) − u dx

n = ρ :
∫ 1

0
(1 − ρ) log |ux | − u dx

Section 3.5 ut = (um)xx

Old :
∫ 1

0

um+1

m + 1
dx, see [2, 13, 49], [48, Eq. (2.7)]

New :
∫ 1

0
mum−1|ux | (log |ux | − 1) dx

3 Examples

Weexplicitly compute examples of energy candidates using themethod in the previous
section and compare them with well-known Lyapunov functions in the literature;
see Table 1. For the sake of simplicity, we consider Dirichlet boundary conditions
throughout the examples, which yield L1 ≡ 0.

3.1 Gradient-degenerate quasilinear diffusion with nonlinear forcing

Consider the equation

ut = a(ux )uxx + h(u), (3.1)

with a, h ∈ C2 such that a(ux ) ≥ 0, where the equality only happens in a set of
measure zero, due to (1.3). In the abstract setting in the previous section, we have that
fq = a(p), F0 = −h(u) and F1 = ut .
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Thus, the characteristic equations (2.10) are given by

ẋ = a(p),

u̇ = a(p) p,

ṗ = −h(u),

(3.2)

and g evolves according to (2.11), i.e.,

ġ = 0. (3.3)

Note that if h(u) �= 0, then ṗ �= 0 and the Eq. (3.2) does not encounter an equilibrium
obstacle. However, if h(u) = 0 for some u ∈ R, then there is a constant equilibrium of
the PDE (3.1), which is also an equilibrium obstacle for the characteristic equations.
However, in either case, note that ġ = 0. Therefore g(x(τ ), u(τ ), p(τ )) is a constant
function along any solution of the (3.1), and therefore we obtain the trivial solution
g ≡ 0 for the initial condition g0 := g(0, u(0), p(0)) = g(0, u0, p0) = 0. Due to the
Eq. (1.11), we obtain that L pp = a(p). Note that L1 ≡ 0 due to Dirichlet boundary
conditions, and L0 = − ∫ u

0 h(u1) du1 due to the Eq. (2.19) for p∗ = p0. Hence (2.12)
implies that

E =
∫ 1

0

(∫ p

0

∫ p1

0
a(p2) dp2 dp1 −

∫ u

0
h(u1) du1

)
dx, (3.4)

which decays according to

d E

dt
= −

∫ 1

0
u2

t dx . (3.5)

Note that for Robin boundary conditions, Eq. (2.18) yields the following term,

L1(x, u) = −(1−x)
∫ b0(u)

0 a(p1)dp1−x
∫ b1(u)

0 a(p1)dp1, whereas Eq. (2.19) implies

L0(x, u) = ∫ u
0

(∫ b0(u1)
b1(u1)

a(p1)dp1 − h(u1)
)

du1. Therefore, the energy candidate for-

mula (3.4) can be modified accordingly. We reiterate that the rigorousness of this
formula depends on the delicacy of solutions of the characteristic equations (3.2).

In particular, the ρ-Laplacian2 equation occurs when a(ux ) = (ρ − 1)|ux |ρ−2 and
h ≡ 0, and thus we recover its well-known energy E = ∫ 1

0 |ux |ρ/ρ dx . Also, the
mean curvature flow for one dimensional graphs occurs when a(ux ) = (1 + u2

x )
−3/2

and h ≡ 0, and thereby we also recover the energy E = ∫ 10
√
1 + u2

x dx . This energy
accounts for the perimeter of the curve, which decreases under evolution of mean
curvature according to (3.5). For a proof of infinite time blow-up (i.e. grow-up) for a
mean curvature flow with a general Hamiltonian reaction of type h(x, u), due to the
existence of this well-known energy formula, see [11]. Note that the mean curvature
flow only degenerates at infinity, i.e., when |ux | → ∞, and thus we expect that

2 In the literature, this operator is called the p-Laplacian. However, in our notation p := ux and thus we
replace the parameter p by ρ in the degenerate diffusion operator, i.e., ∂ρu := (|ux |ρ−2ux )x .
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an appropriate compactification of the semiflow will be described by a degenerate
equation at infinity, see [32].

The energy formula (3.4) is ubiquitous in the theory of degenerate parabolic PDEs
in divergence form, whenever the degeneracy occurs in the gradient. It is a well-
defined and sufficiently regular energy with several consequences which include well-
posedness, regularity and dynamical properties. See, for example, [9, 14, 16].

3.2 Inverse mean curvature flow for certain graphs

Consider the equation

ut = 1 + u2
x

1 −
(
1 − u2x

1+u2x

)
uxx

. (3.6)

This equation has been considered in higher dimensions in [36, Section 3], and we
construct a different monotone quantity in comparison to [37, Proposition 6.1].

In this case, we have that

fq = (1 + u2
x )

2

(1 + u2
x − uxx )2

, F0 = −(1 + u2
x ), F1 = ut + u2

xx

uxx − (1 + u2
x )

(3.7)

Note that this equation is not degenerate, since fq(x, u, p, 0, 0) = 1, but it is singular
whenever uxx = u2

x + 1. The characteristic equations (2.10) is given by

ẋ = 1,

u̇ = p,

ṗ = −(1 + p2),

(3.8)

and (2.11) is given by

ġ = 2p. (3.9)

Since the Eq. (3.6) is non-degenerate, then ẋ > 0 and the characteristic equations
(3.8) does not encounter an equilibrium obstacle. Thus, the global existence of char-
acteristics is enough to pursue the construction in the previous section and guarantee
the existence of a Lyapunov function. We can solve these equations explicitly:

p(τ ) = − tan(τ + arctan(−p0)) (3.10)

and

g(τ ) = g0 + 2 log

(
cos(τ + arctan(−p0))

cos(arctan(−p0))

)
. (3.11)
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Consequently,

g(p) = g0 + 2 log

(
cos(arctan(−p))

cos(arctan(−p0))

)
,

= g0 + log

(
1 + p20
1 + p2

) (3.12)

Note that we obtain a finite value g(p) for any p ∈ R, including p = 0. Thus Eqs.
(1.11), (2.19) with p∗ = 0, and the Dirichlet boundary imply that

L pp = exp(g0)
1 + p20
1 + p2

L0 = − exp(g0)(1 + p20)u and L1 = 0.

(3.13)

Thus the energy (2.12), up to a multiplicative constant exp(g0)(1 + p20), is given by

E =
∫ 1

0

(
ux arctan(ux ) − log(1 + u2

x ) − u

)
dx, (3.14)

which decays according to

d E

dt
= −

∫ 1

0

(2 + u2
x )u

2
x

(1 + u2
x )

3 u2
t dx, (3.15)

since F1 given by (3.7) can be rewritten as F1 = (2+u2x )u2x
(1+u2x )2

ut by substituting (3.6). Note

that neither the energy formula (3.14), nor its decay in (3.15), possess singularities for
bounded values u, ux ∈ R.

Note that for Robin boundary conditions, Eq. (2.18) yields the following
term, L1(x, u) = − exp(g0)(1 + p20)

[
(1 − x) arctan(b0(u)) + x arctan(b1(u))

]
,

whereas Eq. (2.19) implies L0(x, u) = exp(g0)(1 + p20)
∫ u
0 arctan(b0(u1)) −

arctan(b1(u1)) du1. Therefore the energy formula (3.14) can bemodified accordingly.
We emphasize that, in this example, we have computed an energy formula for a

fully nonlinear non-degenerate equation, where the method in [31] is not applicable.
Indeed, the splitting of the PDE (3.6) according to [31] defines different functions
F, F0, F1 than our present method, which yields a different splitting of the PDE in
contrast to (1.9). In particular, the functions F, F0, F1 in [31] are not well-defined for
this example. Roughly speaking, trying to isolate uxx in (3.6) to define the function F
in [31] yields an ill-defined vector field when ut = 0. Therefore, the present example
shows that our current method, which splits the PDE according to (1.9), overcomes
certain problems arising even in the non-degenerate construction in [31].
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3.3 Mean curvature flowwith an external forcing

Consider the equation that describes the mean curvature flow for planar graphs with
an external forcing given by un

x with n ∈ N,

ut =
(

ux√
1 + u2

x

)

x

+ un
x = uxx

(1 + u2
x )

3
2

+ un
x . (3.16)

In this case, we have that fq = (1 + u2
x )

−3/2, F0 = −un
x and F1 = ut . Note that for

solutions which do not blow-up in the gradient (e.g. differentiable solutions), fq > 0
and thereby the Eq. (3.16) is non-degenerate. Hence the characteristic equations (2.10)
are given by

ẋ = 1

(1 + p2)
3
2

,

u̇ = p

(1 + p2)
3
2

,

ṗ = −pn,

(3.17)

and (2.11) is given by

ġ = npn−1. (3.18)

Since the Eq. (3.16) is non-degenerate, then ẋ > 0 and the characteristic equations
(3.17) does not encounter an equilibrium obstacle for finite p ∈ R. Note that if p0 = 0,
then p(τ ) ≡ 0 and g(τ ) ≡ g0.3 Moreover, if p0 > 0, then p(τ ) decreases to 0 as
τ → ∞, however, if p0 < 0, then p(τ ) either decreases to 0 as τ → ∞ or blows up
in finite time, respectively for n odd or even. In addition, if p(τ ) blows up in finite
time, note that the characteristic equations encounters a singularity obstacle, where
ẋ = u̇ = 0, but ṗ = ±∞. Thus, for n odd, the global existence of characteristics is
enough to pursue the construction in the previous section and guarantee the existence
of a Lyapunov function, which is not the case for n even.

We can solve these equations explicitly,

p(τ ) =

⎧⎪⎨
⎪⎩

p0e−τ for n = 1
p0(

1+(n−1)pn−1
0 τ

) 1
n−1

for n > 1, (3.19)

3 For p0 = 0 (i.e. p ≡ 0 and g ≡ g0), we obtain that L pp = exp(g0)/(1+ p2)
3
2 for all n ∈ N. This yields

E = ∫ 10
√
1 + u2x dx , up to a multiplicative constant exp(g0), which is the perimeter of the curve; similar

to the mean curvature flow with Hamiltonian forcing in Sect. 3.1.
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and

g(τ ) =
⎧⎨
⎩

τ + g0 for n = 1

log
(
1 + (n − 1)pn−1

0 τ
) n

n−1 + g0 for n > 1.
(3.20)

Consequently,

g(p) = log

(
p0
p

)n

+ g0 (3.21)

for all n ∈ N. Therefore, the Eqs. (1.11), (2.19) with p∗ = p0 �= 0, and Dirichlet
boundary conditions yield

L pp = exp(g0)|p0|n 1

|p|n(1 + p2)
3
2

L0 = − exp(g0)|p0|nu and L1 = 0.

(3.22)

Thus the energy (2.12), up to a multiplicative constant exp(g0)|p0|n , is formally given
by

E =
∫ 1

0

(∫ p

0

∫ p1

0

1

|p2|n(1 + p22)
3
2

dp2 dp1

)
− u dx, (3.23)

which decays according to

d E

dt
= −

∫ 1

0

u2
t

|ux |n dx . (3.24)

However, note that (3.22) may not be twice integrable for all n ∈ N and therefore the
energy (3.23)may be ill-defined for some n ∈ N. This is in contrast with the example in
Sect. 3.4, which possess the same characteristic equation, but it has a different Ansatz
for L pp.

Since Eq. (3.16) is non-degenerate for bounded solutions, one can compute a Lya-
punov function for classical bounded solutions following the original construction of
Matano in [31, 39]. We now proceed with the original construction to compare with
our present results. Indeed, instead of separating the Eq. (3.16) according to (1.9),
which amounts to the characteristic equations (1.12), the characteristics in [31, 39]
are given by

ẋ = 1,

u̇ = p,

ṗ = −pn(1 + p2)
3
2 ,

(3.25)
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whereas the unknown g should satisfy the follow equation, in contrast to (1.13),

ġ = pn−1[n + (n + 3)p2]
√
1 + p2. (3.26)

Note that the evolution equation for p in (3.25) decouples from (x, u) similar to (3.17).
Moreover, the global existence of the characteristics equation (3.25) still depends on
the parity of n, i.e., global existence only occurs for odd n. However, a seemingly more
complicated vector field appears in the right hand side. In order to obtain a simpler
equation for p, which can be solved explicitly, we introduce a new time variable, τ̃ ,
such that p′ := dp/d τ̃ = (1 + p2)−3/2 ṗ, which transforms the Eq. (3.25) into4

x ′ = 1

(1 + p2)
3
2

,

u′ = p

(1 + p2)
3
2

,

p′ = −pn,

(3.27)

whereas the unknown g satisfies

g′ = pn−1[n + (n + 3)p2]
1 + p2

. (3.28)

Similarly to (3.34), we can solve the relevant part of the Eq. (3.25) explicitly:

p(τ̃ ) =

⎧⎪⎨
⎪⎩

p0e−τ̃ for n = 1
p0(

1+(n−1)pn−1
0 τ̃

) 1
n−1

for n > 1, (3.29)

and

g(τ̃ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g0 + log(1 + p20)
3
2 + 4τ̃ + log

(
e−3τ̃

(1+p20e−2τ̃ )
3
2

)
for n = 1

g0 + log(1 + p20)
3
2 + log

⎛
⎜⎝ (1+τ̃ (n−1)pn−1

0 )
n+3
n−1

(
p20+(1+τ̃ (n−1)pn−1

0 )
2

n−1

) 3
2

⎞
⎟⎠ for n > 1.

(3.30)

Consequently,

g(p) = g0 + log(1 + p20)
3
2 + log

(
pn
0

pn(1 + p2)
3
2

)
. (3.31)

4 Note the characteristics (3.27) coincide with the one obtained through our construction, see (3.17).
However, the equations for g given by (3.28) and (3.18) are different. This occurs since our Ansatz in (1.11)
is different than Matano’s, which is L pp = exp(g).
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Table 2 Explicit examples of the energy candidates (3.23) for the Eq. (3.16) for n = 1, 2, 3, 4, 5

n Energy formula

1 E =
∫ 1

0
− ux tanh−1

(√
1 + u2x

)
− u dx

2 E =
∫ 1

0
tanh−1

(√
1 + u2x

)
− 2
√
1 + u2x − u dx

3 E =
∫ 1

0

1

|ux |
(√

1 + u2x + 3u2x tanh−1
(√

1 + u2x

))
− u dx

4 E =
∫ 1

0

(1 + 16u2x )

√
1 + u2x

u2x
−

tanh−1
(√

1 + u2x

)

2
− u

31/3
dx .

5 E =
∫ 1

0
−
(

1

u2x |ux |
(√

1 + u2x (−2 + 19u2x ) + 45u4x tanh−1(

√
1 + u2x )

)
+ u

)
dx

Note that for n = 1, 3, 5, a Taylor series expansion nearby ux ≈ 0 yields that ux tanh−1(

√
1 + u2x ) ≈ 0,

which yields a well-defined energy formula. However, for n = 2, 4, we obtain that tanh−1(

√
1 + u2x ) = ∞

for ux = 0, which yields an ill-defined formula. These examples display the limitations of both Matano’s
and our methods

In turn, Matano’s Ansatz yields

L pp = exp(g) = exp(g0)|p0|n(1 + p20)
3
2

1

|p|n(1 + p2)
3
2

. (3.32)

Therefore, we compare the resulting L pp in (3.32) following Matano’s construction
to the resulting L pp in (3.22) using our construction. Note these are equal, up to
a multiplicative constant (1 + p0)3/2, and hence both our methods yield the same
energy formulae. Therefore, the lack of integrability of L pp for some n occurs both in
our andMatano’s methods. In particular, we have used the software Maple to formally
compute the integrals (3.23) for n = 1, 2, 3, 4, 5, which is displayed in the Table 2.

Recall that the Eq. (3.16) is non-degenerate for bounded solutions, and therefore
the characteristic equations (3.17) do not encounter the equilibrium obstacle. On one
hand, if p0 �= 0 and n is odd, then solutions of the characteristics are global and a
singularity is not reached in finite time. On the other hand, if p0 ≤ 0 and n is even, then
the characteristics display finite time blow-up, which may suppress the well-definition
of a Lyapunov function, as can be seen in the Table 2.

3.4 �-Laplacian diffusion with an external forcing

Consider the ρ-Laplacian equation with external forcing of type un
x with n ∈ N,

ut = ∂ρu + un
x = (ρ − 1)|ux |ρ−2uxx + un

x , (3.33)

where ρ ≥ 2 and n ≥ 0. In terms of the formulation in the previous section, we have
that fq = (ρ − 1)|ux |ρ−2, F0 = −un

x , and F1 = ut .
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Hence the characteristic equations (2.10) are given by

ẋ = (ρ − 1) |p|ρ−2,

u̇ = (ρ − 1) |p|ρ−1,

ṗ = −pn,

(3.34)

and (2.11) becomes

ġ = npn−1. (3.35)

Note that the Eq. (3.34) encounters the equilibrium obstacle. Indeed, whenever p = 0,
we obtain that ẋ = u̇ = ṗ = ġ = 0. Moreover, note that whenever p = 0 for some
x ∈ [0, 1], this amounts to ut = 0 for such point x ∈ [0, 1], due to (3.33). On one
hand, if p0 = 0, then we consider a constant g ≡ g0, due to (3.35), which amounts
to L pp = (ρ − 1) exp(g0)|p|ρ−2. On the other hand, if p0 > 0, then one can solve
the Eq. (3.34) and find g by the methods of characteristics, since ṗ = −pn implies
that p → 0 as τ → ∞, and therefore the equilibrium obstacle is not reached in finite
time. For p0 �= 0, note that the relevant equations in (3.34) coincide with (3.34),
we obtain the same solutions in (3.19) and (3.20). Hence the Eqs. (1.11), (2.19) with
p∗ = p0 �= 0, and Dirichlet boundary conditions yield

L pp = (ρ − 1) exp(g0)|p0|n |p|ρ−n−2, L0 = − exp(g0)|p0|nu, and L1 = 0.

(3.36)

Hence the Lagrangian L can be obtained according to (2.12), yielding the following
energy formula, up to a multiplicative constant exp(g0)|p0|n :

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

0

(ρ − 1)

(ρ − n)(ρ − n − 1)
|ux |ρ−n − u dx for n �= ρ, ρ − 1,

∫ 1

0
(ρ − 1)|ux | (log |ux | − 1) − u dx for n = ρ − 1,

∫ 1

0
(1 − ρ) log |ux | − u dx for n = ρ

(3.37)

which decays according to

d E

dt
= −

∫ 1

0

u2
t

|ux |n dx . (3.38)

For ρ = 2 and n > 2, see [3] for the construction in case of a reaction term |ux |n .
Moreover, for ρ = 2 and n ∈ (0, 1), the same energy (3.37) with decay (3.38) was
obtained in [33]. See both [3, 33] for a discussion on other values of n and in case
of a signed reaction a|ux |n for some a ∈ R. For an interplay between a gradient and
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Hamiltonian reaction, i.e.h(u, ux ) = ε(um)x+un , see [21]. Forρ = 2, theEq. (3.33) is
not degenerate and thus the Lyapunov function regular, as solutions of a strict parabolic
equation are also regular for t > 0. However, for ρ �= 2, instead of directly obtaining
a Lyapunov function which is intrinsic for the degenerate equations, the authors in [4,
41] resourced to viscosity approximations and an associated approximating Lyapunov
function. See [12] for a user’s guide on viscosity solutions.

Since we have not proved any further regularity of the energy E , its derivative is
also formal. For equilibria, ut ≡ 0, the energy E in (3.37) is constant, and its derivative
d E/dt given by (3.38) either vanishes or it attains the value −∞ in case the integrand
in (3.38) is not integrable, which means the derivative is not well defined. Similarly for
time dependent solutions: either (3.38) is integrable yielding negative bounded values,
or (3.38) is not integrable and thereby ill-defined. Thus, equilibria may be critical
points of a non-differentiable energy. See [33], who mentions that (3.38) is singular
and it is not clear how to give a meaning to it. However, [33, Proposition 9] provides
a weaker result which is sufficient to obtain dynamical information. Indeed, note that
one can still obtain dynamical information for continuous Lyapunov functions, see
[24, Chapter 4] and [5, Chapter 5.7]. See also [3, 33, 41].

Note that the energy in this example remains true for n < 0, even though the reaction
term in the vector field is singular when ux = 0. In this case, the decay rate of the
energy in (3.38) is bounded along bounded solutions of (3.33). Thus, our methods can
be applied in certain cases of quenching phenomena, whenever the hypothesis (1.2)
holds true and one can solve the characteristic equations. See [47] for an example of
quenching in a fully nonlinear equation.

Note that our construction can be replicated for more general external forcing. For
example, when ρ = 2 and the nonlinearity is of exponential type, see [51].

3.5 Porousmedium equation

Consider the porous medium equation (PME) for m ≥ 1,

ut = (um)xx = mum−1uxx + m(m − 1)um−2u2
x . (3.39)

Note this is a degenerate parabolic equation for non-negative solutions u ≥ 0, only.5

Instead of considering (um)xx as a nonlinear diffusion operator, we split it into two
separate terms: a nonlinear degenerate diffusion, mum−1uxx , and a nonlinear reaction,
m(m − 1)um−2u2

x . Indeed, in the previous setting, fq = mum−1, F0 = −m(m −
1)um−2u2

x and F1 = ut . Therefore the characteristic equations (2.10) are given by

ẋ = mum−1,

u̇ = mum−1 p,

ṗ = −m(m − 1)um−2 p2,

(3.40)

5 The diffusion given by (|u|m−1u)xx = m|u|m−1uxx + m(m − 1)|u|m−3uu2x is a natural extension that
takes sign-changing solutions into account, which is thereby called the signed PME in [49]. For the sake
of simplicity, we proceed with the non-signed PME in the main text.
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and (2.11) reduces to

ġ = m(m − 1)um−2 p. (3.41)

Note that the Eq. (3.40) encounters the equilibrium obstacle. Indeed, whenever u = 0,
we obtain that ẋ = u̇ = ṗ = ġ = 0. Moreover, note that whenever u = 0 for some
x ∈ [0, 1], this amounts to ut = 0 for such point x ∈ [0, 1], due to (3.39). On one hand,
if u0 = 0 for τ ∈ (τm, τM ), then we consider a constant g ≡ g0 for τ ∈ (τm, τM ),
due to (3.41), which amounts to L pp = m exp(g0)um−1. On the other hand, if u0 > 0
for τ ∈ (τm, τM ), then one can solve the Eq. (3.34) and find g by the methods of
characteristics. For u0 �= 0, we introduce the variable τ̃ such that d τ̃ /dτ = mum−2,
with notation (.)′ = d(.)/d τ̃ , the characteristic equations become

x ′ = u,

u′ = up,

p′ = −(m − 1)p2,

(3.42)

and

g′ = (m − 1)p. (3.43)

We can solve this explicitly, which yields

p(τ̃ ) = 1

1/p0 + (m − 1)τ̃
, (3.44)

and

g(τ̃ ) = g0 + log ((m − 1)p0τ̃ + 1) . (3.45)

Hence

g(p) = g0 + log

(
p0
p

)
. (3.46)

Thus Eqs. (1.11), (2.19) with p∗ = 0, and the Dirichlet boundary imply that

L pp = m exp(g0)

∣∣∣∣
p0
p

∣∣∣∣ um−1, L0 = 0, and L1 = 0. (3.47)

Hence the Lagrangian L can be obtained according to (2.12), yielding the following
energy candidate, up to a multiplicative constant |p0| exp(g0),

E =
∫ 1

0
mum−1|ux | (log |ux | − 1) dx, (3.48)
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which decays according to

d E

dt
= −

∫ 1

0

u2
t

|ux | dx . (3.49)

Note that (3.48) is different from the usual energy given by Ẽ = ∫ 10 um+1

m+1 dx such

that d Ẽ
dt = − ∫ 10 [(um)x ]2 dx . The energy E decays with respect to the L2-norm of

ut with weight 1/|ux |, whereas Ẽ decays with respect to the L2-norm of (um)x .
Recall that the decay rate (3.49) is a formal computation and the energy E may
not be differentiable. However, one is still able to infer dynamical properties from
a continuous Lyapunov function; see the discussion after Eq. (3.38). Thus, the new
energy E in (3.48) may be more suitable than Ẽ to infer dynamical properties of the
porous medium equation, such as [2, 13, 49], especially in case of further gradient-
dependent forcing.

Yet another Lyapunov function of a rescaled porous medium equation was found
in [48] for m > 1, along with the asymptotic classification of solutions in one dimen-

sion. Indeed, considering the following rescaling, u(t, x) = t−
1

m−1 θ(τ, x) where
t = exp(τ ), the function θ satisfies the following PDE:

θτ = (θm)xx + 1

m − 1
θ. (3.50)

This equation possess the following Lyapunov function,

V :=
∫ 1

0

|(|θm−1|θ)x |2
2

− m

(m + 1)(m − 1)
|θ |m+1dx, (3.51)

which decays according to

dV

dt
= −m

∫ 1

0
|θ |m−1(θτ )

2dx ≤ 0. (3.52)

The Lyapunov function V decays in a similar manner as E , i.e., the energy V decreases
except for θ ≡ 0 and equilibria θτ = 0.

For an equivalence between the porous medium equation and the ρ-laplacian, see
[26]. For the doubly nonlinear equation, which combines the diffusion of the porous
medium and the ρ-laplacian, see [17, 27]. In particular, since we have obtained a new
energy for the porous medium equation, we also expect to obtain a new formula for
the doubly nonlinear equation and generalizations thereof.
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