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Abstract
We improve the previously best known upper bounds on the sizes of θ -spherical codes
for every θ < θ∗ ≈ 62.997◦ at least by a factor of 0.4325, in sufficiently high dimen-
sions. Furthermore, for sphere packing densities in dimensions n ≥ 2000 we have
an improvement at least by a factor of 0.4325 + 51

n . Our method also breaks many
non-numerical sphere packing density bounds in smaller dimensions. This is the first
such improvement for each dimension since thework ofKabatyanskii and Levenshtein
(Problemy Peredači Informacii 14(1):3–25, 1978) and its later improvement by Lev-
enshtein (Dokl Akad Nauk SSSR 245(6):1299–1303, 1979) . Novelties of this paper
include the analysis of triple correlations, usage of the concentration of mass in high
dimensions, and the study of the spacings between the roots of Jacobi polynomials.
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1 Introduction

1.1 Spherical codes and packings

Packing densities have been studied extensively, for purely mathematical reasons as
well as for their connections to coding theory. The work of Conway and Sloane is a
comprehensive reference for this subject [10]. We proceed by defining the basics of
this subject. Consider R

n equipped with the Euclidean metric |.| and the associated
volume vol(.). For each real r > 0 and each x ∈ R

n , we denote by Bn(x, r) the open
ball in R

n centered at x and of radius r . For each discrete set of points S ⊂ R
n such

that any two distinct points x, y ∈ S satisfy |x − y| ≥ 2, we can consider

P := ∪x∈S Bn(x, 1),

the union of non-overlapping unit open balls centered at the points of S. This is called
a sphere packing (S may vary), and we may associate to it the function mapping each
real r > 0 to

δP(r) := vol(P ∩ Bn(0, r))

vol(Bn(0, r))
.

The packing density of P is defined as

δP := lim sup
r→∞

δP(r).

Clearly, this is a finite number. Themaximal sphere packing density inR
n is defined

as

δn := sup
P⊂Rn

δP,

a supremum over all sphere packings P of R
n by non-overlapping unit balls.

The linear programming method initiated by Delsarte is a powerful tool for giving
upper bounds on sphere packing densities [13]. That being said, we only know the
optimal sphere packing densities in dimensions 1, 2, 3, 8 and 24 [8, 14, 15, 29]. Very
recently, the first author proved an optimal upper bound on the sphere packing density
of all but a tiny fraction of even unimodular lattices in high dimensions; see [25,
Theorem 1.1].
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New upper bounds for spherical codes and packings 3655

The best known linear programming upper bounds on sphere packing densities
in low dimensions are based on the linear programming method developed by Cohn–
Elkies [7]which itselfwas inspired byDelsarte’s linear programmingmethod.As far as
the exponent is concerned, in high dimensions, the best asymptotic upper bound goes
back to Kabatyanskii–Levenshtein from 1978 [17] stating that δn ≤ 2−(0.599+o(1))n as
n → ∞. More recently, de Laat–de Oliveira Filho–Vallentin improved upper bounds
in very low dimensions using the semi-definite programming method [12], partially
based on the semi-definite programming method developed by Bachoc–Vallentin [3]
for bounding kissing numbers. The work of Bachoc–Vallentin was further improved
by Mittelmann–Vallentin [23], Machado–de Oliveira Filho [22], and very recently
after the writing of our paper by de Laat–Leijenhorst [19].

Another recent development is the discovery by Hartman–Mazác–Rastelli [16] of
a connection between the spinless modular bootstrap for two-dimensional confor-
mal field theories and the linear programming bound for sphere packing densities.
After the writing of our paper, Afkhami-Jeddi–Cohn–Hartman–de Laat–Tajdini [1]
numerically constructed solutions to the Cohn–Elkies linear programming problem
and conjectured that the linear programming method is capable of producing an upper
bound on sphere packing densities in high dimensions that is exponentially better than
that of Kabatyanskii–Levenshtein.

A notion closely related to sphere packings in Euclidean spaces is that of spheri-
cal codes. By inequalities relating sphere packing densities to the sizes of spherical
codes, Kabatyanskii–Levenshtein [17] obtained their bound on sphere packing densi-
ties stated above. The sizes of spherical codes are bounded from above usingDelsarte’s
linear programmingmethod. In what follows, we define spherical codes and this linear
programming method.

Given Sn−1, the unit sphere in R
n , a θ -spherical code is a finite subset A ⊂ Sn−1

such that no two distinct x, y ∈ A are at an angular distance less than θ . For each
0 < θ ≤ π , we define M(n, θ) to be the largest cardinality of a θ -spherical code
A ⊂ Sn−1.

The Delsarte linear programming method is applied to spherical codes as follows.
Throughout this paper, we work with probability measures μ on [−1, 1]. μ gives an
inner product on the R-vector space of real polynomials R[t], and let {pi }∞i=0 be an
orthonormal basis with respect to μ such that the degree of pi is i and pi (1) > 0 for
every i . Note that p0 = 1. Suppose that the basis elements pk define positive definite
functions on Sn−1, that is,

∑

xi ,x j ∈A

hi h j pk(〈xi , x j 〉) ≥ 0 (1)

for any finite subset A ⊂ Sn−1 and any real numbers hi ∈ R. An example of a
probability measure satisfying inequality (1) is

dμα = (1 − t2)α
∫ 1
−1(1 − t2)αdt

dt,
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3656 N. T. Sardari, M. Zargar

where α ≥ n−3
2 and 2α ∈ Z. Given s ∈ [−1, 1], consider the space D(μ, s) of all

functions f (t) =∑∞
i=0 fi pi (t), fi ∈ R, such that

(1) fi ≥ 0 for every i , and f0 > 0,
(2) f (t) ≤ 0 for −1 ≤ t ≤ s.

Suppose 0 < θ < π , and A = {x1, . . . , xN } is a θ -spherical code in Sn−1. Given a
function f ∈ D(μ, cos θ), we consider

∑

i, j

f (〈xi , x j 〉).

This may be written in two different ways as

N f (1) +
∑

i �= j

f (〈xi , x j 〉) = f0N 2 +
∞∑

k=1

fk

∑

i, j

pk(〈xi , x j 〉).

Since f ∈ D(μ, cos θ) and 〈xi , x j 〉 ≤ cos θ for every i �= j , this gives us the
inequality

N ≤ f (1)

f0
.

We define

L( f ) := f (1)

f0
. (2)

In particular, this method leads to the linear programming bound

M(n, θ) ≤ inf
f ∈D

(
dμ n−3

2
,cos θ

)L( f ). (3)

One of the novelties of our work is the construction using triple points of new test
functions in Sect. 3 satisfying conditions (1) and (2) of the Delsarte linear program-
ming method. In fact, our functions are infinite linear combinations of coefficients of
the matrices appearing in Theorem 3.2 of Bachoc–Vallentin [3]. Bachoc–Vallentin use
semi-definite programming to obtain an upper bound on kissing numbers M(n, π

3 ) by
summing over triples of points in spherical codes. On the other hand, we average one of
the three points over the sphere, and take the other two points from the spherical code.
Semi-definite programming is computationally feasible in very low dimensions, and
improves upon linear programming bounds [11]. After thewriting of our paper, a semi-
definite programming method using triple point correlations for sphere packings was
developed by Cohn–de Laat–Salmon [6], improving upon linear programming bounds
on sphere packings in special low dimensions. In the semi-definite programmingmeth-
ods, the functions are numerically constructed. Furthermore, in high dimensions, there
is no asymptotic bound using semi-definite programming which improves upon the
linear programming bound of Kabatyanskii–Levenshtein [17], even up to a constant
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New upper bounds for spherical codes and packings 3657

factor. The functions that we non-numerically construct improve upon [17] by a con-
stant factor. In the same spirit, we also improve upon sphere packing density upper
bounds in high dimensions.

Upper bounds on spherical codes are used to obtain upper bounds on sphere packing
densities through inequalities proved using geometric methods. For example, for any
0 < θ ≤ π/2, Sidelnikov [26] proved using an elementary argument that

δn ≤ sinn(θ/2)M(n + 1, θ). (4)

Let 0 < θ < θ ′ ≤ π . We write λn(θ, θ ′) for the ratio of volume of the spherical
cap with radius sin(θ/2)

sin(θ ′/2) on the unit sphere Sn−1 to the volume of the whole sphere.
Sidelnikov [26] used a similar argument to show that for 0 < θ < θ ′ ≤ π

M(n, θ) ≤ M(n + 1, θ ′)
λn(θ, θ ′)

. (5)

Kabatyanskii–Levenshstein used the Delsarte linear programming method and
Jacobi polynomials to give an upper bound on M(n, θ) [17]. A year later, Lev-
enshtein [20] found optimal polynomials up to a certain degree and improved the
Kabatyanskii–Levenshtein bound by a constant factor. Levenshtein obtained the upper
bound

M(n, θ) ≤ MLev(n, θ), (6)

where

MLev(n, θ) :=
{
2
(d+n−1

n−1

)
if tα+1,α

1,d < cos(θ) ≤ tα+1,α+1
1,d ,

(d+n−1
n−1

)+ (d+n−2
n−1

)
if tα+1,α+1

1,d−1 < cos(θ) ≤ tα+1,α
1,d .

(7)

Here, α = n−3
2 and tα,β

1,d is the largest root of the Jacobi polynomial pα,β
d of degree

d = d(n, θ), a function of n and θ . We carefully define d = d(n, θ) and Levenshtein’s
optimal polynomials in Sect. 5.1. Also see Sect. 5.1 for the definition and properties
of Jacobi polynomials.

Throughout this paper, θ∗ = 62.997 · · ·◦ is the unique root of the equation

cos θ log

(
1 + sin θ

1 − sin θ

)
− (1 + cos θ) sin θ = 0

in (0, π/2). As demonstrated by Kabatyanskii–Levenshtein in [17], for 0 < θ < θ∗,
the bound M(n, θ) ≤ MLev(n, θ) is asymptotically exponentially weaker in n than

M(n, θ) ≤ MLev(n + 1, θ∗)
λn(θ, θ∗)

(8)
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3658 N. T. Sardari, M. Zargar

obtained from inequality (5). Barg–Musin [4, p.11 (8)], based on the work [2] of
Agrell–Vargy–Zeger, improved inequality (5) and showed that

M(n, θ) ≤ M(n − 1, θ ′)
λn(θ, θ ′)

(9)

whenever π > θ ′ > 2 arcsin
(

1
2 cos(θ/2)

)
. Cohn–Zhao [9] improved sphere packing

density upper bounds by combining the upper bound of Kabatyanskii–Levenshtein on
M(n, θ) with their analogue [9, Proposition 2.1] of (9) stating that for π/3 ≤ θ ≤ π ,

δn ≤ sinn(θ/2)M(n, θ), (10)

leading to better bounds than those obtained from (4). Aside from our main results
discussed in the next subsection, in Proposition 2.2 of Sect. 2 we remove the angular
restrictions on inequality (9) in the large n regime by using a concentration of mass
phenomenon. An analogous result removes the restriction θ ≥ π/3 on inequality (10)
for large n.

Inequalities (9) and (10) give, respectively, the bounds

M(n, θ) ≤ MLev(n − 1, θ∗)
λn(θ, θ∗)

, (11)

for θ and θ∗ restricted as in the conditions for inequality (9), and

δn ≤ sinn(θ∗/2)MLev(n, θ∗). (12)

Prior to our work, the above were the best bounds for large enough n. In Theo-
rems 1.1 and 1.2, we improve both by a constant factor for large n, the first such
improvement since the work of Levenshtein [20] more than forty years ago. We
also relax the angular condition in inequality (11) to 0 < θ < θ∗ for large n. For
θ∗ ≤ θ ≤ π , M(n, θ) ≤ MLev(n, θ) is still the best bound. We also prove a number
of other results, including the construction of general test functions in Sect. 3 that are
of independent interest.

1.2 Main results and general strategy

We improve inequalities (11) and (12) with an extra factor 0.4325 for each sufficiently
large n. In the case of sphere packings, we obtain an improvement by a factor of
0.4325 + 51

n for dimensions n ≥ 2000. In low dimensions, our geometric ideas com-
bined with numerics lead to improvements that are better than 0.4325. In Sect. 6, we
provide the results of our extensive numerical calculations. We now state our main
theorems.

Theorem 1.1 Suppose that 0 < θ < θ∗. Then

M(n, θ) ≤ cn
MLev(n − 1, θ∗)

λn(θ, θ∗)
,
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New upper bounds for spherical codes and packings 3659

Fig. 1 Schematic diagram for
sphere packings

where cn ≤ 0.4325 for large enough n independent of θ.

We also have a uniform version of this theorem for sphere packing densities.

Theorem 1.2 Suppose that 1
3 ≤ cos(θ) ≤ 1

2 . We have

δn ≤ cn(θ) sinn(θ/2)MLev(n, θ),

where cn(θ) < 1 for every n. If, additionally, n ≥ 2000 we have cn(θ) ≤ 0.515+ 74
n .

Furthermore, for n ≥ 2000 we have cn(θ∗) ≤ 0.4325 + 51
n .

By Kabatyanskii–Levenshtein [17], the best bound on sphere packing densities δn

for large n comes from θ = θ∗; comparisons using other angles are exponentially
worse. Consequently, this theorem implies that we have an improvement by 0.4325
for sphere packing density upper bounds in high dimensions. Furthermore, note that
the constants of improvement cn(θ) are bounded from above uniformly in θ . The lower
bound in 1

3 ≤ cos θ ≤ 1
2 is not conceptually significant in the sense that a change in

1
3 would lead to a change in the bound cn(θ) ≤ 0.515 + 74

n .
We prove Theorem 1.2 by constructing a new test function that satisfies the Cohn–

Elkies linear programming conditions. The geometric idea behind the construction of
our new test functions is the following (see Fig. 1). In [9], for every π ≥ θ ≥ π

3 , Cohn
and Zhao choose a ball of radius r = 1

2 sin(θ/2) around each point of the sphere packing
so that for every two points a and b that are centers of balls in the sphere packing,
for every point z in the shaded region, a and b make an angle ϕ ≥ θ with respect
to z. By averaging a function satisfying the Delsarte linear programming conditions
for the angle θ , a new function satisfying the conditions of the Cohn–Elkies linear
programming method is produced. The negativity condition easily follows as ϕ ≥ θ

for every point z in the shaded region.Our insight is that sincewe are taking an average,
we do not need pointwise negativity for each point z to ensure the negativity condition
for the new averaged function. In fact, we can enlarge the radii of the balls by a quantity
δ = O(1/n) so that the conditions of the Cohn–Elkies linear programming method
continue to hold for this averaged function. Since the condition ϕ ≥ θ is no longer
satisfied for every point z, determining how large δ may be chosen is delicate. We
develop analytic methods for determining such δ. This requires us to estimate triple
density functions in Sect. 4, and estimating the Jacobi polynomials near their extreme
roots in Sect. 5.1. It is known that the latter problem is difficult [18, Conjecture 1].
In Sect. 5.1, we treat this difficulty by using the relation between the zeros of Jacobi
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3660 N. T. Sardari, M. Zargar

polynomials; these ideas go back to the work of Stieltjes [27]. More precisely, we use
the underlying differential equations satisfied by Jacobi polynomials, and the fact that
the roots of the family of Jacobi polynomials are interlacing. For Theorem 1.1, we
use a similar idea but consider how much larger we can make certain appropriately
chosen strips on a sphere. See Fig. 3.

We use our geometrically constructed test functions to obtain the last column of
Table 1. Table 1 is a comparison of upper bounds on sphere packing densities. This table
does not include the computer-assisted mathematically rigorous boundsobtainedusing
the Cohn–Elkies linear programming method or those of semi-definite programming.
We now describe the different columns. TheRogers column corresponds to the bounds
on sphere packing densities obtained byRogers [24]. TheLevenshtein79 column corre-
sponds to the bound obtained by Levenshtein in terms of roots of Bessel functions [20].
The K.–L. column corresponds to the bound on M(n, θ) proved by Kabatyanskii
and Levenshtein [17] combined with inequality (5). The Cohn–Zhao column corre-
sponds to the column found in the work of Cohn and Zhao [9]; they combined their
inequality (10) with the bound on M(n, θ) proved by Kabatyanskii–Levenshtein [17].
We also include the column C.–Z.+L79 which corresponds to combining Cohn and
Zhao’s inequality with improved bounds on M(n, θ) using Levenshtein’s optimal
polynomials [20]. The final column corresponds to the bounds on sphere packing den-
sities obtained by our method. In Table 1, the highlighted entries are the best bounds
obtained from these methods. Our bounds break most of the other bounds also in
low dimensions. Our bounds are obtained from explicit geometrically constructed
functions satisfying the Cohn–Elkies linear programming method. Our method only
involves explicit integral calculations; in contrast to the numerical method in [7], we
do not rely on any searching algorithm.Moreover, compared to the Cohn–Elkies linear
programming method, in n = 120 dimensions, we improve upon the sphere packing
density upper bound of 1.164 × 10−17 obtained by forcing eight double roots.

1.3 Structure of the paper

In Sect. 2, we setup some of the notation used in this paper and prove Proposition 2.2.
Section3 concerns the general construction of our test functions that are used in con-
junction with the Delsarte and Cohn–Elkies linear programming methods. In Sect. 5,
we prove our main Theorems 1.1 and 1.2. In this section, we use our estimates on the
triple density functions proved in Sect. 4. In Sect. 5.1, we describe Jacobi polynomials,
Levenshtein’s optimal polynomials, and locally approximate Jacobi polynomials near
their largest roots. In the final Sect. 6, we provide a table of improvement factors.

2 Geometric improvement

In this section, we prove Proposition 2.2, improving inequality (9) by removing the
restrictions on the angles for large dimensions n. This is achieved via a concentration
of mass phenomenon, at the expense of an exponentially decaying error term. First,
we introduce some notations that we use throughout this paper.
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Fig. 2 Spherical cap Capθ,θ ′ (z)
containing points a, b

Let 0 < θ < θ ′ < π be given angles, and let s := cos θ and s′ := cos θ ′.
Throughout, Sn−1 is the unit sphere centered at the origin of R

n . Suppose z ∈ Sn−1

is a fixed point.
Consider the hyperplane Nz := {w ∈ R

n : 〈w, z〉 = 0}. For each a, b ∈ Sn−1 of
radial angle at least θ from each other, we may orthogonally project them onto Nz via
the map 	z : Sn−1\{±z} → Nz . For every a ∈ Sn−1,

	z(a) = a − 〈a, z〉z.

For brevity, when a �= ±z we denote 	z(a)
|	z(a)| by ã lying inside the unit sphere Sn−2

in Nz centered at the origin. Given a, b ∈ Sn−1\{±z}, we obtain points ã, b̃ ∈ Sn−2.
We will use the following notation.

u := 〈a, z〉,
v := 〈b, z〉,

and

t := 〈a, b〉.

It is easy to see that

〈ã, b̃〉 = t − uv√
(1 − u2)(1 − v2)

. (13)

Consider the cap Capθ,θ ′(z) on Sn−1 centered at z and of radius sin(θ/2)
sin(θ ′/2) . Capθ,θ ′(z)

is the spherical cap centered at z with the defining property that any two points a, b
on its boundary of radial angle θ are sent to points ã, b̃ ∈ Sn−2 having radial angle θ ′
(Fig. 2).

It will be convenient for us to write the radius of the cap as
√
1 − r2 = sin(θ/2)

sin(θ ′/2) ,
from which it follows that

r =
√

s − s′
1 − s′ . (14)
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New upper bounds for spherical codes and packings 3663

Fig. 3 Spherical strip Strθ,θ ′ (z)

This r is the distance from the center of the cross-section defining the capCapθ,θ ′(z)
to the center of Sn−1. In fact,

Capθ,θ ′(z) = {a ∈ Sn−1 : 〈a, z〉 ≥ r}.

For 0 < θ < θ ′ < π , we define

γθ,θ ′ := 2 arctan
s√

(1 − s)(s − s′)
+ arccos(r) − π, (15)

and
R := cos(γθ,θ ′). (16)

Then R > r , and we define the strip

Strθ,θ ′(z) :=
{
a ∈ Sn−1 : r ≤ 〈a, z〉 ≤ R

}
.

Lemma 2.1 The strip Strθ,θ ′(z) is contained in Capθ,θ ′(z). Furthermore, any two
points in Strθ,θ ′(z)\{±z} of radial angle at least θ apart are mapped to points in
Sn−2 (unit sphere in Nz) of radial angle at least θ ′.

Proof The first statement follows from 〈a, z〉 ≥ r for any point a ∈ Strθ,θ ′(z). The
second statement follows from equation (147) and Lemma 42 of [2]. ��

With this in mind, we are now ready to prove Proposition 2.2. When discussing the
measure of strips Strθ,θ ′(z), we drop z from the notation and simply write Strθ,θ ′ .

Proposition 2.2 Let 0 < θ < θ ′ < π. We have

M(n, θ) ≤ M(n − 1, θ ′)
λn(θ, θ ′)

(1 + O(ne−nc)), (17)

where c := 1
2 log

(
1−r2

1−R2

)
> 0 is independent of n and only depends on θ and θ ′.

Proof Suppose {x1, . . . , xN } ⊂ Sn−1 is a maximal θ -spherical code. Given x ∈ Sn−1,
let m(x) be the number of such strips Strθ,θ ′(xi ) such that x ∈ Strθ,θ ′(xi ). Note that
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3664 N. T. Sardari, M. Zargar

x ∈ Strθ,θ ′(xi ) if and only if xi ∈ Strθ,θ ′(x). Therefore, the strip Strθ,θ ′(x) contains
m(x) points of {x1, . . . , xN }. From the previous lemma, we know that these m(x)

points are mapped to points in Sn−2 that have pairwise radial angles at least θ ′. As a
result,

m(x) ≤ M(n − 1, θ ′),

using which we obtain

N · μ(Strθ,θ ′) =
N∑

i=1

∫

Strθ,θ ′ (xi )

dμ(x)

=
∫

Sn−1
m(x)dμ(x) ≤ M(n − 1, θ ′)

∫

Sn−1
dμ(x) = M(n − 1, θ ′),

where μ is the uniform probability measure on Sn−1. Hence,

M(n, θ) ≤ M(n − 1, θ ′)
μ(Strθ,θ ′)

. (18)

Note that the masses of Strθ,θ ′ and the cap Capθ,θ ′ have the property that

1 − μ(Strθ,θ ′)

λn(θ, θ ′)
= 1

ωnλn(θ, θ ′)

∫ 1

R
(1 − t2)

n−3
2 dt

≤ (1 − R2)
n−3
2

ωnλn(θ, θ ′)
.

Here, ωn = ∫ 1−1(1− t2)
n−3
2 dt . On the other hand, we may also give a lower bound

on λn(θ, θ ′) by noting that

λn(θ, θ ′) = 1

ωn

∫ 1

r
(1 − t2)

n−3
2 dt

≥
(√

1+r
1−r

)n−3

ωn

∫ 1

r
(1 − t)n−3dt

=
(√

1+r
1−r

)n−3
(1 − r)n−2

(n − 2)ωn
.

The first inequality follows from

1 + t

1 − t
≥ 1 + r

1 − r
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New upper bounds for spherical codes and packings 3665

for t ∈ [r , 1). Combining this inequality for λn(θ, θ ′) with the above, we obtain

1 ≥ μ(Strθ,θ ′)

λn(θ, θ ′)
≥ 1 − (n − 2)(1 − R2)

n−3
2

(1 − r)(1 − r2)
n−3
2

= 1 − (n − 2)

(1 − r)
e
− n−3

2 log
(

1−r2

1−R2

)

.

The conclusion follows using (18). ��

Remark 19 Proposition 2.2 removes the angular condition on inequality (9)
of Barg–Musin at the expense of an error term that is exponentially decaying in the
dimension n.

3 New test functions

In this section, we prove general linear programming bounds on the sizes of spherical
codes and sphere packing densities by constructing new test functions.

3.1 Spherical codes

Recall the definition of D(μ, s) from the discussion of the Delsarte linear program-
ming method in the introduction. In this subsection, we construct a function inside
D(dμ n−3

2
, cos θ) from a given one inside D(dμ n−4

2
, cos θ ′), where θ ′ > θ.

Suppose that gθ ′ ∈ D(dμ n−4
2

, cos θ ′). Fix z ∈ Sn−1. Given a, b ∈ Sn−1, we define

h(a, b; z) := F(〈a, z〉)F(〈b, z〉)gθ ′
(
〈ã, b̃〉

)
, (20)

where F is an arbitrary integrable real valued function on [−1, 1], and ã and b̃ are
unit vectors on the tangent space of the sphere at z as defined in the previous section.
Using the notation u, v, t of Sect. 2,

h(a, b; z) := F(u)F(v)gθ ′

(
t − uv√

(1 − u2)(1 − v2)

)
. (21)

Note that the projection is not defined at ±z. If either a or b is ±z, we let h(a, b;
z) = 0.

Lemma 3.1 h(a, b; z) is a positive semi-definite function in the variables a, bon Sn−1,

namely

∑

xi ,x j ∈A

ai a j h(ai , a j ; z) ≥ 0
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for every finite subset A ⊂ Sn−1, and coefficients ai ∈ R. Moreover, h is invariant
under the diagonal action of the orthogonal group O(n), namely

h(a, b; z) = h(ka, kb; k z)

for every k ∈ O(n).

Proof By (20), we have

∑

xi ,x j ∈A

ai a j h(ai , a j ; z) =
∑

xi ,x j ∈A

ai F(〈xi , z〉)a j F(〈x j , z〉)gθ ′(〈x̃i , x̃ j 〉).

By (1) and the positivity of the Fourier coefficients of gθ ′ , we have

∑

xi ,x j ∈A

ai F(〈xi , z〉)a j F(〈x j , z〉)gθ ′(〈x̃i , x̃ j 〉) ≥ 0.

This proves the first part, and the second part follows from (20) and the O(n)-
invariance of the inner product. ��

Let

h(a, b) :=
∫

O(n)

h(a, b; k z)dμ(k), (22)

where dμ(k) is the probability Haar measure on O(n).

Lemma 3.2 h(a, b) is a positive semi-definite point pair invariant function on Sn−1.

Proof This follows from the previous lemma. ��
Since h(a, b) is a point pair invariant function, it only depends on t = 〈a, b〉. For

the rest of this paper, we abuse notation and consider h as a real valued function of t
on [−1, 1], and write h(a, b) = h(t).

3.1.1 Computing L(h)

See (2) for the definition of L. We proceed to computing the value of L(h) in terms
of F and gθ ′ . First, we compute the value of h(1). Let ‖F‖22 := ∫ 1−1 F(u)2dμ n−3

2
(u).

Lemma 3.3 We have

h(1) = gθ ′(1)‖F‖22.

Proof Indeed, by definition, h(1) corresponds to taking a = b, from which it follows
that t = 1, u = v and t−uv√

(1−u2)(1−v2)
= 1. Therefore, we obtain

h(1) =
∫ 1

−1
F(u)2gθ ′(1)dμ n−3

2
(u) = gθ ′(1)‖F‖22.

��
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Next, we compute the zero Fourier coefficient of h, that is, h0 := ∫ 1−1 h(t)dμ n−3
2

(t).

Let F0 = ∫ 1−1 F(u)dμ n−3
2

(u) and gθ ′,0 = ∫ 1−1 gθ ′dμ n−4
2

(u).

Lemma 3.4 We have

h0 = gθ ′,0F2
0 .

Proof Let O(n − 1) ⊂ O(n) be the stabilizer of z. We identify O(n)/O(n − 1) with
Sn−1 and write [k1] := k1z ∈ Sn−1 for any k1 ∈ O(n). Then we write the probability
Haar measure of O(n) as the product of the probability Haar measure of O(n − 1)
and the uniform probability measure dσ of Sn−1 :

dμ(k1) = dμ(k′
1)dσ([k1]),

where k′
1 ∈ O(n − 1). By Eqs. (20), (22) and the above, we obtain

h0 =
∫∫

k′
i ∈O(n−1)

∫∫

[ki ]∈Sn−1
F(〈k′

1[k1], z〉)F(〈k′
2[k2], z〉)gθ ′

×
(
〈k̃′

1[k1], k̃′
2[k2]〉

)
dμ(k′

1)dσ([k1])dμ(k′
2)dσ([k2])

=
∫∫

[ki ]∈Sn−1
F(〈[k1], z〉)F(〈[k2], z〉)dσ([k1])dσ([k2])

×
∫∫

k′
i ∈O(n−1)

gθ ′
(
〈k′

1 [̃k1], k′
2 [̃k2]〉

)
dμ(k′

1)dμ(k′
2).

We note that

∫∫

k′
i ∈O(n−1)

gθ ′
(
〈k′

1 [̃k1], k′
2 [̃k2]〉

)
dμ(k′

1)dμ(k′
2) = gθ ′,0,

and

∫∫

[ki ]∈Sn−1
F(〈[k1], z〉)F(〈[k2], z〉)dσ([k1])dσ([k2])

=
∫ 1

−1

∫ 1

−1
F(u)F(v)dμ n−3

2
(u)μ n−3

2
(v) = F2

0 .

Therefore,

h0 = gθ ′,0F2
0 ,

as required. ��
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Proposition 3.5 We have

L(h) = L(gθ ′)
‖F‖22

F2
0

.

Proof This follows immediately from Lemmas 3.3 and 3.4. ��

3.1.2 Criterion for h ∈ D(dμ n−3
2

, cos θ)

Finally, we give a criterion which implies h ∈ D(dμ n−3
2

, cos θ). Recall that 0 < θ <

θ ′, and 0 < r < R < 1 are as defined in Sect. 2. Let s′ = cos(θ ′) and s = cos(θ).

Note that s′ < s, r =
√

s−s′
1−s′ , and R = cos γθ,θ ′ as in Eq. (15). We define

χ(y) :=
{
1 for r ≤ y ≤ R,

0 otherwise.

Proposition 3.6 Suppose that gθ ′ ∈ D(dμ n−4
2

, cos θ ′) is given and h is defined as in

(22) for some F. Suppose that F(x) is a positive integrable function giving rise to an
h such that h(t) ≤ 0 for every −1 ≤ t ≤ cos θ . Then

h ∈ D
(

dμ n−3
2

, cos θ
)

,

and

M(n, θ) ≤ L(h) = L(gθ ′)
‖F‖22

F2
0

.

Among all positive integrable functions F with compact support inside [r , R], χ

minimize the value of L(h), and for F = χ we have

M(n, θ) ≤ L(h) ≤ L(gθ ′)

λn(θ, θ ′)
(1 + O(ne−nc)),

where c = 1
2 log

(
1−r2

1−R2

)
> 0.

Proof The first part follows from the previous lemmas and propositions. Let us spe-
cialize to the situation where F is merely assumed to be a positive integrable function
with compact support inside [r , R]. Let us first show that h(t) ≤ 0 for t ≤ s. We have

h(t) :=
∫

O(n)

h(a, b; k z)dμ(k),
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where h(a, b; z) := F(u)F(v)gθ ′
(

t−uv√
(1−u2)(1−v2)

)
. First, note that F(u)F(v) �= 0

implies that a and b belong to Strθ,θ ′(z). By Lemma 2.1, the radial angle between ã
and b̃ is at least θ ′, and so

t − uv√
(1 − u2)(1 − v2)

= 〈ã, b̃〉 ∈ [−1, cos θ ′].

Therefore

gθ ′

(
t − uv√

(1 − u2)(1 − v2)

)
≤ 0

when F(u)F(v) �= 0. Hence, the integrand h(a, b, z) is non-positive when t ∈
[−1, cos θ ], and so h(t) ≤ 0 for t ≤ s.

It is easy to see that when F = χ ,

‖F‖22 = μ(Strθ,θ ′(z))

and

F0 = μ(Strθ,θ ′(z)).

Therefore, by our estimate in the proof of Proposition 2.2 we have

M(n, θ) ≤ L(h) ≤ L(gθ ′)

λn(θ, θ ′)

(
1 + O

(
ne

− n
2 log

(
1−r2

1−R2

)))
.

Finally, the optimality follows from the Cauchy–Schwarz inequality. More pre-
cisely, since F(x) has compact support inside [r , R], we have

μ(Strθ,θ ′(z))‖F‖22 ≥ F2
0 .

Therefore, L(h) = gθ ′ (1)
gθ ′,0

‖F‖22
F2
0

≥ L(gθ ′ )
μ(Strθ,θ ′ (z)) with equality only when F = χ . ��

3.2 Sphere packings

Suppose 0 < θ ≤ π is a given angle, and suppose gθ ∈ D(dμ n−3
2

, cos θ). Fixing

z ∈ R
n , for each pair of points a, b ∈ R

n\{z} consider

H(a, b; z) := F(|a − z|)F(|b − z|)gθ

(〈
a − z
|a − z| ,

b − z
|b − z|

〉)
,
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where F is an even positive function on R such that it is in L1(Rn)∩ L2(Rn). We may
then define H(a, b) by averaging over all z ∈ R

n :

H(a, b) :=
∫

Rn
H(a, b; z)d z. (23)

Lemma 3.7 H(a, b) is a positive semi-definite kernel on R
n and depends only on

T = |a − b|.
Proof The proof is similar to that of Lemma 3.1. ��

As before, we abuse notation and write H(T ) instead of H(a, b)when T = |a−b|.
The analogue of Proposition 3.6 is then the following.

Proposition 3.8 Let 0 < θ ≤ π and suppose gθ ∈ D(dμ n−3
2

, cos θ). Suppose F is as

above such that H(T ) ≤ 0 for every T ≥ 1. Then

δn ≤
vol(Bn

1 )‖F‖2
L2(Rn)

2n‖F‖2
L1(Rn)

L(gθ ), (24)

where vol(Bn
1 ) is the volume of the n-dimensional unit ball. In particular, if F = χ[0,r ],

where 0 ≤ r ≤ 1, is such that it gives rise to an H satisfying H(T ) ≤ 0 for every
T ≥ 1, then

δn ≤ L(gθ )

(2r)n
. (25)

Proof The proof of this proposition is similar to that of Theorem3.4 of Cohn–Zhao [9].
We focus our attention on proving inequality (24). Suppose we have a packing ofR

n of
density � by non-overlapping balls of radius 1

2 . By Theorem 3.1 of Cohn–Elkies [7],
we have

� ≤ vol(Bn
1 )H(0)

2n Ĥ(0)
.

Note that H(0) = gθ (1)‖F‖2
L2(Rn)

, and that

Ĥ(0) =
∫

Rn
H(|z|)d z = gθ,0‖F‖2L1(Rn)

.

As a result, we obtain inequality (24). The rest follows from a simple computation.
��

Note that the situation r = 1
2 sin(θ/2) with π/3 ≤ θ ≤ π corresponds to Theorem

3.4 of Cohn–Zhao [9], as checking the negativity condition H(T ) ≤ 0 for T ≥ 1
follows from Lemma 2.2 therein. The factor 2n comes from considering functions
where the negativity condition is for T ≥ 1 instead of T ≥ 2.

Remark 26 In this paper, we consider characteristic functions; however, it is an inter-
esting open question to determine the optimal such F in order to obtain the best bounds
on sphere packing densities through this method.
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3.3 Incorporating geometric improvement into linear programming

In proving upper bounds on M(n, θ), Levenshtein [20, 21], building on Kabatyanskii–
Levenshtein [17], constructed feasible test functions gθ ∈ D(dμ n−3

2
, cos θ) for the

Delsarte linear programming problem with L(gθ ) = MLev(n, θ) defined in (7). This
gave the bound

M(n, θ) ≤ MLev(n, θ). (27)

Sidelnikov’s geometric inequality (5) gives

M(n, θ) ≤ M(n + 1, θ ′)
λn(θ, θ ′)

for angles 0 < θ < θ ′ < π
2 . Applying this for 0 < θ < θ∗ and combining with

inequality (27), Kabatyanskii and Levenshtein obtained

M(n, θ) ≤ MLev(n + 1, θ∗)
λn(θ, θ∗)

. (28)

From [17], it is known that this is exponentially better than inequality (27) for
0 < θ < θ∗. Finding functions h ∈ D(dμ n−3

2
, cos θ) with L(h) < L(gθ ) was sug-

gested by Levenshtein in [21, page 117]. In fact, Boyvalenkov–Danev–Bumova [5]
gives necessary and sufficient conditions for constructing extremal polynomials that
improve Levenshtein’s bound. However, their construction does not exponentially
improve inequality (27) for 0 < θ < θ∗. In contrast to their construction, Propo-
sition 3.6 gives the following corollary stating that our construction of the function
h gives an exponential improvement in the linear programming problem comparing
to Levenshtein’s optimal polynomials for 0 < θ < θ∗. This is not to say that we
exponentially improve the bounds given for spherical codes and sphere packings; we
provide a single function using which the Delsarte linear programming method gives
a better version of the exponentially better inequality (28).

Corollary 3.9 Fix 0 < θ < θ∗. Let hθ∗ ∈ D(dμ n−3
2

, cos θ) be the function associated

to Levenshtein’s gn−1,θ∗ constructed in Proposition 3.6. Then

M(n, θ) ≤ L(hθ∗) ≤ e−n(δθ+o(1))MLev(n, θ),

where o(1) → 0 as n → ∞ and δθ := �(θ) − �(θ∗) > 0, with

�(θ) := 1 + sin θ

2 sin θ
log

1 + sin θ

2 sin θ
− 1 − sin θ

2 sin θ
log

1 − sin θ

2 sin θ
+ 1

2
log(1 − cos θ).

Proof Let 0 < θ < θ ′ ≤ π/2. Recall the notation of Proposition 3.6. Associated to a
function gθ ′ satisfying the Delsarte linear programming conditions in dimension n −1
and for angle θ ′, in Proposition 3.6 we constructed an explicit hθ ′ ∈ D(dμ n−3

2
, cos θ)
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such that

L(hθ ′) ≤ L(gθ ′)

λn(θ, θ ′)
(1 + O(ne−nc)),

where c > 0 is a specific constant depending only on θ and θ ′. Therefore,

1

n
logL(hθ ′) ≤ 1

n
logL(gθ ′) − log λn(θ, θ ′)

n
+ O(e−nc).

By [17, Theorem 4]

lim
n→∞

1

n
logL(gθ ′) = 1 + sin θ ′

2 sin θ ′ log
1 + sin θ ′

2 sin θ ′ − 1 − sin θ ′

2 sin θ ′ log
1 − sin θ ′

2 sin θ ′ .

It is easy to show that [17, Proof of Theorem 4]

lim
n→∞

log λn(θ, θ ′)
n

= 1

2
log

1 − cos θ

1 − cos θ ′ .

Hence,

1

n
logL(hθ ′) ≤ �(θ ′) − 1

2
log(1 − cos θ) + o(1),

where

�(θ ′) := 1 + sin θ ′

2 sin θ ′ log
1 + sin θ ′

2 sin θ ′ − 1 − sin θ ′

2 sin θ ′ log
1 − sin θ ′

2 sin θ ′ + 1

2
log(1 − cos θ ′).

Note that

d

dθ ′ �(θ ′) = −csc2(θ ′)
2

(
cos θ ′ log(1 + sin θ ′

1 − sin θ ′ ) − (1 + cos θ ′) sin θ ′
)

.

As we mentioned before, θ∗ := 62.997 · · ·◦ is the unique root of the equation
d

dθ ′ �(θ ′) = 0 [17, Theorem 4] in the interval 0 < θ ′ < π/2, which is the unique
minimum of �(θ ′) for 0 < θ ′ < π/2. Hence, for 0 < θ < θ∗, taking hθ∗ the function
constructed in Proposition 3.6 associated to Levenshtein’s optimal polynomial gn−1,θ∗
for angle θ∗ in dimension n − 1, and gn,θ Levenshtein’s optimal polynomial for angle
θ in dimension n, we obtain

1

n

(
logL(hθ∗) − logL(gn,θ )

) ≤ �(θ∗) − �(θ) + o(1) < 0

for sufficiently large n. This concludes the proof of this proposition. ��
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3.4 Constant improvement to Barg–Musin and Cohn–Zhao

In this subsection, we sketch the ideas that go into proving Theorems 1.1 that improves
inequality (9) of Barg–Musin by a constant factor of at least 0.4325 for every angle
θ with 0 < θ < θ∗. The improvement to the Cohn–Zhao inequality (10) for sphere
packings is similar. We will complete the technical details in the rest of the paper.

Recall that given any test function gθ ′ ∈ D(dμ n−4
2

, cos θ ′) and F an arbitrary
integrable real valued function on [−1, 1], we defined

h(a, b; z) := F(u)F(v)gθ ′

(
t − uv√

(1 − u2)(1 − v2)

)

in Eq. (21), using which we defined the function

h(a, b) :=
∫

O(n)

h(a, b; k z)dμ(k). (29)

h(a, b) is a point-pair invariant function, and so we viewed it as a function h(t) of
t := 〈a, b〉. As we saw in the proof of Proposition 3.6, for F positive integrable and
compactly supported on [r , R], F(u)F(v) �= 0 implies that a, b ∈ Strθ,θ ′(z), where

Strθ,θ ′(z) := {a ∈ Sn−1 : r ≤ 〈a, z〉 ≤ R}

is the grey strip illustrated above in Fig. 4. From this, we obtained that

gθ ′

(
t − uv√

(1 − u2)(1 − v2)

)
≤ 0,

using which we obtained that the integrand in (29) is non-positive, giving us

h(t) ≤ 0 for t ∈ [−1, cos θ ]. (30)

Our insight is that the integrand in (29) need not be non-positive everywhere in
order to have (30). In fact, we will show that when F is the characteristic function

Fig. 4 r and R defined in (14)
and (16)
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with support [r − δ, R] for some δ > c
n , where c > 0 is independent of n, and gθ ′

are Levenshtein’s optimal polynomials, we continue to have (30). This corresponds to
allowing a, b be contained in a slight enlargement of the strip Strθ,θ ′(z) (See Fig. 4).

There are two main ingredients that go into determining an explicit lower bound
for δ. The first is related to understanding the behavior of Levenshtein’s optimal poly-
nomials near their largest roots. This reduces to understanding the behavior of Jacobi
polynomials near their largest roots. This is done in Sect. 5.1. The other idea is esti-
mating the density function of the inner product matrix of triple uniformly distributed
points on high-dimensional spheres. This allows us to rewrite the integral (29) and its
sphere packing analogue using different coordinates. This is done in Sect. 4.

4 Conditional density functions

In this section,we rewrite the averaging integral (29)when F is a characteristic function
in different coordinates. We also do the same for sphere packings. See Eqs. (31)
and (33). In order to prove Theorems 1.1 and 1.2 in Sect. 5, we will also need to
estimate certain conditional densities, which is the main purpose of this section.

4.1 Conditional density for spherical codes

Let S be the space of positive semi-definite symmetric 3 × 3 matrices with 1 on
diagonal. Let

π : (Sn−1)3 → S

be the map that sends triple points to their pairwise inner products via

(a, b, z) �→
⎡

⎣
1 t u
t 1 v

u v 1

⎤

⎦ ,

where (t, u, v) := (〈a, b〉, 〈a, z〉, 〈b, z〉). Letμ(u, v, t)dudvdt be the density function
of the pushforward of the product of uniform probability measures on (Sn−1)3 to the
coordinates (u, v, t).

Proposition 4.1 We have

μ(u, v, t) := C det

⎡

⎣
1 t u
t 1 v

u v 1

⎤

⎦

n−4
2

.

where C is a normalization constant such that
∫
S μ(u, v, t)dudvdt = 1

Proof The density of the conditional measure is given by

μ(u, v, t) = μ(u, v; t)μ(t)
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where μ(t) = (1− t2)
n−3
2 and μ(u, v; t) is the conditional density of u, v given t . We

note that this conditional density function is proportional to

lim
ε→0

vol(Str(u, v, ε; a, b))
ε2

.

where

Str(u, v, ε; a, b) := {z ∈ Sn−1 : 0 ≤ 〈a, z〉 − u, 〈b, z〉 − v ≤ ε}.

We write z = z⊥ + z‖, where z‖ is the projection of z onto the two dimensional
plane spanned by a and b and z⊥ is orthogonal to a and b. Fix a, b and consider the
following map from Sn−1

z → [z‖, z⊥].

The abovemap has Jacobian

det

⎡

⎢⎢⎣

1 t u
t 1 v

u v 1

⎤

⎥⎥⎦

1/2

√
1−t2

with respect to the Euclideanmetric.

We note that the geometric locus of z‖ is a rhombus with area ε2√
1−t2

. Moreover, given

z||, the geometric locus of z⊥ is a sphere of dimension n − 3 and radius

|z⊥| =
det

⎡

⎣
1 t u
t 1 v

u v 1

⎤

⎦
1/2

√
1 − t2

+ O(ε).

Therefore,

vol(Str(u, v, ε; x, y)) = ε2√
1 − t2

√
1 − t2

det

⎡

⎣
1 t u
t 1 v

u v 1

⎤

⎦
1/2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

det

⎡

⎣
1 t u
t 1 v

u v 1

⎤

⎦
1/2

√
1 − t2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

n−3

(1 + O(ε)),

from which it follows that

μ(u, v; t) = C

det

⎡

⎣
1 t u
t 1 v

u v 1

⎤

⎦

n−4
2

(1 − t2)
n−3
2
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for some constant C > 0. This implies our proposition. ��
Recall that θ < θ ′. Let s′ = cos(θ ′) and s = cos(θ). Note that s′ < s and for

r =
√

s−s′
1−s′ , we have s′ = s−r2

1−r2
and 0 < r < 1. Let 0 < δ = o( 1√

n
) that we specify

later, and define

χ(y) :=
{
1 for r − δ ≤ y ≤ R,

0 otherwise.

See Fig. 4. a, b are in the shaded areas corresponding to u, v being in the support
of χ .

Recall (13), and denote

x := t − uv√
(1 − u2)(1 − v2)

.

Let μ(x; t, χ) be the induced density function on x subjected to the conditions
of fixed t, and r − δ ≤ u, v ≤ R. Precisely, up to a positive constant multiple that
depends on n, t, R, r − δ, we have

μ(x; t, χ) =
∫

Cx,t

χ(u)χ(v)μ∗(x, l, t)dl,

where the integral is over the curve Cx,t ⊂ R
2 that is given by t−uv√

(1−u2)(1−v2)
= x

(Fig. 5), dl is the induced Euclidean metric on Cx,t , and

μ∗(x, l, t)dxdldt = μ(u, v, t)dudvdt .

We explicitly compute μ∗(x, l, t). We have

dudvdt = 1√
( ∂x
∂u )2 + ( ∂x

∂v

)2 dxdldt,

Fig. 5 a and b are two points
with fixed t = 〈a, b〉. The two
outer curves within the shaded
regions represent the
2-dimensional locus of points z
having (u, v) on the curve Cx,t .
Shaded region corresponds to
the support of χ(u)χ(v)
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from which it follows that

μ∗(x, l, t) = μ(u, v, t)√(
∂x
∂u

)2 + ( ∂x
∂v

)2 .

Hence, up to a positive constant multiple that depends on n, t, R, r − δ,

μ(x; t, χ) =
∫

Cx,t

χ(u)χ(v)μ(u, v, t)√(
∂x
∂u

)2 + ( ∂x
∂v

)2 dl.

We may write the test function constructed in Eq. (22) with F = χ and any given
g as

h(t) =
∫ 1

−1
g(x)μ(x; t, χ)dx, (31)

where t = 〈a, b〉; see Sect. 3.4. We define for complex x

x+ :=
{

x for x ≥ 0,

0 otherwise.

Proposition 4.2 Suppose that |x − s′| = o( 1√
n
). We have, up to a positive constant

multiple depending on n, s, R, r − δ,

μ(x; s, χ) =
(
2(1 − r2)2

r(1 − s)
+ o(1)

)(
δ +

√
s − x

1 − x
− r

)+

×
((

1 − x2

x2

)(
s − r2

)2)
n−4
2

e

(
− 2nr

(√
s−x
1−x −r

)

s−r2

)

.

Proof Let Cx := Cx,s . Note that

x = s − uv√
(1 − u2)(1 − v2)

and

μ(u, v, s) =
(
(1 − x2)(1 − u2)(1 − v2)

) n−4
2

.

Furthermore,

(
∂x

∂u

)2

+
(

∂x

∂v

)2

= (us − v)2

(1 − v2)(1 − u2)3
+ (vs − u)2

(1 − u2)(1 − v2)3
= 2

r2(1 − s)2

(1 − r2)4
+ o(1).
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Hence, up to a positive constant multiple depending on n, s, R, r − δ,

μ(x; s, χ) =
(

(1 − r2)2√
2r(1 − s)

+ o(1)

)∫

Cx

χ(u)χ(v)μ(u, v, s)dl

=
(

(1 − r2)2√
2r(1 − s)

+ o(1)

)
(1 − x2)

n−4
2

∫

Cx

χ(u)χ(v)
(
(1 − u2)(1 − v2)

) n−4
2

dl

=
(

(1 − r2)2√
2r(1 − s)

+ o(1)

)
(1 − x2)

n−4
2

∫

Cx

χ(u)χ(v)

(
s − uv

x

)n−4

dl

=
(

(1 − r2)2√
2r(1 − s)

+ o(1)

)(
1 − x2

x2

) n−4
2
∫

Cx

χ(u)χ(v) (s − uv)n−4 dl

Suppose that r ≤ u, v ≤ R. Then, by the definition of R, the equality

s′ = s − uv√
(1 − u2)(1 − v2)

occurs when (u, v) ∈ {(r , R), (R, r), (r , r)}. Furthermore, when |x − s′| = o
(

1√
n

)
,

we must have (u, v) ∈ {(r , R), (R, r), (r , r)} up to o
(

1√
n

)
. Since the integrand

χ(u)χ(v)(s − uv)n−4 of the last integral above is exponentially larger when u, v =
r + o

(
1√
n

)
, the main contribution of the integral comes when u and v are near r up

to o
(

1√
n

)
. Writing u = r + ũ and v = r + ṽ, where ũ, ṽ = o( 1√

n
), we have

s − uv = s − r2 − r(ũ + ṽ) − ũṽ = (s − r2)

(
1 − r(ũ + ṽ) + ũṽ

s − r2

)
.

Hence, up to a positive constant multiple depending on n, s, R, r − δ,

μ(x; s, χ) =
(

(1 − r2)2√
2r(1 − s)

+ o(1)

)((
1 − x2

x2

)(
s − r2

)2)
n−4
2

×
∫

Cx

χ(u)χ(v)

(
1 − r(ũ + ṽ) + ũṽ

s − r2

)n−4

dl.

Recall the following inequalities, which follow easily from the Taylor expansion
of log(1 + x)

ea− a2
n ≤

(
1 + a

n

)n ≤ ea

for |a| ≤ n/2. We apply the above inequalities to estimate the integral, and obtain

∫

Cx

χ(u)χ(v)

(
1 − r(ũ + ṽ) + ũṽ

s − r2

)n−4

dl = (1 + o(1))
∫

Cx

e

(
− nr(ũ+ṽ)

s−r2

)

χ(u)χ(v)dl.
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We approximate the curve Cx with the following line

ũ + ṽ = 2

(√
s − x

1 − x
− r

)
+ o

(
1

n

)
.

It follows that

∫

Cx

e

(
− nr(ũ+ṽ)

s−r2

)

χ(u)χ(v)dl = (1 + o(1))2
√
2

(
δ +

√
s − x

1 − x
− r

)+
e

(
− 2nr

(√
s−x
1−x −r

)

s−r2

)

,

from which the conclusion follows. ��

4.2 Conditional density for sphere packings

Let s = cos(θ) and r = 1√
2(1−s)

, where 1
3 ≤ s ≤ 1

2 . Let 0 < δ = c1
n for some fixed

c1 > 0 that we specify later, and define

χ(y) :=
{
1 for 0 ≤ y ≤ r + δ,

0 otherwise.

Let a, b be two randomly independently chosen points on R
n with respect to the

Euclidean measure such that |a|, |b| ≤ r + δ, where |.| is the Euclidean norm. Let

U := |a|,
V := |b|,
T := |a − b|,

and α be the angle between a and b. The pushforward of the product measure on
R

n × R
n onto the coordinates (U , V , α) is, up to a positive scalar depending only on

n, the measure

μ(U , V , α)dUdV dα = U n−1V n−1 sin(α)n−3dUdV dα.

Let

x := cosα = U 2 + V 2 − T 2

2U V
, (32)

which follows from the cosine law. We have

sin αdα = T

U V
dT − ∂ U2+V 2−T 2

2U V

∂U
dU − ∂ U2+V 2−T 2

2U V

∂V
dV .

Hence, the pushforward of the product measure on R
n × R

n onto the coordinates
(U , V , T ) ∈ R

3 has the following density function up to a positive scalar depending
only on n:
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μ(U , V , T ) = (U 2V 2T )�(U , V , T )n−4,

where �(U , V , T ) is the Euclidean area of the triangle with sides U , V , T . If no such
triangle exists, then �(U , V , T ) = 0. Let μ(x; T , χ) be the induced density function
on x subjected to the conditions of fixed T , and U , V ≤ r + δ. Precisely, we have, up
to a positive constant multiple depending on n, r + δ and T , that

μ(x; T , χ) :=
∫

Cx,T

χ(U )χ(V )μ(x, l, T )dl,

where the integral is over the curve Cx,T ⊂ R
2 that is given by U2+V 2−T 2

2U V = x (Fig.
6) and dl is the induced Euclidean metric on Cx,T , and

μ(x, l, T )dxdldT = μ(U , V , T )dUdV dT .

We have

dUdV dT = 1√(
∂x
∂U

)2 + ( ∂x
∂V

)2 dxdldT ,

and

(
∂x

∂U

)2
+
(

∂x

∂V

)2

=
(

T

U V

)2

(1 + x2) − 2x(1 − x2)

U V
.

Hence,

μ(x; T , χ) =
∫

Cx,T

χ(U )χ(V )μ(U , V , T )√( T
U V

)2
(1 + x2) − 2x(1−x2)

U V

dl

up to a positive constant multiple depending on n, r + δ and T .

Fig. 6 a and b are two points
with T = |a − b|. The two outer
curves within the shaded region
represent the locus of of points z
having (U , V ) on the curve
Cx,T , that is, z with respect to
which a and b have angle whose
cosine is x . Shaded region
corresponds to the support of
χ(U )χ(V )
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From Lemma 3.7, Eq. (23) with F = χ and any given g may be written as

H(T ) =
∫ 1

−1
g(x)μ(x; T , χ)dx . (33)

We now study the scaling property of μ(x; T , χ). Let χT (x) := χ( x
T ).

Lemma 4.3 We have

μ(x; T , χ) = T 2n−1μ(x; 1, χT ).

Proof Note that

μ(U , V , T ) = T 2n−3μ

(
U

T
,

V

T
, 1

)
,

and x is invariant by scaling U , V , T . The conclusion follows. ��
Let μ(x;χ) := μ(x; 1, χ), and

r1 :=
√
1 − (1 − x2)(r + δ)2 + x(r + δ).

Proposition 4.4 Suppose that |x − s| ≤ c2
n , x < 1/2 and δ = c1

n . We have

μ(x;χ) = (1 + E)(1 − x2)
n−4
2

(
1

2(1 − x)

)n−1

× 1√
1 − x

√√√√1 +
(

x − (1 − x2)r√
1 − (1 − x2)r2

)2

(r + δ − r1)
+

up to a positive scalar multiple making this a probability measure on [−1, 1], and

where E is a function of x with the uniform bound |E | <
(4c2+2c1+2)2

n for n ≥ 2000.

Proof We have

μ(x;χ) =
∫

Cx

χ(U )χ(V )
μ(U , V , 1)

√
1+x2

(U V )2
− 2x(1−x2)

U V

dl,

where Cx := Cx,1. We note that up to a positive scalar depending only on n,

μ(U , V , 1) = U 2V 2
(
(1 − x2)U 2V 2

) n−4
2

.

Hence,

μ(x;χ) = (1 − x2)
n−4
2

∫

Cx

χ(U )χ(V )
(U V )n−1

√
1 + x2 − 2x(1 − x2)U V

dl.
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Suppose that U and V are in the support of χ. By concentration of mass, we may
assume that U = r + Ũ and V = r + Ṽ , with Ũ , Ṽ ≤ c1

n . From (32), we have

Ũ + Ṽ = 1

2r(1 − x)
− r + E1,

where

E1 := 1

2r(1 − x)

(
2xŨ Ṽ − Ũ 2 − Ṽ 2

)
.

Since |x − s| ≤ c2
n , and 1

2 < 2r(1− x)2, it follows that − c1+2c2
n < Ũ , Ṽ ≤ c1

n for
n ≥ 2000. Hence,

|E1| ≤ 3
(c1 + 2c2)2

n2 .

We have

U V = r2 + r(Ũ + Ṽ ) + Ũ Ṽ = r2
(
1 + Ũ + Ṽ

r

)
+ Ũ Ṽ = 1

2(1 − x)
+ E2,

where |E2| < 4 (c1+2c2)2

n2
. Furthermore,

√
1 + x2 − 2x(1 − x2)U V =

√
1 − x − 2x(1 − x2)E2 = √

1 − x + E ′
2,

where |E ′
2| < |E2|. Hence,

μ(x;χ) = (1 − x2)
n−4
2

(
1

2(1 − x)

)n−1 1√
1 − x + E ′

2

×
(
1 + E2

2(1 − x)

)n−1 ∫

Cx

χ(U )χ(V )dl.

Note that

1√
1 − x + E ′

2

(
1 + E2

2(1 − x)

)n−1

= 1√
1 − x

(1 + E ′′
2 ),

where E ′′
2 ≤ 4 (c1+2c2)2

n for n ≥ 2000. We parametrize the curve Cx with V to obtain

U (V ) =
√
1 − (1 − x2)V 2 + xV .

We have

dU

dV
= x − (1 − x2)V√

1 − (1 − x2)V 2
= x − (1 − x2)r√

1 − (1 − x2)r2
+ E3,
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where

|E3| =
∣∣∣∣∣(V − r)

(1 − x2)

(1 − (1 − x2)V 2
1 )3/2

∣∣∣∣∣

for some V1 ∈
(

r − c1+2c2
n , r + c1

n

)
, which implies

∣∣∣∣
(1−x2)

(1−(1−x2)V 2
1 )3/2

∣∣∣∣ < 6. Hence,

|E3| ≤ 6

(
c1 + 2c2

n

)
.

Hence,

∫

Cx

χ(U )χ(V )dl =+
∫ r+δ

r1

√

1 +
(

dU

dV

)2

dV

=
√√√√1 +

(
x − (1 − x2)r√

1 − (1 − x2)r2

)2

(r + δ − r1)
+ (1 + Ē3)

where

r1 :=
√
1 − (1 − x2)(r + δ)2 + x(r + δ),

and

|E3| ≤ 6

(
c1 + 2c2

n

)
.

The first equality =+ above means equal to 0 if r + δ < r1. Therefore,

μ(x;χ) = (1 + E)(1 − x2)
n−4
2

(
1

2(1 − x)

)n−1

× 1√
1 − x

√√√√1 +
(

x − (1 − x2)r√
1 − (1 − x2)r2

)2

(r + δ − r1)
+

up to a positive scalar multiple, where |E | <
(4c2+2c1+2)2

n for n ≥ 2000. This com-
pletes the proof of our Proposition. ��

5 Comparison with previous bounds

Wedefine Jacobi polynomials, state some of their properties, and prove a local approx-
imation result for Jacobi polynomials in Sect. 5.1. In Sect. 5.2, we improve bounds on
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θ -spherical codes. In Sect. 5.3, we improve upper bounds on sphere packing densities.
The general constructions of our test functions were provided in Sect. 3. For each of
our main theorems, we determine the largest values of δ = O(1/n) measuring the
extent to which the supports of the characteristic functions χ in Propositions 3.6 and
3.8 could be enlarged. See the end of Sect. 3 for an outline of the general strategy.

5.1 Jacobi polynomials and their local approximation

Recall definition (7) of MLev(n, θ). Levenshtein proved inequality (6) by applying
Delsarte’s linear programming bound to a family of even and odd degree polynomials
inside D(dμ n−3

2
, cos θ), which we now discuss. In order to define these Levenshtein

polynomials, we record some well-known properties of Jacobi polynomials (see [28,
Chapter IV]) that we will also use in the rest of the paper.

We denote by pα,β
d (t) Jacobi polynomials of degree d with parameters α and β.

These are orthogonal polynomials with respect to the probability measure

dμα,β := (1 − t)α(1 + t)βdt
∫ 1
−1(1 − t)α(1 + t)βdt

on the interval [−1, 1] with the normalization that gives

pα,β
d (1) =

(
d + α

d

)
.

pα,β
d (t) has n simple real roots tα,β

1,d > tα,β
2,d > · · · > tα,β

d,d . When α = β, we denote
the measure dμα,α simply as dμα .

d

dt
pα,β

d (t) = d + α + β + 1

2
pα+1,β+1

d−1 (t). (34)

When proving our local approximation result onLevenshtein’s optimal polynomials
in the rest of this subsection, we use the fact that the Jacobi polynomial pα,β

d (t) satisfies
the differential equation

(1 − t2)x ′′(t) + (β − α − (α + β + 2)t)x ′(t) + d(d + α + β + 1)x(t) = 0.

(35)

By [21, Lemma 5.89],

tα+1,α+1
1,d−1 < tα+1,α

1,d < tα+1,α+1
1,d .

It is also well-known that for fixed α, tα+1,α+1
1,d → 1 as d → ∞. Henceforth, let

d := d(n, θ) be uniquely determined by tα+1,α+1
1,d−1 < cos(θ) ≤ tα+1,α+1

1,d . Let [21,
Lemma 5.38]

123



New upper bounds for spherical codes and packings 3685

gn,θ (x) =

⎧
⎪⎨

⎪⎩

(x+1)2

(x−tα+1,α+1
1,d )

(
pα+1,α+1

d (x)
)2

if tα+1,α
1,d < cos(θ) ≤ tα+1,α+1

1,d ,

(x+1)
(x−tα+1,α

1,d )

(
pα+1,α

d (x)
)2

if tα+1,α+1
1,d−1 < cos(θ) ≤ tα+1,α

1,d ,
(36)

where α := n−3
2 in our case. Levenshtein proved that gn,θ ∈ D(dμ n−3

2
, cos θ), and

L(gn,θ ) = MLev(n, θ).

By (3), this gives

M(n, θ) ≤ MLev(n, θ).

As part of our proofs of our main theorems in the next subsections, we need to
determine local approximations to Jacobi polynomials pα,β

d in the neighbourhood of

points s ∈ (−1, 1) such that s ≥ tα,β
1,d . This is obtained using the behaviour of the

zeros of Jacobi polynomials. Using this, we obtain suitable local approximations of
Levenshtein’s optimal functions near s.

Proposition 5.1 Suppose that α ≥ β ≥ 0, |α −β| ≤ 1, d ≥ 0 and s ∈ [tα,β
1,d , 1). Then,

we have

pα,β
d (t) = pα,β

d (s) + (t − s)
dpα,β

d

dt
(s)(1 + A(t)),

where,

|A(t)| ≤ eσ(t) − 1

σ(t)
− 1

with

σ(t) := |t − s| (2αs + 2s + 1)

1 − s2
.

Proof Consider the Taylor expansion

pα,β
d (t) =

∞∑

k=0

(t − s)k

k!
dk pα,β

d

dtk
(s)

of pα,β
d centered at s. We prove the proposition by showing that for s ∈ [tα,β

1,d , 1), the
higher degree terms in the Taylor expansion are small in comparison to the linear term.
Indeed, suppose k ≥ 1. Then, using Eq. (34),

(dk+1/dtk+1)pα,β
d (s)

(dk/dtk)pα,β
d (s)

= (d/dt)pα+k,β+k
d−k (s)

pα+k,β+k
d−k (s)

=
d−k∑

i=1

1

s − tα+k,β+k
i,d−k

≤
d−1∑

i=1

1

s − tα+1,β+1
i,d−1

,
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where the last inequality follows from the fact that the roots of a Jacobi polyno-
mial interlace with those of its derivative. However, the last quantity is equal to
(d2/dt2)pα,β

d (s)

(d/dt)pα,β
d (s)

. We proceed to show that

(d2/dt2)pα,β
d (s)

(d/dt)pα,β
d (s)

≤ 2αs + 2s + 1

1 − s2
. (37)

Indeed, we know from the differential equation (35) that

(1 − s2)(d2/dt2)pα,β
d (s) + (β − α − (α + β + 2)s)(d/dt)pα,β

d (s)

+d(d + α + β + 1)pα,β
d (s) = 0. (38)

However, since s is to the right of the largest root of pα,β
d , pα,β

d (s) ≥ 0. Therefore,

(1 − s2)(d2/dt2)pα,β
d (s) + (β − α − (α + β + 2)s)(d/dt)pα,β

d (s) ≤ 0,

from which inequality (37) follows. As a result, the degree k + 1 term compares to
the linear term as

(dk+1/dtk+1)pα,β
d (s)

(d/dt)pα,β
d (s)

|t − s|k
(k + 1)! ≤ |t − s|k

(k + 1)!
(
2(α + 1)s + 1

1 − s2

)k

Consequently, for every k ≥ 1,

|t − s|k+1

(k + 1)! (dk+1/dtk+1)pα,β
d (s) ≤ |t − s|(d/dt)pα,β

d (s)

( |t−s|(2α+2s+1)
1−s2

)k

(k + 1)!

As a result, we obtain that

pα,β
d (t) = pα,β

d (s) + (t − s)
dpα,β

d

dt
(s)(1 + A(t)),

where

|A(t)| ≤ eσ(t) − 1

σ(t)
− 1

with

σ(t) = |t − s| (2αs + 2s + 1)

1 − s2
. ��
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5.2 Improving spherical codes bound

We prove a stronger version of Theorem 1.1 that we now state.

Theorem 5.2 Fix θ < θ∗ and suppose 0 < θ < θ ′ ≤ π/2. Then there is a function
h ∈ D(dμ n−3

2
, cos θ) such that

L(h) ≤ cn
MLev(n − 1, θ ′)

λn(θ, θ ′)
,

where cn ≤ 0.4325 for large enough n independent of θ and θ ′.

Proof Without loss of generality, we may assume that cos(θ ′) = tα+1,α+ε
1,d for some

ε ∈ {0, 1} and α := n−4
2 . Indeed, recall from Sect. 5.1 that d is uniquely determined

by tα+1,α+1
1,d−1 < cos(θ ′) ≤ tα+1,α+1

1,d ,

g(x) =

⎧
⎪⎨

⎪⎩

(x+1)2

(x−tα+1,α+1
1,d )

(
pα+1,α+1

d (x)
)2

if tα+1,α
1,d < cos(θ ′) ≤ tα+1,α+1

1,d ,

(x+1)
(x−tα+1,α

1,d )

(
pα+1,α

d (x)
)2

if tα+1,α+1
1,d−1 < cos(θ ′) ≤ tα+1,α

1,d ,

and

MLev(n − 1, θ ′) = L(g) = MLev

(
n − 1, arccos

(
tα+1,α+ε
1,d

))
.

We also have

λn(θ, θ ′) ≤ λn(θ, arccos(tα+1,α+ε
1,d )),

where the above follows from cos(θ ′) ≤ tα+1,α+ε
1,d and λn(θ, θ ′) is the ratio of volume

of the spherical cap with radius sin(θ/2)
sin(θ ′/2) on the unit sphere Sn−1 to the volume of the

whole sphere. Hence,

MLev(n − 1, arccos(tα+1,α+ε
1,d ))

λn(θ, arccos(tα+1,α+ε
1,d ))

≤ MLev(n − 1, θ ′)
λn(θ, θ ′)

.

As before, s = cos(θ), and s′ = cos(θ ′) = tα+1,α+ε
1,d . Note that s′ < s and for

r =
√

s−s′
1−s′ , we have s′ = s−r2

1−r2
and 0 < r < 1. Let 0 < δ = O( 1n ) that we specify

later, and define the function F for the application of Proposition 3.6 to be
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F(y) = χ(y) :=
{
1 for r − δ < y ≤ R,

0 otherwise.

Recall from (31) that

h(t) :=
∫ 1

−1
g(x)μ(x, t;χ)dx .

Applying Proposition 3.6 with the function F as above and the function g, we
obtain the inequality in the statement of the theorem with cn ≤ 1 + o(1). We now
prove the desired bound on cn for sufficiently large n.

By Proposition 3.9, for any δ1 > 0, if |s′ − cos(θ∗)| ≥ δ1, then for large n,
MLev(n − 1, θ ′)/λn(θ, θ ′) is exponentially worse than MLev(n − 1, θ∗)/λn(θ, θ∗).
Therefore, we assume that s′ = cos(θ ′) = tα+1,α+ε

1,d for some ε ∈ {0, 1}, and that s′ is
sufficiently close to cos θ∗. We specify the precision of the difference later. Suppose
ε = 0, and so s′ = tα+1,α

1,d . By Proposition 5.1, we have

g(x) = (x + 1)(x − s′)
dpα+1,α

d

dt
(s′)2(1 + A(x))2,

where

|A(x)| ≤ eσ(x) − 1

σ(x)
− 1 (39)

with

σ(x) := |x − s′|(ns′ + s′ + 1)

1 − s′2 .

By Proposition 4.2, we have for |x − s′| = o
(

1√
n

)
the estimate

μ(x; s, χ) =
(
2(1 − r2)2

r(1 − s)
+ o(1)

)(
δ +

√
s − x

1 − x
− r

)+

×
((

1 − x2

x2

)(
s − r2

)2)
n−4
2

e

(
− 2nr

(√
s−x
1−x −r

)

s−r2

)

.

We need to find the maximal δ > 0 such that

h(t) =
∫ 1

−1
g(x)μ(x; t, χ)dx ≤ 0
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for every −1 ≤ t ≤ s. We first address the above inequality for t = s. Note that the
integrand is negative for x < s′ and positive for x > s′. Hence,

∫ 1

−1
g(x)μ(x; s, χ)dx =

∣∣∣∣
∫ 1

s′
g(x)μ(x; s, χ)dx

∣∣∣∣−
∣∣∣∣∣

∫ s′

−1
g(x)μ(x; s, χ)dx

∣∣∣∣∣ .

Its non-positivity is equivalent to

∣∣∣∣∣

∫ s′

−1
g(x)μ(x; s, χ)dx

∣∣∣∣∣ ≥
∣∣∣∣
∫ 1

s′
g(x)μ(x; s, χ)dx

∣∣∣∣ .

We proceed to give a lower bound on the absolute value of the integral over −1 ≤
x ≤ s′. Later, we give an upper bound on the right hand side. By (39), we have

|1 + A(x)| ≥
(
2 − eσ(x) − 1

σ(x)

)+
.

We note that 2 − eσ −1
σ

is a concave function with value 1 as σ → 0 and a root at
σ = 1.256431 · · · . Hence, for σ < 1.25643, we have

|1 + A(x)| ≥
(
2 − eσ(x) − 1

σ(x)

)
.

Note that σ(x) < 1.25643 implies

|x − s′| ≤ (1.25643)(1 − s′2)
ns′ .

Let

λ := (1.25643)(1 − s′2)
ns′ .

Therefore, as n → ∞

r(1 − s)

2(1 − r2)2

(
s − r2

)−(n−4) dp(α+1,α)
d

dt
(s′)−2

∣∣∣∣∣

∫ s′

−1
g(x)μ(x; s, χ)dx

∣∣∣∣∣

�
∫ s′

s′−λ

(1 + x)(s′ − x)

(
2 − eσ(x) − 1

σ(x)

)2 (
δ +

√
s − x

1 − x
− r

)

×
(
1 − x2

x2

) n−4
2

e

(
− 2nr

(√
s−x
1−x −r

)

s−r2

)

dx . (40)
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We change the variable s′ − x to z and note that

√
s − x

1 − x
− r = z(1 − s)

2(s − s′)1/2(1 − s′)3/2
+ O(λ2) (41)

1 − x2

x2
= 1 − s′2

s′2

(
1 + 2z

s′(1 − s′2)
+ O(λ2)

)
(42)

for |x − s′| < λ. Hence, we obtain that as n → ∞ and |x − s′| < λ,

e

(
− 2nr

(√
s−x
1−x −r

)

s−r2

)

= e

⎛

⎝−
2nr

(
z(1−s)

2(s−s′)1/2(1−s′)3/2
)

s−r2

⎞

⎠+O(λ)

= e

( −nz
s′(1−s′)

)
+O(λ)

(
1 − x2

x2

) n−4
2

=
(
1 − s′2

s′2

) n−4
2

e

(
nz

s′(1−s′2)

)
+O(λ)

2 − eσ(x) − 1

σ(x)
=
⎛

⎝2 − e
nzs′

(1−s′2) − 1
nzs′

(1−s′2)

⎞

⎠ (1 + O(λ)).

for |x −s′| < λ.We replace the above asymptotic formulas and obtain that as n → ∞,
the right hand side of (40) is at least

(1 + s′)
(
1 − s′2

s′2

) n−4
2
∫ λ

0
z

⎛

⎝2 − e
nzs′

(1−s′2) − 1
nzs′

(1−s′2)

⎞

⎠
2

×
(

δ + z(1 − s)

2(s − s′)1/2(1 − s′)3/2

)
e

(
− nz

1−s′2
)

dz.

We now give an upper bound on the absolute value of the integral over s′ ≤ x ≤ 1.
We note that

√
s − x

1 − x
− r = z(1 − s)

2(s − s′)1/2(1 − s′)3/2
+ O(λ2).

Let � := 2(s−s′)1/2(1−s′)3/2δ
(1−s) . We have

(
δ +

√
s − x

1 − x
− r

)+
= 0

for x − s′ > �. We have

|1 + A(x)| ≤ eσ(x) − 1

σ(x)
,
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where

σ(x) = n|x − s′|s′

1 − s ′2 + o(1).

Therefore,

r(1 − s)

2(1 − r2)2

(
s − r2

)−(n−4) dp(α+1,α)
d

dt
(s′)−2

∣∣∣∣
∫ 1

s′
g(x)μ(x; s, χ)dx

∣∣∣∣

� (1 + s′)
(
1 − s′2

s′2

) n−4
2
∫ �

0
z

⎛

⎝e
nzs′

(1−s′2) − 1
nzs′

(1−s′2)

⎞

⎠
2

×
(

δ − z(1 − s)

2(s − s′)1/2(1 − s′)3/2

)
e

(
nz

1−s′2
)

dz.

We choose δ such that

∫ λ

0
z

⎛

⎝2 − e
nzs′

(1−s′2) − 1
nzs′

(1−s′2)

⎞

⎠
2 (

δ + z(1 − s)

2(s − s′)1/2(1 − s′)3/2

)
e

(
− nz

1−s′2
)

dz

≥
∫ �

0
z

⎛

⎝e
nzs′

(1−s′2) − 1
nzs′

(1−s′2)

⎞

⎠
2 (

δ − z(1 − s)

2(s − s′)1/2(1 − s′)3/2

)
e

(
nz

1−s′2
)

dz.

For large enough n we may replace the numerical value cos(1.0995124) for s′ as
we may assume that s′ is close to cos(θ∗). Furthermore, write v := nz, and divide by
δ to obtain

∫ 2.196823

0
v

(
2 − e0.571931v − 1

0.571931v

)2 (
1 + v

n�

)
e(−1.259674v)dv

≥
∫ n�

0
v

(
e0.571931v − 1

0.571931v

)2 (
1 − v

n�

)
e(1.259674v)dv.

Here, we have also used that � = 2δ(s−s′)1/2(1−s′)3/2
(1−s) . Also, note that nλ =

2.196823 · · · when s′ is near cos(1.0995124). We have the Taylor expansion around
v = 0

v

(
e0.571931v − 1

0.571931v

)2

e(1.259674v)

= v + 1.83161v2 + 1.70465v3 + 1.07403v4 + 0.514959v5 + 0.200242v6

+0.0657225v7 + 0.0187113v8 + 0.00471321v9 + 0.0010662v10 + 0.000219143v11

+0.0000413083v12 + Er
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with error |Er | < 2×10−5 if n� < 0.92,whichwe assume to be the case. Simplifying,
we want to find the maximal n� such that

0.195783 + 0.140655

n�
≥
∫ n�

0
v

(
e0.571556v − 1

0.571556v

)2 (
1 − v

n�

)
e(1.259392v)dv

= 3.17756 × 10−6(n�)2

×
(

(n�)11 + 5.74715(n�)10 + 30.5037(n�)9 + 148.328(n�)8 + 654.286(n�)7

+2585.41(n�)6 + 9002.5(n�)5 + 27010.2(n�)4 + 67600.9(n�)3

+134116(n�)2 + 192140(n�) + 157353

)

− 1

n�

(
−0.360653 + 2.42691e1.25967(n�)

−3.33819e1.83161(n�) + 1.27193e2.40354(n�)
)

+ Er ,

where the error Er again satisfies |Er | ≤ 2×10−5. A numerical computation gives us
that the inequality is satisfied when n� ≤ 0.915451 · · · . Consequently, if we choose
δ = �/n, then we must have

� ≤ 0.915451 · · · (1 − s)

2(s − s′)1/2(1 − s′)3/2
.

In this case, the cap of radius
√
1 − r2 becomes

√
1 − (r − δ)2 = √

1 − r2(
1 + �r

n(1−r2)

)
+ O(1/n2). Note that r =

√
s−s′
1−s′ , and so

r

1 − r2
= (s − s′)1/2(1 − s′)1/2

1 − s
.

We deduce that,

�r

(1 − r2)
≤ 0.915451 · · · (1 − s)

2(s − s′)1/2(1 − s′)3/2

· (s − s′)1/2(1 − s′)1/2

1 − s
= 0.457896862 · · ·

1 − s′ = 0.83837237 · · ·

This computation shows that for sufficiently large n, for any 0 ≤ δ ≤
0.83837237(1−r2)

nr , h(s) ≤ 0. We now show that h(t) ≤ 0 for −1 ≤ t < s. Note
that

r(t) :=
√

(t − s′)+
1 − s′ <

√
s − s′
1 − s′ = r .
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If s−t is of order greater than O(1/n), then r(t) < r −δ for large n, and so h(t) ≤ 0
as the integrand is negative in this case. Therefore, we may assume that −1 ≤ t < s
and s − t = O(1/n). For such t , replacing s with t in the above calculations shows

that the negativity h(t) ≤ 0 is true for all 0 ≤ δ ≤ 0.83837237(1−r(t)2)
nr(t) . Since r(t) < r ,

0.83837237(1−r(t)2)
nr(t) >

0.83837237(1−r2)
nr . Consequently, h(t) ≤ 0 for every −1 ≤ t ≤ s

whenever 0 ≤ δ ≤ 0.83837237(1−r2)
nr .

Similarly, one obtains the same conclusion when ε = 1, that is s′ = tα+1,α+1
1,d .

Therefore, our improvement to Levenshtein’s bound on M(n, θ) for large n is by a
factor of 1/e0.83837237··· = 0.432413 · · · for any choice of angle 0 < θ < θ∗. As the
error in our computations is less than 2×10−5,we deduce thatwe have an improvement
by a factor of 0.4325 for sufficiently large n. ��

5.3 Improving bound on sphere packing densities

In this subsection, we give our improvement to Cohn and Zhao’s [9] bound on sphere
packings. Recall that in the case of sphere packings, we let s = cos(θ), r = 1√

2(1−s)
,

and α = n−3
2 . By assumption, 13 ≤ s ≤ 1

2 . In this case, we define for each 0 < δ = c1
n

the function F to be used in Proposition 3.8 to be

F(y) := χ(y) :=
{
1 for 0 ≤ y ≤ r + δ,

0 otherwise.

Proof of Theorem 1.2 As in the proof of Theorem 5.2, we consider g = gn,θ ∈
D(dμ n−3

2
, θ). Note that by Proposition 3.8 applied to the function F above and g,

we have for the function

H(T ) =
∫ 1

−1
g(x)μ(x; T , χ)dx

of Eq. (33), the inequality

δn ≤ L(g)

(2(r + δ))n
= MLev(n, θ)

(2(r + δ))n

if δ > 0 is chosen such that H(T ) ≤ 0 for T ≥ 1. We wish to maximize δ under this
negativity condition. Let n ≥ 2000 and s be a root of the Jacobi polynomial as before.
As in the proof of Theorem 1.1, we begin by considering that case where ε = 0, that
is, s = tα+1,α

1,d , and take g for this s. We show that H(1) ≤ 0. For the other T , showing
H(T ) ≤ 0 follows similarly by using Lemma 4.3. Note that

∫ 1

−1
g(x)μ(x;χ)dx =

∣∣∣∣
∫ 1

s
g(x)μ(x;χ)dx

∣∣∣∣−
∣∣∣∣
∫ s

−1
g(x)μ(x;χ)dx

∣∣∣∣ .
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To show H(1) ≤ 0, it suffices to show that

∣∣∣∣
∫ s

−1
g(x)μ(x;χ)dx

∣∣∣∣ ≥
∣∣∣∣
∫ 1

s
g(x)μ(x;χ)dx

∣∣∣∣ . (43)

First, we give a lower bound for the left hand side of Eq. (43). As before, Proposi-
tion 5.1 allows us to write

g(x) = (x + 1)(x − s′)
dpα+1,α

d

dt
(s′)2(1 + A(x))2,

where

|A(x)| ≤ eσ(x) − 1

σ(x)
− 1

with

σ(x) := |x − s|(ns − s + 1)

1 − s2
.

As before,

|1 + A(x)| ≥
(
2 − eσ(x) − 1

σ(x)

)+
.

Note that if σ(x) < 1.25643, ensuring that the right hand side of the bound on
1 + A(x) is non-negative, then

|x − s| ≤ 1.25643(1 − s2)

ns + 1
.

Let

λ := 1.25643(1 − s2)

ns + 1
.

Let

r1 :=
√
1 − (1 − x2)(r + δ)2 + x(r + δ).

Suppose that |x − s| ≤ c2
n and δ = c1

n for some 0 < c1 < 0.81, 0 < c2 < 3.36.
Note that for such a c1 and n ≥ 2000, the assumption s ≤ 1/2 implies that r + δ ≤ 1.
By Proposition 4.4, we have μ(x;χ) = 0 for r1 ≥ r + δ. Otherwise,

μ(x;χ) = Cn(1 + E)(1 − x2)
n−4
2

(
1

2(1 − x)

)n−1

× 1√
1 − x

√√√√1 +
(

x − (1 − x2)r√
1 − (1 − x2)r2

)2

(r + δ − r1)
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for some constantCn > 0makingμ(x;χ) a probabilitymeasure on [−1, 1], andwhere
|E | <

(4c2+2c1+2)2

n for n ≥ 2000. In particular, for such c1, c2, we have |E | < 292
n .

By letting z := s − x and v := (ns+1)z
(1−s2)

, Taylor expansion approximations imply that

inequality (43) is satisfied for 1
3 ≤ s ≤ 1

2 and large n if

∫ 1.25643

0
v

(
2 − ev − 1

v

)2

e−3v
(
1 + 3v

2c1

)
dv ≥

∫ 2c1
3

0
v

(
ev − 1

v

)2

e3v
(
1 − 3v

2c1

)
dv.

(44)

By a numerics similar to that done for spherical codes, one finds that the maximal
such c1 < 1 is 0.66413470 · · · . Therefore, for every 1

3 ≤ s ≤ 1
2 and n → ∞, we have

an improvement at least as good as

e−0.6641347/r = exp(−0.6641347
√
2(1 − s)).

Note that for such s, as n → ∞, this gives us an improvement of at most 0.5148,
a universal such improvement factor.

Returning to the case of general n ≥ 2000 and 1
3 ≤ s ≤ 1

2 , given such an n we
need to maximize c1 < 0.81 such that

(
1 − 312

n

)∫ 1.25643

0
v

(
2 − ev − 1

v

)2

e−3v
(
1 + 1.499v

c1
− 17.31

c1n

)
dv

≥
(
1 + 312

n

)∫ 0.667c1

0
v

(
ev − 1

v

)2

e3v
(
1 − 1.499v

c1
+ 17.31

c1n

)
dv.

By a numerical calculation with Sage, we obtain that the improvement factor for
any 1

3 ≤ s ≤ 1
2 and any n ≥ 2000 is at least as good as

0.515 + 74/n.

On the other hand, if we fix s such that s is sufficiently close to s∗ = cos(θ∗), then
the same kind of calculations as above give us an asymptotic improvement constant
of 0.4325, the same as in the case of spherical codes. In fact, for n ≥ 2000, we have
an improvement factor at least as good as

0.4325 + 51/n

over the combination of Cohn–Zhao [9] and Levenshtein’s optimal polynomials [20].
The case s = tα+1,α+1

1,d follows in exactly the same way. This completes the proof
of our theorem. ��
Remark 45 We end this section by saying that our improvements above are based on
a local understanding of Levenshtein’s optimal polynomials, and that there is a loss
in our computations. By doing numerics, we may do computations without having to
rely on such local approximations.
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6 Numerics

In Theorem 1.2, we improved the sphere packing densities by a factor of 0.4325 for
sufficiently high dimensions. There is a loss in our estimates due to neglecting the
contribution of Levenshtein’s polynomials away from their largest roots, as giving
rigorous estimates is difficult. In this section, we numerically investigate the behavior
of our constant improvement factors for sphere packing densities by considering those
neglected terms in dimensions up to 130. Aswe noted before in the introduction, in low
dimensions, there are better bounds on sphere packing densities using semi-definite
programming, and so the objective of this section is guessing the improvement over
0.4325 in high dimensions.

Before our work, the best known upper bound on sphere packing densities in high
dimensions was obtained using inequalities

δn ≤ sinn(θ/2)Lev(n, θ),

where Lev(n, θ) is the linear programming bound using Levenshtein’s optimal poly-
nomials [20, eq.(3),(4)]. Note that Lev(n, θ) ≤ MLev(n, θ) and equality occurs when
cos(θ) = tα+1,α+ε

1,d . In this section, we apply Proposition 3.8 to Levenshtein’s optimal
polynomials for various angles θ (columns of Table 2) and obtain

δn ≤ αn(θ) sinn(θ/2)Lev(n, θ)

with maximal r (in Proposition 3.8), where αn(θ) are the entries of the table. Note
that in Table 2, the improvement factors appear to gradually become independent of
θ as n enlarges. We conjecture that they tend to 1

e as n → ∞.
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