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Abstract
We provide a classification result for positive solutions to−�u = 1

uγ in the half space,
under zero Dirichlet boundary condition.

Mathematics Subject Classification 35J75 · 35A02 · 35B09

1 Introduction

We deal with the classification of positive solutions to the singular problem

⎧
⎪⎪⎨

⎪⎪⎩

−�u = 1

uγ
in R

N+
u > 0 in R

N+
u = 0 on ∂RN+ ,

(Pγ )

where N ≥ 1, γ > 1, x ∈ R
N+ is represented by x = (x ′, xN ), x ′ ∈ R

N−1 and
R

N+ := {x ∈ R
N : xN > 0}. This is a captivating problem itself but it also arises

in the study of limiting scaling arguments at the boundary, in bounded domains, for
solutions to

−�u = 1

uγ
+ f (u)
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3164 L. Montoro et al.

since the term 1/uγ is the leading part near zero, see e.g. [2, 4]. Although the expert
reader may guess that the decreasing nature of the nonlinearity is favourable for the
application of maximum and comparison principles, we stress that here, solutions are
not in the right Sobolev space in order to do that (in particular for γ > 1). This causes a
deep and challenging issue that we approach introducing a technique based on precise
asymptotic estimates. The underlying idea is that the equation is almost harmonic far
from the boundary once we deduce precise estimates.
Taking into account the nature of the problem, it follows that, the natural assumption
that we shall adopt in all the paper is

u ∈ C2(RN+) ∩ C0(RN+).

Note that the continuity up to the boundary of the solutions can be proved as in [3].
Therefore the equation is understood in the classic meaning in the interior of the
domain, or in the variational meaning as in the following:

∫

R
N+

∇u · ∇ϕ =
∫

R
N+

1

uγ
ϕ ∀ϕ ∈ C1

c (R
N+). (1)

Wewill classify all the locally bounded solutions according to the following hypoth-
esis
(hp) There exists λ̄ > 0 such that u is bounded on the set �λ̄. We set θ ∈ R such that

θ := sup
�λ̄

u(x).

where the strip �λ̄ is defined in Sect. 2. Our main result is the following

Theorem 1 Let u be a solution of (Pγ ) fulfilling (hp). Then

u(x) = u(x ′, xN ) = u(xN ).

Consequently either

u(t) = (γ + 1)
2

γ+1

(2γ − 2)
1

γ+1

t
2

γ+1

or

u(t) = λ
− 2

γ+1 v(λt) λ > 0,

where v(t) ∈ C2(R+) ∩ C(R+) is the unique solution to

⎧
⎪⎪⎨

⎪⎪⎩

−v′′ = 1

vγ
t > 0

v(t) > 0 t > 0

v(0) = 0 limt→+∞ v′(t) = 1.

(2)
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The starting crucial issue in our proof is the accurate study of the asymptotic
behavior of the solutions up to the boundary as well as at infinity. Actually we shall
show that every solution has at most linear growth far from the boundary, which is a
sharp estimate. This analysis will allow us to exploit a celebrated result of Berestycki,
Caffarelli and Nirenberg [1] to deduce that the solutions exhibit 1-D symmetry. Then,
taking into account the non standard nature of the equation arising from the singular
term, we will carry out a ODE analysis to complete our proof.

The paper is organized as follows: in Sect. 2 we provide the proofs of the asymptotic
analysis and exploit it to prove the 1-D result. In Sect. 3 we carry out the ODE analysis.
We conclude in Sect. 4 with the proof of our main result.

2 Asymptotic analysis and 1-D symmetry

In all the paper we shall use the notation given in the following

Definition 2 Given 0 < a < b, we define the strip �(a,b) as the set given by

�(a,b) := {x ∈ R
N+ : a < xN < b}. (3)

We also set �(0,b) := �b.

In all this section we will use some ODEs arguments that are actually contained in
the more general analysis of Sect. 3. We start proving

Lemma 3 Under the assumption (hp), it follows that

u(x) ≤ Cx
2

γ+1
N in �λ̄,

with C = C(γ, θ) a positive constant.

Proof Let us consider the 1-D solution w(xN ) of

⎧
⎪⎪⎨

⎪⎪⎩

−w′′ = 1

wγ
in R

+

w(0) = 0

w > 0 in R
+,

given in (25). Note that wβ = βw solves −�wβ = βγ+1/w
γ
β . Therefore, for β > 1,

we have

⎧
⎪⎪⎨

⎪⎪⎩

−�wβ >
1

wβ

in R
+
N

wβ > 0 in R
N+

wβ = 0 on ∂RN+ .

(4)
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Now, since

wβ = βw(λ̄) on {x ∈ R
N+ : xN = λ̄}, (5)

we take β large so that, for β ≥ θ/w(λ̄) we deduce

wβ ≥ βw(λ̄) ≥ θ.

Consequently u, wβ are well ordered on the boundary of the strip�λ̄ (see (3)), namely

u ≤ wβ on ∂�λ̄. (6)

In order to prove a comparison principle, we have to take into account that we are
working in the unbounded domain RN+ and both u, wβ lose regularity at the boundary
of the half-spaceRN+ . For this reason we start defining φR(x ′) : RN−1 → R such that

⎧
⎪⎪⎨

⎪⎪⎩

φR(x ′) = 1 in B ′
R(0)

φR(x ′) = 0 in R
N−1\B ′

2R(0)

|∇φR(x ′)| ≤ C

R
in R

N−1,

(7)

where we recall that a point x ∈ R
N+ is denoted by x = (x ′, xN ) with x ′ ∈ R

N−1 and
where

B ′
R(0) := {x ′ ∈ R

N−1 : |x ′| < R}.

Moreover, let us define the translated function (indeed still a supersolution to (4))

wβ,ε = wβ(xN + ε)

and let ϕR defined as

ϕR = (u − wβ,ε)
+φ2

R .

One can check, using a suitable argument based on the continuity of u and wβ,ε, that
ϕR is indeed a suitable function test to both problems (Pγ ) and (4). Let us also define
the cylinder

C(R) :=
{
�λ̄ ∩ {B ′

R(0) × R}
}

.

Then using ϕR in the weak formulations satisfied by u and by wε, we obtain

∫

C(2R)

(∇u,∇(u − wβ,ε)
+)φ2

R dx + 2
∫

C(2R)

(∇u,∇φR)φR(u − wβ,ε)
+ dx

=
∫

C(2R)

1

uγ
(u − wβ,ε)

+φ2
R dx
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and

∫

C(2R)

(∇wβ,ε,∇(u − wβ,ε)
+)φ2

R dx + 2
∫

C(2R)

(∇wβ,ε,∇φR)φR(u − wβ,ε)
+ dx

≥
∫

C(2R)

1

w
γ
β,ε

(u − wβ,ε)
+φ2

R dx .

Subtracting the last inequalities we obtain

∫

C(2R)

|∇(u − wβ,ε)
+|2φ2

R dx

≤ 2
∫

C(2R)

|∇(u − wβ,ε)
+||∇φR |φR(u − wβ,ε)

+ dx

+
∫

C(2R)

(
1

uγ
− 1

w
γ
β,ε

)

(u − wβ,ε)
+φ2

R dx

≤ 2
∫

C(2R)

|∇(u − wβ,ε)
+||∇φR |φR(u − wβ,ε)

+ dx

+
∫

C(2R)

(
1

uγ
− 1

w
γ
β,ε

)
[(u − wβ,ε)

+]2
(u − wβ,ε)

φ2
R dx . (8)

We observe that there exists a positive constant η = η(γ, θ) such that

(
1

uγ
− 1

w
γ
β,ε

)
1

u − wβ,ε

≤ −η < 0,

since u is bounded on �λ̄ by (hp). Moreover using Young inequality and (7), we also
deduce that

∫

C(2R)

|∇(u − wβ,ε)
+||∇φR |φR(u − wβ,ε)

+ dx

≤ δ

∫

C(2R)

|∇(u − wβ,ε)
+|2φ2

R dx + C(δ)

R2

∫

C(2R)

[(u − wβ,ε)
+]2 dx . (9)

Therefore, using (9) in (8), we get

∫

C(2R)

|∇(u − wβ,ε)
+|2φ2

R dx

≤ 2δ
∫

C(2R)

|∇(u − wβ,ε)
+|2φ2

R dx + 2C(δ)

R2

∫

C(2R)

[(u − wβ,ε)
+]2 dx

−2η
∫

C(2R)

[(u − wβ,ε)
+]2 dx .
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3168 L. Montoro et al.

For δ small fixed we deduce that

(1 − 2δ)
∫

C(2R)

|∇(u − wβ,ε)
+|2φ2

R dx ≤ 2C(δ)

R2

∫

C(2R)

[(u − wβ,ε)
+]2 dx

−2η
∫

C(2R)

[(u − wβ,ε)
+]2 dx . (10)

For R large we have that C(δ)/R2 < η and therefore

∫

C(2R)

|∇(u − wβ,ε)
+|2φ2

R dx ≤ 0.

By Fatou’s Lemma for R → +∞, we obtain

∫

�λ̄

|∇(u − wβ,ε)
+|2 dx ≤ 0.

Exploiting (6) we deduce that actually

u ≤ wβ,ε, for all ε > 0.

Finally, by continuity, we have that u ≤ wβ . Recalling (5) and (26) we get thesis. ��
Without assuming any a priori assumption, we prove the following

Lemma 4 There exists a constant C = C(γ ) such that

u ≥ Cx
2

γ+1
N in R

N+ .

Proof Let us consider the first eigenfunction ϕ1 ∈ C2(B1(0)) solution to

⎧
⎪⎨

⎪⎩

−�ϕ1 = λ1ϕ1 in B1(0)

ϕ1 > 0 in B1(0)

ϕ1 = 0 on ∂B1(0).

(11)

Setting

w = Cϕ
2

γ+1
1 ,

with C > 0 to be chosen, by a straightforward computations

�w = 2C(1 − γ )

(1 + γ )2
ϕ

− 2γ
1+γ

1 |∇ϕ1|2 + 2C

1 + γ
ϕ

1−γ
1+γ

1 �ϕ1.
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Using (11), we obtain

−�w = 2C(γ − 1)

(1 + γ )2
ϕ

− 2γ
1+γ

1 |∇ϕ1|2 + 2Cλ1

1 + γ
ϕ

2
1+γ

1

= 1

Cγ ϕ

2γ
γ+1
1

(
2Cγ+1(γ − 1)

(γ + 1)2
|∇ϕ1|2 + 2λ1Cγ+1

γ + 1
ϕ2
1

)

:= α(x)

wγ
in B1(0).

For C = C(γ ) small enough, we get α(x) < 1 and therefore w is a subsolution to
−�w = w−γ in B1(0).

Let now x0 = (x ′
0, x0,N ) ∈ R

N+ and set

wx0,R = R
2

γ+1 w

(
x − x0

R

)

in BR(x0),

where R = x0,N . We have

− �wx0,R = −R− 2γ
γ+1 �w

(
x − x0

R

)

≤ 1

R
2γ

γ+1 wγ
( x−x0

R

) = 1

w
γ

x0,R

in BR(x0). (12)

Let u be a solution to (Pγ ); we observe that

⎧
⎪⎪⎨

⎪⎪⎩

−�u = 1
uγ in BR(x0)

−�wx0,R ≤ 1
w

γ
x0,R

in BR(x0).
(13)

For ε > 0, we can use

(wx0,R − u − ε)+

as a test function in (13) obtaining that

wx0,R ≤ u + ε, for all ε > 0.

Then u ≥ wx0,R in BR(x0), hence

u(x0) = R
2

γ+1 w(0) = C(Rϕ1(0))
2

γ+1 .

Recalling that R = x0,N , since x0 is arbitrary, we obtain the thesis. ��
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3170 L. Montoro et al.

Proposition 5 Under the assumption (hp), there exists a positive constant C =
C(γ, θ, N ) such that

u(x) ≤ CxN

in the set RN+\�λ̄.

Proof In what follows, without loss of generality, from (hp), using the natural scaling
for the problem (Pγ )

u λ̄
2
(x) =

(
λ̄

2

)− 2
γ+1

u

(
λ̄

2
x

)

, (14)

we may assume that our solution u is indeed bounded in the strip �(0,2).
Let x0 ∈ R

+
N , x0 = (x ′

0; x0,N ), with x0,N > 2 and let R>0, such that

x0,N = 4R. (15)

Let uR(x) = u(x0 + R(x − x0)); then

− �uR = R2 1

uγ+1
R

uR in B4(x0), (16)

uR > 0 in B4(x0). Since in Lemma 4 we showed that

u ≥ Cx
2

γ+1
N ,

in the whole RN+ , we infer that

uγ+1
R (x) ≥ 4Cγ+1R2 in B2(x0),

where C is the positive constant given in Lemma 4. Therefore

c(x) := R2

uγ+1
R

≤ R2

4Cγ+1R2 in B2(x0).

We point out that, from the arbitrariness of x0, we deduce that

c(x) ≤ C(γ ) in �
( 52 , 112 )

.

Consequently from (16), we deduce that

−�uR = c(x)uR in B2(x0).

123



Classification of solutions to−�u = u−γ . . . 3171

By Harnack inequality [5, Theorem 8.20] we have that

sup
B1(x0)

uR ≤ CH inf
B1(x0)

uR, (17)

where CH = CH (γ, N ). Now let us consider, for N ≥ 3, the fundamental solution of
the Laplace operator. So let us define

vc,k = c

(
1

|x − x0|N−2 + k

)

that fulfills

�vc,k = 0 in R
N\{x0},

for all c, k ∈ R. Exploiting (17) with u0 = u(x0), we infer that

u0 ≤ sup
BR(x0)

u = sup
B1(x0)

uR ≤ CH inf
B1(x0)

uR = CH inf
BR(x0)

u ≤ CHu(x),

hence

u(x) ≥ C−1
H u0 on ∂BR(x0).

We new choose c amd k such that

{
vc,k = C−1

H u0 on ∂B2R(x0)

vc,k = 0 on ∂B4R(x0).
(18)

Direct computation shows that the system (18) holds for

c = C−1
H u0(4R)N−2

2N−2 − 1
:= c̃N u0R

N−2 and k = − 1

(4R)N−2 , (19)

with c̃N = C−1
H 4N−2/(2N−2 − 1). Summarizing we have that

⎧
⎪⎪⎨

⎪⎪⎩

−�u = 1

uγ
≥ 0 in B4R(x0)\B2R(x0)

−�vc,k = 0 in B4R(x0)\B2R(x0)

u, vc,k > 0 in B4R(x0)\B2R(x0).

(20)

Using (vc,k − u − ε)+, for ε > 0, as test function in (20) (see also (18)), we get

∫

B4R(x0)\B2R(x0)
|∇(vc,k − u − ε)+|2 dx ≤ 0,

123



3172 L. Montoro et al.

namely vc,k ≤ u + ε, for all ε > 0. Therefore

u(x) ≥ vc,k in B4R(x0)\B2R(x0). (21)

Therefore

u(x ′
0, 1) ≥ vc,k(x

′
0, 1)

= c

(
1

|(x ′
0, 1) − (x ′

0, x0,N )|N−2 + k

)

= c

(
1

|1 − 4R|N−2 + k

)

= c̃N u0R
N−2

(
1

(4R − 1)N−2 − 1

(4R)N−2

)

,

where in the last line we used (19). Finally by Lagrange theorem ve have

u(x ′
0, 1) ≥ c̃N

(N − 2)u0
4N−1R

.

Therefore, since u ∈ L∞(�(0,2)), we deduce

u(x0) = u0 ≤ CR,

for some constant C = C(γ, λ̄, θ, N ) that does not depend on R. Since x0 is arbitrary
we obtain that

u(x) ≤ CR in {x ∈ R
N+ : xN > 2}.

Scaling back, using (14) and (15) we obtain the thesis for N ≥ 3. The case N = 2
follows repeating the same argument but replacing the fundamental solutions with the
logarithmic one. ��
It is straightforward to deduce the following

Corollary 6 Under the assumption (hp), u has linear growth, namely there exits
c1, c2 > 0 depending on γ, θ, N such that

u(x) ≤ c1 + c2xN .

Proposition 7 Under the assumption (hp), there exists C = C(γ, θ, N ) such that the
following hold

(i) |∇u| ≤ Cx
1−γ
γ+1
N in �λ̄,

and

(i i) |∇u| ≤ C in R
N+\�λ̄.

123
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Proof Let us start noticing that, without loss of generality, we may and do assume that
the solution is bounded in the strip �2λ̄. Let now P ∈ �λ̄, with P = (x ′, xN ). Set
R = xN and let us define

uR(x) = R− 2
γ+1 u(Rx) in B 1

2

(
P

R

)

.

Then uR satisfies

−�uR = 1

uγ

R

in B 1
2

(
P

R

)

.

Exploiting Lemma 4, we deduce that

1

uγ

R

=
(

R
2

γ+1

u(Rx)

)γ

≤ 4
γ

γ+1

Cγ

(
R

2
γ+1

R
2

γ+1

)γ

:= C,

with C = C(γ ), i.e. 1/uγ
δ ∈ L∞(B1/2 (P/R)). On the other hand Lemma 3 we also

get

uR(x) = R− 2
γ+1 u(Rx) ≤ C,

where C = C(γ, λ̄). By regularity estimates, see e.g. [5, Theorem 3.9]

|∇uR(x)| ≤ C(γ, N ) in B 1
4

(
P

R

)

.

Consequently we deduce

|∇u(Rx)| ≤ CR
1−γ
γ+1 in B 1

4

(
P

R

)

and hence

|∇u(x)| ≤ CR
1−γ
γ+1 in B R

4
(P),

thus proving (i). Arguing now in the same way, let us define

uR(x) = u(Rx)

R
in B 1

2

(
P

R

)

.

By Proposition 5 we have that uR ≤ C(γ, θ, N ) and it satisfies

−�uR = R2

Rγ+1

1

uγ

R

:= h in B 1
2

(
P

R

)

,

123



3174 L. Montoro et al.

where h(x) ≤ C(γ ) in B1/2 (P/R) (seeLemma4).By regularity estimates |∇uR | ≤ C
in B1/4 (P/R) and therefore |∇u(x)| ≤ C in BR/4 (P). ��

We are now ready to prove the 1 − D symmetry result.

Theorem 8 Let u be a solution to (Pγ ). Under the assumption (hp)

u(x) = u(x ′, xN ) = u(xN ) in R
N+ .

Proof Let τ, σ ∈ R, with σ > 0, chosen opportunely later. Define

uτ,σ = u(x + τei + σeN ),

and for i = 1, . . . , N −1. Obviously−�uτ,σ = 1/uγ
τ,σ inRN+ . Setting z := u−uτ,σ ,

we get

− �z = 1

uγ
− 1

uγ
τ,σ

in R
N+ . (22)

In the following we use [1, Lemma 2.1]. From Lemmas 3 and 4 we infer that there
exist constants C1,C2 such that

C1x
2

γ+1
N ≤ u(x) ≤ C2x

2
γ+1
N in �λ̄. (23)

For σ > 0, by (23) there exists ρ > 0 and λ̂ < λ̄ (actually think to λ̂ ≈ 0) such that
u < ρ in �

λ̂
and uτ,σ > 2ρ in �

λ̂
, for all τ ∈ R. Defining the strip D := R

N+\�
λ̂
,

z ≤ 0 on ∂D holds. Moreover using Lagrange theorem jointly to Proposition 7, we
also get that z is bounded in D.
Setting

c(x) :=
(

1

uγ
− 1

uγ
τ,σ

)
1

u − uτ,σ

,

we observe that c(x) is continuous in D (indeed u, uτ,σ ≥ c > 0 in D, see (23))
and c(x) ≤ 0 (in D) by its own definition. By (22) applying [1, Lemma 2.1] to the
problem

{
�z + c(x)z ≥ 0 in D

z ≤ 0 on ∂D,

we obtain z := u − uτ,σ ≤ 0 in D. We point out that already in �
λ̂

∪ {xn = λ̂}, we
have u − uτ,σ ≤ 0. Hence u ≤ uτ,σ in RN+ .
Letting σ → 0 we obtain

u ≤ uτ for all τ ∈ R.

123



Classification of solutions to−�u = u−γ . . . 3175

By the arbitrariness of τ we deduce that u = u(xN ). ��

3 ODE analysis

We start with the study of the one dimensional problem. We consider the following

⎧
⎪⎪⎨

⎪⎪⎩

−u′′ = 1

uγ
in R+

u(t) > 0 in R+
u(0) = 0.

(24)

It is straighforward to verify that the function

u(t) = Cγ t
2

γ+1 (25)

where

Cγ = (γ + 1)
2

γ+1

(2γ − 2)
1

γ+1

, (26)

is a solution of (24).

A scaling argument. Let v ∈ C2(R+) ∩ C(R+) be a solution of problem (24). Let

σ(t) = vα,λ(t) := λαv(λt), (27)

for a given λ > 0 and α ∈ R. Then σ(0) = 0, σ(t) > 0 and for t > 0

σ ′′(t) = − 1

σ(t)γ
λα(1+γ )+2.

Choosing α = −2/(1 + γ ), then σ satisfies (24) too. A similar computation showed
that the same scaling works in the main problem (Pγ ).

Let us define, by means of (25), the function

w(t) := Cγ

(
t + t

2
γ+1

)
= Cγ t + u(t)

and notice that, since u(t) < w(t) for t > 0,

w′′(t) = u′′(t) = −u(t)−γ < −w(t)−γ .

Since w(0) = u(0) = 0, w(t) > 0 and

−w′′(t) ≥ 1

w(t)γ
t > 0,

123
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then w is a supersolution for problem (24). Moreover w′(t) → Cγ as t → +∞.
Taking into account the supersolutionw, let us fix t0 > 0 and consider the following

problem

⎧
⎪⎪⎨

⎪⎪⎩

−v′′ = 1

vγ
t > t0

v(t0) > w(t0)

v′(t0) > w′(t0).

(28)

Proposition 9 Each solution of problem (28) is such that v(t) > w(t) for t ≥ t0 and
there exists (finite) limt→∞ v′(t) ≥ Cγ .

Proof A unique local solution for problem (28) there exists; indeed, it can be proved,
that the solution is defined in the whole [t0,+∞) since it is concave. Moreover

(
v′(t0) − w′(t0)

)′ ≥ 1

w(t0)γ
− 1

v(t0)γ
.

Since
(
v′(t0) − w′(t0)

)′
> 0, there exists δ > 0 such that for all t ∈ [t0, t0 + δ),

(
v′(t) − w′(t)

)′
> 0. Actually

(
v′(t) − w′(t)

)′
> 0 for each t > t0; if not, denoting

by τ := sup{t > t0 : (
v′(t) − w′(t)

)′
> 0}, it follows that

0 = (v′(τ ) − w′(τ ))′ ≥ 1

w(τ)γ
− 1

v(τ)γ
,

hence

1

v(τ)γ
≥ 1

w(τ)γ
. (29)

Since (v′ − w′) is continuous and (strictly) increasing on the interval [t0, τ ), and
v(t0) > w(t0), therefore v(τ) > w(τ). This contradict (29). As a consequence,
v(t) > w(t) for t ≥ t0.

The solution of (28) is positive on [t0,+∞), therefore v′′(t) is negative on the same
interval. This implies that v′(t) is decreasing and its limit there exists for t → ∞.
Thus limt→∞ v′(t) ≥ limt→∞ w′(t) = Cγ . ��
Lemma 10 For any L ∈ R+, there exists a solution ṽ for the problem

⎧
⎪⎪⎨

⎪⎪⎩

−v′′ = 1

vγ
t > 0

v(t) > 0 t > 0

v(0) = 0 limt→+∞ v′(t) = L.

(30)
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Proof We start proving that, choosing v′(t0) > v(t0)/t0 in (28), then there exists
τ0 ∈ (0, t0] such that v(t) given in Proposition 9, can be extended as a solution of

⎧
⎪⎪⎨

⎪⎪⎩

−v′′ = 1

vγ
t > τ0

v > 0 t > τ0

v(τ0) = 0.

Indeed each extension of v(t) for t < t0 is such that v′′(t) ≤ 0 and therefore the graph
of v(t) lies below to the tangent line to v(t) in (t0, v(t0)). Since v′(t0) > v(t0)/t0, then
a such τ0 > 0 exists.

Let v0(t) be a such solution, let us define ṽ(t) := v0(t + τ0). Then ṽ(0) = 0 and
verifies (30). ��
Theorem 11 Let M > 0 be fixed. Then there exists a solution to

⎧
⎪⎪⎨

⎪⎪⎩

−w′′ = 1

wγ
t > 0

w(t) > 0 t > 0

w(0) = 0 limt→+∞ w′(t) = M,

(31)

and the solution is unique.

Proof Let v be a solution of problem (30). Let

λ :=
(
M

L

) γ+1
γ−1

,

where L := limt→+∞ v′(t). By the scaling (27), we have

w(t) = λ
− 2

γ+1 v(λt) =
(
M

L

)− 2
γ−1

v

⎛

⎝

(
M

L

) γ+1
γ−1

t

⎞

⎠

is a solution of (31) and since v′(t) → L as t → +∞, w′(t) → M as t → +∞.
About the uniqueness, let us consider (by contradiction) w1, w2 two different solu-

tions of (31). At first, let us assume that there exists t0 > 0, the smallest value for
which w1(t0) = w2(t0). Taking into account the initial condition w1(0) = w2(0) = 0
and that w1, w2 are continuous, by the weak comparison principle it follows that
w1(t) = w2(t) on the interval [0, t0]. Indeed, let us suppose without loss of generality,
that w1 ≤ w2 in [0, t0]; for any ε > 0, let ϕ := (w2 − w1 − ε) be a test function for
problems (30) and (31). So we have

∫ t0

0
|∇(w2 − w1 − ε)|2dx =

∫ t0

0

(
1

w
γ
2

− 1

w
γ
1

)

(w2 − w1 − ε) dx ≤ 0.
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Then w1 = w2 + ε in [0, t0] for all ε > 0, therefore w1 = w2 in [0, t0]. As a rule
w1(t0) = w2(t0) and w′

1(t0) = w′
2(t0) then w1 = w2 in R

+ by uniqueness for ODEs
(note that w1, w2 > 0 in R

+ so that −w′′ = w−γ is a regular ODE). Consequently,
different solutions w1 and w2 do not cross.

From now on we may assume that w1 < w2 for all t ∈ R
+. Notice that,

(w′
1 − w′

2)
′ = 1

w
γ
2

− 1

w
γ
1

< 0 in R
+.

Sincew′
1(t), w

′
2(t) → M as t → +∞, thenw′

1(t)−w′
2(t) > 0 for all t ∈ R

+ namely
w1 − w2 should be increasing in R+ causing w1 = w2 in R+. ��

4 Conclusion: proof of Theorem 1

Once that Theorem 8 is in force and therefore we know that

u(x) = u(xN ),

we get that u is a positive solution to

−u′′ = 1

uγ
in R

+,

with u(0) = 0. Therefore the ODEs analysis of Sect. 3 allows us to conclude that,
either the solution is given by (25) or has linear growth and is completely classified
by Theorem 11, taking into account the scaling in (27).
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