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Abstract
In the present paper, we show that for an optimal class of elliptic operators with
non-smooth coefficients on a 1-sided Chord-Arc domain, the boundary of the domain
is uniformly rectifiable if and only if the Green function G behaves like a distance

function to the boundary, in the sense that
∣
∣
∣
∇G(X)
G(X)

− ∇ D(X)
D(X)

∣
∣
∣

2
D(X)d X is the density

of aCarlesonmeasure,where D is a regularized distance adapted to the boundary of the
domain. Themain ingredient in our proof is a corona decomposition that is compatible
with Tolsa’s α-number of uniformly rectifiable sets. We believe that the method can
be applied to many other problems at the intersection of PDE and geometric measure
theory, and in particular, we are able to derive a generalization of the classical F. and
M. Riesz theorem to the same class of elliptic operators as above.
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1 Introduction

1.1 Motivation and predecessors

We consider elliptic operators L on a domain � ⊂ R
n . In recent years a finale of an

enormous body of work brought a characterization of uniform rectifiability in terms
of absolute continuity of harmonic measure (see [4], a sample of earlier articles: [2,
6, 17, 34, 35, 39], see also the related article [48] which proves the David-Semmes
conjecture in codimension 1 and is a key step for the converse established in [6]). It also
became clear that this characterization has its restrictions, for it fails in the domains
with lower dimensional boundaries and it requires, in all directions, restrictions on the
coefficients—see a discussion in [30]. In these contexts, the Green function emerged
as a more suitable object to define the relevant PDE properties. Already the work in [1]
and [30] suggested a possibility of aGreen function characterization of the regularity of
sets. However, factually, [30] provided more than satisfactory “free boundary” results
and only weak “direct” results (no norm control). The papers [25, 27, 28] aimed at
the desired quantitative version of such “direct” results but were restricted to either
Lipschitz graphs or sets with lower dimensional boundaries. The primary goal of the
article is to show that if L is reasonably well-behaved, and � provides some access
to its boundary, then the boundary of � is reasonably regular (uniformly rectifiable)
if and only if the Green function behaves like a distance to the boundary.
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Let us discuss some predecessors of this work, including the aforementioned ones,
in more details. In [1, Theorem VI], it is shown that the affine deviation of the Green
function for the Laplace operator is related to the linear deviation of the boundary of
the domain. In [30], David and Mayboroda show that for a class of elliptic operators,
the Green function can be well approximated by distances to planes, or by a smooth
distance to ∂�, if and only ∂� is uniformly rectifiable. The bounds on the Green
function given in [30] are weak, more precisely, they carry no norm control of the
sets where the Green function is close to a distance. Later, stronger and quantitative
estimates on the comparison of the Green function and some distance functions are
obtained in [25, 27, 28]. In [27], a quantitative comparison between the Green function
and the distance function to the boundary is given for an optimal class of elliptic
operators on the upper half-space. Moreover, the proximity of the Green function
and the distance function is shown to be precisely controlled by the oscillation of
the coefficients of the operator. Next, [28] extends the result of [27] to R

n\R
d with

d strictly less than n. But the methods employed in [27, 28] seem to the authors
difficult to be adapted to domains whose boundaries are rougher than Lipschitz graphs.
In [25], a bound for the difference of the Green function and smooth distances is
obtained for sets with uniformly rectifiable boundaries, but its proof, which might
appear surprising, is radically dependent on the fact that the boundary is of codimension
strictly larger than 1. Also, the class of operators considered in [25] is not optimal. So
the instant motivation for the present work is to obtain a strong estimate on the Green
function for an optimal class of operators, similar to the one considered in [27], in a
“classical” setting: on domains with uniformly rectifiable boundaries of codimension
1. The method employed here is completely different from [25] or [27], and has the
potential to be applicable to many other problems at the intersection of PDE and
geometric measure theory.

We should also mention that in [27, 40], some Carleson measure estimates on the
second derivatives of theGreen function have been obtained, and that in [1], the second
derivative of the Green function for the Laplace operator is linked to the regularity
(uniform rectifiability) of the boundary of the domain. However, the result of [1] is
only for the Laplace operator, the class of elliptic operators considered in [40] is
more general but still not optimal, and the estimates obtained in [27] are restricted to
Lipschitz graph domains. We think our estimates might shed some light on proving
an estimate on second derivatives of the Green function for an optimal class of elliptic
operators on chord-arc domains.

For the “free boundary” direction, since the weak type property of the Green func-
tion considered in [30] already implies uniform rectifiability, one expects the strong
estimate on the Green function that we consider in this paper to automatically give
uniform rectifiability. However, linking the two conditions directly seems to be more
subtle than it might appear, and we actually need to obtain uniform rectifiability from
scratch. We point out that our result also holds for bounded domains, and thus dis-
pensing with the unboundedness assumption on the domain in [30].

All in all, this paper is a culmination of all of the aforementioned efforts, featuring
a true equivalence (characterization) of geometry through PDEs, and an optimal class
of operators.
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2640 J. Feneuil et al.

1.2 Statements of themain results

We take a domain � ⊂ R
n whose boundary ∂� is (n − 1)-Ahlfors regular (AR for

shortness), which means that there exists a measure σ supported on ∂� such that

C−1
σ rn−1 ≤ σ(B(x, r)) ≤ Cσ rn−1 for x ∈ ∂�, r ∈ (0, diam�). (1.1)

The domain� can be bounded or unbounded. In the unbounded case, diam� = ∞. In
the rest of the paper, σ will always be an Ahlfors regular measure on ∂�. It is known
that theAhlfors regularmeasures are the ones that can bewritten asdσ = wdHn−1|∂�,

whereHn−1|∂� is the n −1 dimensional Hausdorff measure on ∂�, andw is a weight
in L∞(∂�,Hn−1|∂�) such that C−1 ≤ w ≤ C for some constant C > 0.

We shall impose more assumptions on our domain. For both the “free boundary”
and the “direct” results, we will assume that � is a 1-sided Chord Arc Domain (see
Definition 2.11). For the “direct” result, we will rely on the assumption that ∂� is
uniformly rectifiable (see [18, 19] and Sect. 3 below), and thus ultimately assuming
that � is a (2-sided) Chord Arc Domain. The optimality of the assumptions on � is
discussed in more detail at the end of this subsection. Since the dimension n −1 plays
an important role in our paper, and in order to lighten the notion, we shall write d for
n − 1.

Without any more delay, let us introduce the regularized distance to a set ∂�. The
Euclidean distance to the boundary is denoted by

δ(X) := dist(X , ∂�). (1.2)

For β > 0, we define

Dβ(X) :=
(ˆ

∂�

|X − y|−d−βdσ(y)

)−1/β

for X ∈ �. (1.3)

The fact that the set ∂� is d-Ahlfors regular is enough to have that

C−1δ(X) ≤ Dβ(X) ≤ Cδ(X) for X ∈ �, (1.4)

where the constant depends on Cσ , β, and n. The proof is easy and can be found after
Lemma 5.1 in [23].

The notion of Carleson measure will be central all over our paper. We say that a
quantity f defined on � satisfies the Carleson measure condition—or f ∈ C M�(M)

for short—if there exists M such that for any x ∈ ∂� and r < diam(�),

¨
B(x,r)∩�

| f (X)|2δ(X)−1d X ≤ Mrn−1. (1.5)

Our operators are in the form L = − divA∇ and defined on �. We shall always
assume that they are uniformly elliptic and bounded, that is, there exists CA > 1 such
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Green functions and smooth distances 2641

that

A(X)ξ · ξ ≥ C−1
A |ξ |2 for X ∈ �, ξ ∈ R

n, (1.6)

and

|A(X)ξ · ζ | ≤ CA|ξ ||ζ | for X ∈ �, ξ, ζ ∈ R
n . (1.7)

A weak solution to Lu = 0 in E ⊂ � lies in W 1,2
loc (E) and is such that

ˆ
�

A∇u · ∇ϕ d X = 0 for ϕ ∈ C∞
0 (E). (1.8)

If � has sufficient access to the boundary (and ∂� is (n − 1)-Ahlfors regular), then
for any ball B centered on ∂� and any function u in W 1,2(B ∩ �), we have notion of
trace for u on B ∩∂�. It is well known that if u ∈ W 1,2(B ∩�) is such that Tr(u) = 0
on B ∩∂�, and if u is a weak solution to Lu = 0 on B ∩�with L satisfying (1.6) and
(1.7), then u is continuous B ∩ � and can be continuously extended by 0 on B ∩ ∂�.

In addition to (1.6) and (1.7),we assume that our operators satisfy aweaker variant of
the Dahlberg–Kenig–Pipher condition. The Dahlberg–Kenig–Pipher (DKP) condition
was introduced by Dahlberg and shown to be sufficient for the L p solvability of the
Dirichlet problem for some p > 1 by Kenig and Pipher ([44]). It was also shown to be
essentially necessary in [10, 45]. The DKP condition says that the coefficient matrix
A satisfies

δ(·) sup
B(·, δ(·)/2)

|∇A| ∈ C M�(M) for some M < ∞. (1.9)

Our assumption, slightly weaker than the classical DKP, is as follows.

Definition 1.10 (Weak DKP condition) An elliptic operator L = − divA∇ is said to
satisfy the weak DKP condition with constant M on � if there exists a decomposition
A = B + C such that

|δ∇B| + |C| ∈ C M�(M). (1.11)

Obviously, this condition is weaker than (1.9): it allows for small Carleson per-
turbations and carries no supremum over the Whitney cubes. Moreover, we show in
Lemma 2.1 that the weak DKP condition self improves.

We are now ready for the statement of our main result.

Theorem 1.12 Let β > 0, � ⊂ R
n be a 1-sided Chord-Arc Domain, and L =

− divA∇ be a uniformly elliptic operator—i.e., that verifies (1.6) and (1.7)—which
satisfies the weak DKP condition with constant M on �. We write G X0 for the Green
function of L with pole at X0. The following are equivalent:
(i) � is a Chord-Arc Domain,
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(ii) ∂� is uniformly rectifiable,
(iii) there exists C ∈ (0,∞) such that for any ball B centered on the boundary, and

for any positive weak solution u to Lu = 0 in 2B ∩ � for which Tr u = 0 on
2B ∩ ∂�, we have

¨
�∩B

∣
∣
∣
∣

∇u

u
− ∇Dβ

Dβ

∣
∣
∣
∣

2

Dβ d X ≤ Cσ(B), (1.13)

(iv) there exists C ∈ (0,∞) such that for any X0 ∈ � and for any ball B centered on
the boundary satisfying X0 /∈ 2B, we have

¨
�∩B

∣
∣
∣
∣

∇G X0

G X0
− ∇Dβ

Dβ

∣
∣
∣
∣

2

Dβ d X ≤ Cσ(B), (1.14)

(v) there exist X0 ∈ � and C ∈ (0,∞) such that for any ball B centered on the
boundary that satisfies X0 /∈ 2B, we have (1.14).

Moreover, the constants C in (1.13)–(1.14) can be chosen to depend only on CA, M,

the CAD constants of �, β, and n.

Remark 1.15 The bound (1.13) is a local one, meaning for instance that the bound
will hold with a constant C independent of B and the solution u as long as � is
chord-arc locally in 2B (that is, we only need the existence of Harnack chains and of
corkscrew points in 2B ∩ �) and the uniformly elliptic operator L satisfies the weak
DKP condition in 2B.

The equivalence (i) ⇐⇒ (ii) is already well known, see Theorem 1.2 in [5].
Moreover, (iii) �⇒ (iv) �⇒ (v) is immediate. So we need only to prove
(ii) �⇒ (iii) and (v) �⇒ (i) in Theorem 1.12.

When the domain is unbounded, we can use the Green function with pole at infinity
instead of the Green function. The Green function with pole at infinity associated to
L is the unique (up to a multiplicative constant) positive weak solution to Lu = 0
with zero trace. See for instance Lemma 6.5 in [21] for the construction ([21] treats a
particular case but the same argument works as long as we have CFMS estimates, see
Lemma 2.18 below). So we have that:

Corollary 1.16 Let β, � and L be as in Theorem 1.12. If � is unbounded, the following
are equivalent:
(a) � is a Chord-Arc Domain,

(b) ∂� is uniformly rectifiable,
(c) there exists C ∈ (0,∞) such that for any ball B centered on the boundary, we

have

¨
�∩B

∣
∣
∣
∣

∇G∞

G∞ − ∇Dβ

Dβ

∣
∣
∣
∣

2

Dβ d X ≤ Cσ(B), (1.17)
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For our proof of the “direct” result, we need the fact that, for the same operators,
the L-elliptic measure is A∞-absolutely continuous with respect to σ.

Theorem 1.18 Let � be a Chord-Arc Domain, and let L = − divA∇ be a uniformly
elliptic operator—i.e., that verifies (1.6) and (1.7)—which satisfies the weak DKP
condition with constant M on �.

Then the L-elliptic measure ωL ∈ A∞(σ ), i.e. there exists C, θ > 0 such that
given an arbitrary surface ball � = B ∩ ∂�, with B = B(x, r), x ∈ ∂�, 0 < r <

diam(∂�), and for every Borel set F ⊂ �, we have that

σ(F)

σ (�)
≤ C
(

ω
X�

L (F)
)θ

, (1.19)

where X� is a corkscrew point relative to � (see Definition 2.8).
The constants C and θ—that are called the intrinsic constants in ωL ∈ A∞(σ )—

depend only on CA, M, the CAD constants of �, and n.

The above is known for operators satisfying the DKP condition (1.9) on Chord-Arc
domains. In fact, it is shown in [44] that ωL ∈ A∞(σ ) for DKP operators on Lipschitz
domains. But since the DKP condition is preserved in subdomains, and the Chord-
Arc domains are well approximated by Lipschitz subdomains [17], the A∞ property
can be passed from Lipschitz subdomains to Chord-Arc domains (see [42], or [38]).
Moreover, combinedwith the stability of the A∞ property under Carleson perturbation
of elliptic operators proved in [13], it is also known for the elliptic operators L =
− divA∇ for which A = B + C, where

sup
B(·, δ(·)/2)

{|δ∇B| + |C|} ∈ C M�(M) for some M < ∞. (1.20)

However, to the best of our knowledge, the A∞-absolute continuity of the elliptic
measure was not proved explicitly for elliptic operators satisfying the slightly weaker
condition (1.11).

We obtain Theorem1.18 as a consequence of the following result—which is another
contribution of the article—and Theorem 1.1 in [13].

Theorem 1.21 Let � be a domain in R
n with uniformly rectifiable (UR) boundary of

dimension n − 1. Let L be a uniformly elliptic operator which satisfies the weak DKP
condition with constant M on �. Suppose that u is a bounded solution of Lu = 0 in
�. Then for any ball B centered on the boundary, we have

¨
�∩B

|∇u(X)|2 δ(X)d X ≤ C ‖u‖2L∞(�) σ (B ∩ ∂�), (1.22)

where the constant C depends only on n, M, and the UR constants of ∂�.

Notice that in this theorem, we completely dispense with the Harnack chain and
corkscrew conditions (see Definitions 2.8 and 2.9) for the domain. Previously, an
analogous result was obtained for bounded harmonic functions in [36] (see also [33]
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for the converse) and for DKP operators in [37, Theorem 7.5]. The result for elliptic
operators which satisfy the weak DKP condition is again not explicitly written any-
where. However, slightly changing the proofs of a combination of papers would give
the result. For instance, we can adapt Theorem 1.32 in [23] to the codimension 1 case
to prove Theorem 1.18 in the flat case, then extending it to Lipschitz graph by using
the change of variable in [44], and finally proving Theorem 1.18 for all complements
of uniformly rectifiable domains by invoking Theorem 1.19 (iii) in [37]).

Here, we claim that we can directly demonstrate Theorem 1.21 using a strategy
similar to our proof of Theorem 1.12. In Sect. 8, we explain how tomodify the proof of
Theorem1.12 to obtainTheorem1.21.By [13]Theorem1.1, assuming that� is 1-sided
CAD, the estimate (1.22) implies that ωL ∈ A∞(σ ), and therefore our Theorem 1.18
follows from Theorem 1.21. Note that the bound (1.19) is a characterization of A∞,

see for instance Theorem 1.4.13 in [43].
Let us discuss in more details our assumptions for Theorem 1.12. In order to get the

bound (1.13), we strongly require that the boundary ∂� is uniformly rectifiable and
that the operator L satisfies the weak DKP condition. We even conjecture that those
conditions are necessary, that is, if ∂� is not uniformly rectifiable, then the bound
(1.13) holds for none of the weak DKP operators.

The corkscrew condition and the Harnack chain condition (see Definitions 2.8
and 2.9) are only needed for the proof of Lemma 7.12—where we used the comparison
principle—and for the implication (iii) �⇒ (i) in Theorem 1.12. However, since
most of our intermediate results can be proved without those conditions and could
be of interest in other situations where the Harnack chain is not assumed (like—
for instance—to prove Theorem 1.21), we avoided to use the existence of Harnack
chains and of corkscrew points in all the proofs and the intermediate results except for
Lemma 7.12 and in Sect. 9, even if it occasionally slightly complicated the arguments.

These observations naturally lead to the question about the optimality of our con-
ditions on�, and more precisely, whether we can obtain the estimate (1.13) assuming
only uniform rectifiability. The answer is no, aswe can construct a domain�which has
uniformly rectifiable boundary but is only semi-uniform (see Definition 10.1) where
(1.13) fails. More precisely, we prove in Sect. 10 that:

Proposition 1.23 There exists a semi-uniform domain � and a positive harmonic func-
tion G on � such that (1.13) is false.

But of course, assuming� is a Chord-Arc Domain is not necessary for (1.13) since
(1.13) obviously holds when � = R

n\R
n−1 = R

n+ ∪ R
n−, because we can apply

Theorem 1.12 to both �+ = R
n+ and �− = R

n− and then sum.

1.3 Main steps of the proof of (ii) �⇒ (iii)

In this section, we present the outline of the proof of (ii) �⇒ (iii) in Theorem 1.12.
More exactly, this subsection aims to link the results of all other sections of the paper
in order to provide the proof.

The approach developed in this article is new and it is interesting by itself, because it
gives an alternative to proofs that use projection and extrapolation of measures. Aside
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from Theorems 1.12 and 1.21, we claim that our approach can be used to obtain a third
proof of the main result from [29, 31], which establishes the A∞-absolute continuity
of the harmonic measure when � is the complement of a uniformly rectifiable set of
low dimension and L is a properly chosen degenerate operator.

Let � and L be as in the assumptions of Theorem 1.12, and let B and C denote the
matrices in (1.11). Take B := B(x0, r) to be a ball centered at the boundary, that is
x0 ∈ ∂�, and then a non-negative weak solution u to Lu = 0 in 2B ∩ � such that
Tr(u) = 0 on B ∩ ∂�.

Step 1: From balls to dyadic cubes. We construct a dyadic collection D∂� of
pseudo-cubes in ∂� in the beginning of Sect. 3, and a collection of Whitney regions
W�(Q), W ∗

�(Q) associated to Q ∈ D∂� in the beginning Sect. 4. We claim that (1.13)
is implied by the following estimate that uses dyadic cubes

I :=
∑

Q∈D∂�
Q⊂Q0

¨
W�(Q)

∣
∣
∣
∣

∇u

u
− ∇Dβ

Dβ

∣
∣
∣
∣

2

δ d X ≤ Cσ(Q0) (1.24)

for any cube Q0 ∈ D∂� satisfying Q0 ⊂ 8
7 B ∩ ∂� and �(Q0) ≤ 2−8r . It follows

from the definition of W ∗
�(Q) (4.5) that

W ∗
�(Q) ⊂ 7

4
B for Q ⊂ Q0 (1.25)

and Q0 as above.
We take {Qi

0} ⊂ D∂� as the collection of dyadic cubes that intersect B ∩ ∂� and
such that 2−9r < �(Qi

0) ≤ 2−8r . There is a uniformly bounded number of them, each
of them satisfies Qi

0 ⊂ 3
2 B ∩ � and �(Qi

0) ≤ 2−8r and altogether, they verify

B ∩ � ⊂ {X ∈ B, δ(X) > 2−9r}
⋃(⋃

i

⋃

Q∈D∂�(Qi
0)

W�(Q)
)

.

The estimate (1.13) follows by applying (1.24) to each Qi
0—using (1.4) and (1.1)

when needed—and (1.26) below to {X ∈ B, δ(X) > 2−9r}.
Step 2: Bound on aWhitney region. In this step, we establish that if E ⊂ 7

4 B is such
that diam(E) ≤ K δ(E), then

JE :=
¨

E

∣
∣
∣
∣

∇u

u
− ∇Dβ

Dβ

∣
∣
∣
∣

2

δ d X ≤ CK δ(E)n−1. (1.26)

We could use Lemma 7.9 to prove this, but it would be like using a road roller to crack
a nutshell, because it is actually easy. We first separate

JE ≤
¨

E

∣
∣
∣
∣

∇u

u

∣
∣
∣
∣

2

δ d X +
¨

E

∣
∣
∣
∣

∇Dβ

Dβ

∣
∣
∣
∣

2

δ d X := J 1
E + J 2

E .
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We start with J 2
E .Observe that |∇[D−β

β ]| ≤ (d +β)D−β−1
β+1 , so |∇ Dβ

Dβ
| � δ−1 by (1.4).

We deduce that J 2
E � |E |δ(E)−1 � δ(E)n−1 as desired. As for J 1

E , we construct

E∗ := {X ∈ �, dist(X , E) ≤ δ(E)/100} ⊂ 15

8
B,

and then the Harnack inequality (Lemma 2.15) and the Caccioppoli inequality
(Lemma 2.14) yield that

J 1
E � δ(E)(sup

E∗
u)−2

¨
E

|∇u|2d X � δ(E)−1(sup
E∗

u)−2
¨

E∗
u2d X

≤ δ(E)−1|E∗| � δ(E)n−1.

The bound (1.26) follows.

Step 3: Corona decomposition.Let Q0 as in Step 1. One can see that we cannot apply
(1.26) to each E = W�(Q) and still hope to get the bound (1.24) for I .We have to use
(1.26) with parsimony. We first use a corona decomposition of D∂�(Q0), and we let
the stopping time region stop whenever α(Q) or the angle between the approximating
planes are too big. We choose 0 < ε1 � ε0 � 1 and Lemma 3.16 provides a first
partition of D∂� into bad cubes B and good cubes G and then a partition of G into a
collection of coherent regimes {S}S∈S.

Let B(Q0) := B ∩ D∂�(Q0) and then S(Q0) = {S ∩ D∂�(Q0)}. Observe that
S(Q0) contains the collection of S ∈ S such that Q(S) ⊂ Q0 and maybe one extra
element, in the case where Q0 /∈ B ∪ ⋃S∈S Q(S), which is the intersection with
D∂�(Q0) of the coherent regime S ∈ S that contains Q0. In any case S(Q0) is a
collection of (stopping time) coherent regimes. In addition, Lemma 3.16 shows that
S(Q0) and B(Q0) verifies the Carleson packing condition

∑

Q∈B(Q0)

σ (Q) +
∑

S∈S(Q0)

σ (Q(S)) ≤ Cσ(Q0). (1.27)

We use this corona decomposition to decompose the sum I from (1.24) as

I =
∑

Q∈B(Q0)

¨
W�(Q)

∣
∣
∣
∣

∇u

u
− ∇Dβ

Dβ

∣
∣
∣
∣

2

δ d X

+
∑

S∈S(Q0)

¨
W�(S)

∣
∣
∣
∣

∇u

u
− ∇Dβ

Dβ

∣
∣
∣
∣

2

δ d X := I1 +
∑

S∈S(Q0)

IS, (1.28)

where W�(S) = ⋃Q∈S W�(Q). For each cube Q ∈ B(Q0), the regions W�(Q) are

included in 7
4 B and verify diam(W�(Q)) ≤ 8δ(W�(Q)) ≤ 8�(Q), so we can use

(1.26) and we obtain

I1 �
∑

Q∈B(Q0)

�(Q)n−1 � σ(Q0). (1.29)
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by (1.1) and (1.27).

Step 4: How to turn the estimation of IS into a problem on R
n+. Now, we take

S in S(Q0), which is nice because ∂� is well approximated by a small Lipschitz
graph �S around any dyadic cube of S (see Sect. 3.4 for the construction of �S).
For instance, fattened versions of our Whitney regions W ∗

�(Q), Q ∈ S, are Whitney
regions in R

n\�S (see Lemma 4.13). More importantly, at any scale Q ∈ S, the local
Wasserstein distance between σ and the Hausdorff measure of �S is bounded by the
local Wasserstein distance between σ and the best approximating plane, which means
that �S approximate ∂� better (or at least not much worse) than the best plane around
any Q ∈ S. Up to our knowledge, it is the first time that such a property on �S is
established. It morally means that Dβ(X) will be well approximated by

Dβ,S(X) :=
(ˆ

�S
|X − y|−d−βdHn−1(y)

)− 1
β

whenever X ∈ X�(S), and that the error can be bounded in terms of the Tolsa’s
α-numbers.

Nevertheless, what we truly want is the fact ∂� is well approximated by a plane—
instead of a Lipschitz graph—from the standpoint of any X ∈ W�(S), because in
this case we can use Lemma 7.9. Yet, despite this slight disagreement, �S is much
better than a random uniformly rectifiable set, because �S is the image of a plane P
by a bi-Lipschitz map. So we construct a bi-Lipschitz map ρS : R

n → R
n that of

course maps a plane to �S, but which also provides an explicit map from any point
X in W�(S) to a plane �(ρ−1

S (X)) that well approximates �S—hence ∂�—from the
viewpoint of X . So morally, we constructed ρS such that we have a function

X �→ dist(X ,�(ρ−1
S (X)))

which, when X ∈ W�(S), is a good approximation of

Dβ,S(X) :=
(ˆ

�S
|X − y|−d−βdHn−1(y)

)− 1
β

in terms of the Tolsa’s α-numbers.
We combine the two approximations to prove (see Lemma 6.30, which is a conse-

quence of Corollary 5.52 and our construction of ρS) that for Q ∈ S
¨

W�(Q)

∣
∣
∣
∣
∣

∇Dβ(X)

Dβ(X)
−

N
ρ−1
S (X)

(X)

dist(X ,�(ρ−1
S (X))

∣
∣
∣
∣
∣

2

δ(X) d X ≤ C |ασ,β(Q)|2σ(Q),
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where Y → N
ρ−1
S (X)

(Y ) is the gradient of the distance to �(ρ−1
S (X)). And since the

ασ,β(Q) satisfies the Carleson packing condition, see Lemma 5.31, we deduce that

IS ≤ 2I ′
S + C

∑

Q∈S
|ασ,β(Q)|2σ(Q) ≤ 2I ′

S + Cσ(Q(S)) (1.30)

where

I ′
S :=

¨
W�(S)

∣
∣
∣
∣
∣

∇u

u
−

N
ρ−1
S (X)

(X)

dist(X ,�(ρ−1
S (X))

∣
∣
∣
∣
∣

2

δ d X .

We are left with I ′
S.Wemake the change of variable (p, t) = ρ−1

S (X) in the integral
defining I ′

S and we obtain that

I ′
S =

¨
ρ−1
S (W�(S))

∣
∣
∣
∣

(∇u) ◦ ρS(p, t)

u ◦ ρ(p, t)
− Np,t (ρS(p, t))

dist(ρS(p, t),�(p, t))

∣
∣
∣
∣

2

δ ◦ ρS(p, t)

× det (Jac(p, t)) dt dp

≤ 2
¨

ρ−1
S (W�(S))

∣
∣
∣
∣

∇ (u ◦ ρS(p, t))

u ◦ ρ(p, t)
− Jac(p, t)Np,t (ρS(p, t))

dist(ρS(p, t),�(p, t))

∣
∣
∣
∣

2

|t | dt dp,

where Jac(p, t) is the Jacobian matrix of ρS, which is close to the identity by
Lemma 6.8. We have also used that δ ◦ ρS(p, t) ≈ t since δ(X) ≈ dist(X , �S)

on W�(S) and the bi-Lipschitz map ρ−1
S preserves this equivalence. Even if the term

Jac(p, t)Np,t (ρS(p, t))

dist(ρS(p, t),�(p, t))

looks bad, all the quantities inside are constructed by hand, and of course, we made
them so that they are close to the quotient ∇dP

dP
, where dP is the distance to a plane

that depends only on S. With our change of variable, we even made it so that P =
R

n−1 × {0}, that is ∇dP
dP

= ∇t
t . Long story short, Lemma 6.32 gives that

I ′
S ≤ 4I ′′

S + σ(Q(S)) (1.31)

where

I ′′
S :=

¨
ρ−1(W�(S))

∣
∣
∣
∣

∇v

v
− ∇t

t

∣
∣
∣
∣

2

|t | dt dp, v = u ◦ ρS.

Step 5: Conclusion on IS using the flat case. It is easy to see from the definition that
Chord-Arc Domains are preserved by bi-Lipschitz change of variable, and the new
CAD constants depends only on the old ones and the Lipschitz constants of the bi-
Lipschitz map. Since the bi-Lipschitz constants of ρS is less than 2 (and so uniform in
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S), we deduce that ρ−1
S (�) is a Chord-Arc Domain with CAD constants that depends

only on the CAD constants of �.

Then, in Sect. 4, we constructed a cut-off function �S adapted to W�(S). We have
shown in Lemma 4.20 that �S is 1 on W�(S) and supported in W ∗

�(S), on which we
still have δ(X) ≈ dist(X , �S). In Lemma 4.28, we proved that the support of ∇�S is
small, in the sense that implies 1supp∇�S ∈ C M�. What is important is that those two
properties are preserved by bi-Lipschitz change of variable, and thus �S ◦ ρS is as in
Definition 7.1.

We want the support of�S ◦ρS to be included in a ball BS such that 2BS is a subset
of our initial ball B, and such that the radius of BS is smaller than C�(Q(S)). But
those facts are an easy consequence of (1.25) and the definition of W ∗

�(S) (and the
fact that ρS is bi-Lipschitz with the Lipschitz constant close to 1).

We also want u ◦ ρS to be a solution of LS(u ◦ ρS) = 0 for a weak-DKP operator
LS. The operator LS is not exactly weak-DKP everywhere in ρ−1

S (�), but it is the
case on the support of �S (see Lemma 6.20), which is one condition that we need for
applying Lemma 7.9.

To apply Lemma 7.9—or more precisely for Lemma 7.12, where one term from
the integration by parts argument is treated—we need to show that ωL∗ ∈ A∞(σ ).

This is a consequence of Theorem 1.18. Indeed, since the adjoint operator L∗ is also
a weak DKP operator on �, Theorem 1.18 asserts that ωL∗ ∈ A∞(σ ), where σ is an
Ahlfors regular measure on ∂�. A direct computation shows that for any set E ⊂ ∂�

and any X0 ∈ �,

ω
ρ−1
S (X0)

L∗
S

(

ρ−1
S (E)

)

= ω
X0
L∗ (E),

and since the mapping ρS is bi-Lipschitz, ωL∗ ∈ A∞(σ ) implies that the L∗
S-elliptic

measure ωL∗
S ∈ A∞(̃σ ), where σ̃ is an Ahlfors regular measure on the boundary

of ρ−1
S (�). Moreover, the intrinsic constants in ωL∗

S ∈ A∞(̃σ ) depend only on the
intrinsic constants in ωL∗ ∈ A∞(σ ) because the bi-Lipschitz constants of ρS are
bounded uniformly in S.

All those verification made sure that we can apply Lemma 7.9, which entails that

I ′′
S ≤

¨
ρ−1(W�(S))

|t |
∣
∣
∣
∣

∇(u ◦ ρS)
u ◦ ρS

− ∇t

t

∣
∣
∣
∣

2

(�S ◦ ρS)2 dt dp

� �(Q(S))n−1 � σ(Q(S)). (1.32)

Let us mention that the proof of Lemma 7.9 relies on an argument that was previously
used—up to the authors’ knowledge—only in [25], which treats the cases where �

is the complement of a low dimensional set. But even so, we also had to develop the
technique presented in [32] to be able to treat the full class the weak-DKP operators.

Step 6:Gathering of the estimates.We let the reader check that (1.27)–(1.32) implies
(1.24), and enjoy the end of the sketch of the proof!
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1.4 Organisation of the paper

In Sect. 2, we present the exact statement on our assumptions on �, and we give the
elliptic theory that will be needed in Sect. 7.

Sections 3–7 proved the implication (ii) �⇒ (iii) in Theorem 1.12. Section 3
introduces the reader to the uniform rectifiability and present the corona decomposition
that will be needed. The corona decomposition gives a collection of (stopping time)
coherent regimes {S}S. From Sects. 3.4 to 6, S ∈ S is fixed. We construct in Sect. 3.4
a set �S which is the graph of a Lipschitz function with small Lipschitz constant.

Section 4 associate a “Whitney” region W�(S) to the coherent regime S so that
from the stand point of each point of W�(S), �S and ∂� are well approximated by
the same planes.

In Sect. 5, we are applying the result from Sect. 4 to compare Dβ with the distance
to a plane that approximate �S.

Section 6 constructs a bi-Lipschitz change of variable ρS that flattens �S, and we
use the results from Sects. 4 and 5 in order to estimate the difference

∇[Dβ ◦ ρS]
Dβ ◦ ρS

− ∇t

t

in terms of Carleson measure. Sections 3 to 6 are our arguments for the geometric side
of the problem, in particular, the solutions to Lu = 0 are barely mentioned (just to
explain the effect of ρS on L).

Section 7 can be read independently and will contain our argument for the PDE
side of the problem. Morally speaking, it proves Theorem 1.12 (ii) �⇒ (iii) when
� = R

n+.

Section 8 presents a sketch of proof of Theorem 1.21. The strategy is similar to
our proof of Theorem 1.12, and in particular, many of the constructions and notations
from Sects. 3 to 7 are adopted in Sect. 8. But since we do not need to deal with the
regularized distance Dβ, the proof is much shorter.

Section 9 tackles the converse implication, proving (v) �⇒ (i) in Theorem 1.12.
The proof adapts an argument of [30], which states that if G is sufficiently close to
Dβ, then ∂� is uniformly rectifiable. As mentioned earlier, we unfortunately did not
succeed to link our strong estimate (1.14) directly to the weak ones assumed in [30],
which explains why we needed to rewrite the argument.

We finish with Sect. 10, where we construct a semi-uniform domain and a positive
harmonic solution on it for which our estimate (1.13) is false.

2 Miscellaneous

2.1 Self improvement of the Carleson condition onA

Lemma 2.1 Let A be a uniformly elliptic matrix on a domain �, i.e. a matrix function
that satisfies (1.6) and (1.7) with constant CA. Assume that A can be decomposed as
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A = B + C where

|δ∇B| + |C| ∈ C M�(M). (2.2)

Then there exists another decomposition A = B̃ + C̃ such that

|δ∇B̃| + |̃C| ∈ C M�(C M) (2.3)

with a constant C > 0 that depends only on n, and B̃ satisfies (1.6) and (1.7) with the
same constant CA as A. In addition,

|δ∇B̃| ≤ CCA. (2.4)

Proof Let A = B + C as in the assumption of the lemma. Let θ ∈ C∞
0 (Rn) be a

nonnegative function such that supp θ ⊂ B(0, 1
10 ),

˜
Rn θ(X)d X = 1. Construct

θX (Y ) := δ(X)−nθ
(Y−X

δ(X)

)

and then

B̃(X) :=
¨

Rn
A(Y ) θX (Y ) dY and C̃ := A − B̃. (2.5)

We see that B̃ is an average ofA, so B̃ verifies (1.6) and (1.7) with the same constant
as A. So it remains to prove (2.3) and (2.4). Observe that

∇XθX (Y ) = −nδ(X)−n−1∇δ(X)θ

(
Y − X

δ(X)

)

− δ(X)−n−1(∇θ)

(
Y − X

δ(X)

)

−δ(X)−n−2∇δ(X)(Y − X) · (∇θ)

(
Y − X

δ(X)

)

.

Let �(Z) denote Zθ(Z), then div�(Z) = nθ(Z) + Z · ∇θ(Z). So

δ(X)∇XθX (Y ) = −δ(X)−n(∇θ)

(
Y − X

δ(X)

)

− δ(X)−n∇δ(X)(div�)

(
Y − X

δ(X)

)

.

From here, one easily sees that |δ(X)∇XθX (Y )| is bounded by Cδ(X)−n uniformly in
X and Y , and thus

|δ(X)∇ B̃(X)| � −−
ˆ̂

B(X ,δ(X)/2)
|A(Y )|dY ≤ CA,

which proves (2.4). Set �X (Y ) = δ(X)−n�
(

Y−X
δ(X)

)

. Then

δ(X)∇XθX (Y ) = −δ(X)∇Y θX (Y ) − δ(X)∇δ(X) divY �X (Y ).

123



2652 J. Feneuil et al.

As a consequence,

δ(X)∇B̃(X) =
¨

Rn
(B + C)(Y ) δ(X)∇XθX (Y ) dY

= δ(X)

¨
Rn

∇B(Y ) θX (Y ) dY + δ(X)∇δ(X)

¨
Rn

∇B(Y ) · �X (Y ) dY

+
¨

Rn
C(Y ) [δ(X)∇XθX (Y )] dY .

We deduce that

|δ(X)∇B̃(X)| � −−
ˆ̂

B(X ,δ(X)/10)
(δ|∇B(Y )| + |C(Y )|) dY ,

and so the fact that |δ∇B| + |C| ∈ C M�(M) is transmitted to δ∇B̃, i.e. δ∇B̃ ∈
C M�(C M).

As for C̃, since ˜ θX (Y )dY = 1, we have

|̃C(X)| =
∣
∣
∣
∣

¨
Rn

(A(Y ) − A(X))θX (Y ) dY

∣
∣
∣
∣

≤
¨

Rn
(|B(Y ) − B(X)| + |C(Y )| + |C(X)|)θX (Y ) dY

� |C(X)| +−−
ˆ̂

B(X ,δ(X)/10)
(|B(Y ) − B(X)| + |C(Y )|) dY . (2.6)

By Fubini’s theorem, to show that
∣
∣̃C∣∣ ∈ C M�(C M), it suffices to show that for any

ball B centered on the boundary,

¨
B∩�

−−
ˆ̂

B(Z ,δ(Z)/4)

∣
∣̃C(X)
∣
∣
2

d X
d Z

δ(Z)
≤ C Mσ(B ∩ ∂�).

From this one sees that the terms on the right-hand side of (2.6) that involves C can
be easily controlled using |C| ∈ C M�(M). So by the Cauchy–Schwarz inequality, it
suffices to control

¨
Z∈B∩�

−−
ˆ̂

X∈B(Z ,δ(Z)/4)
−−
ˆ̂

Y∈B(X ,δ(X)/10)
|B(Y ) − B(X)|2 dY d X

d Z

δ(Z)
. (2.7)

Notice that for all X ∈ B(Z , δ(Z)/4), B(X , δ(X)/10) ⊂ B(Z , δ(Z)/2), and thus

−−
ˆ̂

Y∈B(X ,δ(X)/10)
|B(Y ) − B(X)|2 dY � −−

ˆ̂
Y∈B(Z ,δ(Z)/2)

|B(Y ) − B(X)|2 dY .
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Therefore,

(2.7) �
¨

Z∈B∩�

−−
ˆ̂

X∈B(Z ,δ(Z)/4)
−−
ˆ̂

Y∈B(Z ,δ(Z)/2)
|B(Y ) − B(X)|2 dY d X

d Z

δ(Z)

�
¨

Z∈B∩�

−−
ˆ̂

X∈B(Z ,δ(Z)/2)
|∇B(X)|2 d Xδ(Z)d Z

�
¨

X∈2B∩�

|∇B(X)|2 δ(X)d X ≤ C Mσ(B ∩ ∂�)

by the Poincaré inequality, Fubini’s theorem, and |δ∇B| ∈ C M�(M). So again, the
Carleson bound on |δ∇B| + |C| is given to C̃ as well. The lemma follows. ��

2.2 Definition of chord-arc domains

Definition 2.8 (Corkscrew condition, [42]) We say that a domain� ⊂ R
n satisfies the

corkscrew condition with constant c ∈ (0, 1) if for every surface ball � := �(x, r),

with x ∈ ∂� and 0 < r < diam(�), there is a ball B(X�, cr) ⊂ B(x, r) ∩ �. The
point X� ⊂ � is called a corkscrew point relative to � (or, for x at scale r).

Definition 2.9 (Harnack Chain condition, [42]) We say that � satisfies the Harnack
Chain condition with constants M, C > 1 if for every ρ > 0, � ≥ 1, and every
pair of points X , X ′ ∈ � with δ(X), δ(X ′) ≥ ρ and |X − X ′| < �ρ, there is a
chain of open balls B1, . . . , BN ⊂ �, N ≤ M(1 + log�), with X ∈ B1, X ′ ∈ BN ,

Bk ∩ Bk+1 �= ∅ and C−1 diam(Bk) ≤ dist(Bk, ∂�) ≤ C diam(Bk). The chain of balls
is called a Harnack Chain.

Definition 2.10 (1-Sided NTA and NTA) We say that a domain � is a 1-sided NTA
domain with constants c, C, M if it satisfies the corkscrew condition with constant c
and Harnack Chain condition with constant M, C . Furthermore, we say that � is an
NTA domain if it is a 1-sided NTA domain and if, in addition, �ext := R

n\� also
satisfies the corkscrew condition.

Definition 2.11 (1-Sided CAD and CAD) A 1-sided chord-arc domain (1-sided CAD)
is a 1-sided NTA domain with AR boundary. The 1-sided NTA constants and the
AR constant are called the 1-sided CAD constants. A chord-arc domain (CAD, or
2-sided CAD) is an NTA domain with AR boundary. The 1-sided NTA constants, the
corkscrew constant for �ext, and the AR constant are called the CAD constants.

Uniform rectifiability (UR) is a quantitative version of rectifiability.

Definition 2.12 (UR) We say that E is uniformly rectifiable if E has big pieces of
Lipschitz images, that is, if E is (n−1)-Ahlfors regular (1.1), and there exist θ, M > 0
such that, for each x ∈ E and r > 0, there is a Lipschitz mapping ρ from the ball
B(0, r) ⊂ R

d into R
n such that ρ has Lipschitz norm ≤ M and

σ(E ∩ B(x, r) ∩ ρ(BRd (0, r))) ≥ θrd .
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However, we shall not use the above definition. What we do require is the charac-
terization of UR by Tolsa’s α-numbers [50], as well as a modification of the corona
decomposition of uniformly rectifiable sets constructed in [18]. See Sect. 3 for details.
We shall also need the following result.

Lemma 2.13 Suppose that � ⊂ R
n is 1-sided chord-arc domain. Then the following

are equivalent:
(1) ∂� is uniformly rectifiable.
(2) �ext satisfies the corkscrew condition, and hence, � is a chord-arc domain.

That (1) implies (2) was proved in [5]. That (2) implies (1) can be proved via the
A∞ of harmonic measure (see [5, Theorem 1.2]), or directly as in [17].

2.3 Preliminary PDE estimates

Lemma 2.14 (The Caccioppoli inequality) Let L = − div A∇ be a uniformly elliptic
operator and u ∈ W 1,2(2B) be a solution of Lu = 0 in 2B, where B is a ball with
radius r . Then there exists C depending only on n and the ellipticity constant of L
such that

 
B

|∇u(X)|2 d X ≤ C

r2

 
2B

|u(X)|2 d X .

Lemma 2.15 (The Harnack inequality) Let L be as in Lemma 2.14 and let u be a
nonnegative solution of Lu = 0 in 2B ⊂ �. Then there exists constant C ≥ 1
depending only on n and the ellipticity constant of L such that

sup
B

u ≤ C inf
B

u.

Write L∗ for the transpose of L defined by L∗ = − div A�∇, where A� denotes
the transpose matrix of A. Associated with L and L∗ one can respectively construct
the elliptic measures {ωX

L }X∈� and {ωX
L∗}X∈�, and the Green functions GL and GL∗

on domains with Ahlfors regular boundaries (cf. [40, 43]).

Lemma 2.16 (The Green function) Suppose that � ⊂ R
n is an open set such that

∂� is Ahlfors regular. Given an elliptic operator L, there exists a unique Green
function GL(X , Y ) : �×�\ diag(�) → R with the following properties: GL(·, Y ) ∈
W 1,2

loc (�\{Y }) ∩ C(�\{Y }), GL(·, Y )
∣
∣
∂�

≡ 0 for any Y ∈ �, and LGL(·, Y ) = δY

in the weak sense in �, that is,

¨
�

A(X)∇X GL(X , Y ) · ∇ϕ(X) d X = ϕ(Y ), for any ϕ ∈ C∞
c (�).

In particular, GL(·, Y ) is a weak solution to LGL(·, Y ) = 0 in �\{Y }. Moreover,

GL(X , Y ) ≤ C |X − Y |2−n for X , Y ∈ �,
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cθ |X − Y |2−n ≤ GL(X , Y ), if |X − Y | ≤ θ dist(X , ∂�), θ ∈ (0, 1),

GL(X , Y ) ≥ 0, GL(X , Y ) = GL∗(Y , X), for all X , Y ∈ �, X �= Y .(2.17)

The following lemma will be referred to as the CFMS estimates (cf. [11, 43] for
NTA domains, and [41] or [24] for 1-sided CAD).

Lemma 2.18 (The CFMS estimates) Let � be a 1-sided CAD domain. Let L be an
elliptic operator satisfying (1.6) and (1.7). There exist C depending only on n, CA,

and the 1-sided CAD constants, such that for any B := B(x, r), with x ∈ ∂�,

0 < r < diam(∂�) and � := �(x, r), we have the following properties.

(1) The elliptic measure is non-degenerate, that is

C−1 ≤ ω
X�

L (�) ≤ C .

(2) For X ∈ �\2 B we have

1

C
ωX

L (�) ≤ rn−2GL(X , X�) ≤ CωX
L (�). (2.19)

(3) If 0 ≤ u, v ∈ W 1,2
loc (4 B ∩ �) ∩ C(4 B ∩ �) are two nontrivial weak solutions of

Lu = Lv = 0 in 4 B ∩ � such that u = v = 0 in 4�, then

C−1 u(X�)

v(X�)
≤ u(X)

v(X)
≤ C

u(X�)

v(X�)
, for all X ∈ B ∩ �.

3 Characterization of the uniform rectifiability

In all this section, we assume that ∂� is uniformly rectifiable, and we plan to prove
a corona decomposition of the uniformly rectifiable set which is “Tolsa’s α-number
compatible”.

Instead of a long explanation of the section, which will not be helpful anyway to
any reader who is not already fully familiar with the corona decomposition (C3) in
[18] and the Tolsa α-number (see [50]), we shall only state below the results proved
in the section (the definition of all the notions and notation will be ultimately given in
the section below).

Lemma 3.1 Let ∂� be a uniformly rectifiable set. Given any positive constants 0 <

ε1 < ε0 < 1, there exists a disjoint decomposition D∂� = G ∪ B such that

(i) The “good” cubes Q ∈ G are such that ασ (Q) ≤ ε1 and

sup
y∈999�Q

dist(y, PQ) + sup
p∈PQ∩999BQ

dist(p, ∂�) ≤ ε1�(Q). (3.2)
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(ii) The collection G of “good” cubes can be further subdivided into a disjoint family
G =
⋃

S∈S S of coherent regimes such that for any S ∈ S, there exists a

hyperplane P := PS and a 2ε0-Lipschitz function bS := b on P such that

ˆ
P∩�(2BQ)

dist(b(p), PQ) dp ≤ C�(Q)σ (Q)ασ (Q) for Q ∈ S, (3.3)

where C depends only on n.

(iii) The cubes in B (the “bad” cubes) and the maximal cubes Q(S) satisfies the
Carleson packing condition

∑

Q∈B
Q⊂Q0

σ(Q) +
∑

S∈S
Q(S)⊂Q0

σ(Q(S)) ≤ Cε0,ε1σ(Q0) for all Q0 ∈ D∂�. (3.4)

In the above lemma, σ is the Ahlfors regular measure for ∂� given in (1.1), D∂� is
a dyadic decomposition of ∂�, � := �S is the orthogonal projection on PS, PQ is the
best approximating plane of ∂� around Q, and ασ is the Tolsa α-number for σ. The
novelty, which is not similar to any of the corona decompositions that the authors are
aware of, is (3.3), which quantify the difference between ∂� and the approximating
graph �S in terms of α-number. In a more “classical” corona decomposition, one
would have ε1 instead of ασ (Q) in (3.3).

Corona decompositions are a useful and popular tool in the recent literature per-
taining to uniformly rectifiable sets, see for instance [3, 4, 8, 9, 12, 18, 33, 36, 46, 47]
to cite only a few.

3.1 Dyadic decomposition

We construct a dyadic system of pseudo-cubes on ∂�. In the presence of the Ahlfors
regularity property, such construction appeared for instance in [15, 16, 18] or [19].
We shall use the very nice construction of Christ [14], that allow to bypass the need
of a measure on ∂�. More exactly, one can check that the construction of the dyadic
sets by Christ to not require a measure, and as such are independent on the measure
on ∂�.

There exist a universal constant 0 < a0 < 1 and a collection D∂� = ∪k∈ZDk of
Borel subsets of ∂�, with the following properties. We write

Dk := {Qk
j ⊂ D∂� : j ∈ Ik},

where Ik denotes some index set depending on k, but sometimes, to lighten the nota-
tion, we shall forget about the indices and just write Q ∈ Dk and refer to Q as a cube
(or pseudo-cube) of generation k. Such cubes enjoy the following properties:

(i) ∂� = ∪ j Qk
j for any k ∈ Z.

(ii) If m > k then either Qm
i ⊆ Qk

j or Qm
i ∩ Qk

j = ∅.

(iii) Qm
i ∩ Qm

j = ∅ if i �= j .
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(iv) Each pseudo-cube Q ∈ Dk has a “center” xQ ∈ ∂� such that

�(xQ, a02
−k) ⊂ Q ⊂ �(xQ, 2−k). (3.5)

Let us make a few comments about these cubes. We decided to use a dyadic scaling
(by opposition to a scaling where the ratio of the sizes between a pseudo-cube and its
parent is, in average, ε < 1

2 ) because it is convenient. The price to pay for forcing
a dyadic scaling is that if Q ∈ Dk+� and R is the cube of Dk that contains Q (it is
unique by (i i), and it is called an ancestor of Q) is not necessarily strictly larger (as
a set) than Q. We also considered that the ∂� was unbounded, to avoid separating
cases. If the boundary ∂� is bounded, then D∂� := ⋃k≤k0 Dk where k0 is such that
2k0−1 ≤ diam(�) ≤ 2k0−1, and we let the reader check that this variation doesn’t
change a single argument in the sequel.

Ifμ is any doublingmeasure on ∂�—that is ifμ(2�) ≤ Cμμ(�) for any boundary
ball � ⊂ ∂�—then we have the following extra property:

(v) μ(∂ Qk
i ) = 0 for all i, k.

In our construction, (i) and (iii) forces the Qk
i to be neither open nor closed. But this

last property (v) means that taking the relative interior or the closure of Qk
i instead of

Qk
i would not matter, since the boundary amounts to nothing.
Let us introduce some extra notation. When E ⊂ ∂� is a set, D∂�(E) is the sub-

collection of dyadic cubes that are contained in E . When Q ∈ D∂�, we write k(Q)

for the generation of Q and �(Q) for 2−k(Q), which is roughly the diameter of Q by
(3.5). We also use BQ ⊂ R

n for the ball B(xQ, �(Q)) and �Q for the boundary ball
�(xQ, �(Q)) that appears in (3.5). For κ ≥ 1, the dilatation κ Q is

κ Q = {x ∈ ∂�, dist(x, Q) ≤ (κ − 1)�(Q)}, (3.6)

which means that κ Q ⊂ κ�Q ⊂ (κ + 1)Q.

The dyadic decomposition of ∂� will be the one which is the most used. However,
we also use dyadic cubes for other sets, for instance to construct Whitney regions, and
we use the same construction and notation as the one for ∂�. In particular, we will
use dyadic cubes in R

n and in a hyperplane P that still satisfy (3.5) for the universal
constant a0—i.e. the dyadic cubes are not real cubes—and the definition (3.6) holds
even in those contexts.

3.2 Tolsa’s˛ numbers

Tolsa’sα numbers estimate how far ameasure is from aflatmeasure, usingWasserstein
distances. We denote by � the set of affine n − 1 planes in R

n, and for each plane
P ∈ �, we write μP for the restriction to P of the (n − 1)-dimensional Hausdorff
measure, that is μP is the Lebesgue measure on P. A flat measure is a measure μ

that can be written μ = cμP where c > 0 and P ∈ �, the set of flat measure is then
denoted by F.
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Definition 3.7 (Local Wasserstein distance) Ifμ and σ are two (n−1)-Ahlfors regular
measures on R

n, and if y ∈ R
n and s > 0, we define

disty,s(μ, σ ) := s−n sup
f ∈Lip(y,s)

∣
∣
∣
∣

ˆ
f dμ −

ˆ
f dσ

∣
∣
∣
∣

where Lip(y, s) is the set of 1-Lipschitz functions that are supported in B(y, s).
If Q ∈ D∂�, then we set distQ(μ, σ ) := distxQ ,103�(Q)(μ, σ ) and Lip(Q) :=

Lip(xQ, 103�(Q)), where xQ is as in (3.5). Moreover, if σ is an Ahlfors regular
measure on ∂�, then we set

ασ (Q) := inf
μ∈F distQ(μ, σ ).

Note that

0 ≤ ασ (Q) ≤ C for all Q ∈ D∂� (3.8)

where C < ∞ depends only on the Ahlfors constants of μ and σ.

The uniform rectifiability of ∂� is characterized by the fact that, for any (n − 1)-
Ahlfors regular measure σ supported on ∂�, and any Q0 ∈ D∂�, we have

∑

Q∈D∂�(Q0)

ασ (Q)2σ(Q) ≤ Cσ(Q0) ≈ �(Q0)
n−1 (3.9)

and, for any ε > 0,

∑

Q∈D∂�(Q0)
ασ (Q)>ε

σ (Q) ≤ Cεσ (Q0) ≈ �(Q0)
n−1. (3.10)

For a proof of these results, see Theorem 1.2 in [50].
It will be convenient to introduce the following notation. Given Q ∈ D∂�, the

quantities cQ, PQ, and μQ are such that

μQ = cQμPQ and distQ(σ, μQ) ≤ 2ασ (Q), (3.11)

that is μQ is a flat measure which well approximates σ (as long as ασ (Q) is small).
So it means that

∣
∣
∣
∣

ˆ
f dσ −

ˆ
f dμQ

∣
∣
∣
∣
≤ 2(103�(Q))nασ (Q) for f ∈ Lip(Q). (3.12)

Let us finish the subsection with the following simple result.
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Lemma 3.13 There exists C > 1 depending only on Cσ and n such that if Q ∈ D∂�

and ε ∈ (0, C−n) verify ασ (Q) ≤ ε, then

sup
y∈999�Q

dist(y, PQ) + sup
p∈PQ∩999BQ

dist(p, ∂�) ≤ Cε1/n�(Q). (3.14)

Proof Assume that ασ (Q) ≤ ε = 8000−nC−1
σ ηn with η ∈ (0, 1). For a given point

y ∈ 999�Q, we set the function f1(z) := max{0, η�(Q) − |y − z|} ∈ Lip(Q).

Observe that

ˆ
f1dσ ≥ η�(Q)

2
σ
(η

2
�(y, �(Q))

)

≥ C−1
σ

(η�(Q)

2

)n
.

and thanks to (3.12)

8000−nC−1
σ ηn > ασ (Q) ≥ (2000�(Q))−n

∣
∣
∣
∣

ˆ
f1 dσ −

ˆ
f1 dμQ

∣
∣
∣
∣
.

By combining the two inequalities above, we have

∣
∣
∣
∣

ˆ
f1 dσ −

ˆ
f1 dμQ

∣
∣
∣
∣
≤ C−1

σ

(η�(Q)

4

)n ≤ 1

2

ˆ
f1dσ.

So necessarily, the support of f1 intersects the support of μQ, that is, we have that
dist(y, PQ) ≤ η�(Q) and thus the first part of (3.14) is proved. But notice also that the
same computations force the constant cQ in the flat measureμQ = cQμPQ to be larger
than (2cn−1Cσ )−1,where cn is the volume of the n-dimensional unit ball.We take now
a point p ∈ PQ ∩ 999BQ and construct f2 := max{0, η�(Q) − |p − z|} ∈ Lip(Q).

We have

∣
∣
∣
∣

ˆ
f2 dσ −

ˆ
f2 dμQ

∣
∣
∣
∣
≤ 2(1000�(Q))nασ (Q) < C−1

σ

(η�(Q)

4

)n
<

ˆ
f2 dμQ .

So necessarily, the support of f1 intersects the support of σ, that is dist(p, ∂�) ≤
η�(Q). The lemma follows. ��

3.3 Corona decomposition

We first introduce the notion of coherent subsets of D∂�.

Definition 3.15 Let S ⊂ D∂�. We say that S is coherent if

(a) S contains a unique maximal element Q(S), that is Q(S) contains all the other
elements of S as subsets.

(b) If Q ∈ S and Q ⊂ R ⊂ Q(S), then R ∈ S.

(c) Given a cube Q ∈ S, either all its children belong to S or none of them do.
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The aim of the section is to prove the following corona decomposition for a uni-
formly rectifiable boundary ∂�.

Lemma 3.16 Let ∂� be a uniformly rectifiable set. Given any positive constants ε1 <

ε0 ∈ (0, 1), there exists a disjoint decomposition D∂� = G ∪ B such that

(i) The “good” cubes Q ∈ G are such that ασ (Q) ≤ ε1 and

sup
y∈999�Q

dist(y, PQ) + sup
p∈PQ∩999BQ

dist(p, ∂�) ≤ ε1�(Q). (3.17)

(ii) The collection G of “good” cubes can be further subdivided into a disjoint family
G =
⋃

S∈S S of coherent regimes that satisfy

Angle(PQ, PQ′) ≤ ε0 for all S ∈ S and Q, Q′ ∈ S. (3.18)

(iii) The cubes in B (the “bad” cubes) and the maximal cubes Q(S) satisfy the
Carleson packing condition

∑

Q∈B
Q⊂Q0

σ(Q) +
∑

S∈S
Q(S)⊂Q0

σ(Q(S)) ≤ Cε0,ε1σ(Q0) for all Q0 ∈ D∂�.

(3.19)

Remark 3.20 What we secretly expect is, in addition to (3.18), to also have a control
on the constants cQ—defined in (3.11)—that belongs to the same S. For instance, we
would like to have

|cQ − cQ(S)| ≤ ε0.

Imposing this extra condition while keeping the number of S low should be doable,
but we do not need it, so we avoided this complication.

The difficult part in the above lemma is to prove that (3.18) holds while keeping
the number of coherent regimes S small enough so that (3.19) stays true. To avoid
a long and painful proof, we shall prove Lemma 3.16 with the following result as a
startpoint.

Lemma 3.21 [18] Let ∂� be a uniformly rectifiable set. Given any positive constants
ε3 < ε2 ∈ (0, 1), there exists a disjoint decomposition D∂� = G′ ∪ B′ such that

(i) The “good” cubes Q ∈ G′ are such that there exists an affine plane P ′
Q ∈ � such

that

dist(x, P ′
Q) ≤ ε3�(Q) for x ∈ 999�Q . (3.22)
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(ii) The collection G′ of “good” cubes can further subdivided into a disjoint family
G′ =
⋃

S′∈S′ S′ of coherent stopping time regimes that satisfy

Angle(P ′
Q, P ′

Q(S′)) ≤ ε2 for all S′ ∈ S′ and Q ∈ S′. (3.23)

(iii) The cubes in B′ and the maximal cubes Q(S′) satisfy the Carleson packing
condition

∑

Q∈B′
Q⊂Q0

σ(Q) +
∑

S′∈S′
Q(S′)⊂Q0

σ(Q(S′)) ≤ Cε2,ε3σ(Q0) for all Q0 ∈ D∂�. (3.24)

The proof of Lemma 3.21 is contained in Sections 6 to 11 of [18], and the statement
that we gave is the combination of Lemma 7.1 and Lemma 7.4 in [18]. Lemma 3.16
might already be stated and proved in another article, and we apologize if it were
the case. Moreover, the proof of Lemma 3.16 is probably obvious to anyone that is
a bit familiar with this tool. However, every corona decomposition has its own small
differences, and we decided to write our own using only the results of David and
Semmes as a prerequisite.

Proof of Lemma 3.16 from Lemma 3.21 We pick then ε1 and ε0 small such that ε1 �
ε0 � 1. We apply Lemma 3.21 with the choices of ε2 := ε0/2 and ε3 = ε1. Note that
we can choose

P ′
Q = PQ when Q ∈ G′ and ασ (Q) ≤ C−nεn

1 (3.25)

if C > 0 is the constant from Lemma 3.13.
Sincewe applied Lemma 3.21, we have a first disjoint decompositionD∂� = G′∪B′

and a second decomposition G′ = ⋃S′ into coherent regimes which satisfy (3.22),
(3.23), and (3.24).

We define G as

G := G′ ∩ {Q ∈ D, ασ (Q) ≤ C−nεn
1 }

whereC is the constant in Lemma 3.13. Of course, it means thatB := B′ ∪(G′\G).The
coherent regimes S′ may not be contained in G, that is S′ ∩ G may not be a coherent
regime anymore. So we split further S′ ∩ G into a disjoint union of (stopping time)
coherent regimes {Si }i∈IS′ that are maximal in the sense that the minimal cubes of
Si are those for which at least one children belongs to D∂�\(S′ ∩ G). The collection
{S}S∈S is then the collection of all the Si for i ∈ IS′ and S′ ∈ S′.

It remains to check that the G, B and {S}S∈S that we just built satisfy (3.18) and
(3.19). For the former, we use the fact that a regime S is necessarily included in a S′,
so for any Q ∈ S, we have

Angle(PQ, PQ(S)) ≤ Angle(PQ, PQ(S′)) + Angle(PQ(S′), PQ(S))

= Angle(P ′
Q, P ′

Q(S′)) + Angle(P ′
Q(S), P ′

Q(S′)) ≤ 2ε2 = ε0

123



2662 J. Feneuil et al.

(3.26)

by (3.25), (3.23), and our choice of ε2. The fact that B satisfies the Carleson packing
condition

∑

Q∈B
Q⊂Q0

σ(Q) ≤ Cε0,ε1σ(Q0) for all Q0 ∈ D∂� (3.27)

is an immediate consequence of the definition of B, (3.10), and (3.24). Finally, by
the maximality of the coherent regimes S, then either Q(S) is the maximal cube of a
coherent regime from the collection {S′}S′∈S′ , or (at least) the parent or one sibling
of Q(Si ) belongs to B. Therefore, if Q∗ denotes the parent of a dyadic cube Q, then
for any Q0 ∈ D∂�,

∑

S∈S
Q(S)⊂Q0

σ(Q(S)) ≤
∑

S′∈S′
Q(S′)⊂Q0

σ(Q(S′)) +
∑

Q∈B
Q⊂Q0

σ(Q∗) � σ(Q0)

because of the Carleson packing conditions (3.24) and (3.27), and because σ(Q∗) ≈
�(Q)n−1 ≈ σ(Q). The lemma follows. ��

3.4 The approximating Lipschitz graph

In this subsection, we show that each coherent regime given by the corona decompo-
sition is well approximated by a Lipschitz graph. We follow the outline of Section 8
in [18] except that we are a bit more careful about our construction in order to obtain
Lemma 3.47 below. That is, instead of just wanting the Lipschitz graph �S to be close
to ∂�, we aim to prove that the Lipschitz graph is an approximation of ∂� at least as
good as the best plane.

Pick 0 < ε1 � ε0 � 1, and then construct the collection of coherent regimes S
given by Lemma 3.16. Take S to be either in S, or a coherent regime included in an
element of S, and let it be fixed. Set P := PQ(S) and define � as the orthogonal
projection on P. Similarly, we write P⊥ for the line orthogonal to P and �⊥ for the
projection onto P⊥. We shall also need the function d on P: for p ∈ P, define

d(p) := inf
Q∈S{dist(p,�(2BQ)) + �(Q)}. (3.28)

Wewant to construct a Lipschitz function b : P �→ P⊥. First, we prove a small result.
We claim that for x, y ∈ ∂� ∩ 999BQ(S), we have

|�⊥(x) − �⊥(y)| ≤ 2ε0|�(y) − �(x)| whenever |x − y| > 10−3d(�(x)).

(3.29)
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Indeed, with such choices of x and y, we can find Q ∈ S such that

0 < |x − y| ≈ dist(�(x),�(Q)) + �(Q)

and by taking an appropriate ancestor of Q, we find Q∗ such that |x − y| ≈ �(Q∗).
Since x, y ∈ 999BQ(S), we can always take Q∗ ⊂ Q(S)—that is Q∗ ∈ S thanks to
the coherence of S—and x, y ∈ 999BQ∗ . Due to (3.17), we deduce that

dist(x, PQ∗) + dist(y, PQ∗) ≤ 2ε1�(Q∗) � ε0|x − y|

if ε1/ε0 is sufficiently small. Since Angle(PQ∗ , P) ≤ ε0 by (3.18), we conclude

|�⊥(x) − �⊥(y)| ≤ dist(x, PQ∗) + dist(y, PQ∗) + 1

2
ε0|x − y| ≤ 3

4
ε0|x − y|

≤ ε0|�(x) − �(y)|

if ε0 is small enough. The claim (3.29) follows.
Define the closed set

Z = {p ∈ P, d(p) = 0}. (3.30)

The Lipschitz function b will be defined by two cases.
Case d(p) = 0. That is, p ∈ Z . In this case, since ∂� is closed, there necessarily
exists x ∈ ∂� such that �(x) = p. Moreover, (3.29) shows that such x is unique, that
is � is a one to one map on Z , and we define

b(p) := �⊥(�−1(p)) for p ∈ Z . (3.31)

Case d(p) > 0. We partition P\Z with a union of dyadic cubes, in the spirit of a
Whitney decomposition, as follows. Construct the collectionWP as the subset of the
dyadic cubes of P that are maximal for the property

0 < 21�(R) ≤ inf
q∈3R

d(q). (3.32)

By construction, d(p) ≈ d(q) whenever p, q ∈ 3R ∈ WP . Moreover, let us check
that

�(R1)/�(R2) ∈ {1/2, 1, 2} if R1, R2 ∈ WP are s.t. 3R1 ∩ 3R2 �= ∅. (3.33)

Indeed, if R ∈ WP and S is such that �(S) = �(R) and 3S ∩ 3R �= ∅, then 3S ⊂ 9R
and hence

20�(S) = 20�(R) ≤ inf
p∈3R

d(p) ≤ inf
p∈9R

d(p) + 6�(R) ≤ inf
p∈3S

d(p) + 6�(S).

So every children of S has to satisfy (3.32), which proves (3.33).
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By construction ofWP , for each R ∈ WP , we can find Q R ∈ S such that

dist(R,�(Q R)) ≤ (26 − 2)�(R), �(Q R) ≤ 25�(R),

and either Q R = Q(S) or �(Q R) = 25�(R) ≈ inf
q∈2R

d(q) ≈ sup
q∈2R

d(q).

(3.34)

We want to associate each R with an affine function bR : P �→ P⊥ such that the
image of the function bR defined as bR(p) = (p, bR(p)) approximates ∂�well. First,
we set

bR ≡ 0 when Q R = Q(S). (3.35)

When Q R �= Q(S), we take bR such that bR verifies

ˆ
999�Q(S)

|y − bR(�(y))|1�(y)∈2R dσ(y)

:= min
a

ˆ
999�Q(S)

|y − aR(�(y))|1�(y)∈2R dσ(y), (3.36)

where the minimum is taken over the affine functions a : P �→ P⊥ and aR(p) :=
(p, a(p)). The uniqueness of the minimum is not guaranteed, but it does not matter
for us. The existence is guaranteed, because R ⊂ �(3BQ R ) ⊂ P ∩999BQ R by (3.34),
and hence (3.17) entails that the graph of the a that almost realize the infimum are
very close to the plane PQ which makes a small angle with P. The same argument
shows that

sup
y∈999�Q R

|y − bR(�(y))| + sup
p∈�(999BQ R )

dist(bR(p), ∂�) ≤ Cε1�(Q R).

(3.37)

for a constant C > 0 that depends only on n and

bR is 1.1ε0-Lipschitz (3.38)

if 0 < ε1 � ε0 � 1.We associate to the collectionWP a partition of unity {ϕR}R∈WP

such thatϕR ∈ C∞
0 (2Ri ), |∇ϕR | � �(R)−1, and

∑

R ϕR ≡ 1 on P\Z .We then define

b(p) :=
∑

R∈WP

ϕR(p)bR(p) for p ∈ P\Z . (3.39)

Due to (3.33), the sum in (3.39) is finite and thus the quantity b(p) is actually well
defined.

For p ∈ P, we define b(p) := (p, b(p)) to be the graph of b.
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Lemma 3.40 The function b defined by (3.31) and (3.39) is 2ε0-Lipschitz and sup-
ported in P ∩ 4BQ(S).

Proof Recall that the property (3.34) implies that 2R ⊂ P ∩ �(3BQ R ) as long as
Q R �= Q(S). So if p /∈ P ∩ �(3BQ(S)) and R ∈ WP is such that p ∈ 2R, we
necessarily have Q R = Q(S) and then bR(p) = 0 by (3.35). We conclude that
b(p) = 0 and thus that b is supported in P ∩ �(3BQ(S)) ⊂ P ∩ 4BQ(S).

Now, we want to show that b is Lipschitz. The fact that b is Lipschitz on Z is
an immediate consequence from the definition (3.31) and (3.29). Let us prove now
that b is Lipschitz on the interior of 2R0 for every R0 ∈ WP . Take R0 ∈ WP and
p ∈ 2R0\∂(2R0). Then, since

∑∇ϕR(p) = 0, we have

|∇b(p)| =

∣
∣
∣
∣
∣
∣
∣
∣

∑

R∈WP
2R∩2R0 �=∅

ϕR(p)∇bQ R (p) +
∑

R∈WP
2R∩2R0 �=∅

bQ R (p)∇ϕR(p)

∣
∣
∣
∣
∣
∣
∣
∣

≤ sup
R∈WP

2R∩2R0 �=∅
|∇bQ R (p)| +

∑

R∈WP
2R∩2R0 �=∅

|∇ϕR(p)||bQ R (p) − bQ R0
(p)|

≤ 1.1ε0 + C�(R0)
−1 sup

R∈WP
2R∩2R0 �=∅

|bQ R (p) − bQ R0
(p)|

(3.41)

by (3.38) and (3.33). We can assume that p ∈ 2R0 ⊂ P ∩ 4BQ(S), because we have
already shown that b(p) = 0 otherwise. So due to (3.34) and (3.33), both Q R and
Q R0 are close to 2R0, in the sense that

3R0 ⊂ P ∩ 999�(BQ R ),

so we can invoke (3.37) to say that dist(bQ R (p), PQ R0
) � ε1�(Q R0) and then

|bQ R (p) − bQ R0
(p)| � ε1�(Q R0). (3.42)

So if ε1 � ε0 is small enough, (3.41) becomes |∇b(p)| ≤ 2ε0.
We proved that b is Lipschitz on Z and P\Z , so it remains to check that b is

continuous at every point in ∂ Z . Take z ∈ ∂ Z and set x := b(z) ∈ ∂�. Take also
p ∈ P\Z such that |p − z| � 1. Due to (3.37) and (3.42), we have the existence of
y ∈ ∂� such that, for any R ∈ WP satisfying p ∈ 2R, we have

|y − bQ R (p)| � ε1�(R) � ε1d(p) ≤ ε1|p − z| (3.43)

by (3.32) and the fact thatq → d(q) is 1-Lipschitz. The latter bound shows in particular
that

|y − b(p)| ≤ ε0|p − z| (3.44)
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if ε1/ε0 is small enough. The bound (3.44) also implies that �(x) �= �(y) and then
x �= y, and so (3.29) entails that

|b(z) − �⊥(y)| = |�⊥(x) − �⊥(y)| ≤ 2ε0|z − �(y)|. (3.45)

The combination of (3.44) and (3.45) proves that the restriction of b to P\Z has the
limit b(z) at the point z ∈ ∂�. Since it is true for all z ∈ ∂ Z , and since b is already
continuous (even Lipschitz) on Z and P\Z , we conclude that b is continuous on P.

The lemma follows. ��

We prove that the graph of b is well approximated by the same plane as the ones
that approximate ∂�, as shown below.

Lemma 3.46 For Q ∈ S, we have

sup
p∈P∩�(28BQ)

[

dist(b(p), ∂�) + dist(b(p), PQ)
]

� ε1�(Q).

Proof Take p ∈ �(28BQ). If p ∈ Z , then b(p) ∈ ∂�, but since we also have
(3.29), we deduce b(p) ∈ 29�Q . The bound dist(b(p), PQ) ≤ Cε1�(Q) is then just
a consequence of (3.17).

Assume now that p ∈ P\Z .We have d(p) ≤ 28�(Q) so any R that verifies p ∈ 2R
is such that 21�(R) ≤ d(p) ≤ 28�(Q) by (3.32), that implies �(Q R) ≤ 29�(Q) by
(3.34). Since b(p) is a weighted average of the bR(p), the estimate (3.37) on bR(p)

gives that

dist(b(p), ∂�) � ε1 sup
R: p∈2R

�(Q R) � ε1�(Q).

If x ∈ ∂� is such that |b(p)− x | = dist(b(p), ∂�), then we have again by (3.29) that
x ∈ 29�Q so (3.17) gives that dist(x, PQ) ≤ ε1�(Q). We conclude

dist(b(p), PQ) ≤ |b(p) − x | + dist(x, PQ) � ε1�(Q)

as desired. ��

We also need an L1 version of the above lemma, and with a better control in terms
of the ασ (Q) (which is smaller than ε1 when Q ∈ S).

Lemma 3.47 For Q ∈ S, we have

ˆ
P∩�(2BQ)

dist(b(p), PQ) dp � �(Q)nασ (Q).
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Proof The plane P is the union of Z and P\Z :=⋃R∈WP
R, so

I :=
ˆ

P∩�(2BQ)

dist(b(p), PQ) dp

=
ˆ

Z∩�(2BQ)

dist(b(p), PQ) dp +
ˆ

Zc∩�(2BQ)

dist(b(p), PQ) dp := I1 + I2.

The term I1 is easy, because b(p) ∈ 4�Q ⊂ ∂� by (3.29), and so we have

I1 �
ˆ
4�Q

dist(y, PQ) dσ(y)

We apply (3.12) with the test function

f (y) := min{dist(y, R
n\999BQ), dist(y, PQ)}

which lies in LipQ and takes the value 0 on PQ and dist(y, PQ) on 4�Q, and we
conclude that

I1 �
ˆ

f dσ =
∣
∣
∣
∣

ˆ
f dσ −

ˆ
f dμQ

∣
∣
∣
∣
� �(Q)nασ (Q)

as desired.
We turn to the bound on I2.Weknow that Angle(PQ, P) ≤ ε0 so the plane PQ is the

graph of an affine function aQ : P �→ P⊥ with small Lipschitz constant. Therefore,
we have

I2 ≈
ˆ

P∩�(2BQ))

|b(p) − aQ(p)| dp.

Let WP (Q) be the subfamily of WP of elements R such that 2R that intersects
�(2BQ). The fact that 2R ∩ �(2BQ) �= ∅ implies by (3.32) that 21�(R) ≤ �(Q).

Consequently, �(R) ≤ 2−5�(Q) because both �(R) and �(Q) are in the form 2k, and
then 2R ⊂ �(3BQ).

Assume first that Q � Q(S), and check that this condition implies that �(Q R) ≤
25�(R) ≤ �(Q) < �(Q(S)), hence Q R �= Q(S) for every R ∈ WP (Q). So we have

I2 =
ˆ

Zc∩�(2BQ)

∣
∣
∣
∣
∣
∣

∑

R∈WP (Q)

ϕR(p)(bR(p) − aQ(p))

∣
∣
∣
∣
∣
∣

dp

≤
∑

R∈WP (Q)

ˆ
2R

|bR(p) − aQ(p)| dp.

We want to estimate
´
2R |bR(p) − aQ(p)| dp, but now both bR and aQ are affine, so

knowing |bR(p)−aQ(p)| for n different points p ∈ 2R that are far from each other is
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enough. By (3.17), we know that �(∂�) ∩ 2R contains many points all over 2R, and
by using those points to estimate the distance between bR and aQ, we deduce that

ˆ
2R

|bR(p) − aQ(p)| dp �
ˆ
999�Q(S)

|bR(�(y)) − aQ(�(y))|1�(y)∈2R dσ(y)

≤
ˆ
999�Q(S)

|�⊥(y) − bR(�(y))|1�(y)∈2R dσ(y)

+
ˆ
999�Q(S)

|�⊥(y) − aQ(�(y))|1�(y)∈2R dσ(y)

�
ˆ
999�Q(S)

|�⊥(y) − aQ(�(y))|1�(y)∈2R dσ(y)

by (3.36), because Q R �= Q(S). Since the 2R are finitely overlapping, see (3.33), the
bound on I2 becomes

I2 �
ˆ
4�Q

|�⊥(y) − aQ(�(y))| dσ(y) �
ˆ
4�Q

dist(y, PQ) dσ(y). (3.48)

We had the same bound on I1, and with the same strategy, we can conclude that

I2 �
ˆ

f dσ =
∣
∣
∣
∣

ˆ
f dσ −

ˆ
f dμQ

∣
∣
∣
∣
� �(Q)nασ (Q)

as desired.
If Q = Q(S), the same computations apply. It is possible to have some R inWP (Q)

for which Q R = Q(S) and thus bR ≡ 0, but at the same time, we now have aQ ≡ 0,
so those R verify bR − aQ ≡ 0 and do no have any contribution in the above bounds
on I2. Therefore, we also conclude that

I2 � �(Q(S))nασ (Q(S)) = �(Q)nασ (Q).

The lemma follows. ��

4 Whitney regions for coherent regimes

We associate the dyadic cubes of ∂� to Whitney regions in � and therefore associate
the coherent family of dyadic cubes obtained in the corona decomposition to a subset
of �. The idea is similar to the construction found in [36], but we need different
properties than those in [36], so we rewrite the construction.

This section will prove the following extension of Lemma 3.1.

Lemma 4.1 Let ∂� be a uniformly rectifiable set. We keep the notation from
Lemma 3.1, and we further have the existence of K ∗∗ > 0 and a collection {�S}S∈S
of functions such that
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(a) �S are cut-off functions, that is 0 ≤ �S ≤ 1, and |∇�S| ≤ 2δ−1.

(b) For any S ∈ S, if X ∈ supp(1 − �S), then there exists Q ∈ S such that

�(Q)/2 < δ(X) = dist(X , Q) ≤ �(Q).

(c) If X ∈ supp�S, then there exists Q ∈ S such that

�(Q)/26 < δ(X) = dist(X , 26�Q) ≤ 26�(Q).

(d) For any S ∈ S and any X ∈ supp�S, we have

(1 − 2ε0)|X − b(�(X))| ≤ δ(X) ≤ (1 + 2ε0)|X − b(�(X))| (4.2)

and, if �S is the graph of S,

(1 − 2ε0) dist(X , �S) ≤ δ(X) ≤ (1 + 3ε0) dist(X , �S). (4.3)

(e) There exists a collection of dyadic cubes {Qi }i∈IS in D∂� such that {2Qi }i∈IS has
an overlap of at most 2, and

� ∩ supp�S(1 − �S) ⊂
⋃

i∈IS

{
�(Qi )

K ∗∗ < δ(X) = dist(X , K�Qi ) ≤ K ∗∗�(Qi )

}

.

In particular, |δ∇�S| ∈ C M�(C) with a constant C > 0 that depends only on n.

4.1 Whitney decomposition

We divide � into Whitney regions. Usually, one constructs them with dyadic cubes
of R

n, but we prefer to construct them directly. We recall that δ(X) := dist(X , ∂�),

and for Q ∈ D∂�, we define

W�(Q) := {X ∈ � : ∃ x ∈ Q such that �(Q)/2 < δ(X) = |X − x | ≤ �(Q)}.
(4.4)

It is easy to see that the sets {W�(Q)}Q∈D∂�
covers �. The sets W�(Q) are not

necessarily disjoint, but we do not care, we are perfectly happy if {W�(Q)}Q∈D∂�

is finitely overlapping, and we choose W�(Q) small only because it will make our
estimates easier. The sets W�(Q) can be disconnected and have a bad boundary, but
that is not an issue, since—contrary to [36]—we won’t try to prove that the W�(Q)

are Chord-Arc Domains.
We also need fattened versions of W�(Q), that we call W ∗

�(Q) and W ∗∗
� (Q),which

are defined as

W ∗
�(Q) := {X ∈ � : ∃ x ∈ 26�Q s.t.2−6�(Q) < δ(X) = |X − x | ≤ 26�(Q)}

(4.5)
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and

W ∗∗
� (Q) := {X ∈ � : ∃ x ∈ K ∗∗�Q s.t.

�(Q)

K ∗∗ < δ(X) = |X − x | ≤ K ∗∗�(Q)}.
(4.6)

The exact value of the constant K ∗∗ does not matter. In Lemma 4.28, we will choose
it large enough to fit our purpose. The first properties of W�(Q) and W ∗

�(Q) are the
ones that we expect and are easy to prove. We have

� =
⋃

Q∈D∂�

W�(Q), (4.7)

diam(W ∗
�(Q)) ≤ 27�(Q), (4.8)

and

W ∗
�(Q) ⊂ 28BQ . (4.9)

We want W�(Q) and W ∗
�(Q) to be so that we can squeeze a cut-off function between

the two sets, which is possible because

dist(W�(Q), R
n\W ∗

�(Q)) ≥ 1

4
�(Q). (4.10)

Indeed, if X ∈ W�(Q) and |X − Y | ≤ �(Q)/4, then �(Q)/4 ≤ dist(Y , ∂�) ≤
5�(Q)/4 and for any y ∈ ∂� such that |Y − y| = δ(Y ), we have

|y − x | ≤ |y − Y | + |Y − X | + |X − x | ≤ 5

4
�(Q) + 1

4
�(Q) + �(Q) ≤ 3�(Q),

so in particular, y ∈ 25Q, and thus Y ∈ W ∗
�(Q). The claim (4.10) follows.

4.2 Coherent regions associated to coherent regimes

As before, we pick 0 < ε1 � ε0 � 1, and then construct the collection of coherent
regimes S given by Lemma 3.16. Let then S be either in S, or a coherent regime
included in an element of S. For such S, we define the regions

W�(S) :=
⋃

Q∈S
W�(Q) and W ∗

�(S) :=
⋃

Q∈S
W ∗

�(Q). (4.11)

Associated to the coherent regime S, we have affine planes P and P⊥, the pro-
jections � and �⊥, a Lipschitz function b : P → P⊥, and b(p) = (p, b(p)) as in
Subsection 3.4. We also have the “distance function” d(p) defined in (3.28). We now
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define the Lipschitz graph

�S := {b(p), p ∈ P} ⊂ R
n . (4.12)

Lemma 4.13 If X ∈ W ∗
�(S) and x ∈ ∂� is such that |X − x | = δ(X), then

(1 − 2ε0)δ(X) ≤ |X − b(�(X))| ≤ (1 + 2ε0)δ(X), (4.14)

(1 − 2ε0) dist(X , �S) ≤ δ(X) ≤ (1 + 3ε0) dist(X , �S), (4.15)

and

|b(�(X)) − x | ≤ 2ε0δ(X). (4.16)

Proof Since X ∈ W ∗
�(S), there exists Q ∈ S such that X ∈ W ∗

�(Q). Such Q verifies
x ∈ 26�Q and

2−6|X − x | ≤ �(Q) ≤ 26|X − x |,

so X ∈ 27BQ and �(X) ∈ �(27BQ). Lemma 3.46 and (3.17) entail that

dist(x, PQ) + dist(b(�(X)), PQ) ≤ Cε1�(Q) ≤ 1

8
ε0|X − x |

if ε1/ε0 is small enough. Because the plane PQ makes a small angle with P,we deduce
that

|b(�(X)) − �⊥(x)| ≤ 1

4
ε0|X − x | (4.17)

if ε0 is small enough. Define �Q and �⊥
Q as the projection onto PQ and P⊥

Q . We
have |�Q(x) − x | � ε1|X − x | thanks to (3.17). In addition, the projection �Q(X)

lies in PQ ∩ 28BQ, so using (3.17) again gives the existence of y ∈ ∂� such that
|�Q(X) − y| ≤ ε1�(Q) � ε1|X − x |. By definition of x, the point y has to be further
away from X than x so

|X − x | ≤ |X − y|
≤ |X − �Q(X) − x + �Q(x)| + |�Q(x) − x | + |�Q(X) − y|
≤ |�⊥

Q(X) − �⊥
Q(x)| + Cε1|X − x |.

So one has |�⊥
Q(X) − �⊥

Q(x)| ≥ (1 − Cε1)|X − x | and hence we have the bound
|�Q(X)−�Q(x)| ≤ C

√
ε1|X − x |. Since PQ makes an angle at most ε0 with P, we

conclude that

|�(X) − �(x)| ≤ 3

2
ε0|X − x | (4.18)
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if ε0 and ε1/ε0 are small enough. The two bounds (4.17) and (4.18) easily prove (4.16),
and also prove (4.14) by writing

∣
∣
∣|X − b(�(X))| − |X − x |

∣
∣
∣

≤
∣
∣
∣|�⊥(X) − b(�(X))| − |�⊥(X) − �⊥(x)|

∣
∣
∣+ |�(X) − �(x)|

≤ |�⊥(x) − b(�(X))| + |�(X) − �(x)| ≤ 2ε0|X − x |.

The bounds (4.15) is just a consequence of (4.14) and the fact that �S is the graph of
b which is a 2ε0-Lipschitz function with ε0 � 1. The lemma follows. ��

Let ψ ∈ C∞
0 (R) be such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on [0, 1], ψ ≡ 0 on [2,∞) and

|∇ψ | ≤ 2. We set

�S(X) = 1�(X)ψ

(
d(�(X))

3|X − b(�(X))|
)

ψ

( |X − b(�(X))|
2�(Q(S))

)

. (4.19)

We want to prove the points (b), (c), and (d) of Lemma 4.1, that is

Lemma 4.20 The function �S is constant equal to 1 on W�(S) and � ∩ supp�S ⊂
W ∗

�(S). Consequently, for any X ∈ supp�S, we have (4.2) and (4.3) by Lemma 4.13.

Remark 4.21 We know from its definition that �S ≡ 0 on R
n\�, but the support of

�S can reach the boundary ∂�. So if � ∩ supp�S ⊂ W ∗
�(S), then we actually have

supp�S ⊂ W ∗
�(S) ∪

(

∂� ∩ W ∗
�(S)
)

.

Proof Take Q ∈ S and X ∈ W�(Q), and pick x ∈ Q such that |X − x | = δ(X). We
want to show that �S(X) = 1, i.e. that

d(�(X)) ≤ 3|X − b(�(X))| (4.22)

and

|X − b(�(X))| ≤ 2�(Q(S)). (4.23)

For (4.23), it suffices to notice that |X −b(�(X))| ≤ 2|X − x | ≤ 2�(Q) ≤ 2�(Q(S))

by (4.14) and by the definition of x and Q. As for (4.22), observe that |X − x | ≤
2ε0δ(X) + |X − b(�(X))| by the triangle inequality and (4.16), and thus

d(�(X)) ≤ �(Q) ≤ 2|X − x | ≤ 3|X − b(�(X))|

by (4.14).
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It remains to verify that supp�S is supported in W ∗
�(S), because (4.2) and (4.3)

are then just (4.14) and (4.15). So we pick X ∈ supp�S which means in particular
that

d(�(X)) ≤ 6|X − b(�(X))| (4.24)

and

|X − b(�(X))| ≤ 4�(Q(S)), (4.25)

and we want to show that X ∈ W ∗
�(S). By the definition of d(�(X)), there exists

Q ∈ S such that

dist(�(X),�(2BQ)) + �(Q) = d(�(X)) ≤ 6|X − b(�(X))| ≤ 24�(Q(S))

by (4.24) and (4.25). Since S is coherent, by taking a suitable ancestor of Q, we can
find Q X ∈ S such that

1

4
|X − b(�(X))| ≤ �(Q X ) ≤ 6|X − b(�(X))| (4.26)

and

�(X) ∈ 26�(BQ X ). (4.27)

We want to prove that X ∈ W ∗
�(Q X ). The combination of (4.27), Lemma 3.46, and

(3.29) forces b(�(X)) ∈ 27BQ(S) when ε0 is small, and hence X ∈ 31BQ X by (4.26).
Let x ∈ ∂� such that |X − x | = δ(X). Since X ∈ 31BQ X , we have x ∈ 26�Q X ,

and of course |X − x | ≤ 26�(Q X ). So it remains to verify if |X − x | ≥ 2−6�(Q X ).

In one hand, thanks to (3.17), we know that x lies close to PQ, in the sense that
dist(x, PQ X ) ≤ ε1�(Q X ). In the other hand, if PQ X is the graph of the function
aQ X : P �→ P⊥, we have

dist(X , PQ X ) ≥ (1 − ε0)|�⊥(X) − aQ X (�(X))|
≥ (1 − ε0)

[

|X − b(�(X))| − dist(b(�(X)), PQ X )
]

≥ (1 − ε0 − Cε1)|X − b(�(X))|
≥ 1

6
(1 − ε0 − Cε1)�(Q X )

by Lemma 3.46 and (4.26); that is X is far from PQ X . Altogether, we deduce that

|X − x | ≥ (1 − Cε1) dist(X , PQ X ) ≥ 1

8
�(Q X ).

if ε0 and ε1 are small. The lemma follows. ��
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We are left with the proof of point (e) in Lemma 4.1, which is:

Lemma 4.28 There exists a collection of dyadic cubes {Qi }i∈IS in D∂� such that
{2Qi }i∈IS has an overlap of at most 2, and

� ∩ (supp�S) ∩ supp(1 − �S) ⊂
⋃

i

W ∗∗
� (Qi ).

Proof Observe that (supp�S) ∩ supp(1 − �S) ⊂ E1 ∪ E2 where

E1 := {X ∈ W ∗
�(S), 2�(Q(S)) ≤ |X − b(�(X))| ≤ 4�(Q(S))}

and

E2 := {X ∈ W ∗
�(S), d(�(X))/6 ≤ |X − b(�(X))| ≤ d(�(X))/3}.

Thanks to (4.2), the set E1 is included in W ∗
�(Q(S)).

For each X ∈ E2, we construct the ball BX := B(b(�(X)), d(�(X))/100) in R
n .

The radius of BX is bounded uniformly by �(Q(S))/4. So by the Vitali lemma, we can
find a non overlapping subfamily {BXi }i∈I2 such that E2 ⊂⋃i∈I2 5BXi .We use (4.16)

and (4.14) to find a point xi ∈ 1
2 BXi ∩∂�.We take Qi ∈ D∂� to be the unique dyadic

cube such that xi ∈ Qi and �(Qi ) < d(�(Xi ))/400 ≤ 2�(Qi ). By construction, we
have 2Qi ⊂ BXi , so the {2Qi }i∈I2 are non-overlapping, and 5BXi ⊂ 100BQi .

It remains to check that E2 ⊂⋃i W ∗∗
� (Qi ). Take X ∈ E2. From what we proved,

there exists an i ∈ I2 such that

|�(X) − �(Xi )| ≤ |b(�(X)) − b(�(Xi ))| ≤ d(�(Xi ))/20. (4.29)

Observe from the definition that d is 1-Lipschitz. Therefore,

|d(�(X)) − d(�(Xi ))| ≤ |�(X) − �(Xi )| ≤ d(�(Xi ))/20

and

19

20
d(�(Xi )) ≤ d(�(X)) ≤ 21

20
d(�(Xi )). (4.30)

From (4.29) and (4.30), we obtain

|X − xi | ≤ |X − b(�(X))| + |b(�(X)) − b(�(Xi ))| + |b(�(Xi )) − xi |
≤ d(�(X)) ≤ 800�(Qi )

and, from (4.2) and (4.30), we get

δ(X) ≥ (1 − 2ε0)|X − b(�(X))| ≥ 1

7
d(�(X)) ≥ 1

8
d(�(Xi )) ≥ 50�(Qi ).
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The last two computations show that X ∈ W ∗∗
� (Qi ) if K ∗∗ ≥ 1601. The lemma

follows. ��

5 Replacement lemma and application to the smooth distanceD

As usual, let 0 < ε1 � ε0 � 1, and then construct the collection of coherent regimes
S given by Lemma 3.16. We take then S to be either in S, or a coherent regime
included in an element of S.

In Lemma 3.47, we started to show that the graph of b behaves well with respect to
the approximating planes PQ, and wewant to use the graph of b as a substitute for ∂�.

Roughly speaking, the graph of the Lipschitz function b is “a good approximation of
∂� for the regime S”. Let us explain what we mean by this. The Lipschitz graph �S
defined in (4.12) is uniformly rectifiable, that is, �S is well approximated by planes.
And even better, we can easily construct explicit planes that approximate �S.

First, we equip P with an Euclidean structure, which means that P can be identified
to R

n−1. Similarly, we identify P⊥ to R, and of course, we choose P and P⊥ such
that �⊥(P) = {0} and �(P⊥) = {0}, and so R

n can be identified to P × P⊥.

We take a non-negative radial smooth function η ∈ C∞
0 (P, R+)which is supported

in the unit ball and that satisfies
´

P ηdx = 1. Even if P depends on the regime S, P is
identified to R

n−1, so morally the smooth function η is defined on R
n−1 and does not

depend on anything but the dimension n. For t �= 0, we construct the approximation
of identity by

ηt (p) := |t |1−n η
( p

|t |
)

, (5.1)

then the functions

bt := ηt ∗ b, bt := ηt ∗ b, (5.2)

and the planes

�(p, t) := {(q, (q − p)∇bt (p) + bt (p)), q ∈ P}. (5.3)

Notice that the plane �(p, t) is tangent to the graph
{

bt (p), p ∈ P
}

at bt (p). What
we actually want is flat measures, so we fix a radial function θ ∈ C∞(Rn) such that
0 ≤ θ ≤ 1, supp θ ⊂ B(0, 1), and θ ≡ 1 on B(0, 1

2 ). We set then

θp,t (y) := θ

(
bt (p) − y

t

)

(5.4)
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and

λ(p, t) :=

ˆ
∂�

θp,t dσ

ˆ
�(p,t)

θp,t dμ�(p,t)

= c−1
θ |t |1−n

ˆ
∂�

θp,t dσ (5.5)

where the second equality uses the fact that we centered θp,t at bt (p) ∈ �(p, t), and
cθ := ´

Rn−1 θ(y)dy. Note that the Ahlfors regularity of σ implies that

λ(p, t) ≈ 1, (5.6)

whenever bt (p) is close to ∂�—which is the case when d(p) � |t | � �(Q(S))—and
with constants that depend only on Cσ and n. Finally, we introduce the flat measures

μp,t := λ(p, t)μ�(p,t). (5.7)

The flat measures μp,t are approximations of the Hausdorff measure on �S, and we
shall show that the same explicit measures almost minimize the distance from σ to
flat measures, for the local Wasserstein distances distQ with Q ∈ S.

Lemma 5.8 For Q ∈ S, p ∈ �( 32 BQ), and �(Q)/4 ≤ |t | ≤ �(Q)/2, we have

distQ(σ, μp,t ) ≤ Cασ (Q), (5.9)

where C > 0 depends only on n and Cσ .

The lemma is not very surprising. The plane�(p, t) is obtained by locally smooth-
ing �S, which is composed of pieces of planes that approximate ∂�.

Proof Thanks to the good approximation properties of the Lipschitz graph b(p) that
we obtain in Sect. 3.4, this lemma can be proved similarly as Lemma 5.22 in [23].
Let Q ∈ S, p ∈ �( 32 BQ), and t with �(Q)/4 ≤ |t | ≤ �(Q)/2 be fixed. Denote
r = |t | . By Lemma 3.16, ασ (Q) ≤ ε1. Since we have chosen ε1 sufficiently small,
Lemma 3.13 gives that

sup
y∈999�Q

dist(y, PQ) ≤ Cε
1/n
1 �(Q) ≤ 10�(Q). (5.10)

Define a Lipschitz function � by

�(z) :=
{

1
4 z ∈ B(xQ, 100�(Q)),

1
3600�(Q)

(

103�(Q) − ∣∣z − xQ
∣
∣
)

+ otherwise,

where ( f (z))+ := max {0, f (z)} . Then set f (z) = �(z) dist(z, PQ). Observe that
supp f ⊂ B(xQ, 103�(Q)), and that |∇ f (z)| ≤ �(z) + dist(z, PQ) |∇�| ≤ 1,
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because dist(z, PQ) ≤ 10�(Q) + 103�(Q) by (5.10). Hence f ∈ Lip(Q). By using
successively the facts that f ≥ 0,

´
f dμQ = 0 and (3.12), we have that

ˆ
�(xQ ,100�(Q))

dist(z, PQ)dσ(z) = 4
ˆ

�(xQ ,100�(Q))

�(z) dist(z, PQ)dσ(z)

≤ 4
ˆ

f dσ = 4
ˆ

f (z)(dσ − dμQ)

≤ C�(Q)nασ (Q). (5.11)

Now we estimate the distance from �(p, t) to PQ . Write

dist(bt (p), PQ) ≤
ˆ

q∈B(p,r)∩P
ηt (p − q) dist(b(q), PQ)dq.

Notice that our choice of p and t ensures that

B(p, r) ∩ P ⊂ �(2BQ). (5.12)

So we have that

dist(bt (p), PQ) ≤ r1−n ‖η‖∞
ˆ

q∈�(2BQ)

dist(b(q), PQ)dq

≤ Cr1−n ‖η‖∞ �(Q)nασ (Q) ≤ C�(Q)ασ (Q), (5.13)

where we have used Lemma 3.47. We claim that

dist(y, PQ) ≤ Cασ (Q)
(∣
∣y − bt (p)

∣
∣+ �(Q)

)

for all y ∈ �(p, t). (5.14)

Let y = (q, (q− p)∇bt (p)+bt (p)) ∈ �(p, t) be fixed. Denote by�⊥
Q the orthogonal

projection on the orthogonal complement of PQ . Then

dist(y, PQ) ≤
∣
∣
∣�

⊥
Q

(

y − bt (p)
)
∣
∣
∣+ dist(bt (p), PQ). (5.15)

Also, �⊥
Q(PQ) is a single point ξQ ∈ R. Denote v := y − bt (p) = (q − p, (q −

p)∇bt (p)). Let v̂i = v̂i (p, t) = ∂pi b
t (p), i = 1, 2, . . . , n −1. Then v =∑n−1

i=1 (qi −
pi )v̂

i . We estimate
∣
∣
∣�⊥

Q(v̂i )

∣
∣
∣ . By definition, we write

∣
∣
∣�

⊥
Q(v̂i )

∣
∣
∣ =
∣
∣
∣�

⊥
Q(∂pi b

t (p))

∣
∣
∣ = 1

r

∣
∣
∣�

⊥
Q((∂iη)t ∗ b(p))

∣
∣
∣

= 1

r

∣
∣
∣
∣

ˆ
q∈B(p,r)∩P

(∂iη)t (p − q)�⊥
Q(b(q))dq

∣
∣
∣
∣

= 1

r

∣
∣
∣
∣

ˆ
q∈B(p,r)∩P

(∂iη)t (p − q)
(

�⊥
Q(b(q)) − ξQ

)

dq

∣
∣
∣
∣
,
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where in the last equality we have used that
´

(∂iη)t (x)dx = 0. Notice that
∣
∣
∣�⊥

Q(z) − ξQ

∣
∣
∣ =
∣
∣
∣�⊥

Q(z) − �⊥
Q(PQ)

∣
∣
∣ = dist(z, PQ), so we have that

∣
∣
∣�

⊥
Q(v̂i )

∣
∣
∣ ≤ 1

rn
‖∂iη‖∞

ˆ
q∈B(p,r)∩P

dist(b(q), PQ)dq ≤ C

rn
�(Q)nασ (Q)

≤ Cασ (Q)

by (5.12) and Lemma 3.47. This gives that

∣
∣
∣�

⊥
Q(v)

∣
∣
∣ ≤ Cασ (Q) |v| . (5.16)

Then the claim (5.14) follows from (5.15) and (5.13).
Next we compare cQ (defined in (3.11)) and λ(p, t), and claim that

∣
∣λ(p, t) − cQ

∣
∣ ≤ Cασ (Q). (5.17)

We intend to apply (3.12) to the 1-Lipschitz function |t | θp,t/ ‖θ‖Lip . So we need to
check that supp θp,t ⊂ B(xQ, 103�(Q)). By the construction of θp,t , we have that
supp θp,t ⊂ B(bt (p), r). By Lemma 3.40 and the fact that ε0 has been chosen to be
small,

∣
∣bt (p) − b(p)

∣
∣ = ∣∣bt (p) − b(p)

∣
∣ =
∣
∣
∣
∣

ˆ
ηt (q) (b(q) − b(p)) dq

∣
∣
∣
∣

≤ ‖∇b‖∞ r ≤ 2 ε0 r < r . (5.18)

So B(bt (p), r) ⊂ B(b(p), 2r). We show that

∣
∣b(p) − xQ

∣
∣ ≤ 10�(Q). (5.19)

Then the assumption r ∈ [�(Q)/4, �(Q)/2] gives that

supp θp,t ⊂ B(b(p), 2r) ⊂ B(xQ, 103�(Q)),

as desired. To see (5.19), we recall that p ∈ �( 32 BQ), and so
∣
∣p − �(xQ)

∣
∣ ≤

3�(Q)/2. Let x ∈ ∂� be a point such that |b(p) − x | = dist(b(p), ∂�) � ε1�(Q),

where the last inequality is due to Lemma 3.46. Notice that by the definition (3.28),
d(�(xQ)) ≤ �(Q). So if

∣
∣x − xQ

∣
∣ ≤ 10−3d(�(xQ)), then

∣
∣x − xQ

∣
∣ ≤ 10−3�(Q),

and thus

∣
∣b(p) − xQ

∣
∣ ≤ |b(p) − x | + ∣∣x − xQ

∣
∣ ≤ Cε1�(Q) + 10−3�(Q) ≤ 10�(Q),

as desired. If
∣
∣x − xQ

∣
∣ > 10−3d(�(xQ)), then we can apply (3.29) to get that

∣
∣�⊥(x) − �⊥(xQ)

∣
∣ ≤ 2ε0

∣
∣�(x) − �(xQ)

∣
∣ . By the triangle inequality,
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∣
∣�(x) − �(xQ)

∣
∣ ≤ |�(x) − p| + ∣∣p − �(xQ)

∣
∣ ≤ (Cε1 + 3

2

)

�(Q), and so
∣
∣�⊥(x) − �⊥(xQ)

∣
∣ ≤ 2ε0

( 3
2 + Cε1

)

�(Q). Hence, we still have that

∣
∣b(p) − xQ

∣
∣ ≤ |b(p) − x | + ∣∣x − xQ

∣
∣ ≤ Cε1�(Q) + 2 (Cε1 + 3/2) �(Q) ≤ 10�(Q),

which completes the proof of (5.19). We have justified that t θp,t/ ‖θ‖Lip ∈ Lip(Q),
so we can apply (3.12) to this function and obtain that

∣
∣
∣
∣
cθrn−1λ(p, t) − cQ

ˆ
θp,t dμPQ

∣
∣
∣
∣
=
∣
∣
∣
∣

ˆ
θp,t (dσ − dμQ)

∣
∣
∣
∣
≤ C�(Q)n−1ασ (Q).

(5.20)

We now estimate Aμ := cQ
´

θp,t (z)dμPQ (z). Denote by �Q the orthogonal projec-
tion from �(p, t) to PQ; by (5.16) this is an affine bijection, with a constant Jacobian
JQ that satisfies

∣
∣det(JQ) − 1

∣
∣ ≤
∣
∣
∣

√

1 − Cασ (Q)2 − 1
∣
∣
∣ ≤ Cασ (Q). (5.21)

By a change of variables z = �Q(y), we write

Aμ = cQ det(JQ)

ˆ
y∈�(p,t)

θp,t
(

�Q(y)
)

dμ�(p,t)(y). (5.22)

We compare
´

y∈�(p,t) θp,t
(

�Q(y)
)

dμ�(p,t)(y) and
´

y∈�(p,t) θp,t (y)dμ�(p,t)(y).

For y ∈ �(p, t),
∣
∣�Q(y) − y

∣
∣ = dist(y, PQ). So by (5.14), for y ∈ �(p, t)

∣
∣θp,t
(

�Q(y)
)− θp,t (y)

∣
∣ ≤ ‖θ‖Lip r−1

∣
∣�Q(y) − y

∣
∣

≤ C r−1ασ (Q)
(∣
∣y − bt (p)

∣
∣+ �(Q)

)

. (5.23)

Moreover, the support property of θp,t implies that
∣
∣θp,t
(

�Q(y)
)− θp,t (y)

∣
∣ is not

zero when either y ∈ B(bt (p), r) or �Q(y) ∈ B(bt (p), r). By the triangle inequality
and (5.14),

∣
∣y − bt (p)

∣
∣ ≤ ∣∣�Q(y) − bt (p)

∣
∣+ Cασ (Q)

(∣
∣y − bt (p)

∣
∣+ �(Q)

)

.

Since ασ (Q) ≤ ε1 is sufficiently small, we get that when �Q(y) ∈ B(bt (p), r),
∣
∣y − bt (p)

∣
∣ ≤ 2r + Cε1�(Q) ≤ 3�(Q). So by (5.23) and the fact that supp θp,t ⊂

B(bt (p), r),

∣
∣
∣
∣

ˆ
y∈�(p,t)

(

θp,t
(

�Q(y)
)− θp,t (y)

)

dμ�(p,t)(y)

∣
∣
∣
∣
≤ C rn−1ασ (Q). (5.24)
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Hence we have
∣
∣Aμ − cQ det(JQ)cθ rn−1

∣
∣ ≤ C cQ rn−1ασ (Q) by definition of cθ .

By the triangle inequality, (5.21), and the fact that r ≈ �(Q),

∣
∣
∣Aμ − cQ cθ rn−1

∣
∣
∣ ≤ C cQασ (Q)�(Q)n−1.

By this, the triangle inequality and (5.20),

cθ rn−1
∣
∣λ(p, t) − cQ

∣
∣ = ∣∣cθrn−1λ(p, t) − cQ cθ rn−1

∣
∣ ≤ C(1 + cQ)ασ (Q)�(Q)n−1,

(5.25)

which implies that
∣
∣λ(p, t) − cQ

∣
∣ ≤ 1

2 (1 + cQ) because ασ (Q) is sufficiently small.
But we know λ(p, t) ≈ 1 by (5.6), so cQ ≈ 1 and then (5.25) yields the desired
estimate (5.17).

Finally, we are ready to show that

distQ(μQ, μp,t ) ≤ Cασ (Q). (5.26)

Let f ∈ Lip(Q). We have that

ˆ
f (z)dμQ(z) = cQ

ˆ
PQ

f (z)dμPQ (z)

= cQ det(JQ)

ˆ
�(p,t)

f
(

�Q(y)
)

dμ�(p,t)(y).

An argument similar to the one for (5.24) gives that

∣
∣
∣
∣

ˆ
�(p,t)

(

f
(

�Q(y)
)− f (y)

)

dμ�(p,t)(y)

∣
∣
∣
∣
≤ Cασ (Q)�(Q)n .

So
∣
∣
∣
∣

ˆ
f dμQ − λ(p, t)

ˆ
f dμ�(p,t)

∣
∣
∣
∣

≤
∣
∣
∣
∣

ˆ
f dμQ − cQ

ˆ
f dμ�(p,t)

∣
∣
∣
∣
+ ∣∣λ(p, t) − cQ

∣
∣

∣
∣
∣
∣

ˆ
f dμ�(p,t)

∣
∣
∣
∣

≤ CcQ det(JQ)ασ (Q)�(Q)n + cQ
∣
∣det(JQ) − 1

∣
∣

∣
∣
∣
∣

ˆ
f dμ�(p,t)

∣
∣
∣
∣

+ ∣∣λ(p, t) − cQ
∣
∣

∣
∣
∣
∣

ˆ
f dμ�(p,t)

∣
∣
∣
∣
.

By (5.21), (5.17), and cQ ≈ 1,

∣
∣
∣
∣

ˆ
f dμQ − λ(p, t)

ˆ
f dμ�(p,t)

∣
∣
∣
∣
≤ Cασ (Q)�(Q)n, (5.27)
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which proves (5.26). Now (5.9) follows from (5.26) and (3.12). ��
Wewant to use the flatmeasuresμp,t to estimate the smooth distance Dβ introduced

in (1.3). But before that, we shall need to introduce

ασ (Q, k) := ασ (Q(k)), (5.28)

where Q(k) is the unique ancestor of Q such that �(Q(k)) = 2k�(Q), and then for
β > 0,

ασ,β(Q) :=
∑

k∈N
2−kβασ (Q, k). (5.29)

The collection {ασ,β(Q)}Q is nice, because we have

ασ,β(Q∗) ≈ ασ,β(Q) (5.30)

whenever Q ∈ D∂� and Q∗ is the parent of Q, a property which is not satisfied by the
{ασ (Q)}Q . And of course the ασ,β(Q)’s still satisfies the Carleson packing condition.

Lemma 5.31 Let ∂� be uniformly rectifiable and σ be an Ahlfors regular measure
satisfying (1.1). There exists a constant Cσ,β that depends only on the constant in
(3.9), the Ahlfors regular constant Cσ , and β such that, for any Q0 ∈ D∂�,

∑

Q∈D∂�(Q0)

|ασ,β(Q)|2σ(Q) ≤ Cσ,βσ (Q0). (5.32)

Proof Same as Lemma 5.89 in [23]. ��
The quantities ασ,β are convenient, because we can now obtain an analogue of

Lemma 5.8 where we don’t need to pay too much attention to the choices of p and t .
��
Lemma 5.33 Let β > 0 and K ≥ 1. For Q ∈ S, p ∈ �(K BQ), and �(Q)/K ≤ |t | ≤
K�(Q), we have

distQ(σ, μp,t ) ≤ Cβ,K ασ,β(Q), (5.34)

where Cβ,K > 0 depends only on n, Cσ , β, and K .

Proof First, we prove that when p ∈ �( 32 BQ) and �(Q)/K ≤ |t | ≤ �(Q)/2,we have

distQ(σ, μp,t ) ≤ CK ασ (Q). (5.35)

We set t j = 2−2− j�(Q). We also take a dyadic cube Q′ ⊂ Q such that �(Q′)/4 ≤
|t | ≤ �(Q′)/2, and then we pick p0 ∈ �( 32 BQ′). By Lemma 5.8, we have that

distQ(σ, μp,t0) + distQ(σ, μp0,t0) � ασ (Q),
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so distQ(μp,t0 , μp0,t0) � ασ (Q) too. Consequently, the claim (5.35) is reduced to

distQ(μp0,t , μp0,t0) ≤ CK ασ (Q). (5.36)

For this latter bound, we decompose

distQ(μp0,t , μp0,t0) ≤ distQ(μp0,t , μp0,tk ) +
k−1
∑

j=0

distQ(μp0,t j , μp0,t j+1),

(5.37)

where k is chosen so that tk = �(Q′)/2, and k ≤ 1 + log2(K ) is bounded by K .

We look at distQ(μp0,t , μp0,tk ), but since we are dealing with two flat measures that
intersect BQ′ , Lemma A.5 in [31] shows that

distQ(μp0,t , μp0,tk ) � distQ′(μp0,t , μp0,tk ) (5.38)

and then Lemma 5.8 and the fact that �(Q′) ≈K �(Q) entail that

distQ(μp0,t , μp0,tk ) � distQ′(μp0,t , σ ) + distQ′(σ, μp0,tk ) � ασ (Q′) ≤ CK ασ (Q).

(5.39)

A similar reasoning gives that

distQ(μp0,t j , μp0,t j+1) � CK ασ (Q) (5.40)

whenever 0 ≤ j ≤ k − 1. The combination of (5.37), (5.39), and (5.40) shows the
claim (5.36) and thus (5.35).

In the general case, we pick the smallest ancestor Q∗ of Q such that p ∈ �( 32 BQ∗)
and |t | ≤ �(Q∗)/2, and we apply (5.35) to get

distQ(σ, μp,t ) ≤ CK ασ (Q∗).

The lemma follows then by simply observing that ασ (Q∗) � ασ,β(Q). ��
We need the constant

cβ :=
ˆ
Rn−1

(1 + |p|2)− d+β
2 dy (5.41)

and the unit vector Np,t defined as the vector

Np,t (X) := [∇ dist(.,�(p, t))](X) (5.42)

which is of course constant on the two connected components of R
n\�(p, t). We are

now ready to compare Dβ with the distance to �(p, t).
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Lemma 5.43 Let Q ∈ S, X ∈ W�(Q), p ∈ �(25Q) and 2−5�(Q) ≤ |t | ≤ 25�(Q).

We have

|D−β
β (X) − cβλ(p, t) dist(X ,�(p, t))−β | ≤ C�(Q)−βασ,β(Q), (5.44)

and

|∇[D−β
β ](X) + βcβλ(p, t) dist(X ,�(p, t))−β−1Np,t (X)|

≤ C�(Q)−β−1ασ,β+1(Q), (5.45)

where the constant C > 0 depends only Cσ and β.

Proof Denote r = |t | , and d = n − 1. By the definition of W�(Q), dist(X , ∂�) >

�(Q)/2 and X ∈ 2BQ . We show that in addition,

X ∈ B(bt (p), 26�(Q)), (5.46)

and

dist(X ,�(p, t) ∪ ∂�) >
�(Q)

20
. (5.47)

Since X ∈ 2BQ, |�(X) − p| ≤ (25 + 2)�(Q). Then |b(�(X)) − b(p)| ≤ (1 + 2ε0)
(25 + 2)�(Q) because b is the graph of a 2ε0-Lipschitz function. Write

∣
∣X − bt (p)

∣
∣ ≤ |X − b(�(X))| + |b(�(X)) − b(p)| + ∣∣b(p) − bt (p)

∣
∣ ,

then use (4.14) and (5.18) to get

∣
∣X − bt (p)

∣
∣ ≤ (1 + 2ε0)

(

δ(X) + (25 + 2)�(Q)
)

+ 2ε0r ≤ 26�(Q),

and thus (5.46) follows. In order to see (5.47), we only need to show that
dist(X ,�(p, t)) >

�(Q)
20 . Notice that (∇bt (p),−1) is a normal vector of the plane

�(p, t), and that bt (p) ∈ �(p, t). So

dist(X ,�(p, t)) =
∣
∣
(

X − bt (p)
) · (∇bt (p),−1

)∣
∣

|(∇bt (p), 1)|
=
∣
∣(�(X) − p) · ∇bt (p) + (bt (p) − �⊥(X)

)∣
∣

√

|∇bt (p)|2 + 1

≥ 1

2

(∣
∣
∣�

⊥(X) − bt (p)

∣
∣
∣− ∣∣(�(X) − p) · ∇bt (p)

∣
∣

)

≥ 1

2

∣
∣
∣�

⊥(X) − bt (p)

∣
∣
∣− C 25�(Q)ε0, (5.48)
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by
∥
∥∇bt
∥
∥∞ ≤ Cε0 (see (6.2)). We have |b(�(X)) − b(p)| ≤ 2ε0 |�(X) − p| ≤

26ε0�(Q), and
∣
∣�⊥(X) − b(�(X))

∣
∣ ≥ dist(X , �S) ≥ δ(X)

1+3ε0
≥ �(Q)

2(1+3ε0)
by (4.15).

So

∣
∣
∣�

⊥(X) − bt (p)

∣
∣
∣ ≥
∣
∣
∣�

⊥(X) − b(�(X))

∣
∣
∣− |b(�(X)) − b(p)| − ∣∣bt (p) − b(p)

∣
∣

≥ �(Q)

5

by (5.18). Then dist(X ,�(p, t)) >
�(Q)
20 follows from this and (5.48).

Nowwe prove (5.44).We intend to cut D−β
β = ´

∂�
|X − y|−d−β dσ(y) into pieces.

So we introduce a cut-off function θ0 ∈ C∞
c (B(0, r/2)), which is radial, 1B(0,r/4) ≤

θ0 ≤ 1B(0,r/2), and |∇θ0| ≤ 2r . Then we set θk(y) := θ0(2−k y) − θ0(−2−k+1y)

for k ≥ 1 and y ∈ R
n, and define θ̃k(y) = θk(y − bt (p)) for k ∈ N. Denote

Bk = B(bt (p), 2k−1r). We have that supp θ̃0 ⊂ B0, supp θ̃k ⊂ Bk\Bk−2 for k ≥ 1,
and that

∑

k∈N
θ̃k = 1.

Now we can write

Dβ(X)−β =
∑

k∈N

ˆ
∂�

|X − y|−d−β θ̃k(y)dσ(y) =:
∑

k∈N

ˆ
∂�

fk(y)dσ(y),

with fk(y) = |X − y|−d−β θ̃k(y). We intend to compare
´

fk(y)dσ(y) and´
fk(y)dμp,t (y). Both integrals are well-defined because of (5.47). Observe that

∑

k∈N

ˆ
fk(y)dμp,t (y) = λ(p, t)

ˆ
�(p,t)

|X − y|−d−β dμ�(p,t)(y)

= λ(p, t)
ˆ
Rd

(

dist(X ,�(p, t))2 + |y|2
)−(d+β)/2

dy

= λ(p, t)cβ dist(X ,�(p, t))−β

by a change of variables. So

D−β
β (X) − cβλ(p, t) dist(X ,�(p, t))−β =

∑

k∈N

ˆ
fk (dσ − dμp,t ). (5.49)

We are interested in the Lipschitz properties of fk becausewe intend to useWasserstein
distances. We claim that

|X − y| ≥ c2kr when y ∈ ∂� ∪ �(p, t) is such that θ̃k(y) �= 0, (5.50)
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where c = 10−12−21. In fact, by (5.46) and the support properties of θ̃k, if k ≥ 15,
then

|X − y| ≥ 2k−3r − 26�(Q) ≥ (2k−3 − 211)r ≥ 2k−4r for y ∈ supp θ̃k .

If 0 ≤ k < 15, then by (5.47), for y ∈ ∂� ∪ �(p, t),

|X − y| ≥ dist(X , ∂� ∪ �(p, t)) ≥ �(Q)

20
≥ 2−6r

10
≥ 2−21

10
2kr .

So (5.50) is justified. But fk is not a Lipschitz function in R
n because y can get

arbitrarily close to X when k is small. Set

f̃k(y) := max
{

|X − y| , c 2kr
}−d−β

θ̃k(y).

Then by (5.50), f̃k(y) = fk(y) for y ∈ ∂� ∪ �(p, t), and therefore,

ˆ
fk (dσ − dμp,t ) =

ˆ
f̃k (dσ − dμp,t ). (5.51)

The good thing about f̃k is that it is Lipschitz. A direct computation shows that
∥
∥ f̃k
∥
∥∞ ≤ C

(

2kr
)−d−β

, and
∥
∥∇ f̃k
∥
∥∞ ≤ C(2kr)−d−β−1. Moreover, f̃k is supported

on B(bt (p), 2k−1r), which is contained in B(xQ(k) , 103�(Q(k))). To see this, one can
use (5.18), (5.19), and

∣
∣xQ − xQ(k)

∣
∣ ≤ 2k−1�(Q) to get that

∣
∣bt (p) − xQ(k)

∣
∣ ≤
(

2ε0 + 2k−1
)

r + 10 25�(Q) + 2k−1�(Q)

≤ 25(2k + 11)�(Q) ≤ 1032k�(Q).

Write

ˆ
f̃k (dσ − dμp,t ) =

ˆ
f̃k (dσ − dμQ(k) ) +

ˆ
f̃k (dμQ − dμp,t )

+
k
∑

j=1

ˆ
f̃k (dμQ( j) − dμQ( j−1) ) =: I + I I +

k
∑

j=1

I I I j .

By the definition (3.11) of μQ(k) and properties of f̃k, |I | ≤ C
(

2kr
)−β

ασ (Q, k).

We then have |I I | ≤ (2kr
)−β

distQ(k) (μQ, μp,t ), but because we are looking at
the Wasserstein distance between two flat measures whose supports intersect 10BQ,

Lemma A.5 in [31] shows that

distQ(k) (μQ, μp,t ) � distQ(μQ, μp,t )
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and thus

|I I | �
(

2kr
)−β

distQ(μQ, μp,t ) ≤
(

2kr
)−β (

distQ(μQ, σ ) + distQ(σ, μp,t )
)

�
(

2kr
)−β

ασ,β(Q)

by Lemma 5.33. The terms I I I j can be bounded by a Wasserstein distance between
planes, and similarly to I I , we get

|I I I j | �
(

2kr
)−β

distQ(k) (μQ( j) , μQ( j−1) )

�
(

2kr
)−β

distQ( j) (μQ( j) , μQ( j−1) ) �
(

2kr
)−β

ασ (Q, j).

Altogether, we obtain that

∣
∣
∣
∣

ˆ
f̃k (dσ − dμp,t )

∣
∣
∣
∣
≤ C
(

2kr
)−β

⎛

⎝ασ,β(Q) +
k
∑

j=0

ασ (Q, j)

⎞

⎠ .

Then by (5.51) and (5.49),

∣
∣
∣D

−β
β (X) − cβλ(p, t) dist(X ,�(p, t))−β

∣
∣
∣

≤ C
∑

k∈N

(

2kr
)−β

⎛

⎝ασ,β(Q) +
k
∑

j=0

ασ (Q, j)

⎞

⎠ ≤ C�(Q)−βασ,β(Q),

which is (5.44).
We claim that (5.45) can be established similarly to (5.44) as long as one expresses

the left-hand side of (5.45) appropriately. A direct computation shows that

∇(D−β
β )(X) = −(d + β)

ˆ
|X − y|−d−β−2 (X − y)dσ(y).

On the other hand,

ˆ
|X − y|−d−β−2 (X − y)dμ�(p,t)(y)

= Np,t (X)

ˆ
|X − y|−d−β−2 (X − y) · Np,t (X)dμ�(p,t)(y)

= Np,t (X)

ˆ
|X − y|−d−β−2 dist(X ,�(p, t))dμ�(p,t)(y)

= cβ+2 dist(X ,�(p, t))−β−1Np,t (X).
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By [31] (3.30), (β + d)cβ+2 = βcβ for all β > 0. Hence

∇[D−β
β ](X) + βcβλ(p, t) dist(X ,�(p, t))−β−1Np,t (X)

= −(d + β)

ˆ
|X − y|−d−β−2 (X − y)

(

dσ(y) − dμp,t (y)
)

.

Now we set f ′
k(y) = |X − y|−d−β−2 (X − y). Using (5.46) and (5.47), we can see

that f ′
k is Lipschitz on ∂� ∪ �(p, t). Then we can play with measures as before to

obtain (5.45). ��
Corollary 5.52 Let Q ∈ S, X ∈ W�(Q), p ∈ �(25Q) and 2−5�(Q) ≤ |t | ≤ 25�(Q).

We have
∣
∣
∣
∣

∇Dβ(X)

Dβ(X)
− Np,t (X)

dist(X ,�(p, t))

∣
∣
∣
∣
≤ C�(Q)−1ασ,β(Q), (5.53)

where the constant C > 0 still depends only Cσ and β.

Proof To lighten the notation, we denote by OC M any quantity such that

|OC M | ≤ Cασ,β(Q)

for some constant C . Then by (5.45),

∇ Dβ(X)

Dβ(X)
= − 1

β

∇[D−β
β ](X)

D−β
β (X)

= − 1

β

(

−βcβλ(p, t) dist(X ,�(p, t))−β−1Np,t (X)

D−β
β (X)

+ �(Q)−β−1OC M

D−β
β (X)

)

.

Using Dβ(X) ≈ δ(X) ≈ �(Q) and (5.44), we can further write the above as

∇Dβ(X)

Dβ(X)
= Np,t (X)

dist(X ,�(p, t))
+ �(Q)−1OC M ,

which implies the corollary. ��

6 The bi-Lipschitz change of variable �S

The results in this section are similar, identical, or often even easier than the ones
found in Sections 2, 3, and 4 of [23]. Many proofs will only be sketched and we will
refer to the corresponding result in [23] for details.

As in the previous sections, we take 0 < ε0 � ε1 � 1 and we use Lemma 3.16
with such ε0, ε1 to obtain a collection S of coherent regimes. We take then S that
either belongs toS, or is a coherent regime included in an element ofS. We keep the
notations introduced in Sects. 3, 4, and 5.

123



2688 J. Feneuil et al.

6.1 Construction of�S

In this section, the gradients are columnvectors. Theother notation is fairly transparent.
A hyperplane P is equippedwith an orthonormal basis and∇p correspond to the vector
of the derivatives in each coordinate of p in this basis; ∂t or ∂s are the derivatives with
respect to t or s, that are always explicitly written; ∇p,t or ∇p,s are the gradients in
R

n seen as P × P⊥.

Lemma 6.1 The quantities ∇p,t bt and t∇p,t∇pbt are bounded, that is, for any t �= 0
and any p0 ∈ P,

|∇p,t b
t | + |t∇p,t∇pbt | ≤ Cε0. (6.2)

In addition, |∂t bt | + |t∇p,t∇pbt | ∈ C MP×(P⊥\{0}), that is, for any r > 0 and any
p0 ∈ P,

¨
B(p0,r)

(

|∂t b
t (p)|2 + |t∇p,t∇pbt (p)|2

)dt

t
dp ≤ Cε20rn−1. (6.3)

In both cases, the constant C > 0 depends only on n (and η).

Proof The result is well-known and fairly easy. The boundedness is proven in
Lemma 3.17 of [23], while the Carleson bound is established in Lemma 4.11 in [23]
(which is itself a simple application of the Littlewood–Paley theory found in [49,
Section I.6.3] to the bounded function ∇b). ��

Observe that the convention thatwe established shows that (∇pbt (p))T is an (n−1)-
dimensional horizontal vector. We define the map ρ : P × P⊥ → P × P⊥ as

ρS(p, t) := (p − t(∇bt (p))T , t + bt (p)) (6.4)

if t �= 0 and ρS(p, 0) = b(p). Because the codimension of our boundary is 1 in our
paper, contrary to [23] which stands in the context of domains with higher codimen-
sional boundaries, our map is way easier than the one found in [23]. However, the
present mapping is still different from the one found in [44], and has the same weak
and strong features as the change of variable in [23]. Note that the i th coordinate of
ρS, 1 ≤ i ≤ n − 1, is

ρi
S(p, t) := pi − t∂pi b

t (p). (6.5)

Note that ρS is continuous on P × P⊥ = R
n, because both t∇bt and bt −b converges

(uniformly in p ∈ P) to 0 as t → 0. The map ρS is C∞ on R
n\P, and we compute

the Jacobian Jac of ρS which is

Jac(p, t) =
(

I − t∂pi ∂p j b
t (p) ∂pi b

t (p)

−t∂t∂p j b
t (p) − ∂p j b

t (p) 1 + ∂t bt (p)

)

, (6.6)
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where i and j refer to respectively the line and the column of the matrix. We define
the approximation of the Jacobian Jac as

J =
(

I ∂pi b
t (p)

−∂p j b
t (p) 1

)

=
(

I ∇pbt (p)

−(∇pbt (p))T 1

)

. (6.7)

��
Lemma 6.8 We have the following pointwise bounds:
(i) ‖J − I‖ � |∇pbt | � ε0,

(ii) ‖ Jac−J‖ � |∂t b
t | + |t∇p,t∇pbt | � ε0,

(iii) | det(J ) − 1| � |∇pbt | � ε0,

(iv) | det(Jac) − det(J )| � |∂t b
t | + |t∇p,t∇pbt |,

(v) ‖(Jac)−1 − J−1‖ � |∂t b| + |t∇p,t∇pbt |,
(vi) |∇p,t det(J )| + ‖|∇p,t J−1|‖ � |∇p,t∇pbt |.

In each estimate, the constants depend only on n and η.

Proof Only a rapid proof is provided, and details are carried out in the proof of Lem-
mas 3.26, 4.12, 4.13, and 4.15 in [23].

The items (i) and (ii) are direct consequences of (6.2) and the definitions of J and
Jac .

For items (iii) and (iv), we use the fact that the determinant is the sum of products
of coefficients of the matrix. More precisely, the Leibniz formula states that

det(M) :=
∑

σ∈Sn

sgn(σ )

n
∏

i=1

Mi,σ (i), (6.9)

where Sn is the sets of permutations of {1, . . . , n} and sgn is the signature. So the
difference between the determinant of two matrices M1 and M2 is the sum of products
of coefficients of M1 and M2 − M1, and each product contains at least one coefficient
of M2 − M1. With this observation, (iii) and (iv) follow from (i) and (ii).

The items (iii) and (iv) shows that both det(J ) and det(Jac) are close to 1—say in
(1/2, 2)—as long as ε0 is small enough. This implies that

∣
∣
∣
∣

1

det(Jac)
− 1

det(J )

∣
∣
∣
∣
=
∣
∣
∣
∣

det(J ) − det(Jac)

det(Jac) det(J )

∣
∣
∣
∣
� |∂t b| + |t∇p,t∇pbt | (6.10)

by (iv). Cramer’s rule states that the coefficients of M−1 is the quotient of a linear
combination of product of coefficients of M over det(M). By using Cramer’s rule to
Jac and J , (6.10), and (ii), we obtain (v).

Finally, the bound on ∇ det(J ) and ∇ J−1 are obtained by taking the gradient
respectively in (6.9) and in Cramer’s rule. ��
Lemma 6.11 For any p ∈ P and t ∈ P⊥\{0}, we have

(1 − Cε0)|t | ≤ dist(ρS(p, t), �S) ≤ |ρS(p, t) − b(p)| ≤ (1 + Cε0)|t | (6.12)
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and

|ρS(p, t) − b(p) − (0, t)| ≤ Cε0|t |, (6.13)

where C > 0 depends only on n (and η).

Proof The lemma is an analogue of Lemma 3.40 in [23]. But since the lemma is key
to understand why ρS is a bi-Lipschitz change of variable, and since it is much easier
in our case, we prove it carefully.

By definition of ρS,

ρS(p, t) − b(p) − (0, t) = (−t(∇bt (p))T , bt (p) − b(p)).

So the mean value theorem applied to the continuous function t �→ bt (p) [recall that
b is Lipschitz and bt is the convolution of b with a mollifier, so we even have a uniform
convergence of bt to b] entails that

|ρS(p, t) − b(p) − (0, t)| ≤ |t∇bt (p)| + |bt (p) − b(p)|
≤ |t∇bt (p)| + |t | sup

s∈(0,|t |)
|∂sbs(p)| � ε0|t | (6.14)

by (6.2). Therefore, (6.13) is proven and we have

|ρS(p, t) − b(p)| ≤ (1 + Cε0)|t |, (6.15)

is the upper bound in (6.12). The middle bound of (6.12) is immediate, since b(p) ∈
�S. It remains thus to prove the lower bound in (6.12). Let q ∈ P be such that
|ρS(p, t) − b(q)| = dist(ρS(p, t), �S). We know that

|b(q) − b(p)| ≤ |b(q) − ρS(p, t)| + |ρS(p, t) − b(p)| ≤ 2|ρS(p, t) − b(p)| ≤ 3|t |,

if ε0 � 1 is small enough, hence |q − p| ≤ 3|t | too. So

dist(ρS(p, t), �S) = |ρS(p, t) − b(q)|
≥ |b(p) − b(q) + (0, t)| − |ρS(p, t) − b(p) − (0, t)|
≥ |b(p) − b(q) + t | − Cε0|t |

by (6.13). But by Lemma 3.40, the function b is 2ε0-Lipschitz, so we can continue
with

dist(ρS(p, t), �S) ≥ (1 − Cε0)|t | − |b(p) − b(q)|
≥ (1 − Cε0)|t | − 2ε0|p − q| ≥ (1 − C ′ε0)|t |.

The lemma follows. ��
Lemma 6.16 The map ρS is a bi-Lipschitz change of variable that maps P to �S.
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Proof SeeTheorem3.53 in [23] formore details.We shall show thatρS is a bi-Lipschitz
change of variable from P × (0,∞) to

�+
S := {(p, t) ∈ P × P⊥, t > b(p)}

and a similar argument also give that ρS is a bi-Lipschitz change of variable from
P × (−∞, 0) to

�−
S := {(p, t) ∈ P × P⊥, t < b(p)}.

The lemma follows because we know that ρS is continuous on P × P⊥.

First, we know by the lower bound in (6.12) that the range of ρS(P × (0,∞)) never
intersects �S, so since ρS is connected, it means that ρS(P × (0,∞)) is included
in either �+

S or �−
S . A quick analysis of ρS, for instance (6.13), shows that ρS(P ×

(0,∞)) ⊂ �+
S .

At any point (p, t) ∈ P × (0,∞) the Jacobian of ρS is close to the identity,
as shown by (i) and (ii) of Lemma 6.8. So ρS is a local diffeomorphism, and the
inversion function theorem shows that there exists a neighborhood Vp,t ⊂ P × (0,∞)

of (p, t) such that ρS is a bijection between Vp,t and its range ρ(Vp,t ), which is a
neighborhood of ρS(p, t). Since the Jacobian is uniformly close to the identity, all the
ρS : Vp,t �→ ρ(Vp,t ) are bi-Lipschitz maps with uniform Lipschitz constant.

If z ∈ �+
S , we define the degree of the map ρS as

N (z) := “number of points (p, t) ∈ P × (0,∞) s.t. ρ(p, t) = z′′ ∈ N ∪ {+∞}.

We want to prove that N (z) is constantly equal to 1. If this is true, then the lemma
is proven and we can construct the inverse ρ−1 locally by inversing the appropriate
bijection ρS : Vp,t �→ ρ(Vp,t ).

We already know that the number of points that satisfy ρ(p, t) = z is countable,
because we can cover P × (0,∞) by a countable union of the neighborhoods Vp,t

introduced before. Moreover, if N (z) ≥ v > 0, then we can find v points (pi , ti ) ∈
P × (0,∞) such that ρS(pi , ti ) = z and so v disjoint neighborhoods Vpi ,ti of (pi , ti ).
Consequently, each point z′ in the neighborhood

⋂

i ρS(Vpi ,ti ) of z satisfies N (z′) ≥ v.

This proves that N is constant on any connected component, that is

N is constant on �+
S .

It remains to prove that N (z0) = 1 for one point z0 in�+
S .Take p0 far from the support

of b, for instance dist(p0,�(Q(S)) ≥ 99�(Q(S)) and t0 = �(Q(S)). In this case, we
have ρS(p0, t0) = (p0, t0) and dist(ρS(p0, t0), �S) = t0. Let (p1, t1) ∈ P × (0,∞)

be such that ρS(p1, t1) = (p0, t0), the bound (6.12) entails that |t1 − t0| ≤ Cε1|t0| ≤
�(Q(S)) and (6.12) implies that |p1 − p0| ≤ Cε0|t1| ≤ �(Q(S)). Those conditions
force p1 to stay far away from the support of b, which implies that ρS(p1, t1) =
(p1, t1) = (p0, t0). We just proved that N (p0, t0) = 1, as desired. ��
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6.2 Properties of the operator LS

Lemma 6.17 Let L = − divA∇ be a uniformly elliptic operator satisfying (1.6) and
(1.7) on �. Construct on ρ−1

S (�) the operator LS = − divAS∇ with

AS(p, t) := det(Jac(p, t)) Jac−T (p, t)A(ρS(p, t)) Jac−1(p, t) (6.18)

for (p, t) ∈ ρ−1
S (�). Then LS is the conjugate operator of L by ρS, that is, u ◦ ρS is

a weak solution to LS(u ◦ ρS) = 0 in ρ−1
S (�) if and only if u is a weak solution to

Lu = 0 in �.

Proof The maps ρS is a bi-Lipschitz change of variable on R
n = P × P⊥, so the

construction (6.18) properly define a matrix of coefficients in L∞(ρ−1
S (�)).

Let u be a weak solution to Lu = 0 in �. Then, for any ϕ ∈ C∞
0 (ρ−1

S (�)), we
have

¨
Rn

AS∇(u ◦ ρS) · ∇ϕ dp dt

=
¨

Rn
det(Jac) Jac−T (A ◦ ρS) Jac−1 ∇(u ◦ ρS) · ∇ϕ dp dt

=
¨

Rn
det(Jac)(A ◦ ρS) Jac−1 ∇(u ◦ ρS) · Jac−1 ∇ϕ dp dt

=
¨

Rn
det(Jac)(A ◦ ρS)(∇u ◦ ρS) · (∇[ϕ ◦ ρ−1

S ] ◦ ρS) dp dt

because ∇( f ◦ ρS) is equal to the matrix multiplication Jac(∇ f ◦ ρS) by definition of
the Jacobian. Recall that det(Jac) > 0, so doing the change of variable X = ρS(p, t)
gives

¨
Rn

AS∇(u ◦ ρS) · ∇ϕ dp dt =
¨

Rn
A∇u · ∇[ϕ ◦ ρ−1

S ] d X . (6.19)

The function ϕ ◦ ρ−1
S may not be smooth anymore, but is still compactly supported

in � and in W 1,∞(�) ⊂ W 1,2
loc (�), so ϕ ◦ ρ−1

S is a valid test function for the weak
solution u, and so the right-hand side of (6.19) is 0. We conclude that

¨
Rn

AS∇(u ◦ ρS) · ∇ϕ dp dt = 0

for any ϕ ∈ C∞
0 (ρ−1

S (�)), hence u ◦ ρS is a weak solution to LS(u ◦ ρS) = 0 in
ρ−1
S (�).

The same reasoning shows that u is a weak solution to Lu = 0 in � whenever
u ◦ ρS is a weak solution to LS(u ◦ ρS) = 0 in ρ−1

S (�). The lemma follows. ��
We want to say that AS satisfies the same Carleson-type condition as A ◦ ρS. For

instance, we want to say that δ∇ A ∈ C M�—which implies (δ ◦ ρS)∇(A ◦ ρS) ∈
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C M
ρ−1
S (�)

—will give that (δ ◦ ρS)∇ AS ∈ C M
ρ−1
S (�)

. However, it is not true, for the

simple reason that the Carleson estimates on Jac are related to the set R
n\P while the

ones on A ◦ ρS are linked to the domain ρ−1
S (�). Since AS is the product of these

two objects, we only have Carleson estimates for AS in the areas of R
n where ρS(∂�)

looks like P.

Lemma 6.20 Assume that the matrix function A defined on � satisfies (1.6) and (1.7),
and can be decomposed as A = B + C where

|δ∇B| + |C| ∈ C M�(M). (6.21)

Then the matrix AS constructed in (6.18) can also be decomposed as AS = BS + CS
whereBS satisfies (1.6) and (1.7)with the constant 2CA, |t∇BS| is uniformly bounded
by CCA, and

(|t∇BS| + |CS|)1ρ−1
S (W ∗

�(S))
∈ C MRn\P (C(ε20 + M)) (6.22)

for a constant C that depends only on n and the ellipticity constant CA.

Proof Let A = B + C as in the lemma. Without loss of generality, we can choose B
to be a smooth average of A (see Lemma 2.1) and so B satisfies (1.6) and (1.7) with
the constant CA and |δ∇B| ≤ CCA. Define

BS := det(J )J−T (B ◦ ρS)J−1

and of course CS := AS − BS. First, Lemma 6.8 shows that det(J ) is close to 1
and J−1 is close to the identity, so BS satisfies (1.6) and (1.7) with the constant
(1+Cε0)CA ≤ 2CA.Moreover, the sameLemma6.8 gives that | det(J )|+‖J−1‖ ≤ 3,
‖ Jac−I‖ ≤ 3, and |∇p,t det(J )| + ‖|∇p,t J−1|‖ � |∇p,t∇pbt |, and hence

|∇BS| � |(∇B) ◦ ρS| + |∇p,t∇pbt |,

and

|CS| � | det(Jac) − det(J )| + ‖ Jac−1 −J−1‖ + |C ◦ ρS|
� |∂t b

t | + |t∇p,t∇pbt | + |C ◦ ρS|.

Lemma 6.1 entails that |t∇p,t∇pbt | � ε0 ≤ 1 ≤ CA, so BS verifies |t∇BS| � CA, so
thus (6.22) is the only statement we still have to prove. Lemma 6.1 also implies that
|∂t bt | + |t∇p,t∇pbt | ∈ C MP×(0,∞)(Cε20). Therefore, it suffices to establish that

(|t∇B ◦ ρS| + |C ◦ ρS|)1ρ−1
S (W ∗

�(S))
∈ C MP×(0,∞)(C M). (6.23)

Take p0 ∈ P and r0 > 0. We want to show that

¨
B(p0,r0)∩ρ−1

S (W ∗
�(S))

(|t∇B ◦ ρS|2 + |C ◦ ρS|2) dt

t
dp ≤ C M(r0)

n−1. (6.24)
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If ρS(B(p0, r0)) ∩ W ∗
�(S) = ∅, the left-hand side above is zero and there is nothing

to prove. Otherwise, pick a point X ∈ ρS(B(p0, r0)) ∩ W ∗
�(S). The fact that X ∈

ρS(B(p0, r0)) means that

|X − b(p0)| ≤ (1 + Cε0)r0, (6.25)

sinceρS(p0) = b(p0) and ‖ Jac−I‖ ≤ Cε0 byLemma6.8.Because b is 2ε0-Lipschitz
with ε0 � 1, we deduce

|X − b(�(X))| ≤ (1 + ε0)|X − b(p0)| ≤ (1 + 2Cε0)r0. (6.26)

The fact that X ∈ W ∗
�(S) implies by (4.14) that

δ(X) ≤ (1 + 2ε0)|X − b(�(X))| ≤ 2r0 (6.27)

thanks to (6.26). Moreover, if x ∈ ∂� is such that |X − x | = δ(X),

|x − b(p0)| ≤ |x − b(�(X))| + |b(�(X) − b(p0)|
≤ 2ε0δ(X) + (1 + ε0)|�(X) − p0| ≤ 1

2
r0 + (1 + ε0)|X − b(p0)| ≤ 2r0

(6.28)

by using in order (4.16), the fact that b is 2ε0-Lipschitz, (6.27), and (6.25). Fix X0 ∈
ρS(B(p0, r0)) ∩ W ∗

�(S) and x0 ∈ ∂� such that |X0 − x0| = δ(X0). The inequalities
(6.25) and (6.28) show that,

|X − x0| ≤ |X − b(p0)| + |x0 − b(p0)| ≤ 4r0 for X ∈ ρS(B(p0, r0)) ∩ W ∗
�(S),

that is

ρS(B(p0, r0)) ∩ W ∗
�(S) ⊂ B(x0, 4r0). (6.29)

We are now ready to conclude. We make the change of variable X = ρS(p, s) in
(6.24), and since ρS is a bi-Lipschitz change of variable that almost preserves the
distances (because ‖ Jac−I‖ ≤ Cε0 � 1), we obtain

¨
B(p0,r0)∩ρ−1

S (W ∗
�(S))

(|t∇B ◦ ρS|2 + |C ◦ ρS|2) dt

t
dp

≤ 2
¨

B(x0,4r0)∩W ∗
�(S)

(| dist(X , �S)∇B|2 + |C|2) d X

dist(X , �S)

≤ 4
¨

B(x0,4r0)
(|δ∇B|2 + |C|2) d X

δ(X)
≤ C M(r0)

n−1

by using (4.15) and then the fact that |δ∇B|+ |C| ∈ C M�(M). The lemma follows. ��
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6.3 Properties of the composition of the smooth distance by�S

The change of variable ρS maps P × (P⊥\{0}) to R
n\�S, so for any X ∈ R

n\�S, the
quantities N

ρ−1
S (X)

(Y ) and �(ρ−1
S (X)) make sense as Np,t (Y ) and �(p, t), respec-

tively, where (p, t) = ρ−1
S (X). With this in mind, we have the following result.

Lemma 6.30 For any Q ∈ S, we have

¨
W�(Q)

∣
∣
∣
∣
∣

∇Dβ(X)

Dβ(X)
−

N
ρ−1
S (X)

(X)

dist(X ,�(ρ−1
S (X))

∣
∣
∣
∣
∣

2

δ(X) d X ≤ C |ασ,β(Q)|2σ(Q),

(6.31)

with a constant C > 0 that depends only on n, Cσ , and β.

Proof The lemma is a consequence of Corollary 5.52 and the definition of ρS.
First, Lemma 4.1(d) entails that W�(Q) ⊂ R

n\�S,whichmeans that the quantities
N

ρ−1
S (X)

and �(ρ−1
S (X)) are well defined in (6.31). Let X ∈ W�(Q) and set (p, t) =

ρ−1
S (X).

On one hand, Lemma 6.11 gives that

dist(X , �S) ≤ |X − b(p)| ≤ (1 + Cε0)|t | ≤ (1 + C ′ε0) dist(X , �S)

and

|X − b(p) − (0, t)| ≤ Cε0|t |.

By projecting the left-hand side on P, the latter implies that

|�(X) − p| ≤ Cε0|t |.

On the other hand, since X ∈ W�(Q), Lemma 4.13 gives that

dist(X , �S) ≤ |X − b(�(X))| ≤ (1 + 2ε0)δ(X) ≤ (1 + Cε0) dist(X , �S),

and, if x ∈ Q is such that |X − x | = δ(X), then by (4.16),

|b(�(X)) − x | ≤ 2ε0δ(X),

which implies that

|�(X) − �(x)| ≤ 2ε0δ(X),

Altogether, we have

δ(X)(1 − Cε0) ≤ |t | ≤ (1 + Cε0)δ(X)
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and

dist(p,�(Q)) ≤ |p − �(x)| ≤ |p − �(X)| + |�(X) − �(x)| ≤ Cε0δ(X).

If we throw in the fact that δ(X) ∈ [�(Q)/2, �(Q)] by definition of W�(Q), then we
easily observe that p and t satisfy the assumptions of Corollary 5.52, and so

∣
∣
∣
∣
∣

∇Dβ(X)

Dβ(X)
−

N
ρ−1
S (X)

(X)

dist(X ,�(ρ−1
S (X))

∣
∣
∣
∣
∣
≤ C�(Q)−1ασ,β(Q) for X ∈ W�.

We conclude that

¨
W�(Q)

∣
∣
∣
∣
∣

∇Dβ(X)

Dβ(X)
−

N
ρ−1
S (X)

(X)

dist(X ,�(ρ−1
S (X))

∣
∣
∣
∣
∣

2

δ(X) d X

≤ C |W�(Q)||�(Q)−1ασ,β(Q)|2�(Q) ≤ C |ασ,β(Q)|2σ(Q)

because |W�(Q)| ≈ σ(Q)�(Q) by (4.8) and (1.1). The lemma follows. ��
Lemma 6.32 We have

¨
ρ−1
S (W�(S))

∣
∣
∣
∣

∇t

t
− Jac(p, t)Np,t (ρS(p, t))

dist(ρS(p, t),�(p, t))

∣
∣
∣
∣

2

|t | dt dp ≤ C(ε0)
2σ(Q(S))

(6.33)

where C > 0 depends only on n (and η).

Proof From the definition, we can see that�(p, t) is the affine plane that goes through
the point bt (p) and whose directions are given by the vectors (q, q∇bt (p)), that is
�(p, t) is the codimension 1 plane that goes through bt (p) and with upward unit
normal vector

Np,t = 1

|(−(∇br (p))T , 1)|
(−∇bt (p)

1

)

= 1
√

1 + |∇bt (p)|2
(−∇bt (p)

1

)

.

The vector function Np,t (X) is just +Np,t or −Np,t , depending whether X lies above
or below �(p, t).

Observe that ρS(p, t)−bt (p) = t(−(∇bt (p))T , 1), which means that bt (p) is the
projection of ρS(p, t) onto �(p, t) and that

dist(ρS(p, t),�(p, t)) = |t ||(−(∇bt (p))T , 1)| = |t |
√

1 + |∇bt (p)|2.

Moreover, ρS(p, t) lies above �(p, t) if t > 0 and below otherwise, that is

Np,t (ρ(p, t)) = sgn(t)Np,t = sgn(t)
√

1 + |∇bt (p)|2
(−∇bt (p)

1

)

.
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From all this, we deduce

J (p, t)Np,t (ρS(p, t))

dist(ρS(p, t),�(p, t))
= 1

t(1 + |∇bt (p)|2)
(

I ∇bt (p)

−(∇bt (p))T 1

)(−∇bt (p)

1

)

= 1

t

(

0Rn−1

1

)

= ∇t

t
. (6.34)

Recall that | Jac−J | � |∂t bt | + |t∇p,t∇pbt |. Together with (6.34), we obtain that the
left-hand side of (6.33) is equal to

I =
¨

ρ−1
S (W�(S))

∣
∣
∣
∣

Jac(p, t) − J (p, t)

t(1 + |∇bt (p)|2)
(−∇bt (p)

1

)∣
∣
∣
∣

2

|t | dt dp

�
¨

ρ−1
S (W�(S))

(|∂t b
t |2 + |t∇p,t∇pbt |2) dt

|t | dp. (6.35)

Take X0 ∈ W�(S), and notice that the set W�(S) is included in the ball
B(b(�(X0)), 4�(Q(S))) by definition of W�(S) and by (4.16). Since the Jaco-
bian of ρS is close to the identity, ρ−1

S almost preserves the distance, and hence
ρ−1
S (W�(S)) ⊂ B(�(X0), 5�(Q(S))). We conclude that

I �
¨

B(�(X0),5�(Q(S)))

(|∂t b
t |2 + |t∇p,t∇pbt |2) dt

t
dp � (ε0)

2�(Q(S))n−1

� (ε0)
2σ(Q(S))

by Lemma 6.1 and then (1.1). The lemma follows. ��

7 The flat case

In this section, we intend to prove an analogue of Theorem 1.12 when the boundary
is flat, that is when the domain is �0 := R

n+. This is our main argument on the PDE
side (contrary to other sections which are devoted to geometric arguments) and the
general case of Chord-Arc Domains is eventually brought back to this simpler case.

We shall bring a little bit of flexibility in the following manner. We will allow � to
be different from R

n+, but we shall stay away from the parts where ∂� differs from
∂R

n+ with some cut-off functions. More exactly, we shall use cut-off functions φ that
guarantee that δ(X) := dist(X , ∂�) ≈ t whenever X = (x, t) ∈ suppφ. We shall
simply use R

n−1 for ∂R
n = R

n−1 × {0} . We start with the precise definition of the
cut-off functions that we are allowing.

Definition 7.1 We say that φ ∈ L∞(�) is a cut-off function associated to both ∂�

and R
n−1 if 0 ≤ φ ≤ 1, and there is a constant Cφ ≥ 1 such that |∇φ| ≤ Cφδ−1,

(Cφ)−1|t | ≤ δ(X) ≤ Cφ |t | for all X = (x, t) ∈ suppφ, (7.2)
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and there exists a collection of dyadic cubes {Qi }i∈Iφ in D∂� such that

{Qi }i∈Iφ is finitely overlapping with an overlap of at most Cφ, (7.3)

and

� ∩ (suppφ) ∩ supp(1 − φ) ⊂
⋃

i∈Iφ

W ∗∗
� (Qi ). (7.4)

The condition (7.2) allows us to say that
if, for x ∈ ∂� and r > 0, B(x, r) ∩ suppφ �= ∅,

then there exists y ∈ R
n−1 such that B(x, r) ⊂ B(y, Cr); (7.5)

so we can pass from Carleson measures in � to Carleson measure in R
n\R

n−1. For
instance, we have

f ∈ C M�(M) �⇒ f φ, f 1suppφ ∈ C MRn\Rn−1(C ′
φ M),

δ∇g ∈ C M�(M) �⇒ tφ∇g ∈ C MRn\Rn−1(C ′
φ M).

(7.6)

and vice versa. The conditions (7.3) and (7.4) ensure that1(suppφ)∩supp(1−φ) (and hence
δ∇φ) satisfies the Carleson measure condition on �. So by (7.6),

|t∇φ| + 1supp∇φ + 1(suppφ)∩supp(1−φ) ∈ C MRn\Rn−1(C ′
φ). (7.7)

And if the support of φ is contained in a ball of radius r centered on ∂�, then¨
�

(|∇φ|t + |t∇φ|2) dt

t
dy � rn−1. (7.8)

We are ready to state the main result of the section.

Lemma 7.9 Let � be a Chord-Arc Domain and let L = − divA∇ be a uniformly
elliptic operator on �, that is A verifies (1.6) and (1.7). Assume that the L∗-elliptic
measure ωL∗ ∈ A∞(σ ), where L∗ is the adjoint operator of L, and σ is an Ahlfors1

regular measure on ∂�. Let φ be as in Definition 7.1 and be supported in a ball
B := B(x, r) centered on the boundary ∂�. Assume that the coefficients A can be
decomposed as A = B + C where

(|t∇B| + |C|)1suppφ ∈ C MRn\Rn−1(M). (7.10)

Then for any non-negative nontrivial weak solution u to Lu = 0 in 2B ∩ � with
zero trace on ∂� ∩ 2B, one has

¨
�

|t |
∣
∣
∣
∣

∇u

u
− ∇t

t

∣
∣
∣
∣

2

φ2 dt dy =
¨

�

|t |
∣
∣
∣
∣
∇ ln
( u

|t |
)
∣
∣
∣
∣

2

φ2 dt dy ≤ C(1 + M)rn−1,

(7.11)

1 We actually only need the Carleson condition on the last column of B and C (instead of the full matrix).
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where C depends only on the dimension n, the elliptic constant CA, the 1-sided
CAD constants of �, the constant Cφ in Definition 7.1, and the intrinsic constants in
ωL∗ ∈ A∞(σ ).

The above lemma is the analogue of Theorem 2.21 from [25] in our context, and
part of our proof will follow the one from [25] but a new argument is needed to treat
the non-diagonal structure of A.

We need ωL∗ ∈ A∞(σ ) for the proof of the following intermediate lemma. Essen-
tially, we need that the logarithm of the Poisson kernel lies in B M O. Let us state and
prove it directly in the form that we need.

Lemma 7.12 Let �, L, φ, B := B(x, r), and u be as in Lemma 7.9. Assume that
ωL∗ ∈ A∞(σ ) as in Lemma 7.9. Then there exists K := K (u, B) such that

¨
�

|∇φ|
∣
∣
∣
∣
ln
(K u

|t |
)
∣
∣
∣
∣
dt dy ≤ Crn−1,

where C depends only on n, CA, the 1-sided CAD constants of �, the constant Cφ in
Definition 7.1, and the intrinsic constants in ωL∗ ∈ A∞(σ ).

Proof of Lemma 7.12 The first step is to replace K u/t by the elliptic measure. Take
X0 ∈ B(x, r)∩� and X1 ∈ �\B(x, 4r) to be two corkscrew points for x at the scale
r . If G(Y , X) is the Green function associated to L in � and {ωX∗ }X∈� is the elliptic
measure associated to the adjoint L∗, the CFMS estimates (Lemma 2.18) entails, for
Y ∈ W ∗∗

� (Q) ∩ B, that

u(Y )

u(X0)
≈ G(Y , X1)

G(X0, X1)
≈ �(Q)

r

σ(�)

σ(Q)

ω
X1∗ (Q)

ω
X1∗ (�)

,

where � = B ∩ ∂�. Moreover, if Y = (y, t) ∈ suppφ ∩ W ∗∗
� (Q), then �(Q) ≈ |t |

by (7.2). Altogether, we have

u(Y )

|t | ≈ u(X0)

r

σ(�)

σ(Q)

ω
X1∗ (Q)

ω
X1∗ (�)

for Y = (y, t) ∈ suppφ ∩ W ∗∗
� (Q). (7.13)

Set K := r/u(X0), and I ′
φ := {i ∈ Iφ : W ∗∗

� (Qi ) intersects supp∇φ
}

,

¨
�

|∇φ|
∣
∣
∣
∣
ln
(K u

|t |
)
∣
∣
∣
∣
dt dy �

∑

i∈I ′
φ

�(Qi )
−1

ˆ
W ∗∗

� (Qi )

∣
∣
∣
∣
ln
(K u

|t |
)
∣
∣
∣
∣

dt dy

�
∑

i∈I ′
φ

σ (Qi )

[

1 +
∣
∣
∣
∣
∣
ln
( σ(�)

σ(Qi )

ω
X1∗ (Qi )

ω
X1∗ (�)

)
∣
∣
∣
∣
∣

]

(7.14)

by (7.4), (7.13), and the fact that |W ∗∗
� (Qi )| ≈ �(Qi )σ (Qi ).
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The second step is to use the fact thatωX1∗ is A∞-absolutely continuous with respect
to σ. To that objective, we define for k ∈ Z

Ik :=
{

i ∈ I ′
φ, 2k ≤ σ(�)

σ(Qi )

ω
X1∗ (Qi )

ω
X1∗ (�)

≤ 2k+1
}

and then Ek := ⋃i∈Ik
Qi . Since the collection {Qi }i∈Iφ is finitely overlapping, due

to (7.3), the bound (7.14) becomes

¨
�

|∇φ|
∣
∣
∣
∣
ln
(K u

|t |
)
∣
∣
∣
∣
dt dy �

∑

k∈Z
(1 + |k|)σ (Ek). (7.15)

We want thus to estimate σ(Ek).Observe first that for any i ∈ I ′
φ, W ∗∗

� (Qi ) intersects
suppφ ⊂ B.Therefore Qi and Ek have to be inside�∗ := C� for a largeC depending
only on the constant K ∗∗ in (4.6). The finite overlapping (7.3) also implies that

σ(�∗)
σ (Ek)

ω
X1∗ (Ek)

ω
X1∗ (�∗)

≈ 2k

For k ≥ 0, we have

σ(Ek)

σ (�∗)
≈ 2−k ω

X1∗ (Ek)

ω
X1∗ (�∗)

� 2−k . (7.16)

The elliptic measure ω
X1∗ is A∞-absolutely continuous with respect to σ by assump-

tion, so for k ≤ 0, we use the characterization (iv) from Theorem 1.4.13 in [43] to
deduce

σ(Ek)

σ (�∗)
�
(

ω
X1∗ (Ek)

ω
X1∗ (�∗)

)θ

≈ 2kθ

(
σ(Ek)

σ (�∗)

)θ

� 2kθ (7.17)

for some θ ∈ (0, 1) independent of x, r , and k. We reinject (7.16) and (7.17) in (7.15)
to conclude that

¨
�

|∇φ|
∣
∣
∣
∣
ln
(K u

|t |
)
∣
∣
∣
∣
dt dy � σ(�∗)

∑

k∈Z
(1 + |k|)2−|k|θ � σ(�∗) � rn−1

because σ is Ahlfors regular. The lemma follows. ��
Proof of Lemma 7.9 The proof is divided in two parts: the first one treats the casewhere
Bi,n = 0 for i < n, and the second one shows that we can come back to the first case
by a change of variable, by adapting the method presented in [32].

Observe that φ can be decomposed as φ = φ+ + φ− where φ+ = 1t>0φ and
φ− = 1t<0φ. Both φ+ and φ− are as in Definition 7.1 with constant Cφ. So it is
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enough to prove the lemma while assuming

suppφ ⊂ {t ≥ 0} = R
n+. (7.18)

The proof of the case suppφ ⊂ R
n− is of course identical up to obvious changes.

Step 1: Case where Bi,n = 0 for i < n on suppφ and B satisfies (1.6) and (1.7) with
the same constant CA as A. If b := Bn,n, this assumption on B implies that

B∇t · ∇v φ2 = b ∂tv φ2. (7.19)

whenever v ∈ W 1,1
loc (�) and

(CA)−1 ≤ b ≤ CA. (7.20)

Wewant to prove (7.11) with the assumption (7.18), and for this, we intend to establish
that

T :=
¨

R
n+

t
∣
∣
∣∇ ln
(u

t

)∣
∣
∣

2
φ2 dt dy � T

1
2 r

n−1
2 + rn−1, (7.21)

which implies the desired inequality (7.11) provided that T is a priori finite. However
that is not necessary the case, because some problems can occur when t is close to 0.
So we take ψ ∈ C∞(R) such that ψ(t) = 0 when t < 1, ψ(t) = 1 when t ≥ 2, and
0 ≤ ψ ≤ 1. We construct then ψk(Y ) = ψ(2kδ(Y )) and φk = φψk . It is not very
hard to see that

supp∇ψk := {X ∈ �, 2−k ≤ δ(X) ≤ 21−k} ⊂
⋃

Q∈Dk

W ∗∗
� (Q)

and therefore that φk is as in Definition 7.1 (with Cφk = Cφ + 1). The quantity

T (k) :=
¨

R
n+

t
∣
∣
∣∇ ln
(u

t

)∣
∣
∣

2
φ2

k dt dy =
¨

R
n+

t

∣
∣
∣
∣

∇u

u
− ∇t

t

∣
∣
∣
∣

2

φ2
k dt dy

is finite, because φk is compactly supported in both � and R
n+ (the fact that ∇u/u

is in L2
loc(�) for a non-negative nontrivial solution to Lu = 0 is a consequence of

the Caccioppoli inequality and the Harnack inequality). So, we prove (7.21) for T (k)

instead of T , which implies T (k) � rn−1 as we said, and take k → ∞ to deduce
(7.11).

We are now ready for the core part of the proof, which can be seen as an elaborate
integration by parts. Our previous discussion established that we (only) have to prove
(7.21), and that we can assume that φ is compactly supported in � ∩ R

n+. We use the
ellipticity of A and the boundedness of b to write

T =
¨

R
n+

t

∣
∣
∣
∣

∇u

u
− ∇t

t

∣
∣
∣
∣

2

φ2 dt dy
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≤ C2
A

¨
R

n+

A
b

(∇u

u
− ∇t

t

)

·
(∇u

u
− ∇t

t

)

φ2dtdy

= C2
A

(¨
R

n+

A∇u

bu
·
(∇u

u
− ∇t

t

)

tφ2 dt dy −
¨

R
n+

A∇t

bt
· ∇ ln
(u

t

)

tφ2 dt dy

)

:= C2
A(T1 + T2).

We deal first with T2. We use the fact that A = B + C and (7.19) to obtain

T2 = −
¨

R
n+

∂t ln
(u

t

)

φ2 dt dy −
¨

R
n+

C
b
∇t · ∇ ln

(u

t

)

φ2 dt dy := T21 + T22.

The term T22 can be then bounded with the help of the Cauchy–Schwarz inequality
as follows

T22 ≤ ‖b−1‖∞

(¨
R

n+
|C|2φ2 dt

t
dy

) 1
2
(¨

R
n+

t
∣
∣
∣∇ ln
(u

t

)∣
∣
∣

2
φ2 dt dy

) 1
2

� r
n−1
2 T

1
2

by (7.10). As for T21, observe that multiplying by any constant K inside the logarithm
will not change the term (because we differentiate the logarithm). As a consequence,
we have

T21 = −
¨

R
n+

∂t ln
(K u

t

)

φ2 dt dy =
¨

R
n+
ln
(K u

t

)

∂n[φ2] dt dy

≤
¨

R
n+

|∇φ|
∣
∣
∣
∣
ln
(K u

t

)
∣
∣
∣
∣

dt dy � rn−1

by successively using integration by parts and Lemma 7.12.
We turn to T1, and we want now to use the fact that u is a weak solution to Lu = 0.

So we notice that

T1 = −
¨

R
n+

A
b

∇u · ∇
( t

u

)

φ2 dt dy

= −
¨

R
n+
A∇u · ∇

( tφ2

bu

)

dt dy + 2
¨

R
n+
A∇u · ∇φ

( tφ

bu

)

dt dy

−
¨

R
n+
A∇u · ∇b

( tφ2

b2u

)

dt dy := −T11 + 2T12 − T13.

Since φ is compactly supported, we have that u > εφ on suppφ (by the Harnack
inequality, see Lemma 2.15) and ∇u ∈ L2

loc(�) (by the Caccioppoli inequality, see

Lemma 2.14). Therefore tφ2/(bu) is a valid test function for the solution u ∈ W 1,2
loc (�)
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to Lu = 0, and then T11 = 0. As for T12, we have

T12 =
¨

R
n+

A
b

(∇u

u
− ∇t

t

)

· ∇φ (tφ) dt dy +
¨

R
n+

A
b

∇t · ∇φ φ dt dy

:= T121 + T122.

The term T121 is similar to T22. The boundedness of A/b and the Cauchy–Schwarz
inequality infer that

T121 ≤
(¨

R
n+

t |∇φ|2 dt

t
dy

) 1
2
(¨

R
n+

t
∣
∣
∣∇ ln
(u

t

)∣
∣
∣

2
φ2 dt dy

) 1
2

� r
n−1
2 T

1
2

by (7.8). The quantity T122 is even easier since

T122 �
¨

R
n+

|∇φ| dt dy � rn−1,

again by (7.8). It remains to bound T13. We start as for T12 by writing

T13 =
¨

R
n+
A
(∇u

u
− ∇t

t

)

· ∇b
tφ2

b2
dt dy +

¨
R

n+
A∇t · ∇b

φ2

b2
dt dy

:= T131 + T132.

The term T131 is like T121, and by using t∇b ∈ C MR
n+ instead of t∇φ ∈ C MR

n+ ,

we obtain that T131 � r (n−1)/2T 1/2. The term T132 does not contain the solution u,

but it is a bit harder than T122 to deal with, because ∇b is not as nice as ∇φ. We use
A = B + C and (7.19) to get

T132 =
¨

R
n+
(∂t b)

φ2

b
dt dy +

¨
R

n+
C∇t · ∇b

φ2

b2
dt dy := T1321 + T1322.

We easily deal with T1322 by using the Cauchy–Schwarz inequality as follows:

T1322 ≤ ‖b−1‖2∞
(¨

R
n+

|C|2φ2 dt

t
dy

) 1
2
(¨

R
n+

|t∇b|2φ2 dt

t
dy

) 1
2

� rn−1

by (7.10). As last, observe that

T1321 =
¨

R
n+

∂t [ln(b)φ2] dt dy −
¨

R
n+

∂tφ φ ln(b) dt dy,
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but the first integral in the right-hand side above is zero, so

|T1321| � ‖ ln(b)‖∞
¨

R
n+

|∂tφ| dt dy � rn−1,

by (7.8) and the fact that b ≈ 1. The inequality (7.11) under the three assumptions
(7.19), (7.20), and (7.10) follows.

Step 2: We can assume that
∥
∥t
∣
∣∇yB
∣
∣
∥
∥∞ is as small as we want.

We construct

Ã := Aφ + (1 − φ)I , (7.22)

where I is the identity matrix. Note that Ã is elliptic with the same elliptic constant
CA asA.We choose then a bump function θ ∈ C∞

0 (Rn) supported in B(0, 1/10), that
is 0 ≤ θ ≤ 1 and

˜
Rn θ d X = 1. We construct θy,t (z, s) = t−nθ

( z−y
t , s−t

t

)

, which
satisfies

˜
Rn θy,t = 1, and then

B̃(y, t) :=
¨

Rn
Ã θy,Nt dz ds. (7.23)

for a large N to be fixed later to ensure that (7.28) below is invertible. Since B̃ is some
average of Ã, then

B̃ is elliptic and bounded with the same constant CA as Ã and A. (7.24)

The construction is similar to the one done in Lemma 2.1, so we do not write the
details again. Observe also that

|t∇yB̃(y, t)| � 1

N
‖Ã‖∞ and |t ∂t B̃(y, t)| � ‖Ã‖∞. (7.25)

In addition, we have that

|∇B̃(y, t)| � t−n
¨

BNt/10(y,Nt)

(

|∇B|φ + |∇φ| + 1

t
|C|φ
)

dz ds,

and if C̃ denotes (A − B̃)1suppφ, the Poincaré inequality entails that

ˆ
�(x,t)

ˆ 3t

t
|̃C(z, s)|2 ds

s
dz

�
ˆ

�(x,2Nt)

ˆ 9Nt

t

(

s2|∇B|2φ2 + |C|2φ2 + s2|∇φ|2 + |1(suppφ)∩supp(1−φ)|2
)ds

s
dz,
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which means that t |∇B̃| + |̃C| ∈ C MR
n+ by (7.10), and (7.7).

Step 3: The change of variable. We write B̃ as the block matrix

B̃ =
(

B1 B2
B3 b

)

, (7.26)

where b is the scalar function B̃n,n, so B1 is a matrix of order n − 1, B2 and B3
are respectively a vertical and a horizontal vector of length n − 1. We use v for the
horizontal vector v = −(B2)

T /b, and we define

ρ(y, t) := (y + tv(y, t), t), (7.27)

which is a Lipschitz map from R
n+ to R

n+ (since v and t |∇v| are uniformly bounded,
see (7.24) and (7.25)), and we compute its Jacobian

Jacρ :=
(

I + t∇yv 0
v + t∂tv 1

)

. (7.28)

We can choose N big enough in (7.25) such that Jacρ is invertible and even
det(Jacρ) ≥ 1/2. Let Jρ be the matrix

Jρ :=
(

I 0
v 1

)

. (7.29)

We easily have that

|Jacρ − Jρ | + | det(Jacρ)−1 − 1| � |t∇v| � |t∇B̃|. (7.30)

We aim to use ρ for a change of variable. If u is a weak solution to L = − divA∇,

then u ◦ ρ−1 is solution to Lρ = − div(Aρ ◦ ρ−1)∇ where

Aρ = det(Jacρ)−1(Jacρ)TA Jacρ. (7.31)

We want to computeAρ. To lighten the notation, we writeOC M for a scalar function,
a vector, or a matrix that satisfies the Carleson measure condition with respect to R

n+,

i.e. OC M can change from one line to another as long as OC M ∈ C MR
n+ . So (7.30)

becomes

Jacρ = Jρ + OC M and det(Jacρ)−1 = 1 + OC M . (7.32)
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Remember that by construction, the matrix A equals B̃ + C̃ = B̃ + OC M on suppφ,

and that Jacρ and A are uniformly bounded, so

(1suppφ)Aρ = 1suppφ

(

I vT

0 1

)(

B1 B2
B3 b

)(

I 0
v 1

)

+ OC M

= 1suppφ

(

B1 + vT B3 + B2v + bvvT B2 + bvT

B3 + bv b

)

+ OC M

= 1suppφ

(

b(B1 + vT B3 + B2v + bvvT ) 0
B3 − (B2)

T b

)

︸ ︷︷ ︸

:=Bρ

+OC M

(7.33)

with our choices of v. We write Cρ for (Aρ − Bρ)1suppφ = OC M . The matrices
Bρ ◦ ρ−1 and Cρ ◦ ρ−1 satisfy (7.10) (because the Carleson measure condition is
stable under bi-Lipschitz transformations) and Bρ ◦ ρ−1 has the structure (7.19) as in
Step 1. So Step 1 gives that

¨
R

n+
s

∣
∣
∣
∣
∇ ln
(u ◦ ρ−1

s

)
∣
∣
∣
∣

2

φ2 ◦ ρ−1 ds dz � rn−1. (7.34)

If s (and t) is also used, by notation abuse, for the projection on the last coordinate,
then

¨
R

n+
t
∣
∣
∣∇ ln
(u

t

)∣
∣
∣

2
φ2 dt dy =

¨
R

n+
t

∣
∣
∣
∣

∇u

u
− ∇t

t

∣
∣
∣
∣

2

φ2 dt dy

=
¨

R
n+

t

∣
∣
∣
∣

Jacρ∇(u ◦ ρ−1) ◦ ρ

u
− ∇t

t

∣
∣
∣
∣

2

φ2 dt dy

≤
¨

R
n+

t

∣
∣
∣
∣

Jacρ∇(u ◦ ρ−1) ◦ ρ

u
− Jacρ(∇s) ◦ ρ

s ◦ ρ

∣
∣
∣
∣

2

φ2 dt dy

+
¨

R
n+

t

∣
∣
∣
∣

Jacρ(∇s) ◦ ρ

s ◦ ρ
− ∇t

t

∣
∣
∣
∣

2

φ2 dt dy := I1 + I2.

Yet, ρ is a bi-Lipschitz change of variable, so Jacρ and det(Jacρ)−1 are uniformly
bounded, and we have

I1 �
¨

R
n+

t

∣
∣
∣
∣

∇(u ◦ ρ−1) ◦ ρ

u
− (∇s) ◦ ρ

s ◦ ρ

∣
∣
∣
∣

2

φ2 dt dy

�
¨

R
n+

s

∣
∣
∣
∣

∇(u ◦ ρ−1)

u ◦ ρ−1 − ∇s

s

∣
∣
∣
∣

2

φ2 ◦ ρ−1 ds dz

=
¨

R
n+

s

∣
∣
∣
∣
∇ ln
(u ◦ ρ−1

s

)
∣
∣
∣
∣

2

φ2 ◦ ρ−1 ds dz � rn−1 (7.35)
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by (7.34). As for I2, we simply observe that s ◦ ρ = t and

Jacρ(∇s) ◦ ρ = ∇t

to deduce that I2 = 0. The lemma follows. ��

8 Proof of Theorem 1.21

In this section we prove Theorem 1.21, using the same strategy as our proof of Theo-
rem 1.12. As mentioned in the introduction, we shall explain how to change the 5-step
sketch of proof given in Sect. 1.3 to prove Theorem 1.21.

Fix a bounded solution u of Lu = 0 in � with ‖u‖L∞(�) ≤ 1 and a ball B =
B(x0, r) centered on ∂� with radius r . By the same argument as Step 1 in Sect. 1.3,
it suffices to show that there exists some constant C ∈ (0,∞) depending only on n,

M and the UR constants of ∂�, such that

I :=
∑

Q∈D∂�(Q0)

¨
W�(Q)

|∇u(X)|2 δ(X)d X ≤ Cσ(Q0) (8.1)

for any cube Q0 ∈ D∂� that satisfies Q0 ⊂ 8
7 B ∩ ∂� and �(Q0) ≤ 2−8r .

Then observe that if E ⊂ � is a Whitney region, that is, E ⊂ 7
4 B and diam(E) ≤

K δ(E), then

¨
E

|∇u|2 δ d X ≤ CK diam(E)−1
¨

E∗
|u|2 d X ≤ CK δ(E)n−1, (8.2)

by the Caccioppoli inequality and ‖u‖L∞(�) ≤ 1, where E∗ is an enlargement of E .

This bound (8.2) is the analogue of (1.26), and proves Step 2.
Step 3 is not modified. We pick 0 < ε1 � ε0 � 1 and we use the corona decom-

position constructed in Sect. 3 to decompose I as follows.

I =
∑

Q∈B(Q0)

¨
W�(Q)

|∇u|2 δ d X +
∑

S∈S(Q0)

¨
W�(S)

|∇u|2 δ d X =: I1 +
∑

S∈S(Q0)

IS.

By (8.2) and (3.19),

I1 ≤ C
∑

Q∈B(Q0)

�(Q)n−1 ≤ Cσ(Q0).

Step 4 is significantly simpler for Theorem 1.21, because we do not need any
estimate on the smooth distance Dβ, but the spirit is the same. That is, by using the bi-
Lipschitz map ρS constructed in Sect. 6, IS can be turned into an integral onR

n\R
n−1,

which can be estimated by an integration by parts argument. More precisely, for any
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fixed S ∈ S(Q0),

IS =
¨

ρ−1
S (W�(S))

|(∇u) ◦ ρS(p, t)|2 δ ◦ ρS(p, t) det Jac(p, t)dpdt

≤ 2
¨

|∇(u ◦ ρS(p, t))|2 dist(ρS(p, t), �S) (�S ◦ ρS(p, t))2 dpdt

≤ 3
¨

|∇v(p, t)|2 |t | φ(p, t)2dpdt, v = u ◦ ρS, φ = �S ◦ ρS

by (4.15), Lemmata 4.1(d) and 6.8, as well as (6.12), for ε0 sufficiently small.
The fifth step consists roughly in proving the result in R

n\R
n−1. The function φ is

the same as the one used to prove Theorem 1.12, in particular it is a cutoff function
associated to both ρ−1

S (∂�) and R
n−1 as defined in Definition 7.1, and it satisfies

suppφ ⊂ ρ−1
S (W ∗

�(S)), (8.3)

and
¨

|∇φ| dtdp +
¨

|∇φ|2 tdtdp � σ(Q(S)), (8.4)

where the implicit constant depends on n and the AR constant in (1.1). Notice that
v = u ◦ ρS is a bounded solution of LS = − divAS∇ that satisfies ‖v‖L∞ ≤ 1,
whereAS is defined in (6.18). By Lemma 6.20, IS ≤ Cσ(Q(S)) will follow from the
following lemma, which is essentially a result in R

n\R
n−1.

Lemma 8.5 Let L = − divA∇ be a uniformly elliptic operator on �S := ρ−1
S (�).

Assume that the coefficients A can be decomposed as A = B + C where

(|t∇B| + |C|)1suppφ ∈ C MRn\Rn−1(M), (8.6)

where φ = �S ◦ ρS is as above. Then for any solution v of Lv = 0 in ρ−1
S (�) that

satisfies ‖v‖L∞ ≤ 1, there holds

¨
Rn\Rn−1

|∇v|2 φ2|t | dtdy ≤ C(1 + M)σ (Q(S)), (8.7)

where C depends only on the dimension n, the elliptic constant CA, the AR constant
of ∂�, and the implicit constant in (8.4).

The proof of this lemma is similar to the proof of Lemma 7.9, except that there is no
need to invoke the CFMS estimates and A∞ as in Lemma 7.12, essentially because v

is bounded and we do not need information of v on the boundary. For the same reason,
with the properties of the cutoff function φ in mind, we can forget about the domain
�S, and in particular, we do not need the corkscrew and Harnack chain conditions in
the proof.
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Proof of Lemma 8.5 We can decompose φ = φ 1t>0 + φ 1t<0 := φ+ + φ− and prove
the result for each of the functions φ+ and φ−, and since the proof is the same in
both cases (up to a sign), we can restrain ourselves as in the proof of Lemma 7.9 to
the case where φ = φ1t>0. By an approximation argument as in Step 1 of the proof
of Lemma 7.9, we can assume that T := ˜

R
n+

|∇v|2 tφ2dydt is finite, and that φ is

compactly supported in � ∩ R
n+. We first assume that B has the special structure that

Bni = 0 for all 1 ≤ i ≤ n − 1, Bnn = b. (8.8)

Then for any f ∈ W 1,2
0 (Rn+),

¨ B
b

∇ f · ∇t dydt =
¨

∂t f dydt = 0. (8.9)

Using ellipticity of A and boundedness of b, we write

T ≤ C2
A

¨ A
b

∇v · ∇v φ2t dydt

= C2
A
{¨

A∇v · ∇
(

vφ2b−1t
)

dydt −
¨

A∇v · ∇
(

φ2b−1
)

vt dydt

−
¨

A∇v · ∇t vφ2b−1dydt
}

= −C2
A
{¨

A∇v · ∇
(

φ2b−1
)

vt dydt +
¨

A∇v · ∇t vφ2b−1dydt
}

=: −C2
A (T1 + T2)

since Lv = 0. We write T1 as

T1 = 2
¨

A∇v · ∇φ φb−1vt dydt −
¨

A∇v · ∇b φ2b−2vt dydt =: T11 − T12.

By Cauchy–Schwarz and Young’s inequalities, as well as the boundedness of v and
b,

|T11| ≤ C−2
A
6

T + C
¨

|∇φ|2 t dydt, |T12| ≤ C−2
A
8

T + C
¨

|∇b|2 tφ2dtdy.

So (8.4) and (8.6), as well as (8.3) give that

|T1| ≤ C2
A
4

T + C�(Q(S))n−1.

For T2, we write

T2 = 1

2

¨ A
b

∇
(

v2φ2
)

· ∇t dydt −
¨ A

b
∇φ · ∇t v2φ dydt
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= 1

2

¨ C
b
∇
(

v2φ2
)

· ∇t dydt −
¨ A

b
∇φ · ∇t v2φ dydt =: T21 + T22

by writing A = B + C and applying (8.9). For T21, we use Cauchy–Schwarz and
Young’s inequalities, and get

|T21| ≤
∣
∣
∣
∣

¨
C∇v · ∇t vφ2b−1dydt

∣
∣
∣
∣
+ 2

∣
∣
∣
∣

¨
C∇φ · ∇t v2φb−1dydt

∣
∣
∣
∣

≤ C−2
A
4

T + C
¨

|C|2 φ2t−1dydt +
¨
∣
∣∇φ2
∣
∣ tdydt ≤ C−2

A
4

T + C�(Q(S))n−1

by the boundedness of v, (8.4), (8.6), and (8.3). The boundedness of the coefficients
and v implies that

|T22| ≤ C
¨

|∇φ| dydt ≤ C�(Q(S))n−1

by (8.4). Altogether, we have obtained that T ≤ 1
2T + C�(Q(S))n−1, and thus the

desired estimate (8.7) follows.
We claim that the lemma reduces to the case when (8.8) holds by almost the same

argument as in Steps 2 and 3 in the proof of Lemma 7.9. That is, we can assume
that
∥
∥
∣
∣∇yB
∣
∣ t
∥
∥∞ � CA

N with N to be chosen to be sufficiently large, and then we do
a change of variables, which produces the structure (8.8) in the conjugate operator.
The only difference from the proof of Lemma 7.9 is that now we need to choose
v = −B3/b in the bi-Lipschitz map ρ defined in (7.27) because we want B3 +bv = 0
in (7.33). We leave the details to the reader. ��

9 The converse

In this section, we show that (v) �⇒ (i) in Theorem 1.12, that is, we establish that
under certain conditions on the domain � and the operator L, the Carleson condition
(1.14) on the Green function implies that ∂� is uniformly rectifiable. More precisely,
we prove the following.

Theorem 9.1 Let � be a 1-sided Chord-Arc Domain (bounded or unbounded) and
let L = − divA∇ be a uniformly elliptic operator which satisfies the weak DKP
condition with constant M ∈ (0,∞) on �. Let X0 ∈ �, and when � is unbounded,

X0 can be ∞. We write G X0 for the Green function of L with pole at X0. Suppose that
there exists C ∈ (0,∞) and β > 0 such that for all balls B centered at the boundary
and such that X0 /∈ 2B, we have

¨
�∩B

∣
∣
∣
∣

∇G X0

G X0
− ∇Dβ

Dβ

∣
∣
∣
∣

2

Dβ d X ≤ Cσ(B ∩ ∂�). (9.2)

Then ∂� is uniformly rectifiable.
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Green functions and smooth distances 2711

In [30, Theorem 7.1], uniform rectifiability is obtained from some weak condition
on the Green function, namely, G∞ being prevalently close to Dβ. Following [30], we
say that G∞ is prevalently close to Dβ if for each choice of ε > 0 and M ≥ 1, the set
GG Dβ (ε, M) of pairs (x, r) ∈ ∂� × (0,∞) such that there exists a positive constant
c > 0, with

∣
∣Dβ(X) − c G∞(X)

∣
∣ ≤ εr for X ∈ � ∩ B(x, Mr),

is Carleson-prevalent.

Definition 9.3 (Carleson-prevalent) We say that G ⊂ ∂� × (0,∞) is a Carleson-
prevalent set if there exists a constant C ≥ 0 such that for every x ∈ ∂� and r > 0,

ˆ
y∈∂�∩B(x,r)

ˆ
0<t<r

1Gc (y, t)
dσ(y)dt

t
≤ C rn−1.

One could say that our condition (9.2) is stronger thanG∞ being prevalently close to
Dβ, and so the theorem follows from [30]. But actually, it is not so easy to link the two
conditions directly. Nonetheless, we can use Chebyshev’s inequality to derive a weak
condition from (9.2), which can be used as a replacement of G∞ being prevalently
close to Dβ in the proof.

We will soon see that the condition on the operator in Theorem 9.1 can be relaxed.
Again following [30], given an elliptic operator L = − divA∇, we say that L is
locally sufficiently close to a constant coefficient elliptic operator if for every choice
of τ > 0 and K ≥ 1, Gcc(τ, K ) is a Carleson prevalent set, where Gcc(τ, K ) is the
set of pairs (x, r) ∈ ∂� × (0,∞) such that there is a constant matrix A0 = A0(x, r)

such that

¨
X∈WK (x,r)

|A(X) − A0| d X ≤ τrn,

where

WK (x, r) =
{

X ∈ � ∩ B(x, Kr) : dist(X , ∂�) ≥ K −1r
}

. (9.4)

We will actually prove Theorem 9.1 for elliptic operators L that are sufficiently close
locally to a constant coefficient elliptic operator.

The first step of derivingweak conditions from the strong conditions on the operator
and G∞ is the observation that for any integrable function F, if there is a constant
C ∈ (0,∞) such that

¨
B(x,r)∩�

|F(Y )| dY ≤ C rn−1 for x ∈ ∂�, r > 0,
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2712 J. Feneuil et al.

then for any K ≥ 1,

ˆ
y∈B(x,r)∩∂�

ˆ
0<t<r

−−
ˆ̂

WK (y,t)
|F(Y )| dY dt dσ(y) ≤ C K n−1rn−1 (9.5)

for x ∈ ∂�, r > 0. This follows immediately from Fubini’s theorem and the fact that
WK (x, r) defined in (9.4) is a Whitney region which is away from the boundary.

Lemma 9.6 (1) Let L = − divA∇ be a uniformly elliptic operator which satisfies the
weak DKP condition with constant M ∈ (0,∞) on �. Then L is locally sufficiently
close to a constant coefficient elliptic operator.

(2) If G X0 satisfies (9.2) for all B centered at the boundary and such that X0 /∈ 2B,

then for every choice of ε > 0 and K ≥ 1, the set

GX0(ε, K ) :=
{

(x, r) ∈ ∂� × (0,∞) : X0 /∈ B(x, 2Kr) and

¨
WK (x,r)

∣
∣
∣
∣
∇ ln

(
G X0

Dβ

(X)

)∣
∣
∣
∣

2

Dβ(X)d X ≤ ε rn−1
}

(9.7)

is Carleson-prevalent.

Proof Both results follow from the previous observation (9.5) and Chebyshev’s
inequality. In fact, for (1), we have A = B + C such that for any x ∈ ∂� and
r > 0,

ˆ
y∈B(x,r)∩�

ˆ
0<t<r

−−
ˆ̂

WK (y,t)

(

|∇B|2 δ + |C|2 1
δ

)

dY dt dσ(y) ≤ M K n−1rn−1.

(9.8)

By the Poincaré inequality, the left-hand side is bounded from below by

c
ˆ

y∈B(x,r)∩�

ˆ
0<t<r

−−
ˆ̂

WK (y,t)

(∣
∣B − (B)WK (y,t)

∣
∣
2 + |C|2

)

dY (K t)−1dt dσ(y)

≥ c

2

ˆ
y∈B(x,r)∩�

ˆ
0<t<r

−−
ˆ̂

WK (y,t)

(∣
∣A − (B)WK (y,t)

∣
∣
2
)

dY (K t)−1dt dσ(y)

≥ c

2

τ

K n+1

ˆ
y∈B(x,r)∩�

ˆ
0<t<r

1Gcc(τ,K )c (y, t)
dt dσ(y)

t
,

where we have used the fact that (B)WK (y,t) is a constant matrix and the definition of
the set Gcc(τ, K ). Combining with (9.8), we have that

ˆ
y∈B(x,r)∩�

ˆ
0<t<r

1Gcc(τ,K )c (y, t)
dt dσ(y)

t
≤ C M K 2n

τ
rn−1,

which proves (1).
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Now we justify (2). Let ε > 0, K ≥ 1 and X0 ∈ � be fixed, and let B be a ball of
radius r centered at the boundary. Our goal is to show that

ˆ
y∈B∩∂�

ˆ
0<t<r

1GX0 (ε,K )c (y, t)
dt dσ(y)

t
≤ Cε,K σ(B ∩ ∂�).

We discuss two cases. If X0 /∈ 4K B, then since G X0 satisfies (9.2) for the ball 2K B,

we have that

ˆ
y∈B∩∂�

ˆ
0<t<r

−−
ˆ̂

WK (y,t)

∣
∣
∣
∣
∇ ln

(
G X0

Dβ

)

(Y )

∣
∣
∣
∣

2

Dβ(Y )dY dtdσ(y) ≤ C K n−1rn−1.

Notice that the assumption X0 /∈ 4K B guarantees that X0 /∈ B(y, 2K t) for all
y ∈ B ∩ ∂� and 0 < t < r . Therefore, if (y, t) ∈ GX0(ε, K )c, then

¨
WK (y,t)

∣
∣
∣
∣
∇ ln

(
G X0

Dβ

)

(Y )

∣
∣
∣
∣

2

Dβ(Y )dY > ε rn−1.

From this, it follows that

ˆ
y∈B∩∂�

ˆ
0<t<r

1GX0 (ε,K )c (y, t)
dt dσ(y)

t
≤ C K 2n−1

ε
σ (B ∩ ∂�). (9.9)

Now let us deal with the case where X0 ∈ 4K B. For x ∈ B ∩ ∂�, we define
Bx := B(x, |x − X0|/20K ). Since {Bx }x∈B covers B ∩ ∂�, we can find a non-
overlapping subcollection {Bi }i∈I such that {5Bi }i∈I covers B ∩ ∂�. We write ri > 0
for the radius of Bi and we define

S := (B ∩ ∂�) × (0, r)\
⋃

i∈I

(5Bi ∩ ∂�) × (0, 5ri )

We have

ˆ
y∈B∩∂�

ˆ
0<t<r

1GX0 (ε,K )c (y, t)
dt dσ(y)

t

≤
∑

i∈I

ˆ
y∈5Bi ∩∂�

ˆ
0<t<5ri

1GX0 (ε,K )c(y, t)
dt dσ(y)

t

+
¨

S
1GX0 (ε,K )c (y, t)

dt dσ(y)

t
=: T1 + T2.

Since X0 /∈ 20K Bi , we can apply (9.9), and we have

T1 ≤ CK ,ε

∑

i∈I

σ(5Bi ∩ ∂�) �
∑

i∈I

σ(Bi ∩ ∂�) ≤ σ(2B ∩ ∂�) � σ(B ∩ ∂�),
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2714 J. Feneuil et al.

because {Bi } is a non-overlapping and included in 2B. It remains to prove a similar
bound on T2. Remark first that

S ⊂ {(y, t) ∈ ∂� × (0, r) : |y − X0|/100K < t},

and therefore

T2 ≤
ˆ r

0

ˆ
y∈B(X0,100K t)∩∂�

dσ(y) dt

t
≤ C K n−1rn−1 � σ(B ∩ ∂�).

The lemma follows. ��
Before we continue, we need to adapt Theorem 2.19 in [30] to our situation, that is

we want to construct a positive solution in a domain which is the limit of a sequence
of domains.

Lemma 9.10 Let �k be a sequence of 1-sided Chord-Arc domains in R
n with uniform

1-sided CAD constants. Let ∂�k be its Ahlfors regular boundary equipped with an
Ahlfors regular measure σk (such that the constant in (1.1) is uniform in k).

Assume that 0 ∈ ∂�k and diam�k ≥ 2k . Moreover, assume that the ∂�k and �k

converges to E∞ and �∞ locally in the Hausdorff distance, that is, for any j ∈ N,

we have

lim
k→∞ d0,2 j (E∞, ∂�k) = 0 and lim

k→∞ d0,2 j (�∞,�k) = 0.

Here, for a couple of sets (E, F), we define the Hausdorff distance

d0,2 j (E, F) := sup
x∈E∩B(0,2 j )

dist(x, F) + sup
y∈F∩B(0,2 j )

dist(y, E).

Then E∞ = ∂�∞, E∞ is an unbounded (n − 1)-Ahlfors regular set, �∞ is a 1-sided
Chord-Arc Domain. Moreover, if the Radon measure σ is any weak-* limit of the σk,

then σ is an Ahlfors regular measure on E∞ = ∂�∞.

Let Y0 be a corkscrew point of �∞ for the boundary point 0 at the scale 1. If
Lk = − div Ak∇ and L∞ = − div A∞∇ are operators—in �k and �∞ respectively—
that satisfies

lim
k→∞ ‖Ak − A∞‖L1(B) = 0 for any ball B such that 2B ⊂ �∞,

and if uk are positive solutions in �k ∩ B(0, 2k+1) to Lkuk = 0 with Tr uk = 0
on ∂�k ∩ B(0, 2k+1), then the sequence of functions vk := uk/uk(Y0) converges,
uniformly on every compact subset of �∞, and in W 1,2

loc (�∞), to G∞, the unique
Green function with pole at infinity which verifies G∞(Y0) = 1.

Proof The geometric properties of E∞ and�∞ can be derived verbatim as in the proof
of Theorem 2.19 in [30]. The uniform convergence of a subsequence of vk on any
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Green functions and smooth distances 2715

compact set K � �∞ follows from the standard argument of uniform boundedness of
{vk} on K , and Hölder continuity of solutions. The Caccioppoli inequality would give
the weak convergence of another subsequence of vk to some v∞ in W 1,2

loc (�∞). This

is enough to show that v∞ ∈ W 1,2
loc (�∞) ∩ C(�∞) is a weak solution of L∞v∞ = 0

in �∞, as we can write

¨
�∞

A∞∇v∞ · ∇ϕd X =
¨

�∞
A∞(∇v∞ − ∇vk) · ∇ϕ d X

+
¨

�∞
(A∞ − Ak)∇vk · ∇ϕ d X

for every ϕ ∈ C∞
0 (�∞) and any k sufficiently big so that suppϕ ⊂ �k ∩ B(0, 2k+1).

Therefore, v∞ = G∞ is the Green function with pole at infinity for L∞ in �∞ and
normalized so that G∞(Y0) = 1.

That vk converges to G∞ (strongly) in W 1,2
loc (�∞) needs more work, but we can

directly copy the proof of Lemma 2.29 in [30]. Roughly speaking, for any fixed ball
B with 4B ⊂ �, we would need to introduce an intermediate function Vk, which
satisfies Lk Vk = 0 in Bρ for some ρ ∈ (r , 2r), and Vk = vk on the sphere ∂ Bρ. We
refer the readers to [19] for the details. ��

We shall need the following result on the compactness of closed sets, which has
been proved in [20].

Lemma 9.11 [20, Lemma 8.2] Let
{

E j
}

be a sequence of non-empty closed subsets
of R

n, and suppose that there exists an r > 0 such that E j ∩ B(0, r) �= ∅ for all j .
Then there is a subsequence of

{

E j
}

that converges to a nonempty closed subset E of
R

n locally in the Hausdorff distance.

Now we are ready to prove the main theorem of this section.

Proof of Theorem 9.1 We prove that ∂� is uniformly rectifiable by showing that �ext
satisfies the corkscrew condition (see Lemma 2.13). Following the proof of Theo-
rem 7.1 in [30], it suffices to show that the set GC B(c) is Carleson-prevalent for some
c > 0, where GC B(c) is the set of pairs (x, r) ∈ ∂� × (0,∞) such that we can find
Z1, Z2 ∈ B(x, r), that lie in different connected components of R

n\∂�, and such
that dist(Zi , ∂�) ≥ cr for i = 1, 2. To do that, we will rely on the fact that, on
1-sided CAD domains, if the elliptic measure is comparable to the surface measure,
then the complement �ext satisfies the corkscrew condition, which is implied by the
main result of [38].

Thanks to Lemma 9.6, for each choice of ε > 0 and M ≥ 1, the sets GX0(ε, M)

and Gcc(ε, M) are Carleson-prevalent. So it suffices to show that

GX0(ε, M) ∩ Gcc(ε, M) ⊂ GC B(c) for some c > 0, ε > 0, and M ≥ 1.

(9.12)

We prove by contradiction. Assume that (9.12) is false, then for ck = εk = M−1
k =

2−k, we can find a 1-sided NTA domain �k bounded by an Ahlfors regular set ∂�k,
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2716 J. Feneuil et al.

a point Xk ∈ �k (or Xk ∈ �k ∪ {∞} when � is unbounded), an elliptic operator
Lk = − divAk∇ that is locally sufficiently close to a constant coefficient elliptic
operator, and a pair (xk, rk) ∈ ∂�k × (0,∞) for which

(xk, rk) ∈ GXk (εk, Mk) ∩ Gcc(εk, Mk)\GC B(ck).

By translation and dilation invariance, we can assume that xk = 0 and rk = 1.
Notice that (0, 1) ∈ GXk (εk, Mk) implies that Xk /∈ B(0, 2k), and in particular,
diam(�k) ≥ 2k, and Xk tends to infinity as k → ∞.

By Lemma 9.11, we can extract a subsequence so that �k converges to a limit �∞.

ByLemma 9.10,�∞ is 1-sidedNTA, ∂�k converges to ∂�∞ which is Ahlfors regular.
Moreover, by Lemma 9.11, we can extract a further subsequence so that the Ahlfors
regular measure σk given on ∂�k converges weakly to an Ahlfors regular measure σ.

Since (0, 1) ∈ Gcc(2−k, 2k), Ak converges to some constant matrix A0 in L1
loc(�∞).

Choose a corkscrew point Y0 ∈ �∞ for some ball B0 centered on ∂�∞, and let
Gk = G Xk

k be the Green function for Lk in �k, normalized so that Gk(Y0) = 1.
Since Lk Gk = 0 in �k ∩ B(0, 2k), Lemma 9.10 asserts that Gk converges to the
Green function G = G∞∞ with pole at infinity for the constant-coefficient operator
L0 = − divA0∇, uniformly on compact sets of�∞, and in W 1,2

loc (�∞). Since σk⇀σ,

Dk = Dβ,σk converges to D = Dβ,σ uniformly on compact sets of �∞, and so does
∇Dk to ∇D. Since (0, 1) ∈ GXk (2−k, 2k),

¨
W2k (0,1)

∣
∣
∣
∣

∇Gk

Gk
− ∇Dk

Dk

∣
∣
∣
∣

2

Dk(X)d X ≤ 2−k for all k ∈ Z+, (9.13)

where W2k (0, 1) is the Whitney region defined as in (9.4) for �k . Fix any compact set
K � �∞. We claim that

lim
k→∞

¨
K

∣
∣
∣
∣

∇Gk

Gk
− ∇Dk

Dk

∣
∣
∣
∣

2

Dk(X)d X =
¨

K

∣
∣
∣
∣

∇G

G
− ∇D

D

∣
∣
∣
∣

2

D(X)d X . (9.14)

In fact, since G is a positive solution of L0G = 0 in�∞ with G(Y0) = 1, the Harnack
inequality implies that G ≥ c0 on K for some c0 > 0. Then the uniform convergence

of Gk to G on K implies that for k large enough,
{

G−1
k

}

is uniformly bounded on K ,

and so G−1
k converges uniformly to G−1 on K . Then (9.14) follows from the fact that

∇Gk converges to ∇G in L2(K ), the uniform convergence of G−1
k to G−1 on K , and

the uniform convergences of ∇Dk and D−1
k to ∇D and D−1.

Now by (9.13) and (9.14), we get that

¨
K

∣
∣
∣
∣
∇ ln

(
G

D

)

(X)

∣
∣
∣
∣

2

D(X)d X = 0,

and so G = C Dβ,σ in �∞. We can copy the proof of Theorem 7.1 of [30] verba-
tim from now on to conclude that this leads to a contradiction. Roughly speaking,
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Fig. 1 The domain �

G = C Dβ,σ would imply that the elliptic measure ω∞ for L0, with a pole at ∞,

is comparable to Hn−1
|∂�∞ . Then by [38] Theorem 1.6 one can conclude that ∂�∞

is uniformly rectifiable, and hence R
n\�∞ satisfies the corkscrew condition, which

contradicts the assumption that (0, 1) = (xk, rk) /∈ GC B(ck). ��

10 Assuming that Ä is semi-uniform is not sufficient

In this subsection, we will give an example of a domain where the harmonic measure
on ∂� is A∞-absolutely continuous with respect to the (n−1)-dimensional Hausdorff
measure, but where Theorem 1.12 fails. It is known that the harmonic measure is A∞-
absolute continuous with respect to the surface measure whenever the domain � is
semi-uniform and its boundary is (n−1)-Ahlfors regular and uniformly rectifiable (see
[2, Theorem III]). The notion of semi-uniform domain is given by the next definition.

Definition 10.1 (Semi-uniform domains) We say that � is semi-uniform if it satisfies
the corkscrew condition and (see Definition 2.8) if for every � ≥ 1, there exists
C� > 0 such that for any ρ > 1 and every pair of points (X , x) ∈ � × ∂� such that
|X − x | < �ρ, there exists a Harnack chain of length bounded by C� linking X to
one of the corkscrew points for x at scale ρ.

Semi-uniformdomainswerefirst introducedbyAikawaandHirata in [7] using cigar
curves. The two definitions of semi-uniform domains are known to be equivalent, see
for instance, [2, Theorem 2.3].

Our counterexample is constructed in R
2 for simplicity but can easily be extended

to any dimension.
Our domain (see Fig. 1) will be

� := R
2\
⋃

k∈Z

{

(x, t) ∈ R
2, |x − 2k| + |t | <

1

2

}

.

Note that ∂� is uniformly rectifiable, but the domain contains two parts (� ∩ R
2+ and

� ∩ R
2−) which are not well connected to each other, that is, this domain does not

satisfy the Harnack Chain Condition (see Definition 2.9). We let the reader check that
the domain is still semi-uniform.
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2718 J. Feneuil et al.

Due to the lack of Harnack chains, the space � does not have a unique—up to
constant—Green function with pole at ∞. If we take the pole at t → −∞, then we
can construct a positive function G which will be bounded on � ∩ R

2+, and we shall
prove that this is incompatible with our estimate (1.17) that says that ∂t G

G is “close” to
1
t when t is large enough.

10.1 Construction of G

The goal now will be to construct a positive function in�,which is morally the Green
function with pole at t = −∞. We could have used the usual approach, that is taking
the limit when n goes to infinity of—for instance—G(X , Xn)/G(X0, Xn) in the right
sense, where G is the Green function on � for the Laplacian, and Xn := (1, n).

However, the authors had difficulty proving the 2-periodicity in x of the limit and
didn’t know where to find the right properties in the literature (as our domains are
unbounded). So we decided to make the construction from scratch.

We want to work with the Sobolev space

W =
{

u ∈ W 1,2
loc (�), u(x, t) = u(x + 2, t), u(−x, t) = u(x, t) for (x, t) ∈ �,¨

S0
|∇u(x, t)|2dx dt < +∞

}

.

Here and in the sequel Sk is the strip � ∩
(

[k, k + 1) × R

)

. Note that due to the

2-periodicity in x and the symmetry, the function u ∈ W is defined on R
2 as soon as

u is defined on any of the sets Sk . We will also need

W + := {u|�∩R2+, u ∈ W } and W0 := {u ∈ W , Tr(u) = 0 on ∂�}.

We let the reader check that the quantity

‖u‖W :=
(¨

S0
|∇u(x, t)|2dx dt

) 1
2

is a norm on the space W0, and the couple (W0, ‖.‖W ) is a Hilbert space.
The bilinear form

a(u, v) :=
¨

S0
∇u · ∇v dt dx

is continuous and coercive on W0, so for any k ∈ N, there exists G̃k ∈ W0 such that

a(G̃k, v) =
¨

S0
∇G̃k · ∇v dx dt = 2−k

ˆ 1

0

ˆ −2k

−2k+1
v(x, t) dt dx for v ∈ W0.

(10.2)
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The first key observation is:

Proposition 10.3 G̃k ∈ W0 is a positive weak solution to −�u = 0 in �∩{t > −2k}.
Proof The fact that G̃k is nonnegative is a classical result that relies on the fact that
u ∈ W0 �⇒ |u| ∈ W0 and the bilinear form a(u, v) is coercive. See for instance
[22], (10.18)–(10.20).

In order to prove that G̃k is a solution in � ∩ {t > −2k}, take φ ∈ C∞
0 (� ∩ {t >

−2k}). For j ∈ Z, let φ j be the only symmetric and 2-periodic function in x such that
φ j = φ on S j . Observe that φ j is necessary continuous, and so φ j lies in W0. Thus

¨
�

∇G̃k · ∇φ dx dt =
∑

j∈Z

¨
S j

∇G̃k · ∇φ dx dt =
∑

j∈Z

¨
S j

∇G̃k · ∇φ j dx dt

=
∑

j∈Z

¨
S0

∇G̃k · ∇φ j dx dt = 0

by (10.2), since φ j = φ ≡ 0 on {t ≤ −2k} for all j ∈ Z.

Since G̃k is a solution,which is nonnegative and not identically equal to 0 (otherwise
(10.2)would be false), theHarnack inequality (Lemma2.15) entails that G̃k is positive.
The proposition follows. ��

Let X0 := (1, 0) ∈ �. From the above proposition, G̃k(X0) > 0 so we can define

Gk(X) := G̃k(X)

G̃k(X0)
. (10.4)

Proposition 10.5 For each k ∈ N, the function Gk(X) ∈ W0 is a positive weak solution
to −�u = 0 in � ∩ {t > −2k}. Moreover, we have the following properties:
(i) for any compact set K � �, there exists k := k(K ) and C := C(K ) such that

G j (X) ≤ CK for all j ≥ k and X ∈ K and {G j } j≥k is equicontinuous on K ;
(ii) there exists C > 0 such that

¨
�∩([−2,2]×[−1,1])

|∇Gk(x, t)|2dx dt ≤ C for all k ∈ N;

(iii) there exists C > 0 such that

‖Gk‖2W+ :=
¨

S0∩R2+
|∇Gk |2dx dt ≤ C for all k ∈ N.

Proof The fact that Gk is a positive weak solution is given by Proposition 10.3. So it
remains to prove (i), (ii) and (iii).
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We start with (i). Since Gk is a weak solution in �0 := � ∩ [(−4, 4) × (−2, 2)]
when k ≥ 1, and since �0 is a Chord Arc Domain, we can invoke the classical elliptic
theory and we can show that there exists C > 0 such that

sup
�∩([−2,2]×[−1,1])

Gk ≤ CGk(1, 0) = C for all k ≥ 1,

see for instance Lemma 15.14 in [24]. By the 2-periodicity of Gk, it means that

sup
k≥1

sup
�∩(R×[−1,1])

Gk ≤ C,

and then since we can link any point of a compact K � � back to � ∩ (R × [−1, 1])
with a Harnack chain (the length of the chain depends on K ), we have

sup
j≥k

sup
K

G j ≤ CK ,

whenever G j is a solution in the interior of K , which is bound to happen if j ≥ k(K )

is large enough.
The functions Gk are also Hölder continuous up to the boundary in the areas where

they are solutions, so {G j } j≥k is equicontinuous on K as long as k is large enough so
that K ⊂ � ∩ {t > −2k

}

.

Point (ii) is a consequence of the Caccioppoli inequality at the boundary. We only
need to prove the boundwhen k ≥ 2, since all theGk are already inW0 by construction.
We have by the Caccioppoli inequality at the boundary (see for instance Lemma 11.15
in [24]) that

¨
�∩([−2,2]×[−1,1])

|∇Gk(x, t)|2dx dt �
¨

�∩([−4,4]×[−2,2])
|Gk(x, t)|2dx dt

� sup
�∩([−4,4]×[−2,2])

|Gk(x, t)|2 � 1.

Point (iii) is one of our key arguments. We define W +
0 as the subspace of W + that

contained the functions with zero trace on ∂(� ∩ R
2+).

Since Gk ∈ W0, its restriction (Gk)|�∩R2+ is of course in W +. Moreover, Gk is

a solution to −�u = 0 in � ∩ R
2+. We can invoke the uniqueness in Lax–Milgram

theorem (see Lemma 12.2 in [24], but adapted to our periodic function spaces W +
0

and W +) to get that Gk is the only weak solution to −�u = 0 in � ∩ R
2+ for which

the trace on ∂(� ∩ R
2+) is (Gk)|∂(�∩R2+). Moreover,

‖Gk‖W+ ≤ C‖(Gk)|∂(�∩R2+)‖H1/2
∂�+

,

123



Green functions and smooth distances 2721

where H1/2
∂�+ is the space of traces on ∂�+ := ∂(�∩R

2+) for the symmetric 2-periodic
functions defined as

H1/2
∂�+ :=

{

f : ∂�+ �→ R measurable s.t. f is symmetric & 2-periodic in x,

and ‖ f ‖
H1/2

∂�+
:=
(ˆ

∂�+∩S0

ˆ
∂�+∩S0

| f (x) − f (y)|2
|x − y|3/2 dH1(x) dH1(y)

) 1
2

< +∞
}

.

So in particular, we have by a classical argument that

‖(Gk)|∂(�∩R2+)‖2H1/2
∂�+

≤ C
¨

�∩([−2,2]×[−1,1])
|∇Gk(x, t)|2dx dt .

We conclude that

¨
S0∩R2+

|∇Gk |2dx dt �
¨

�∩([−2,2]×[−1,1])
|∇Gk(x, t)|2dx dt � 1

by (ii). Point (iii) follows. ��
Proposition 10.6 There exists a symmetric (in x), 2-periodic (in x), positive weak
solution G ∈ W 1,2

loc (�) ∩ C(�) to −�G = 0 in � such that G = 0 on ∂� and
G(X0) = 1 and

¨
S0∩R2+

|∇G|2dx dt < +∞. (10.7)

Proof We invoke theArzelà–Ascoli theorem—whose conditions are satisfied thanks to
Proposition 10.5(i)—to extract a subsequence of Gk that converges uniformly on any
compact to a continuous functionG.The factG is non-negative, symmetric, 2-periodic,
and satisfies G(X0) = 1 is immediate from the fact that all the Gk are already like
this. The functions Gk converge to G in W 1,2

loc (�) thanks to the Caccioppoli inequality,

and then by using the weak convergence of Gk to G in W 1,2
loc (�), we can easily prove

that G is a solution to −�u = 0 in � (hence G is positive by the Harnack inequality,
since it was already non-negative). The convergence of Gk to G in W 1,2

loc (�) also allow
the uniform bound on ‖Gk‖W+ given by Proposition 10.5(iii) to be transmitted to G,

hence (10.7) holds. The proposition follows. ��

10.2 G fails the estimate given in Theorem 1.12

Lemma 10.8 ∂t G is harmonic in �, that is, it is a solution of −�u = 0 in �, and we
have

ˆ ∞

1

ˆ 1

0
|∇∂t G|2dx dt < +∞.
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Proof Morally, we want to prove that if G is a solution (to −�u = 0), then ∇G ∈
W 1,2, which is a fairly classical regularity result. The difficulty in our case is that the
domain in consideration is unbounded.

Since G is a harmonic function (solution of the Laplacian), the function g(x) :=
G(x, 1) is smooth. We can prove the bound

ˆ ∞

1

ˆ 1

0
|∇∂x G|2dx dt �

ˆ 1

0
|g′(x)|2dx +

ˆ 1

0
|g′′(x)|2dx

+
ˆ ∞

1

ˆ 1

0
|∇G|2dx dt < +∞

by adapting the proof of Proposition 7.3 in [26] to our simpler context (and invoking
(10.7) and g ∈ C∞(R) to have the finiteness of the considered quantities). In order to
have the derivative on the t-derivative, it is then enough to observe

ˆ ∞

1

ˆ 1

0
|∇∂t G|2dx dt �

ˆ ∞

1

ˆ 1

0
|∂x∂t G|2dx dt +

ˆ ∞

1

ˆ 1

0
|∂t∂t G|2dx dt

=
ˆ ∞

1

ˆ 1

0
|∂t∂x G|2dx dt +

ˆ ∞

1

ˆ 1

0
|∂x∂x G|2dx dt

�
ˆ ∞

1

ˆ 1

0
|∇∂x G|2dx dt < +∞,

where we use the fact that G is a solution to −�u = 0—i.e. ∂t∂t G = −∂x∂x G—for
the second line. The lemma follows. ��

We will also need a maximum principle, given by

Lemma 10.9 If u is a symmetric (in x), 2-periodic (in x) harmonic function in R ×
(t0,∞) that satisfies

ˆ ∞

t0

ˆ 1

0
|∇u|2dx dt < +∞, (10.10)

then u has a trace—denoted by Trt0 u—on R × {t0} and

inf
y∈(0,1)

(Trt0 u)(y) ≤ u(x, t) ≤ sup
y∈(0,1)

(Trt0 u)(y) for all x ∈ R, t > t0.

Proof The existence if the trace—in the spaceW 2, 12 (R×{t0})—iscommonknowledge.
The proof of Lemma 12.8 in [24] (for instance) can be easily adapted to prove our
case. ��
Lemma 10.11 There exists C ≥ 1 such that

C−1 ≤ G(x, t) ≤ C for x ∈ R, t ≥ 1.
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Proof SinceG(1, 0) = G(X0) = 1 andG is a positive solution, theHarnack inequality
implies that C−1 ≤ G(x, 1) ≤ C for x ∈ [0, 1]. Since G is symmetric and 2-periodic
in x, we have C−1 ≤ G(x, 1) ≤ C for x ∈ R. We conclude with the maximum
principle (Lemma 10.9), since the bound (10.10) is given by (10.7). ��
Lemma 10.12 For every c > 0, there exists t0 ≥ 1 such that

∂t G(x, t) ≤ c

t
for all x ∈ R, t ≥ t0.

Proof Let x be fixed. SinceG is symmetric and 2-periodic in x,we can assumewithout
loss of generality that x ∈ (0, 1). Then recall that ∂t G is a weak solution in �, so in
particular, we have the Moser estimate and the Caccioppoli inequality, which give

sup
y∈R, s>4

s|∂t G(y, s)| � sup
y∈R, s>4

s

( 2s

s/2

 x+s

x−s
|∇G(z, r)|2dz dr

) 1
2

� sup
y∈R, s>1

G � 1. (10.13)

by Lemma 10.11. Moreover, ∂t G is Hölder continuous, that is,

sup
y∈(0,1)

|∂t G(x, t) − ∂t G(y, t)| ≤ Ct−α

( (1+t)/2

(1−t)/2

 3t/2

t/2
|∂t G(y, s)|2 dsdy

)1/2

≤ Ct−α sup
y∈R, s>t/2

|∂t G(y, s)| ≤ C ′t−α−1 for t ≥ 8 (10.14)

by (10.13).
We pick t0 ≥ 8 such that 2C ′(t0)−α ≤ c. Assume by contradiction that there exist

x ∈ (0, 1) and t ≥ t0 such that ∂t G(x, t) ≥ c/t, then

inf
y∈R ∂t G(y, t) = inf

y∈(0,1)
∂t G(y, t) ≥ ∂t G(x, t) − sup

y∈(0,1)
|∂t G(x, t) − ∂t G(y, t)|

≥ c − C ′t−α

t
≥ c

2t

by our choice of t0. Since ∂t G is a solution that satisfies (10.10)—see Lemma 10.8—
the maximum principle given by Lemma 10.9 entails that

∂t G(y, s) ≥ c

2t
for y ∈ R, s > t,

which implies

ˆ 1

0

ˆ ∞

t
|∇G(y, s)|2ds dy = +∞,
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which is in contradiction with (10.7).We conclude that for every x ∈ (0, 1) and t ≥ t0,
we necessary have ∂t G ≤ c/t . The lemma follows. ��
Lemma 10.15 For any β > 0, there exist t0 ≥ 1 and ε > 0 such that

∣
∣
∣
∣

∂t G(x, t)

G(x, t)
− ∂t Dβ(x, t)

Dβ(x, t)

∣
∣
∣
∣
≥ ε

t
for x ∈ R, t ≥ t0. (10.16)

Proof The set ∂� is (n − 1)-Ahlfors regular, so (1.4) gives the equivalence Dβ(X) ≈
dist(X , ∂�) for X ∈ �, and hence the existence of C1 > 0 (depending on β and n)

such that

(C1)
−1t ≤ Dβ(x, t) ≤ C1Dβ+2(x, t) ≤ (C1)

2t for x ∈ R, t ≥ 1. (10.17)

Check then that

∂t Dβ(x, t) = d + β

β
D1+β

β (x, t)
ˆ

(y,s)∈∂�

|(x, t) − (y, s)|−d−β−2(t − s) dσ(y, s)

In particular, since s ≤ 1
2 whenever (y, s) ∈ ∂�, we have, for (x, t) ∈ R × [1,∞),

that

∂t Dβ(x, t)

≥
(

t − 1

2

)n + β − 1

β
D1+β

β (x, t)
ˆ

(y,s)∈∂�

|(x, t) − (y, s)|−n−β−1 dσ(y, s)

≥ t

2

n + β − 1

β
D1+β

β (x, t)D−β−2
β+2 (x, t) ≥ cβ,n

for some cβ,n > 0, by (10.17). In conclusion, using (10.17) again, we have the
existence of c1 > 0 such that

∂t Dβ(x, t)

Dβ(x, t)
≥ c1

t
for x ∈ R, t ≥ 1. (10.18)

LetC2 be the constant in Lemma 10.11. Thanks to Lemma 10.12, there exists t0 ≥ 1
such that ∂t G(x, t) ≤ c1/(2C2t) for any x ∈ R and t ≥ t0, which means that

∂t G(x, t)

G(x, t)
≤ c1

2t
for x ∈ R, t ≥ t0. (10.19)

The combination of (10.18) and (10.19) gives (10.16) for ε = c1/2. ��
Lemma 10.20 The positive solution G does not satisfy (1.13), proving that assuming
that � is semi-uniform is not sufficient for Theorem 1.12.
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Proof Let Br be the ball of radius r centered at (0, 1
2 ) ∈ ∂�, and take r ≥ 2t0, where

t0 ≥ 1 is the value from Lemma 10.15. We have

¨
�∩Br

∣
∣
∣
∣

∇G

G
− ∇Dβ

Dβ

∣
∣
∣
∣

2

Dβ dx dt ≥
¨

Br ∩{t≥t0}

∣
∣
∣
∣

∇G

G
− ∇Dβ

Dβ

∣
∣
∣
∣

2

Dβ dx dt

≥ C−1ε2
¨

Br ∩{t≥t0}
dx dt

t

by (10.16) and (1.4). We conclude that

1

σ(Br )

¨
�∩Br

∣
∣
∣
∣

∇G

G
− ∇Dβ

Dβ

∣
∣
∣
∣

2

Dβ dx dt � ln
( r

t0

)

→ +∞ as r → ∞,

which means that G does not satisfy (1.13). The lemma follows. ��
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