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Abstract

In the present paper, we show that for an optimal class of elliptic operators with
non-smooth coefficients on a 1-sided Chord-Arc domain, the boundary of the domain
is uniformly rectifiable if and only if the Green function G behaves like a distance

function to the boundary, in the sense that VGG(%) — VD[&);) ‘2 D(X)dX is the density
of a Carleson measure, where D is aregularized distance adapted to the boundary of the
domain. The main ingredient in our proof is a corona decomposition that is compatible
with Tolsa’s e-number of uniformly rectifiable sets. We believe that the method can
be applied to many other problems at the intersection of PDE and geometric measure
theory, and in particular, we are able to derive a generalization of the classical F. and

M. Riesz theorem to the same class of elliptic operators as above.
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1 Introduction
1.1 Motivation and predecessors

We consider elliptic operators L on a domain 2 C R”. In recent years a finale of an
enormous body of work brought a characterization of uniform rectifiability in terms
of absolute continuity of harmonic measure (see [4], a sample of earlier articles: [2,
6, 17, 34, 35, 39], see also the related article [48] which proves the David-Semmes
conjecture in codimension 1 and is a key step for the converse established in [6]). It also
became clear that this characterization has its restrictions, for it fails in the domains
with lower dimensional boundaries and it requires, in all directions, restrictions on the
coefficients—see a discussion in [30]. In these contexts, the Green function emerged
as a more suitable object to define the relevant PDE properties. Already the work in [1]
and [30] suggested a possibility of a Green function characterization of the regularity of
sets. However, factually, [30] provided more than satisfactory “free boundary” results
and only weak “direct” results (no norm control). The papers [25, 27, 28] aimed at
the desired quantitative version of such “direct” results but were restricted to either
Lipschitz graphs or sets with lower dimensional boundaries. The primary goal of the
article is to show that if L is reasonably well-behaved, and 2 provides some access
to its boundary, then the boundary of €2 is reasonably regular (uniformly rectifiable)
if and only if the Green function behaves like a distance to the boundary.
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Green functions and smooth distances 2639

Let us discuss some predecessors of this work, including the aforementioned ones,
in more details. In [1, Theorem VI], it is shown that the affine deviation of the Green
function for the Laplace operator is related to the linear deviation of the boundary of
the domain. In [30], David and Mayboroda show that for a class of elliptic operators,
the Green function can be well approximated by distances to planes, or by a smooth
distance to 92, if and only a2 is uniformly rectifiable. The bounds on the Green
function given in [30] are weak, more precisely, they carry no norm control of the
sets where the Green function is close to a distance. Later, stronger and quantitative
estimates on the comparison of the Green function and some distance functions are
obtained in [25, 27, 28]. In [27], a quantitative comparison between the Green function
and the distance function to the boundary is given for an optimal class of elliptic
operators on the upper half-space. Moreover, the proximity of the Green function
and the distance function is shown to be precisely controlled by the oscillation of
the coefficients of the operator. Next, [28] extends the result of [27] to R"\R? with
d strictly less than n. But the methods employed in [27, 28] seem to the authors
difficult to be adapted to domains whose boundaries are rougher than Lipschitz graphs.
In [25], a bound for the difference of the Green function and smooth distances is
obtained for sets with uniformly rectifiable boundaries, but its proof, which might
appear surprising, is radically dependent on the fact that the boundary is of codimension
strictly larger than 1. Also, the class of operators considered in [25] is not optimal. So
the instant motivation for the present work is to obtain a strong estimate on the Green
function for an optimal class of operators, similar to the one considered in [27], in a
“classical” setting: on domains with uniformly rectifiable boundaries of codimension
1. The method employed here is completely different from [25] or [27], and has the
potential to be applicable to many other problems at the intersection of PDE and
geometric measure theory.

We should also mention that in [27, 40], some Carleson measure estimates on the
second derivatives of the Green function have been obtained, and thatin [1], the second
derivative of the Green function for the Laplace operator is linked to the regularity
(uniform rectifiability) of the boundary of the domain. However, the result of [1] is
only for the Laplace operator, the class of elliptic operators considered in [40] is
more general but still not optimal, and the estimates obtained in [27] are restricted to
Lipschitz graph domains. We think our estimates might shed some light on proving
an estimate on second derivatives of the Green function for an optimal class of elliptic
operators on chord-arc domains.

For the “free boundary” direction, since the weak type property of the Green func-
tion considered in [30] already implies uniform rectifiability, one expects the strong
estimate on the Green function that we consider in this paper to automatically give
uniform rectifiability. However, linking the two conditions directly seems to be more
subtle than it might appear, and we actually need to obtain uniform rectifiability from
scratch. We point out that our result also holds for bounded domains, and thus dis-
pensing with the unboundedness assumption on the domain in [30].

All in all, this paper is a culmination of all of the aforementioned efforts, featuring
a true equivalence (characterization) of geometry through PDEs, and an optimal class
of operators.
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1.2 Statements of the main results

We take a domain 2 C R” whose boundary 9€2 is (n — 1)-Ahlfors regular (AR for
shortness), which means that there exists a measure o supported on €2 such that

ol <o (B(x,r) < Cor"™ ! forx €99, r € (0,diam Q). (1.1)

The domain €2 can be bounded or unbounded. In the unbounded case, diam 2 = oo. In
the rest of the paper, o will always be an Ahlfors regular measure on 9<2. It is known
that the Ahlfors regular measures are the ones that can be writtenasdo = wdH"! lag,
where H" ! |5 is the n — 1 dimensional Hausdorff measure on 92, and w is a weight
in L0, H" '5q) such that C~! < w < C for some constant C > 0.

We shall impose more assumptions on our domain. For both the “free boundary”
and the “direct” results, we will assume that 2 is a 1-sided Chord Arc Domain (see
Definition 2.11). For the “direct” result, we will rely on the assumption that 92 is
uniformly rectifiable (see [18, 19] and Sect. 3 below), and thus ultimately assuming
that € is a (2-sided) Chord Arc Domain. The optimality of the assumptions on €2 is
discussed in more detail at the end of this subsection. Since the dimension n — 1 plays
an important role in our paper, and in order to lighten the notion, we shall write d for
n—1.

Without any more delay, let us introduce the regularized distance to a set d€2. The
Euclidean distance to the boundary is denoted by

8(X) := dist(X, 99). (1.2)

For 8 > 0, we define

~1/8
Dg(X) := (/m |X — y|dﬁda(y)) for X € Q. (1.3)

The fact that the set €2 is d-Ahlfors regular is enough to have that
C’l(S(X)gD,g(X) < Cé(X) forX € Q, 1.4)
where the constant depends on Cy, 8, and n. The proof is easy and can be found after
Lemma 5.1 in [23].
The notion of Carleson measure will be central all over our paper. We say that a

quantity f defined on 2 satisfies the Carleson measure condition—or f € CMq(M)
for short—if there exists M such that for any x € 92 and r < diam(£2),

// IfF(X)P8(X) " dXx < Mt (1.5)
B(x,r)NQ

Our operators are in the form L = — div . AV and defined on Q. We shall always
assume that they are uniformly elliptic and bounded, that is, there exists C 4 > 1 such
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that
AX)E - = C g1 for X € Q, & eR", (1.6)

and
JAXE - ¢| < Caléllg] forX € Q, &, €R" (1.7

A weak solutionto Lu = 0in E C Q lies in Wllo’c2 (E) and is such that
/ AVu -VodX =0 forg € Cj°(E). (1.8)
Q

If © has sufficient access to the boundary (and €2 is (n — 1)-Ahlfors regular), then
for any ball B centered on 92 and any function u in W'2(B N ), we have notion of
trace for u on BN Itis well known thatif u € W12(B N Q) is such that Tr(x) = 0
on BNAJ<2, and if u is a weak solution to Lu = 0 on BN 2 with L satisfying (1.6) and
(1.7), then u is continuous B N €2 and can be continuously extended by 0 on B N 9d<2.

Inadditionto (1.6) and (1.7), we assume that our operators satisfy a weaker variant of
the Dahlberg—Kenig—Pipher condition. The Dahlberg—Kenig—Pipher (DKP) condition
was introduced by Dahlberg and shown to be sufficient for the L? solvability of the
Dirichlet problem for some p > 1 by Kenig and Pipher ([44]). It was also shown to be
essentially necessary in [10, 45]. The DKP condition says that the coefficient matrix
A satisfies

3() sup |VA| € CMq(M) forsome M < co. (1.9)
B(-,5()/2)

Our assumption, slightly weaker than the classical DKP, is as follows.

Definition 1.10 (Weak DKP condition) An elliptic operator L = — div AV is said to
satisfy the weak DKP condition with constant M on €2 if there exists a decomposition
A = B+ C such that

[8VB| +|C| € CMq(M). (1.11)

Obviously, this condition is weaker than (1.9): it allows for small Carleson per-
turbations and carries no supremum over the Whitney cubes. Moreover, we show in
Lemma 2.1 that the weak DKP condition self improves.

We are now ready for the statement of our main result.

Theorem1.12 Let B > 0, Q C R” be a 1-sided Chord-Arc Domain, and L =
—div AV be a uniformly elliptic operator—i.e., that verifies (1.6) and (1.7)—which
satisfies the weak DKP condition with constant M on Q. We write GX° for the Green
function of L with pole at X. The following are equivalent:

(i) Qis a Chord-Arc Domain,
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2642 J. Feneuil et al.

(ii) 0S2 is uniformly rectifiable,
(iii) there exists C € (0, 00) such that for any ball B centered on the boundary, and
for any positive weak solution u to Lu = 0 in 2B N Q for which Tru = 0 on

2B N 02, we have
I

@iv) there exists C € (0, 00) such that for any Xo € 2 and for any ball B centered on
the boundary satisfying Xo ¢ 2B, we have

[

(v) there exist Xo € Q and C € (0, 00) such that for any ball B centered on the
boundary that satisfies Xy ¢ 2B, we have (1.14).

2

Vu VDg
DgdX < Co(B), (1.13)

u Dg

2

VGXo  VDg
- DgdX < Co(B), (1.14)

GXo Dg

Moreover, the constants C in (1.13)—(1.14) can be chosen to depend only on C 4, M,
the CAD constants of 2, B, and n.

Remark 1.15 The bound (1.13) is a local one, meaning for instance that the bound
will hold with a constant C independent of B and the solution u as long as € is
chord-arc locally in 2B (that is, we only need the existence of Harnack chains and of
corkscrew points in 2B N ) and the uniformly elliptic operator L satisfies the weak
DKP condition in 2B.

The equivalence (i) <= (ii) is already well known, see Theorem 1.2 in [5].
Moreover, (iii) = (iv) = (v) is immediate. So we need only to prove
(i) = (iii) and (v) = (i) in Theorem 1.12.

When the domain is unbounded, we can use the Green function with pole at infinity
instead of the Green function. The Green function with pole at infinity associated to
L is the unique (up to a multiplicative constant) positive weak solution to Lu = 0
with zero trace. See for instance Lemma 6.5 in [21] for the construction ([21] treats a
particular case but the same argument works as long as we have CFMS estimates, see
Lemma 2.18 below). So we have that:

Corollary 1.16 Let 8, Q2 and L be as in Theorem 1.12. If Q is unbounded, the following
are equivalent:

(a) Qis a Chord-Arc Domain,
(b) 9K is uniformly rectifiable,
(c) there exists C € (0, 00) such that for any ball B centered on the boundary, we

have
1.,

2

VG® VD
—~_ — ZE pgax < co(B), (1.17)

G Dg
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For our proof of the “direct” result, we need the fact that, for the same operators,
the L-elliptic measure is Aso-absolutely continuous with respect to o.

Theorem 1.18 Let Q2 be a Chord-Arc Domain, and let L = — div AV be a uniformly
elliptic operator—i.e., that verifies (1.6) and (1.7)—which satisfies the weak DKP
condition with constant M on Q.

Then the L-elliptic measure w;, € Ax(0), i.e. there exists C,0 > 0 such that
given an arbitrary surface ball A = B N3, with B = B(x,r),x € 02,0 <r <
diam(0K2), and for every Borel set F C A, we have that

o(F) -
o(A)

XA o
c (oX>(P)) . (1.19)
where X  is a corkscrew point relative to A (see Definition 2.8).
The constants C and 6—that are called the intrinsic constants in w;, € Aso(0)—
depend only on C o, M, the CAD constants of 2, and n.

The above is known for operators satisfying the DKP condition (1.9) on Chord-Arc
domains. In fact, it is shown in [44] that w;, € A (o) for DKP operators on Lipschitz
domains. But since the DKP condition is preserved in subdomains, and the Chord-
Arc domains are well approximated by Lipschitz subdomains [17], the Ao, property
can be passed from Lipschitz subdomains to Chord-Arc domains (see [42], or [38]).
Moreover, combined with the stability of the A, property under Carleson perturbation
of elliptic operators proved in [13], it is also known for the elliptic operators L =
—div AV for which A = B+ C, where

sup {|§VB|+|C]} € CMq(M) forsome M < oo. (1.20)
B(-,8()/2)

However, to the best of our knowledge, the Ay-absolute continuity of the elliptic
measure was not proved explicitly for elliptic operators satisfying the slightly weaker
condition (1.11).

We obtain Theorem 1.18 as a consequence of the following result—which is another
contribution of the article—and Theorem 1.1 in [13].

Theorem 1.21 Let 2 be a domain in R" with uniformly rectifiable (UR) boundary of
dimension n — 1. Let L be a uniformly elliptic operator which satisfies the weak DKP
condition with constant M on 2. Suppose that u is a bounded solution of Lu = 0 in
Q. Then for any ball B centered on the boundary, we have

// IVu(X)? 8(X)dX < C [[ullfo (g o (BN IKQ). (1.22)
QNB

where the constant C depends only on n, M, and the UR constants of 0S2.

Notice that in this theorem, we completely dispense with the Harnack chain and
corkscrew conditions (see Definitions 2.8 and 2.9) for the domain. Previously, an
analogous result was obtained for bounded harmonic functions in [36] (see also [33]
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2644 J. Feneuil et al.

for the converse) and for DKP operators in [37, Theorem 7.5]. The result for elliptic
operators which satisfy the weak DKP condition is again not explicitly written any-
where. However, slightly changing the proofs of a combination of papers would give
the result. For instance, we can adapt Theorem 1.32 in [23] to the codimension 1 case
to prove Theorem 1.18 in the flat case, then extending it to Lipschitz graph by using
the change of variable in [44], and finally proving Theorem 1.18 for all complements
of uniformly rectifiable domains by invoking Theorem 1.19 (iii) in [37]).

Here, we claim that we can directly demonstrate Theorem 1.21 using a strategy
similar to our proof of Theorem 1.12. In Sect. 8, we explain how to modify the proof of
Theorem 1.12 to obtain Theorem 1.21. By [13] Theorem 1.1, assuming that 2is 1-sided
CAD, the estimate (1.22) implies that w; € A (o), and therefore our Theorem 1.18
follows from Theorem 1.21. Note that the bound (1.19) is a characterization of A,
see for instance Theorem 1.4.13 in [43].

Let us discuss in more details our assumptions for Theorem 1.12. In order to get the
bound (1.13), we strongly require that the boundary 92 is uniformly rectifiable and
that the operator L satisfies the weak DKP condition. We even conjecture that those
conditions are necessary, that is, if Q2 is not uniformly rectifiable, then the bound
(1.13) holds for none of the weak DKP operators.

The corkscrew condition and the Harnack chain condition (see Definitions 2.8
and 2.9) are only needed for the proof of Lemma 7.12—where we used the comparison
principle—and for the implication (iii) == (i) in Theorem 1.12. However, since
most of our intermediate results can be proved without those conditions and could
be of interest in other situations where the Harnack chain is not assumed (like—
for instance—to prove Theorem 1.21), we avoided to use the existence of Harnack
chains and of corkscrew points in all the proofs and the intermediate results except for
Lemma 7.12 and in Sect. 9, even if it occasionally slightly complicated the arguments.

These observations naturally lead to the question about the optimality of our con-
ditions on €2, and more precisely, whether we can obtain the estimate (1.13) assuming
only uniform rectifiability. The answer is no, as we can construct a domain €2 which has
uniformly rectifiable boundary but is only semi-uniform (see Definition 10.1) where
(1.13) fails. More precisely, we prove in Sect. 10 that:

Proposition 1.23 There exists a semi-uniform domain 2 and a positive harmonic func-
tion G on 2 such that (1.13) is false.

But of course, assuming €2 is a Chord-Arc Domain is not necessary for (1.13) since
(1.13) obviously holds when @ = R"\R"*~! = R% U R, because we can apply
Theorem 1.12 to both 4 =R, and Q_ = R” and then sum.

1.3 Main steps of the proof of (ii) = (iii)

In this section, we present the outline of the proof of (il) = (iii) in Theorem 1.12.
More exactly, this subsection aims to link the results of all other sections of the paper
in order to provide the proof.

The approach developed in this article is new and it is interesting by itself, because it
gives an alternative to proofs that use projection and extrapolation of measures. Aside
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from Theorems 1.12 and 1.21, we claim that our approach can be used to obtain a third
proof of the main result from [29, 31], which establishes the A,-absolute continuity
of the harmonic measure when €2 is the complement of a uniformly rectifiable set of
low dimension and L is a properly chosen degenerate operator.

Let © and L be as in the assumptions of Theorem 1.12, and let 5 and C denote the
matrices in (1.11). Take B := B(xg, r) to be a ball centered at the boundary, that is
xo € 02, and then a non-negative weak solution # to Lu = 0 in 2B N 2 such that
Tr(u) =0on BNaS2.

Step 1: From balls to dyadic cubes. We construct a dyadic collection Dyq of
pseudo-cubes in €2 in the beginning of Sect. 3, and a collection of Whitney regions
Wa(Q), W (Q) associated to O € Dyg in the beginning Sect. 4. We claim that (1.13)
is implied by the following estimate that uses dyadic cubes

Vu VDgl|?
=Y // 2T 5dX < Co (o) (1.24)
0D M Wa@) | 4 Dp
0CQo

for any cube Q¢ € Dyq satisfying Qo C %B N a2 and £(Qgp) < 278 1t follows
from the definition of W§,(Q) (4.5) that

W&(0) C Z—‘B for Q C Qo (1.25)

and Qo as above.

We take {Qf)} C Djgq as the collection of dyadic cubes that intersect B N 92 and
such that 2777 < Z(Qé) <278 Thereisa uniformly bounded number of them, each
of them satisfies Qf) C %B N 2 and E(Qf)) < 278 and altogether, they verify

BNQC{XeB, §X)> Z_Qr}U(U U WQ(Q)).
I Q0eDyo(0h)

The estimate (1.13) follows by applying (1.24) to each Qf)—using (1.4) and (1.1)
when needed—and (1.26) below to {X € B, §(X) > 27r}.

Step 2: Bound on a Whitney region. In this step, we establish thatif £ C %B is such
that diam(E) < K§(E), then

i = [

We could use Lemma 7.9 to prove this, but it would be like using a road roller to crack
a nutshell, because it is actually easy. We first separate

JES//E 28L17X+//E

Vu VDgl|?
u

s§dX < Cgs(E)" . (1.26)
Dg

o 5dX = JL+ J2.
u

VD/g
Dg

@ Springer



2646 J. Feneuil et al.

We start with /2. Observe that [V[D,”]| < (d+B) Dy 7, s |VD—L;ﬁ| < 5~ by (1.4).

We deduce that Jb% < |E|8(E)~! < 8(E)"! as desired. As for Jé, we construct

15
E* = (X € Q.dist(X, E) < 6(E)/100) C = B.

and then the Harnack inequality (Lemma 2.15) and the Caccioppoli inequality
(Lemma 2.14) yield that

JE < 5(E)(supu)—2// |Vu?dX < S(E)_l(supu)_z// u’dX
E* E E* *
< 8(E)'E*| S8BT

The bound (1.26) follows.

Step 3: Corona decomposition. Let Qg as in Step 1. One can see that we cannot apply
(1.26) toeach E = Wgq(Q) and still hope to get the bound (1.24) for 7. We have to use
(1.26) with parsimony. We first use a corona decomposition of Dyq(Qp), and we let
the stopping time region stop whenever o ( Q) or the angle between the approximating
planes are too big. We choose 0 < €] < €9 <« 1 and Lemma 3.16 provides a first
partition of Dyg into bad cubes B and good cubes G and then a partition of G into a
collection of coherent regimes {S}scs.

Let B(Qp) := BN Dye(Qp) and then S(Qp) = {S N Dyu(Qo)}. Observe that
S(Qo) contains the collection of S € G such that Q(S) C Qg and maybe one extra
element, in the case where Q¢ ¢ B U (Jscs Q(S), which is the intersection with
Dy (Qo) of the coherent regime S € & that contains Q. In any case G(Qp) is a
collection of (stopping time) coherent regimes. In addition, Lemma 3.16 shows that
& (Qo) and B(Qy) verifies the Carleson packing condition

Y @+ Y o(Q(S) = Co(Qo). (1.27)
0eB(Qo) SeB(Qo)

We use this corona decomposition to decompose the sum 7 from (1.24) as

Yu VDg|?
1=y // _”—D—ﬂ sdX
0eB(Qy) W/ Wa(@ 1 ¥ f
Vu VDg|?
- // ——hlsax=n+ Y s (28)
SeG(0p) W WaS) | 1 B Se&(Qo)

where Wq (S) = UQGS Wa(Q). For each cube Q € B(Qy), the regions Wq(Q) are

included in %B and verify diam(Wq(Q)) < 85§(Wq(Q)) < 8£(Q), so we can use
(1.26) and we obtain

ns Y, «) " $oQo). (1.29)
QeB(Qo)
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by (1.1) and (1.27).

Step 4: How to turn the estimation of /s into a problem on R’ . Now, we take
S in 6(Qp), which is nice because 92 is well approximated by a small Lipschitz
graph I's around any dyadic cube of S (see Sect. 3.4 for the construction of I's).
For instance, fattened versions of our Whitney regions W (Q), Q € S, are Whitney
regions in R"\I's (see Lemma 4.13). More importantly, at any scale Q € S, the local
Wasserstein distance between o and the Hausdorff measure of I's is bounded by the
local Wasserstein distance between o and the best approximating plane, which means
that I' s approximate d<2 better (or at least not much worse) than the best plane around
any Q € S. Up to our knowledge, it is the first time that such a property on I's is
established. It morally means that Dg(X) will be well approximated by

_1
B

Dp.s(X) = ( /F X - y|—d—ﬂdH"—1<y>)
S

whenever X € Xq(S), and that the error can be bounded in terms of the Tolsa’s
a-numbers.

Nevertheless, what we truly want is the fact €2 is well approximated by a plane—
instead of a Lipschitz graph—from the standpoint of any X € Wq(S), because in
this case we can use Lemma 7.9. Yet, despite this slight disagreement, I's is much
better than a random uniformly rectifiable set, because I's is the image of a plane P
by a bi-Lipschitz map. So we construct a bi-Lipschitz map ps : R" — R” that of
course maps a plane to I's, but which also provides an explicit map from any point
X in Wgq(S) to a plane A(/og1 (X)) that well approximates I's—hence d<2—from the
viewpoint of X. So morally, we constructed ps such that we have a function

X > dist(X, Alpg (X))

which, when X € Wq(S5), is a good approximation of

_1
B

Dp.s(X) = ( /F X - yrd—ﬂdH"—l(y))
S

in terms of the Tolsa’s a-numbers.
We combine the two approximations to prove (see Lemma 6.30, which is a conse-
quence of Corollary 5.52 and our construction of pg) that for O € S

2

N _ (X)
VDsX) o5 0 5(X)dX < Clags(Q)o (0.

Dg(X)  dist(X, A(pg (X))
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where ¥ — Npgl x) (Y) is the gradient of the distance to A(,ogl (X)). And since the
ag,5(Q) satisfies the Carleson packing condition, see Lemma 5.31, we deduce that

Is <205+ C Y laep(Q)%0(Q) < 215+ Co(Q(S)) (1.30)
QeS
where
I .—// R
S Mwae | w o distX, Alog ' (X))

We are left with 1 fs We make the change of variable (p, t) = pgl (X) in the integral
defining /g and we obtain that

o // (Vwops(p.t) __ Npalostpt)  [o
s p5'Wa@) | uop(p. ) dist(ps(p, 1), A(p, 1)) ’
x det (Jac(p, 1)) dt dp
2

|t] dt dp,

_ 2// ’V (uops(p,1)  Jac(p,t)Np:(ps(p. 1))
 Wpgtwasy | uop(p,t) dist(ps(p. 1), A(p. 1))

where Jac(p, t) is the Jacobian matrix of ps, which is close to the identity by
Lemma 6.8. We have also used that § o ps(p,t) ~ t since §(X) ~ dist(X,'s)
on Wq(S) and the bi-Lipschitz map ,ogl preserves this equivalence. Even if the term

Jac(p, t)Np . (ps(p, 1))
dist(ps(p, t), A(p, 1))

looks bad, all the quantities inside are constructed by hand, and of course, we made
them so that they are close to the quotient Vd—‘ip, where dp is the distance to a plane
that depends only on S. With our change of variable, we even made it so that P =

R*~1 x {0}, that is Vd—dp” = %. Long story short, Lemma 6.32 gives that

I5 < 415 +0(Q(S) (1.31)
where
Vo  Vvt]?
Ig::// X lt|dtdp, v =uo ps.
p I (WaS) |V

Step 5: Conclusion on /s using the flat case. It is easy to see from the definition that
Chord-Arc Domains are preserved by bi-Lipschitz change of variable, and the new
CAD constants depends only on the old ones and the Lipschitz constants of the bi-
Lipschitz map. Since the bi-Lipschitz constants of pg is less than 2 (and so uniform in
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S), we deduce that pgl (R2) is a Chord-Arc Domain with CAD constants that depends
only on the CAD constants of 2.

Then, in Sect. 4, we constructed a cut-off function Ws adapted to W (S). We have
shown in Lemma 4.20 that Ws is 1 on Wq(S) and supported in W (S), on which we
still have §(X) =~ dist(X, I's). In Lemma 4.28, we proved that the support of VWg is
small, in the sense that implies Lsypp vwg € CMgq. What is important is that those two
properties are preserved by bi-Lipschitz change of variable, and thus Ws o ps is as in
Definition 7.1.

We want the support of Wso ps to be included in a ball Bs such that 2 Bs is a subset
of our initial ball B, and such that the radius of Bgs is smaller than C¢(Q(S)). But
those facts are an easy consequence of (1.25) and the definition of Wg(S) (and the
fact that pg is bi-Lipschitz with the Lipschitz constant close to 1).

We also want u o pgs to be a solution of Ls(u o ps) = 0 for a weak-DKP operator
Ls. The operator Ls is not exactly weak-DKP everywhere in pgl (€2), but it is the
case on the support of W (see Lemma 6.20), which is one condition that we need for
applying Lemma 7.9.

To apply Lemma 7.9—or more precisely for Lemma 7.12, where one term from
the integration by parts argument is treated—we need to show that wy+ € Axo(0).
This is a consequence of Theorem 1.18. Indeed, since the adjoint operator L* is also
a weak DKP operator on 2, Theorem 1.18 asserts that w;» € A (o), where o is an
Ahlfors regular measure on 9<2. A direct computation shows that for any set £ C 92
and any Xg € €2,

—1
(Xo0) _
o (051 (B)) = 02,

and since the mapping pg is bi-Lipschitz, w;+« € Ao (o) implies that the Lg—elliptic
measure wpx € Axo(c), where & is an Ahlfors regular measure on the boundary
of pgl (£2). Moreover, the intrinsic constants in wry € A (d) depend only on the
intrinsic constants in wy+ € Ax(0) because the bi-Lipschitz constants of pg are
bounded uniformly in S.

All those verification made sure that we can apply Lemma 7.9, which entails that

2
// )| 0P8 VU g6 ps)di dp
L(Wa(S) uops f
<L) Lo (0(S). (1.32)

Let us mention that the proof of Lemma 7.9 relies on an argument that was previously
used—up to the authors’ knowledge—only in [25], which treats the cases where €2
is the complement of a low dimensional set. But even so, we also had to develop the
technique presented in [32] to be able to treat the full class the weak-DKP operators.

Step 6: Gathering of the estimates. We let the reader check that (1.27)—(1.32) implies
(1.24), and enjoy the end of the sketch of the proof!
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1.4 Organisation of the paper

In Sect. 2, we present the exact statement on our assumptions on 2, and we give the
elliptic theory that will be needed in Sect. 7.

Sections 3—7 proved the implication (ii) == (iii) in Theorem 1.12. Section 3
introduces the reader to the uniform rectifiability and present the corona decomposition
that will be needed. The corona decomposition gives a collection of (stopping time)
coherent regimes {S}a. From Sects. 3.4t0 6, S € G is fixed. We construct in Sect. 3.4
a set I's which is the graph of a Lipschitz function with small Lipschitz constant.

Section 4 associate a “Whitney” region Wq(S) to the coherent regime S so that
from the stand point of each point of Wq(S), I's and 92 are well approximated by
the same planes.

In Sect. 5, we are applying the result from Sect. 4 to compare Dg with the distance
to a plane that approximate I's.

Section 6 constructs a bi-Lipschitz change of variable pg that flattens I's, and we
use the results from Sects. 4 and 5 in order to estimate the difference

V[Dgops] Vit
Dg o ps t

in terms of Carleson measure. Sections 3 to 6 are our arguments for the geometric side
of the problem, in particular, the solutions to Lu = 0 are barely mentioned (just to
explain the effect of pson L).

Section 7 can be read independently and will contain our argument for the PDE
side of the problem. Morally speaking, it proves Theorem 1.12 (ii)) = (iii) when
Q=R}.

Section 8 presents a sketch of proof of Theorem 1.21. The strategy is similar to
our proof of Theorem 1.12, and in particular, many of the constructions and notations
from Sects. 3 to 7 are adopted in Sect. 8. But since we do not need to deal with the
regularized distance Dg, the proof is much shorter.

Section 9 tackles the converse implication, proving (v) = (i) in Theorem 1.12.
The proof adapts an argument of [30], which states that if G is sufficiently close to
Dg, then 92 is uniformly rectifiable. As mentioned earlier, we unfortunately did not
succeed to link our strong estimate (1.14) directly to the weak ones assumed in [30],
which explains why we needed to rewrite the argument.

We finish with Sect. 10, where we construct a semi-uniform domain and a positive
harmonic solution on it for which our estimate (1.13) is false.

2 Miscellaneous
2.1 Self improvement of the Carleson condition on A

Lemma 2.1 Let A be a uniformly elliptic matrix on a domain 2, i.e. a matrix function
that satisfies (1.6) and (1.7) with constant C 4. Assume that A can be decomposed as
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A = B+ Cwhere

[6VB| 4+ |C| € CMq(M). 2.2)
Then there exists another decomposition A = B+ C such that

18VB| + |C| € CMa(CM) 2.3)

with a constant C > O that depends only on n, and B satisfies (1.6) and (1.7) with the
same constant C 4 as A. In addition,

I5VB| < CC.4. (2.4)
Proof Let A = B + C as in the assumption of the lemma. Let 6 € C3°(R") be a

nonnegative function such that suppf C B(0, %), JJgn (X)dX = 1. Construct
Ox(Y) 1= 8(X)™"6(5 ) and then

B(X) :=/ AY)0x(Y)dY and C:=A—B. (2.5)
Rn

We see that B is an average of A, so B verifies (1.6) and (1.7) with the same constant
as A. So it remains to prove (2.3) and (2.4). Observe that

VxOx(Y) = —nd(X)™"~ ]VS(X)9<Y X)—(S(X)”](VH)(u)
3(X) 3(X)
—5(X) " 2VS(X)(Y — X) - (V@)(Y X)
3(X)

Let ®(Z) denote Z6(Z), thendiv®(Z) =nb(Z) + Z - VO(Z). So

S(X)Vx0x(Y) = —8(X)™" (V@)( X) —8(X)T"V§(X)(div @)( X)

5(X) 8(X)

From here, one easily sees that |§(X)Vx0x (Y)] is bounded by C8(X) ™" uniformly in
X and Y, and thus

8(X)VB(X)| < ]f[ JA(Y)|dY < Ca,
BOX6(X)/2)
which proves (2.4). Set ©x (Y) = 8(X)~ "®( S(X)) Then

S(X)Vx0x(Y) = =8(X)VyOx(Y) — §(X)VS(X) divy ©x(Y).
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As a consequence,

S(X)VE(X)z// B+O)(Y)s(X)VxOx(Y)dY
R7
:8(X)// VB(Y)Qx(Y)dY+5(X)V5(X)// VBY)-0Ox(Y)dY
R® R

+ / CY) [8(X) Vb (Y)]dY.
Rﬂ
We deduce that

8(X)VBX)| 5]5[ @IVBM)| + C)) dY,
B(X,8(X)/10)

and so the fact that |§VB| 4+ |C|] € CMgq(M) is transmitted to SVB, ie. 8VB €
CMa(CM).
As for C, since [[ 6x(Y)dY = 1, we have

|5(X)| = ‘/}R{n (AY) — AX)Ox(Y)dY
= //R,,('B(Y) — BOXO| + (V)| + [C(X)x (Y) dY

S 1CX)] +]§[ (IB(Y) = B(X)| + [C(Y)) dY. (2.6)
B(X,8(X)/10)

By Fubini’s theorem, to show that @ € CMq(CM), it suffices to show that for any
ball B centered on the boundary,

~ dzZ
// ]§[ GO dx 22 < cMo(B N o).
BNQM B(Z,8(2)/4) 3(2)

From this one sees that the terms on the right-hand side of (2.6) that involves C can
be easily controlled using |C| € CMq(M). So by the Cauchy—Schwarz inequality, it
suffices to control

dzZ
// ]5[ ]5[ IB(Y) — BX)2dydx 22 27)
7eBNQM XeB(Z,8(2)/4) M YeB(X,5(X)/10) 8(2)

Notice that for all X € B(Z, §(Z)/4), B(X,5(X)/10) C B(Z,58(Z)/2), and thus

]f[ IB(Y) — BXOIPdY < ]f[ IB(Y) — B dY.
YeB(X,5(X)/10) YeB(Z,8(Z)/2)

@ Springer



Green functions and smooth distances 2653

Therefore,

dZ
27 < // ]5[ ]f[ IB(Y) — B(X)|?dYdX ——
zeBnQ ) XeB(2,5(2)/4) M YeB(Z,8(2)/2) 8(2)

< // ]5[ \VBX) 2 dX8(Z)dZ
ZeBNQJJ XeB(Z,56(2)/2)

S // IVB(X)|>8(X)dX < CMo (BN 3K)
Xe2BNQ

by the Poincaré€ inequality, Fubini’s theorem, and [§VB| € CMq(M). So again, the
Carleson bound on |§VB| + |C]| is given to C as well. The lemma follows. O

2.2 Definition of chord-arc domains

Definition 2.8 (Corkscrew condition, [42]) We say that a domain 2 C R” satisfies the
corkscrew condition with constant ¢ € (0, 1) if for every surface ball A := A(x, r),
with x € 0Q and 0 < r < diam(L2), there is a ball B(Xa, cr) C B(x,r) N Q. The
point XA C 2 is called a corkscrew point relative to A (or, for x at scale r).

Definition 2.9 (Harnack Chain condition, [42]) We say that 2 satisfies the Harnack
Chain condition with constants M, C > 1 if for every p > 0, A > 1, and every
pair of points X, X' € Q with §(X), §(X’) > pand |X — X'| < A p, there is a
chain of open balls By, ..., By C 2, N < M(1 +1logA), with X € By, X' € By,
By N Byy1 # ¥and C~!diam(By) < dist(By, 2) < C diam(By). The chain of balls
is called a Harnack Chain.

Definition 2.10 (1-Sided NTA and NTA) We say that a domain 2 is a /-sided NTA
domain with constants ¢, C, M if it satisfies the corkscrew condition with constant ¢
and Harnack Chain condition with constant M, C. Furthermore, we say that 2 is an
NTA domain if it is a 1-sided NTA domain and if, in addition, Qex = R” \§ also
satisfies the corkscrew condition.

Definition 2.11 (1-Sided CAD and CAD) A 1-sided chord-arc domain (1-sided CAD)
is a 1-sided NTA domain with AR boundary. The 1-sided NTA constants and the
AR constant are called the 1-sided CAD constants. A chord-arc domain (CAD, or
2-sided CAD) is an NTA domain with AR boundary. The 1-sided NTA constants, the
corkscrew constant for Qex¢, and the AR constant are called the CAD constants.

Uniform rectifiability (UR) is a quantitative version of rectifiability.

Definition 2.12 (UR) We say that E is uniformly rectifiable if E has big pieces of
Lipschitz images, that s, if E is (n — 1)-Ahlfors regular (1.1), and there exist8, M > 0
such that, for each x € E and r > 0, there is a Lipschitz mapping p from the ball
B,r) C R4 into R” such that p has Lipschitz norm < M and

o(ENB(x,r)N p(Bra(0,1))) > or.
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However, we shall not use the above definition. What we do require is the charac-
terization of UR by Tolsa’s a-numbers [50], as well as a modification of the corona
decomposition of uniformly rectifiable sets constructed in [18]. See Sect. 3 for details.
We shall also need the following result.

Lemma 2.13 Suppose that @ C R" is 1-sided chord-arc domain. Then the following
are equivalent:

(1) 0K is uniformly rectifiable.
(2) Qex satisfies the corkscrew condition, and hence, 2 is a chord-arc domain.

That (1) implies (2) was proved in [5]. That (2) implies (1) can be proved via the
Ao of harmonic measure (see [5, Theorem 1.2]), or directly as in [17].

2.3 Preliminary PDE estimates

Lemma 2.14 (The Caccioppoli inequality) Let L = — div AV be a uniformly elliptic
operator and u € W2(2B) be a solution of Lu = 0 in 2B, where B is a ball with
radius r. Then there exists C depending only on n and the ellipticity constant of L
such that

c
7[ IVu(X)|>dX < —2][ lu(X)|>dX.
JB r 2B

Lemma 2.15 (The Harnack inequality) Let L be as in Lemma 2.14 and let u be a
nonnegative solution of Lu = 0 in 2B C 2. Then there exists constant C > 1
depending only on n and the ellipticity constant of L such that

supu < Cinfu.
B B

Write L* for the transpose of L defined by L* = — div ATV, where AT denotes
the transpose matrix of A. Associated with L and L* one can respectively construct
the elliptic measures {a)f }xeq and {a)f* }xeq, and the Green functions G and G+
on domains with Ahlfors regular boundaries (cf. [40, 43]).

Lemma 2.16 (The Green function) Suppose that Q C R" is an open set such that
02 is Ahlfors regular. Given an elliptic operator L, there exists a unique Green
Junction G (X, Y) : x Q\ diag(2) — Rwith the following properties: GL(-,Y) €
Wli]’cz(Q\{Y}) N CQ\{Y}), GL(, Y)’BQ =0foranyY € Q, and LGL(-,Y) = 8y
in the weak sense in Q, that is,

// AX)VxGL(X,Y) - Vo(X)dX = ¢(Y), forany ¢ € C°(Q).
Q

In particular, G (-, Y) is a weak solution to LG (-, Y) = 0 in Q\{Y}. Moreover,

GL(X,Y)<C|X =Y forX,Y € Q,
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co|X =Y <GL(X,Y), ifIX Y| <6 dist(X,dR), 6 € (0, 1),
Gr(X,Y)>0, Gr.(X,Y)=G+(Y,X), forallX,Y e, X #N2.17)

The following lemma will be referred to as the CFMS estimates (cf. [11, 43] for
NTA domains, and [41] or [24] for 1-sided CAD).

Lemma 2.18 (The CFMS estimates) Let Q2 be a 1-sided CAD domain. Let L be an
elliptic operator satisfying (1.6) and (1.7). There exist C depending only on n, C 4,

and the 1-sided CAD constants, such that for any B := B(x,r), with x € 0L,
0 <r <diam(9Q) and A := A(x,r), we have the following properties.

(1) The elliptic measure is non-degenerate, that is
c'<wi*(n) < C.

(2) For X € Q\2 B we have
1
Ew{(A) <r"2GL(X, Xp) < Cof (A). (2.19)

3) If0<u,ve WZL’CZ(4 BN Q)N CHA BNQ) are two nontrivial weak solutions of
Lu=Lv=0in4BNQsuchthatu =v=0in4 A, then

_1u(Xa) _ u(X) _ M(XA),
v(Xa) T v(X) T v(Xa)

forall X € BN K.

3 Characterization of the uniform rectifiability

In all this section, we assume that 92 is uniformly rectifiable, and we plan to prove
a corona decomposition of the uniformly rectifiable set which is “Tolsa’s e-number
compatible”.

Instead of a long explanation of the section, which will not be helpful anyway to
any reader who is not already fully familiar with the corona decomposition (C3) in
[18] and the Tolsa or-number (see [50]), we shall only state below the results proved
in the section (the definition of all the notions and notation will be ultimately given in
the section below).

Lemma 3.1 Let 92 be a uniformly rectifiable set. Given any positive constants 0 <
€1 < €y < 1, there exists a disjoint decomposition Dyq = G U B such that

(1) The “good” cubes Q € G are such that a,(Q) < €| and

sup dist(y, Pp) + sup dist(p, 02) < €1£(Q). 3.2)
y€999A ¢ pePEN999B,
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(ii) The collection G of “good” cubes can be further subdivided into a disjoint family
g = US o S of coherent regimes such that for any S € &, there exists a
S
hyperplane P := Ps and a 2€y-Lipschitz function bs := b on P such that

/ dist(b(p), Pp)dp < CL(Q)o(Q)as(Q) for Q €S, (3.3)
PNI(2Bg)

where C depends only on n.
(iii) The cubes in B (the “bad” cubes) and the maximal cubes Q(S) satisfies the
Carleson packing condition

Yo @+ D 0(QS) = Cee0(Qo) forall Qo € Dyg. (3.4)
Qeb Ses
QCQo (S CQo
In the above lemma, o is the Ahlfors regular measure for 02 given in (1.1), Dy is
adyadic decomposition of 9€2, IT := I1g s the orthogonal projection on Ps, P is the
best approximating plane of €2 around Q, and «, is the Tolsa o-number for o. The
novelty, which is not similar to any of the corona decompositions that the authors are
aware of, is (3.3), which quantify the difference between 92 and the approximating
graph I's in terms of o-number. In a more “classical” corona decomposition, one
would have € instead of o, (Q) in (3.3).
Corona decompositions are a useful and popular tool in the recent literature per-
taining to uniformly rectifiable sets, see for instance [3, 4, 8,9, 12, 18, 33, 36, 46, 47]
to cite only a few.

3.1 Dyadic decomposition

We construct a dyadic system of pseudo-cubes on 9€2. In the presence of the Ahlfors
regularity property, such construction appeared for instance in [15, 16, 18] or [19].
We shall use the very nice construction of Christ [14], that allow to bypass the need
of a measure on 92. More exactly, one can check that the construction of the dyadic
sets by Christ to not require a measure, and as such are independent on the measure
on 92.

There exist a universal constant 0 < ag < 1 and a collection Dy = UgezDi of
Borel subsets of 32, with the following properties. We write

Dy = {0 CDyg : j € Tn),

where Jj denotes some index set depending on k, but sometimes, to lighten the nota-
tion, we shall forget about the indices and just write Q € Dy and refer to Q as a cube
(or pseudo-cube) of generation k. Such cubes enjoy the following properties:

() 9Q = u,-Q’; for any k € Z.

(ii) If m > k then either Q] < Q% or Q)" N Q% = 0.
(iii) Q"' N Q’j’? =0ifi # j.
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(iv) Each pseudo-cube Q € DD has a “center” xp € 92 such that
Axg, a2 c 0 € A(xg,275). (3.5)

Let us make a few comments about these cubes. We decided to use a dyadic scaling
(by opposition to a scaling where the ratio of the sizes between a pseudo-cube and its
parent is, in average, € < %) because it is convenient. The price to pay for forcing
a dyadic scaling is that if Q € D4, and R is the cube of Dy that contains Q (it is
unique by (ii), and it is called an ancestor of Q) is not necessarily strictly larger (as
a set) than Q. We also considered that the d€2 was unbounded, to avoid separating
cases. If the boundary d<2 is bounded, then Dyq = |, <ko D where kg is such that
2ko—1 < diam(2) < 2]‘0_1, and we let the reader check that this variation doesn’t
change a single argument in the sequel.

If i is any doubling measure on dQ2—thatis if ©(2A) < C, u(A) for any boundary
ball A C 9Q2—then we have the following extra property:

(v) n(@Q%) =0foralli, k.

In our construction, (i) and (iii) forces the Qf to be neither open nor closed. But this
last property (v) means that taking the relative interior or the closure of Qf? instead of
Q{f would not matter, since the boundary amounts to nothing.

Let us introduce some extra notation. When E C 92 is a set, Dy (E) is the sub-
collection of dyadic cubes that are contained in E. When Q € Djq, we write k(Q)
for the generation of Q and £(Q) for 27¥(@)which is roughly the diameter of Q by
(3.5). We also use Bp C R” for the ball B(xg, £(Q)) and A for the boundary ball
A(xg, £(Q)) that appears in (3.5). For « > 1, the dilatation « Q is

KQ = {x € 9%, dist(x, Q) < (k — DE(Q)}, (3.6)

which means that k Q C kAg C (k +1)0.

The dyadic decomposition of 9€2 will be the one which is the most used. However,
we also use dyadic cubes for other sets, for instance to construct Whitney regions, and
we use the same construction and notation as the one for 2. In particular, we will
use dyadic cubes in R” and in a hyperplane P that still satisfy (3.5) for the universal
constant ap—i.e. the dyadic cubes are not real cubes—and the definition (3.6) holds
even in those contexts.

3.2 Tolsa’s @ numbers

Tolsa’s o numbers estimate how far a measure is from a flat measure, using Wasserstein
distances. We denote by E the set of affine n — 1 planes in R”, and for each plane
P € E, we write up for the restriction to P of the (n — 1)-dimensional Hausdorff
measure, that is pp is the Lebesgue measure on P. A flat measure is a measure u
that can be written ;& = cup where ¢ > 0 and P € &, the set of flat measure is then
denoted by F.
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Definition 3.7 (Local Wasserstein distance) If u and o are two (n — 1)-Ahlfors regular
measures on R”, and if y € R” and s > 0, we define

[ ran- [ rao

where Lip(y, s) is the set of 1-Lipschitz functions that are supported in B(y, s).
If O € Dygq, then we set distg(u, o) = diStXQ,low(Q)(M,O) and Lip(Q) =

disty s(u,0) :==s""  sup
f€Lip(y,s)

Lip(xg, 1032(Q)), where Xg is as in (3.5). Moreover, if o is an Ahlfors regular
measure on 0€2, then we set

o (Q) = inf distg(u, o).
neF
Note that

0<oa,(Q) <C forall Q € Dyq (3.8)

where C < oo depends only on the Ahlfors constants of . and o.
The uniform rectifiability of dS2 is characterized by the fact that, for any (n — 1)-
Ahlfors regular measure o supported on 9€2, and any Q¢ € Dy, we have

Y @ (@)°0(Q) < Ca(Qo) ~ £(Q)" ! (3.9)
0eDya(Qo)
and, for any € > 0,
Y 0(0) < Ceo(Q0) ~ £(Q0)" (3.10)
QG]DZSQQ)(QO)

For a proof of these results, see Theorem 1.2 in [50].
It will be convenient to introduce the following notation. Given Q € Djyq, the
quantities c¢g, Pg, and ¢ are such that

no =copp, and distg(o, ng) < 205(Q), (3.11)

that is ¢ is a flat measure which well approximates o (as long as a, (Q) is small).
So it means that

‘/fdﬁ - /fdMQ' <2(10°(Q))"as (Q) for f € Lip(Q).  (3.12)

Let us finish the subsection with the following simple result.
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Lemma 3.13 There exists C > 1 depending only on C, and n such that if Q € Dyq
and € € (0, C™™) verify as (Q) < €, then

sup dist(y, Pg) + sup  dist(p, 3Q) < Ce'/"e(Q). (3.14)
y€999A o PEPEN999Bg

Proof Assume that o, (Q) < € = 8000’”C;1n” with n € (0, 1). For a given point
y € 999A, we set the function fi(z) := max{0, n¢(Q) — |y — z|} € Lip(Q).
Observe that

/fldUZn(

and thanks to (3.12)

()

o (380.uQ))=C

80007"C " > ay(Q) > (2000£(Q)) ™"

/fldcr—/fldug'-

By combining the two inequalities above, we have

‘/flda—/fld,U«Q 50;‘(@)" < %/fldo.

So necessarily, the support of f| intersects the support of ¢, that is, we have that
dist(y, Pp) < n¢(Q) and thus the first part of (3.14) is proved. But notice also that the
same computations force the constant ¢ in the flat measure .9 = cgpip, to be larger
than (2¢,—1C,) !, where ¢, is the volume of the n-dimensional unit ball. We take now
apoint p € Pg N999B¢ and construct f> := max{0, n€(Q) — |p — z|} € Lip(Q).
We have

‘/fzdd—/fzdug

So necessarily, the support of f; intersects the support of o, that is dist(p, 92) <
n€(Q). The lemma follows. m|

1
< 2(1000£(Q)" s (Q) < n (Q) /f2dug

3.3 Corona decomposition

We first introduce the notion of coherent subsets of Dyq.

Definition 3.15 Let S C Dyq. We say that S is coherent if

(a) S contains a unique maximal element Q(S), that is Q(S) contains all the other
elements of S as subsets.

b)) IfQeSand Q C R C Q(S),then R € S.

(c) Given acube Q € &, either all its children belong to S or none of them do.
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The aim of the section is to prove the following corona decomposition for a uni-
formly rectifiable boundary 9€2.

Lemma 3.16 Ler 02 be a uniformly rectifiable set. Given any positive constants €| <
€0 € (0, 1), there exists a disjoint decomposition Dyq = GU B such that

(1) The “good” cubes Q € G are such that a,(Q) < €| and

sup dist(y, Pg) + sup dist(p, 02) < €1£(0). (3.17)
y€999A o pPEPEN999Bg

(ii) The collection G of “good” cubes can be further subdivided into a disjoint family
= e S of coherent regimes that satisfy

Angle(Pg, Py) <€y forallSe Sand Q, Q" € S. (3.18)

(iii) The cubes in B (the “bad” cubes) and the maximal cubes Q(S) satisfy the
Carleson packing condition

Yo+ D (QS) = Cepe0(Qo) forall Qo € Dye.
QeB Se6
QCQo (S CQo
(3.19)

Remark 3.20 What we secretly expect is, in addition to (3.18), to also have a control
on the constants ¢ p—defined in (3.11)—that belongs to the same S. For instance, we
would like to have

lco —co)l < €o.

Imposing this extra condition while keeping the number of S low should be doable,
but we do not need it, so we avoided this complication.

The difficult part in the above lemma is to prove that (3.18) holds while keeping
the number of coherent regimes S small enough so that (3.19) stays true. To avoid
a long and painful proof, we shall prove Lemma 3.16 with the following result as a
startpoint.

Lemma 3.21 [18] Let 92 be a uniformly rectifiable set. Given any positive constants
€3 < €3 € (0, 1), there exists a disjoint decomposition Dyq = G U B’ such that

(i) The “good” cubes Q € G are such that there exists an affine plane P(’2 € B such
that

dist(x, P(’z) < e3l(Q) forx € 99Ay. (3.22)
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(ii) The collection G of “good” cubes can further subdivided into a disjoint family
g = U Ses S’ of coherent stopping time regimes that satisfy
€

Angle(P’Q, P) ) =€ forall SeGandQeS. (3.23)

/

o

(iii) The cubes in B’ and the maximal cubes Q(S') satisfy the Carleson packing
condition

Y o@+ Y 0(QS) = Ceo0(Q0) forall Qo € Dyo.(3.24)
QeB Sed’
0CQo 0(S)C Qo

The proof of Lemma 3.21 is contained in Sections 6 to 11 of [ 18], and the statement
that we gave is the combination of Lemma 7.1 and Lemma 7.4 in [18]. Lemma 3.16
might already be stated and proved in another article, and we apologize if it were
the case. Moreover, the proof of Lemma 3.16 is probably obvious to anyone that is
a bit familiar with this tool. However, every corona decomposition has its own small
differences, and we decided to write our own using only the results of David and
Semmes as a prerequisite.

Proof of Lemma 3.16 from Lemma 3.21 We pick then €] and €y small such that €} <
€0 < 1. We apply Lemma 3.21 with the choices of €, := €(/2 and €3 = €;. Note that
we can choose

PfQ = Py when Q € G and as(Q) < C™ "€} (3.25)

if C > 0 is the constant from Lemma 3.13.

Since we applied Lemma 3.21, we have a first disjoint decomposition Dy, = GUB
and a second decomposition G’ = | J & into coherent regimes which satisfy (3.22),
(3.23), and (3.24).

We define G as

G:=GN{0eD, a;(Q) < C"ef)

where C is the constant in Lemma 3.13. Of course, it means that B := B'U(G'\G). The
coherent regimes S’ may not be contained in G, that is S’ N G may not be a coherent
regime anymore. So we split further &’ N G into a disjoint union of (stopping time)
coherent regimes {S;}ies, that are maximal in the sense that the minimal cubes of
S; are those for which at least one children belongs to Dy \ (S N G). The collection
{S}se is then the collection of all the S; fori € Ig and ' € &'.

It remains to check that the G, B and {S}sca that we just built satisfy (3.18) and
(3.19). For the former, we use the fact that a regime S is necessarily included ina &',
so for any Q € S, we have

Angle(Pg, Pp(s)) < Angle(Pg, PQ(S’)) + Angle(PQ(S/), Pos))
= Angle(P, P/Q(S’)) + Angle(P’Q(S), P’Q(g)) <26 =€
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(3.26)

by (3.25), (3.23), and our choice of €;. The fact that 13 satisfies the Carleson packing
condition

Y~ 0(Q) < Cey0(Qo) forall Qo € Dyg (327)

Qeb
0CQo

is an immediate consequence of the definition of 5, (3.10), and (3.24). Finally, by
the maximality of the coherent regimes S, then either Q(S) is the maximal cube of a
coherent regime from the collection {S'} g, or (at least) the parent or one sibling
of Q(S;) belongs to B. Therefore, if O* denotes the parent of a dyadic cube Q, then
for any Qo € Dyq,

Y 0O = Y. oSN+ Y (0 $a(Qo)
Ses Ses’ QeB
Q(5CQo 0(S)C Qo 0CQo

because of the Carleson packing conditions (3.24) and (3.27), and because o (Q*) ~
2(0)" 1 ~ ¢(Q). The lemma follows. o

3.4 The approximating Lipschitz graph

In this subsection, we show that each coherent regime given by the corona decompo-
sition is well approximated by a Lipschitz graph. We follow the outline of Section 8
in [18] except that we are a bit more careful about our construction in order to obtain
Lemma 3.47 below. That is, instead of just wanting the Lipschitz graph I's to be close
to 02, we aim to prove that the Lipschitz graph is an approximation of 92 at least as
good as the best plane.

Pick 0 < €] < €9 < 1, and then construct the collection of coherent regimes &
given by Lemma 3.16. Take S to be either in &, or a coherent regime included in an
element of G, and let it be fixed. Set P := Pg(s) and define IT as the orthogonal
projection on P. Similarly, we write P for the line orthogonal to P and IT* for the
projection onto P-. We shall also need the function d on P: for p € P, define

d(p) = géfs{dist(p, I1(2Bg)) +£(OQ)}. (3.28)

We want to construct a Lipschitz function b : P + P, First, we prove a small result.
We claim that for x, y € 02 N 999B((s), we have

ITT+(x) — T (y)| < 2€0|T1(y) — T1(x)| whenever |x — y| > 1072d(I1(x)).
(3.29)
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Indeed, with such choices of x and y, we can find Q € S such that
0 < |x — y| = dist(IT(x), [T(Q)) + £(Q)
and by taking an appropriate ancestor of Q, we find Q* such that |[x — y| = £(Q%).
Since x, y € 999B¢(s), we can always take Q* C Q(S)—that is QO* € S thanks to
the coherence of S—and x, y € 999B+. Due to (3.17), we deduce that
dist(x, Po+) + dist(y, Po+) < 2€1£(Q") < €olx — y|
if €1 /g is sufficiently small. Since Angle(Pgp+, P) < €g by (3.18), we conclude
il 1 . . 1 3
[T~ (x) — I~ (y)| < dist(x, Pox) + dist(y, Po+) + zéolx —-yl= Zéolx =

< ¢o|TI(x) — IT(y)|

if € is small enough. The claim (3.29) follows.
Define the closed set

Z={peP,d(p) =0} (3.30)
The Lipschitz function b will be defined by two cases.
Case d(p) = 0. That is, p € Z. In this case, since d<2 is closed, there necessarily
exists x € 9€2 such that [1(x) = p. Moreover, (3.29) shows that such x is unique, that
is IT is a one to one map on Z, and we define
b(p) == +{1" ! (p)) forpe Z. (3.31)
Case d(p) > 0. We partition P\Z with a union of dyadic cubes, in the spirit of a
Whitney decomposition, as follows. Construct the collection WWp as the subset of the

dyadic cubes of P that are maximal for the property

0 < 214(R) < inf d(q). (3.32)
g€3R

By construction, d(p) ~ d(q) whenever p,q € 3R € Wp. Moreover, let us check
that

C(R)/E(Ry) € {1/2,1,2} if Ry, Ry € Wpares.t. 3R, N3R> £ 9. (3.33)

Indeed, if R € Wp and S is such that £(S) = £(R) and 3S N 3R # (J, then 3§ C 9R
and hence

200(S) = 20¢(R) < inf d(p) < inf d(p)+ 6€(R) < inf d(p) + 6£(S).
pe3R pEIR pe3s

So every children of S has to satisfy (3.32), which proves (3.33).
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By construction of Wp, for each R € Wp, we can find Qg € S such that

dist(R, TI(Qg)) < (2° —2)L(R), €(Qr) <2°(R),
and either Qr = Q(S) or £(QR) = ZSZ(R) ~ inf d(q)~ sup d(g).
q€2R qe2R
(3.34)

We want to associate each R with an affine function bg : P +— P~ such that the
image of the function bg defined as br(p) = (p, br(p)) approximates 92 well. First,
we set

bgr =0 when Qg = Q(S). (3.35)

When Qr # Q(S), we take bg such that by verifies

/ ly — br(IT(y) M r(y)e2r do (y)
9994 o(s)

a

= min/ ly = ar(II(Y)ILnye2r do (), (3.36)
9994 o (s)

where the minimum is taken over the affine functions @ : P +— P+ and ag (p) =
(p, a(p)). The uniqueness of the minimum is not guaranteed, but it does not matter
for us. The existence is guaranteed, because R C I1(3Bg,;) C PN999Bg, by (3.34),
and hence (3.17) entails that the graph of the a that almost realize the infimum are
very close to the plane Py which makes a small angle with P. The same argument
shows that

sup |y — br(IT(Y)| + sup  dist(br(p), 3R2) < Ce1£(QR).

yE999A g, pell(999Bg,,)
(3.37)
for a constant C > 0 that depends only on n and
bpg is 1.1€p-Lipschitz (3.38)

if 0 < €1 K €9 <K 1. We associate to the collection WWp a partition of unity {¢r}rew,
suchthatpr € C°(2R;), |[Vor| < 2(R)"", and > g 9r = lon P\Z. We then define

b(p):= Y ¢r(p)br(p) forpe P\Z. (3.39)
ReWp

Due to (3.33), the sum in (3.39) is finite and thus the quantity b(p) is actually well

defined.
For p € P, we define b(p) := (p, b(p)) to be the graph of b.
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Lemma 3.40 The function b defined by (3.31) and (3.39) is 2¢€g-Lipschitz and sup-
portedin P N4Bos).

Proof Recall that the property (3.34) implies that 2R C P N I1(3Bg,) as long as
Or # Q(S). Soif p ¢ PNII(3Bg(s) and R € Wp is such that p € 2R, we
necessarily have Qg = Q(S) and then br(p) = 0 by (3.35). We conclude that
b(p) = 0 and thus that b is supported in P N TI(3Bg(s)) C P N4Bg(s).

Now, we want to show that b is Lipschitz. The fact that b is Lipschitz on Z is
an immediate consequence from the definition (3.31) and (3.29). Let us prove now
that b is Lipschitz on the interior of 2Ry for every Ry € Wp. Take Ry € Wp and
p € 2Ro\d(2Ry). Then, since Y_ Vor(p) = 0, we have

Vo)l =| Y. 9r(P)Vbor(P)+ Y. bor(P)Ver(p)
ReWp ReWp
2RN2Ry#% 2RN2Ry#A#
< suy}; IVbor D)+ Y IVer(PIbog(P) = bog, (p)]
Re
2RO2 Ry 1) 5 R’f@g}” ”
< lleg+ CLRY) ™" sup  |boy(p) —bog, (P
ReWp
2RM2Ro#Y

(3.41)
by (3.38) and (3.33). We can assume that p € 2Ry C P N4Bgs), because we have

already shown that b(p) = 0 otherwise. So due to (3.34) and (3.33), both QO and
Q R, are close to 2Ry, in the sense that

3Ry C P N999TI(By,).

so we can invoke (3.37) to say that dist(bg, (p), PQR()) < €12(Qr,) and then

1bog(P) —bog, (P)| S €14(QRy)- (3.42)

So if €] K € is small enough, (3.41) becomes |Vb(p)| < 2¢.
We proved that b is Lipschitz on Z and P\Z, so it remains to check that b is
continuous at every point in dZ. Take z € 9Z and set x := b(z) € 9. Take also

p € P\Z such that |p — z| < 1. Due to (3.37) and (3.42), we have the existence of
y € 9K such that, for any R € Wp satisfying p € 2R, we have

ly —bor(p)| S €1l(R) S erd(p) < erlp — 2 (3.43)

by (3.32) and the factthatg — d(q) is 1-Lipschitz. The latter bound shows in particular
that

ly — b(p)| < eolp —z| (3.44)
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if €1 /€g is small enough. The bound (3.44) also implies that IT(x) # I1(y) and then
x # y, and so (3.29) entails that

Ib(z) — T (y)] = [T (x) — T ()] < 2e0lz — TTI(Y)]. (3.45)

The combination of (3.44) and (3.45) proves that the restriction of b to P\ Z has the
limit b(z) at the point z € d€2. Since it is true for all z € dZ, and since b is already
continuous (even Lipschitz) on Z and P\Z, we conclude that b is continuous on P.
The lemma follows. O

We prove that the graph of b is well approximated by the same plane as the ones
that approximate 9€2, as shown below.

Lemma 3.46 For Q € S, we have

sup [dist(b(p), 3Q) + dist(b(p), PQ)] < €10(0).
pePNIT(28By)

Proof Take p € H(ZSBQ). If p € Z, then b(p) € 92, but since we also have
(3.29), we deduce b(p) € 29AQ. The bound dist(b(p), Pg) < Ce£(Q) is then just
a consequence of (3.17).

Assume now that p € P\Z. Wehaved(p) < 28¢(Q) soany R that verifies p € 2R
is such that 21¢(R) < d(p) < 28¢(Q) by (3.32), that implies £(Qr) < 2°£(Q) by
(3.34). Since b(p) is a weighted average of the bg(p), the estimate (3.37) on br(p)
gives that

dist(b(p), 0Q) <€ sup L(Qr) < €1£(0).
R:pe2R

If x € Q2 is such that |b(p) — x| = dist(b(p), 92), then we have again by (3.29) that
X € 29AQ s0 (3.17) gives that dist(x, Pp) < €1£(Q). We conclude

dist(b(p), Pg) < |b(p) — x| +dist(x, Pg) < €14(Q)

as desired. O

We also need an L! version of the above lemma, and with a better control in terms
of the oy (Q) (which is smaller than €; when Q € S).

Lemma 3.47 For Q € S, we have

/ dist(b(p). Po)dp < £(Q) s (Q).
PNTI(2By)
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Proof The plane P is the union of Z and P\Z := gy, R, so

1 ::/ dist(b(p), Pp)dp
POI(2Bg)

= / dist(b(p), Po) dp +/ dist(b(p), Pg)dp := I, + I.
ZNM(2Bg) Z¢NTI(2Bg)

The term Iy is easy, because b(p) € 4A o C 92 by (3.29), and so we have
I < / dist(y, Pg)da (y)
4A0

We apply (3.12) with the test function
F () := min{dist(y, R"\999B), dist(y, Pg)}

which lies in Lipg and takes the value 0 on Py and dist(y, Pg) on 4Ag, and we
conclude that

[lg/fd0= ‘/fdﬁ—/fdMQ‘ ,SZ(Q)nO‘o(Q)

as desired.

We turn to the bound on />. We know that Angle(Pg, P) < € so the plane Py is the
graph of an affine functionag : P P with small Lipschitz constant. Therefore,
we have

I~ / 1b(p) — ag(p) dp.
PATI(2By))

Let Wp(Q) be the subfamily of Wp of elements R such that 2R that intersects
IT(2Bg). The fact that 2R N TI(2Bp) # ¥ implies by (3.32) that 214(R) < £(Q).
Consequently, £(R) < 275¢(Q) because both £(R) and £(Q) are in the form 2¥, and
then 2R C T1(3Byp).

Assume first that Q@ & Q(S), and check that this condition implies that £(Qg) <
2U(R) < £(Q) < £(Q(S)), hence Qg # Q(S) for every R € Wp(Q). So we have

n= Y or(P)br(p) — ag(p))| dp

“NM2BY) | reyym(0)

= X [ e —aoldp.

ReWp (Q)

We want to estimate sz |br(p) —agp(p)|dp, but now both bg and ag are affine, so
knowing |bg(p) —ag(p)| for n different points p € 2R that are far from each other is

@ Springer



2668 J. Feneuil et al.

enough. By (3.17), we know that IT(9€2) N 2R contains many points all over 2R, and
by using those points to estimate the distance between bg and ap, we deduce that

/ lbr(p) —ag(p)ldp < / Ibr(TL(Y)) — ag(TI(Y)) | Ln(y)e2r do ()
2R 999A ()
< / T () — bR (TN Lingyear do ()
999A o)
+ / ITT*(y) — ag(TI(») I Lnye2r do ()
999A o)
< / T+ () — ap(I(»)) I Lny)e2r do ()
999AQ(5)

by (3.36), because Qg # Q(S). Since the 2R are finitely overlapping, see (3.33), the
bound on /; becomes

IEBS / ITT(y) — ap (M)l do (y) < / dist(y, Pg)do(y). (3.48)
4AQ 4AQ
We had the same bound on /1, and with the same strategy, we can conclude that

I S/fdcf - ‘/fdcf —/fdug' < 0(0)" a0 (0)

as desired.

If Q0 = Q(S), the same computations apply. It is possible to have some R in Wp (Q)
for which Qg = Q(S) and thus bg = 0, but at the same time, we now have ap = 0,
so those R verify bg — ag = 0 and do no have any contribution in the above bounds
on I,. Therefore, we also conclude that

I S UQ(8) s (Q(S) = Q)" s (Q).

The lemma follows. O

4 Whitney regions for coherent regimes

We associate the dyadic cubes of 92 to Whitney regions in €2 and therefore associate
the coherent family of dyadic cubes obtained in the corona decomposition to a subset
of . The idea is similar to the construction found in [36], but we need different
properties than those in [36], so we rewrite the construction.

This section will prove the following extension of Lemma 3.1.

Lemma4.1 Let 02 be a uniformly rectifiable set. We keep the notation from
Lemma 3.1, and we further have the existence of K** > 0 and a collection {¥s}scs
of functions such that
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(a) Ws are cut-off functions, that is 0 < Wg < 1, and |VWg| < 28~
(b) Forany S € G, if X € supp(1 — Wg), then there exists Q € S such that

€(Q)/2 < 8(X) = dist(X, Q) < £(Q).
(c) If X € supp Wg, then there exists Q € S such that
€(0)/2° < 8(X) =dist(X,2°A¢) < 2%¢(0).
(d) Forany S € G and any X € supp Vg, we have
(1 =2€0)[X — b(IT(X))| = 8(X) = (1 + 2€0)|X — b(IT(X))] (4.2)
and, if Ts is the graph of S,
(1 — 2¢p) dist(X, T's) < 8(X) < (1 + 3ep) dist(X, I's). 4.3)

(e) There exists a collection of dyadic cubes {Q;}ic1g in Dy such that {2Q,}icis has
an overlap of at most 2, and

£(Qi)
K **

QN supp Ws(l — W) € | J {

iels

< 8(X) =dist(X, KAp,) < K**E(Qi)}-

In particular, |§VWs| € CMq(C) with a constant C > 0 that depends only on n.

4.1 Whitney decomposition

We divide 2 into Whitney regions. Usually, one constructs them with dyadic cubes
of R”, but we prefer to construct them directly. We recall that §(X) := dist(X, 9€2),
and for Q € Dyq, we define

Wq(Q):={X e€Q:3x € Qsuchthat £(Q)/2 < §(X) = |X — x| < £(Q)}.
4.4)

It is easy to see that the sets {Wq(Q)}pen,, covers . The sets Wq(Q) are not
necessarily disjoint, but we do not care, we are perfectly happy if {Wq(0)}peb,q
is finitely overlapping, and we choose Wq(Q) small only because it will make our
estimates easier. The sets Wq(Q) can be disconnected and have a bad boundary, but
that is not an issue, since—contrary to [36]—we won’t try to prove that the Wq(Q)
are Chord-Arc Domains.

We also need fattened versions of W (Q), that we call W¢,(Q) and W (Q), which
are defined as

WE(0) = (X e Q: Ix €20A0 s.t27%(Q) < 8(X) = |X — x| < 2%¢(Q))
(4.5)
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and

WE(Q) :={X e Q:3x € K™ Ag sit. % < 8(X) = |X — x| < K*(Q)).

4.6)
The exact value of the constant K** does not matter. In Lemma 4.28, we will choose

it large enough to fit our purpose. The first properties of Wq(Q) and W (Q) are the
ones that we expect and are easy to prove. We have

Q= J Wa@. 4.7)
0ebyq
diam(Wg(Q)) < 27¢(Q), (4.8)
and
W (Q) € 28Bg. (4.9)

We want Wq(Q) and W (Q) to be so that we can squeeze a cut-off function between
the two sets, which is possible because

1
dist(Wa(Q), R"\Wg(Q)) > 74D (4.10)

Indeed, if X € Wq(Q) and |X — Y| < £(Q)/4, then £(Q)/4 < dist(Y,0Q) <
5¢(Q)/4 and for any y € 92 such that |Y — y| = §(Y), we have

5 1
y—xI<ly=Y|+Y —X|+|X —x| < Z£(Q)+ ZE(Q)JrK(Q) < 34(Q),
so in particular, y € 25Q, and thus Y € W (Q). The claim (4.10) follows.

4.2 Coherent regions associated to coherent regimes

As before, we pick 0 < €] < €y < 1, and then construct the collection of coherent
regimes & given by Lemma 3.16. Let then S be either in &, or a coherent regime
included in an element of &. For such S, we define the regions

Wa(S) = [ Wa(@) and W5 = W5(0). 4.11)
Q€S QeS8

Associated to the coherent regime S, we have affine planes P and P, the pro-
jections IT and IT+, a Lipschitz function b : P — PL, and b(p) = (p, b(p)) as in
Subsection 3.4. We also have the “distance function” d(p) defined in (3.28). We now
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define the Lipschitz graph
I's:={b(p), pe P} CR". (4.12)

Lemma4.13 If X € W(S) and x € 9 is such that | X — x| = §(X), then

(I = 2€0)8(X) < |X — b(IT(X))| < (1 + 2€0)8(X), (4.14)
(1 —2€g)dist(X, I's) < 8(X) < (1 4 3¢g) dist(X, T's), (4.15)

and
[b(IT(X)) — x| < 2€p6(X). (4.16)

Proof Since X € W, (S), there exists Q € Ssuch that X € W (Q). Such Q verifies
x €20A and

270X — x| < €(Q) <2%X — x|,

s0 X € 2'Bgp and TI(X) € M(2"By). Lemma 3.46 and (3.17) entail that

dist(x, Pp) + dist(b(IT(X)), Pp) < Ce1£(Q) < é€0|X — x|

if €1 /€p is small enough. Because the plane Py makes a small angle with P, we deduce
that

1
b(T(X)) — T (x)] < 7eolX — x| (4.17)

if € is small enough. Define I1y and l'[é as the projection onto Py and Pé. We
have [TTg(x) — x| < €11X — x| thanks to (3.17). In addition, the projection ITp (X)
lies in Pgp N ZSBQ, so using (3.17) again gives the existence of y € 92 such that
TIo(X) — y| < €1£(Q) S €1|X — x|. By definition of x, the point y has to be further
away from X than x so

X —x| <X —
<X = To(X) —x + M) + [Mgx) — x| + [M(X) - y|
< |Mg(X) — M5 x)| + Cer|X —x|.

So one has |Hb(X) - HJQ-(x)| > (1 — Ce1)|X — x| and hence we have the bound
[TTo(X) —IMpx)| < C /11X — x|. Since Py makes an angle at most € with P, we
conclude that

IT(X) — TT()] < %eo|X—x| @.18)
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if €9 and €1 /€ are small enough. The two bounds (4.17) and (4.18) easily prove (4.16),
and also prove (4.14) by writing

[1X = 6O = 1X — x|
< |0 = BLEO)| = M0 = @)1 + 1160 = A@)

< | (x) = BTTX))| + [TH(X) — TT(x)| < 2€0]X — x].

The bounds (4.15) is just a consequence of (4.14) and the fact that I's is the graph of
b which is a 2¢p-Lipschitz function with €y < 1. The lemma follows. O

Letyr € C‘OX’(IR) be suchthat 0 < <1,¥ =1o0on][0, 1], =0on [2, c0) and
IVyr| < 2. We set

(4.19)

ws(X>=nQ<x>1/f< (X)) ) (l (¢ )>|)_

31X = b(IT(X))| 26(0(5)
We want to prove the points (b), (c), and (d) of Lemma 4.1, that is

Lemma 4.20 The function Vs is constant equal to 1 on Wq(S) and Q2 N supp ¥s C
W& (S). Consequently, for any X € supp Ws, we have (4.2) and (4.3) by Lemma 4.13.

Remark 4.21 We know from its definition that ¥s = 0 on R"\€2, but the support of
W can reach the boundary d€2. So if 2 N supp Ws C W (S), then we actually have

supp Ws € W5(S) U (asz n W;;(S)).

Proof Take Q € Sand X € Wq(Q), and pick x € Q such that | X — x| = §(X). We
want to show that Vg(X) = 1, i.e. that

d(T1(X)) < 31X — b(I1(X))| (4.22)
and
|X — b(IT(X))| < 2£(Q(S)). (4.23)

For (4.23), it suffices to notice that | X — b(IT(X))| < 2|X — x| < 2£(Q) < 2L(Q(S))
by (4.14) and by the definition of x and Q. As for (4.22), observe that | X — x| <
2¢06(X) + | X — b(IT(X))| by the triangle inequality and (4.16), and thus

d(IT(X)) < 4(Q) < 2|X — x| < 3|X — b(IT(X))|
by (4.14).
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It remains to verify that supp W is supported in W (S), because (4.2) and (4.3)
are then just (4.14) and (4.15). So we pick X € supp Ws which means in particular
that

d(TT(X)) < 6|X — b(IT(X))] (4.24)
and

|X — bIT(X))| = 4£(0(S5)), (4.25)

and we want to show that X € Wg(S). By the definition of d(IT(X)), there exists
Q € S such that

dist(TI(X), IT(2B)) + £(Q) = d(I1(X)) = 6|X — b(IT(X))| = 24£(2(S))

by (4.24) and (4.25). Since S is coherent, by taking a suitable ancestor of Q, we can
find Qx € S such that

1
Z'X — b(IT(X))| < £(Qx) < 6|X — b(II(X))] (4.26)
and
IT(X) € 26I1(Bg,). 4.27)

We want to prove that X € W;;(Q x). The combination of (4.27), Lemma 3.46, and
(3.29) forces b(IT(X)) € 27Bg(s) when € is small, and hence X € 31Bg, by (4.26).
Let x € 99 such that |[X — x| = §(X). Since X € 31Bg,, we have x € 2°Ap,,
and of course | X — x| < 2°¢(Qx). So it remains to verify if |[X — x| > 27%0(0x).
In one hand, thanks to (3.17), we know that x lies close to Pg, in the sense that
dist(x, Ppy) < €1£(Qx). In the other hand, if Pg, is the graph of the function
agy : P+ Pt wehave

dist(X, Pgy) = (1 — €0)|[TT*(X) — ag, (T(X))]|

= (1= &) 1X = bT(X0)] — dist(b(TI(X)), Poy)]
> (1= & — Cen|X = b(TI ()

v

%(1 — €0 — Cel(Qx)
by Lemma 3.46 and (4.26); that is X is far from Pg, . Altogether, we deduce that
X —x| > (1 = Cey)dist(X, Pgy) > éK(QX).
if €9 and €1 are small. The lemma follows. m|
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We are left with the proof of point (e) in Lemma 4.1, which is:

Lemma 4.28 There exists a collection of dyadic cubes {Q;}icis in Dyq such that
{20 }icis has an overlap of at most 2, and

QN (supp ¥s) Nsupp(l — Ws) C U WS (00).

1

Proof Observe that (supp Ws) N supp(1 — Ws) C Ej U Ey where
Ep = {X € W5(S), 2¢(Q(9) < [X — b(II(X))| < 4L(Q(S)}
and
Ex = {X € Wg(S), d(T1(X))/6 < |X — b(IT(X))| < d(T1(X))/3}.
Thanks to (4.2), the set E| is included in Wg(Q(S)).
For each X € E,, we construct the ball By := B(b(IT(X)), d(T1(X))/100) in R".

The radius of By is bounded uniformly by £(Q(S))/4. So by the Vitali lemma, we can
find a non overlapping subfamily { By, };cs, such that E, C Uie12 5By,;. We use (4.16)

and (4.14) to find a point x; € %BX,. No2. We take Q; € Dyq to be the unique dyadic
cube such that x; € Q; and £(Q;) < d(I1(X;))/400 < 2¢(Q;). By construction, we
have 2Q; C By;, so the {20Q;};¢/, are non-overlapping, and 5By, C 100By,.
It remains to check that E> C [ J; W&*(Q;). Take X € E,. From what we proved,
there exists an i € I, such that
ITI(X) — TI(X;)| < [6(TT(X)) — b(I1(X;))| < d(I1(X;))/20. (4.29)
Observe from the definition that d is 1-Lipschitz. Therefore,
|d(TT(X)) — d(T1(X;))| < [TI(X) — TI(X;)| < d(T1(X;))/20
and
19d(l'l(X')) <d(I1(X)) < 21d(1‘I(X-)) (4.30)
20 Y= =20 v '
From (4.29) and (4.30), we obtain

IX —xi| < [X = b(II(X)[ + [bUIT(X)) — bIT(X;))| + [b(IT(X;)) — xi
= d(I1(X)) = 800£(Qi)

and, from (4.2) and (4.30), we get
8(X) = (I —2e0)|X — b(II(X))| = %d(H(X)) > éd(l'l(Xi)) > 504(Q;).
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The last two computations show that X € W&*(Q;) if K** > 1601. The lemma
follows. =

5 Replacement lemma and application to the smooth distance D

Asusual, let 0 < €] < €9 < 1, and then construct the collection of coherent regimes
G given by Lemma 3.16. We take then S to be either in &, or a coherent regime
included in an element of G.

In Lemma 3.47, we started to show that the graph of b behaves well with respect to
the approximating planes Pp, and we want to use the graph of b as a substitute for 92.
Roughly speaking, the graph of the Lipschitz function b is “a good approximation of
a2 for the regime S”. Let us explain what we mean by this. The Lipschitz graph I's
defined in (4.12) is uniformly rectifiable, that is, I's is well approximated by planes.
And even better, we can easily construct explicit planes that approximate I"s.

First, we equip P with an Euclidean structure, which means that P can be identified
to R"1, Similarly, we identify PL to R, and of course, we choose P and PL such
that IT-(P) = {0} and TT(P+) = {0}, and so R” can be identified to P x PL.

We take a non-negative radial smooth function n € C5°(P, Ry ) which is supported
in the unit ball and that satisfies | p ndx = 1. Evenif P depends on the regime S, P is
identified to R"~!, so morally the smooth function 7 is defined on R”~! and does not
depend on anything but the dimension n. For ¢ # 0, we construct the approximation
of identity by

(P
mp) =110, (5.1)
then the functions
b :=n; b, b :=n %0, (5.2)
and the planes
A(p,1) == {(g, (g = p)VD'(p) +D'(p)), q € P}. (5.3)

Notice that the plane A(p, t) is tangent to the graph {b’(p), pE P} at b’ (p). What
we actually want is flat measures, so we fix a radial function 6 € C°°(R") such that
0<6 <1, suppd C B(0, 1), and & = 1 on B(0, ). We set then

b (p) —
ﬂm@w=e(—3%—l) (5.4)
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and

/ 91]1, d(T

Q2

/ Opt diLa(p,n)
A(pD)

where the second equality uses the fact that we centered 6, ; at b’(p) € A(p, 1), and
co = fR,H 0(y)dy. Note that the Ahlfors regularity of o implies that

Alp,t) =

=cy ' /me,,,,da (5.5)

rMp,t) =1, (5.6)

whenever b’ (p) is close to 9Q2—which is the case when d(p) < |t] < £(Q(S))—and
with constants that depend only on C, and n. Finally, we introduce the flat measures

Hp.t = AP, DRAA(p.1)- 5.7

The flat measures ), ; are approximations of the Hausdorff measure on I's, and we
shall show that the same explicit measures almost minimize the distance from o to
flat measures, for the local Wasserstein distances distg with Q € S.

Lemma5.8 For Qe S, p € H(%BQ), and £(Q)/4 < |t| < £(Q)/2, we have

distg(o, up,) < Cag (Q), (5.9)
where C > 0 depends only on n and C, .

The lemma is not very surprising. The plane A (p, t) is obtained by locally smooth-
ing I's, which is composed of pieces of planes that approximate 9S2.

Proof Thanks to the good approximation properties of the Lipschitz graph b(p) that
we obtain in Sect. 3.4, this lemma can be proved similarly as Lemma 5.22 in [23].
Let Q € S, p € H(%BQ), and ¢ with £(Q)/4 < |t|] < £(Q)/2 be fixed. Denote
r = |t|. By Lemma 3.16, o, (Q) < €. Since we have chosen € sufficiently small,
Lemma 3.13 gives that

sup dist(y, Pg) < Ce;"€(Q) < 10€(Q). (5.10)
y€999A o

Define a Lipschitz function W by

L z € B(xg, 1006(Q)),
@ = st (10°40) — |s — xq]), otherwi
3600£(Q) Z—Xg|), otherwise,

where (f(z))+ = max {0, f(z)}. Then set f(z) = W(z)dist(z, Pg). Observe that
supp f C B(xgp, 10%£(Q)), and that |V f(z)| < W(z) + dist(z, Po) VY| < 1,
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because dist(z, Pg) < 10£(Q) + 103¢(Q) by (5.10). Hence f € Lip(Q). By using
successively the facts that f > 0, [ fduo = 0and (3.12), we have that

/ dist(z, Pg)do (z) = 4/ W (z) dist(z, Pg)do (2)
Axg,100€(Q)) A(xg,100£(Q))

< 4/fdo - 4/f(z)(d<r )

< CUQ)'as (Q). (5.11)

Now we estimate the distance from A(p, t) to Pp. Write

dist(6' (). Pg) < / 1 (p — q) dist(b(q). Po)dg.
qeB(p,r)NP

Notice that our choice of p and ¢ ensures that

B(p,r)N P CII(2Byp). (5.12)
So we have that
dist(b'(p), Po) < r'™" IIHIIOO/ dist(b(q), Pg)dq
g€l (2Bg)

Crl™ Il €(0)" s (Q) < CLUQ)x (Q),  (5.13)
where we have used Lemma 3.47. We claim that
dist(y, Pg) < Caq(Q) (|y —b'(p)| +£(Q)) forally € A(p,1). (5.14)

Lety = (g, (g—p)Vb' (p)+b'(p)) € A(p, ) be fixed. Denote by HJQ- the orthogonal
projection on the orthogonal complement of Pg. Then

dist(y, Pg) <’ (y—b’(p))| +dist(b' (p), Po). (5.15)

Also, HL(PQ) is a single point £y € R. Denote v := y — b'(p) = (¢ — p, (q —
p)Vb' (p)).Letd' = 0! (p, 1) = 3, b (p),i =1,2,...,n—1.Thenv = > '_ 11(q,
pi)V'. We estimate ‘1’[ (0 )‘ By definition, we write

ng @)

10,6 (o)) =+ [T @iy )|

/ @ (p — qmab(q»dq‘
qeB(p,r)NP

3,- — HJ_ b _ d "
/qu(p,r)mP( (P CI)( 0(b(@)) §Q> q
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where in the last equality we have used that f (0in)¢(x)dx = 0. Notice that
‘Hé(z) — ég‘ = ‘Hé(z) — Hé(PQ)‘ = dist(z, Pg), so we have that

ng @)

1 . ¢ n
< ol [ dist(b(q), Po)dq < —£(0)'as(Q)
r qeB(p,r)NP r

< Cas(Q)

by (5.12) and Lemma 3.47. This gives that
M5 = Can (@10 (5.16)

Then the claim (5.14) follows from (5.15) and (5.13).
Next we compare ¢ (defined in (3.11)) and A(p, t), and claim that

[M(p, 1) = co| = Cas(Q). (5.17)
We intend to apply (3.12) to the 1-Lipschitz function [t 6, ;/ [|0]1;, - SO we need to
check that supp6,; C B(xg, 103£(Q)). By the construction of 6, ;, we have that

supp 0, C B(6'(p), r). By Lemma 3.40 and the fact that €y has been chosen to be
small,

b'(p) — b(p)| = |b"(p) — b(p)| = ‘/nz(c]) (b(g) — b(p)) dq

< |IVblloor <2e€yr <r. (5.18)

So B(b'(p), r) C B(b(p),2r). We show that
[b(p) = xo| < 10€(Q). (5.19)
Then the assumption r € [£(Q)/4, £(Q)/2] gives that
supp 6, C B(b(p),2r) C B(xg, 103£(Q)),

as desired. To see (5.19), we recall that p € H(%BQ), and so ]p — l'I(xQ)| <
3¢(Q)/2. Let x € 9Q2 be a point such that [b(p) — x| = dist(b(p), 0Q) < €14(Q),
where the last inequality is due to Lemma 3.46. Notice that by the definition (3.28),
d(T(xg)) < €(Q). Soif |x —xg| < 1073d(I1(xp)), then |x —xp| < 10732(Q),
and thus

|6(p) —xo| < 16(p) — x| + |x — xg| < Cer1€(Q) + 1073¢(Q) < 10¢(Q),

as desired. If ‘x —xQ| > 1073d(I(xp)), then we can apply (3.29) to get that
[T+ (x) — Mt (xg)| < 26 |M(x) —TI(xg)|. By the triangle inequality,
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ITT(x) — M(xp)| < &) —pl + |p—Txg)| = (Cei+3)e(Q), and so
T+ (x) — T (xg)| < 2¢0 (3 + Ce1) £(Q). Hence, we still have that

|6(p) — x0| < 16(p) — x| + |x — xg| < Cer1€(Q) +2(Cer +3/2) €(Q) < 10£(0),

which completes the proof of (5.19). We have justified thatz 6, ,/ 01, € Lip(Q),
so we can apply (3.12) to this function and obtain that

< CUO)" s (Q).
(5.20)

cor"~'a(p, 1) — co / Opiditp,

= ’/%(da ~duo)

We now estimate A, :=cg [ Op.1(z)dp, (). Denote by ITg the orthogonal projec-
tion from A(p, t) to Pg; by (5.16) this is an affine bijection, with a constant Jacobian
Jo that satisfies

det(Jg) — 1] = [V1= Cag (007 = 1] = Car (0). (5.21)

By a change of variables z = ITp(y), we write

A, =cpodet(Jp) Op.t (HQ(y)) dia(p,n (). (5.22)
YEA(p,1)

We compare fyeA(p’t) 0p.t (Mo(») dpa(p.n(y) and fyeA(p,,) Op.c(Mdrap.n(¥)-
Fory e A(p, 1), (TTp(y) — y| = dist(y, Pg). So by (5.14), for y € A(p, 1)

165, (o) = O )| < 160117~ [To () — V|
< Crilag(Q) [y —b'(p] +0(Q).  (5.23)
Moreover, the support property of 6, , implies that IHPJ (HQ(y)) - 9p,,(y)} is not

zero when either y € B(b'(p), r) or I1p(y) € B(b'(p), r). By the triangle inequality
and (5.14),

ly —=b'(p)| < [Me() — b'(P)| + Car (Q) (|y — b ()| + £(Q)).

Since ax(Q) < € is sufficiently small, we get that when ITo(y) € B(b'(p),r),
ly = b'(p)| < 2r + Ce1€(Q) < 3£(Q). So by (5.23) and the fact that supp,; C
B(b'(p), r),

/ (0p: (o) = 0p: () ditap.y M| < Cr'la, (Q). (524
YEA(p,1)
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Hence we have |AM —cgdet(Jg)cg r”’1| < Ccg "oy (0) by definition of cg.
By the triangle inequality, (5.21), and the fact that r &~ £(Q),

|4 = e ™| = Cogae (e,

By this, the triangle inequality and (5.20),

cor" " M(p. 1) —co| = |eor™ A(p, 1) —coeo " < C(1 + co)an (Q)E(Q)" !,
(5.25)

which implies that |A(p, t) — cQ| < %(1 + cg) because o (Q) is sufficiently small.
But we know A(p,t) ~ 1 by (5.6), so cgp ~ 1 and then (5.25) yields the desired

estimate (5.17).
Finally, we are ready to show that

disto(ig. tp.) < Cag(Q). (5.26)
Let f € Lip(Q). We have that
/ F@duo() = co /P F@diry @)
0
=cg det(JQ)/ f (HQ()’)) dinp,n(y).
A(p.1)

An argument similar to the one for (5.24) gives that

< Cag (Q)E(Q)".

/ (f (o) = FO) dracp.n )
A(p.t)

So

‘/fdug - A(p, t)/fdMA(p,t)

=

/ Fdug — co / Fdunin| + [Ap.0) = col ‘ / Fditagn

< Ccg det(Jp)as (Q)(Q)" + cg |det(Jg) — 1| '/ Fdunip.n

+[A(p. 1) = cg| ‘/ fduap.n

By (5.21), (5.17), and ¢ ~ 1,

< Cag (QU(Q)", (5.27)

’ / Fdug —r(p.1) / Fdpain
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which proves (5.26). Now (5.9) follows from (5.26) and (3.12). O

We want to use the flat measures (4, ; to estimate the smooth distance Dg introduced
in (1.3). But before that, we shall need to introduce

a5 (Q, k) = s (QW), (5.28)

where Q® is the unique ancestor of Q such that £(Q®) = 2¥¢(Q), and then for
B >0,

to,p(Q) =) 27 as (0. k). (5.29)

keN

The collection {a4, g(Q)} ¢ is nice, because we have

a6,p(Q%) X 0g,5(Q) (5.30)

whenever Q € Dyq and Q* is the parent of Q, a property which is not satisfied by the
{as (@)} . And of course the a5 (Q)’s still satisfies the Carleson packing condition.

Lemma 5.31 Ler 02 be uniformly rectifiable and o be an Ahlfors regular measure
satisfying (1.1). There exists a constant Cs g that depends only on the constant in
(3.9), the Ahlfors regular constant C, and B such that, for any Q¢ € Dyq,

D e p(@Fo(Q) < Copo(Qo). (5.32)
QeDya(Qo)
Proof Same as Lemma 5.89 in [23]. O

The quantities ay, g are convenient, because we can now obtain an analogue of
Lemma 5.8 where we don’t need to pay too much attention to the choices of p and ¢.
0

Lemma5.33 Letf > 0and K > 1. For Q € S, p € II(KBg), and £(Q)/K < |t]| <
K2(Q), we have

distg (o, up,r) < Cpg.xtte,5(Q0), (5.34)
where Cg x > 0 depends only onn, Cs, B, and K.

Proof First, we prove that when p € H(%BQ) and £(Q)/K < |t] < £(Q)/2, we have

distg (o, p,) < Cxas(0Q). (5.35)

We set t; = 27277¢(Q). We also take a dyadic cube Q' C Q such that £(Q’)/4 <
|t] < £(Q")/2, and then we pick pg € H(%BQ/). By Lemma 5.8, we have that

disto (0, pp,1y) + dist (0, tpg,1) S oo (Q),
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so disto (Up. 15 Mpo.tg) S 2o (Q) too. Consequently, the claim (5.35) is reduced to

disto (K po,1s Kpotg) < Crato(Q). (5.36)
For this latter bound, we decompose
k—1
diStQ(MPO,lv Mp(),[o) S diStQ(/JLp(),ts /’l/po,tk) + ZdiStQ(MPOJj’ MPOJjH)?

j=0
(5.37)

where k is chosen so that iz = £(Q’)/2, and k < 1 + log,(K) is bounded by K.

We look at disto (i py,r> M pg,,)> but since we are dealing with two flat measures that
intersect B/, Lemma A.5 in [31] shows that

diStQ(Mpo,ta /'Lpo,tk) S, diStQ/ (:u“p(),ta /Lpo,tk) (5.38)

and then Lemma 5.8 and the fact that £(Q") ~k £(Q) entail that

disto (ipo.t» po.n) S distor (pg.r, 0) + distor (0, Upy.n) S @ (Q) < Crao(Q).
(5.39)

A similar reasoning gives that
disto (1 p.i; Hpots) < Cra (Q) (5.40)
whenever 0 < j < k — 1. The combination of (5.37), (5.39), and (5.40) shows the
claim (5.36) and thus (5.35).
In the general case, we pick the smallest ancestor Q* of Q such that p € I1 (%BQ*)

and |t| < £(Q™*)/2, and we apply (5.35) to get

diStQ(O', /Lp,t) < CK“U(Q*)'
The lemma follows then by simply observing that o, (Q*) < o, (Q). o

We need the constant
2 _dtb
cp = . 71(1 +|pl©)” 2 dy (5.41)
and the unit vector N, ; defined as the vector
Ny (X) = [V dist(., A(p, ) ](X) (5.42)

which is of course constant on the two connected components of R\ A(p, ). We are
now ready to compare Dg with the distance to A(p, t).
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Lemma5.43 Let Q € S, X € Wq(Q), p € TI(2°Q) and 272¢(Q) < |t]| < 2°¢(Q).
We have

D57 (X) = cprip, ) dist(X, A(p, 1) | < CUQ) P p(Q), (544
and

IVID; 1) + Bepr(p. ) dist(X, A(p, 1) PN, (X)]
< CUQ) P p41(0), (5.45)
where the constant C > 0 depends only C, and B.

Proof Denote r = |t|, and d = n — 1. By the definition of Wq(Q), dist(X, 9€2) >
£(Q)/2 and X € 2Bp. We show that in addition,

X € B(b' (p),2°¢(0)), (5.46)

and

Q)

dist(X, A(p, 1) UIQ )
ist( (p, 1) ) > 20

(5.47)

Since X € 2By, |IT(X) — p| < (25 42)€(Q). Then |b(IT(X)) — b(p)| < (1 + 2¢p)
(2° + 2)£(Q) because b is the graph of a 2€q-Lipschitz function. Write

| X —b'(p)| < IX = bTI(X))| + [b(TI(X)) — b(p)| + |b(p) — b'(p)

’

then use (4.14) and (5.18) to get
X = 6" (p)] = (14 20) (800 + @7 + Q) ) + 2607 = 2°€(0),

and thus (5.46) follows. In order to see (5.47), we only need to show that

dist(X, A(p, 1)) > %g). Notice that (Vb'(p), —1) is a normal vector of the plane

A(p, 1), and that b’ (p) € A(p,1). So
(X —b'() - (VP (p), =1
(V' (p), D)
_ @O = p) - VB (p) + (b (p) = TTH(X)) |

VIVE (P2 41

3 ([0 v o) - (@ - - )

dist(X, A(p. 1)) = |

v

v

% ‘HL(X) —p (p)‘ — C2%0(0)eo. (5.48)
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by [Vb'||, < Ceo (see (6.2)). We have [b(T1(X)) — b(p)| < 2¢ |TI(X) — p| <

20€0€(Q), and [ITH(X) — b(TI(X))| = dist(X, T's) > {35 > 519 by (4.15).

So
100 = b ()| = |10 = bA1eo)| = 1) = b(p)| = 6 (p) = b(p)|
«Q)
-5

by (5.18). Then dist(X, A(p, 1)) > %2 follows from this and (5.48).

Now we prove (5.44). We intend to cut Dﬁ_ﬂ = fasz | X — yl’d’ﬂ do (y) into pieces.
So we introduce a cut-off function 6y € CZ°(B(0, r/2)), which is radial, 1, /4) <
6y < ]13(() r/2)s and |V6y| < 2r. Then we set Ok (y) = 90(2_ y) — Op(— 2_k+ly)
for k > 1 and y € R”, and define Gk(y) Oy — b’(p)) for k € N. Denote
Bx = B(b'(p), 2¥='r). We have that supp 8y C By, suppbx C Bi\Bi_s fork > 1,
and that

> =1

keN

Now we can write

Dy =3 [ Xy Rdo ) = 3 [ fido ),

keN keN

with fr(y) = |X — yl’d”s @(y). We intend to compare ffk(y)do(y) and
f Se(y)dpp (). Both integrals are well-defined because of (5.47). Observe that

/fk(y)dup (y) = A(p, 1) X — y|77F dunp,n(y)
keN A(p,t)

_ s o\ WP
=20 [ (s, A 0) + 1P dy

= A(p, Depdist(X, A(p, 1) 7P

by a change of variables. So

D3P0 = cpitp. 0 X, A ) = 3 [ folda . 549
keN

We are interested in the Lipschitz properties of f; because we intend to use Wasserstein
distances. We claim that

|X — y| > c2*7 wheny € QU A(p, 1) is such that 6 (y) #0,  (5.50)
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where ¢ = 10712721, In fact, by (5.46) and the support properties of O, if k > 15,
then

X — y| > 283 —260(0) = @3 =2, > 2%+ for y € suppb.
If0 < k < 15, then by (5.47), for y € 9Q U A(p, 1),

—6 —21
£(0) - 27°%r - 2
20 7 10 T 10

2k,

| X —y| > dist(X, QU A(p, 1)) >

So (5.50) is justified. But fi is not a Lipschitz function in R” because y can get
arbitrarily close to X when k is small. Set

~ X —d—B ~
Sfr(y) := max {|X —y|,c2 r} Ok (y).

Then by (5.50), ﬁ(y) = fi(y) fory € 9Q U A(p, t), and therefore,
/fk (do —dup,) = /ﬁ (do —dup,). (5.51)

The good thing about f; is that it is Lipschitz. A direct computation shows that
| 7 |, =C(2r)” P and HkaHOO < C(2%r)=@=F~1 Moreover, f; is supported
on B(b'(p), 2’< 'r), which is contained in B (x yw, 10°(Q™®)). To see this, one can
use (5.18), (5.19), and |xg — xpw | < 2871€(Q) to get that

0'(p) = xgu| = (260-+2") r 4 102%(0) + 27 0(0)
< 250K £ 11)e(Q) < 1032%¢(0).

Write

[ Fitdo —dup = [ Fitdo ~dugu+ [ 7o - diep.

+Z/fk(dMQ(/)—dMQ(/ D) =: I+II+ZIII

j=l1

By the definition (3.11) of yu and properties of f. Il < C (2kr)_'3 oy (0, k).

We then have |I1| < (2"}”)_'6 distym (L@, ip,t), but because we are looking at
the Wasserstein distance between two flat measures whose supports intersect 108,
Lemma A.5 in [31] shows that

distom (1o, Hpr) < disto(rg, p.r)
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and thus
1] < (2kr>_ﬁ disto(1Lg. 1p.) < <2kr)_ﬂ (distQ(MQ, o) + disto (0, ,j,p,t))
—p
< (2) T as(@

by Lemma 5.33. The terms //1; can be bounded by a Wasserstein distance between
planes, and similarly to /7, we get

-B
11151 5 (25) 7 distgu (g gu-)
< (2) " distg : < (24)77 '
S o (Lors oi-n) S (27 as (0, ).

Altogether, we obtain that

_ k
< () [wp@+ Y w0

j=0

‘ / fi(do —dpp,)

Then by (5.51) and (5.49),

}Dgﬂ(X) — cph(p. 1) dist(X, A(p, t))*ﬂ’

B k
<Y (2) " anp@ + Y a0, ) | < ct@) Panp0),

keN j=0
which is (5.44).

We claim that (5.45) can be established similarly to (5.44) as long as one expresses
the left-hand side of (5.45) appropriately. A direct computation shows that

V(D )(X) =~ + p) / X = y|7P2 (X = ydo ().
On the other hand,
/IX — [P = Y papa ()
= Npi(X) / X = yI7P 2 (X = y) - Np (D dinip.n ()

= Ny (X) / X — y P2 dist(X. A(p, D)dacpn ()

= cpradist(X, A(p, 1) P7IN, (X).
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By [31] (3.30), (B + d)cpgy2 = Pcp for all B > 0. Hence
VIDZP100 + Begh(p, 1) dist(X, A(p, D) PN, 1 (X)

=—d+p / X — y|77P2 (X — y) (do(y) —dpp(y)).

Now we set fk/(y) =X - y|_d_ﬁ_2 (X — ). Using (5.46) and (5.47), we can see
that f; is Lipschitz on 92 U A(p, 1). Then we can play with measures as before to
obtain (5.45). O

Corollary5.52 Let Q € S, X € Wq(Q), p € TI(2°Q) and274(Q) < |t| < 2°¢(Q).
We have

VDg(X) Np.i(X) B
Dp(X)  distX, A(p.ry| = 1@ ep(Q). (5.53)

where the constant C > 0 still depends only C, and B.

Proof To lighten the notation, we denote by O¢ys any quantity such that

[Ocul < Cos,p(Q)

for some constant C. Then by (5.45),

VDs(X) 1 VIDZ 1X)

Ds(X) B D;ﬂ(X)
1 [ =Beghp, 1) dist(X, A(p, ) PTIN, (X) . €01 Ocu

Using Dg(X) ~ §(X) ~ £(Q) and (5.44), we can further write the above as

VDg(X) Np i (X) _
P = D +40) ' Ocu,
Dg(X)  dist(X, A(p, 1))
which implies the corollary. O

6 The bi-Lipschitz change of variable ps

The results in this section are similar, identical, or often even easier than the ones
found in Sections 2, 3, and 4 of [23]. Many proofs will only be sketched and we will
refer to the corresponding result in [23] for details.

As in the previous sections, we take 0 < €9 < €; < 1 and we use Lemma 3.16
with such €g, €] to obtain a collection & of coherent regimes. We take then S that
either belongs to G, or is a coherent regime included in an element of G. We keep the
notations introduced in Sects. 3, 4, and 5.
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6.1 Construction of ps

In this section, the gradients are column vectors. The other notation is fairly transparent.
A hyperplane P is equipped with an orthonormal basis and V, correspond to the vector
of the derivatives in each coordinate of p in this basis; d; or d; are the derivatives with
respect to ¢ or s, that are always explicitly written; V, ; or V,, ; are the gradients in
R" seen as P x Pt.

Lemma 6.1 The quantities V, ;b' and tV,, ;V ,b" are bounded, that is, for any t # 0
and any pg € P,

|Vp.ib' |+ 1tV V,b'| < Ceo. (6.2)

In addition, |3;b'| + [tV Vpb'| € CMpy(pi\oy, that is, for any r > 0 and any
po € P,

dt
I (0 P+ 19,50 0P) S dp = e 63)
B(po.r) !

In both cases, the constant C > 0 depends only on n (and n).

Proof The result is well-known and fairly easy. The boundedness is proven in
Lemma 3.17 of [23], while the Carleson bound is established in Lemma 4.11 in [23]
(which is itself a simple application of the Littlewood—Paley theory found in [49,
Section 1.6.3] to the bounded function Vb). O
Observe that the convention that we established shows that (V,b" ( p) T isan (n—1)-
dimensional horizontal vector. We define the map p : P x P+ — P x Pt as

ps(p, 1) == (p —t(Vb' (p)), 1 + b' (p)) (6.4)

if  # 0 and ps(p, 0) = b(p). Because the codimension of our boundary is 1 in our
paper, contrary to [23] which stands in the context of domains with higher codimen-
sional boundaries, our map is way easier than the one found in [23]. However, the
present mapping is still different from the one found in [44], and has the same weak
and strong features as the change of variable in [23]. Note that the i’" coordinate of
ps, 1 <i<n-—1,is

Ps(p. 1) = pi — 1dp,b' (p). (6.5)
Note that pg is continuous on P x P+ = R", because both tVb' and b’ — b converges

(uniformly in p € P) to 0 ast — 0. The map ps is C*° on R"\ P, and we compute
the Jacobian Jac of ps which is

I —13,,0,,b'(p) p;b' (p) ) (6.6)

Tac(p. 1) = (—ra,ap,.bf(m 20,6 (p) 1+ b (p)
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where i and j refer to respectively the line and the column of the matrix. We define
the approximation of the Jacobian Jac as

B I b (p)\ 1 V' (p)
"(—ap,-b’(m ! >_(—(Vpb’(p))T 1 ) ©D

m}

Lemma 6.8 We have the following pointwise bounds:

@) I =1 SIVpb'| < eo,

(i) [ Jac —J|| S 19,6 + 1V, Vpb'| S €0,
(i) |det(J) — 1| < |V, b'| < €0,
(iv) |det(Jac) — det(J)| < |9;b"| + 1V, V)],
) [|Jac)™" = T < 19:b] + 11V, Vb,
Vi) [Vp, det(D)] + 1V T I S IV Vb

In each estimate, the constants depend only on n and 1.

Proof Only a rapid proof is provided, and details are carried out in the proof of Lem-
mas 3.26, 4.12,4.13, and 4.15 in [23].

The items (i) and (ii) are direct consequences of (6.2) and the definitions of J and
Jac.

For items (iii) and (iv), we use the fact that the determinant is the sum of products
of coefficients of the matrix. More precisely, the Leibniz formula states that

n
det(M) := Y sgn(0) [ [ Mioq). (6.9)
oEeS, i=1
where S, is the sets of permutations of {1, ..., n} and sgn is the signature. So the

difference between the determinant of two matrices M| and M5 is the sum of products
of coefficients of M| and M, — M1, and each product contains at least one coefficient
of M, — M. With this observation, (iii) and (iv) follow from (i) and (ii).

The items (iii) and (iv) shows that both det(J) and det(Jac) are close to 1—say in
(1/2, 2)—as long as € is small enough. This implies that

1 1
det(Jac) det(J)|

det(J) — det(Jac)
det(Jac) det(J)

< bl + 1V, V,pb'|  (6.10)

by (iv). Cramer’s rule states that the coefficients of M —1 s the quotient of a linear
combination of product of coefficients of M over det(M). By using Cramer’s rule to
Jac and J, (6.10), and (ii), we obtain (V).

Finally, the bound on Vdet(J) and VJ~! are obtained by taking the gradient
respectively in (6.9) and in Cramer’s rule. O

Lemma6.11 Forany p € P andt € P\{0}, we have
(I = Ceo)|t] = dist(ps(p, 1), Ts) < |ps(p.1) = b(p)| = (1 + Ceo)lt] (6.12)
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and

los(p, 1) — b(p) — (0,1)| = Ceolt], (6.13)
where C > 0 depends only on n (and n).

Proof The lemma is an analogue of Lemma 3.40 in [23]. But since the lemma is key
to understand why ps is a bi-Lipschitz change of variable, and since it is much easier
in our case, we prove it carefully.

By definition of pgs,

ps(p, 1) = b(p) = (0,1) = (—1(Vb' (p))", b' (p) — b(p)).

So the mean value theorem applied to the continuous function ¢t — b (p) [recall that
b is Lipschitz and b’ is the convolution of b with a mollifier, so we even have a uniform
convergence of b’ to b] entails that

lps(p, 1) — b(p) — (0, )] < [1VB (p)| + |b' (p) — b(p)|
< [tVb' (p)| + 11| sup [3sb* (p)] S eolt] (614
s€(0,]t])

by (6.2). Therefore, (6.13) is proven and we have

los(p,t) — b(p)| < (1 + Cep)lt], (6.15)

is the upper bound in (6.12). The middle bound of (6.12) is immediate, since b(p) €
I's. It remains thus to prove the lower bound in (6.12). Let ¢ € P be such that
lps(p, 1) — b(g)| = dist(ps(p, 1), I's). We know that

[6(g) — b(p)l < 1b(g) — ps(p. )| + lps(p,t) — b(p)| < 2|ps(p,t) — b(p)| < 3]z,

if €9 < 1 is small enough, hence |¢ — p| < 3]¢] too. So

dist(ps(p, 1), I's) = |ps(p, 1) — b(g)]
> 1b(p) —b(g) + (0,0 — lps(p,t) — b(p) — (0, 1)]
> |b(p) — b(q) +t| — Ceolt]

by (6.13). But by Lemma 3.40, the function b is 2¢g-Lipschitz, so we can continue
with

dist(ps(p, 1), I's) = (1 — Ceo)|t| — |b(p) — b(q)]
> (1 = Cep)lt] = 2e0lp — g1 = (1 = C'eo)t].

The lemma follows. O

Lemma 6.16 The map ps is a bi-Lipschitz change of variable that maps P to I's.
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Proof See Theorem 3.53 in [23] for more details. We shall show that pgs is a bi-Lipschitz
change of variable from P x (0, 0co) to

Qf={(p.0) e P x P11t > b(p)}

and a similar argument also give that pgs is a bi-Lipschitz change of variable from
P x (—00,0) to

Qg = {(p.1) € P x P, t <b(p)}.

The lemma follows because we know that ps is continuous on P x PL.

First, we know by the lower bound in (6.12) that the range of ps(P x (0, 00)) never
intersects I's, so since ps is connected, it means that ps(P x (0, 00)) is included
in either Q; or Q2g. A quick analysis of ps, for instance (6.13), shows that ps(P x
(0, 00)) C Q.

At any point (p,t) € P x (0, 00) the Jacobian of ps is close to the identity,
as shown by (i) and (ii) of Lemma 6.8. So ps is a local diffeomorphism, and the
inversion function theorem shows that there exists a neighborhood V), ; C P x (0, 00)
of (p,t) such that pg is a bijection between V), ; and its range p(V) ;), which is a
neighborhood of ps(p, t). Since the Jacobian is uniformly close to the identity, all the
ps: Vpi = p(Vp,) are bi-Lipschitz maps with uniform Lipschitz constant.

If z € Q& we define the degree of the map ps as

N (z) := “number of points (p,t) € P x (0, 00) s.t. p(p,t) =z" € NU {+0o0}.

We want to prove that N(z) is constantly equal to 1. If this is true, then the lemma
is proven and we can construct the inverse p~! locally by inversing the appropriate
bijection ps: V= p(Vp).

We already know that the number of points that satisfy p(p, t) = z is countable,
because we can cover P x (0, 00) by a countable union of the neighborhoods V), ;
introduced before. Moreover, if N(z) > v > 0, then we can find v points (p;, ;) €
P x (0, oo) such that ps(p;, t;) = z and so v disjoint neighborhoods V, ; of (p;, ;).
Consequently, each point z’ in the neighborhood (); ps(V), ;) of z satisfies N (z) > v.
This proves that N is constant on any connected component, that is

N 1is constant on Q;

It remains to prove that N (z¢) = 1 for one point zg in ng Take pg far from the support
of b, for instance dist(pg, [1(Q(S)) > 99£(Q(S)) and typ = £(Q(S)). In this case, we
have ps(po, f0) = (po, fo) and dist(ps(po, o), ['s) = fo. Let (p1, 1) € P x (0, 00)
be such that ps(p1, t1) = (po, to), the bound (6.12) entails that |t; — fg| < Ceqlfy] <
£(Q(S)) and (6.12) implies that |p; — po| < Ceplt1] < £(Q(S)). Those conditions
force pj to stay far away from the support of b, which implies that ps(pi, ;1) =
(p1,t1) = (po, to). We just proved that N (po, o) = 1, as desired. O
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6.2 Properties of the operator Ls

Lemma6.17 Let L = —div AV be a uniformly elliptic operator satisfying (1.6) and
(1.7) on 2. Construct on pgl () the operator Ls = — div AsV with

As(p, t) == det(Jac(p, 1)) Jac™T (p, 1) A(ps(p, 1)) Jac~ (p, 1) (6.18)

for (p,t) € ,051 (R2). Then Lg is the conjugate operator of L by ps, that is, u o ps is
a weak solution to Ls(u o ps) = 0 in pgl (2) if and only if u is a weak solution to
Lu=0inQ.

Proof The maps ps is a bi-Lipschitz change of variable on R” = P x P, so the
construction (6.18) properly define a matrix of coefficients in LOQ(,og1 (RQ)).

Let u be a weak solution to Lu = 0 in 2. Then, for any ¢ € Cgo(,ogl(Q)), we
have

//Rn AsV(uo ps) - Vodpdt
= // det(Jac) Jac T (Ao ps)Jac™ V(u o ps) - Vo dp dt
= // ) det(Jac)(A o ps) Jac™! V(u o ps) - Jac™! Vo dp dt
= // det(Jac)(A o ps)(Vu o ps) - (Vg o pg'10 ps)dp dt

because V(f o ps) is equal to the matrix multiplication Jac(V f o ps) by definition of
the Jacobian. Recall that det(Jac) > 0, so doing the change of variable X = ps(p, 1)
gives

/ ASV(uopg)~Vgodpdt=// AVu~V[(po,o§1]dX. (6.19)
n Rn

The function ¢ o pgl may not be smooth anymore, but is still compactly supported

1,2

in Q and in W1°(Q) C W, (82), so ¢ o pgl is a valid test function for the weak

solution u, and so the right-hand side of (6.19) is 0. We conclude that
// AsV(uopg)-Vodpdt =0
RVL

for any ¢ € C(‘)’o(pgl(Q)), hence u o ps is a weak solution to Ls(u o ps) = 0 in

—1
ps' ().
The same reasoning shows that u is a weak solution to Lu = 0 in  whenever
u o ps is a weak solution to Ls(u o ps) = 0 in pgl (2). The lemma follows. O

We want to say that Ags satisfies the same Carleson-type condition as A o pg. For
instance, we want to say that VA € CMq—which implies (6 o ps)V(A o ps) €
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CM —1,,—will give that (6 0 p5)VAs € CM p5! However, it is not true, for the

ps () ()
simplSe reason that the Carleson estimates on Jac are related to the set R”\ P while the
ones on A o pgs are linked to the domain pgl (£2). Since Ag is the product of these
two objects, we only have Carleson estimates for As in the areas of R"” where ps(9£2)
looks like P.

Lemma 6.20 Assume that the matrix function A defined on 2 satisfies (1.6) and (1.7),
and can be decomposed as A = B + C where

[8VB| + |C| € CMq(M). (6.21)

Then the matrix As constructed in (6.18) can also be decomposed as As = Bs + Cs

where Bg satisfies (1.6) and (1.7) with the constant 2C 4, |tV Bg| is uniformly bounded
by CC 4, and

(1VBs| +1CsDL =1 e ) € C Mg p(C (€3 + M) (6.22)

for a constant C that depends only on n and the ellipticity constant C 4.
Proof Let A = B+ C as in the lemma. Without loss of generality, we can choose 13
to be a smooth average of A (see Lemma 2.1) and so B satisfies (1.6) and (1.7) with
the constant C 4 and |VB| < CC 4. Define
Bs :=det(J)J T (Bo ps)J !

and of course Cs := As — Bs. First, Lemma 6.8 shows that det(J) is close to 1
and J~! is close to the identity, so B satisfies (1.6) and (1.7) with the constant
(14Ceg)C 4 < 2C 4. Moreover, the same Lemma 6.8 gives that | det(J)|+]|J 1| < 3,
[ Jac —1I| < 3, and |V, ; det(J)| + |||Vp,,J_1||| < |Vp,,Vpb’|, and hence

IVBs| S 1(VB) o ps| + [V, Vpb'],

and

ICs| < |det(Jac) — det(J)| + || Jac™! —J || 4+ |C o ps]
S| |+ 11V, Vb | + |Co psl.

Lemma 6.1 entails that |1V, ; V,b'| < €9 < 1 < Cy, so Bg verifies [tVBs| < Cy, so

thus (6.22) is the only statement we still have to prove. Lemma 6.1 also implies that

|0;b"| + |th,thb’| € CMpx (0,00 (Ceg). Therefore, it suffices to establish that
(|tVBo ps|+ |Co pgl)]lpgl(wé(s)) € CMpy(0,00)(CM). (6.23)

Take pg € P and rp > 0. We want to show that

dt
// (ItVBo psl* +|Co psl®) —dp < CM(ro)" ™. (6.24)
B(po.ro)Nog ' (W5(S)) t
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If ps(B(po, r0)) N WE(S) = @, the left-hand side above is zero and there is nothing
to prove. Otherwise, pick a point X € pgs(B(po, ro)) N Wg-kz (S). The fact that X €
ps(B(po, ro)) means that

X —b(po)| < (1 + Ceop)ro, (6.25)

since ps(po) = b(po) and || Jac —I'|| < Cep by Lemma 6.8. Because b is 2¢€(-Lipschitz
with €g < 1, we deduce

|X —b(II(X))| = (1 + €)X — b(po)| = (1 +2Ce€p)ro. (6.26)
The fact that X € W (S) implies by (4.14) that
8(X) = (I +2€0)|X — b(II(X))| < 2ro (6.27)
thanks to (6.26). Moreover, if x € 92 is such that | X — x| = §(X),

lx = b(po)| < |x — b(IT(X))| + [6(TT(X) — b(po)|
1
< 2608(X) + (1 4+ €0)|TI(X) — pol < 570 + (I + €)X — b(po)| < 2ry
(6.28)
by using in order (4.16), the fact that b is 2¢p-Lipschitz, (6.27), and (6.25). Fix X €

ps(B(po, r0)) N W&(S) and xo € 9L such that [ Xy — xo| = §(X). The inequalities
(6.25) and (6.28) show that,

|X —xol < |X = b(po)| + [xo — b(po)| < 4ro for X € ps(B(po, r0)) N We(S),
that is

ps(B(po, r0)) N W&(S) C B(xo, 4ro). (6.29)
We are now ready to conclude. We make the change of variable X = pgs(p, s) in

(6.24), and since pgs is a bi-Lipschitz change of variable that almost preserves the
distances (because || Jac —I|| < Cep < 1), we obtain

dt
// 1 (|tVB°p3|2+ |C°PS|2)—dp
B(po,r0)Npg " (W (S)) t
; 2 2 dX
<2 (I dist(X, C)VB|= + |C]7) ————
B(x0,4r0)NWE(S) dist(X, T's)

dX
<4 // (8VB2 + 102 L5 < cMro)!
B(x0,4r0) 3(X)

by using (4.15) and then the fact that |§VB| 4 |C| € C Mg (M). The lemma follows. O
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6.3 Properties of the composition of the smooth distance by ps

The change of variable ps maps P x (PH\{0}) to R"\T's, so for any X € R"\I'g, the
quantities Npgl(x)(Y) and A(pgl(X)) make sense as N, ,(Y) and A(p, t), respec-

tively, where (p, t) = ,ogl (X). With this in mind, we have the following result.

Lemma 6.30 Forany Q € S, we have

with a constant C > 0 that depends only on n, C,, and B.

2
VDg(X) Npston 0

§(X)dX < Clay 26(0).
Dp(X)  dist(X, Apg ' (X)) (X)dX = Clagp(Q)0(Q)

(6.31)

Proof The lemma is a consequence of Corollary 5.52 and the definition of pg.
First, Lemma 4.1(d) entails that W (Q) C R"\I's, which means that the quantities
Npgl(x) and A(pgl(X)) are well defined in (6.31). Let X € Wq(Q) and set (p, t) =

ps! (X).
On one hand, Lemma 6.11 gives that

dist(X, T's) < |X — b(p)| < (1 + Cep)lt] < (1 + C'ep) dist(X, I's)

and

|X —b(p) —(0,1)] < Ceolt].
By projecting the left-hand side on P, the latter implies that

ITI(X) — p| < Ceolt|.
On the other hand, since X € Wq(Q), Lemma 4.13 gives that
dist(X, I's) = |X — b(IT(X))| = (1 + 2€0)3(X) = (1 + Cep) dist(X, T's),

and, if x € Q is such that | X — x| = §(X), then by (4.16),

[b(IT(X)) — x| < 2€08(X),
which implies that

ITI(X) — II(x)| < 2€08(X),
Altogether, we have

S(X)(1 —Cep) = 1] = (1 + Cep)d(X)
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and
dist(p, TI(Q)) < |p — I(x)| < |p — TI(X)| + [TI(X) — T1(x)| < Cepd(X).

If we throw in the fact that 6 (X) € [£(Q)/2, £(Q)] by definition of W (Q), then we
easily observe that p and ¢ satisfy the assumptions of Corollary 5.52, and so

vDpxX)  Nygian®)
Dg(X)  dist(X, Alpg (X))

< CUQ) oy p(Q) for X € Wq.

We conclude that
// vDg(X)  Nogtan @0
wo(o) | Dp(X) dist(X, Alog ' (X))
< CIWa(Q)I1E(0) a6 s(Q)IPL(Q) < Clag 5(Q)*0(Q)

§(X)dX

because |Wq(Q)| ~ o(Q)€(Q) by (4.8) and (1.1). The lemma follows. O
Lemma 6.32 We have

//ps’ (Wa(S)

where C > 0 depends only on n (and n).

Vi Jac(p. )Ny (ps(p. 1) 2
T W Ay | 1drdp = C@)’o (0

(6.33)

Proof From the definition, we can see that A (p, t) is the affine plane that goes through
the point b’ (p) and whose directions are given by the vectors (g, gVb'(p)), that is
A(p,t) is the codimension 1 plane that goes through b’(p) and with upward unit
normal vector

v 1 (-W(p)): 1 <—Vb’(p))
DL (= (Vb (p)T, 1) 1 1+ (Vb (p)]? v

The vector function N ;(X) is just +Np, ; or =N, ;, depending whether X lies above
or below A(p,t).

Observe that ps(p, 1) — b’ (p) = t(—(Vb'(p))T, 1), which means that b’ (p) is the
projection of ps(p, t) onto A(p, t) and that

dist(os(p, 1), A(p, ) = [t]|[(=(Vb' (p)", DI = ltly/ 1+ V6! ().

Moreover, ps(p, t) lies above A(p, t) if t > 0 and below otherwise, that is

sgn(r) (—be(m)
V14 Vb (p)? 1 '

Np,t(p(p’ t)) = Sgn(t)Np,t =
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From all this, we deduce

J(p. )Ny (ps(p.1) 1 ( 1 Vb’(p)) (—Vb’(p)>
dist(ps(p. ). A(p. 1)) — t(1+|V (p)|?) \~(Vb'(p)" 1 1

. 1 ORnfl _ Vi
—;( 1 )-7 (6.34)

Recall that | Jac —J| < |8;b| + [t V),V ,b"|. Together with (6.34), we obtain that the
left-hand side of (6.33) is equal to

I = //
ps' (Wa(S)

dt
< // (86" > + 11V, V,,b'?) — dp. (6.35)
P35 Wa(S)

2

|t| dtdp

Jac(p,t) — J(p, 1) (—Vbt(l?)>
t(1+ Vb (p)?) 1

It

Take X9 € Wgq(S), and notice that the set Wq(S) is included in the ball
B(b(I1(Xp)), 4£(Q(S))) by definition of Wq(S) and by (4.16). Since the Jaco-
bian of ps is close to the identity, pgl almost preserves the distance, and hence

pgl(WQ(S)) C B(I1(Xop), 5¢£(Q(S))). We conclude that

dt
1SS // (86" 1 + 11V, Vpb' 1?) — dp < (€0)*£(Q(S)" !
B(I1(X0),5£(Q(S5))) t
< (€0)*0(Q(S))

by Lemma 6.1 and then (1.1). The lemma follows. O

7 The flat case

In this section, we intend to prove an analogue of Theorem 1.12 when the boundary
is flat, that is when the domain is Q¢ := R’i. This is our main argument on the PDE
side (contrary to other sections which are devoted to geometric arguments) and the
general case of Chord-Arc Domains is eventually brought back to this simpler case.

We shall bring a little bit of flexibility in the following manner. We will allow €2 to
be different from R’} , but we shall stay away from the parts where 92 differs from
B]Ri with some cut-off functions. More exactly, we shall use cut-off functions ¢ that
guarantee that 6(X) := dist(X, d2) &~ ¢ whenever X = (x,7) € supp¢. We shall
simply use R"~! for 9R" = R"~! x {0}. We start with the precise definition of the
cut-off functions that we are allowing.

Definition 7.1 We say that ¢ € L°°(RQ2) is a cut-off function associated to both 92
and R*1if0 < ¢ =<1, and there is a constant Cy > 1 such that [V¢| < C¢,6_1,

(Cp)~"t] < 8(X) < Cylt| forall X = (x, 1) € supp o, (7.2)
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and there exists a collection of dyadic cubes {Q;};¢ I in Dyo such that

{Qi}iel, 1s finitely overlapping with an overlap of at most Cy, (7.3)
and
QN (supp¢) Nsupp(1 —¢) C () W&*(Q0). (74)
i€ly

The condition (7.2) allows us to say that
if, forx € 9Q and r > 0, B(x,r) Nsupp¢p # @,

then there exists y € R"~! such that B(x,r) C B(y, Cr); (7.5)

so we can pass from Carleson measures in  to Carleson measure in R”\R"~!. For

instance, we have
feCMaqM) = [, flappg € CMR,I\Rn_u(C[PM),

5Vg € CMa(M) = 1¢Vg € CMpn go-i (CyM). (7.6)

and vice versa. The conditions (7.3) and (7.4) ensure that 1 (supp ¢)nsupp(1—¢) (and hence
3V ¢) satisfies the Carleson measure condition on 2. So by (7.6),

|IV¢| + ]lsupp Vo + ]l(supp¢)ﬂsupp(l—¢) S CMRn\Rn—I (C(;}) (77)
And if the support of ¢ is contained in a ball of radius r centered on 02, then

//Q (IVolt + 1Vp|?) %dy <l (7.8)

We are ready to state the main result of the section.

Lemma7.9 Let Q be a Chord-Arc Domain and let L = —div AV be a uniformly
elliptic operator on Q, that is A verifies (1.6) and (1.7). Assume that the L*-elliptic
measure wr+ € Axo(0), where L* is the adjoint operator of L, and o is an Ahlfors’
regular measure on 0S2. Let ¢ be as in Definition 7.1 and be supported in a ball
B := B(x, r) centered on the boundary 0S2. Assume that the coefficients A can be
decomposed as A = B + C where

(11VB| + 1C) Lguppy € C Mg gn-1 (M). (7.10)

Then for any non-negative nontrivial weak solution u to Lu = 0 in 2B N Q with
zero trace on 02 N 2B, one has

JLw 2¢2drdy=//g|r|

I we actually only need the Carleson condition on the last column of B and C (instead of the full matrix).

2
p>drdy < C(1+ M)r"~,

Vu \Y%3
u t

Vin (%)

(7.11)
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where C depends only on the dimension n, the elliptic constant C 4, the 1-sided
CAD constants of 2, the constant Cy in Definition 7.1, and the intrinsic constants in
wrx € AOO(U).

The above lemma is the analogue of Theorem 2.21 from [25] in our context, and
part of our proof will follow the one from [25] but a new argument is needed to treat
the non-diagonal structure of A.

We need wp+ € Ax (o) for the proof of the following intermediate lemma. Essen-
tially, we need that the logarithm of the Poisson kernel lies in BM O. Let us state and
prove it directly in the form that we need.

Lemma7.12 Let 2, L, ¢, B := B(x,r), and u be as in Lemma 7.9. Assume that
wrx € Axo(0) as in Lemma 7.9. Then there exists K := K (u, B) such that

// IVl

where C depends only on n, C 4, the 1-sided CAD constants of 2, the constant Cy in
Definition 7.1, and the intrinsic constants in wpx € Axo(0).

1n( . )‘dtdy <o,

Proof of Lemma 7.12 The first step is to replace Ku/t by the elliptic measure. Take
Xo € B(x,r)NQand X1 € Q\B(x, 4r) to be two corkscrew points for x at the scale
r.If G(Y, X) is the Green function associated to L in 2 and {wf }xeq is the elliptic
measure associated to the adjoint L*, the CFMS estimates (Lemma 2.18) entails, for
Y e W& (Q) N B, that

u G, X)) K(Q)U(A)w*](Q)
u(Xo)  G(Xo,X») 1 a(Q) wX1(A)

where A = B N 9Q2. Moreover, if Y = (y,1) € supp¢p N WE*(Q), then £(Q) ~ |t]
by (7.2). Altogether, we have

u(y) ~ u(Xo) 0 (A) wx' (Q)
It ro(Q) wXi(a)

for Y = (y,1) € suppp N WE(Q). (7.13)

Set K :=r/u(Xo), and I}, := {i € Iy : W5*(Q;) intersects supp V¢ },

|12l ln(||)‘dtdy<Z€(Q s

Ku
ln( )‘ dtdy
E(00) |t

<a(A> wi“(Qi>>
(0 wf(A)

(7.14)

<ZU(Q)[

lEI/

by (7.4), (7.13), and the fact that |[WZ*(Q;)| ~ £(0:)a (Q).
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The second step is to use the fact that s Ao-absolutely continuous with respect
to 0. To that objective, we define for k € Z

o(A) a)* (Q ) k+1]

R r ok
Tii=iel)2 < 0 i =

and then Ej := UieZk Q;. Since the collection {Q;};ey, is finitely overlapping, due
to (7.3), the bound (7.14) becomes

//|¢|

We want thus to estimate o (Ej). Observe first that forany i € 1 q’b, Ws*z*(Q ;) intersects
supp ¢ C B.Therefore Q; and Ey have to be inside A* := C A for alarge C depending
only on the constant K** in (4.6). The finite overlapping (7.3) also implies that

ln( ) dtdy < 3 (1 + [k])o (Ep). (7.15)
| | keZ

(A o (B
o (Er) wX!(A*)

For k > 0, we have

o (E0) ok (En) _
o (A¥) wfl(a%) "~

(7.16)

The elliptic measure wf ! is Axo-absolutely continuous with respect to o by assump-

tion, so for k < 0, we use the characterization (iv) from Theorem 1.4.13 in [43] to
deduce

0
o(Ep) _ ' (Ex) ~ ok (@)9 < kb (7.17)
a(A*) ™~ wfl(A*) o (A%) ~ .

for some 6 € (0, 1) independent of x, r, and k. We reinject (7.16) and (7.17) in (7.15)
to conclude that

// Vol ln<l|<|)

because o is Ahlfors regular. The lemma follows. O

dtdy <o (A*) Y (1 + k)27 K0 < g (A%) < !
keZ

Proof of Lemma 7.9 The proofis divided in two parts: the first one treats the case where
Bi , = 0fori < n, and the second one shows that we can come back to the first case
by a change of variable, by adapting the method presented in [32].

Observe that ¢ can be decomposed as ¢ = ¢4 + ¢ where ¢+ = 1;-0¢ and
¢_ = 1;.0¢. Both ¢, and ¢_ are as in Definition 7.1 with constant Cy. So it is
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enough to prove the lemma while assuming
supp¢ C {r > 0} =R’ (7.18)

The proof of the case supp ¢ C R” is of course identical up to obvious changes.

Step 1: Case where B; , = 0 for i < n on supp ¢ and B satisfies (1.6) and (1.7) with
the same constant C 4 as A. If b := B3, ,, this assumption on 3 implies that

BVi - Vv = b (7.19)
whenever v € Wllo’cl(Q) and
Co ' <b<cCa. (7.20)

We want to prove (7.11) with the assumption (7.18), and for this, we intend to establish
that

2 W
T = // t’Vln (%)‘ G didy < T "7 4+, (7.21)
+

which implies the desired inequality (7.11) provided that T is a priori finite. However
that is not necessary the case, because some problems can occur when ¢ is close to 0.
So we take ¥ € C*°(R) such that ¥ (t) = O whent < 1, ¥ (¢) = 1 whent > 2, and
0 < ¢ < 1. We construct then Y (Y) = 1/f(2k8(Y)) and ¢ = @Y. It is not very
hard to see that

supp Vi == {X € @, 27" <s(x) <2y < ([ W&
Qehy

and therefore that ¢y is as in Definition 7.1 (with Cy, = Cy + 1). The quantity

T (k) :=//1t‘VIn<b; ¢kdtdy_//

is finite, because ¢ is compactly supported in both  and R’} (the fact that Vu /u
is in leoc(Q) for a non-negative nontrivial solution to Lu = 0 is a consequence of
the Caccioppoli inequality and the Harnack inequality). So, we prove (7.21) for T (k)
instead of T, which implies T'(k) < r"~! as we said, and take k — oo to deduce
(7.11).

We are now ready for the core part of the proof, which can be seen as an elaborate
integration by parts. Our previous discussion established that we (only) have to prove
(7.21), and that we can assume that ¢ is compactly supported in N R, . We use the
ellipticity of A and the boundedness of b to write

T—//n

Vu

dtdy

@ Springer



2702 J. Feneuil et al.

< C'A//n <@—2> (%—?)q’)zdtdy
_CA<// AV”.<V”_Vt>t¢2dtd // ﬂ Vin )t¢2dtdy>
Rn n

= CA(T] + 1).

We deal first with 7>. We use the fact that A = 5 + C and (7.19) to obtain

c
//n E),ln qbdtdy // EVt-Vln(%)qudtdy:=T21+T22.
+

The term 7>, can be then bounded with the help of the Cauchy—Schwarz inequality
as follows

1 1
dt  \* 2 .
T =67 ( [ 10202 S ay) ([ e|vm(3)] waray) 5o
R" ! R" t

by (7.10). As for T»1, observe that multiplying by any constant K inside the logarithm
will not change the term (because we differentiate the logarithm). As a consequence,

we have
// 8,1n (;5 dtdy—// ln 8 [qS ldtdy
//” Vgl

by successively using integration by parts and Lemma 7.12.
We turn to 7, and we want now to use the fact that u is a weak solution to Lu = 0.
So we notice that

_//n ?vu.ve) > drdy
—/ . AV - v(;z) dtdy+2/ . AVu V¢( ¢)dtdy

¢2
—/ AVu - Vb (b )dtdy —T11 + 2T, — T13.

17

IA

1n( t )‘dtdy<r” !

T,

Since ¢ is compactly supported, we have that u > €, on supp ¢ (by the Harnack
inequality, see Lemma 2.15) and Vu € LlOC(Q) (by the Caccioppoli inequality, see

Lemma 2.14). Therefore t¢p? /(bu) is a valid test function for the solution u € WIL’CZ ()
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to Lu = 0, and then 771 = 0. As for T1,, we have
A [V Vit A
T = // — (—u — —) ~V¢)(t¢)dtdy+// —Vit-Voodtdy
" b U t R" b
= Tio1 + Ti22.

The term Ty is similar to T5;. The boundedness of .A/b and the Cauchy—Schwarz
inequality infer that

1 1
5 dt 2 u\|2 o, 2 i1 1
i < 1velr Lay r‘vm (—)‘ Q2didy| <r7T?
R" t R" 1t
+ +

by (7.8). The quantity 7727 is even easier since

Tin S // \Voldtdy <",
R!

again by (7.8). It remains to bound 773. We start as for 71> by writing

Vu Vi 1¢? 2
Ty = // A(—”——)-Vb%dtdy+/ .AVt~Vb¢—2dtdy
R" b R" b

u t
= Tiz1 + Ti32.

The term 7737 is like 7121, and by using tVb € CMm instead of tV¢ € CM]R’_;_ s

we obtain that 7131 < r=D/2TV2 The term T13> does not contain the solution u,
but it is a bit harder than 777> to deal with, because Vb is not as nice as V¢. We use
A =B+ Cand (7.19) to get

2 2
T3 = / (0:b) % dtdy + // CVt-Vb (Z—Z dtdy = Ti3p1 + T1322.
R} 1
We easily deal with T7322 by using the Cauchy—Schwarz inequality as follows:

1 1
B dt 2 dt 2 B
Tism < 15712 (// |C|2¢>2—dy) < // |Nb|2¢2—dy) <l
R" f R” !

by (7.10). As last, observe that

Ti31 = // d[In(b)p?] dr dy — // d¢ ¢ In(b)dt dy,
R" R"
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but the first integral in the right-hand side above is zero, so
T2l S | ln(b)noo//w il drdy S,
+

by (7.8) and the fact that b ~ 1. The inequality (7.11) under the three assumptions
(7.19), (7.20), and (7.10) follows.

Step 2: We can assume that ||7 |V, 5]|| o Is as small as we want.
We construct

A= Ap+ (1 —)I, (7.22)

where [ is the identity matrix. Note that Ais elliptic with the same elliptic constant
C 4 as A. We choose then a bump function 6 € C§°(IR") supported in B(0, 1/10), that
is0 <60 <1land [[p,6dX = 1. We construct 6y ,(z, ) = t"6(~, =), which
satisfies [[, 0y,, = 1, and then

By, 1) := // A6y ni dzds. (7.23)
Rn

foralarge N to be fixed later to ensure that (7.28) below is invertible. Since Bis some
average of A, then

Bis elliptic and bounded with the same constant C 4 as A and A. (7.24)

The construction is similar to the one done in Lemma 2.1, so we do not write the
details again. Observe also that

~ 1~ ~ ~
tVyB(y, D] S N”A”oo and  |79,B(y, )| < I Alloo- (7.25)

In addition, we have that
~ 1
IVB(y, )] St // <|V3|¢> + Vol + —ICI¢> dzds,
Bnt/10(y,N1) !

and if C denotes (A - E)]lsupp¢, the Poincaré inequality entails that

3t

~ ds
[ [ eesrta:
Ax,t) Jt s

ONt ds
= / / (s21V B2 +1C1R0% + 521V + [T upp prrsapii-o 1) = dz.
JAx,2Nn) Jt S
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which means that 1|VB| + |C| € C Mg by (7.10), and (7.7).

Step 3: The change of variable. We write B as the block matrix

= __(B1 B2
B= (33 . ) (7.26)

where b is the scalar function IASJ’,,,,,, so Bj is a matrix of order n — 1, By and B3
are respectively a vertical and a horizontal vector of length n — 1. We use v for the
horizontal vector v = —(B»)T /b, and we define

oy, 1) = (y+rtv(y, 1), 1), (7.27)

which is a Lipschitz map from R’ to R’ (since v and ¢|Vv]| are uniformly bounded,
see (7.24) and (7.25)), and we compute its Jacobian

_(I+1tVyv 0
Jac, == <v . 1). (7.28)

We can choose N big enough in (7.25) such that Jac, is invertible and even
det(Jacy,) > 1/2. Let J,, be the matrix

J, = <£ (1)> . (7.29)
We easily have that
[Jac, — J,| + |det(Jac,0)’1 -1 <tV < 1tVB. (7.30)
We aim to use p for a change of variable. If u is a weak solution to L = — div AV,
then u o p~! is solution to L, = —div(A4, o p~ 1)V where
A, =det(Jac,) ' (Jac,)T AJac,,. (7.31)

We want to compute A,. To lighten the notation, we write Oc s for a scalar function,
a vector, or a matrix that satisfies the Carleson measure condition with respect to R” ,
i.e. Ocpy can change from one line to another as long as O¢cy € C Mg . So (7.30)
becomes

Jac, =J, +Ocy and det(Jac,) ' =14 Ocy. (7.32)

@ Springer



2706 J. Feneuil et al.

Remember that by construction, the matrix A equals B+C =B+ Ocy on supp ¢,
and that Jac, and A are uniformly bounded, so

Iv B B 10
( suppqﬁ)-Ap = ]lsupqu <0 1 ) <B3 b) (U l) + OCM

By + vI By + Byv + bvvT By + boT
= Lsuppg B; + bv b

b(By + v B3 + Byv + bvvT) 0
= Tsuppy — (BT b

>+OCM

) +Ocum

s (7.33)

with our choices of v. We write C,, for (A, — By)lsuppyp = Ocm. The matrices
B, o p~ ! and C, o0 p~! satisfy (7.10) (because the Carleson measure condition is
stable under bi-Lipschitz transformations) and B, o o~ ! has the structure (7.19) as in
Step 1. So Step 1 gives that

//isw

If s (and ¢) is also used, by notation abuse, for the projection on the last coordinate,
then

2 \Y vi|?
// t’Vln(E)’ ¢2dldy=// t—u——
n t n u
+ +
_// ; Jach(uop_l)op t
n u
n

<// ; Jach(uop_l)op Jac,(Vs)op 2

' $>dtdy
u sop
//IR’!

Yet, p is a bi-Lipschitz change of variable, so Jac, and det(J acp)_l are uniformly
bounded, and we have

v -1 v 2
115// t‘ (wopHop ( S)op' & di dy
n u SOIO
// Vwop™) 1) Vs |2
n uop—- N
:// S
lj»

o,o_1

2
)’ p*opldsdz <"l (7.34)

¢>drdy

]acp(Vs) °op Vt
sop

$*didy =1, + .

¢2 o ,0_1 dsdz

_ 2
p )‘ ¢?opldsdz <! (7.35)

u
vm(
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by (7.34). As for I, we simply observe that s o p = ¢ and
Jacy,(Vs)o p =Vt

to deduce that /5 = 0. The lemma follows. O

8 Proof of Theorem 1.21

In this section we prove Theorem 1.21, using the same strategy as our proof of Theo-
rem 1.12. As mentioned in the introduction, we shall explain how to change the 5-step
sketch of proof given in Sect. 1.3 to prove Theorem 1.21.

Fix a bounded solution u of Lu = 0 in  with |lul/zq) < 1 and a ball B =
B(xg, r) centered on 92 with radius r. By the same argument as Step 1 in Sect. 1.3,
it suffices to show that there exists some constant C € (0, oo) depending only on n,
M and the UR constants of 9€2, such that

1 = Z // |Vu(X)|25(X)dX < Co(Qop) (8.1)
0eDya(Qo) Wa(0)

for any cube Q¢ € Dy that satisfies Qo C %B NaQ2and £(Qg) < 27 8.

Then observe that if E C Q2 is a Whitney region, that is, E C %B and diam(E) <
K§(E), then

// |Vul?8dX < Cg diam(E)~" // lul>dX < CxS(E)" !, (8.2)
E E*

by the Caccioppoli inequality and [|u[| ;) < 1, where E* is an enlargement of E.
This bound (8.2) is the analogue of (1.26), and proves Step 2.

Step 3 is not modified. We pick 0 < €; < €y < 1 and we use the corona decom-
position constructed in Sect. 3 to decompose [ as follows.

= > // IVulPsdX + // VulPsdX =L+ Y s
0eB(Qg) 7/ Wa (@) 8e6(0g) 7 We(® Se(0)

By (8.2) and (3.19),

L=C Y €@ " <Co(Qp).
0eB(Qo)

Step 4 is significantly simpler for Theorem 1.21, because we do not need any
estimate on the smooth distance Dg, but the spirit is the same. That is, by using the bi-
Lipschitz map ps constructed in Sect. 6, Is can be turned into an integral on R” \R”” ,
which can be estimated by an integration by parts argument. More precisely, for any
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2708 J. Feneuil et al.

fixed S € G(Qy),
Is = // 1 |(Vu) o ps(p, )1* 8 o ps(p, t) det Jac(p, t)dpdt
ps' (Wa(S)
< 2/ IV (u o ps(p, 1)) dist(os(p, 1), T's) (Ws o ps(p, 1))* dpdt
< 3/ IVo(p, D12 [t ¢(p, )?dpdt, v=uops, ¢=Wsops

by (4.15), Lemmata 4.1(d) and 6.8, as well as (6.12), for ¢( sufficiently small.

The fifth step consists roughly in proving the result in R”\IR"~!. The function ¢ is
the same as the one used to prove Theorem 1.12, in particular it is a cutoff function
associated to both ,ogl (32) and R"~! as defined in Definition 7.1, and it satisfies

supp¢ C pg ' (W5(S)), (8.3)

and
//|V¢|drdp+/ Vo tdidp < 0 (Q(S)), (8.4)

where the implicit constant depends on n and the AR constant in (1.1). Notice that
v = u o ps is a bounded solution of Ls = —div.AsV that satisfies ||v||;~ < 1,
where Ag is defined in (6.18). By Lemma 6.20, Is < Co (Q(S)) will follow from the
following lemma, which is essentially a result in R”\R”~!.

Lemma8.5 Let L = —div. AV be a uniformly elliptic operator on Qs := pgl ().
Assume that the coefficients A can be decomposed as A = B + C where

(V8| + IC) Lsuppg € CMpn a1 (M), (8.6)

where ¢ = Vs o pgs is as above. Then for any solution v of Lv = 0 in pgl () that
satisfies |v|| o < 1, there holds

//,,\Rnl Vo> 1] drdy < C(1+ M)a (Q(S)), (8.7)

where C depends only on the dimension n, the elliptic constant C 4, the AR constant
of 02, and the implicit constant in (8.4).

The proof of this lemma is similar to the proof of Lemma 7.9, except that there is no
need to invoke the CFMS estimates and A, as in Lemma 7.12, essentially because v
is bounded and we do not need information of v on the boundary. For the same reason,
with the properties of the cutoff function ¢ in mind, we can forget about the domain
Qs, and in particular, we do not need the corkscrew and Harnack chain conditions in
the proof.
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Proof of Lemma 8.5 We can decompose ¢ = ¢ 1;-0 + ¢ ;-0 := ¢4+ + ¢_ and prove
the result for each of the functions ¢4 and ¢_, and since the proof is the same in
both cases (up to a sign), we can restrain ourselves as in the proof of Lemma 7.9 to
the case where ¢ = ¢1;-¢. By an approximation argument as in Step 1 of the proof
of Lemma 7.9, we can assume that 7' := ffR’i |Vv|? tp2dydt is finite, and that ¢ is

compactly supported in € N R’} . We first assume that 3 has the special structure that
B, =0 foralll <i<n-—1, B,,=0b. (8.8)

Then for any f € W(} ’Z(R’i),

//SVf~thydt = //8,fdydt =0. (8.9)

Using ellipticity of .4 and boundedness of b, we write
T < Ci// ?Vv -V ¢>2tdydt
- cj{ //Avv v (u¢2b—1z) dydi — / AVy -V (¢2b—1) vt dydt
—/ AV - Vi v¢2b—1dydt}
_ —Cj{ / AVy .V (¢2b—1) vt dydt + / AV . Vi v¢2b—1dydt}
= —C4(T1 + 1)
since Lv = 0. We write T as

T =2//AVU-V¢¢b’]vtdydt —/ AVv - Vb ¢?b 2vi dydt =: Tyy — Tio.

By Cauchy—Schwarz and Young’s inequalities, as well as the boundedness of v and
bs

c;’ c;’
Tl = <A +c/ Vgl rdydi, [Tl < “2-7 +c/ Vb2 1g2dedy.
So (8.4) and (8.6), as well as (8.3) give that
C2
ITil < =AT + CeQ®)"".
For T», we write

_l A 2.2 _ A 2
Tg_z//bV(v¢)~thydt //bV¢-Vtv o dydt
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// v ¢> - Vtdydt — // —Vo - Vi v? ¢dydt =: Tr1 + T

by writing A = B + C and applying (8.9). For T»;, we use Cauchy—Schwarz and
Young’s inequalities, and get

T < ’/ CVv - Vivgp?b~ ' dydt +2’/ CV¢ - Viv b 'dydr
e . | -
< %T + C// ICI1% o2t 'dydr + // |Vg?| tdydt < TAT + CLQ(S)"!

by the boundedness of v, (8.4), (8.6), and (8.3). The boundedness of the coefficients
and v implies that

T < c//wmdydr < L)

by (8.4). Altogether, we have obtained that 7 < %T + Ce(Q(S))" !, and thus the
desired estimate (8.7) follows.

We claim that the lemma reduces to the case when (8.8) holds by almost the same
argument as in Steps 2 and 3 in the proof of Lemma 7.9. That is, we can assume
that || |VyB ] tHOO < QNA with N to be chosen to be sufficiently large, and then we do
a change of variables, which produces the structure (8.8) in the conjugate operator.
The only difference from the proof of Lemma 7.9 is that now we need to choose
v = —B3/b in the bi-Lipschitz map p defined in (7.27) because we want B3 +bv = 0
in (7.33). We leave the details to the reader. m]

9 The converse

In this section, we show that (v) —= (i) in Theorem 1.12, that is, we establish that
under certain conditions on the domain €2 and the operator L, the Carleson condition
(1.14) on the Green function implies that 92 is uniformly rectifiable. More precisely,
we prove the following.

Theorem 9.1 Let Q be a 1-sided Chord-Arc Domain (bounded or unbounded) and
let L = —div. AV be a uniformly elliptic operator which satisfies the weak DKP
condition with constant M € (0, 00) on Q. Let Xo € 2, and when 2 is unbounded,
Xo can be 0o. We write GX0 for the Green function of L with pole at X. Suppose that
there exists C € (0, 00) and B > 0 such that for all balls B centered at the boundary
and such that Xo ¢ 2B, we have

Jovs

Then 0X2 is uniformly rectifiable.

vGXo  vDg |
GXo  Dg

DgdX < Co(BNIQ). 9.2)
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In [30, Theorem 7.1], uniform rectifiability is obtained from some weak condition
on the Green function, namely, G* being prevalently close to Dg. Following [30], we
say that G*° is prevalently close to Dy if for each choice of € > 0 and M > 1, the set
Gg D (e, M) of pairs (x,r) € 92 x (0, 0o) such that there exists a positive constant
¢ > 0, with

|Dg(X) —cG®(X)| <er forX € QN B(x, Mr),

is Carleson-prevalent.

Definition 9.3 (Carleson-prevalent) We say that G C 92 x (0, oo) is a Carleson-
prevalent set if there exists a constant C > 0 such that for every x € dQ2 and r > 0,

d dt
/ / 1y, 2T _ pn1,
yedQNB(x,r) J0<t<r t

One could say that our condition (9.2) is stronger than G*° being prevalently close to
Dg, and so the theorem follows from [30]. But actually, it is not so easy to link the two
conditions directly. Nonetheless, we can use Chebyshev’s inequality to derive a weak
condition from (9.2), which can be used as a replacement of G* being prevalently
close to Dg in the proof.

We will soon see that the condition on the operator in Theorem 9.1 can be relaxed.
Again following [30], given an elliptic operator L = —div.AV, we say that L is
locally sufficiently close to a constant coefficient elliptic operator if for every choice
of t > 0and K > 1, G..(t, K) is a Carleson prevalent set, where G..(t, K) is the
set of pairs (x, r) € 32 x (0, co) such that there is a constant matrix Ag = Ag(x, r)
such that

// JAX) — AgldX < Tr",
XeWg(x,r)

where
Wk (x,r) = {x € QN B(x, Kr) : dist(X, 9Q) > K_lr} . (9.4)

We will actually prove Theorem 9.1 for elliptic operators L that are sufficiently close
locally to a constant coefficient elliptic operator.

The first step of deriving weak conditions from the strong conditions on the operator
and G*° is the observation that for any integrable function F, if there is a constant
C € (0, 0o) such that

// |F(Y)|dY < Cr" ! forx € 9Q,r > 0,
B(x,r)N$2
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then for any K > 1,

/ / ]f[ |F(Y)|dY dido(y) < CK"™ /"1 (9.5)
yeB(x,r)NAQ2 JO<t<rJJ Wi (y,1)

for x € 02, r > 0. This follows immediately from Fubini’s theorem and the fact that
Wk (x, r) defined in (9.4) is a Whitney region which is away from the boundary.

Lemma 9.6 (1) Let L = — div AV be a uniformly elliptic operator which satisfies the
weak DKP condition with constant M € (0, 00) on Q2. Then L is locally sufficiently
close to a constant coefficient elliptic operator.

(2) If GX0 satisfies (9.2) for all B centered at the boundary and such that Xy ¢ 2B,
then for every choice of € > 0 and K > 1, the set

GXo(e, K) = {(x,r) € 02 x (0,00) : Xo ¢ B(x,2Kr) and

G¥ A\
// Vin (—(X))
Wi (x,r) Dg

Dp(X)dX < e r”*‘} 9.7)
is Carleson-prevalent.

Proof Both results follow from the previous observation (9.5) and Chebyshev’s
inequality. In fact, for (1), we have A = B + C such that for any x € 92 and
r>0,

1
/ / ]5[ (|VB|28+ Ic|? —> dY dtdo(y) < M K"~ 1r"=1
yeB(x,r)NQ JO<t<r ) Wk (y,t) 8

9.8)

By the Poincaré inequality, the left-hand side is bounded from below by

2 _
C/ / ]5[ (18 = Bwgn[* +1C) av (ko di do ()
yeB(x,r)NQ JO<t<r ) Wk (y,t)

¢ ) )
= z/ / ﬂ (|"4_ (B)WK(y,t)| )dY(Kt) Ydtdo (y)
yEB(x,r)NQ JO<t<r I Wk (y,1)
€t dtdo(y)

P— LG @ k) (y, 1) ————,
2 Kntl ~/y€B(x,r)ﬂSZ /0<t<r < t

where we have used the fact that (B)w (y,1) is a constant matrix and the definition of
the set G (7, K). Combining with (9.8), we have that

dtdo(y) CMK™ ,_
/ / ﬂGczr(T’K)c (yv t) S rn 1 ,
YEB(x,r)NQ JO<t<r t -

which proves (1).
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Now we justify (2). Lete > 0, K > 1 and X € Q2 be fixed, and let B be a ball of
radius r centered at the boundary. Our goal is to show that

dtdo(y)
‘ Tgxoe, ) (v D= —— = Cexo (BN IQ).
yeBNIQ JO<t<r

We discuss two cases. If Xy ¢ 4K B, then since GXo satisfies (9.2) for the ball 2K B,

we have that
Xo
Vin (G > (Y)
Dg

/yeBﬂ&Q /()<t<r]§ZWK(}'J)

Notice that the assumption Xo ¢ 4K B guarantees that Xo ¢ B(y,2Kt) for all
y e BN3Q2and 0 < t < r. Therefore, if (y, 1) € GX0(e, K), then

X
// Vin (G 0) Y)
Wi (v,1) Dg

From this, it follows that

2

Dg(Y)dYdtdo(y) < cK" 1

2

Dg(Y)dY > er" .

dtdo(y) CK*!
Lgxo(e gye s 1) = c(BNAQ). (9.9
yeBNIQ JO0<t<r

Now let us deal with the case where Xo € 4KB. For x € B N 92, we define
By := B(x,|x — X0|/20K). Since {By}xcp covers B N 92, we can find a non-
overlapping subcollection {B;};<; such that {5B;};c; covers BN d2. We write r; > 0
for the radius of B; and we define

S:=(BNaIR) x (0, r)\U(SB,- N as2) x (0, 5r;)

iel
We have

dtdo(y)
/ / ]ngO(e’K)c o, 1) ——
yeBNIQ JO0<t<r

dtdo(y)
< Tox (Y, ) ————
Z /yGSBiQBQ /O<l<5r,- g0 K) t

iel
dtdo(y)
+ SﬂgXO(E,K)C(y7 t)f = Tl + T2

Since X ¢ 20K B;, we can apply (9.9), and we have

T) < Cx.c ZG(SB,' NaQ) < ZO‘(B,‘ NQ) <o (2BNIN) < o (BNIY),

iel iel
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because {B;} is a non-overlapping and included in 2B. It remains to prove a similar
bound on 75. Remark first that

ScC{(y,t) ed2x (0,r): |y — Xol/100K < ¢},

and therefore

r d dt
T < / / doWdt _ o gen-1,n-1 <o (BNIQ).
0 JyeB(X(,100K1)NIQ t

The lemma follows. O

Before we continue, we need to adapt Theorem 2.19 in [30] to our situation, that is
we want to construct a positive solution in a domain which is the limit of a sequence
of domains.

Lemma 9.10 Let Qi be a sequence of 1-sided Chord-Arc domains in R™ with uniform
1-sided CAD constants. Let 02 be its Ahlfors regular boundary equipped with an
Ahlfors regular measure oy (such that the constant in (1.1) is uniform in k).

Assume that 0 € 02, and diam 2 > 2k, Moreover, assume that the 02 and
converges to Ex and Q locally in the Hausdorff distance, that is, for any j € N,
we have

im dy i (Eoo, 9Q) =0 and  1im dq 5 (0. Q) = 0.
k—oo k—o0

Here, for a couple of sets (E, F), we define the Hausdorff distance

dy,i(E, F) = sup dist(x, F) + sup dist(y, E).
' x€ENB(0,2)) yeFNB(0,2/)

Then Eso = 0200, Exo is an unbounded (n — 1)-Ahlfors regular set, Q2 is a 1-sided
Chord-Arc Domain. Moreover, if the Radon measure o is any weak-* limit of the oy,
then o is an Ahlfors regular measure on Eqoo = 0Q20.

Let Yy be a corkscrew point of Qs for the boundary point O at the scale 1. If
Ly = —divAxVand Loo = — div AoV are operators—in Qy and Q2o respectively—
that satisfies

klim Ak — Asoll L1y = O for any ball B such that 2B C 2o,
—00

and if uy are positive solutions in Q2 N B(0, 251y 10 Liug = 0 with Truy = 0
on 02, N B(O, 2k+1), then the sequence of functions vy := uy/ux(Yo) converges,
uniformly on every compact subset of Qeo, and in Wllo’cz(Qoo), to G°, the unique
Green function with pole at infinity which verifies G*°(Yp) = 1.

Proof The geometric properties of E~, and 2, can be derived verbatim as in the proof
of Theorem 2.19 in [30]. The uniform convergence of a subsequence of vy on any
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compact set K € Q24 follows from the standard argument of uniform boundedness of
{vi} on K, and Holder continuity of solutions. The Caccioppoli inequalitg would give

the weak convergence of another subsequence of v; to some vy, in WIL’C (R60). This

is enough to show that v, € Wﬂ)’f(Qoo) N C(Rxo) is a weak solution of Lagvse = 0
in Qo, as wWe can write

// AxoVUs - Vpd X = // Asxoc(Vvso — Vug) - Ve dX
Qoo Qoo

+ // (Ao — Ak)Vur - Ve dX
Qoo

for every ¢ € C3°(Q) and any k sufficiently big so that supp ¢ C €, N B(0, 2K+,
Therefore, voo = G is the Green function with pole at infinity for L in Q4 and
normalized so that G°(Yy) = 1.

That v converges to G*° (strongly) in WlL’CZ(QOO) needs more work, but we can
directly copy the proof of Lemma 2.29 in [30]. Roughly speaking, for any fixed ball
B with 4B C 2, we would need to introduce an intermediate function Vi, which
satisfies Ly Vi = 0 in B, for some p € (r, 2r), and Vi = vy on the sphere 05,. We
refer the readers to [19] for the details. O

We shall need the following result on the compactness of closed sets, which has
been proved in [20].

Lemma9.11 [20, Lemma 8.2] Let {E j} be a sequence of non-empty closed subsets
of R", and suppose that there exists an v > 0 such that E; N B(0,7r) # @ forall j.
Then there is a subsequence of { E; } that converges to a nonempty closed subset E of
R" locally in the Hausdorff distance.

Now we are ready to prove the main theorem of this section.

Proof of Theorem 9.1 We prove that €2 is uniformly rectifiable by showing that Qex;
satisfies the corkscrew condition (see Lemma 2.13). Following the proof of Theo-
rem 7.1 in [30], it suffices to show that the set Gcp(c) is Carleson-prevalent for some
¢ > 0, where G¢ep(c) is the set of pairs (x, r) € 92 x (0, 00) such that we can find
Z1,7Z> € B(x,r), that lie in different connected components of R"\d€2, and such
that dist(Z;, d2) > cr fori = 1,2. To do that, we will rely on the fact that, on
1-sided CAD domains, if the elliptic measure is comparable to the surface measure,
then the complement Q2 satisfies the corkscrew condition, which is implied by the
main result of [38].

Thanks to Lemma 9.6, for each choice of ¢ > 0 and M > 1, the sets GX0 (e, M)
and G (e, M) are Carleson-prevalent. So it suffices to show that

GX0(e, M) N Gee(e, M) C Gep(c) forsomec > 0,¢ >0, and M > 1.
9.12)

We prove by contradiction. Assume that (9.12) is false, then for ¢y = ¢ = M, =
2% we can find a 1-sided NTA domain Q bounded by an Ahlfors regular set 92,
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a point Xy € Qi (or X € Q U {oo} when € is unbounded), an elliptic operator
Ly = —div A,V that is locally sufficiently close to a constant coefficient elliptic
operator, and a pair (x, rx) € 9k x (0, oo) for which

(X, %) € GX* (egs My) N Gee ek, Mi)\Gep (ck)-

By translation and dilation invariance, we can assume that x; = 0 and ry = 1.
Notice that (0,1) € GXt(ex, My) implies that X; ¢ B(0,2%), and in particular,
diam(2;) > 2k and X} tends to infinity as k — oo.

By Lemma 9.11, we can extract a subsequence so that £2; converges to a limit Q4.
ByLemma9.10, Q4 is 1-sided NTA, 02, converges to 2 which is Ahlfors regular.
Moreover, by Lemma 9.11, we can extract a further subsequence so that the Ahlfors
regular measure oy given on 02 converges weakly to an Ahlfors regular measure o.
Since (0, 1) € Ge. (275, 28), Ay converges to some constant matrix 4y in LllOC (Ro0).

Choose a corkscrew point Yy € Q4 for some ball By centered on 92, and let
Gy = Gf" be the Green function for L; in €, normalized so that G;(Yy) =
Since L;G;y = 0 in 2 N B(0, 2]‘), Lemma 9.10 asserts that G¥ converges to the
Green function G = G with pole at infinity for the constant-coefficient operator
Lo = —div ApV, uniformly on compact sets of 2, and in WIL’Cz(QOO). Since oy —o0,
Dy = Dg,q, converges to D = Dg , uniformly on compact sets of 2., and so does
V Dy to VD. Since (0, 1) € GX+ 27k, 25,

//Wzk ©,1)

where Wy« (0, 1) is the Whitney region defined as in (9.4) for €. Fix any compact set

K € Q4. We claim that
Dy (X)dX = //

In fact, since G is a positive solution of LoG = 0in Q4 with G(Yy) = 1, the Harnack
inequality implies that G > ¢g on K for some cp > 0. Then the uniform convergence

VGy VDi|?

G D Dy(X)dX <275 forallk € Zy,  (9.13)

VGk VDk
Dy

VG VDJ?

D(X)dX. (9.14)

k— o0

of G to G on K implies that for k large enough, {Gk_1 } is uniformly bounded on K,

and so Gk_1 converges uniformly to G~! on K. Then (9.14) follows from the fact that
V Gy, converges to VG in LZ(K ), the uniform convergence of Gk_l to G~ on K, and

the uniform convergences of V Dy and Dk_1 to VD and D!,
Now by (9.13) and (9.14), we get that

o )

and so G = CDg, in Q. We can copy the proof of Theorem 7.1 of [30] verba-
tim from now on to conclude that this leads to a contradiction. Roughly speaking,

D(X)dX =0,
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Fig.1 The domain ©

G = CDg, would imply that the elliptic measure w™ for Lo, with a pole at oo,
is comparable to H’|1a_szloo- Then by [38] Theorem 1.6 one can conclude that 924

is uniformly rectifiable, and hence R” \500 satisfies the corkscrew condition, which
contradicts the assumption that (0, 1) = (x, r¢) € Gep(ck)- O

10 Assuming that Q is semi-uniform is not sufficient

In this subsection, we will give an example of a domain where the harmonic measure
on 92 is Axo-absolutely continuous with respect to the (n — 1)-dimensional Hausdorff
measure, but where Theorem 1.12 fails. It is known that the harmonic measure is Aso-
absolute continuous with respect to the surface measure whenever the domain €2 is
semi-uniform and its boundary is (n — 1)-Ahlfors regular and uniformly rectifiable (see
[2, Theorem III]). The notion of semi-uniform domain is given by the next definition.

Definition 10.1 (Semi-uniform domains) We say that €2 is semi-uniform if it satisfies
the corkscrew condition and (see Definition 2.8) if for every A > 1, there exists
Cx > 0 such that for any p > 1 and every pair of points (X, x) € Q x 92 such that
|X — x| < Ap, there exists a Harnack chain of length bounded by Cp linking X to
one of the corkscrew points for x at scale p.

Semi-uniform domains were firstintroduced by Aikawa and Hiratain [7] using cigar
curves. The two definitions of semi-uniform domains are known to be equivalent, see
for instance, [2, Theorem 2.3].

Our counterexample is constructed in R? for simplicity but can easily be extended
to any dimension.

Our domain (see Fig. 1) will be

Q:=r\|J {(x,t) € R2, |x — 2| + 1] < %}
keZ

Note that 92 is uniformly rectifiable, but the domain contains two parts (£2 N ]R%_ and
QN Rz_) which are not well connected to each other, that is, this domain does not
satisfy the Harnack Chain Condition (see Definition 2.9). We let the reader check that
the domain is still semi-uniform.
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Due to the lack of Harnack chains, the space Q2 does not have a unique—up to
constant—Green function with pole at co. If we take the pole at 1 — —o0, then we
can construct a positive function G which will be bounded on £ N RZ , and we shall

prove that this is incompatible with our estimate (1.17) that says that % is “close” to
% when ¢ is large enough.

10.1 Construction of G

The goal now will be to construct a positive function in €2, which is morally the Green
function with pole at 1 = —oco. We could have used the usual approach, that is taking
the limit when n goes to infinity of—for instance—G (X, X,)/G (X0, X,,) in the right
sense, where G is the Green function on 2 for the Laplacian, and X, := (1, n).
However, the authors had difficulty proving the 2-periodicity in x of the limit and
didn’t know where to find the right properties in the literature (as our domains are
unbounded). So we decided to make the construction from scratch.
We want to work with the Sobolev space

W= {u € WhA(Q), ulx, 1) = u(x +2,1), u(—x,1) = u(x, 1) for (x,1) € Q,
// |Vu(x,t)|2dxdz<+oo}.
So

Here and in the sequel Sy is the strip 2 N ([k, k+1) x R). Note that due to the

2-periodicity in x and the symmetry, the function u € W is defined on R? as soon as
u is defined on any of the sets Sx. We will also need

wt = {ujgrpz - u € W}and W := {u € W, Tr(u) = 0 on 9€}.

We let the reader check that the quantity

lullw = (// IVu(x,t)|2dxdt)2
So

is a norm on the space W), and the couple (Wy, ||.||w) is a Hilbert space.

The bilinear form
a(u,v) = // Vu-Vudtdx
So

is continuous and coercive on Wy, so for any k € N, there exists Gy € Wy such that

1 p-2k
a(Gg,v) = // VG -Vvdxdt = 2_k/ / ) v(x,t)dtdx forv e Wj.
So 0 —

2k+1

(10.2)

@ Springer



Green functions and smooth distances 2719

The first key observation is:
Proposition 10.3 Gy € Wy is a positive weak solution to —Au = 0in QN {r > —2k}.

Proof The fact that G is nonnegative is a classical result that relies on the fact that
u € Wo — |u|] € Wy and the bilinear form a(u, v) is coercive. See for instance
[22], (10.18)—(10.20).

In order to prove that 5k is a solution in 2 N {r > —2k}, take ¢ € Coonfr >
—2k}). For j € Z, let ¢ ; be the only symmetric and 2-periodic function in x such that
¢; = ¢ on S;. Observe that ¢; is necessary continuous, and so ¢; lies in Wy. Thus

//vék-vwxdz:Z// vék-wsdxdt:Z// VGy - Vo, dxdt
Q JEeZ Sj JEZ Sj
=Z// VG -Vojdxdt =0
So

JEZ

by (10.2), since ¢; = ¢ = 0 on {t < —2*} forall j € Z.

Since Gy is asolution, which is nonnegative and not identically equal to 0 (otherwise
(10.2) would be false), the Harnack inequality (Lemma 2.15) entails that Gy is positive.
The proposition follows. O

Let X¢ := (1, 0) € Q2. From the above proposition, 51( (Xp) > 0so we can define

Gi(X) == = . (10.4)

Proposition 10.5 Foreachk € N, the function Gy (X) € Wy isa positive weak solution
to —Au =0in QN {t > —2K}. Moreover, we have the following properties:

(i) for any compact set K € Q, there exists k := k(K) and C := C(K) such that
G;j(X) <Ck forall j > kand X € K and {G j} > is equicontinuous on K
(i) there exists C > 0 such that

// VG (x,1)|?dxdt < C forallk € N;
QN([—2.2]x[—1,1])
(iii) there exists C > 0 such that

Gkl = //S . |VGi|*dxdt < C forallk € N.
00 +

Proof The fact that Gy, is a positive weak solution is given by Proposition 10.3. So it
remains to prove (i), (ii) and (iii).
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We start with (i). Since Gy, is a weak solution in Q2 := QN [(—4,4) x (—2,2)]
when k > 1, and since 2 is a Chord Arc Domain, we can invoke the classical elliptic
theory and we can show that there exists C > 0 such that

sup Gy <CGr(1,0) =C forallk > 1,
QN([—2.2]x[-1,1])

see for instance Lemma 15.14 in [24]. By the 2-periodicity of Gy, it means that

sup sup Gy <C,
k>1 QNRx[—1,1])

and then since we can link any point of a compact K € Q back to 2 N (R x [—1, 1])
with a Harnack chain (the length of the chain depends on K), we have

supsupG; < Ckg,
jzk K

whenever G is a solution in the interior of K, which is bound to happen if j > k(K)
is large enough.

The functions Gy, are also Holder continuous up to the boundary in the areas where
they are solutions, so {G ;} >k is equicontinuous on K as long as k is large enough so
that K C QN {r > -2k},

Point (ii) is a consequence of the Caccioppoli inequality at the boundary. We only
need to prove the bound when k > 2, since all the Gy are already in Wy by construction.
We have by the Caccioppoli inequality at the boundary (see for instance Lemma 11.15
in [24]) that

// |VGk(x,t)|2dxdz§// |G (x, 1)|*dx dt
QN([—=2,2]1x[—1,1]) QN([—4,41x[—2,2])
< sup Gi(x, 0> S 1.

~

QN([—4,41x[—2,2])

Point (iii) is one of our key arguments. We define Wg’ as the subspace of W that
contained the functions with zero trace on (2 N R2 ).

Since G € Wp, its restriction (Gk)IQﬂRi is of course in WT. Moreover, Gy is
a solution to —Au = 0in QN Ri. We can invoke the uniqueness in Lax—Milgram
theorem (see Lemma 12.2 in [24], but adapted to our periodic function spaces Wg'
and W) to get that Gy is the only weak solution to —Au = 0in N Ri for which
the trace on 9(2 N Ri) is (Gk)|a(QmR2+)' Moreover,

1Grllw+ < C”(Gk)w(gnRi)”Hals/zi,
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where H,¢, /2 1s the space of traces on 924 := 9(2N Ri) for the symmetric 2-periodic
functions deﬁned as
Hals/22+ = { [+ 924 — R measurable s.t. f is symmetric & 2-periodic in x,

1

2 2
and || £ 12 = (/ / S = fg)' dH‘(x)dH'(y)> <+oo].
CIo aQ.nSo Jasnsy X — ¥l

So in particular, we have by a classical argument that

||(Gk)|3(QﬂR2)”iI|/z SC// |VGk(x,t)|2dxdt.
ey QN([—2,2]1x[~1,1])

We conclude that

// IVG|?dxdt < // VG (x,0)?dxdt < 1
SonR% QN([—2,21x[—1,1])

by (ii). Point (iii) follows. O

Proposition 10.6 There exists a symmetric (in x), 2-periodic (in x), positive weak
solution G € W2(Q) N C(Q) 1o —AG = 0 in Q such that G = 0 on IR and
G(Xo) =1 and

// IVG|>dx dt < +o0. (10.7)
SonR%

Proof We invoke the Arzela—Ascoli theorem—whose conditions are satisfied thanks to
Proposition 10.5(i)—to extract a subsequence of Gy that converges uniformly on any
compact to a continuous function G. The fact G is non-negative, symmetric, 2-periodic,
and satisfies G(X(p) = 1 is immediate from the fact that all the G are already like
this. The functions G converge to G in Wllu’f () thanks to the Caccioppoli inequality,

and then by using the weak convergence of G to G in WIL’CZ (), we can easily prove
that G is a solution to —Au = 0 in 2 (hence G is positive by the Harnack inequality,
since it was already non-negative). The convergence of G to G in WIOC () also allow
the uniform bound on |G|l w+ given by Proposition 10.5(iii) to be transmitted to G,

hence (10.7) holds. The proposition follows. O

10.2 G fails the estimate given in Theorem 1.12

Lemma 10.8 9;G is harmonic in 2, that is, it is a solution of —Au = 0 in 2, and we

have
e’} 1
/ /|V8,G|2dxdt<+oo.
1 0
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Proof Morally, we want to prove that if G is a solution (to —Au = 0), then VG €
W12, which is a fairly classical regularity result. The difficulty in our case is that the
domain in consideration is unbounded.

Since G is a harmonic function (solution of the Laplacian), the function g(x) :=
G (x, 1) is smooth. We can prove the bound

00 1 1 1
/ / IV, G2dx dt < / lg'(x)2dx + / lg” (x)Pdx
1 0 0 0

o0 1
+/ / IVG|?dx dt < +o0
1 0

by adapting the proof of Proposition 7.3 in [26] to our simpler context (and invoking
(10.7) and g € C*°(RR) to have the finiteness of the considered quantities). In order to
have the derivative on the ¢-derivative, it is then enough to observe

00 1 00 1 00 1
/ /|va,G|2dxdt§/ /|3x8,G|2dxdt+/ /|a,a,G|2dxdt
1 0 1 0 1 0
00 1 00 1
=/ / |alaxG|2dxdr+/ / 10,9, G|*dx dt
1 0 1 0

00 1
5/ / |V, G|?dx dt < 400,
1 0

where we use the fact that G is a solution to —Au = 0—i.e. 9,0;G = —0d, 9, G—for
the second line. The lemma follows. O

We will also need a maximum principle, given by

Lemma 10.9 If u is a symmetric (in x), 2-periodic (in x) harmonic function in R x
(to, 00) that satisfies

00 1
/ / |Vul?dx dt < +o0, (10.10)
1o 0

then u has a trace—denoted by Tr;y u—on R x {1} and

inf (Trzyu)(y) <u(x,t) < sup (Tryu)(y) forallx e R, t > 1.
ye©.h ye(0,1)

Proof The existenceif the trace—in the space w2 5 (R x {tg})—is common knowledge.
The proof of Lemma 12.8 in [24] (for instance) can be easily adapted to prove our
case. O

Lemma 10.11 There exists C > 1 such that

C'<G,1)<C forxeR, t>1.
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Proof Since G(1,0) = G(Xo) = 1and G is apositive solution, the Harnack inequality
implies that cl< G(x,1) < C forx € [0, 1]. Since G is symmetric and 2-periodic
in x, we have C~! < G(x,1) < C for x € R. We conclude with the maximum
principle (Lemma 10.9), since the bound (10.10) is given by (10.7). O

Lemma 10.12 For every ¢ > 0, there exists ty > 1 such that
c
0;G(x,1) < " forallx e R, t > 1.

Proof Letx be fixed. Since G is symmetric and 2-periodic in x, we can assume without
loss of generality that x € (0, 1). Then recall that 9;G is a weak solution in €2, so in
particular, we have the Moser estimate and the Caccioppoli inequality, which give

1

2s xX+s 2
sup s[0,G(y,5)| < sup s(][ ][ |VG(z,r)|2dzdr>
yeR, s>4 yeR, s>4 /2 Jx—s

< sup G<1. (10.13)
yeR, s>1

by Lemma 10.11. Moreover, ;G is Holder continuous, that is,

402 312 172
sup 19,G(x, 1) — Gy, )| < C1~® ][ 19:G (v, )P dsdy
(

y€(0.1) 1-1/2 Jt)2
<Ct™™ sup [8,G(y,s)| <Ct™ ! fort>38 (10.14)
yeR, s>1/2
by (10.13).

We pick 79 > 8 such that 2C’(1p) ™ < c. Assume by contradiction that there exist
x € (0,1)and t > 1o such that 3;G(x, t) > c¢/t, then

inf 9,G(y,1) = inf 8,G(y,7) > 9,G(x,1) — sup [8,G(x,1) — 3 G(y, 1)l
yeR ye(0,1) ye(0,1)
c—C't™® c
- >

t -2t
by our choice of 7. Since 9;G is a solution that satisfies (10.10)—see Lemma 10.8—
the maximum principle given by Lemma 10.9 entails that

3:G(y,s) > % foryeR, s >t,

which implies

1 e’}
/ / IVG(y. 5)Pds dy = +oo,
0 t
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which is in contradiction with (10.7). We conclude that for every x € (0, 1) and ¢ > t,
we necessary have 9;G < c¢/t. The lemma follows. O

Lemma 10.15 For any B > 0, there exist ty > 1 and € > 0 such that

0,G(x,t 0:Dg(x,t
Gx, 1) o px. 1) > € forx eR, t > 1. (10.16)
G(x,t) Dﬁ(xat) t

Proof The set €2 is (n — 1)-Ahlfors regular, so (1.4) gives the equivalence Dg(X) ~
dist(X, 02) for X € €2, and hence the existence of C; > 0 (depending on 8 and n)
such that

(C1)7't < Dg(x,1) < C1Dpya(x, 1) < (C)*t forx e R, t > 1. (10.17)

Check then that

aDp0e 0 = TPy 6.0) = (1) P20 = 5) do (3, 8)

B (v,5)€0Q

In particular, since s < % whenever (y, s) € 92, we have, for (x,7) € R x [1, 00),
that

atDﬂ(xat)
INn+B—-1 —n—p-
= (1-5) 50 (0 = I o (v, 5)
2 B (v,5)€dQ
tn+pB—-1_4 -p-2
> ETDf;FIB(x’ t)Dﬂ-fZ (xa t) = CB.n

for some cg,, > 0, by (10.17). In conclusion, using (10.17) again, we have the
existence of ¢; > 0 such that

0;Dg(x,t
IDpx 1) St v eR > 1. (10.18)
Dg(x,1) t

Let C; be the constant in Lemma 10.11. Thanks to Lemma 10.12, there exists fy > 1
such that ;G (x, t) < ¢1/(2Cat) for any x € R and ¢ > 9, which means that

3G (x, 1
AGLD _ g e Rt >0 (10.19)
Go1) — 2

The combination of (10.18) and (10.19) gives (10.16) for € = ¢ /2. O

Lemma 10.20 The positive solution G does not satisfy (1.13), proving that assuming
that 2 is semi-uniform is not sufficient for Theorem 1.12.
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Proof Let B, be the ball of radius r centered at (0, %) € 092, and take r > 2ty, where
to > 1 is the value from Lemma 10.15. We have
VG VDlg

// Dgdxdt > //
QNBy ozl G Dp
- 12 // dx dt
BNfr=1p)

VG VDﬁ
Dg

Dgdxdt

by (10.16) and (1.4). We conclude that

VG VDg r
—_— DﬂdxdtZIn(—)—>+ooasr—>oo,
U(B ) Jans, Dg fo
which means that G does not satisfy (1.13). The lemma follows. O
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