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Abstract
In this article, we consider a closed rank one C∞ Riemannian manifold M without
focal points and its universal cover X . Let bt (x) be the Riemannian volume of the ball
of radius t > 0 around x ∈ X , and h the topological entropy of the geodesic flow. We
obtain the following Margulis-type asymptotic estimates

lim
t→∞ bt (x)/

eht

h
= c(x)

for some continuous function c : X → R. We prove that the Margulis function c(x)
is in fact C1. The result also holds for a class of manifolds without conjugate points,
including all surfaces of genus at least 2 without conjugate points. If M is a rank one
surfacewithout focal points, we show that c(x) is constant if and only ifM has constant
negative curvature. We also obtain a rigidity result related to the flip invariance of the
Patterson–Sullivan measure. These rigidity results are new even in the nonpositive
curvature case.
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1 Introduction

Consider a closedC∞ Riemannian manifold (M, g)with negative sectional curvature
everywhere. It is well known that the geodesic flow defined on the unit tangent bundle
SM is an Anosov flow (cf. [1], [25, Section 17.6]). The ergodic theory of Anosov flows
has many striking applications in the study of asymptotic geometry of the universal
cover X of M . In his celebrated 1970 thesis [36, 37], Margulis obtained the following
result:

lim
t→∞ bt (x)/

eht

h
= c(x), (1)

where bt (x) is the Riemannian volume of the ball of radius t > 0 around x ∈ X , h
the topological entropy of the geodesic flow, and c : X → R is a continuous function,
which is called Margulis function.

The main tool in the proof of Margulis’s theorem is the Bowen–Margulis measure,
which is the unique measure of maximal entropy (MME for short) for the Anosov flow
(cf. [5]).Margulis [37] gave an explicit construction of thismeasure, and showed that it
is mixing, and the conditional measures on stable/unstable manifolds have the scaling
property, (i.e., contract/expand with a uniform rate under the geodesic flow), and are
invariant under unstable/stable holonomies. Margulis [37] then proved (1) using these
ergodic properties of the Bowen–Margulis measure.

The ergodic theory of the geodesic flowona closed rankonemanifold of nonpositive
curvature was developed by Pesin [38, 39] in 1970s. In this case the geodesic flow
exhibits nonuniformly hyperbolic behavior (cf. [4]). In 1985, A. Katok [6] conjectured
that such geodesic flow also admits a unique MME. In 1998, Katok’s conjecture was
settled by Knieper [27]. In his proof, Knieper used Patterson–Sullivan measures on the
boundary at infinity of the universal cover of M to construct a MME (called Knieper
measure), and showed that this measure is the unique MME. Knieper [26] used his
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measure to obtain the following asymptotic estimates: there exists C > 0 such that

1

C
≤ bt (x)/e

ht ≤ C

for any x ∈ X .However, it is difficult to improve the above to theMargulis-type asymp-
totic estimates (1), see the remark after [28, Chapter 5, Theorem 3.1]. An unpublished
preprint [22] also contains many inspiring ideas to this problem. Recently, a break-
through was made by Link [32, Theorem C], where an asymptotic estimate for the
orbit counting function is obtained for a CAT(0) space, and as a consequence (1) is
established for rank one manifolds of nonpositive curvature.

A twin problem is the asymptotics of the number of free-homotopy classes of closed
geodesics. Margulis [36, 37] proved that in the negative curvature case

lim
t→∞ #P(t)/

eht

ht
= 1 (2)

where P(t) is the set of free-homotopy classes containing a closed geodesicwith length
at most t . Recently Ricks [41] proved (2) for rank one locally CAT(0) spaces, which
include rank one manifolds of nonpositive curvature. Later, Climenhaga et al. [11]
proved (2) for a class of manifolds (including all surfaces of genus at least 2) without
conjugate points, and the author [45] proved (2) for rank one manifolds without focal
points.

2 Statement of main results

In this paper, we first establish volume asymptotics (1) for rank one manifolds without
focal points. Then we study properties of the Margulis function and obtain related
rigidity results. The proof of (1) for a large class of manifolds without conjugate
points is explained in the Appendix.

Suppose that (M, g) is a C∞ closed n-dimensional Riemannian manifold, where g
is a Riemannianmetric. Letπ : SM → M be the unit tangent bundle overM . For each
v ∈ SpM, we always denote by cv : R → M the unique geodesic on M satisfying
the initial conditions cv(0) = p and ċv(0) = v. The geodesic flow φ = (φt )t∈R
(generated by the Riemannian metric g) on SM is defined as:

φt : SM → SM, (p, v) �→ (cv(t), ċv(t)), ∀ t ∈ R.

A vector field J (t) along a geodesic c : R → M is called a Jacobi field if it satisfies
the Jacobi equation:

J ′′ + R(J , ċ)ċ = 0

where R is the Riemannian curvature tensor and ′ denotes the covariant derivative
along c.
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2320 W. Wu

A Jacobi field J (t) along a geodesic c(t) is called parallel if J ′(t) = 0 for all t ∈ R.

The notion of rank is defined as follows.

Definition 2.1 For each v ∈ SM, we define rank(v) to be the dimension of the vector
space of parallel Jacobi fields along the geodesic cv, and rank(M):=min{rank(v) : v ∈
SM}. For a geodesic c we define

rank(c) := rank(ċ(t)), ∀ t ∈ R.

Definition 2.2 Let c be a geodesic on (M, g).

(1) A pair of distinct points p = c(t1) and q = c(t2) are called focal if there is a
Jacobi field J along c such that J (t1) = 0, J ′(t1) 	= 0 and d

dt |t=t2 ‖J (t)‖2 = 0;
(2) p = c(t1) and q = c(t2) are called conjugate if there is a nontrivial Jacobi field

J along c such that J (t1) = 0 = J (t2).

A compact Riemannian manifold (M, g) is called a manifold without focal
points/without conjugate points if there is no focal points/conjugate points on any
geodesic in (M, g).

By definition, if a manifold has no focal points then it has no conjugate points. All
manifolds of nonpositive curvature always have no focal points.

2.1 Volume estimates of Margulis type

Let M be a rank one closed Riemannian manifold without focal points. Then SM
splits into two invariant subsets under the geodesic flow: the regular set Reg := {v ∈
SM : rank(v) = 1}, and the singular set Sing := SM \Reg. The uniqueness of MME
for geodesic flows on SM is obtained in [8, 9, 34].

We have the following Margulis-type asymptotic estimates:

Theorem A Let M be a rank one closed Riemannian manifold without focal points,
and X the universal cover of M . Then

lim
t→∞ bt (x)/

eht

h
= c(x),

where bt (x) is the Riemannian volume of the ball of radius t > 0 around x ∈ X , h the
topological entropy of the geodesic flow, and c : X → R is a continuous function.

In [32, Theorem C], Margulis-type asymptotic estimates for the orbit counting
function was obtained for rank one CAT(0) spaces, including rank one manifolds of
nonpositive curvature. Theorem A generalizes the formula from rank one manifolds
of nonpositive curvature to those without focal points.

Link’s proof is quite geometric, and based on Roblin’s method in negative curvature
[42]. Our proof in this paper ismuch different, usingMargulis’ approachwhich ismore
dynamical. We use the notion of local product flow box and apply π -convergence
theorem introduced by Ricks [41] (see Sects. 3.4 and 4 below for more details). First
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wewill establish the asymptotics formula for a pair of flowboxes (Sects. 5.1–5.4) using
the mixing property of the unique MME and scaling property of Patterson–Sullivan
measure. The asymptotics in (1) involves countably many pairs of flow boxes and an
issue of nonuniformity arises. To overcome this difficulty, we will apply Knieper’s
results and techniques (Lemmas 5.13 and 5.14).

In [11, 41, 45], the authors also use flow boxes to calculate the asymptotic growth
of the number of free homotopy classes of closed geodesics. Due to the equidistribu-
tion of closed geodesics, we only need consider one flow box and count the number
of self-intersections of the box under the geodesic flow. The technical novelties in
this paper is that we have to deal with countably many pairs of flow boxes and the
essential difficulty caused by nonuniform hyperbolicity. Even for one pair of flow
boxes, the calculations involved are more complicated. Moreover we also consider
the intersection components of a flow box with a face under the geodesic flow (see
Sect. 5.1 below), which makes the calculation more subtle.

The above method can also be adapted to a certain class of manifolds without
conjugate points. In [10], the authors proved the uniqueness of MME for the class H
of manifolds without conjugate points that satisfy:

(1) There exists a Riemannian metric g0 on M for which all sectional curvatures are
negative;

(2) The uniform visibility axiom (see Definition 3.1 below) is satisfied;
(3) The fundamental group π1(M) is residually finite: the intersection of its finite

index subgroups is trivial;
(4) There exists h0 < h such that any ergodic invariant Borel probability measure μ

on SM with entropy strictly greater than h0 is almost expansive (cf. [11, Definition
2.8]) .

All surfaces of genus at least 2 without conjugate points belong to the class H. The
asymptotic formula of Margulis type for counting closed geodesic is obtained in [11].

Theorem A’ Let M be a closed manifold without conjugate points belonging to the
classH, and X the universal cover of M . Then

lim
t→∞ bt (x)/

eht

h
= c(x),

where bt (x) is the Riemannian volume of the ball of radius t > 0 around x ∈ X , h the
topological entropy of the geodesic flow, and c : X → R is a continuous function.

We discuss the proof of Theorem A’ in the Appendix.

2.2 Margulis function and rigidity

LetM be a rank one closed Riemannianmanifold without focal points. The continuous
function c(x) is called Margulis function. It is easy to see that

lim
t→∞ st (x)/e

ht = c(x), (3)
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where st (x) is the spherical volume of the sphere S(x, t) around x ∈ X of radius
t > 0. It descends to a function on M, which we still denote by c.

We study some rigidity results related to Margulis function for manifolds without
focal points, which are new even in the nonpositive curvature case.

In the negative curvature case, Katok conjectured that c(x) is almost always not
constant and not smooth. In [49] Yue answered Katok’s conjecture. He studied the
uniqueness of harmonic measures associated to the strong stable foliation of the
geodesic flow and obtained some rigidity results involving the Margulis function.
We extend Yue’s results to rank one manifolds without focal points.

Theorem B Let M bea rank one closedC∞ Riemannianmanifoldwithout focal points,
X the universal cover of M . Then

(1) The Margulis function c is a C1 function.
(2) If c(x) ≡ C, then for any x ∈ X ,

h =
∫

∂X
trU (x, ξ)dμ̃x (ξ)

where U (x, ξ) and trU (x, ξ) are the second fundamental form and the mean
curvature of the horosphere Hx (ξ) respectively, and μ̃x is the normalized
Patterson–Sullivan measure.

To the best of our knowledge, the uniqueness of harmonic measures in nonpositive
curvature (and hence in the no focal points case) is not known.

Question 2.3 For manifolds of nonpositive curvature, do we have a unique harmonic
measure associated to the strong stable foliation of the geodesic flow? Do the leaves
of the strong stable foliation have polynomial growth?

Remark 2.4 For rank one manifolds without focal points, the uniqueness of harmonic
measures associated to the weak stable foliation of the geodesic flow is proved in [31,
Theorem 3.1].

If dim M = 2, then Vol(Bs(x, r)) = 2r where Bs(x, r) is any ball of radius r in
a strong stable manifold. In this case, Bs(x, r) is just a curve. Hence the leaves of
the strong stable foliation have polynomial growth. Combining with a recent result
in [13] on the unique ergodicity of the horocycle flow, we can show that there is a
unique harmonicmeasure associated to the strong stable foliation for rank one surfaces
without focal points. Then we can prove the following rigidity result.

Theorem C Let M be a rank one closed Riemannian surface without focal points. Then
c(x) ≡ C if and only if M has constant negative curvature.

Without the uniqueness of harmonic measures, we can still obtain some rigidity
results in arbitrary dimension. The flipmap F : SM → SM is defined as F(v) := −v.

By the construction, the Knieper measure m is flip invariant. Consider the conditional
measures {μ̄x }x∈M of m with respect to the partition SM = ∪x∈MSxM . μ̄x can
be identified as measures on ∂X , and it would be natural to consider if μ̄x and the
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normalized Patterson–Sullivan measures μ̃x coincide. Yue [47, 48] obtained related
rigidity results in negative curvature, which can be generalized to the no focal points
case with the help of the Margulis function.

Theorem D Let M be a rank one closed C∞ Riemannian manifold without focal
points. The conditional measures {μ̄x }x∈M of the Knieper measure coincide almost
everywhere with the normalized Patterson–Sullivan measures μ̃x if and only if M is
locally symmetric.

If M is a rank one locally symmetric space, then obviously c(x) ≡ C, x ∈ M .

It is conjectured in [49, p. 179] that in negative curvature c(x) ≡ C, x ∈ M if and
only if M is locally symmetric, and this is true in dimension two [49, Theorem 4.3].
Theorem C verifies the conjecture in dimension two for the more general case of no
focal points. Theorem D gives a new characterization of rank one locally symmetric
spaces among rank one closed manifolds without focal points.

3 Geometric and ergodic toolbox

We prepare some geometric and ergodic tools for rank one manifolds without focal
points, which will be used in subsequent sections.

3.1 Boundary at infinity

Let M be a closed Riemannian manifold without focal points, and pr : X → M
the universal cover of M . Let � 
 π1(M) be the group of deck transformations on
X , so that each γ ∈ � acts isometrically on X . Let F be a fundamental domain
with respect to �. Denote by d both the distance functions on M and X induced by
Riemannian metrics. The Sasaki metrics on SM and SX are also denoted by d if there
is no confusion.

We still denote by pr : SX → SM and γ : SX → SX the map on unit tangent
bundles induced by pr and γ ∈ �. From now on, we use an underline to denote objects
in M and SM, e.g. for a geodesic c in X and v ∈ SX , c := prc, v := prv denote their
projections to M and SM respectively.

We call two geodesics c1 and c2 on X positively asymptotic or just asymptotic
if there is a positive number C > 0 such that d(c1(t), c2(t)) ≤ C, ∀ t ≥ 0.
The relation of asymptoticity is an equivalence relation between geodesics on X .

The class of geodesics that are asymptotic to a given geodesic cv/c−v is denoted by
cv(+∞)/cv(−∞) or v+/v− respectively. We call them points at infinity. Obviously,
cv(−∞) = c−v(+∞). We call the set ∂X of all points at infinity the boundary at
infinity. If η = v+ ∈ ∂X , we say v points at η.

We can define the visual topology on ∂X following [16, 17]. For each p, there is a
bijection f p : SpX → ∂X defined by

f p(v) = v+, v ∈ SpX .
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So for each p ∈ M, f p induces a topology on ∂X from the usual topology on SpX .

The topology on ∂X induced by f p is independent of p ∈ X , and is called the visual
topology on ∂X .

Visual topology on ∂X and the manifold topology on X can be extended naturally
to the so-called cone topology on X := X ∪ ∂X .

Under cone topology, X is homeomorphic to the closed unit ball in R
n, and ∂X is

homeomorphic to the unit sphere S
n−1. For x, y ∈ X , we denote by cx,y the geodesic

connection x and y if it exists.
The angle metric on ∂X is defined as

∠(ξ, η) := sup
x∈X

∠x (ξ, η), ∀ξ, η ∈ ∂X ,

where∠x (ξ, η) denotes the angle between the unit tangent vectors at x of the geodesics
cx,ξ and cx,η. Then the angle metric defines a path metric dT on ∂X , called the Tits
metric. More precisely, for a continuous curve c : [0, 1] → ∂X , define the length
L(c) := sup

∑k−1
i=0 ∠(c(ti ), c(ti+1)) where the supremum is over all subdivisions

0 = t0 ≤ t1 ≤ · · · ≤ tk = 1 of [0, 1]. Then we can define the path metric dT (ξ, η) :=
inf L(c), where the infimum is taken over all the continuous curves joining ξ and η.

Clearly, dT ≥ ∠. The angle metric induces a topology on ∂X finer than the visual
topology.Let c be a recurrent geodesic, not the boundary of aflat half plane, then by [45,
Proposition 3.7], dT (c(−∞), c(∞)) > π. If M has negative curvature everywhere,
then ∠(ξ, η) = π and hence dT (ξ, η) = ∞ for any ξ 	= η ∈ ∂X . See [3, 45] for more
information on Tits metric.

Definition 3.1 (Cf. [11, Definition 2.1]) A simply connected Riemannian manifold X
is a uniform visibility manifold if for every ε > 0 there exists L = L(ε) > 0 such
that whenever a geodesic c : [a, b] → X stays at distance at least L from some point
p ∈ X , then the angle sustained by c at p is less than ε, that is,

∠p(c) := sup
a≤s,t≤b

∠p(c(s), c(t)) < ε.

If M is a Riemannian manifold without conjugate points whose universal cover X is
a uniform visibility manifold, then we say that M is a uniform visibility manifold.

Definition 3.2 (Cf. [11, Definition 2.2]) Themanifold (M, g) has the divergence prop-
erty if given any geodesics c1 	= c2 with c1(0) = c2(0) in the universal cover, we have
limt→∞ d(c1(t), c2(t)) = ∞.

The uniform visibility property implies the divergence property. All manifolds
without focal points have the divergence property.
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3.2 Busemann function

For each pair of points (p, q) ∈ X×X and each point at infinity ξ ∈ ∂X , theBusemann
function based at ξ and normalized by p is

bξ (q, p) := lim
t→+∞

(
d(q, cp,ξ (t)) − t

)
,

where cp,ξ is the unique geodesic from p and pointing at ξ. The Busemann function
bξ (q, p) is well-defined since the function t �→ d(q, cp,ξ (t)) − t is bounded from
above by d(p, q), and decreasing in t (this can be checked by using the triangle
inequality). Obviously, we have

|bξ (q, p)| ≤ d(q, p).

If v ∈ SpX points at ξ ∈ ∂X , we also write bv(q) := bξ (q, p).
The level sets of the Busemann function bξ (q, p) are called the horospheres cen-

tered at ξ. The horosphere through p based at ξ ∈ ∂X , is denoted by Hp(ξ). For more
details of the Busemann functions and horospheres, please see [15, 43, 44].

According to [39, Theorem 6.1] and [43, Lemma 1.2], we have the following
continuity property of Busemann functions.

Lemma 3.3 (Cf. [45, Corollary 2.7]) The functions (v, q) �→ bv(q) and (ξ, p, q) �→
bξ (p, q) are continuous on SX × X and ∂X × X × X respectively.

In fact, we have the following equicontinuity property of Busemann function v �→
bv(q).

Lemma 3.4 (Cf. [45,Lemma2.9])Let p ∈ X , A ⊂ SpX be closed,and B ⊂ X be such
that A+ := {v+ : v ∈ A} and B∞ := {limn qn ∈ ∂X : qn ∈ B} are disjoint subsets
of ∂X . Then the family of functions A → R indexed by B and given by v �→ bv(q)

ε > 0 there exists δ > 0 such that if ∠p(v,w) < δ, then |bv(q) − bw(q)| < ε for
every q ∈ B.

3.3 Patterson–Sullivanmeasure and Knieper measure

We will recall the construction of the Patterson–Sullivan measure and the Knieper
measure, which are the main tools to the subsequent proofs.

Definition 3.5 Let X be a simply connected manifold without focal points and � a
discrete subgroup of Iso(X), the group of isometries of X . For a given constant r > 0,
a family of finite Borel measures {μp}p∈X on ∂X is called an r -dimensionalBusemann
density if

(1) for any p, q ∈ X and μp-a.e. ξ ∈ ∂X ,

dμq

dμp
(ξ) = e−r ·bξ (q,p)
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2326 W. Wu

where bξ (q, p) is the Busemann function;
(2) {μp}p∈X is �-equivariant, i.e., for all Borel sets A ⊂ ∂X and for any γ ∈ �, we

have

μγ p(γ A) = μp(A).

Extending the techniques in [27] to manifolds without focal points, we constructed
Busemann density via Patterson–Sullivan construction and showed in [34, TheoremB]
that up to amultiplicative constant, the Busemann density is unique, i.e., the Patterson–
Sullivan measure is the unique Busemann density.

The following Shadowing Lemma is one of the most crucial properties of the
Patterson–Sullivan measure.

Lemma 3.6 (Shadowing Lemma, cf. [34, Proposition 15]) Let {μp}p∈X be the
Patterson–Sullivan measure,which is the unique Busemann density with dimension h.

Then there exists R > 0 such that for any ρ ≥ R and any p, x ∈ X there is b = b(ρ)

with

b−1e−hd(p,x) ≤ μp( f̄ p(B(x, ρ))) ≤ be−hd(p,x)

where f̄ p(y) := cp,y(+∞) for any y ∈ B(x, ρ).

Let P : SX → ∂X × ∂X be the projection given by P(v) = (v−, v+). Denote
by I P := P(SX) = {P(v) | v ∈ SX} the subset of pairs in ∂X × ∂X which can be
connected by a geodesic. Note that the connecting geodesic may not be unique and
moreover, not every pair ξ 	= η in ∂X can be connected by a geodesic.

Fix a point p ∈ X , we can define a �-invariant measure μ on I P by the following
formula:

dμ(ξ, η) := eh·βp(ξ,η)dμp(ξ)dμp(η),

where βp(ξ, η) := −{bξ (q, p) + bη(q, p)} is the Gromov product, and q is any
point on a geodesic c connecting ξ and η. By [34, Propositions 6 and 7] (see also
Proposition 3.7 below), μ(I P ) > 0. It is easy to see that the function βp(ξ, η) does
not depend on the choice of c and q. In geometric language, the Gromov product
βp(ξ, η) is the length of the part of a geodesic c between the horospheres Hξ (p) and
Hη(p).

Then μ induces a φt -invariant measure m on SX with

m(A) =
∫
IP

Vol{π(P−1(ξ, η) ∩ A)}dμ(ξ, η),

for all Borel sets A ⊂ SX . Here π : SX → X is the standard projection map and Vol
is the induced volume form on π(P−1(ξ, η)). If there are more than one geodesics
connecting ξ and η, then by the flat strip theorem, π(P−1(ξ, η)) is exactly a k-flat
submanifold connecting ξ and η for some k ≥ 2, which consists of all the geodesics
connecting ξ and η.
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For any Borel set A ⊂ SX and t ∈ R, Vol{π(P−1(ξ, η) ∩ φt A)} =
Vol{π(P−1(ξ, η) ∩ A)}. Therefore m is φt -invariant. Moreover, �-invariance of μ

leads to the �-invariance of m. Thus m induced a φt -invariant measure m on SM
which is determined by

m(A) =
∫
SM

#(pr−1(v) ∩ A)dm(v).

It is proved in [34] that m is unique MME, which is called Knieper measure. Fur-
thermore, m is proved to be mixing in [2, 33], Kolmogorov in [7, 9] and eventually
Bernoulli in [7, 45].

3.4 Local product flow boxes

In this subsection, we fix a regular vector v0 ∈ SX . Let p := π(v0), which
will be the reference point in the following discussions. We also fix a scale ε ∈
(0,min{ 18 , inj(M)

4 }).
The Hopf map H : SX → ∂X × ∂X × R for p ∈ X is defined as

H(v) := (v−, v+, s(v)), where s(v) := bv−(πv, p).

From definition, we see s(φtv) = s(v) + t for any v ∈ SX and t ∈ R. s is continuous
by Lemma 3.3.

Following [11, 45], we define for each θ > 0 and 0 < α < 3
2ε,

Pθ := {w− : w ∈ SpX and ∠p(w, v0) ≤ θ},
Fθ := {w+ : w ∈ SpX and ∠p(w, v0) ≤ θ},
Bα

θ := H−1(Pθ × Fθ × [−α, α]).

Bα
θ is called a flow box with depth α. We will consider θ > 0 small enough, which

will be specified in the following.
The following lemma was crucial in constructing Knieper measure.

Proposition 3.7 [34, Propositions 6 and 7] Let X be a simply connected manifold
without focal points and v0 ∈ SX is regular. Then for any ε > 0, there is an θ1 > 0
such that, for any ξ ∈ Pθ1 and η ∈ Fθ1 , there is a unique geodesic cξ,η connecting ξ

and η, i.e., cξ,η(−∞) = ξ and cξ,η(+∞) = η.

Moreover, the geodesic cξ,η is regular and d(cv(0), cξ,η) < ε/10.

Based on Proposition 3.7, we have the following result.

Lemma 3.8 [45, Lemma 2.13] Let v0, p, ε be as above and θ1 be given in Proposi-
tion 3.7. Then for any 0 < θ < θ1,

(1) diam πH−1(Pθ × Fθ × {0}) < ε
2 ;

(2) H−1(Pθ × Fθ × {0}) ⊂ SX is compact;
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(3) diam πBα
θ < 4ε for any 0 < α ≤ 3ε

2 .

The following is a direct corollary of Lemma 3.4.

Corollary 3.9 Given v0, p, ε > 0 as above, there exists θ2 > 0 such that for any 0 <

θ < θ2, if ξ, η ∈ Pθ and any q lying within diamF +4ε of πH−1(Pθ ×Fθ ×[0,∞)),

we have |bξ (q, p) − bη(q, p)| < ε2. Similar result holds if the roles of Pθ and Fθ are
reversed.

Let θ0 := min{θ1, θ2}, where θ1 is given in Lemma 3.8, and θ2 is given in
Corollary 3.9. In the following, we always suppose that 0 < θ < θ0.

3.5 Regular partition-cover

Let us fix x, y ∈ F ⊂ X , and p = x the reference point. For each regular vector w ∈
Sx X ,wecan construct a local product flowbox aroundw as in the last subsection.More
precisely, consider the interior of Bα

θ (w), intBα
θ (w), which is an open neighborhood

of w for some α > 0 and 0 < θ < θ0 (here θ0 depends on w). By second countability
of Sx X , there exist countably many regular vectorsw1, w2, . . . such that Sx X∩Reg ⊂
∪∞
i=1intB

α
θi
(wi ). Similarly, there exist countably many regular vectors v1, v2, . . . such

that Sy X ∩Reg ⊂ ∪∞
i=1intB

α
θ ′
i
(vi ).We note that the reference point p is always chosen

to be x in the construction of all above flow boxes.
A regular partition-cover of Sx X is a triple ({wi }, {intBα

θi
(wi )}, {Ni }) where {Ni }

is a disjoint partition of Reg ∩ Sx X and such that Ni ⊂ intBα
θi
(wi ) for each i ∈ N.

Similarly a regular partition-cover of Sy X is a triple ({vi }, {intBα
θ ′
i
(vi )}, {Vi }) such that

{Vi } is a disjoint partition of Reg ∩ Sy X and Vi ⊂ intBα
θ ′
i
(vi ) for each i ∈ N.

Recall the bijection fx : Sx X → ∂X defined by fx (v) = v+, v ∈ Sx X . Let μ̃x :=
( f −1

x )∗μp which is a finite Borel measure on Sx X . Similarly, let μ̃y := ( f −1
y )∗μp be

a finite Borel measure supported on Sy X . The measures μ̃x and μ̃y will be used in
Sect. 5.

The following result is essentially proved in [12, Proposition 2.4] in nonpositive
curvature.

Lemma 3.10 For any x ∈ X , we have μ̃x (Reg ∩ Sx X) = μ̃x (Sx X).

Proof Define Sing+ := {v+ : v ∈ Sing}. By the same proof of [26, Proposition 4.9],
we see that � acts ergodically on ∂X . Since Sing+ is �-invariant, either μx (Sing+) =
μx (∂X) or μx (Sing+) = 0 for any x ∈ X .

Let Rec ⊂ SM be the subset of vectors recurrent under the geodesic flow. Then its
lift to SX ,which is also denoted by Rec, has fullm-measure. By [34], Reg also has full
m-measure, and thusRec∩Reghas fullm-measure.Define R := {v+ : v ∈ Rec∩Reg}.
By definition of the Knieper measure, we see that R has full μx -measure.

Let v ∈ Rec ∩ Reg. By [34, Lemma 5.1], for every

w ∈ Ws(v) := {w ∈ SX : w = −grad bξ (q, πv), bξ (q, πv) = 0},
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i.e., every vector w on the strong stable horocycle manifold of v, we have
d(φtv, φtw) → 0 as t → +∞. Since v is recurrent and regular, then w is also
regular. It follows that R ∩ Sing+ = ∅ and so μx (Sing+) = 0. The lemma then
follows. ��

From now on in Sects. 4 and 5, we will first consider a pair of Vi and N j from
the regular partition-covers of Sx X and Sy X respectively. At last, we will sum up our
estimates over countably many such pairs from regular partition-covers.

4 Local uniform expansion

In this section, we use π -convergence theorem to illustrate local uniform expansion
along unstable horospheres. As a consequence, we obtain estimates on the cardinality
of certain subgroups of �.

Theorem 4.1 (Weak π -convergence theorem, [45, Theorem 3.9]) Let X be a simply
connected manifold without focal points, v0, p, ε be fixed as in Sect. 3.4, and θ1 be
given in Proposition 3.7. Fix any 0 < ρ < θ < θ1.

Suppose that x ∈ X , and γi ∈ � such that γi (x) → p ∈ Fρ and γ −1
i (x) → n ∈ Pρ

as i → ∞. Then for any open set U with U ⊃ Fρ, γi (Fθ ) ⊂ U for all i sufficiently
large.

The above theorem is proved in [45] where one only needs to consider one flow box
to get a closing lemma. However, in our setting we need consider two flow boxes each
time, and so we need apply a modified version of the theorem. This will be explained
later.

Consider a pair of Vi and N j from the regular partition-covers of Sx X and Sy X
respectively. For simplicity, we just denote V := Vi and N := N j . Then N ⊂
intBα

θ j
(w0) and V ⊂ intBβ

θ ′
i
(v0) for some w0 ∈ Sx X and v0 ∈ Sy X . We also denote

for a > 0,

BaN := {v ∈ Sx X : d(v, N ) ≤ a}
B−aN := {v ∈ N : B(v, a) ⊂ N }.

Write t0 := s(v0) = bv−
0
(πv0, p) where p = x . We denote the flow boxes by

Nα := H−1(N− × N+ × [−α, α]),
V β := H−1(V− × V+ × (t0 + [−β, β])).

Notice that Nα ⊂ intBα
θ j

(w0) and V β ⊂ intBβ

θ ′
i
(v0). Given ε > 0, we always

consider ε2

100 ≤ α, β ≤ 3ε
2 . By carefully adjusting the regular partition-covers, we can

guarantee that

μp(∂V
+) = μp(∂V

−) = μp(∂N
+) = μp(∂N

−) = 0. (4)
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In the next section, we will count the number of elements in certain subsets of �.

Let us collect the definitions here for convenience.

�(t, α, β) := {γ ∈ � : Nα ∩ φ−tγ V β 	= ∅},
�−ρ(t, α, β) := {γ ∈ � : (B−ρN )α ∩ φ−tγ (B−ρV )β 	= ∅},

�∗ := {γ ∈ � : γ V+ ⊂ N+ and γ −1N− ⊂ V−},
�∗(t, α, β) := �∗ ∩ �(t, α, β).

Lemma 4.2 For every ρ > 0, there exists some T2 > 0 such that for all t ≥ T2, we
have �−ρ(t, α, β) ⊂ �∗(t, α, β).

Proof Let U be the interior of N+. Then (B−ρN )+ ⊂ U . We claim that there exists
T2 > 0 such that for all t ≥ T2 and γ ∈ �, if (B−ρN )α ∩ φ−tγ (B−ρV )β 	= ∅, then
γ V+ ⊂ U .

Let us prove the claim. Assume not. Then for each i, there exist ti → ∞ and γi ∈ �

such that vi ∈ (B−ρN )α ∩ φ−ti γi (B−ρV )β, but γi V+
� U . Clearly, for any x ∈ X ,

γi x goes to infinity. By passing to a subsequence, let us assume that γi x → ξ ∈ ∂X .

By Lemma 3.8, (B−ρN )α and (B−ρV )β are both compact. By passing to a subse-
quence, we may assume that vi → v ∈ (B−ρN )α and γ −1

i φti vi → w ∈ (B−ρV )β .

Note that γiπw → ξ ∈ ∂X . Since d(γiw,φti vi ) → 0, we have ξ = limi πφti vi ∈
(B−ρN )+.

We may assume that γ −1
i πv → η ∈ ∂X . Let wi = γ −1

i φti vi ∈ (B−ρV )β . Then
d(γ −1

i v, φ−ti wi ) = d(γ −1
i v, γ −1

i vi ) → 0, and thus

d(γ −1
i πv, πφ−ti wi ) → 0.

We then see that η = limi πφ−ti wi ∈ (B−ρV )−.

Now we have γiπv → ξ ∈ (B−ρN )+ and γ −1
i πv → η ∈ (B−ρV )−. Now we

apply a modified version of Theorem 4.1, with Pρ replaced by (B−ρV )−, Fρ replaced
by (B−ρN )+, and Fθ replaced by V+. The proof of [45, Theorem 3.9] should be
modified accordingly. Indeed, we observe that [45, Lemma 3.10] is still true with Fθ

replaced by V+, since ∠(n, c) ≥ π for any c ∈ V+ still holds.
So we have γi V+ ⊂ U for all i sufficiently large. A contradiction and the claim

follows.
By the claim, there exists someT2 > 0 such that for all t ≥ T2 andγ ∈ �−ρ(t, α, β),

we have γ V+ ⊂ U ⊂ N+.

Analogously, by reversing the roles of Nα and V β, and the roles of γ and γ −1, we
can prove that γ −1N− ⊂ V−. Thus γ ∈ �∗ and the proof of the lemma is completed.

��

5 Using scaling andmixing

In this section, we prove Theorem A. First we use the scaling and mixing properties of
Knieper measurem, to give an asymptotic estimates of #�∗(t, ε2, β) and #�(t, ε2, β).
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5.1 Intersection components

Lemma 5.1 We have N ⊂ N ε2 , V ⊂ V ε2 .

Proof Let w ∈ N . By Corollary 3.9, we have

|s(w)| = |bw−(πw, p)| = |bw−(πw0, p)| ≤ |bw−
0
(πw0, p)| + ε2 = ε2.

By definition w ∈ N ε2 and hence N ⊂ N ε2 . V ⊂ V ε2 can be proved analogously. ��
Lemma 5.2 For any t > 0 and γ ∈ �, we have

{γ ∈ � : N ε ∩ φ−tγ V 	= ∅} ⊂ {γ ∈ � : N ε2 ∩ φ−tγ V ε 	= ∅}.

Proof Let γ ∈ � be such that N ε ∩ φ−tγ V 	= ∅. If v ∈ φtγ −1N ε ∩ V , then
w := φ−tγ v ∈ N ε . So there exists w′ ∈ N ε2 such thatw = φsw′ where |s| ≤ ε − ε2.

Then φt+sw′ = φtw = γ v. So γ −1φt+sw′ = v ∈ V ⊂ V ε2 by Lemma 5.1. We have
γ −1φtw′ ⊂ V |s|+ε2 ⊂ V ε . So N ε2 ∩ φ−tγ V ε 	= ∅ and the lemma follows. ��
Lemma 5.3 Let p ∈ X , then given any a > 0, ε > 0, there exists T > 0 such that for
any t ≥ T and v,w ∈ SpX , d(φtv, φtw) ≤ ε implies that ∠(v,w) < a.

Proof In nonpositive curvature, the lemma is a consequence of the comparison
theorem.

For rank one manifolds without focal points, assume the contrary. Then there exist
tn → ∞ and vn, wn ∈ SpX such that

d(φtnvn, φ
tnwn) ≤ ε and ∠(vn, wn) ≥ a.

By taking a subsequence,we can assumewithout loss of generality that vn → v,wn →
w for some v,w ∈ SpX . Then ∠(v,w) ≥ a. Take any t > 0. Choose n large
enough such that tn > t and d(φtv, φtw) ≤ d(φtvn, φ

twn) + ε. By monotonicity,
d(φtvn, φ

twn) ≤ d(φtnvn, φ
tnwn) ≤ ε. It follows that d(φtv, φtw) ≤ 2ε for any

t > 0, which contradicts to the divergence property (see Definition 3.2). ��
Lemma 5.4 For any a > 0, there exists T1 > 0 large enough such that for any t ≥ T1,

{γ ∈ � : Nα ∩ φ−tγ V β 	= ∅}
⊂ {γ ∈ � : (BaN )α+β+ε2 ∩ φ−tγ V 	= ∅}.

Proof Let γ ∈ � such that Nα ∩ φ−tγ V β 	= ∅. Then there exists v ∈ φt Nα ∩ γ V β.

So γ −1v ∈ V β and there exists w ∈ V such that w− = γ −1v−. So |s(w)| ≤ ε2 since
V ⊂ V ε2 by Lemma 5.1. Moreover, there exists w′ ∈ Wu(w) (hence s(w) = s(w′))
and φbw′ = γ −1v for some b ∈ R. It follows that |b| ≤ β + ε2 and d(w,w′) ≤ 4ε
by Lemma 3.8. Then γw′ ∈ Wu(γw) with d(γw, γw′) ≤ 4ε, s(γw) = s(γw′)
and φbγw′ = v. It follows that γw′ ∈ φt Nα+β+ε2 . By Lemma 5.3, there exists
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T1 > 0 large enough such that for any t ≥ T1, then d(γw, γw′) ≤ 4ε implies that
γw ∈ φ[0,∞](BaN ). We have that φ−tγw ∈ (BaN )α+β+ε2 ∩ φ−tγ V . The lemma
follows. ��

5.2 Depth of intersection

Given ξ ∈ ∂X and γ ∈ �, define bγ
ξ := bξ (γ p, p).

Lemma 5.5 Let ξ, η ∈ N−, and γ ∈ �(t, α, β) with t > 0. Then |bγ
ξ − bγ

η | < ε2.

Proof Let γ ∈ �(t, α, β), so there exists v ∈ Nα ∩ φ−tγ V β. There is q ∈ πV β

such that γ q = πφtv ∈ πH−1(N− × N+ × [0,∞)). Since p, y ∈ F , we have
d(γ p, γ q) = d(p, q) ≤ diamF + 4ε by Lemma 3.8. Thus by Corollary 3.9,
|bξ (γ p, p) − bη(γ p, p)| < ε2 for any ξ, η ∈ N−. ��
Lemma 5.6 Given any γ ∈ �∗(t, α, β) and any t ∈ R, we have

N ε2 ∩ φ−tγ V β = {w ∈ E−1(N− × γ V+) :
s(w) ∈ [−ε2, ε2] ∩ (bγ

w− − t + t0 + [−β, β])}

where t0 = s(v0).

Proof At first, we claim that N ε2 ∩ φ−tγ V β ⊂ E−1(N− × γ V+). Indeed, let v ∈
N ε2 ∩ φ−tγ V β. Since v ∈ N ε2 , v− ∈ N−. On the other hand, since v ∈ φ−tγ V β,

we have v+ ∈ γ V+. This proves the claim.
Notice that as γ ∈ �∗(t, α, β), one has γ V+ ⊂ N+ and γ −1N− ⊂ V−. Let

w ∈ E−1(N− × γ V+) ⊂ E−1(N− × N+). By definition of N ε2 , w ∈ N ε2 if and
only if s(w) ∈ [−ε2, ε2].

It remains to show thatw ∈ φ−tγ V β if and only if s(w) ∈ (bγ

w− −t+t0+[−β, β]).
To see this, note that

γ V β = {γ v : v ∈ E−1(V− × V+) and bv−(πv, p) ∈ t0 + [−β, β]}
= {w ∈ E−1(γ V− × γ V+) : bw−(πw, γ p) ∈ t0 + [−β, β]}.

Since s(φtw) = s(w) + t and

bw−(πw, γ p) = bw−(πw, p) + bw−(p, γ p) = s(w) − bγ

w− ,

we know φtw ∈ γ V β if and only if s(w) − bγ

w− + t ∈ t0 + [−β, β]. The lemma
follows. ��

The following lemma implies that the intersection components also have product
structure.

Lemma 5.7 If γ ∈ �∗(t, ε2, β), then

N ε2 ∩ φ−(t+4ε2)γ V β+8ε2 ⊃ H−1(N− × γ V+ × [−ε2, ε2]) := N γ .
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Proof Let γ ∈ �∗(t, ε2, β), then N ε2 ∩ φ−tγ V β 	= ∅. By Lemma 5.6, there exists
η ∈ N− such that

[−ε2, ε2] ∩ (bγ
η − t + t0 + [−β, β]) 	= ∅.

It follows that [−ε2, ε2] ⊂ (bγ
η − t −2ε2 + t0 +[−β, β +4ε2]). Then by Lemma 5.5,

for any ξ ∈ N− we have

[−ε2, ε2] ∩ (bγ
ξ − t − 2ε2 + t0 + [−β, β + 4ε2]) 	= ∅,

which in turn implies that

[−ε2, ε2] ⊂ (bγ
ξ − t − 4ε2 + t0 + [−β, β + 8ε2]).

We are done by Lemma 5.6. ��

5.3 Scaling andmixing calculation

We use the following notations in the asymptotic estimates.

f (t) = e±Cg(t) ⇔ e−Cg(t) ≤ f (t) ≤ eCg(t) for all t;
f (t) � g(t) ⇔ lim sup

t→∞
f (t)

g(t)
≤ 1;

f (t) � g(t) ⇔ lim inf
t→∞

f (t)

g(t)
≥ 1;

f (t) ∼ g(t) ⇔ lim
t→∞

f (t)

g(t)
= 1;

f (t) ∼ e±Cg(t) ⇔ e−Cg(t) � f (t) � eCg(t).

Lemma 5.8 If γ ∈ �∗(t, ε2, β), then

m(N γ )

m(V β)
= e±26hεeht0e−ht ε

2μp(N−)

βμp(V−)

where N γ is from Lemma 5.7.

Proof The main work is to estimate βp(ξ, γ η) and bη(γ
−1 p, p) for any ξ ∈ N− and

η ∈ V+.

Firstly, take q lying on the geodesic connecting ξ and γ η such that bξ (q, p) = 0.
Then

|βp(ξ, γ η)| = |bξ (q, p) + bγ η(q, p)| = |bγ η(q, p)| ≤ d(q, p) < 4ε (5)

where we used Lemma 3.8 in the last inequality.
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Secondly, since γ ∈ �∗(t, ε2, β), there exist v ∈ V β and w ∈ N ε2 such that w =
φ−tγ v.Take q ′ lying on the geodesic connecting γ −1ξ and η such that bγ −1ξ (q

′, p) =
t0. Then q ′ ∈ V β.Define q ′′ to be the unique point in πH−1(N− ×N+ ×{0})∩cξ,γ η.

Then using Lemma 3.8,

d(q ′′, γ q ′) ≤ d(q ′′, πw) + d(πw, πφtw) + d(γ πv, γ q ′) ≤ t + 8ε

d(q ′′, γ q ′) ≥ d(πw, πφtw) − d(q ′′, πw) − d(γ πv, γ q ′) ≥ t − 8ε.

Noticing that q ′′, γ q ′ lie on the geodesic cξ,γ η, we have

bη(γ
−1 p, p) = bγ η(p, γ p) = bγ η(p, γ q

′) + bγ η(γ q
′, γ p)

≤ bγ η(q
′′, γ q ′) + d(q ′′, p) + bη(q

′, p) ≤ t + 12ε + bη(q
′, p)

and

bη(γ
−1 p, p) = bγ η(p, γ p) = bγ η(p, γ q

′) + bγ η(γ q
′, γ p)

≥ bγ η(q
′′, γ q ′) − d(q ′′, p) + bη(q

′, p) ≥ t − 12ε + bη(q
′, p).

Thus we have

m(N γ )

m(V β)
= 2ε2

2β

∫
N−

∫
V+ ehβp(ξ,γ η)dμp(ξ)dμγ −1 p(η)∫

V−
∫
V+ ehβp(ξ ′,η′)dμp(ξ ′)dμp(η′)

= ε2

β
e±4hε

∫
N−

∫
V+ e−hbη(γ −1 p,p)dμp(ξ)dμp(η)∫

V−
∫
V+ ehβp(ξ ′,η′)dμp(ξ ′)dμp(η′)

= ε2

β
e±16hεe−ht

∫
N−

∫
V+ e−hbη(q ′,p)dμp(ξ)dμp(η)∫

V−
∫
V+ e±8hεe−h(bξ ′ (q ′,p)+bη′ (q ′,p))dμp(ξ ′)dμp(η′)

= ε2

β
e±24hεe−ht e±2hε2eht0

μp(N−)

μp(V−)

= e±26hεeht0e−ht ε
2μp(N−)

βμp(V−)
.

where in the third equality we used the fact that cξ ′η′ passes through a point in V β,

within a distance 4ε from q ′, and in the fourth equality we used Corollary 3.9 and
bγ −1ξ (q

′, p) = t0. ��
Finally, we combine scaling and mixing properties of Knieper measure to obtain

the following asymptotic estimates.

Proposition 5.9 We have

e−30hε � #�∗(t, ε2, β)eht0

μp(V−)μp(N+)eht
1

2β
� e30hε

(
1 + 8ε2

β

)
,
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e−30hε � #�(t, ε2, β)eht0

μp(V−)μp(N+)eht
1

2β
� e30hε

(
1 + 8ε2

β

)
.

Proof By Lemmas 4.2 and 5.7, for any 0 < ρ < θ and t large enough, we have

(B−ρN )ε
2 ∩ φ−t (B−ρV )β ⊂

⋃
γ∈�∗(t,ε2,β)

N γ ⊂ N ε2 ∩ φ−(t+4ε2)V β+8ε2 .

By Lemma 5.8,

m(N γ )

m(V β)
= e±26hεeht0e−ht ε

2μp(N−)

βμp(V−)
.

Estimating similarly to (5),

m(N ε2) = 2ε2
∫
N−

∫
N+

ehβp(ξ,η)dμp(ξ)dμp(η) = 2ε2e±4hεμp(N
−)μp(N

+).

(6)

Thus we have

e−26hεm((B−ρN )ε
2 ∩ φ−t (B−ρV )β) ≤ #�∗(t, ε2, β)eht0e−ht ε

2μp(N−)

βμp(V−)
m(V β)

≤ e26hεm(N ε2 ∩ φ−(t+4ε2)V β+8ε2).

Dividing by m(N ε2)m(V β) and using mixing of m, we get

e−26hε m((B−ρN )ε
2
)m((B−ρV )β)

m(N ε2)m(V β)
� #�∗(t, ε2, β)eht0

ehtm(N ε2)

ε2μp(N−)

βμp(V−)

� e26hε m(V β+8ε2)

m(V β)
.

By (4), letting ρ → 0, we obtain

e−26hε � #�∗(t, ε2, β)eht0

ehtm(N ε2)

ε2μp(N−)

βμp(V−)
� e26hε

(
1 + 8ε2

β

)
.

Thus by (6)

e−30hε � #�∗(t, ε2, β)eht0

μp(V−)μp(N+)eht
1

2β
� e30hε

(
1 + 8ε2

β

)
. (7)
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To prove the second equation, we consider ρ > 0. Then by Lemma 4.2,
�∗(t, ε2, β) ⊂ �(t, ε2, β) ⊂ �∗

ρ(t, ε2, β). By (7),

e−30hε � #�∗(t, ε2, β)eht0

μp(V−)μp(N+)eht
1

2β
≤ #�(t, ε2, β)eht0

μp(V−)μp(N+)eht
1

2β

≤ #�∗
ρ(t, ε2, β)eht0

μp(V−)μp(N+)eht
1

2β

� e30hε(1 + 8ε2

β
)
μp((BρV )−)μp((BρN )+)

μp(V−)μp(N+)
.

Letting ρ ↘ 0 and by (4), we get the second equation in the proposition. ��

5.4 Integration

Let V ⊂ Sy X , N ⊂ Sx X be as above, and 0 ≤ a < b. Let n(a, b, V , N 0) denote
the number of connected components at which φ[−b,−a]V intersects N 0. nt (V β, Nα)

(resp. nt (V , Nα)) denotes the number of connected components at which φ−t V β

(resp. φ−t V ) intersects Nα.

Lemma 5.10 We have

nt (V , N ε) � e−ht0μp(V
−)μp(N

+)eht2ε(1 + 8ε)e30hε .

Proof Setting α = ε2 in Lemma 5.2,

nt (V , N ε) ≤ nt (V
ε, N ε2).

Setting β = ε in Proposition 5.9,

nt (V
ε, N ε2) = #�(t, ε2, ε) � e−ht0μp(V

−)μp(N
+)eht2ε(1 + 8ε)e30hε .

��
Lemma 5.11 We have

nt (V , N ε) � e−ht0μp(V
−)μp(N

+)eht2ε(1 − 2ε)e−30hε .

Proof Setting α = ε2, β = ε − 2ε2 in Lemma 5.4, for any a > 0, we have

nt (V , N ε) ≥ nt (V
ε−2ε2 , (B−aN )ε

2
)

for any t ≥ T1 where T1 is provided by Lemma 5.4. Setting β = ε−2ε2 in Lemma 5.9,
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nt (V
ε−2ε2 , (B−aN )ε

2
) � e−ht0μp(V

−)μp((B−aN )+)eht2ε(1 − 2ε)e−30hε.

Letting a → 0, by (4) we obtain the conclusion of the lemma. ��
Proposition 5.12 There exists Q > 0 such that

e−2Qεe−ht0μp(V
−)μp(N

+)
1

h
eht � n(0, t, V , N 0)

� e2Qεe−ht0μp(V
−)μp(N

+)
1

h
eht .

Proof It is clear that for any b > 0,

n(0, t, V , N 0) ∼ n(b, t, V , N 0). (8)

By Lemmas 5.10 and 5.11, we can choose b large enough such that

n(t − ε, t + ε, V , N 0) = nt (V , N ε) = e±Qεe−ht0μp(V
−)μp(N

+)eht2ε

for some Q > 2h large enough and for all t ≥ b. Let tk = b + ε + 2kε, then

n(b, t, V , N 0) ≤
[ t−b
2ε ]+1∑
k=0

n(tk − ε, tk + ε, V , N 0)

≤ eQεe−ht0μp(V
−)μp(N

+)

[ t−b
2ε ]+1∑
k=0

2εehtk

≤ eQεe−ht0μp(V
−)μp(N

+)

∫ t+2ε

b−ε

ehsds

= eQεe−ht0μp(V
−)μp(N

+)
1

h
(eh(t+2ε) − eh(b−ε))

≤ e2Qεe−ht0μp(V
−)μp(N

+)
1

h
eht

and for 0 < r < 1

n(b, t, V , N 0) ≥
[ t−b
2ε ]−1∑
k=0

n(tk − rε, tk + rε, V , N 0)

≥ e−Qrεe−ht0μp(V
−)μp(N

+)

[ t−b
2ε ]−1∑
k=0

2rεehtk

≥ e−Qrεe−ht0μp(V
−)μp(N

+)

∫ t−2ε

b+ε

rehsds
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≥ e−Qrεe−ht0μp(V
−)μp(N

+)
r

h
(eh(t−2ε) − eh(b+ε)).

Letting r → 1, we get

n(b, t, V , N 0) ≥ e−Qεe−ht0μp(V
−)μp(N

+)
1

h
(eh(t−2ε) − eh(b+ε))

� e−2Qεe−ht0μp(V
−)μp(N

+)
1

h
eht .

The proposition then follows from (8). ��

5.5 Summing over the regular partition-cover

Denote

at (x, y) := #{γ ∈ � : γ y ∈ B(x, t)}

and

a1t (x, y) := #{γ ∈ � : γ y ∈ B(x, t), and cx,γ y is singular}.

It is easy to see that bt (x) = ∫
F at (x, y)dVol(y). In the following, we give an

asymptotic estimates of at (x, y).

Lemma 5.13 There exist C > 0 and 0 < h′ < h, such that for any x, y ∈ F ,

a1t (x, y) ≤ Ceh
′t .

Proof Given any ε < injM/5 and t > 0, let γ1 	= γ2 ∈ � be such that γ1y, γ2y ∈
B(x, t) \ B(x, t − ε), and both cx,γ1y and cx,γ2 y are singular. Then it is easy to see
that ċx,γ1y and ċx,γ2 y are (t, ε)-separated. By a result of Knieper [27, Theorem 1.1],
the topological entropy of the singular set htop(Sing) is strictly smaller than h. It
follows that the number of γ ∈ � as above is less than C1eh

′t for some C1 > 0 and
htop(Sing) < h′ < h.

Let ti = iε, then

a1t (x, y) ≤
[t/ε]+1∑
i=1

C ′eh′ti = C ′

ε

[t/ε]+1∑
i=1

εeh
′ti ≤ C ′

ε

∫ t+ε

0
eh

′sds ≤ Ceh
′t

for some C > 0. ��
Denote by

a(0, t, x, y,∪∞
j=n+1N j ) := #{γ ∈ � : γ y ∈ πφ[0,t] ∪∞

j=n+1 N j },
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and similarly,

a(0, t, x, y,∪∞
i=m+1Vi ) := #{γ ∈ � : γ −1x ∈ πφ[−t,0] ∪∞

i=m+1 Vi }.

Lemma 5.14 There exists C > 0 such that

lim sup
t→∞

e−hta(0, t, x, y,∪∞
j=n+1N j ) ≤ C · μp((∪∞

j=n+1N j )
+),

and

lim sup
t→∞

e−hta(0, t, x, y,∪∞
i=m+1Vi ) ≤ C · μp((∪∞

i=m+1Vi )
−).

Proof We start to estimate from above the spherical volume of πφt ∪∞
j=n+1 N j which

is a subset of the sphere S(x, t) of radius t around x .
Let x1, . . . , xk be a maximal ρ-separated subset of πφt ∪∞

j=n+1 N j , where ρ ≥
R from Shadowing Lemma 3.6. Then B(xi , ρ/2), i = 1, 2, . . . , k are disjoint. By
Lemma 5.3, for any a > 0 there exists T3 > 0 such that if t ≥ T3, then fx B(xi , ρ/2) ⊂
(Ba ∪∞

j=n+1 N j )
+. By Shadowing Lemma 3.6 and the fact that p = x, we know

μp( fx B(xi , ρ/2)) ≥ b−1e−ht and hence

k ≤ behtμp((Ba ∪∞
j=n+1 N j )

+).

From the uniformity of the geometry, there exists l > 0 such that Vol(B(xi , ρ) ∩
S(x, t)) ≤ l for each 1 ≤ i ≤ k. So

Volπφt ∪∞
j=n+1 N j ≤ lk ≤ lbehtμp((Ba ∪∞

j=n+1 N j )
+).

Then there exists C1,C2 > 0 such that

Volπφ[0,t] ∪∞
j=n+1 N j ≤ C1 +

∫ t

T3
Volφs ∪∞

j=n+1 N jds

≤ C1 + C2e
htμp((Ba ∪∞

j=n+1 N j )
+). (9)

Note that C2 is independent of T3 and a.

Now since each γF has equal finite diameter and volume, there exists T4 > 0 such
that

a(0, t, x, y,∪∞
j=n+1N j ) ≤ C3 + C4Volπφ[T4,t]Ba ∪∞

j=n+1 N j

≤ C5 + C6e
htμp((B2a ∪∞

j=n+1 N j )
+) (10)

where we used (9) in the last inequality. Note that C6 is independent of a. Thus

lim sup
t→∞

e−hta(0, t, x, y,∪∞
j=n+1N j ) ≤ C6 · μp((B2a ∪∞

j=n+1 N j )
+).

123



2340 W. Wu

As a > 0 could be arbitrarily small and C6 is independent of a, we get the first
inequality in the lemma.

The second inequality can be proved analogously with minor modification: When
applying Shadowing Lemma 3.6, we transfer from μp to μy by

dμy

dμp
(ξ) = e−hbξ (y,p) ≤ ehd(y,p) ≤ ehdiamF

for any ξ ∈ ∂X . ��
Proof of TheoremA Since the diameter of each flow box is no more than 4ε, we have

n(0, t,∪Vi ,∪(N j )
0) ≤ at+4ε(x, y) (11)

and

at−4ε(x, y) ≤ a1t−4ε(x, y) + a(0, t, x, y,∪∞
j=n+1N j )

+ a(0, t, x, y,∪∞
i=m+1Vi ) + n(0, t,∪m

i=1Vi ,∪n
j=1(N j )

0). (12)

For each Vi , denote by t i0 := bv−
i
(πvi , p) where vi ∈ Vi . Recall that in Sect. 4

we suppressed i and write t0 = t i0, since only one Vi is considered there. By
Proposition 5.12, for any m, n ∈ N

lim inf
t→∞ e−ht n(0, t,∪Vi ,∪(N j )

0)

≥ lim inf
t→∞ e−ht

m∑
i=1

n∑
j=1

n(0, t, Vi , (N j )
0)

≥
m∑
i=1

n∑
j=1

e−2Qεe
−hb

v
−
i

(πvi ,p)
μp((Vi )

−)μp((N j )
+)

1

h
.

Note that v �→bv−(πv, p) is a continuous function by Lemma 3.3. So if we choose a
sequence of finer and finer regular partition-covers, and let m, n → ∞ on the right
hand,

lim inf
t→∞ e−ht n(0, t,∪Vi ,∪(N j )

0)

≥ e−2Qε 1

h

∫
Sx M∩Reg

∫
SyM∩Reg

e−hbv− (πv,p)dμ̃y(−v)dμ̃x (w).

Then by (11) we have

at+4ε(x, y) � e−2Qε 1

h
eht

∫
Sx M∩Reg

∫
SyM∩Reg

e−hbv− (πv,p)dμ̃y(−v)dμ̃x (w).
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Replacing t by t − 4ε, we have

at (x, y) � e−2Qεe−4ε 1

h
eht

∫
Sx M∩Reg

∫
SyM∩Reg

e−hbv− (πv,p)dμ̃y(−v)dμ̃x (w).

(13)

On the other hand, by Proposition 5.12 and Corollary 3.9, for any m, n ∈ N

e2Qε 1

h

∫
Sx M∩Reg

∫
SyM∩Reg

e−hbv− (πv,p)dμ̃y(−v)dμ̃x (w)

≥
m∑
i=1

n∑
j=1

e2Qεe−h(t i0+ε2+4ε)μp((Vi )
−)μp((N j )

+)
1

h

≥ lim sup
t→∞

m∑
i=1

n∑
j=1

n(0, t, Vi , (N j )
0)e−ht e−h(ε2+4ε). (14)

Combining with (12) and Lemmas 5.13, 5.14, one has

at−4ε(x, y) � Ceh
′(t−4ε)

+Ceh(t−4ε) · μp((∪∞
j=n+1N j )

+) + Ceh(t−4ε) · μp((∪∞
j=m+1Vi )

+)

+e2Qεeh(ε2+4ε) 1

h
eht

∫
Sx M∩Reg

∫
SyM∩Reg

e−hbv− (πv,p)dμ̃y(−v)dμ̃x (w).

Letting m, n → ∞ and replacing t − 4ε by t, we have

at (x, y)

� e2Qεeh(ε2+4ε)+4ε 1

h
eht

∫
Sx M∩Reg

∫
SyM∩Reg

e−hbv− (πv,p)dμ̃y(−v)dμ̃x (w).

(15)

Letting ε → 0 in (13) and (15) and recalling that p = x, we get

at (x, y) ∼ 1

h
eht · c(x, y)

where

c(x, y) :=
∫
Sx X∩Reg

∫
Sy X∩Reg

e−hbv− (πv,x)dμ̃y(−v)dμ̃x (w).

By Lemma 3.10, in fact we have

c(x, y) =
∫
Sx X

∫
Sy X

e−hbv− (πv,x)dμ̃y(−v)dμ̃x (w).
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It follows that bt (x) = ∫
F at (x, y)dVol(y) ∼ 1

h e
ht

∫
F c(x, y)dVol(y) by the

dominated convergence Theorem. Indeed, by (12), Lemma 5.13, (10) and (14),

e−htat (x, y) ≤ B1 + B2c(x, y)

where the right hand side is integrable.

Define c(x) := ∫
F c(x, y)dVol(y), we get bt (x) ∼ c(x) e

ht

h . Obviously, c(γ x) =
c(x) for any γ ∈ �. So c descends to a function from M to R, which still denoted by
c.

It remains to prove the continuity of c. Let yn → x ∈ X . For any ε > 0, there
exists n ∈ N such that d(x, yn) < ε. Then

bt−ε(x) ≤ bt (yn) ≤ bt+ε(x).

We have

c(yn) = lim
t→∞

bt (yn)

eht/h
≤ lim

t→∞
bt+ε(x)

eht/h
= c(x)ehε

and

c(yn) = lim
t→∞

bt (yn)

eht/h
≥ lim

t→∞
bt−ε(x)

eht/h
= c(x)e−hε .

Thus limn→∞ c(yn) = c(x) and c is continuous. ��

6 Properties of theMargulis function

Weprove TheoremB in this section. LetM be a rank one closedC∞ Riemannianman-
ifold without focal points, X the universal cover of M . Firstly, we give an equivalent
definition for the Patterson–Sullivan measure via the Margulis function.

Recall that fx : Sx X → ∂X , fx (v) = v+. Similarly, we define the canonical
projection f Rx : S(x, R) → ∂X by f Rx (y) = v+

y where vy is the unit normal vector of
the sphere S(x, R) at y. For any continuous function ϕ : ∂X → R, define a measure
on ∂X by

νR
x (ϕ) := 1

ehR

∫
S(x,R)

ϕ ◦ f Rx (y)dVol(y).

By Theorem A or (3), νR
x (∂X) is uniformly bounded from above and below, and

hence there exist limit measures of νR
x when R → ∞. Take any limit measure νx . By

Theorem A or (3), we see that

νx (∂X) = lim
R→∞

sR(x)

ehR
= c(x).
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Moreover, by definition one can check that

(1) For any p, q ∈ X and νp-a.e. ξ ∈ ∂X ,

dνq

dνp
(ξ) = e−h·bξ (q,p).

(2) {νp}p∈X is �-equivariant, i.e., for every Borel set A ⊂ ∂X and for any γ ∈ �, we
have

νγ p(γ A) = νp(A).

(2) is obvious. Let us prove (1). Let ρ > 0 be arbitrarily small. Take a small compact
neighborhood Uξ of ξ in ∂X such that |bξ (q, p) − bξ ′(q, p)| < ρ for any ξ ′ ∈ Uξ .

Let R > 0 be large enough such that

(1) |Vol(AR)

ehR
− νp(Uξ )| < ρ where AR = ( f Rp )−1Uξ ;

(2) |d(q, cp,ξ ′(R)) − R − bξ ′(q, p)| < ρ for any ξ ′ ∈ Uξ .

Nowwe divideUξ into finitely many sufficiently small compact subsetsUi
ξ ⊂ Uξ , i =

1, . . . , k such that the following holds. By enlarging R if necessary,

∣∣∣∣∣
Vol( Āi

R)

Vol(Ai
R)

− 1

∣∣∣∣∣ < ρ

where Ai
R = ( f Rp )−1Ui

ξ , Ā
i
R = ( f

d(q,cp,ξi (R))
q )−1Ui

ξ and ξi ∈ Ui
ξ . Then

νq(Uξ ) =
k∑

i=1

νq(U
i
ξ ) ≤

k∑
i=1

ν
d(q,cp,ξi (R))
q (Ui

ξ ) + ρ

≤
k∑

i=1

1

eh(R+bξi (q,p)−ρ)
Vol( Āi

R) + ρ

≤ 1 + ρ

eh(R+bξ (q,p)−2ρ)

k∑
i=1

Vol(Ai
R) + ρ

≤ 1 + ρ

eh(bξ (q,p)−2ρ)
νR
p (Uξ ) + ρ

≤ 1 + ρ

eh(bξ (q,p)−2ρ)
(νp(Uξ ) + ρ) + ρ.

As Uξ shrinks to {ξ}, ρ > 0 could be arbitrarily small. So dνq
dνp

(ξ) ≤ e−h·bξ (q,p). By

symmetry, we get dνq
dνp

(ξ) = e−h·bξ (q,p).

It follows that {νx }x∈X is an h-dimensional Busemann density. By [34, TheoremB],
there exists exactly one Busemann density up to a scalar constant, which is realized by
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the Patterson–Sullivan measure. Thus {νx }x∈X coincide with {μx }x∈X up to a scalar
constant.

Proof of Theorem B Recall that μ̃x is the normalized Patterson–Sullivan measure. By
the above discussion, particularly νx (∂X) = c(x) and dνy

dνx
(ξ) = e−h·bξ (y,x), we have

dμ̄y

dμ̄x
(ξ) = c(x)

c(y)
e−h·bξ (y,x).

Then c(y) = c(x)
∫
∂X e−h·bξ (y,x)dμ̄x (ξ).

Recall that y �→ bξ (y, x) is C2 [18, Theorem 2] (see also [31, Section 2.3]), and
moreover both ∇ybξ (y, x) and �ybξ (y, x) = trU (y, ξ) depend continuously on ξ. It
follows that c is C1.

If c is constant, then
∫
∂X e−h·bξ (y,x)dμ̄x (ξ) ≡ 1. Taking Laplacian with respect to

y on both sides, we have

∫
∂X

h(h − trU (y, ξ))e−h·bξ (y,x)dμ̄x (ξ) ≡ 0.

It follows that

h =
∫
∂X trU (y, ξ)e−h·bξ (y,x)dμ̄x (ξ)∫

∂X e−h·bξ (y,x)dμ̄x (ξ)
=

∫
∂X

trU (y, ξ)dμ̄y(ξ)

for any y ∈ X . ��

7 Rigidity in dimension two

7.1 Unique ergodicity of horocycle flow

Let M be a rank one closed Riemannian surface without focal points in this section.
A horocyclic flow is a continuous flow hs on SM whose orbits are horocycles, i.e.,
for v ∈ SM, {hsv : s ∈ R} = Ws(v), where Ws(v) is the strong stable horocycle
manifold of v in SM .

Clotet [13] proved recently the unique ergodicity of the horocycle flowon a compact
surface of genus at least 2 without conjugate points and with continuous Green bundle,
see also [12] for the case of nonpositive curvature. We can focus on surfaces without
focal points which will be used in our arguments later.

IfM has constant negative curvature, Furstenberg [19] proved the unique ergodicity
of the horocycle flow, which is extended to compact surfaces of variable negative
curvature by Marcus [35]. To apply Marcus’s method to surfaces without focal points,
we need to define the horocycle flow using the so-called Margulis parametrization.
Gelfert–Ruggiero [21] defined a quotientmapχ : SM → Z by an equivalence relation
“collapsing” each flat strip to a single curve, which semiconjugates the geodesic flow
on SM and a continuous flow on Z . They show that Z is a topological 3-manifold,
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and that the quotient flow is expansive, topologically mixing and has local product
structure. In [13], the horocycle flow with Margulis parametrization hM

s is defined
on Z . Using Coudène’s theorem [14], it showed in [13, Proposition 4.2] that the
horocycle flow hM

s on Z is uniquely ergodic, and the unique invariant measure is
χ∗m, the projection of Knieper measure m onto Z .

There is another natural parametrization of the horocycle flow on SM given by
arc length of the horocycles, which clearly is well defined everywhere. It is called
the Lebesgue parametrization and the Lebesgue horocycle flow is denoted by hLs . By
constructing complete transversals to respective flows, it is showed in [13, Theorem
5.8] that there is a bijection between finite Borel measures invariant under hM

s on Z
and hLs on SM respectively.

By the above discussion, hLs is also uniquely ergodic [13, Theorem 5.10].We denote
by ws the unique probability measure invariant under the stable horocycle flow hLs .

In [13], the subset of generalized rank one vectors is defined as

R1 := {v ∈ SX : Gu(v) 	= Gs(v)}

where Gs and Gu are Green bundles. Clearly R1 is nonempty and open. Let v ∈ R1,

Wwu(v) := {w ∈ SX : w− = v−} the weak unstable manifold of v ∈ SX , and
Wu(v) := {w ∈ Wwu(v) : bv−(πw, πv) = 0} the strong unstable horocyclemanifold
of v. PutWws(v) := −Wwu(−v) andWs(v) := −Wu(−v). ThenWwu(v) contains a
relatively compact neighborhood T of v in R1, such that prT is a complete transversal
to the (stable) horocycle flow hLs in the sense of [13, Defintion 5.5]. So locally for a
subset E in a neighborhood of v,

ws(E) =
∫
Wwu(v)

∫
R

1E (hLs (u))dsdμWwu(v)(u)

where 1E is the characteristic function of E, and μWwu(v) is some Borel measure on
T ⊂ Wwu(v) which is in fact independent of the parametrization of the horocycle
flow. Note that χ is a homeomorphism in a neighborhood of v ∈ R1.

On the other hand, the unique invariant measure for hM
s on Z is the projection of

Knieper measure m, which can be expressed as

m(E) =
∫

∂X

∫
∂X

∫
R

1E (ξ, η, t)eh·βx (ξ,η)dtdμx (ξ)dμx (η)

since E contains no flat strips. Consider the canonical projection

P = Pv : Wu(v) → ∂X , P(w) = w+,

then

μWwu(v)(A) =
∫ ∫

R

1A(φt u)dtdμWu(v)(u)
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where μWu(v)(B) := ∫
∂X 1B(P−1

v η)e−hbη(πv,x)dμx (η) and A, B are in a neighbor-
hood of v ∈ R1.

Thus ws is locally equivalent to the measure ds × dt × dμWu . If we disintegrate
ws along Wu foliation, the factor measure on a section Wws(v) is equivalent to dsdt,
i.e., the Lebesgue measure Vol, and the conditional measures on the fiber Wu(v) is
equivalent to P−1

v μx .

7.2 Uniqueness of harmonic measure

We recall some facts from [49] on the ergodic properties of foliations. Let G be any
foliation on a compact Riemannian manifold M . A probability measure ν on M is
called harmonic with respect to G if

∫
M �L f dν = 0 for any bounded measurable

function f onM which is smooth in the leaf direction, where�L denotes the Laplacian
in the leaf direction.

A holonomy invariant measure of the foliation G is a family of measures defined
on each transversal of G, which is invariant under all the canonical homeomorphisms
of the holonomy pseudogroup [40]. A measure is called completely invariant with
respect to G if it disintegrates to a constant function times the Lebesgue measure on
the leaf, and the factor measure is a holonomy invariant measure on a transversal. By
[20], a completely invariant measure must be a harmonic measure.

Theorem 7.1 Let M be a rank one closed Riemannian surface without focal points.
Then there is precisely one harmonic probability measure with respect to the strong
stable horocycle foliation.

Proof If dim M = 2, then the leaves of the strong stable horocycle foliation have poly-
nomial volume growth. By [23], any harmonic measure must be completely invariant.
By [13] or the previous subsection, there is a unique completely invariant measurews .

As a consequence, ws is the unique harmonic measure. ��

7.3 Integral formulas for topological entropy

Recall that M is a rank one closed Riemannian surface without focal points. Using the
measure ws we can establish some formulas for topological entropy h of the geodesic
flow.

Let Bs(v, R) denote the ball centered at v of radius R > 0 inside Ws(v). In fact,
it is just a curve. By the uniqueness of harmonic measure ws, we have

Lemma 7.2 (Cf. [49, Theorem 1.2]) For any continuous ϕ : SM → R,

1

Vol(Bs(v, R))

∫
Bs (v,R)

ϕdVol(y) →
∫
SM

ϕdws

as R → ∞ uniformly in v ∈ SM .

For continuous ϕ : SM → R, define ϕx : X → R by ϕx (y) = ϕ(v(y)) where
v(y) ∈ SX is the unique vector such that cv(y)(0) = y and cv(y)(t) = x for some
t ≥ 0.
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Based on Lemma 7.2, we get the following proposition. The proof is the same as
the one before [49, Proposition 3.1] (see also [29, 30]), and hence will be skipped. The
basic idea here is that horospheres in X can be approximated by geodesic spheres.

Proposition 7.3 For any continuous ϕ : SM → R,

1

sR(x)

∫
S(x,R)

ϕx (y)dVol(y) →
∫
SM

ϕdws

as R → ∞ uniformly in x ∈ X .

Theorem 7.4 Let M be a rank one closed Riemannian surface without focal points.
Then

(1) h = ∫
SM trU (v)dws(v),

(2) h2 = ∫
SM −trU̇ (v) + (trU (v))2dws(v),

(3) h3 = ∫
SM trÜ − 3trU̇ trU + (trU )3dws,

where U (v) and trU (v) are the second fundamental form and the mean curvature of
the horocycle Hπv(v

+) at πv.

Proof Consider the following function

Gx (R) := sR(x)

ehR
= 1

ehR

∫
S(x,R)

dVol(y).

Taking the derivatives, we have

G ′
x (R) = −hGx (R) + 1

ehR

∫
S(x,R)

trUR(y)dVol(y),

G ′′
x (R) = −h2Gx (R) − 2hG ′

x (R)

+ 1

ehR

∫
S(x,R)

−trU̇R(y) + (trUR(y))2dVol(y),

G ′′′
x (R) = −h3Gx (R) − 3h2G ′

x (R) − 3hG ′′
x (R)

+ 1

ehR

∫
S(x,R)

trÜR(y) − 3trU̇R(y)trUR(y) + (trUR(y))3dVol(y),

where UR(y) and trUR(y) are the second fundamental form and the mean curvature
of S(x, R) at y.

Clearly, trUR(y) → trU (v(y)) as R → ∞ uniformly. By Theorem A,

lim
R→∞Gx (R) = lim

R→∞
sR(x)

ehR
= c(x).

Combining with Proposition 7.3, we have

lim
R→∞G ′

x (R) = −hc(x) + c(x)
∫
SM

trUdws,
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lim
R→∞G ′′

x (R) = −h2c(x) − 2h lim
R→∞G ′

x (R) + c(x)
∫
SM

−trU̇ + (trU )2dws,

lim
R→∞G ′′′

x (R) = −h3c(x) − 3h2 lim
R→∞G ′

x (R) − 3h lim
R→∞G ′′

x (R)

+c(x)
∫
SM

trÜ − 3trU̇ trU + (trU )3dws . (16)

Since limR→∞ G ′
x (R) exists and limR→∞ Gx (R) is bounded, we have

limR→∞ G ′
x (R) = 0. Similarly, considering the second and third derivative, we have

lim
R→∞G ′′

x (R) = lim
R→∞G ′′′

x (R) = 0.

Plugging in (16), we have

(1) h = ∫
SM trU (v)dws(v),

(2) h2 = ∫
SM −trU̇ (v) + (trU (v))2dws(v),

(3) h3 = ∫
SM trÜ − 3trU̇ trU + (trU )3dws .

��

7.4 Rigidity

Recall that μ̃x is a Borel measure on Sx X (hence descending to SxM) induced by
the Patterson–Sullivan measure μx and let us assume that it is normalized, by a slight
abuse of the notation. We have the following characterization of ws .

Proposition 7.5 For any continuous ϕ : SM → R, we have

C
∫
SM

ϕdws =
∫
M
c(x)

∫
Sx M

ϕdμ̃x (v)dVol(x)

where C = ∫
M c(x)dVol(x).

Proof The idea is to show the right hand side is a harmonic measure up to a normaliza-
tion. Then the proposition follows from Theorem 7.1. The proof is completely parallel
to that of [49, Proposition 4.1] (see also [30, 48]), and hence is omitted. ��

Proof of Theorem C By Theorem 7.4,

h2 =
∫
SM

−trU̇ (v) + (trU (v))2dws(v).

By the Riccati equation, in dimension two we have

−U̇ +U 2 + K = 0
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where K is the Gaussian curvature. Since now U is just a real number and hence
tr(U 2) = (trU )2, using Proposition 7.5 and Gauss-Bonnet formula we have

h2 =
∫
SM

−Kdws = 1

C

∫
M

−c(x)K (x)dVol(x)

=
∫

−KdVol/Vol(M) = −2πE/Vol(M),

where E is the Euler characteristic of M . By Katok’s result [24, Theorem B], h2 =
−2πE/Vol(M) if and only if M has constant negative curvature. ��

8 Flip invariance of the Patterson–Sullivanmeasure

For each x ∈ X , denote by μ̃x both the Borel probability measure on Sx X and ∂X
given by the normalized Patterson–Sullivan measure. Define a measure ws by

C
∫
SM

ϕdws :=
∫
M
c(x)

∫
Sx M

ϕdμ̃x (v)dVol(x)

for any continuous ϕ : SM → R, where C = ∫
M c(x)dVol(x).

In view of the proof of Proposition 7.5, ws is a harmonic measure associated to
the strong stable foliation, though the uniqueness of harmonic measure is unknown
in general. Without the uniqueness of harmonic measure, we can still obtain some
rigidity results in this section.

Proposition 8.1 For ϕ ∈ C1(SM), one has

∫
SM

ϕ̇ + (h − trU )ϕdws = 0.

Proof Define a vector field on M by

Y (y) :=
∫
SyM

ϕX(v)dμ̃y(v) =
∫
Sx M

ϕX(v)e−hbv(y)dμ̃x (v)

where X is the geodesic spray. Since �bv = −X and divX = −trU , one has

div|y=xY =
∫
Sx M

div|y=xϕX(v)e−hbv(y)dμ̃x (v)

=
∫
Sx M

ϕ̇ + (h − trU )ϕdμ̃x .

Integrating with respect to Vol on M and using Green’s formula, we have
∫
SM ϕ̇ +

(h − trU )ϕdws = 0. ��
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Proposition 8.2 If ws is φt -invariant, then M is locally symmetric.

Proof If ws is φt -invariant, by Proposition 8.1, we have

∫
SM

(h − trU )ϕdws = 0

for all ϕ ∈ C1(SM, R). It follows that trU ≡ h, i.e., M is asymptotically harmonic.
By [50, Theorem 1.2] (see also [31, Proposition 2.2]), M is locally symmetric. ��

For manifolds without focal points, not every pair of η 	= ξ in ∂X can be connected
by a geodesic. A point ξ ∈ ∂X is called hyperbolic if for any η 	= ξ in ∂X , there
exists a rank one geodesic joining η to ξ. The set of hyperbolic points is dense in ∂X
(see [31, Lemma 3.4]).

Lemma 8.3 If for all x ∈ M, μ̃x is flip invariant, then theKniepermeasurem coincides
with the Liouville measure Leb on SM .

Proof First we lift every measure to the universal cover X and show that for all x ∈ X ,
dμ̃x
dLeb x is finite everywhere on Sx X . We still denote the measures fx μ̃x and fxLebx on
∂X by μ̃x and Lebx for simplicity.

Assume that there exists some ξ ∈ ∂X such that

lim sup
ε→0

μ̃x (Dx (ξ, ε))

Lebx (Dx (ξ, ε))
= 0 (17)

where Dx (ξ, ε) := {η ∈ ∂X : ∠x (ξ, η) ≤ ε}. Take ε > 0. For any ρ > 0 small
enough, choose a hyperbolic ξ ′ ∈ ∂X close to ξ such that

Dx (ξ
′, (1 − ρ)ε) ⊂ Dx (ξ, ε) ⊂ Dx (ξ

′, (1 + ρ)ε). (18)

We can choose some constant C1 > 1 independent of ε and ρ such that

Lebx (Dx (ξ, ε)) ≤ Lebx (Dx (ξ
′, (1 + ρ)ε)) ≤ C1Lebx (Dx (ξ

′, (1 − ρ)ε)). (19)

It follows from (17), (18) and (19) that

μ̃x (Dx (ξ
′, (1 − ρ)ε))

Lebx (Dx (ξ ′, (1 − ρ)ε))
≤ C1μ̃x (Dx (ξ, ε))

Lebx (Dx (ξ, ε))
. (20)

Then for any η ∈ ∂X , there exists a geodesic cξ ′η connecting ξ ′ and η. Take a point
y ∈ cξ ′η. Due to the flip invariance,

μ̃y(Dy(ξ
′, (1 − ρ)ε))

Leby(Dy(ξ ′, (1 − ρ)ε))
= μ̃y(Dy(η, (1 − ρ)ε))

Leby(Dy(η, (1 − ρ)ε))
.
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Since the measures μ̃y and μ̃x (resp. Leby and Lebx ) are equivalent with positive
Radon–Nikodym derivative, we have by (20),

μ̃y(Dx (ξ
′, (1 − ρ)ε))

Leby(Dx (ξ ′, (1 − ρ)ε))
≤ C2μ̃x (Dx (ξ, ε))

Lebx (Dx (ξ, ε))

for some C2 > 1. Then by flip invariance,

μ̃y(Uε(η))

Leby(Uε(η))
≤ C2μ̃x (Dx (ξ, ε))

Lebx (Dx (ξ, ε))

whereUε(η) is the image of Dx (ξ
′, (1−ρ)ε) under the flipmap. Use again that μ̃y and

μ̃x (resp. Leby and Lebx ) are equivalent with positive Radon–Nikodym derivative, we
get for some C3 > 1

μ̃x (Uε(η))

Lebx (Uε(η))
≤ C3μ̃x (Dx (ξ, ε))

Lebx (Dx (ξ, ε))
.

As Uε(η) shrinks to {η} as ε → 0, we see the Radon–Nikodym derivatives dμ̃x
dLebx

is
also zero at any η ∈ ∂X .

Similarly, if

lim sup
ε→0

μ̃x (Dx (ξ, ε))

Lebx (Dx (ξ, ε))
= ∞

for some ξ ∈ ∂X , theRadon–Nikodymderivatives dμ̃x
dLebx

is also infinity at any η ∈ ∂X .

Since both μ̃x and Lebx have finite total mass, their Radon–Nikodym derivatives
must be finite somewhere and hence everywhere. Thus the Liouville measure Leb
is equivalent to the Knieper measure. As the Knieper measure is ergodic, the two
measures coincide. ��
Lemma 8.4 If for all x ∈ M, μ̃x is flip invariant, then the Margulis function c(x) is
constant.

Proof Any ϕ ∈ C2(M, R) can be lifted to a function on SM which we still denote
by ϕ. Since any weak unstable manifold is diffeomorphic to X , we have �csϕ = �ϕ

where � is the Laplacian along X and �cs is the Laplacian along the weak stable
foliation. By [46, Lemma 5.1], �csϕ = �sϕ + ϕ̈ − trU ϕ̇. Then by definition of ws

and Proposition 8.1,

∫
M

�ϕc(x)dLeb

= C
∫

�ϕdws

= C
∫
SM

(�sϕ + ϕ̈ − trU ϕ̇)dws
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= C

(∫
SM

�sϕdws +
∫
SM

ϕ̈ + (h − trU )ϕ̇dws −
∫
SM

hϕ̇dws
)

= −h
∫
M
c(x)dLeb(x)

∫
ϕ̇(x, ξ)dμ̃x (ξ).

Since dμ̃x (ξ) = dμ̃x (−ξ) and ϕ̇(x, ξ) = −ϕ̇(x,−ξ), we have

∫
M

�ϕc(x)dLeb = 0

for any ϕ ∈ C2(M, R). So c(x) must be constant. ��

Proof of TheoremD By the construction, theKniepermeasurem is flip invariant. By the
flip invariance of the partition {SxM}x∈M and the uniqueness of conditional measures,
we see that μ̄x is flip invariant for m-a.e. x ∈ M . It follows that the normalized
Patterson–Sullivan measures μ̃x is flip invariant for m-a.e. x ∈ M .

We claim that for all x ∈ M, μ̃x is flip invariant. Indeed, note that for fixed x, the
density

dμ̃y

dμ̃x
(ξ) = c(x)

c(y)
e−h·bξ (y,x),

is uniformly continuous in y. For each continuous function ϕ : ∂X → R, its geodesic
reflection with respect to z ∈ X is defined by ϕz(ξ) := ϕ(cz,ξ (−∞)). Let xk, x ∈ X
and xk → x as k → ∞. Then by the above continuity,

∫
∂X

ϕdμ̃x = lim
k→∞

∫
∂X

ϕdμ̃xk = lim
k→∞

∫
∂X

ϕxk dμ̃xk =
∫

∂X
ϕxdμ̃x .

The claim follows.
By Lemma 8.3, the Knieper measure m coincides with the Liouville measure, and

thusm projects to the Riemannian volume on M .By assumption, the conditional mea-
sures μ̄x coincides with μ̃. Moreover, by Lemma 8.4, c(x) is constant. Consequently,
we see from definition that ws coincides with the Knieper measure m, and hence it is
φt -invariant. By Proposition 8.2, M is locally symmetric. ��
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Appendix: Manifolds without conjugate points

In this appendix, we discuss the proof of Theorem A’, which is an extension of The-
orem A to manifolds without conjugate points belonging to the class H. The proof
is analogous to that of Theorem A with minor modifications. We skip the details and
just sketch main steps where modifications are needed.

The local product flow boxes are constructed in [11, Section 3.2] near expansive
vectors in the case of no conjugate points. We need modify the time interval from
[0, α] to [−α,−α], so that Lemma 5.1 still holds.

Corresponding versions ofπ -convergence Theorem4.1 should be established. Nev-
ertheless, we just need rephrase and reprove [11, Lemma 4.9] accordingly with minor
modifications.

In both the proofs of Lemmas 5.4 and 5.14, Lemma 5.3 is used. For manifolds in
classH, it is a direct consequence of uniform visibility property. Indeed, if T is large
enough, then by the triangle inequality, the geodesic connecting φtv and φtw stays at
distance at least L(a) from p. Thus ∠(v,w) < a. So we also have these lemmas in
no conjugate points case.

Finally, let us comment on Lemma 5.13. In the case of no conjugate points, instead
of singular vectors we need consider vectors which do not lie in a countable union
of flow boxes near expansive vectors. More precisely, there exist countably many
expansive vectors w1, w2, . . . such that Sx X ∩ E ⊂ ∪∞

i=1intB
α
θi
(wi ), where E is the

expansive set. See [10, (2.11)] for definition of expansive vectors and expansive set.
The vectors outside of these flow boxes form a subset S which is closed and φt -
invariant. Moreover, S ∩ E = ∅. Since the unique MME m gives full weight to E
(cf. [10, Theorem 5.6]), we know m(S) = 0. It follows that htop(S) < h and thus
Lemma 5.13 can be proved similarly.
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