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Abstract
Accelerated propagation is a new phenomenon associated with nonlocal diffusion
problems. In this paper, we determine the exact rate of accelerated propagation in the
Fisher-KPP equation with nonlocal diffusion and free boundaries, where the nonlocal

diffusion operator is given by
∫
R

J (x − y)u(t, y)dy−u(t, x), and the kernel function

J (x) behaves like a power function near infinity, namely lim|x |→∞ J (x)|x |α = λ > 0
for some α ∈ (1, 2]. This is the precise range of α where accelerated spreading can
happen for such kernels. By constructing subtle upper and lower solutions, we prove
that the location of the free boundaries x = h(t) and x = g(t) goes to infinity at
exactly the following rates:

⎧⎪⎨
⎪⎩

lim
t→∞

h(t)

t ln t
= lim

t→∞
−g(t)

t ln t
= μλ, when α = 2,

lim
t→∞

h(t)

t1/(α−1)
= lim

t→∞
−g(t)

t1/(α−1)
= 22−α

2 − α
μλ, when α ∈ (1, 2).

Here μ > 0 is a given parameter in the free boundary condition. Accelerated prop-
agation can also happen when lim|x |→∞ J (x)|x |(ln |x |)β = λ > 0 for some β > 1.
For this case, we prove that

−g(t), h(t) = exp
{[(2βμλ

β − 1

)1/β + o(1)
]
t1/β

}
as t → ∞.
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These results considerably sharpen the corresponding ones in [20], and the techniques
developed here open the door for obtaining similar precise results for other prob-
lems. A crucial technical point is that such precise conclusions on the propagation are
achievable by finding the correct improvements on the form of the lower solutions
used in [20], even though the precise long-time profile of the density function u(t, x)
is still lacking.

Mathematics Subject Classification 35K57 · 35R09

1 Introduction

In this paper we determine the exact rate of acceleration for the spreading behaviour
governed by the Fisher-KPP equation with nonlocal diffusion and free boundaries
considered in [10, 16, 20], which has the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d

[ ∫
R

J (x − y)u(t, y)dy − u

]
+ f (u), t > 0, x ∈ (g(t), h(t)),

u(t, g(t)) = u(t, h(t)) = 0, t > 0,

h′(t) = μ

∫ h(t)

g(t)

∫ +∞

h(t)
J (x − y)u(t, x)dydx, t > 0,

g′(t) = −μ

∫ h(t)

g(t)

∫ g(t)

−∞
J (x − y)u(t, x)dydx, t > 0,

u(0, x) = u0(x), h(0) = −g(0) = h0, x ∈ [−h0, h0],

(1.1)

where x = g(t) and x = h(t) are the moving boundaries to be determined together
with u(t, x), which is always assumed to be identically 0 for x ∈ R \ [g(t), h(t)] 1; d
and μ are given positive constants.

The initial function u0(x) satisfies

u0∈C([−h0, h0]), u0(−h0)=u0(h0) = 0 and u0(x) > 0 in (−h0, h0). (1.2)

The basic assumptions on the kernel function J : R → R are

(J) : J ∈ C(R) ∩ L∞(R), J ≥ 0, J (0) > 0,
∫
R

J (x)dx = 1, J is even .

The nonlinear term f (u) is assumed to be a Fisher-KPP function, namely it satisfies

(f) :
{
f ∈ C1, f > 0 = f (0) = f (1) in (0, 1), f ′(0) > 0 > f ′(1),
f (u)/u is nonincreasing in u > 0.

1 Therefore
∫
R

J (x − y)u(t, y)dy =
∫ h(t)

g(t)
J (x − y)u(t, y)dy.

123



Exact rate of accelerated propagation... 2933

The nonlocal free boundary problem (1.1) may be viewed as a model describing
the spreading of a new or invasive species with population density u(t, x), whose
population range [g(t), h(t)] expands according to the free boundary conditions

⎧⎪⎪⎨
⎪⎪⎩
h′(t) = μ

∫ h(t)

g(t)

∫ +∞

h(t)
J (x − y)u(t, x)dydx,

g′(t) = −μ

∫ h(t)

g(t)

∫ g(t)

−∞
J (x − y)u(t, x)dydx,

that is, the expanding rate of the range [g(t), h(t)] is proportional to the outward flux
of the population across the boundary of the range. Such a free boundary conditionwas
proposed independently in [10, 12]; [12] assumes f (u) ≡ 0, and hence the long-time
dynamics of the model there is completely different from the Fisher-KPP case studied
in [10] and here.

Problem (1.1) is a “nonlocal diffusion" version of the following free boundary
problem with “local diffusion”:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − duxx = f (u), t > 0, g(t) < x < h(t),

u(t, g(t)) = u(t, h(t)) = 0, t > 0,

g′(t) = −μux (t, g(t)), h′(t) = −μux (t, h(t)), t > 0,

g(0) = −h0, h(0) = h0, u(0, x) = u0(x), − h0 ≤ x ≤ h0,

(1.3)

where u0 is a C2 function which is positive in (−h0, h0) and vanishes at x = ±h0.
For a special Fisher-KPP type of f (u), (1.3) was first studied in [17] (see [18] for
more general f ), as a model for the spreading of a new or invasive species with
population density u(t, x), whose population range [g(t), h(t)] expands through its
boundaries x = g(t) and x = h(t) according to the Stefan conditions g′(t) =
−μux (t, g(t)), h′(t) = −μux (t, h(t)). A deduction of these conditions based on
some ecological assumptions can be found in [8].

By [17, 18], problem (1.3) admits a unique solution (u(t, x), g(t), h(t)) defined
for all t > 0, and its long-time dynamical behaviour is characterised by a “spreading-
vanishing dichotomy”: Either (g(t), h(t)) is contained in a bounded set of R for all
t > 0 and u(t, x) → 0 uniformly as t → ∞ (called the vanishing case), or (g(t), h(t))
expands to R and u(t, x) converges to 1 locally uniformly in x ∈ R as t → ∞ (the
spreading case). Moreover, when spreading occurs,

lim
t→∞

−g(t)

t
= lim

t→∞
h(t)

t
= k0 ∈ (0,∞),

and k0 is uniquely determined by a semi-wave problem associated to (1.3) (see [8, 18]).
Problem (1.3) is closely related to the corresponding Cauchy problem

{
Ut − dUxx = f (U ), t > 0, x ∈ R,

U (0, x) = U0(x), x ∈ R,

where U0(x) :=
{
u0(x), x ∈ [g0, h0],
0, x ∈ R \ [g0, h0].
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2934 Y. Du, W. Ni

(1.4)

Indeed, it follows from [15] that the unique solution (u, g, h) of (1.3) and the unique
solutionU of (1.4) are related in the following way: For any fixed T > 0, as μ → ∞,
(g(t), h(t)) → R and u(t, x) → U (t, x) locally uniformly in (t, x) ∈ (0, T ] × R.
Thus (1.4) may be viewed as the limiting problem of (1.3) (as μ → ∞).

Problem (1.4) with U0 a nonnegative function having nonempty compact support
has long been used to describe the spreading of a new or invasive species; see, for
example, classical works of Fisher [24], Kolmogorov-Petrovski-Piscunov (KPP) [29]
and Aronson-Weinberger [2].

In both (1.3) and (1.4), the dispersal of the species is described by the diffusion
term duxx , widely called a “local diffusion” operator, which is obtained from the
assumption that individual members of the species move in space according to the
rule of Brownian motion. One advantage of the nonlocal problem (1.1) over the local
problem (1.3) is that the nonlocal diffusion term

d

[∫
R

J (x − y)u(t, y)dy − u(t, x)

]

in (1.1) is capable to include spatial dispersal strategies of the species beyond random
diffusion modelled by the term duxx in (1.3). Here J (x − y) may be interpreted as
the probability that an individual of the species moves from x to y in a unit of time.

The long-time dynamical behaviour of (1.1), similar to that of (1.3), is determined
by a “spreading-vanishing dichotomy" (see Theorem 1.2 in [10]): As t → ∞, either

(i) Spreading: limt→+∞(g(t), h(t)) = R and limt→+∞ u(t, x) = 1 locally uni-
formly in R, or

(ii) Vanishing: limt→+∞(g(t), h(t)) = (g∞, h∞) is a finite interval and limt→+∞
u(t, x) = 0 uniformly for x ∈ [g(t), h(t)].

Criteria for spreading and vanishing were also obtained in [10] (see Theorem 1.3
there). In particular, if the size of the initial population range 2h0 is larger than a cer-
tain critical number determined by an associated eigenvalue problem, then spreading
always happens.

A new phenomenon for the nonlocal Fisher-KPP model (1.1), in comparison with
(1.3), is that when spreading is successful, “accelerated spreading" may happen;
namely one may have

lim
t→∞

−g(t)

t
= lim

t→∞
h(t)

t
= ∞.

It was shown in [16] that whether this new phenomenon happens is determined by the
following threshold condition on the kernel function J :

(J1) :
∫ ∞

0
x J (x)dx < +∞.

More precisely, we have
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Theorem A ([16]). Suppose that (J) and (f) are satisfied, and spreading happens to
the unique solution (u, g, h) of (1.1). Then

lim
t→∞

h(t)

t
= lim

t→∞
−g(t)

t
=

{
c0 ∈ (0,∞) if (J1) holds,
∞ if (J1) does not hold.

As usual, when (J1) holds, we call c0 the spreading speed of (1.1), which is determined
by the semi-wave solutions to (1.1); see [16] for details.

When (J1) is not satisfied, and hence accelerated spreading happens, the rate of
growth of h(t) (and −g(t)) was investigated in [20] for kernel functions satisfying,
for some α > 0,

J (x) ∼ |x |−α for |x | � 1; (1.5)

namely,

c1 ≤ J (x)|x |α ≤ c2 for some positive constants c1, c2 and all large |x |.

For such kernel functions, clearly condition (J) is satisfied only if α > 1, and
(J1) is satisfied only if α > 2. Thus accelerated spreading can happen exactly when
α ∈ (1, 2]. The following result was proved in [20]:

Theorem B ([20]). In Theorem A, if additionally the kernel function satisfies (1.5) for
some α ∈ (1, 2], then for t � 1,

−g(t), h(t) ∼
{
t ln t if α = 2,

t1/(α−1) if α ∈ (1, 2).

One naturally asks:

If lim|x |→∞ J (x)|x |α exists , does

{
limt→∞ h(t)

t ln t , when α = 2,

limt→∞ h(t)
t1/(α−1) , when α ∈ (1, 2)

also exist ?

This question was left unanswered in [20]. Let us note that in the case of finite speed
propagation, the speed can be determined via a traveling wave problem, where the
wave profile determines the long-time profile of the density function u(t, x), which
provides crucial information for the construction of suitable upper and lower solutions
to yield the precise propagation speed. However, in the case of accelerated spreading, it
is unknown whether the density function u(t, x) converges in some sense to a definite
profile function, which makes the determination of the precise rate of acceleration
particularly challenging.

The main purpose of this paper is to give a complete answer to the above question,
although a precise asymptotic profile of u(t, x) is still lacking. Moreover, we will also
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2936 Y. Du, W. Ni

treat a new case not considered in [20], namely

lim|x |→∞ J (x)|x |(ln |x |)β = λ ∈ (0,∞) for some β ∈ (1,∞).

By finding the right improvements on the form of the lower solutions used in [20], we
are able to prove the following result:

Theorem 1.1 Let the assumptions in Theorem A be satisfied.

(i) If

lim|x |→∞ J (x)|x |α = λ ∈ (0,∞) for some α ∈ (1, 2],

then

⎧⎪⎪⎨
⎪⎪⎩

lim
t→∞

h(t)

t ln t
= lim

t→∞
−g(t)

t ln t
= μλ, when α = 2,

lim
t→∞

h(t)

t1/(α−1)
= lim

t→∞
−g(t)

t1/(α−1)
= 22−α

2 − α
μλ, when α ∈ (1, 2).

(ii) If

lim|x |→∞ J (x)|x |(ln |x |)β = λ ∈ (0,∞) for some β ∈ (1,∞),

then

lim
t→∞

ln h(t)

t1/β
= lim

t→∞
ln[−g(t)]

t1/β
=

(
2βμλ

β − 1

)1/β

,

namely,

−g(t), h(t) = exp
{[(2βμλ

β − 1

)1/β + o(1)
]
t1/β

}
as t → ∞.

Before ending this section, let us mention some further related works. Similar to
the relationship between the local diffusion problems (1.3) and (1.4), problem (1.1) is
closely related to the following nonlocal version of (1.4):

⎧⎨
⎩
ut = d

[ ∫
R

J (x − y)u(t, y)dy − u
]

+ f (u), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

(1.6)

It was proved in [16] (see Theorem 5.3 there) that as μ → ∞, the limiting problem of
(1.1) is (1.6). Problem (1.6) and its many variations have been extensively studied in
the literature; see, for example, [1, 3–6, 11, 13, 14, 22, 23, 25, 27, 28, 30, 31, 33, 36] and
the references therein. In particular, if (J) and (f) are satisfied, and if the nonnegative
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initial function u0 has non-empty compact support, then the basic long-time dynamical
behaviour of (1.6) is given by

lim
t→∞ u(t, x) = 1 locally uniformly for x ∈ R.

Similar to (1.4), the nonlocal Cauchy problem (1.6) does not give a finite population
range when t > 0. To understand the spreading behaviour of (1.6), one examines the
level set

Eλ(t) := {x ∈ R : u(t, x) = λ} with fixed λ ∈ (0, 1),

by considering the large time behaviour of

x+
λ (t) := sup Eλ(t) and x−

λ (t) = inf Eλ(t).

As t → ∞, |x±
λ (t)| may go to ∞ linearly in t or super-linearly in t , depending on

whether the following threshold condition is satisfied by the kernel function, apart
from (J),

(J2) : There exists γ > 0 such that
∫
R

J (x)eγ xdx < ∞.

Yagisita [36] has proved the following result on traveling wave solutions to (1.6):

Theorem C ([36]). Suppose that f satisfies (f) and J satisfies (J). If additionally J
satisfies (J2), then there is a constant c∗ > 0 such that (1.6) has a traveling wave
solution with speed c if and only if c ≥ c∗.

Condition (J2) is often called a “thin tail" condition for J . When f satisfies (f),
and J satisfies (J) and (J2), it is well known (see, for example, [22, 34]) that

lim
t→∞

|x±
λ (t)|
t

= c∗, (1.7)

with c∗ given by Theorem C. On the other hand, if (f) and (J) hold but (J2) is not
satisfied, then it follows from Theorem 6.4 of [34] that |x±

λ (t)| grows faster than any
linear function of t as t → ∞, namely, accelerated spreading happens:

lim
t→∞

|x±
λ (t)|
t

= ∞.

We refer to [1, 6, 7, 9, 21, 23, 25, 26, 32, 35] and references therein for further progress
on accelerated spreading for (1.6) and related problems.
It is easily seen that (J2) implies (J1), but the reverse is not true; for example, J (x) =
C(1+x2)−σ withσ > 1 satisfies (J1) (for some suitableC > 0) but not (J2). Therefore
accelerated propagation is more likely to happen in (1.6) than in the corresponding
free boundary model (1.1).
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The relationship between c0 = c0(μ) in Theorem A and c∗ in (1.7) is given in the
following result (see Theorems 5.1 and 5.2 of [16]):

Theorem D ([16]). Suppose that (J), (J1) and (f) hold. Then c0(μ) increases to c∗ as
μ → ∞, where we define c∗ = ∞ when (J2) does not hold.

Finally we briefly describe the organisation of the paper. Throughout the remainder
of this paper, unless otherwise specified, we assume that J satisfies (J) and either

for some α ∈ (1, 2],
{

λ := lim inf |x |→∞ J (x)|x |α > 0,

λ̄ := lim sup|x |→∞ J (x)|x |α < ∞,
(1.8)

or

for some β > 1,

{
λ := lim inf |x |→∞ J (x)|x |(ln |x |)β > 0,

λ̄ := lim sup|x |→∞ J (x)|x |(ln |x |)β < ∞.
(1.9)

We will prove some sharp estimates (see Lemmas 3.1, 3.2 and 4.1) under the above
assumptions for J ; Theorem 1.1 is a direct consequence of these more general results.

To be precise, in Sect. 2, we give some crucial preparatory results whichwill be used
in the later sections; Lemma 2.1 contains key ingredients of the strategy of estimates
toward the precise values of the limits in Theorem 1.1, while Lemma 2.2 reveals the
right structure the lower solution should take in order to obtain these precise rates. In
Sect. 3, we obtain sharp lower bounds for h(t) and −g(t), which constitute Lemma
3.1 (for the case (1.8) holds with α ∈ (1, 2) and for the case that (1.9) is satisfied)
and Lemma 3.2 (for the case that (1.8) holds with α = 2); the proofs are based on
subtle constructions of lower solutions of (1.1), which turns out to possess the right
improvements on those used in [20]. In Sect. 4, we prove the sharp upper bounds for
h(t) and −g(t), which is much less demanding technically.

2 Some preparatory results

We prove two lemmas in this section, which will play a crucial role in Sects. 3 and 4.
The first contains important information on the strategy of estimating the key terms to
reach the precise limiting values in Theorem 1.1, while the second is a rather general
result, where only (J) is needed for the kernel function J , neither (1.8) nor (1.9)
is required. The function φ(t, x) in Lemma 2.2 dictates the structure of the lower
solutions to be used to obtain the desired precise rates in the main results.

Lemma 2.1 For k > 1, δ ∈ [0, 1), define

A = A(k, δ, J ) :=

⎧⎪⎪⎨
⎪⎪⎩

∫ −δk

−k

∫ ∞

0
J (x − y)dydx if (1.8) holds with α ∈ (1, 2) or if (1.9) holds ,

∫ −kδ

−k

∫ ∞

0
J (x − y)dydx if (1.8) holds with α = 2.
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Then

⎧⎪⎪⎨
⎪⎪⎩
lim inf
k→∞

A

k2−α
≥ 1 − δ2−α

(α − 1)(2 − α)
λ,

lim sup
k→∞

A

k2−α
≤ 1 − δ2−α

(α − 1)(2 − α)
λ̄,

if (1.8) holds with α ∈ (1, 2),

⎧⎪⎨
⎪⎩
lim inf
k→∞

A

ln k
≥ (1 − δ)λ,

lim sup
k→∞

A

ln k
≤ (1 − δ)λ̄,

if (1.8) holds with α = 2,

⎧⎪⎪⎨
⎪⎪⎩
lim inf
k→∞

A

k(ln k)1−β
≥ (1 − δ)λ

β − 1
,

lim sup
k→∞

A

k(ln k)1−β
≤ (1 − δ)λ̄

β − 1
,

if (1.9) holds .

Proof Case 1: (1.8) holds with α ∈ (1, 2).
Denote

Dδ := 1

α − 1

∫ ∞

0
[(y + δ)1−α − (y + 1)1−α]dy. (2.1)

A direct calculation gives

Dδ = lim
M→∞

(M + δ)2−α − (M + 1)2−α + 1 − δ2−α

(α − 1)(2 − α)
= 1 − δ2−α

(α − 1)(2 − α)
.

Moreover,

A =
∫ −δk

−k

∫ ∞

0
J (x − y)dydx =

∫ k

δk

∫ ∞

0
J (x + y)dydx

=
∫ k

δk

∫ 2

0
J (x + y)dydx +

∫ k

δk

∫ ∞

2
J (x + y)dydx =: A1 + A2,

and by (J),

0 ≤ A1 ≤
∫ 2

0
1dy ≤ 2.

Clearly,

A2 =
∫ k

δk

∫ ∞

2
J (x + y)dydx =

∫ ∞

2

∫ k

δk
J (x + y)dxdy

= k2−α

(∫ k−1/2

2k−1
+

∫ ∞

k−1/2

) ∫ 1+y

δ+y

J (kx)

(kx)−α
x−αdxdy.
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We have

0 ≤
∫ k−1/2

2k−1

∫ 1+y

δ+y

J (kx)

(kx)−α
x−αdxdy ≤ sup

ξ≥1
[J (ξ)ξα]

∫ k−1/2

2k−1

∫ 1+y

δ+y
x−αdxdy

≤ supξ≥1[J (ξ)ξα]
α − 1

∫ k−1/2

2k−1
y1−αdy → 0 as k → ∞.

By this and (1.8), we deduce

lim sup
k→∞

A2

k2−α
= lim sup

k→∞

∫ ∞

k−1/2

∫ 1+y

δ+y

J (kx)

(kx)−α
x−αdxdy

≤ λ̄

∫ ∞

0

∫ 1+y

δ+y
x−αdxdy = λ̄

α − 1

∫ ∞

0
[(δ + y)1−α − (1 + y)1−α]dy = λ̄Dδ.

Thus,

lim sup
k→∞

A

k2−α
= lim sup

k→∞
A2

k2−α
≤ λ̄Dδ.

Similarly,

lim inf
k→∞

A

k2−α
= lim inf

k→∞
A2

k2−α
≥ λDδ.

Case 2: (1.9) holds.
Let A1 and A2 be as in Case 1. Clearly, 0 ≤ A1 ≤ 2. A simple calculation gives

A2 =
∫ k

δk

∫ ∞

2+x
J (y)dydx =

∫ k+2

δk+2

∫ y−2

δk
J (y)dxdy +

∫ ∞

k+2

∫ k

δk
J (y)dxdy

=
∫ k+2

δk+2
(y − 2 − δk)J (y)dy + (1 − δ)k

∫ ∞

k+2
J (y)dy.

By (1.9), there exists C > 0 such that for all large k > 0,

∫ k+2

δk+2
(y − 2 − δk)J (y)dy ≤ C

∫ k+2

δk+2
(ln y)−βdy ≤ C(1 − δ)k

[
ln(δk + 2)

]−β

,

and

k
∫ ∞

k+2
J (y)dy ≤ λ̄[1 + ok(1)]k

∫ ∞

k+2
y−1(ln y)−βdy = λ̄[1 + ok(1)]k

β − 1
[ln(k + 2)]1−β,

where ok(1) → 0 as k → ∞. Hence,

lim sup
k→∞

A

k(ln k)1−β
= lim sup

k→∞
A2

k(ln k)1−β
≤ (1 − δ)λ̄

β − 1
.
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Similarly,

lim inf
k→∞

A

k(ln k)1−β
= lim inf

k→∞
A2

k(ln k)1−β
≥ (1 − δ)λ

β − 1
.

Case 3: (1.8) holds with α = 2.
By direct calculation,

A =
∫ −kδ

−k

∫ ∞

0
J (x − y)dydx =

∫ k

kδ

∫ ∞

0
J (x + y)dydx

=
∫ k

kδ

∫ 1

0
J (x + y)dydx +

∫ k

kδ

∫ ∞

1
J (x + y)dydx =: Ã1 + Ã2,

and by (J),

0 ≤ Ã1 ≤
∫ 1

0
1dy = 1.

By (1.8), we have

Ã2 =
∫ ∞

1

∫ k+y

kδ+y
J (x)dxdy ≤ λ̄[1 + ok(1)]

∫ ∞

1

∫ k+y

kδ+y
x−2dxdy = λ̄[1 + ok(1)] ln

(
k + 1

kδ + 1

)
,

where ok(1) → 0 as k → ∞. Therefore,

lim sup
k→∞

A

ln k
= lim sup

k→∞
Ã2

ln k
≤ lim

k→∞ λ̄
ln(k + 1) − ln(kδ + 1)

ln k
= (1 − δ)λ̄.

Similarly,

lim inf
k→∞

A

ln k
= lim inf

k→∞
Ã2

ln k
≥ lim

k→∞ λ
ln(k + 1) − ln(kδ + 1)

ln k
= (1 − δ)λ.

The proof is finished. 
�
Lemma 2.2 Suppose that J satisfies (J) but neither (1.8) nor (1.9) is required. Let
1 < ξ(t) < L(t) be functions in C([0,∞)), ρ ≥ 2 a constant, and define

φ(t, x) := min

{
1,

[
1 − |x |

L(t)

]ρ

ξ(t)ρ
}

for x ∈ [−L(t), L(t)], t ∈ [0,∞).

Then, for any ε ∈ (0, 1), there exists a constant θ∗ = θ∗(ε, J ) > 1, such that

∫ L(t)

−L(t)
J (x − y)φ(t, y)dy ≥ (1 − ε)φ(t, x) for x ∈ [−L(t), L(t)], t ≥ 0 (2.2)
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provided that

L(t) ≥ θ∗ξ(t) for all t ≥ 0. (2.3)

Proof Since ||J ||L1 = 1, there is L0 > 0 depending only on J and ε such that

∫ L0

−L0

J (x)dx ≥ 1 − ε/2. (2.4)

Define

ψ(t, x) := φ(t, L(t)x) = min
{
1, (1 − |x |)ρξ(t)ρ

}
, x ∈ [−1, 1], t ≥ 0.

We note that ρ ≥ 2 implies that ψ(t, x) is a convex function of x when

1 − 1

ξ(t)
≤ |x | ≤ 1.

Clearly

ψ(t, x) =
{
1 for |x | ≤ 1 − ξ(t)−1,[
(1 − |x |)ξ(t)

]ρ for 1 − ξ(t)−1 < |x | ≤ 1.

It is also easy to check that

|ψ(t, x) − ψ(t, y)|
|x − y| ≤ M(t) := ρξ(t) for x, y ∈ [−1, 1], x �= y, t ≥ 0,

which implies

|φ(t, x) − φ(t, y)| = |ψ(t, x/L(t)) − ψ(t, y/L(t))|
≤ M(t)

L(t)
|x − y| for x, y ∈ [−L(t), L(t)]. (2.5)

Since ψ(t, x) > 0 for x ∈ (−1, 1), ψ(t,±1) = 0, and ψ(t, x) is convex in x for
x ∈ [−1,−1+1/ξ(t)] and for x ∈ [1−1/ξ(t), 1], if we extendψ(t, x) byψ(t, x) = 0
for |x | > 1, then

ψ(t, x) is convex for x ∈ [1 − 1/ξ(t),∞) and for x ∈ (−∞,−1 + 1/ξ(t)].

We now verify (2.2) for x ∈ [0, L(t)]; the proof for x ∈ [−L(t), 0] is parallel and
will be omitted. We will divide the proof into two cases:

(a) x ∈
[
0, (1 − 1

2ξ(t)
)L(t)

]
and (b) x ∈

[
(1 − 1

2ξ(t)
)L(t), L(t)

]
.
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Case (a). For

x ∈
[
0, (1 − 1

2ξ(t)
)L(t)

]
,

a direct calculation gives

∫ L(t)

−L(t)
J (x − y)φ(t, y)dy =

∫ L(t)−x

−L(t)−x
J (y)φ(t, x + y)dy ≥

∫ L0

−L0

J (y)φ(x + y)dy,

where L0 is given by (2.4) and we have used

L(t) − x ≥ L(t)

2ξ(t)
≥ L0, which is guaranteed if we assume L(t) ≥ 2L0ξ(t).

Then by (2.4), (2.5) and (J),

∫ L0

−L0

J (y)φ(t, x + y)dy

=
∫ L0

−L0

J (y)φ(t, x)dy +
∫ L0

−L0

J (y)[φ(t, x + y) − φ(t, x)]dy

≥
∫ L0

−L0

J (y)φ(t, x)dy − M(t)

L(t)

∫ L0

−L0

J (y)|y|dy

≥ (1 − ε/2)φ(t, x) − M(t)

L(t)
L0.

Clearly

M1(t) := min
x∈[0,(1− 1

2ξ(t) )L(t)]
φ(t, x) =

(1
2

)ρ

.

Then from the above calculations we obtain, for x ∈ [0, (1 − 1
2ξ(t) )L(t)],

∫ L(t)

−L(t)
J (x − y)φ(t, y)dy ≥ (1 − ε/2)φ(t, x) − M(t)

L(t)
L0

= (1 − ε)φ(t, x) + ε

2
φ(t, x) − M(t)

L(t)
L0

≥ (1 − ε)φ(t, x) + ε

2
M1(t) − M(t)

L(t)
L0

≥ (1 − ε)φ(t, x)
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provided that

L(t) ≥ 2L0M(t)

εM1(t)
= 2ρ+1L0ρ

ε
ξ(t).

Case (b). For

x ∈
[(

1 − 1

2ξ(t)

)
L(t), L(t)

]
,

we have, using −L(t) − x < −L0 and φ(t, x) = 0 for x ≥ L(t),

∫ L(t)

−L(t)
J (x − y)φ(t, y)dy ≥

∫ min{L0,L(t)−x}

−L0

J (y)φ(t, x + y)dy

=
∫ L0

−L0

J (y)φ(t, x + y)dy

=
∫ L0

0
J (y)[φ(t, x + y) + φ(t, x − y)]dy.

Sinceφ(t, s) is convex in s for s ≥ L(t)[1−ξ(t)−1], and for x ∈
[
(1− 1

2ξ(t) )L(t), L(t)
]
,

y ∈ [0, L0], we have

x + y ≥ x − y ≥ (1 − 1

2ξ(t)
)L(t) − L0 ≥ (1 − 1

ξ(t)
)L(t) by our earlier assumption

L(t) ≥ 2L0ξ(t).

Then, we can use the convexity of φ(t, ·) and (2.4) to obtain

∫ L0

0
J (y)[φ(t, x + y)+φ(t, x − y)]dy≥2φ(t, x)

∫ L0

0
J (y)dy≥(1 − ε/2)φ(t, x).

Thus

∫ L(t)

−L(t)
J (x − y)φ(t, y)dy ≥ (1 − ε)φ(t, x).

Summarising, from the above conclusions in cases (a) and (b), we see that (2.2)

holds if L(t) ≥ θ∗ξ(t) for all t ≥ 0 with θ∗ := 2ρ+1L0ρ
ε

> 2L0. The proof is finished.

�
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3 Lower bounds

Recall that J (x) satisfies (J) and either (1.8) or (1.9). The case (1.8) holds with
α ∈ (1, 2) and the case (1.9) holds will be considered in subsection 3.1, while the case
that (1.8) holds with α = 2 will be considered in subsection 3.2.

From now on, in all our stated results, we will only list the conclusions for h(t);
the corresponding conclusions for −g(t) follow directly by considering the problem
with initial function u0(−x), whose unique solution is given by (ũ(t, x), g̃(t), h̃(t)) =
(u(t,−x),−h(t),−g(t)).

3.1 The case (1.8) holds with˛ ∈ (1, 2) and the case (1.9) holds

Lemma 3.1 Assume that J satisfies (J) and either (1.8) with α ∈ (1, 2) or (1.9), f
satisfies (f), and spreading happens to (1.1). Then

⎧⎪⎪⎨
⎪⎪⎩
lim inf
t→∞

h(t)

t1/(α−1)
≥ 22−α

2 − α
μλ if (1.8) holds with α ∈ (1, 2),

lim inf
t→∞

ln h(t)

t1/β
≥

(
2βμλ

β − 1

)1/β

if (1.9) holds.

Proof We construct a suitable lower solution to (1.1), which will lead to the desired
estimate by the comparison principle.

Let ρ > 2 be a large constant to be determined. For any given small ε > 0, define
for t ≥ 0,

{
h(t) := (K1t + θ)

1
α−1 , g(t) := −h(t) if (1.8) holds with α ∈ (1, 2),

h(t) := eK1(t+θ)1/β , g(t) := −h(t) if (1.9) holds ,

and

u(t, x) := K2 min

{
1,

[
K3

h(t) − |x |
h(t)

]ρ
}
for t ≥ 0, |x | ≤ h(t),

where

K1 :=
⎧⎨
⎩

(1 − ε)2(2 − ε)2−αDε/(2−ε)(α − 1)μλ if (1.8) holds with α ∈ (1, 2),[
(1 − ε)4

2βμλ

β − 1

]1/β
if (1.9) holds ,

K2 := 1 − ε, K3 := 1/ε, θ � 1 and Dε/(2−ε) is given according to (2.1).

It is easily seen that u(t, x) ≡ K2 for |x | ≤ (1− ε)h(t). Moreover, u is continuous,
and ut exists and is continuous except when |x | = (1−ε)h(t), where ut has a jumping
discontinuity. In what follows, we check that (u, g, h) defined above forms a lower
solution to (1.1). We will do this in three steps.
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Step 1. We prove the inequality

h′(t) ≤ μ

∫ h(t)

−h(t)

∫ +∞

h(t)
J (x − y)u(t, x)dydx, (3.1)

which immediately gives

g′(t) ≥ −μ

∫ h(t)

−h(t)

∫ −h(t)

−∞
J (x − y)u(t, x)dydx,

due to u(t, x) = u(t,−x) and J (x) = J (−x).
Using the definition of u, we have

μ

∫ h

−h

∫ +∞

h
J (x − y)u(t, x)dydx ≥ (1 − ε)μ

∫ (1−ε)h

−(1−ε)h

∫ +∞

h
J (x − y)dydx

= (1 − ε)μ

∫ −εh

−(2−ε)h

∫ +∞

0
J (x − y)dydx .

Using Lemma 2.1, we obtain for large h (guaranteed by θ � 1),

∫ −εh

−(2−ε)h

∫ +∞

0
J (x − y)dydx ≥ (1 − ε)λDε/(2−ε)[(2 − ε)h]2−α if (1.8) holds with

α ∈ (1, 2),

and

∫ −εh

−(2−ε)h

∫ +∞

0
J (x − y)dydx ≥ (1 − ε)

(1 − ε
2−ε

)λ

β − 1
(2 − ε)h

[
ln(2 − ε)h

]1−β

= (1 − ε)2
2λ

β − 1
h
[
ln(2 − ε)h

]1−β

≥ (1 − ε)3
2λ

β − 1
h(ln h)1−β if (1.9) holds .

Therefore, by the definition of K1, when (1.8) holds with α ∈ (1, 2), we have

μ

∫ h(t)

−h(t)

∫ +∞

h(t)
J (x − y)u(t, x)dydx

≥ (1 − ε)2μλDε/(2−ε)[(2 − ε)h(t)]2−α

= (1 − ε)2μλDε/(2−ε)(2 − ε)2−α(K1t + θ)(2−α)/(α−1)

= K1

α − 1
(K1t + θ)(2−α)/(α−1) = h′(t);
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and when (1.9) holds, we have

μ

∫ h(t)

−h(t)

∫ +∞

h(t)
J (x − y)u(t, x)dydx

≥ μ(1 − ε)4
2λ

β − 1
h(ln h)1−β

= K β
1

β
h(ln h)1−β = h′(t).

This proves (3.1).
Step 2. We prove the following inequality for t > 0 and |x | ∈ [0, h(t)] \ {(1 −

ε)h(t)},

ut ≤ d
∫ h

−h
J (x − y)u(t, y)dy − du + f (u). (3.2)

From the definition of u, we see that

ut = 0 for |x | < (1 − ε)h(t),

and for (1 − ε)h(t) < |x | < h(t), if (1.8) holds with α ∈ (1, 2), then

ut = K2K
ρ
3 ρ

(
h − |x |

h

)ρ−1 h′|x |
h2

= K1K2K
ρ
3 ρ

α − 1

(
h − |x |

h

)ρ−1 |x |
h
h1−α, (3.3)

where we have used h′ = K1
α−1h

2−α; and if (1.9) holds, then

ut = K2K
ρ
3 ρ

(
h − |x |

h

)ρ−1 h′|x |
h2

= K β
1 K2K

ρ
3 ρ

β

(
h − |x |

h

)ρ−1 |x |
h

(ln h)1−β,

where we have utilized h′ = K β
1

β
h(ln h)1−β .

Claim. There is C1 = C1(ε) > 0 such that for x ∈ [−h(t), h(t)] and t ≥ 0,

d
∫ h(t)

−h(t)
J (x − y)u(t, y)dy − du + f (u) ≥ C1

[∫ h(t)

−h(t)
J (x − y)u(t, y)dy + u

]
.

The definition of u indicates 0 ≤ u(t, x) ≤ K2 = 1 − ε < 1. By the properties of
f , there exists C̃1 := C̃1(ε) ∈ (0, d) such that

f (s) ≥ C̃1s for s ∈ [0, K2].

Using Lemma 2.2 with

(L(t), φ(t, x), ξ(t)) = (h(t), u(t, x)/K2, K3),
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for any given small δ > 0, we can find large h∗ = h∗(δ, ε) such that for h ≥ h∗ and
|x | ≤ h,

∫ h

−h
J (x − y)u(t, y)dy ≥ (1 − δ)u(t, x).

Hence, due to d > C̃1,

d
∫ h

−h
J (x − y)u(t, y)dy − du(t, x) + f (u(t, x))

≥ d
∫ h

−h
J (x − y)u(t, y)dy + (C̃1 − d)u(t, x)

≥ C̃1

3

∫ h

−h
J (x − y)u(t, y)dy + (d − C̃1

3
)(1 − δ)u(t, x) + (C̃1 − d)u(t, x)

≥ C̃1

3

[∫ h(t)

−h(t)
J (x − y)u(t, y)dy + u(t, x)

]
,

provided that δ = δ(ε) > 0 is sufficiently small. Thus the claimholdswithC1 = C̃1/3.
To verify (3.2), it remains to prove

ut ≤ C1

[∫ h

−h
J (x − y)u(t, y)dy + u

]
for |x | ∈ [0, h(t)] \ {(1 − ε)h(t)}. (3.4)

Since u(x, t) ≡ 1 − ε for |x | < (1 − ε)h(t), (3.4) holds trivially for such x . Hence
we only need to consider the case of (1 − ε)h(t) < |x | < h(t).

Since θ � 1 and 0 < ε � 1, for x ∈ [7h(t)/8, h(t)] ⊃ [(1 − ε)h(t), h(t)], we
have

∫ h

−h
J (x − y)u(t, y)dy ≥

∫ 7h/8

−7h/8
J (x − y)u(t, y)dy ≥ K2

∫ 7h/8

−7h/8
J (x − y)dy

= (1 − ε)

∫ 7h/8−x

−7h/8−x
J (y)dy ≥ (1 − ε)

∫ −h/8

−h/4
J (y)dy

= (1 − ε)

∫ h/4

h/8
J (y)dy.

Hence, when (1.8) holds with α ∈ (1, 2), we obtain

∫ h

−h
J (x − y)u(t, y)dy ≥ λ

2

∫ h/4

h/8
y−αdy = (8α−1 − 4α−1)λ

2(α − 1)
h1−α =: C2h

1−α,
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and when (1.9) holds, we have

∫ h

−h
J (x − y)u(t, y)dy ≥ λ

2

∫ h/4

h/8
y−1(ln y)−βdy >

λ h

16
y−1(ln y)−β |y=h/4

≥ λ

4
(ln h)−β =: C̃2(ln h)−β.

Similar estimates hold for x ∈ [−h(t),−7h(t)/8].
Now, if (1.8) holds with α ∈ (1, 2), then for |x | ∈ [(1 − Cε)h(t), h(t)] with

Cε :=
[C1C2(α − 1)

K1K2ρ
ερ

]1/(ρ−1)
,

we have

ut − C1

∫ h

−h
J (x − y)u(t, y)dy ≤ K1K2K

ρ
3 ρ

α − 1

(
h − |x |

h

)ρ−1

h1−α − C1C2h
1−α

≤
[K1K2K

ρ
3 ρ

α − 1
Cρ−1

ε − C1C2

]
h1−α = 0,

and for (1 − ε)h(t) < |x | ≤ (1 − Cε)h(t), using the definition of u, we obtain

ut − C1u =
[

K1ρ

α − 1

(
h − |x |

h

)−1 |x |
h
h1−α − C1

]
u

≤
[

K1ρ

Cε(α − 1)
h1−α − C1

]
u ≤ 0

since θ � 1 and h(t) ≥ θ1/(α−1), 1 − α < 0. We have thus proved (3.4).
We next deal with the case that (1.9) holds. If |x | satisfies

h(t) ≥ |x | ≥
[
1 − C̃ε

(ln h(t))1/(ρ−1)

]
h(t)

with

C̃ε :=
[

C1C̃2β

K β
1 K2K

ρ
3 ρ

]1/(ρ−1)

=
[
C1C̃2βερ

K β
1 K2ρ

]1/(ρ−1)

,

then |x | ∈ [7h(t)/8, h(t)] and

ut − C1

∫ h

−h
J (x − y)u(t, y)dy ≤ K β

1 K2K
ρ
3 ρ

β

(
h − |x |

h

)ρ−1

(ln h)1−β − C1C̃2(ln h)−β

≤
[K β

1 K2K
ρ
3 ρ

β
C̃ρ−1

ε − C1C̃2

]
(ln h)−β = 0.
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For (1 − ε)h < |x | ≤ [1 − C̃ε

(ln h)1/(ρ−1) ]h, from the definition of u, we deduce

ut − C1u =
[
K β
1 ρ

β

(
h − |x |

h

)−1 |x |
h

(ln h)1−β − C1

]
u

≤
[
K β
1 ρ

C̃εβ
(ln h)1−β+(ρ−1)−1 − C1

]
u ≤ 0

since h(t) ≥ eK1θ
1/β � 1 and we may choose ρ large enough such that 1− β + (ρ −

1)−1 < 0. The desired inequality (3.4) is thus proved.
Step 3. Completion of the proof by the comparison principle.
Since spreading happens, there is t0 > 0 large enough such that [g(t0), h(t0)] ⊃

[−h(0), h(0)], and also

u(t0, x) ≥ K2 = 1 − ε ≥ u(0, x) for x ∈ [−h(0), h(0)].

Moreover, from the definition of u, we see u(x, t) = 0 for x = ±h(t) and t ≥ 0.
Thus we are in a position to apply the comparison principle (see Theorem 3.1 in [10]
and Remark 2.4 in [19], the latter explains why the jumping discontinuity of ut along|x | = (1 − ε)h(t) does not affect the conclusion) to conclude that

−h(t) ≥ g(t0 + t), h(t) ≤ h(t0 + t) for t ≥ 0.

The desired conclusions then follow from the arbitrariness of ε > 0 and the fact that
Dε/(2−ε) → D0 as ε → 0. The proof is finished. 
�

3.2 The case that (1.8) holds with˛ = 2

Lemma 3.2 If the conditions in Lemma 3.1 are satisfied except that J satisfies (1.8)
with α = 2, then

lim inf
t→∞

h(t)

t ln t
≥ μλ. (3.5)

Proof For fixed ρ ≥ 2, 0 < ε � 1, 0 < ε̃ � 1 and θ � 1, define

⎧⎨
⎩
h(t) := K1(t + θ) ln(t + θ), t ≥ 0,

u(t, x) := K2 min

{
1,

[
h(t) − |x |
(t + θ)ε̃

]ρ}
, t ≥ 0, x ∈ [−h(t), h(t)],

where

K1 := (1 − ε)3(1 − ε̃)μλ, K2 := 1 − ε.
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Obviously, for any t > 0, ∂t u(t, x) exists for x ∈ [−h(t), h(t)] except when |x | =
h(t) − (t + θ)ε̃ . However, the one-sided partial derivates ∂t u(t ± 0, x) always exist.

Step 1. We show that for θ � 1,

h′(t) ≤ μ

∫ h(t)

−h(t)

∫ +∞

h(t)
J (x − y)u(t, x)dydx for t > 0, (3.6)

which clearly implies, due to u(t, x) = u(t,−x) and J (x) = J (−x), that

−h′(t) ≥ −μ

∫ h(t)

−h(t)

∫ −h(t)

−∞
J (x − y)u(t, x)dydx for t > 0.

Making use of the definition of u and

[ − 2(1 − ε)h,−[2(1 − ε)h]ε̃] ⊂ [−2h + (t + θ)ε̃,−(t + θ)ε̃]

for θ � 1, we obtain

μ

∫ h

−h

∫ +∞

h
J (x − y)u(t, x)dydx ≥ (1 − ε)μ

∫ h−(t+θ)ε̃

−h+(t+θ)ε̃

∫ +∞

h
J (x − y)dydx

= (1 − ε)μ

∫ −(t+θ)ε̃

−2h+(t+θ)ε̃

∫ +∞

0
J (x − y)dydx

≥ (1 − ε)μ

∫ −[2(1−ε)h]ε̃

−2(1−ε)h

∫ +∞

0
J (x − y)dydx .

Thanks to Lemma 2.1, for large h (which is guaranteed by θ � 1),

∫ −[2(1−ε)h]ε̃

−2(1−ε)h

∫ +∞

0
J (x − y)dydx ≥ (1 − ε)(1 − ε̃)λ ln[2(1 − ε)h].

Hence, with θ � 1, we have

μ

∫ h(t)

−h(t)

∫ +∞

h(t)
J (x − y)u(t, x)dydx

≥ (1 − ε)2μ(1 − ε̃)λ ln[2(1 − ε)h]
= (1 − ε)2μ(1 − ε̃)λ

{
ln(t + θ) + ln[ln(t + θ)] + ln[2(1 − ε)K1]

}
≥ K1 ln(t + θ) + K1 = h′(t) for all t > 0,

which proves (3.6).
Step 2. We show that for t > 0 and x ∈ [−h(t), h(t)] with |x | �= h(t) − (t + θ)ε̃ ,

ut (t, x) ≤ d
∫ h(t)

−h(t)
J (x − y)u(t, y)dy − du(t, x) + f (u(t, x)) (3.7)
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for θ � 1.
From the definition of u, we obtain by direct calculation that, for t > 0,

ut (t, x) =
{

ρK ρ−1

2 u1−ρ−1
[
K1

(1−ε̃) ln(t+θ)+1
(t+θ)ε̃

+ ε̃|x |
(t+θ)1+ε̃

]
if h(t) − (t + θ)ε̃ < |x | ≤ h(t),

0 if 0 ≤ |x | < h(t) − (t + θ)ε̃ .

(3.8)

Making use of Lemma 2.2 with

(L(t), φ(t, x), ξ(t)) = (h(t), u(t, x)/K2,
h(t)

(t + θ)ε̃
),

for any given small δ > 0, we can find a large θ∗ = θ∗(δ, ε) such that for θ ≥ θ∗ and
|x | ≤ h(t),

∫ h(t)

−h(t)
J (x − y)u(y, t)dy ≥ (1 − δ)u(x, t).

Then, a similar analysis as in the proof of Lemma 3.1 shows that there exists C1 > 0,
depending on ε and δ, such that for θ � 1, x ∈ [−h(t), h(t)] and t ≥ 0,

d
∫ h(t)

−h(t)
J (x − y)u(t, y)dy − du + f (u) ≥ C1

[∫ h(t)

−h(t)
J (x − y)u(t, y)dy + u

]
.

Hence, to verify (3.7), we only need to show that

ut ≤ C1

[∫ h(t)

−h(t)
J (x − y)u(t, y)dy + u

]
for |x | ∈ [0, h(t)] \ {h(t) − (t + θ)ε̃}.

(3.9)

Clearly, (3.9) holds trivially for 0 ≤ |x | < h(t) − (t + θ)ε̃ due to ut = 0 for such
x . We next consider the remaining case h(t) − (t + θ)ε̃ < |x | < h(t).

Denote η = η(t) := (t + θ)ε̃ . Using θ � 1 and (1.8), we obtain, for x ∈ [h(t) −
η(t), h(t)],

∫ h

−h
J (x − y)u(t, y)dy ≥

∫ h−η

−h+η

J (x − y)u(t, y)dy = K2

∫ h−η

−h+η

J (x − y)dy

= K2

∫ h−η−x

−h+η−x
J (y)dy ≥ K2

∫ −η

−h
J (y)dy ≥ K2λ

2

∫ h

η

y−2dy

= K2λ

2
(η−1 − h−1) ≥ (1 − ε)λ

4
η−1 =: C2(t + θ)−ε̃ .
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The same estimate also holds for x ∈ [−h(t),−h(t) + η(t)]. Therefore, for |x | ∈
[h(t) − η(t), h(t)], due to ρ > 2 and 0 < ε̃ � 1, we have

ut (t, x) − C1

∫ h

−h
J (x − y)u(t, y)dy

≤ ρK 1/ρ
2 u(ρ−1)/ρ

[
K1

(1 − ε̃) ln(t + θ) + 1

(t + θ)ε̃
+ ε̃h

(t + θ)1+ε̃

]
− C1C2(t + θ)−ε̃

≤ 2K1ρK
1/ρ
2 u(ρ−1)/ρ ln(t + θ)

(t + θ)ε̃
− C1C2(t + θ)−ε̃

= 2K1ρK2[(h − |x |)/(t + θ)ε̃]ρ−1 ln(t + θ) − C1C2

(t + θ)ε̃
≤ 0

if |x | further satisfies

|x | ≥ h(t) −
(

C1C2

2K1ρK2

)1/(ρ−1) (t + θ)ε̃

[ln(t + θ)]1/(ρ−1)
=: h(t) − C3

(t + θ)ε̃

[ln(t + θ)]1/(ρ−1)
.

On the other hand, for h(t)−(t+θ)ε̃ < |x | < h(t)−C3(t + θ)ε̃/[ln(t+θ)]1/(ρ−1),
using (3.8) and 0 < ε̃ � 1, θ � 1, we deduce

ut − C1u ≤ 2K1ρK
1/ρ
2 u(ρ−1)/ρ ln(t + θ)

(t + θ)ε̃
− C1u

= u

(
2K1ρ[(h − |x |)/(t + θ)ε̃]−1/ρ ln(t + θ)

(t + θ)ε̃
− C1

)

≤ u

(
2K1ρ[ln(t + θ)]1+ 1

ρ(ρ−1)

C1/ρ
3 (t + θ)ε̃

− C1

)
< 0.

Hence, (3.9) holds true. This concludes Step 2.
Step 3. We finally prove (3.5).
The definition of u clearly gives u(t,±h(t)) = 0 for t ≥ 0. Since spreading happens

for (u, g, h) and K2 = 1 − ε < 1, there is a large constant t0 > 0 such that

[ − h(0), h(0)] ⊂ (g(t0), h(t0)),

u(0, x) ≤ K2 ≤ u(t0, x) for x ∈ [ − h(0), h(0)].

By Remark 2.4 in [19], we see that the comparison principle (Theorem 3.1 in [10])
applies to our situation here, even though ut (t, x) has a jumping discontinuity at
|x | = h(t) − (t + θ)ε̃ . It follows that

[−h(t), h(t)] ⊂ [g(t + t0), h(t + t0)] for t ≥ 0,

u(t, x) ≤ u(t + t0, x) for t ≥ 0, x ∈ [−h(t), h(t)],
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which implies

lim inf
t→∞

h(t)

t ln t
≥ (1 − ε)3(1 − ε̃)μλ.

Since ε > 0 and ε̃ > 0 can be arbitrarily small, we thus obtain (3.5) by letting ε → 0
and ε̃ → 0. This completes the proof of the lemma. 
�

4 Upper bounds

Recall that we will only state and prove the conclusions for h(t), as the corresponding
conclusion for−g(t) follows directly by considering the problem with initial function
u0(−x).

Lemma 4.1 Assume that J satisfies (J) and one of the conditions (1.8) and (1.9), f
satisfies (f), and spreading happens to (1.1). Then

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim sup
t→∞

h(t)

t1/(α−1)
≤ 22−α

2 − α
μλ̄ if (1.8) holds with α ∈ (1, 2),

lim sup
t→∞

h(t)

t ln t
≤ μλ̄ if (1.8) holds with α = 2,

lim sup
t→∞

ln h(t)

t1/β
≤

(
2βμλ

β − 1

)1/β

if (1.9) holds.

(4.1)

Proof For any given small ε > 0, define, for t ≥ 0,

h̄(t) :=

⎧⎪⎨
⎪⎩

(Kt + θ)1/(α−1) if (1.8) holds with α ∈ (1, 2],
K (t + θ) ln(t + θ) if (1.8) holds with α = 2,

eK (t+θ)1/β if (1.9) holds ,

u(t, x) := 1 + ε, x ∈ [−h̄(t), h̄(t)],

where θ � 1 and

K :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 + ε)3
22−α

2 − α
μλ̄ if (1.8) holds with α ∈ (1, 2),

(1 + ε)3μλ̄ if (1.8) holds with α = 2,

[2(1 + ε)3βμλ

β − 1

]1/β
if (1.9) holds ,

(4.2)

We verify that for t > 0,

h̄′(t) ≥ μ

∫ h̄(t)

−h̄(t)

∫ +∞

h̄(t)
J (x − y)ū(t, x)dydx, (4.3)
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which clearly implies

−h̄′(t) ≤ −μ

∫ h̄(t)

−h̄(t)

∫ −h̄(t)

−∞
J (x − y)ū(t, x)dydx

since u(t, x) = u(t,−x) and J (x) = J (−x).
Using ū = 1 + ε, we have

μ

∫ h̄

−h̄

∫ +∞

h̄
J (x − y)ū(t, x)dydx = (1 + ε)μ

∫ h̄

−h̄

∫ +∞

h̄
J (x − y)dydx

= (1 + ε)μ

∫ 0

−2h̄

∫ +∞

0
J (x − y)dydx .

By Lemma 2.1 with δ = 0, we see that for large h̄, which is guaranteed by θ � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 0

−2h̄

∫ +∞

0
J (x − y)dydx ≤ (1 + ε)

λ̄

(α − 1)(2 − α)
(2h̄)2−α, if (1.8) holds with α ∈ (1, 2),

∫ 0

−2h̄

∫ +∞

0
J (x − y)dydx ≤ (1 + ε)λ̄ ln(2h̄), if (1.8) holds with α = 2,

∫ 0

−2h̄

∫ +∞

0
J (x − y)dydx ≤ (1 + ε)(2h̄)[ln(2h̄)]1−β λ̄

β − 1
if (1.9) holds .

Therefore, when (1.8) holds with α ∈ (1, 2), by the definition of K , we have

μ

∫ h̄

−h̄

∫ +∞

h̄
J (x − y)ū(t, x)dydx ≤ (1 + ε)2μ

λ̄

(α − 1)(2 − α)
(2h̄)2−α

= (1 + ε)2μ
λ̄

(α − 1)(2 − α)
22−α(Kt + θ)(2−α)/(α−1)

≤ K

α − 1
(Kt + θ)(2−α)/(α−1) = h̄′(t).

When (1.8) holds with α = 2, we similarly obtain, due to θ � 1,

μ

∫ h̄

−h̄

∫ +∞

h̄
J (x − y)ū(t, x)dydx ≤ (1 + ε)2μλ̄ ln(2h̄)

= (1 + ε)2μλ̄
{
ln(t + θ) + ln[ln(t + θ)] + ln 2K

}
≤ K ln(t + θ) + K = h̄′(t).

Finally, when (1.9) holds, we have

μ

∫ h̄

−h̄

∫ +∞

h̄
J (x − y)ū(t, x)dydx ≤ (1 + ε)2μ(2h̄)[ln(2h̄)]1−β λ̄

β − 1

≤ (1 + ε)3μ(2h̄)(ln h̄)1−β λ̄

β − 1
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= K β

β
h(ln h)1−β = h′(t).

Thus (4.3) always holds.
Recalling that u ≥ 1 is a constant, we get, for t > 0, x ∈ [−h̄(t), h̄(t)],

ut (t, x) ≡ 0 ≥ d
∫ h̄

−h̄
J (x − y)u(t, y)dy − du(t, x) + f (u(t, x)).

Note that condition (f) implies, by simple comparison with ODE solutions,

lim sup
t→∞

max
x∈[g(t),h(t)] u(t, x) ≤ 1;

hence there is t0 > 0 such that

u(t0, x) ≤ 1 + ε = u(t0, x) for x ∈ [g(t0), h(t0)] ⊂ [−h̄(0), h̄(0)]

with the last part holding for large θ .
We are now in a position to use the comparison principle (Theorem 3.1 in [10]) to

conclude that

[g(t + t0), h(t + t0)] ⊂ [−h̄(t), h̄(t)] for t ≥ 0,

u(t + t0, x) ≤ u(t, x) for t ≥ 0, x ∈ [g(t + t0), h(t + t0)].

By the arbitrariness of ε > 0, we get (4.1). The proof is finished. 
�
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