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Abstract
By the reduced component in a moduli space of stable quasimaps to n-dimensional
projective space P

n we mean the closure of the locus in which the domain curves are
smooth. As in the moduli space of stable maps, we prove the reduced component is
smooth in genus 2, degree ≥ 3. Then we prove the virtual fundamental cycle of the
moduli space of stable quasimaps to a complete intersection X in P

n of genus 2,
degree ≥ 3 is explicitly expressed in terms of the fundamental cycle of the reduced
component of P

n and virtual cycles of lower genus < 2 moduli spaces of X .
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Introduction

Computing Gromov–Witten invariants of the quintic 3-fold X has attracted interests of
both mathematicians and physicists due to its importance in mirror symmetry, which
mainly studies Calabi–Yau 3-folds. One effective way to conquer this computation
is to relate them with GW invariants of P

4 in which X is embedded. Then we apply
virtual localisation [23] for the natural torus action on P

4 to compute them. We will
call this principle relating GW invariants of X and P

4 the quantum Lefschetz property.
The name, quantum Lefschetz, is originally from the formula between genus 0

virtual cycles: Let ι : M(X) ↪→ M(P4) be the moduli spaces of stable maps to
X ↪→ P

4, respectively. On M(P4) there is a coherent sheaf V := π∗f∗OP4(5) defined
via the universal curve π : C → M(P4) and the universal map f : C → P

4. In genus
0, M(P4) is smooth and V is a vector bundle. Then the quantum Lefschetz formula
[29] asserts that

ι∗[M(X)]vir = e(V ) ∩ [M(P4)]. (0.1)

Unfortunately, it turns out that (0.1) does not hold for higher genus invariants [22].
So we need more sophisticated version of the quantum Lefschetz property for higher
genus invariants.

Meanwhile, the explicit relationship betweenGWand stable quasimap invariantsof
X is known to be wall-crossing formula [14, 16, 40]. Since we may expect a relatively
simpler version of quantum Lefschetz property for higher genus quasimap invariants,
wall-crossing formula allows us to study simpler quantum Lefschetz property to com-
pute GW invariants. For instance the original quantum Lefschetz formula (0.1) holds
true for genus 1 quasimap invariants, so it dramatically helps the computation of genus
1 GW invariants [30].
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Quantum Lefschetz property for genus... 1797

We notice that there have been several interesting quantum Lefschetz formulae for
higher genus GW or quasimap invariants, or relationships between invariants of X and
other invariants, developed in a recent few years [1, 3, 5, 7, 9–11, 17, 18, 20, 30, 33, 34,
41, 43]. These lead us some actual computations of higher genus invariants [4, 20, 24,
25, 30, 38, 42]. In our paper we would like to introduce one more quantum Lefschetz
formula for genus 2 quasimap invariants. Our formulae (0.2), (0.4) contain Zinger-
type reduced virtual cycles, which have not been studied in any of references above
for genus ≥ 2 yet. Since it is expected to have some interesting properties—such as
integrability—we hope our new formulae would suggest some idea in studying higher
genus invariants.

To construct Zinger-type reduced virtual cycles, we need to study the reduced com-
ponents on which the cycles are supported (conjecturally), in the moduli spaces of
stable maps or stable quasimaps to P

n . It is firstly addressed in [26, 39] where they
studied genus 1 stable maps. Later [2, 27] studied genus 2 stable maps in different
ways—[27] is closer to the original idea of [26, 39], whereas [2] uses curves with
Gorenstein singularities. Although [2] studied more general target spaces, we fol-
low the idea of [27] to construct our reduced virtual cycles due to its advantage on
computations.

We consider a slight more general situation. Let X = { f1 = · · · = fm = 0}
be a complete intersection in projective space P

n , where fi ∈ �(Pn,OPn (�i )). When
n = 4,m = 1 and �1 = 5 it recovers a quintic threefold X .Wedenote by Qg,k,d (X) ↪→
Qg,k,d(P

n) the moduli spaces of stable quasimaps to X ↪→ P
n of genus g, degree d

with k marked points. Using the universal curve and map

C
f

π

[Cn+1/C
∗]

Qg,k,d(P
n),

we define Vg,k,d := ⊕m
i=1π∗f∗O(�i ), where O(d) := [Cn+1 × C/C

∗] is a bundle
defined by weight d representation. Let Qred

g,k,d(P
n) be the closure of the open substack

in Qg,k,d(P
n) on which R1π∗f∗O(1) vanishes

Qred
g,k,d(P

n) = closure
(

Qg,k,d(P
n) � suppR1π∗f∗O(1)

)

⊂ Qg,k,d(P
n).

Then on the proper birational base change ˜Qg,k,d(P
n) → Qg,k,d(P

n) in Sect. 2.4, the
proper transform of Qred

g,k,d(P
n) is smooth and Vg,k,d over there is a bundle. We denote

by L j the tautological line bundle a∗
jωπ associated to the j-th marked point, which

forms a section a j : Qg,k,d(P
n) → C of π , where ωπ denotes the relative dualising

sheaf of π . We often omit the subscript j in L j throughout the paper when it is clear.
Then we prove the following quantum Lefschetz formula for a Calabi–Yau 3-fold.
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1798 S. Lee et al.

Theorem 1 When X is a Calabi-Yau 3-fold, d ≥ 3, we have an equivalence in homol-
ogy group of Q2,0,d(X),

[Q2,0,d (X)]vir = eref (V2,0,d ) ∩ [Qred
2,0,d (P

n)] (0.2)

− c1(L)

24
∩ [Q1,1,d (X)]vir

+ 1

242

(

c1(L1)c1(L2)

2
− 3(ev∗

1c2(TX ) + ev∗
2c2(TX ))

2

)

∩ [Q0,2,d (X)]vir .

Using the defining section f = ( fi )i ∈ �(Pn,⊕iO(�i )) of X ⊂ P
n , the first

term in the RHS of (0.2) is localised to Q(X) := Q2,0,d(X) via refined Euler class
eref(V2,0,d) [21, Section 14.1]1 defined by the section π∗f∗ f ∈ �(V2,0,d) cutting out
Q(X) = (π∗f∗ f )−1(0). The last two terms in the RHS are cycles on Q(X) via the
pushforwards of embeddings,

(1) ι1 : M1,1 × Q1,1,d(X) ↪→ Q(X),

(2) ι2 : M1,1 × Q0,2,d(X) × M1,1
2:1−→ Q(X).

In fact, we have these extra terms in (0.2) as the sheaf ⊕i R1π∗f∗O(�i ) on Q(X)

does not vanish on the image of ι1. Note that the image of ι2 is contained in the image
of ι1, but the rank of ⊕i R1π∗f∗O(�i ) jumps on the image of ι2. This is why we have
the two extra terms in (0.2).

This sheaf ⊕i R1π∗f∗O(�i ) does not vanish on the image of

(3) ι3 : M1,2 × Q′
0,2,d(X) ↪→ Q(X),

where Q′
0,2,d(X) ↪→ Q0,2,d(X) is the closed substack on which the two evaluation

maps are the same ev1 = ev2,
as well. So it could have contributed nontrivially to the formula. Also there might

be another nontrivial contribution from its intersection with the image of ι1. (Note
that it does not intersect with the image of ι2.) And these are all the places where

1 This is called the localised top Chern class there.

123



Quantum Lefschetz property for genus... 1799

⊕i R1π∗f∗O(�i ) does not vanish exactly. So we may not expect there are more extra
contributions to the formula. Actually we have the formula in Theorem 2 below for
a general complete intersection X ⊂ P

n including the four contributions. The third
and fourth contributions vanishe when X is a Calabi–Yau 3-fold, and Theorem 1 is
obtained by Theorem 2 as a special case.

Before stating Theoremwe introduce some (Chow) cohomology classes to simplify
the statement. Denoting by H the Hodge bundle π∗ωπ we define the classes on the
product Mg1,k1+{a} × Qg2,k2+{a},d(X),

Ka := c (H∨ � ev∗
aTX )

c (L∨
a � L∨

a )
, At

a := c (H∨ � ev∗
aTX )

c (L∨
a � 1)t

, Ba := 1

c (1 � L∨
a )

and

[Ca]dim X−2−t := t(t + 1)

2
c1(H∨)cdim X−3−t (ev

∗
aTX ) − (t + 1)cdim X−2−t (ev

∗
aTX ).

We omit the subscript a when the node a is clear. We denote by [K ]i , [At ]i , [B]i the
degree i parts. We also define a (Chow) homology class

[Q′
0,2,d(X)]vir := (ev1 × ev2)

∗�X ∩ [Q0,2,d(X)]vir (0.3)

using the diagonal class �X ∈ Adim X (X × X). The bundle V2,0,d on Qred
2,0,d(P

n) is
defined by ⊕iπ∗f∗O(�i ).

Theorem 2 For d ≥ 3, we have an equivalence in the Chow group of Q2,0,d(X),

[Q2,0,d(X)]vir = eref(V2,0,d) ∩ [Qred
2,0,d(P

n)]
+ [K1]dim X−1 ∩

(

[M1,{1}] × [Q1,{1},d(X)]vir
)

+
( [K1K2]2 dim X−2

2
− [K1]dim X−1[K2]dim X−1

)

∩
(

[M1,{1}] × [Q0,{1,2},d(X)]vir × [M1,{2}]
)

(0.4)

+ 1

2

dim X−1
∑

i=0

[Ai+1
1 ]dim X−1−i [B1B2]i−1 ∩

(

[M1,{1,2}] × [Q′
0,{1,2},d(X)]vir

)

+
dim X−2

∑

i=1

(

[C3]dim X−2+i − [Ai+2
3 ]dim X−2−i

)

[B1B2]i−1

∩
(

[M1,{3}] × [M0,{1,2,3}] × [Q′
0,{1,2},d(X)]vir

)

.

In Remark 5.2 we explain Ai+1
1 = Ai+1

2 onM1,1×Q′
0,2,d(X), so the fourth term is not

so strange. We emphasise Theorem 2 is a result in the Chow group whereas Theorem
1 is in homology.
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1800 S. Lee et al.

Notation

For a morphism f : X → Y of spaces and a perfect complex E on Y , we often denote
by E|X the derived pullback f ∗

E. We sometimes regard a locally free sheaf E as its
total space.

We denote by Mg,k,d , or simply by M, the Artin stack of prestable curves with
non-negative integer on each component (playing a role of degree) whose sum is d.
Similarly Mline

g,k,d , or simply Mline, denotes the Artin stack of curves with degree d

line bundles. The Artin stack of curves with degree d divisors is denoted by Mdiv
g,k,d ,

or simply Mdiv .
We denote by Q(i) the image of ιi in the picture above (i) for either the moduli

spaces of stable quasimaps or the p-fields spaces. For instance on Q(3), the evaluation
maps (of the g = 0 quasimap) are the same ev1 = ev2. Furthermore, we use the script
(i) for relevant objects of the embedding ιi unless it needs an explanation. For instance
a bundle on Q(i) will be denoted with the script (i).

For variables with two subindices yi j , we say yi = 0 if yi j = 0 for all j . Also we
say y = 0 if yi j = 0 for all i and j .

1 Stable quasimaps, p-fields and the plan

Stable quasimaps

A genus g,degree d quasimap to the complete intersection X ⊂ P
n cut out by homo-

geneous polynomials fi ∈ �(Pn,O(�i )) with k marked points is a triple (C, L, u)

where C is a genus g, projective, nodal, prestable curve with k marked points, L is a
degree d line bundle on C , and u = (u0, . . . , un) is a section of L⊕n+1 such that

fi (u) = 0 ∈ �(C, L⊗�i ) for all i . (1.1)

Note that a pair (L, u : OC → L⊕n+1)defines amap f : C → [Cn+1/C
∗]. Conversely,

when a map f : C → [Cn+1/C
∗] is given, we obtain a pair (f∗O(1), u : OC →

f∗O(1)⊕n+1). Hence a triple (C, L, u) can be considered to be a pair (C, f) satisfying
L = f∗O(1). A quasimap is stable if it satisfies the stability conditions2

− ω
log
C ⊗ Lε is ample onCfor anyε > 0, and (1.2)

− the zero of u is a divisor which does not meet nodes nor marked points.

We denote by Qg,k,d(X), or simply by Q(X), the moduli space of stable quasimaps.
By [13, 15, 35], it is proper and equipped with a natural perfect obstruction theory so

2 In contrast, (C, L, u) is a stable map defining Gromov–Witten invariants if it satisfies the stability con-

ditions 1. ωlog
C ⊗ L⊗3 is ample on C , and 2. the zero of u is empty.
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Quantum Lefschetz property for genus... 1801

that the virtual fundamental class

[Q(X)]vir ∈ Avdim(Q(X)) (1.3)

is defined, where vdim denotes the virtual dimension

vdim = (dim X − 3)(1 − g) + k − c1(KX ) ∩ d ·[line].

The stable quasimap invariant of X is defined to be an integration over this virtual
class.

The reason why the quantum Lefschetz property for the quasimap invariants is
simpler is because a quasimap does not have a rational component with less than two
special points (called a rational tail) on its domain curve.

Stable quasimaps with p-fields

We have seen in Introduction that the coherent sheaf R1V := ⊕i R1π∗f∗O(�i ) on
Q(Pn) may not vanish. We denote by Qp,g,k,d(P

n), or simply by Qp, its dual space

Qp = SpecOQ(Pn )

(

SymR1V
)

.

Its fibre at (C, L, u) = (C, f) ∈ Q(Pn) is then⊕i H1(C, f∗O(�i ))
∨ = ⊕i H0(C, ωC⊗

f∗O(−�i )) by Serre duality. Since L = f∗O(1), Qp parametrises (C, L, u, p =
(p1, . . . , pm)) where (C, L, u) is a stable quasimap to P

n and

pi ∈ �(C, ωC ⊗ L−�i ).

Recall that imposing the condition (1.1) defines the space Q(X) from Q(Pn),
whereas the above extra data determines Qp from Q(Pn). We will call the section
p = (p1, . . . , pm) p-fields.

The space Qp may not be proper, but still comes with a natural perfect obstruction
theory, so that the virtual fundamental class

[Qp]vir ∈ Avdim(Qp)

is defined. Denoting by L := f∗O(1) the universal line bundle on the universal curve,
the dual perfect obstruction theory relative to Mline is defined to be

E
∨
Qp/Mline := (Rπ∗L⊕n+1 ⊕

⊕

i

Rπ∗(ωπ ⊗ L⊗−�i ))|Qp

∼= (Rπ∗L⊕n+1 ⊕
⊕

i

(Rπ∗L⊗�i )∨[−1])|Qp . (1.4)

Using the map f = ( f1, . . . , fm) : C
n+1 → C

m inducing Rπ∗L⊕n+1 →
⊕i Rπ∗L⊗�i , the pairing defines the cosection E

∨
Qp/Mline → OQp [−1]. The p-field
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1802 S. Lee et al.

spaces and cosections are firstly introduced by Chang–Li in [6] to find a localised class
[Qp]virloc of [Qp]vir to a smaller space j : Q(X) ↪→ Qp,

[Qp]virloc ∈ Avdim(Q(X)), j∗[Qp]virloc = [Qp]vir, (1.5)

using cosection localisation [28]. Then they proved GW invariants of X are equal to
those defined over p-field spaces up to sign. This result is improved in [8, 12, 31, 37]:
the localised class [Qp]virloc is equal to the class [Q(X)]vir defined in (1.3) up to sign

[Q(X)]vir = (−1)d(
∑

i �i )+m(1−g)[Qp]virloc. (1.6)

Plan of the proof of Theorem 2

Using (1.6) we replace [Q(X)]vir with ±[Qp]virloc in the statement of Theorem 2. An
advantage in using Qp rather than Q(X) is that it is locally a nice cut-out of a smooth
space. In Sect. 2, we describe this explicit cut-out model of Qp after the suitable base-
change of Qp in Sect. 2.4. Using this, we compute the intrinsic normal cone of Qp in
Sect. 3.2 to obtain a decomposition of the virtual class

[Qp,2,0,d ]virloc = [Qred
p ]vir + [Q(1)

p ]vir + [Q(2)
p ]vir + [Q(3)

p ]vir. (1.7)

Note that the indices ‘red’, ‘(1)’, ‘(2)’ and ‘(3)’ reflect their geometric origins labelled
above. So Q(1)

p , Q(2)
p , Q(3)

p are supported on the images of the node-identifying mor-
phisms ιi , ignoring p-fields. In fact we will investigate that they are bundles over the
images in Sect. 3.2.

Then in Sect. 4, we prove that [Qred
p ]vir follows the original quantum Lefschetz

formula (0.1)

[Qred
p ]vir = (−1)d(

∑

i �i )−m eref(V2,0,d) ∩ [Qred
2,0,d(P

n)].

And we show the i-th cycle [Q(i)
p ]vir is a part of the RHS of (0.4). For i = 1 for

instance, we obtain

[Q(1)
p ]vir = (−1)m

[

c(H∨ � ev∗TX )

c(L∨ � L∨)

]

n−m−1
∩

(

[M1,1] × [Qred
p,1,1,d ]vir

)

(1.8)

via the pushforward by ι1. A very brief interpretation of this equality is that the
difference of the obstruction bundles defining [Q(1)

p ]vir and [Qred
p,1,1,d ]vir (in the K -

group of Q(1)
p , via the pullback) can be written in terms of the bundle structure of Q(1)

p
over the image of ι1 as well as the pullback bundles of H∨ � ev∗TX , L

∨ � L
∨. To

realise this interpretation to give an actual proof, we do massage spaces and bundles—
deformations, blowups and twistings by divisors, etc.—in Sect. 5 so that we can get a
tidy form (1.8). Once we do these for all i , then by using [32, Theorem 1.1]

eref (V1,1,d ) ∩ [Qred
1,1,d (P

n)] = [Q1,1,d (X)]vir − [K ]dim X−1 ∩ ([M1,1] × [Q0,2,d (X)]vir)
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Quantum Lefschetz property for genus... 1803

together with (1.6), the decomposition (1.7) proves Theorem 2.

2 Local defining equations of the p-field space

For a morphism of vector bundles d : A → B over a smooth Artin stack M , we
consider the kernel of d as a space

ker d = SpecOM

(

Sym(cokerd∗)
) ⊂ A = SpecOM

(

SymA∗) .

Denoting by τA the tautological section, ker d has a cut-out model

B|A

ker d := (d ◦ τA)−1(0) ⊂ A.

d◦τA

(2.1)

Hence the pullback complex {d : A → B}|ker d defines a dual perfect obstruction
theory of ker d relative to M .

The purpose of this section is to write Qp as (an open substack of) ker d overMdiv .

2.1 Cut-out model of the p-field space

Unlike considering Mline, there is no canonical forgetful morphism of the p-field
space Qp → Mdiv . But it is defined locally as follows. For a point (C, L, u, p) ∈ Qp,
u = (u0, . . . , un) is not identically zero on any component of C . So we can pick a
combination u = ∑

aiui ∈ H0(C, L) whose zero u−1(0) ⊂ C defines a divisor on
C and does not intersect with the special points. Since it is an open condition we have
a morphism

Qp −→ Mdiv, (C, L, u, p) �−→ (C,u−1(0))

on a local neighborhood.
Let D be the universal divisor on the universal curve π : C → Mdiv and consider

the complex

Rπ∗OC(D)⊕n ⊕
⊕

i

(Rπ∗OC(�iD)[1])∨ . (2.2)

It is explained in [31, Section 3] that we can choose its representative A
d−→ B such

that the stability condition (1.2) defined on ker d is lifted to the total space of A. So this
lifted stability condition defines the open substack of A. Then the cut-out model (2.1)
restricted to this open substack gives a local cut-out model of Qp relative toMdiv .
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Since we work locally, we may assume A and B are trivial bundles. Then d can be
considered as a multi-valued function

d : Mdiv × C
rank A −→ C

rank B (2.3)

defining Qp as (an open substack of) its zero. In the rest of the section, we find a
simple expression of d by coordinate changes and blowups.

2.2 Key lemma

Now we focus on (g, k) = (2, 0) throughout the section. We work étale locally on
Mdiv , sometimes without mentioning it. For instance by an element of �(OMdiv ), we
mean an étale local function ofMdiv .

As we have explained in Introduction, considering stable quasimaps has a big
advantage inmaking the quantumLefschetz formula less complicated than considering
stable maps. But there is (essentially only) one technical thing to check, which is
obvious in stable maps—near a domain curve of a stable map f : C → P

n , f∗O(1)
is linearly equivalent to O(

∑d
i=1Di ) with disjoint, fiberwise degree 1 divisors Di .

Unfortunately it is not immediately seen near a domain curve of a stable quasimap.
Since this was the important starting point to find local cut-out models for stable map
moduli spaces in [26, 27] we need the following Lemma.

In fact, the Lemma is quite general—it holds near any prestable curve, including
a domain curve of a stable quasimap, in genus 2. Let D be an effective divisor of
deg = d ≥ 3 on the universal curve C of M supported off the special points.

Lemma 2.1 Locally D is linearly equivalent to a sum
∑d

i=1Di of disjoint divisors of
degree 1 at each fiber.

The key idea of the proof is to construct a covering map C → P
1 by pick-

ing two linearly independent sections H0(C,O(D)), whose dim = d + 1 − g +
dim H1(C,O(D)) ≥ 2, not having common zeros. Then the inverse image of a generic
point of P

1 is d-many distinct points.

Proof Pick any local divisor B on C lying on the minimal genus 2 subcurve, having
degree 1 at each fiber and not meeting D. Because B ∩ D = ∅, the evaluation mor-
phism π∗(OC(D)) → OC(D)|B ∼= OM is surjective, where π : C → M denotes the
projection morphism. This induces an exact sequence

0 → π∗OC(D − B) → π∗(OC(D)) → OM → 0. (2.4)

Meanwhile, as in [27, Section 2.3], we can choose other divisors A1 and A2 lying
on the minimal genus 2 subcurve such that

• A1, A2, B are disjoint to each other, and
• A1,A2 lie on different components if the genus 2 component consists of two genus
1 components.
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Picking the divisors in this way ensures R1π∗(D+A1 +A2 −B) = 0. So π∗OC(D+
A1 + A2 − B) is a rank d vector bundle and hence locally is O⊕d

M . By [27, Equation
(2.5)], we obtain a sequence

0 → π∗OC(D − B) → π∗OC(D + A1 + A2 − B)
evA1⊕ evA2 O⊕2

M . (2.5)

Since d ≥ 3, we can pick a nonzero local section s ∈ � (π∗OC(D + A1 + A2 − B))

mapping to 0 by evA1 ⊕ evA2 . Then it factors through π∗OC(D − B), and hence, by
(2.4), it can be considered as a section

s OC −→ OC(D),

which is zero on B. Since the canonical section sD of D does not vanish on B, sD and
s are linearly independent on every fiber.

The common zero D′ of s and sD has then fiberwise degree d ′ ≤ d − 1 (which
may not be constant at each fiber) because s is zero on B but sD is not. Then at a
fiber the sections s ⊗ s−1

D′ , sD ⊗ s−1
D′ ofO(D−D′) defines a degree d − d ′ morphism

φ : C → P
1. Since it cannot be degree 1 (which means φ is an isomorphism), we

actually have d ′ ≤ d − 2. A generic fiber φ−1([a; b]) consists of distinct divisors
D1,..., Dd−d ′ away from D′, and hence we have

OC(D − D′) ∼= OC

⎛

⎝

d−d ′
∑

i=1

Di

⎞

⎠ .

Note that since D′ + ∑Di is defined by bs − asD this isomorphism is not only at the
fiber, but an isomorphism locally on M.

If d ′ ≥ 3, we do the same procedure by replacingD′ byD until we get d ′ ≤ 2. Then
we proved the lemma unless d ′ = 2. Now let us assume that d ′ = degD′ = 2. Doing
the same procedure for D := D′ + D1 which has degree 3, the procedure terminates
since d ′ ≤ degD − 2 = 3 − 2 = 1. Hence the proof is completed. ��

Considering the universal divisor D on the universal curve C on Mdiv , we obtain
the following immediate corollary from the exact sequences (2.4), (2.5) in the proof
of Lemma 2.1.

Corollary 2.2 In the derived category of a local neighborhood ofMdiv , we obtain an
isomorphism induced by (2.4)

Rπ∗OC(D) ∼= Rπ∗OC(D − B) ⊕ [OMdiv
0−→ 0].

And the sequence (2.5) induces an isomorphism

Rπ∗OC(D − B) ∼=
[

π∗OC(D + A1 + A2 − B)
evA1⊕ evA2 O⊕2

Mdiv

]

.
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In addition, a similar idea of [27, Lemma 2.4.1] allows us to have one more iso-
morphism.

Lemma 2.3 The canonical monomorphisms induce an isomorphism

⊕d
i=1 π∗OC(Di + A1 + A2 − B) ∼= π∗OC(D1 + · · · + Dd + A1 + A2 − B).

Combining all these Lemma 2.1, Corollary 2.2 and Lemma 2.3, we observe that
Rπ∗OC(D) is quasi-isomorphic to

[

⊕d
i=1π∗OC(Di + A1 + A2 − B)

evA1⊕ evA2 O⊕2
Mdiv

]

⊕ [OMdiv
0−→ O⊕2

Mdiv ].
(2.6)

2.3 Diagonalisation of the local representative

Picking any local identification π∗OC(Di +A1 +A2 − B) ∼= OMdiv , evA1 ⊕ evA2 in
(2.6) can be written as a 2 × d matrix (c ji ), c ji ∈ �(OMdiv ).

The goal of this section is to transform the matrix (c ji ) to a nice diagonal form

(c ji ) ∼
(

c1 0 0 · · · 0
0 c2 0 · · · 0

)

=: c

by using row and column operations near a domain curve of a stable quasimap. In fact
it is already studied by Hu–Li–Niu [27, Section 5] over the domain curves of stable
maps: on a neighbourhood of a fixed domain curve they found a diagonal form. It
depends on a type of a boundary component in which the domain curve is. Since the
domain curves of stable quasimaps are simpler than the ones of stable maps, Hu–Li–
Niu already gave an answer to our goal. Below we list the cases which will appear as
the domain curves of stable quasimaps.
(1) Near a domain curve in the generic image of M1,1 × Mdiv

1,1,d ↪→ Mdiv
2,0,d one can

find a diagonal matrix c with

c1 = 1, c2 = ζ,

where ζ is the node smoothing function in �(OMdiv ). Combining with the fact that
there are no rational tails on the domain curves in Q2,0,d(P

n), the proof comes from
[27, Section 5.3, Case 1]. The (c ji ) matrix of [27] in this case contains node smooth-
ing functions of rations tails and an information of necessary blowups due to their
existence. It is simplified to our matrix.

(2) Near a domain curve in the image of ι2 : M1,1 × Mdiv
0,2,d × M1,1

2:1−→ Mdiv
2,0,d one

can find it to be

c1 = ζ1, c2 = ζ2,
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where ζ1 and ζ2 are the node smoothing functions in �(OMdiv ). The proof is in [27,
Section 5.5, Case 1]. Note that the diagonal form in (1) is recovered by ζ2 �= 0.
(3) Near a domain curve in the image of M1,2 ×Mdiv

0,2,d ↪→ Mdiv
2,0,d we need a blowup

to obtain a diagonal transform of (c ji ). Before we discuss it in the following Section,
we introduce some useful facts which we will use.

When the curve is not in the intersection with the image of (1), the entries c ji in
the matrix (c ji ) are non-vanishing functions by [27, Proposition 2.5.1]. Therefore the
matrix (c ji ) can be transformed to

(

1 0 0 0 · · · 0
0 det12 det13 det14 · · · det1d

)

where detk� := det

(

c1k c1�
c2k c2�

)

. Computing the ranks of co/kernels of evA1 ⊕ evA2 ,

we observe that det1i is a linear combination of the node smoothing functions ζ1 and
ζ2. Moreover by [27, Section 5.4, Case 1] and [27, Lemma 2.7.3 (3)], we may assume
that the first two determinants can be written as

det12 = ζ1 + a · ζ2, det13 = ζ2 + b · ζ1,

with ab �= 1. Hence the matrix is transformed to

(

1 0 0 0 · · · 0
0 ζ1 ζ2 0 · · · 0

)

. (2.7)

(1 ∩ 3). When the curve is in the intersection with the image of (1), [27, Section 5.4,
Case 2] and [27, Lemma 2.7.3 (3)] show the matrix is transformed to

(

1 0 0 0 · · · 0
0 ζ ζ1 ζ ζ2 0 · · · 0

)

, (2.8)

where ζ is the node smoothing function for the component (1).
(4) Near a generic domain curve from the reduced space, one can find it to be

c1 = 1, c2 = 1.

The proof is in [27, Section 5.2, Case 2]. This diagonal form is recovered from (1) by
letting ζ �= 0.

2.4 Base change

Consider the blowup spaces

˜M := BlM1,2,0×M0,2,dM2,0,d and ˜Mdiv = Mdiv ×M
˜M.

On ˜Mdiv , the matrices (2.7) and (2.8) can be transformed to be diagonal forms.
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Outside of the intersection with the component in (1), the boundary component
M1,2,0 ×M0,2,d is {ζ1 = ζ2 = 0} locally. Thus on a neighborhood of the exceptional
divisor, we know either ζ1|ζ2 or ζ2|ζ1. Without loss of generality, we may assume that
ζ1|ζ2. Then the matrix (2.7) can be transformed to

(

1 0 0 · · · 0
0 ζ1 0 · · · 0

)

.

Hence on the blowup, the matrix c for the case (3) in Sect. 2.3 has a form with c1 = 1,
c2 = ζ1. Furthermore, the diagonal form in (4) is recovered by this by ζ1 �= 1.

Similarly on the intersection with the component in (1), (2.8) is transformed to

(

1 0 0 · · · 0
0 ζ ζ1 0 · · · 0

)

.

Note that the diagonal form in (1) is recovered by this by ζ1 �= 1.
The global forgetful morphism Qp → M defines the base change b : ˜Qp :=

Qp ×M
˜M → Qp. Then the pullbacks of the perfect obstruction theory and the

cosection defines the cosection localised virtual cycle

[˜Qp]virloc ∈ Avdim(˜QX ).

By [19, Theorem 5.0.1], we obtain the base-changemorphism of b between the (intrin-
sic) normal cones, which is of degree 1. In [31, Theorem 1.1], it is explained that
cosection localised Gysin maps are bivariant operators, so they commute with proper
push-forwards. These two prove

b∗[˜Qp]virloc = [Qp]virloc.

2.5 Local cut-out model of ˜Qp

Recall that we obtained an explicit representative (2.6) of Rπ∗O(D)with the diagonal
matrices c in Sects. 2.3 and 2.4 as its differential morphism. We emphasise once again
that D need not be the universal divisor, cf. Lemma 2.1. So we apply these diagonal-
isations to get a local cut-out model not only of ˜Q(Pn) := Q(Pn) ×M

˜M, but also
of the p-field space ˜Qp, relative to ˜Mdiv as discussed in Sect. 2.1. The induced local
defining Eq. (2.3) is

C
2n × ∏m

i=1

(

C
2 ⊕ C

d�i−1
) � (c1(z)x1 j , c2(z)x2 j )1≤ j≤n × ∏

i ((c1(z)p1i , c2(z)p2i ), 0)

˜Mdiv × ∏n
j=1

(

C
2 × C

d−1
) × C

2m

c ◦τ

� {z} × ∏

j ((x1 j , x2 j ), v j ) × ((p1i , p2i ))1≤i≤m .

c ◦τ

(2.9)

Here, the morphisms
∏n

j=1

(

C
2 × C

d−1
) → C

2n and C
2m → ∏m

i=1

(

C
2 ⊕ C

d�i−1
)

above represent the complexes Rπ∗O(D)⊕n and (⊕i Rπ∗O(�i ·D)[1])∨, respectively,
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whose direct sum is the local perfect obstruction theory (2.2). So at a point z =
(C, D) ∈ Mdiv , the kernel of the first morphism (which is linear)

n
∏

j=1

(

C
2 × C

d−1
)

−→ C
2n,

∏

j

((x1 j , x2 j ), v j ) �−→ (c1(z)x1 j , c2(z)x2 j )1≤ j≤n

parametrises sections, �(C,O(D)⊕n). Hence together with z, it parametrises objects
in ˜Q(Pn). The kernel of the second morphism

C
2m −→

m
∏

i=1

(

C
2 × C

d�i−1
)

, ((p1i , p2i ))1≤i≤m �−→
∏

i

((c1(z)p1i , c2(z)p2i ), 0)

parametrises p-fields, �(C,⊕iωC ⊗ O(−�i D)).

3 Perfect obstruction theories, cones and virtual cycles

3.1 Perfect obstruction theories

Although the cut-out model (2.9) is useful in computational aspects, there are also two
crucial drawbacks. One is it is not global and the other is this does not give a cut-out
model over ˜Mline since ˜Mdiv → ˜Mline is not smooth. For later use it is important
howwe can apply computations with the cut-out model (2.9) to the perfect obstruction
theory over ˜M or ˜Mline. In this section, we explain this.

First we recall the perfect obstruction theories. We keep denoting by π : C → ˜Qp

the pullback of the universal curve. The local perfect obstruction theory relative to
˜Mdiv is

E
˜Qp/˜Mdiv = (

Rπ∗OC(D)⊕n)∨ ⊕
⊕

i

Rπ∗OC(�iD)[1],

which is just the pullback of the dual of (2.2). Globally ˜Qp comes equipped with the
perfect obstruction theory relative toMline

E
˜Qp/˜Mline =

(

Rπ∗L⊕n+1
)∨ ⊕

⊕

i

Rπ∗L�i [1],

where L is the universal line bundle over the universal curve. And the cone of the
composition

E
˜Qp/˜Mline [−1] −→ L

˜Qp/˜Mline [−1] −→ L
˜Mline/˜M|

˜Qp
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defines the global perfect obstruction theory E
˜Qp/˜M relative to M. Here L denotes

the cotangent complex. Then we have the following diagram of triangles

E
˜Qp/˜M E

˜Qp/˜Mline L
˜Mline/˜M|

˜Qp
[1]

E
˜Qp/˜M E

˜Qp/˜Mdiv L
˜Mdiv/˜M|

˜Qp
[1]

L
˜Mdiv/˜Mline |˜Qp

[1] L
˜Mdiv/˜Mline |˜Qp

[1].

In particular the middle horizontal triangle tells us that the local cut-out model (2.9)
defines E

˜Qp/˜M as well as E
˜Qp/˜Mdiv since ˜Mdiv → ˜M is smooth.3

So one way from local to global is to consider this forgetful morphism ˜Mdiv → ˜M.
Via the morphism of perfect obstruction theories

E
˜Qp/˜M −→ E

˜Qp/˜Mdiv ,

computations can move from one to the other, where the former is global whereas the
latter is local. For instance the smoothness shows that the two intrinsic normal cones

C
˜Qp/˜Mdiv and C

˜Qp/˜M

are related, the former maps to the latter via the morphism of bundle stacks

h1/h0
(

E
∨̃
Qp/˜Mdiv

)

−→ h1/h0
(

E
∨̃
Qp/˜M

)

,

which is actually an affine T
˜Mdiv/˜M-bundle, that is, the morphism is fit in the exact

sequence T
˜Mdiv/˜M → h1/h0(E∨̃

Qp/˜Mdiv ) → h1/h0(E∨̃
Qp/˜M

) of bundle stacks. The

precise proof is in [29, Proposition 3], but it is more or less obvious thanks to the
smoothness. Then the local computation of the cone on the LHS using the cut-out
model (2.9) will give the computation of the cone on the RHS.

A solution to ˜Mline is to consider the forgetful morphism ˜Mline → ˜M. Since it is
smooth as well the morphism of perfect obstruction theories

E
˜Qp/˜M −→ E

˜Qp/˜Mline ,

induces the relationship of the two intrinsic normal cones

C
˜Qp/˜Mline and C

˜Qp/˜M,

3 Beware that the local model (2.9) does not define E
˜Qp/˜Mline immediately because ˜Mdiv → ˜Mline is

not smooth.
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namely, the former maps to the latter via the morphism of bundle stacks

h1/h0
(

E
∨̃
Qp/˜Mline

)

−→ h1/h0
(

E
∨̃
Qp/˜M

)

as before. It is also an affine T
˜Mline/˜M-bundle, and so is C

˜Qp/˜Mline over C
˜Qp/˜M.

3.2 Virtual cycles

As it is briefly explained in Sect. 1, the space ˜Qp is decomposed into four irreducible
components

˜Qp = ˜Qred
p ∪ ˜Q(1)

p ∪ ˜Q(2)
p ∪ ˜Q(3)

p , (3.1)

cf. the pictures in Introduction. From the local cut-out model (2.9) relative over ˜Mdiv ,
an étale local neighborhood of ˜Qp is the spectrum of a ring

R = B[x, p, v] /(c1x1 j , c2x2 j , c1 p1i , c2 p2i ),

where Spec(B) is a smooth neighborhood of ˜Mdiv . From this we can read the decom-
position (3.1) as follows:
(1) Near a point in ˜Q(1)

p \ (˜Q(2)
p ∪ ˜Q(3)

p ), we have seen c2 = 1 in Sect. 2.3. Hence there
exists a neighbourhood of the image inMwhose inverse has irreducible components4

˜Q(1)
p = {c1 = x2 = p2 = 0}, ˜Qred

p = {x = p = 0}.

(2) Consider a point in ˜Q(2)
p . As the point is a 2 : 1 image, we consider an étale

neighbourhood. In this case, there exists an étale neighbourhood whose inverse image
has

˜Q(2)
p = {c1 = c2 = 0} , ˜Qred

p = {x = p = 0} ,

˜Q(1)
p = {c1 = x2 = p2 = 0} ∪ {c2 = x1 = p1 = 0}.

Beware that this does not mean ˜Q(1)
p is reducible. The above description is on the

étale neighbourhood. Note that ˜Q(2)
p does not meet ˜Q(3)

p . So the neighbourhood can

be chosen not to meet ˜Q(3)
p .

(3) Near a point in ˜Q(3)
p \ ˜Q(1)

p , we have c2 = 1. So there exists a neighbourhood
whose inverse image has

˜Q(3)
p = {c1 = x2 = p2 = 0}, ˜Qred

p = {x = p = 0}.

4 We abbreviate the set of all variables x2 j to x2. Similarly we abbreviate xk j to x . So x2 = 0 means
x2 j = 0 for all j and x = 0 means xk j = 0 for all k, j .
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(1 ∩ 3)Near a point in ˜Q(1)
p ∩ ˜Q(3)

p , c1 is divisible by the two node smoothing functions,
say ζ1 and ζ3 here. There exists a neighbourhood whose inverse image has

˜Q(1)
p = {ζ1 = x2 = p2 = 0}, ˜Q(3)

p = {ζ3 = x2 = p2 = 0}, ˜Qred
p = {x = p = 0}.

(4) Near a point outside ˜Q(1)
p ∩ ˜Q(2)

p ∩ ˜Q(3)
p , we have c1 = c2 = 1. Thus there exists

a neighbourhood in ˜Qp on which Spec(R) defines ˜Qred
p .

Then the intrinsic normal cone C
˜Qp/˜M can be decomposed into

C
˜Qp/˜M = Cred ∪ C(1) ∪ C(2) ∪ C(3) ∪ others, (3.2)

each of the first four terms is defined to be the closure of the complement open part in
C

˜Qp/˜M. For instance,

Cred is the closure of C
˜Qp/˜M|

˜Qp\˜Q(1)
p ∪˜Q(2)

p ∪˜Q(3)
p

⊂ C
˜Qp/˜M.

They are actually the closures in h1/h0
(

E
∨̃
Qp/˜M

)

since C
˜Qp/˜M ⊂ h1/h0

(

E
∨̃
Qp/˜M

)

is a closed substack. In fact, one can check from the cut-out model (2.9) that ‘others’
in (3.2) is empty so that we obtain a decomposition

C
˜Qp/˜M = Cred ∪ C(1) ∪ C(2) ∪ C(3). (3.3)

Here is a brief explanation. Letting A := B[x, v, p], one can read the decomposition
of CR/A := CSpecR/SpecA, a pullback of C

˜Qp/˜Mdiv , from its spectrum of

R [X1 j , X2 j , P1i , P2i ]
(

x1k X1l − x1l X1k, x1k P1l − p1l X1k, p1k P1l − p1l P1k,
x2k X2l − x2l X2k, x2k P2l − p2l X2k, p2k P2l − p2l P2k

)

.

(3.4)

We know there are not higher order relations in X1, X2, P1, P2 in (3.4). Away from
the intersections, the cone is a bundle on each irreducible component. So all relations
are linear here. As Spec of (3.4) is the union of their closures which is contained in
the cone, there should not be higher order relations on the intersections neither.
(1) Near a point over ˜Q(1)

p \(˜Q(2)
p ∪ ˜Q(3)

p ) (c2 = 1, x2 = p2 = 0),CR/A is decomposed
into irreducible components

C (1) := {c1 = x2 = p2 = 0}, C red := {x = p = 0}.

We can check irreducibility as follows. We observe that C red is the bundle over the
smooth variety Spec(B[v]) since x = p = 0 kills the relations. In precise, it is the
spectrum of

(B[v]/(c1))[X1 j , X2 j , P1i , P2i ]. (3.5)
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Therefore it is irreducible. On the other hand, we observe that C (1) is the spectrum of

(B[x1, p1i , v]/(c1))[X1 j , X2 j , P1i , P2i ]
(x1k X1l − x1l X1k, x1k P1l − p1l X1k, p1k P1l − p1l P1k)

.

This is a fibration over a smooth variety Spec(B[v, X2 j , P2i ]/(c1)), whose fiber is an
affine cone of the one-point blow-up Bl0Cn+m in the space C

n+m × C
n+m . Thus it

is also irreducible. We can show irreducibility of the components in other cases in a
similar manner.

The irreducibility ensures these are the base changes of C(1) and Cred, respectively.
Note that over (x1, p1) �= 0, C (1) is a bundle because X2, P2 are free variables and
(X1, P1) should be proportional to (x1, p1).
(2) Near a point over ˜Q(2)

p , CR/A is decomposed into

C (2) := {c1 = c2 = 0}, C (1) := {c1 = x2 = p2 = 0} ∪ {c2 = x1 = p1 = 0},
C red := {x = p = 0}.

These are the base changes of C(2), C(1) and Cred, respectively. Over (x1, p1) �= 0,
(x2, p2) �= 0, C (2) is a rank 2 bundle.
(3) Near a point over ˜Q(3)

p \ ˜Q(1)
p (c2 = 1, x2 = p2 = 0), CR/A is decomposed into

C (3) := {c1 = x2 = p2 = 0}, C red := {x = p = 0}.

These are the base changes of C(3) and Cred, respectively. Over (x1, p1) �= 0, C (3) is
a bundle.
(1 ∩ 3) Near a point over ˜Q(1)

p ∩ ˜Q(3)
p , c1 is divisible by ζ1ζ3. In this case, CR/A is

decomposed into

C (1) := {ζ1 = x2 = p2 = 0}, C (3) := {ζ3 = x2 = p2 = 0}, C red := {x = p = 0}.

Both C (1) and C (3) are bundles over (x1, p1) �= 0.
(4) Near a point over ˜Qred

p \ (˜Q(1)
p ∩ ˜Q(2)

p ∩ ˜Q(3)
p ) (c1 = c2 = 1, x = p = 0), CR/A

is C red = {x = p = 0} which is a bundle.
So we could check there is no ‘others’ in C

˜Qp/˜Mdiv . Combining this with the (local)
equivalence of

C
˜Qp/˜M and C

˜Qp/˜Mdiv = [CR/A/TA/B |R]

discussed in Sect. 3.1 gives the decomposition (3.3).
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Note that the cut-out model (2.9) tells us the morphism d(c ◦ τ) : TA|R → CR/A

(defining the quotient via the composition TA/B → TA) takes

∂x1, ∂x2 , ∂p1 , ∂p2 �−→ c1∂X1 , c2∂X2 , c1∂P1 , c2∂P2 ,

∂c1 , ∂c2 �−→
∑

j

x1 j∂X1 j +
∑

i

p1i∂P1i ,
∑

j

x2 j∂X2 j +
∑

i

p2i∂P2i ,

(3.6)

because X1 ◦c ◦ τ = c1x1, X2 ◦c ◦ τ = c2x2, P1 ◦c ◦ τ = c1 p1 and P2 ◦c ◦ τ = c2 p2.
So for instance, we have dX1(d(c ◦ τ)∂x1) = c1 which implies d(c ◦ τ)∂x1 = c1∂X1 .

The cosection introduced in [6] defining the localised virtual cycle [Qp]virloc men-

tioned in (1.5) is indeed defined on the obstruction sheaf h1
(

E
∨
Qp/Mline

)

overMline.

So this gives a morphism E
∨
Qp/Mline → OQp [−1] in the derived category. It is proven

in [6] that this actually factors through the absolute dual perfect obstruction theory
E

∨
Qp

→ OQp [−1]. So the composition E
∨
Qp/M

→ E
∨
Qp

→ OQp [−1] defines the
cosection localised Gysin map on the bundle stack h1/h0(E∨

Qp/M
) [28].

For Definition below, we use the perfect obstruction theory over ˜M. The pullback
E

∨̃
Qp/˜M

→ O
˜Qp

[−1] of the above then defines the cosection localised Gysin map on

the bundle stack h1/h0(E∨̃
Qp/˜M

). We apply this to the decomposition 3.3.

Definition 3.1 The virtual cycle of the reduced part

[˜Qred
p ]vir ∈ Avdim(˜QX ∩ ˜Qred

p )

is defined by the image of [Cred] by the cosection localised Gysin map. The cycles
[˜Q(1)

p ]vir, [˜Q(2)
p ]vir and [˜Q(3)

p ]vir are similarly defined by using [C(1)], [C(2)] and [C(3)]
respectively.

Hence we obtain a decomposition of the virtual class

[˜Qp]virloc = [˜Qred
p ]vir + [˜Q(1)

p ]vir + [˜Q(2)
p ]vir + [˜Q(3)

p ]vir

providing (1.7) by the pushdown.

4 Quantum Lefschetz property for the reduced virtual cycle

Consider the bundle V := V2,0,d in Theorems 1 and 2, which is precisely defined to
be

V = ⊕iπ∗L⊗�i = h0
(

E
˜Qp/˜Q(Pn)[−1]|

˜Qred
p

)

,

where L is the universal line bundle on the universal curve π : C → ˜Qred
p . As

in Sect. 2.5, by replacing L with O(D) locally, we can use the local cut-out model
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(2.9) to check V is locally free, cf. [27, Proposition 2.1.3]. Beware that this does not
mean h1(E

˜Qp/˜Q(Pn)[−1]|
˜Qred

p
) is locally free. Each point in ˜Qred

p has a section data

u ∈ �(C, L⊕n+1) via the morphism ˜Qred
p ↪→ ˜Qp. Then, the defining equations of X ,

f1, . . . , fm takes the universal section u to a section f (u) = ( fi (u))1≤i≤m ∈ � (V )

in h0. It defines the refined Euler class eref(V ) for Theorems 1 and 2.
Before proving the following proposition, note that we can prove it almost in a same

manner as [33, Proposition 4.1], [34, Section 4.3]. But here, wewill give another proof.
Note that (−1)rankV = (−1)d(

∑

i �i )−m and ˜Qred
p = ˜Qred(Pn), which is smooth.

Proposition 4.1 The reduced virtual cycle satisfies the original quantum Lefschetz
formula (0.1)

[˜Qred
p ]vir = (−1)d(

∑

i �i )−meref(V ) ∩ [˜Qred(Pn)].

Proof Consider the induced perfect obstruction theory, that comes from the cut-out
model (2.9), and its restriction over ˜Qred

p (˜Qred
p is an open dense subset of ˜Mdiv ×

∏n
j=1(C

d−1)). It induces a local representative of E
∨̃
Qp/˜M

|
˜Qred

p
, which is

˜Qred
p × C

2n × C
2m ×

n
∏

j=1

C
d−1 −→ ˜Qred

p × F := C
2n × C

2m ×
m

∏

i=1

C
d�i−1,

(4.1)

u × (x1 j , x2 j , p1i , p2i , v j ) �−→ u × (c1x1 j , c2x2 j , c1 p1i , c2 p2i , 0).

The cone decomposition in Sect. 3.2, (3.5) says that

C red = ˜Qred
p × C

2n × C
2m ⊂ F . (4.2)

On the other hand, we have the following morphism:

h1/h0
(

E
∨̃
Qp/˜M

|
˜Qred

p

)

→ h1
(

E
∨̃
Qp/˜M

|
˜Qred

p

)

→ h1
(

E
∨̃
Qp/˜Q(Pn)

|
˜Qred

p

)

→ V∨.

Here, the first arrow is the morphism from the bundle stack to its coarse moduli space,
which is also a stack. The second arrow comes from the decomposition

h1
(

E
∨̃
Qp/˜M

)

= p∗h1
(

E
∨̃
Q(Pn)/˜M

)

⊕ h1
(

E
∨̃
Qp/˜Q(Pn)

)

for the projection p : ˜Qp → ˜Q(Pn), which comes from [32, (3.15)]. The third arrow
is the canonical morphism.

The local representative of E
∨̃
Qp/˜M

|
˜Qred

p
, (4.1), says that the composition h1/h0

(

E
∨̃
Qp/˜M

|
˜Qred

p

)

→ V∨ is an epimorphism. Moreover, (4.2) says that its kernel is

locally represented byC red in F , therefore it is equal to Cred ⊂ h1/h0
(

E
∨̃
Qp/˜M

|
˜Qred

p

)

.
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Hence, by using the functorial property of the cosection localised Gysin map [36,
Theorem 1.4], we have

[˜Qred
p ]vir = 0!

h1/h0
(

E
∨̃
Qp/˜M

|
˜Qred
p

)

,loc
[Cred] = 0!

V∨, f (u)∨[˜Qred
p ].

Note that the composition of E
∨̃
Qp

|
˜Qred

p
→ V∨[−1] with f (u)∨[−1] is the given

cosection. Hence [˜Qred
p ]vir is equal to

0!
V∨, f (u)∨[˜Qred

p ] = (−1)rank V eref(V , f (u)) = (−1)rank V eref(V ).

��

5 Lower genus contributions from the rest cycles

5.1 Cones in the obstruction bundle

In this section we consider our space ˜Qp over ˜M, so use the perfect obstruction theory
E

˜Qp/˜M, the decomposition (3.3) and Definition 3.1 for virtual cycles. Letting

A = ˜Mdiv ×
n

∏

j=1

(

C
2 × C

d−1
)

× C
2m

be the local smooth space of the cut-out model (2.9) having forgetful map A → ˜M,
the dual perfect obstruction theory E

∨̃
Qp/˜M

is locally isomorphic to

[

TA/˜M

d(c◦τ)−−−→ O⊕2n
A ⊕

⊕

i

O⊕d�i+1
A

]∣

∣

∣

∣

∣

˜Qp

.

Using this local expressionwe check that h−1
(

E
˜Qp/˜M|

˜Q(i)
p

)

is locally free.We denote

its dual by E (i). Note that E (i) is not h1
(

E
∨̃
Qp/˜M

|
˜Q(i)

p

)

which is not locally free on the

intersection. Outside of the intersection, they are isomorphic. So E (i) is the obstruction
bundle there. There is an induced morphism from the bundle E (i) to the obstruction
sheaf which is an isomorphism outside of the intersection, but it is not even an injection
on the intersection.
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Picking any global locally free representative [F0 d−→ F1] of E
∨̃
Qp/˜M

, we obtain a

diagram

F1|
˜Q(i)

p
E (i)

C(i) [F1/F0]|
˜Q(i)

p
.

Using this we define C (i) ↪→ E (i) to be the image of the pullback of C(i) ↪→ [F1/F0].
Then by the functorial property [36, Theorem 1.4] the cycle 0!

E (i),loc
[C (i)] is [˜Q(i)

p ]vir
by Definition 3.1. We denote this Kiem-Li’s cosection localised Gysin map 0!

E (i),loc

by eKL(E (i))5 so that we can write

[˜Q(i)
p ]vir = eKL(E (i)) ∩ [C (i)]. (5.1)

Now we consider other intrinsic normal cones C
˜Q(i)

p /˜M
of ˜Q(i)

p over ˜M. Since ˜Q(i)
p

is smooth over its image in ˜M, we obtain the perfect tangent complex T
˜Q(i)

p /˜M
∼=

[

T
˜Q(i)

p /˜M(i)

0−→ N
˜M(i)/˜M(Zi )|

˜Q(i)
p

]

, where ˜M(i) ⊂ ˜M is the image of

(1) ˜M1,1,0 × ˜M1,1,d ,
(2) ˜M1,1,0 × ˜M0,2,d × ˜M1,1,0,
(3) ˜M1,2,0 × ˜M0,2,d ,

under the node-identifying morphism. Here, Zi ⊂ ˜M(i) denotes the divisor defined to
be the intersection ˜M(1) ∩ ˜M(3) when i = 1, 3 and Z2 = ∅. We need this twisting by
Zi because locally the normal bundle of Z(ζ1ζ3) restricted to Z(ζ1) is different from
that of Z(ζ1) by the divisor of the intersection. Then the cone C

˜Q(i)
p /˜M

is isomorphic
to the bundle stack h1/h0(T

˜Q(i)
p /˜M

). We define its pullback

C(i) = N
˜M(i)/˜M(Zi )|

˜Q(i)
p

.

Then the composition T
˜Q(i)

p /˜M
→ T

˜Qp/˜M|
˜Q(i)

p
→ E

∨̃
Qp/˜M

|
˜Q(i)

p
defines the morphism

C(i) −→ C
˜Q(i)

p /˜M(i) ×[F1/F0] F1 −→ F1|
˜Q(i)

p
−→ E (i). (5.2)

Using (3.6), we see that the first arrow is locally

(1) ∂c1 ∈ C(1) �−→ d(c ◦ τ)(∂c1),
(2) ∂c1, ∂c2 ∈ C(2) �−→ d(c ◦ τ)(∂c1), d(c ◦ τ)(∂c2),
(3) ∂c1 ∈ C(3) �−→ d(c ◦ τ)(∂c1).

5 This new notation seems not too strange because it follows the properties of Euler classes since it is a
bivariant class in rational coefficients [31].
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Since d(c ◦ τ)(∂c1) annihilates the defining equations of C (i), for instance

d(c ◦ τ)(∂c1)(d(x1l X1k − x1k X1l)) = 0,

the morphism C(i) → E (i) factors through

C(i) −→ C (i) ↪→ E (i).

Outside of the intersections with other components, C(i) maps isomorphic to C (i) ⊂
E (i). On the intersections it maps to zero as d(c ◦ τ)(∂c j ) vanishes on either x1 =
p1 = 0 or x2 = p2 = 0. Since C(i) is a bundle we may expect an advantage of using
C(i) instead of C (i) for computing (5.1). This is not an absurd fantasy since they are
isomorphic outside of the intersections.

Example 5.1 The local structure ring (3.4) tells us that C (1) is (locally) the spectrum
of

R/(x2, p2, c1) [X1 j , P1i ]
(

x1k X1l − x1l X1k, x1k P1l − p1l X1k, p1k P1l − p1l P1k
)

.

So C (1) is a line bundle over (x1, p1) �= 0, but has the full rank at (x1, p1) = 0.
Meanwhile by its definition C(1) is (locally) the spectrum of R/(x2, p2, c1)[Y ], where
the variable Y is a coordinate of ∂c1 . Hence C(1) is a line bundle. The morphism
C(1) → C (1) is

X1 j �−→ x1 j Y , P1i �−→ p1i Y .

It maps isomorphically over (x1, p1) �= 0, but zero over (x1, p1) = 0.
Over the blowup B of R/(x2, p2, c1) along (x1, p1) = 0 with the homogeneous

coordinate functions x1,p1, we consider the cone

B [X1 j , P1i ]
(

x1k X1l − x1l X1k, x1k P1l − p1l X1k, p1k P1l − p1l P1k
)

pushed down toC (1) along the blowdownmorphism. The pullback coneC(1)|B maps to
this cone, which is isomorphic outside of the exceptional locus. Since it is a morphism
between line bundles, the cone is isomorphic to C(1)|B twisted by the exceptional
divisor. Hence we can use its pushdown instead of [C (1)] in (5.1).

5.2 Outline of the proof of Theorem 2

Letting p1 = p2 = 0, (2.9) gives a local cut-out model of ˜Q := ˜Q(Pn). The decom-
position (3.1) of ˜Qp then gives rise to the corresponding one of ˜Q,

˜Q = ˜Qred ∪ ˜Q(1) ∪ ˜Q(2) ∪ ˜Q(3).
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Then the components ˜Q(i) are the images of the following node-identifyingmorphisms

(1) ι̃1 : M1,1 × ˜Qred
1,1,d ↪→ ˜Q,

(2) ι̃2 : M1,1 × Q0,2,d × M1,1
2:1−→ ˜Q,

(3) ι̃3 : M1,2 × PQ′
0,2,d ↪→ ˜Q.

In (1), ˜Qred
1,1,d is the blowup of Q

red
1,1,d along M0,3 × Q′

0,2,d , where Q
′
0,2,d ⊂ Q0,2,d is

defined by ev1 = ev2. The blowup locus is a part of the intersection M1,1 × M0,3 ×
Q′

0,2,d of (1) and (3) before the blowup. In (3), PQ′
0,2,d denotes the projectivisation

of L
∨
1 ⊕L

∨
2 , sum of dual tautological line bundles over Q′

0,2,d . The following Remark

explains why ˜Q(3) is the image of ι̃3.

Remark 5.2 In fact, ˜Q(3) should be (the image of) projectivisation of the pullback of

NM1,2,0×M0,2,d/M2,0,d
∼= (L∨

1 � L
∨
1 ) ⊕ (L∨

2 � L
∨
2 )

onM1,2×Q′
0,2,d since ˜Q is the base change of the blowup. It is equal toM1,2×PQ′

0,2,d
if L1 ∼= L2 on M1,2. Note that the evaluation map H0(ωC ) ⊗ TC,a j → C induces a
morphismH → L j from Hodge to tautological line bundle on M1,2. In [43, pp.1221–
1222], Zinger proved that it maps isomorphically to

H ∼−−→ L j (−D) ↪→ L j ,

where D = M1,1 × M0,3 ↪→ M1,2 is a boundary divisor of a collision of the two
marked points. Thus we have L1 ∼= H(D) ∼= L2.

As we have mentioned in Sect. 1, local computation with (2.9) tells us that the i-th
p-field space ˜Q(i)

p is a vector bundle over ˜Q(i),

˜Q(i)
p

∼= h0
(

(

⊕m
j=1Rπ∗

(

L−� j ⊗ ωC
˜Q

))∣

∣

∣

˜Q(i)

)

.

To avoid a confusion, we denote it by P(i) when we consider it as a bundle or as a
locally free sheaf of local sections of ˜Q(i)

p → ˜Q(i), but use ˜Q(i)
p for the space. So the

pullback of P(i) on ˜Q(i)
p is the tautological bundle. On ˜Q(i)

p , the obstruction bundle E (i)

was defined in Sect. 5.1. It is proven in [32, Equation (3.15)] that E (i) is decomposed
into E (i) = E (i)

1 ⊕ E (i)
2 ,

E(i)
1 = h−1

(

E
˜Q/˜M|

˜Q(i)

)∣

∣

∣

∨
˜Q(i)

p
, E(i)

2 = R1π∗
(

⊕m
i=1L⊗−�i ⊗ ωC

) ∼= π∗
(

⊕m
i=1L⊗�i

)∨
.

From now on for simplicity, we denote by Q(i) the domain of the morphism ι̃i , by
Q(i)

p the fiber product Q(i) ×Q(i) Q(i)
p and by P(i) the pullback of P(i). Explicitly,

(1) Q(1) = M1,1 × ˜Qred
1,1,d ,
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(2) Q(2) = M1,1 × Q0,2,d × M1,1,
(3) Q(3) = M1,2 × PQ′

0,2,d ,

and the bundle P(i) is

(1) P(1) = H � ⊕m
i=1ev

∗OPn (−�i ),

(2) P(2) =
(

H � ⊕m
i=1ev

∗
1OPn (−�i ) � OM1,1

)

⊕

(

OM1,1
� ⊕m

i=1ev
∗
2OPn (−�i ) � H

)

,

(3) P(1) = H � ⊕m
i=1ev

∗
1OPn (−�i ).

Recall that in (3), the two evaluation maps are the same ev1 = ev2. We denote by

ι̃p,i Q(i)
p −→ ˜Q(i)

p .

the base change of the node-identifying morphism ι̃i . and let E(i) := ι̃∗p,i E (i). Then

the decomposition E(i) = E(i)
1 ⊕ E(i)

2 is

(1) E(1)
1 = H∨ � ev∗TPn , E(1)

2 = OM1,1
� (⊕iπ∗L⊗�i )∨,

(2) E(2)
1 =

(

H∨ � ev∗
1TPn � OM1,1

)

⊕
(

OM1,1
� ev∗

2TPn � H∨
)

,

E(2)
2 = OM1,1

�
(⊕iπ∗L⊗�i

)∨ � OM1,1
,

(3) E(3)
1 = H∨ � ev∗

1TPn , E
(3)
2 = OM1,2

� (⊕iπ∗L⊗�i )∨.

Then the pullback cosection σ (i) : E(i) → OQ(i)
p
is decomposed into

σ
(i)
1 : E(i)

1 → OQ(i)
p

and σ
(i)
2 : E(i)

2 → OQ(i)
p

.

The cosection on the dual perfect obstruction theory (1.4) is decomposed into
p.(d f /dx) and f . These correspond to σ

(i)
1 and σ

(i)
2 , respectively.

Using these cosections, we can define Kiem-Li’s cosection localised Gysin maps
eKL(E(i)) and eKL(E(i)

j ). Letting C(i) := ι̃∗p,iC (i), the multiplicative property of eKL

[36, Theorem 1.4] tells us that (5.1) becomes

[˜Q(i)
p ]vir = 1

deg(ι̃p,i )
(ι̃p,i )∗

(

eKL(E(i)) ∩ [C(i)]
)

(5.3)

= 1

deg(ι̃p,i )
(ι̃p,i )∗

(

eKL(E(i)
1 ) ∩ eKL(E(i)

2 ) ∩ [C(i)]
)

.

Since the second cosection σ
(i)
2 on E(i)

2
∼= (⊕iπ∗L⊗�i )∨ is defined by the (dual

of) defining equation f as on V in Sect. 4, the cycle eKL(E(i)
2 ) ∩ [C(i)] is supported

on E(i)
1 ×Q(i)

p
Z((σ

(i)
2 )∨) ∼= E(i)

1 ×Q(i)
p

Z( f (u)), where f (u) is the pullback equation

on Q(Pn) defined in (1.1). This support is isomorphic to E(i)
1 ×Q(i)

p
Q(i)

p (X), where
Q(i)

p (X) := Q(i)
p ×Q(Pn) Q(X). Then the restriction of the first cosection σ

(i)
1 to this

support E(i)
1 ×Q(i)

p
Q(i)

p (X) is induced by the surjection

d f TPn |X � ⊕iOPn (�i )|X

123



Quantum Lefschetz property for genus... 1821

whose kernel is ker(d f ) = TX , as follows. On Q(i)
p (X), d f defines a short exact

sequence of bundles

0 −→ K(i) −→ E(i)
1 −→ (P(i))∨ −→ 0, (5.4)

where

(1) K(1) := H∨ � ev∗TX ,
(2) K(2) :=

(

H∨ � ev∗
1TX � OM1,1

)

⊕
(

OM1,1
� ev∗

2TX � H∨
)

,

(3) K(3) := H∨ � ev∗
1TX .

Then the tautological section ofP(i) defines a cosection of (P(i))∨, and the composition
defines a cosection of E(i)

1 on Q(i)
p (X), which is the restriction of σ

(i)
1 . Applying the

multiplicative property [36, Theorem 1.4] to the sequence (5.4), we have

eKL
(

E(i)
1

)

∩
(

eKL(E(i)
2 ) ∩ [C(i)]

)

= eFM
(

K(i)
)

∩ eKL
(

(P(i))∨
)

∩
(

eKL(E(i)
2 ) ∩ [C(i)]

)

,

(5.5)

where eFM denotes the Fulton-MacPherson intersection homomorphism, or Gysin
map.

In Sects. 5.3 and 5.4, we will explain the second and third equalities below, respec-
tively. The rest equalities and notations are explained after the equations:

[˜Q(i)
p ]vir = 1

deg(ι̃p,i )
(ι̃p,i )∗

(

eFM
(

K(i)
)

∩ eKL
(

(P(i))∨
)

∩
(

eKL
(

E(i)
2

)

∩ [C(i)]
))

= 1

deg(ι̃p,i )
(ι̃p,i )∗

(

eFM
(

K(i)
)

∩ eKL
(

(P(i))∨
)

∩
(

eKL
(

E(i)
2

)

∩ [C(i)
Q(i) ×Q(i) Q(i)

p ]
))

(5.6)

= 1

deg(ι̃p,i )
(ι̃p,i )∗

(

eFM
(

K(i)
)

∩ eKL
(

(P(i))∨
)

∩
(

eKL
(

E(i)
2

)

∩ [C(i)|Q(i) ×Q(i) Q(i)
p ]

))

= 1

deg(ι̃p,i )
(ι̃p,i )∗

(

eFM
(

K(i)
)

∩ eKL
(

(P(i))∨
)

∩ [C(i)|Q(i) ×Q(i) Q(i)
p (X)]vir

)

= (−1)m·i

deg(ι̃i )
(ι̃i )∗

(

eFM
(

K(i)
)

∩ [

C(i)|Q(i)(X)

]vir
)

= (−1)m·i

deg(ι̃i )
(ι̃i )∗

(

e

(

K(i)|Q(i)(X)

C(i)|Q(i)(X)

)

∩ [Q(i)(X)]vir
)

.

The first equality is from (5.3) and (5.5). We denote by C(i) the pullback of C(i) (5.2)

to Q(i)
p . Since C(i) is a bundle, so is C(i)|Q(i) over Q(i) which is smooth. Mimicking

Proposition 4.1, we can prove eKL(E(i)
2 ) ∩ [C(i)|Q(i) ×Q(i) Q(i)

p ] is the pullback cycle
of

(1) (−1)d(
∑

i �i )eref(V1,1,d) ∩
(

[M1,1] × [˜Qred
1,1,d(P

n)]
)

,

(2) (−1)d(
∑

i �i )+meref(V0,2,d) ∩ ([M1,1] × [Q0,2,d(P
n)] × [M1,1]

)

,

(3) (−1)d(
∑

i �i )eref(V0,2,d) ∩
(

[M1,2] × [PQ′
0,2,d ]

)

,6

6 Here, rank V0,2,d is d(
∑

i �i ) although it is of genus 0 because ev1 = ev2.
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via C(i)|Q(i) ×Q(i) Q(i)
p (X) → Q(i)(X) := Q(i) ×Q(Pn) Q(X). We denote this pull-

back cycle by [C(i)|Q(i) ×Q(i) Q(i)
p (X)]vir. Hence this explains the fourth equality.

Similarly, we denote the pullback cycle in A∗(Q(i)(X)) by [Q(i)(X)]vir and that in
A∗(C(i)|Q(i)(X)) by [C(i)|Q(i)(X)]vir. The cosection on (P(i))∨ is given by the tautolog-
ical section of Q(i)

p (X) ∼= P(i)|Q(i)(X). So we obtain the fifth equality. In Sect. 5.4, we
will see the bundle C(i)|Q(i)(X)(after twisting by a divisor) is contained in E

(i)
1 |Q(i)(X).

Since there is no p-fields, the composition of the tautological section of E(i)
1 |Q(i)(X)

and the homomorphism E(i)
1 |Q(i)(X) → (P(i))∨|Q(i)(X) in (5.4) is zero on the cone.

Hence the cone is contained in the kernel K(i)|Q(i)(X), which proves the last equality.
In the RHS of the second equality we denote byC(i)

Q(i) the closure of the restriction of
C(i) toQ(i)\intersections. Then the second equality holds if the coneC(i) is isomorphic
to the product C(i)

Q(i) ×Q(i) Q(i)
p . Unfortunately C(i) is not the product, but we deform

it to the product and then use this deformation to prove the second equality. We work
this in Sect. 5.3.

We know C(i) → C(i) (5.2) is isomorphic outside of the intersection. Then taking
twistings by divisors after blowups, it induces an isomorphism which implies the third
equality. This work is addressed in Sect. 5.4.

After we get (5.6), we prove Theorem 2 in Sect. 5.5. When X is a Calabi-Yau 3-fold
we prove Theorem 1 in Sect. 5.6.

5.3 Deformation of the cone

We start this section with our cone C(i) ↪→ E(i) = E(i)
1 ⊕ E(i)

2 . The intersection

C(i) ∩E(i)
2 ↪→ E(i)

2 is defined to be a cut-out ofC(i) by the tautological section of E(i)
1 .

Hence we have

CC(i)∩E(i)
2 /C(i) ↪→ E(i)

1 ⊕ E(i)
2 = E(i)

This cone is a deformation of C(i) via deformation to the normal cone [21, Chapter
5]. If we write C(i) = {(x, p, X , P) | (x, p) ∈ Q(i)

p , X ∈ E(i)
1 |(x,p), P ∈ E(i)

2 |(x,p)},
it is

CC(i)∩E(i)
2 /C(i) = lim

t→∞{(x, p, t X , P) | (x, p, X , P) ∈ C(i)} ↪→ E(i)
1 ⊕ E(i)

2 = E(i).

Since σ
(i)
1 and σ

(i)
2 are independent of P and X , respectively, and they vanish on C(i),

they are zero on CC(i)∩E(i)
2 /C(i) either.

Lemma 5.3 The restriction of the cone CC(i)∩E(i)
2 /C(i) to Q(i)

p ⊂ C(i) ∩ E(i)
2 is its

component. Moreover it is isomorphic to a product

CC(i)∩E(i)
2 /C(i)

∣

∣

∣

Q(i)
p

∼= C(i)
Q(i) ×Q(i) Q(i)

p . (5.7)

123



Quantum Lefschetz property for genus... 1823

Other components vanish after taken by eKL(E(i)).

Proof We prove this by using the local coordinate rings in Sect. 3.2 obtained by the
cut-out model (2.9). Recall from (3.4) that locally C (i) is Spec of

R[X1 j , X2 j , P1i , P2i ]
(

x1k X1l − x1l X1k, x1k P1l − p1l X1k, p1k P1l − p1l P1k,
x2k X2l − x2l X2k, x2k P2l − p2l X2k, p2k P2l − p2l P2k

)

,

(5.8)

where R = B[x, p] /(c1x1, c2x2, c1 p1, c2 p2) is a local coordinate ring of ˜Qp.

In a neighborhood of a point in ˜Q(1)
p or ˜Q(3)

p , we have seen c1 = 1 in Sects. 2.3
and 2.4, hence x1 = p1 = 0. Pulling back via the node-identifying morphism, C(i)

is a component defined by {c2 = 0} as described in Sect. 3.2 and C(i) ∩ E(i)
2 ⊂ C(i)

is defined by {X2 = 0} = {X21 = · · · = X2n = 0}. Recall that it is a cut-out by
the tautological section of E(i)

1 . Introducing a partner variable X ′
2 of X2 which forms

a basis of (E(i)
1 )∨ (hence they are linear functions on E(i)

1 ), the cone CC(i)∩E(i)
2 C(i) is

Spec of

R/(c2, x1, p1)[X1 j , X ′
2 j , P1i , P2i ]

(

x2k X ′
2l − x2l X ′

2k, x2k P2l , p2k P2l − p2l P2k
)

.

Then it is the union of {x2 = 0} and {P2 = 0}. We show the component {x2 = 0}
vanishes by eKL(E(i)). To do so it is enough to show that it vanishes by eKL(E(i)

1 ) by

[36, Theorem 1.4]. We show this by degree reason. The cycle eKL(E(i)
1 ) ∩ {x2 = 0} is

of degree

dim (B[x, p]/(c2, x1, x2, p1)) [X1, X
′
2, P1, P2]/(p2k P2l − p2l P2k) − rank E(i)

1

= dim B[X1, X
′
2, P1, p2] − rank E(i)

1 = dim B[x, p] − rank E(i)
1 = dim B[x, p] − n − 1.

On the other hand, eKL(E(i)
1 ) ∩ {x2 = 0} is contained in the degeneracy locus of the

cosection {p2 = 0}. It is contained in R/(c2, x, p) [X1, P1, P2] which has dimension
less than or equal to dim B[x, p] − n − 2. Thus eKL(E(i)

1 ) ∩ {x2 = 0} = 0. The
component {P2 = 0} is Spec of

(B[x]/(c2, x1)) [X1, X ′
2, P1]

(

x2k X ′
2l − x2l X ′

2k

) [p2] ∼= (5.8)|c2=x1=p1=0, p2=P2=0, X2=X ′
2
[p2]

which defines the cone (5.7).
The cone C(2) is defined by {c1 = c2 = 0}, and C(2) ∩ E(2) is {X1 = X2 = 0} in

addition. Then it has 4 components

{x1 = x2 = 0} ∪ {x1 = P2 = 0} ∪ {P1 = x2 = 0} ∪ {P1 = P2 = 0}.

Similarly we can show the first three will be killed by eKL(E(2)) by degree reason.
Precisely the first one is killed by eKL(E(2)

1 ). The bundle E(2)
1 is decomposed into two
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parts because its dual is generated by X1, X2. We use each to kill the second and third
ones. The fourth one is the cone (5.7). ��

Lemma 5.3 shows

eKL(E(i)) ∩ [C(i)] = eKL(E(i)) ∩ [C(i)
Q(i) ×Q(i) Q(i)

p ],

which proves the second equality of (5.6)

5.4 Local freeness of cones

In this section we relate the vector bundle C(i)|Q(i) and the cone C(i)
Q(i) . We suppress

the notations |Q(i) and Q(i) throughout the section, which means p = 0 and p = P = 0
with local coordinates, respectively.

For i = 1, 3, we consider the blowup b(i) : ̂Q(i) → Q(i) along the preimage of the
intersection ˜Q(i) ∩ ˜Qred. Let D(i) denote the exceptional divisor.

Lemma 5.4 For i = 1, 3, the bundle (b(i)∗C(i))(D(i)) maps injectively to b(i)∗E(i)
1 .

Moreover, the cycle [(b(i)∗C(i))(D(i))] ∈ A∗(b(i)∗E(i)
1 ) pushes down to [C(i)] ∈

A∗(E(i)
1 ).

Proof Consider the pullback morphism C(i) → E(i) of (5.2) and its composition with

the projection to the first summand E(i) → E(i)
1 ,

C(i) −→ E(i)
1 . (5.9)

It is an injection outside of the intersection because C(i) maps isomorphically to C(i)

there, which is contained in E(i)
1 as P = 0 on C(i) locally. It vanishes on the preimage

of the intersection by (3.6) and the computation below (5.2). Hence the twisting of the
pullback (b(i)∗C(i))(D(i)) maps injectively to b(i)∗E(i)

1 .
The cycle [(b(i)∗C(i))(D(i))] pushes down to the closure of the image of (5.9) which

is [C(i)]. ��
For i = 2, we consider the composition of two blowups b(2) : ̂Q(2) → Q(2):

the blowup along the preimage of the intersection ˜Q(2) ∩ ˜Qred first and then the
blowup along the proper transform of the preimage of the intersection ˜Q(2) ∩ ˜Q(1).
Let D(2,1), D(2,2) denote the exceptional divisors of the first and the second blowups,
respectively. Then D(2,2) is decomposed into D(2,2) = D(2,2)

1 + D(2,2)
2 because the

proper transform of the preimage of ˜Q(2) ∩ ˜Q(1) is a disjoint union of two different
components corresponding to the nodes. Locally we can check that the first blowup is
taken along {x1 = 0}∩{x2 = 0}. Then the proper transforms of {x1 = 0} and {x2 = 0}
are disjoint. Let D(2)

1 := D(2,1) + D(2,2)
1 and D(2)

2 := D(2,1) + D(2,2)
2 .

Recall that the bundle C(2) is the pullback of the normal bundle
NM1,1×M0,2×M1,1/M2,0 ,

C(2) ∼= (L∨
1 ⊗ L

∨
1 ) ⊕ (L∨

2 ⊗ L
∨
2 ).
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Lemma 5.5 The bundle (b(2)∗C(2))(D(2)) := b(2)∗ (

L
∨
1 ⊗ L

∨
1

)

(D(2)
1 ) ⊕ b(2)∗(

L
∨
2

⊗ L
∨
2

)

(D(2)
2 ) maps injectively to b(2)∗E(2)

1 and its fundamental cycle in A∗(b(2)∗E(2)
1 )

pushes down to [C(2)] ∈ A∗(E(2)
1 ).

Proof The morphism (5.9) for i = 2 is an injection outside of both ˜Qred and ˜Q(1). It
is of rank 1 on the preimage of ˜Q(1)\˜Qred and vanishes on the preimage of ˜Qred. So
the twisting by D(2,1) of the pullback of C(2) by the first blowup is of rank 1 on the
proper transform. Hence (b(2)∗C(2))(D(2)) injects into b(2)∗E(2)

1 .
As the closure of the image of (5.9) for i = 2 is [C(i)], the cycle [(b(2)∗C(2))(D(2))]

pushes down to [C(2)]. ��

We now use Lemmas 5.4 and 5.5 to explain the third equality of (5.6). In fact, these
Lemmas show

eKL(E(i)) ∩ [C(i)
Q(i) ×Q(i) Q(i)

p ] = eKL(E(i)) ∩ b(i)∗ [(b(i)∗C(i)|Q(i) (D(i)) ×Q(i) Q(i)
p ].

Hence from the third equality, (5.6) must be

1

deg(ι̃p,i )
(ι̃p,i )∗

(

eFM
(

K(i)
)

∩ eKL
(

(P(i))∨
)

∩
(

eKL
(

E(i)
2

)

∩ b(i)∗
[

(b(i)∗C(i)|Q(i) )(D(i)) ×Q(i) Q(i)
p

]))

= 1

deg(ι̃p,i )
(ι̃p,i )∗

(

eFM
(

K(i)
)

∩ eKL
(

(P(i))∨
)

∩ b(i)∗
[

(b(i)∗C(i)|Q(i) )(D(i)) ×Q(i) Q(i)
p (X)

]vir
)

= (−1)m·i

deg(ι̃i )
(ι̃i )∗

(

eFM
(

K(i)
)

∩ b(i)∗
[

(b(i)∗C(i)|Q(i)(X))(D
(i))

]vir
)

= (−1)m·i

deg(ι̃i )
(ι̃i )∗b(i)∗

(

e

(

K(i)|
̂Q(i)(X)

(b(i)∗C(i)|Q(i)(X))(D(i))

)

∩ [̂Q(i)(X)]vir
)

.

Meanwhile [34, Lemma 4.1] shows D(i) in the denominator in the last equation does
not contribute to the result after pushdown. This means we get (5.6)

[˜Q(i)
p ]vir = (−1)m·i

deg(̃ιi )
(̃ιi )∗

([

c(K(i))

c(C(i))

]

�

∩ [Q(i)(X)]vir
)

, (5.10)

where � = dim X − 1 for i = 1, 3 and � = 2 dim X − 2 for i = 2.

5.5 Proof of Theorem 2

Recall that b : ˜Qp → Qp is the base change of the blowup morphism. In this Section,

we compute [Q(i)
p ]vir := b∗([˜Q(i)

p ]vir) explicitly using (5.10) to get Theorem 2.
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5.5.1 i = 1 case

Lemma 5.6 We have

[Q(1)
p ]vir = (−1)d(

∑

i �i )+m [K ]dim X−1 ∩
(

[M1,1] × [Q1,1,d(X)]vir
)

− (−1)d(
∑

i �i )+m [K1]dim X−1[K2]dim X−1

∩
(

[M1,1] × [Q0,2,d(X)]vir × [M1,1]
)

− (−1)d(
∑

i �i )+m
∑

a≥1

[Aa+2]dim X−2−a[B1B2]a−1

∩
(

[M1,1] × [M0,3] × [Q′
0,2,d(X)]vir

)

,

where the cohomology classes K = c (H∨� ev∗TX )
c (L∨� L∨)

, At = c (H∨� ev∗
1TX )

c (L∨� 1)t and B = 1
c (L∨)

are defined in Introduction. In the last term, Aa+2 is defined using the marked point
of M1,1 and B is defined using the ones of Q′

0,2,d(X) as described in Theorem 2.

Proof Recall from Sect. 5.2 that

• K(1) = H∨ � ev∗TX ,
• C(1) ∼= L

∨ � L
∨(Z),

• [Q(1)(X)]vir = (−1)d(
∑

i �i )eref(V1,1,d) ∩
(

[M1,1] × [˜Qred
1,1,d(P

n)]
)

.

Here Z = PQ′
0,2,d ⊂ ˜Qred

1,1,d(P
n) is the exceptional divisor which is a projectivisation

over M0,3 × Q′
0,2,d ⊂ Qred

1,1,d(P
n) as defined in the beginning of Sect. 5.2. We use

these to compute (5.10) for i = 1.
First of all, as c1(L∨ � L

∨)|M1,1×Z = c1(L∨ � O) we can compute

c(K(1))

c(C(1))
= K + c(H∨ � ev∗TX )

∑

a≥1

(−1)a
c1(O˜Qred

1,1,d (Pn)(Z))a

(1 + c1(L∨))a+1 .

Then by the projection formula for the morphism b : ˜Qred
1,1,d(P

n) → Qred
1,1,d(P

n)

applied to (5.10), the contribution of the first term K in the RHS to [Q(1)
p ]vir is

(−1)d(
∑

i �i )+m [K ]dim X−1e
ref(V1,1,d) ∩

(

[M1,1] × [Qred
1,1,d(P

n)]
)

.

By [32, Theorem 1.1], we obtain

eref(V1,1,d) ∩ [Qred
1,1,d(P

n)]
= [Q1,1,d(X)]vir − [K ]dim X−1 ∩

(

[M1,1] × [Q0,2,d(X)]vir
)

.
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So the contribution becomes

(−1)d(
∑

i �i )+m [K ]dim X−1 ∩
(

[M1,1] × [Q1,1,d(X)]vir
)

− (−1)d(
∑

i �i )+m [K1]dim X−1[K2]dim X−1 ∩
(

[M1,1] × [Q0,2,d(X)]vir × [M1,1]
)

.

We next compute the contribution of the second term. This term is the pushforward
of the cycle on M1,1 × M0,3 × PQ′

0,2,d ,

c(H∨ � O � ev∗TX )
∑

a≥0

(−1)a+1
c1(OPQ′

0,2,d
(−1))a

(1 + c1(L∨))a+2 = −
∑

a≥0

Aa+2c1(OPQ′
0,2,d

(1))a

(5.11)

because the normal bundle OZ (Z) is OPQ′
0,2,d

(−1). To compute its contribution to

[Q(1)
p ]vir using the projection formula for the embedding M1,1 × M0,3 × PQ′

0,2,d ↪→
M1,1 × ˜Qred

1,1,d(P
n), we need to cap (5.11) with (−1)d(

∑

i �i )eref(V0,2,d) ∩ ([M1,1] ×
[M0,3] × [PQ′

0,2,d ]) instead of [Q(1)(X)]vir = (−1)d(
∑

i �i )eref(V1,1,d) ∩ ([M1,1] ×
[˜Qred

1,1,d(P
n)]) in degree of [Q(1)

p ]vir which is d(n + 1 − ∑

�i ) − dim X + 3. For this
projection formula, we use V1,1,d |M0,3×Q′

0,2,d

∼= V0,2,d . And then we need to push it

down to M1,1 × M0,3 × Q′
0,2,d(X) via the blowdown morphism b.

Note that the blowdown morphism b over PQ′
0,2,d is the projection morphism

b : PQ′
0,2,d → Q′

0,2,d(P
n). Then by definition of Segre classes [21, Chapter 3.1], we

have

b∗
(

c1(OPQ′
0,2,d

(1))a ∩ [PQ′
0,2,d ]

)

= sa−1
(

L
∨
1 ⊕ L

∨
2

) ∩ [Q′
0,2,d(P

n)]
= [B1B2]a−1 ∩ [Q′

0,2,d(P
n)].

So capping (5.11) with [M1,1] × [M0,3] × [PQ′
0,2,d ] and pushing it down to M1,1 ×

M0,3 × Q′
0,2,d(P

n), the projection formula gives

−
∑

a≥1

[Aa+2]dim X−2−a[B1B2]a−1 ∩ ([M1,1] × [M0,3] × [Q′
0,2,d(P

n)]) (5.12)

in degree d(n+1)−dim X+3. Then the contribution to [Q(1)
p ]vir is (−1)d(

∑

i �i )+meref

(V0,2,d)∩ (5.12). To compute it we would like to calculate first

eref(V0,2,d) ∩ ([M1,1] × [M0,3] × [Q′
0,2,d(P

n)]) ∈ Ad(n+1−∑

�i )(M1,1

× M0,3 × Q0,2,d(X)). (5.13)
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Denoting by j : Q′
0,2,d(P

n) ↪→ Q0,2,d(P
n) the embedding and by V 0,2,d the bundle

⊕m
i=1π∗L�i on Q0,2,d(P

n), the evaluation morphism gives rise to a sequence

0 −→ V0,2,d −→ j∗V 0,2,d
ev1− ev2−−−−−−→ ev∗

1 ⊕m
i=1 O(�i ) −→ 0.

Denoting by �Pn ∈ An(Pn × P
n) the diagonal class, (5.13) becomes

eref(V 0,2,d)

e(⊕m
i=1O(�i ))

∩ ([M1,1] × [M0,3] × (

(ev1 × ev2)
∗�Pn ∩ [Q0,2,d(P

n)]))

= [M1,1] × [M0,3] ×
(

(ev1 × ev2)∗�Pn

e(⊕m
i=1O(�i ))

∩ [Q0,2,d(X)]vir
)

= [M1,1] × [M0,3] × [Q′
0,2,d(X)]vir

where [Q′
0,2,d(X)]vir is the cycle defined in (0.3). Note that �Pn |X = e(TPn |X ) and

�X |X = e(TX ). Hence the contribution is

−(−1)d(
∑

i �i )+m
∑

a≥1

[Aa+2]dim X−2−a[B1B2]a−1 ∩ ([M1,1] × [M0,3] × [Q′
0,2,d (X)]vir) .

��

5.5.2 i = 2 case

Recall from Sect. 5.2 that

• K(2) =
(

H∨ � ev∗
1TX � OM1,1

)

⊕
(

OM1,1
� ev∗

2TX � H∨
)

,

• C(2) ∼= (L∨
1 ⊗ L

∨
1 ) ⊕ (L∨

2 ⊗ L
∨
2 ),

• [Q(2)(X)]vir = (−1)d(
∑

i �i )+meref(V0,2,d) ∩ ([M1,1] × [Q0,2,d(P
n)] × [M1,1]

)

.

Putting these to (5.10) for i = 2 we have the following Lemma.

Lemma 5.7 We have

[Q(2)
p ]vir = (−1)d(

∑

i �i )+m

2
[K1K2]2 dim X−2 ∩ ( [M1,1] × [Q0,2,d (X)]vir × [M1,1]

)

.

5.5.3 i = 3 case

Lemma 5.8 We have

[Q(3)
p ]vir = (−1)d(

∑

i �i )+m
dim X−1

∑

a≥0

[Aa+1]dim X−1−a[B1B2]a−1 ∩ ([M1,2] × [Q′
0,2,d (X)]vir)

+ (−1)d(
∑

i �i )+m
∑

a≥0

[C]dim X−2−a[B1B2]a−1 ∩ ([M1,1] × [M0,3] × [Q′
0,2,d (X)]vir) ,

123



Quantum Lefschetz property for genus... 1829

where the cohomology class [C]dim X−2−a = a(a+1)
2 c1(H∨)cdim X−3−a(ev∗

1TX ) −
(a+1)cdim X−2−a(ev∗

1TX ) is defined in Introduction. In the last term, [C]dim X−2−a is
defined using the marked point of M1,1 and B is defined using the ones of Q′

0,2,d(X)

as described in Theorem 2.

Proof Recall from Sect. 5.2 that

• K(3) = H∨ � ev∗
1TX ,• C(3) ∼= L

∨(Z) � OPQ′
0,2,d

(−1),

• [Q(3)(X)]vir = (−1)d(
∑

i �i )eref(V0,2,d) ∩
(

[M1,2] × [PQ′
0,2,d ]

)

where OPQ′
0,2,d

(−1) is the tautological line bundle of PQ′
0,2,d = P(L∨

1 ⊕ L
∨
2 ) and

Z = M1,1 × M0,3 ⊂ M1,2 is a divisor. We use these to compute (5.10) for i = 3. The
class c (K(3))/c (C(3)) expands to

c (K(3))

1+c1(L∨) + c1(OPQ′
0,2,d

(−1))
+

∑

a≥1

(−1)a
c (K(3))c1(OM1,2

(Z))a

(1+c1(L∨)+c1(OPQ′
0,2,d

(−1)))a+1 .

We compute the contribution of the first term to [Q(3)
p ]vir. It expands to

c (K(3))

1 + c1(L∨) + c1(OPQ′
0,2,d

(−1))
= c (K(3)) ·

∑

a≥0

(−1)a · c1(OPQ′
0,2,d

(−1))a

(1 + c1(L∨))a+1

=
∑

a≥0

Aa+1 · c1(OPQ′
0,2,d

(1))a .

So its degree (dim X − 1)-part is

dim X−1
∑

a≥0

[Aa+1]dim X−1−a · c1(OPQ′
0,2,d

(1))a .

Capping this with [M1,2] × [PQ′
0,2,d ] and pushing it down to M1,2 × Q′

0,2,d(P
n), it

becomes

dim X−1
∑

a≥0

[Aa+1]dim X−1−a[B1B2]a−1 ∩ ([M1,2] × [Q′
0,2,d(P

n)]) . (5.14)

So the contribution to [Q(3)
p ]vir is (−1)d(

∑

i �i )+meref(V0,2,d)∩ (5.14) which is

(−1)d(
∑

i �i )+m
dim X−1

∑

a≥0

[Aa+1]dim X−1−a[B1B2]a−1 ∩
(

[M1,2] × [Q′
0,2,d(X)]vir

)

.
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Now we compute the contribution of the second term. It is the pushforward of the
cycle in M1,1 × M0,3 × PQ′

0,2,d ,

c(H∨ � O � ev∗
1TX )

∑

a≥0

(−1)a+1 c1(H∨)a

(1−c1(OPQ′
0,2,d

(1)))a+2 .

Here we used the fact that the normal bundleOZ (Z) is isomorphic to the dual Hodge
bundle H∨ and the bundle L lies on the point M0.3 (so its first Chern class is zero).
As c1(H∨)2 = 0, this becomes

c(H∨ � O � ev∗
1TX )

(

−1

(1−c1(OPQ′
0,2,d

(1)))2
+ c1(H∨)

(1−c1(OPQ′
0,2,d

(1)))3

)

which extends to

−c(H∨ � O � ev∗
1TX )

∑

a≥0

(

(a + 1) · c1(OPQ′
0,2,d

(1))a − (a + 1)(a + 2)

2
c1(H∨)c1(OPQ′

0,2,d
(1))a

)

.

Its degree dim X − 2 part is

∑

a≥0

(

a(a + 1)

2
c1(H∨)cdim X−3−a(ev

∗
1TX ) − (a + 1)cdim X−2−a(ev

∗
1TX )

)

c1(OPQ′
0,2,d

(1))a .

Capping it with [M1,1] × [M0,3] × [PQ′
0,2,d ] and pushing it down to M1,1 × M0,3 ×

Q′
0,2,d(P

n), it becomes

∑

a≥0

[C]dim X−2−a[B1B2]a−1 ∩ ([M1,1] × [M0,3] × [Q′
0,2,d(P

n)]) (5.15)

in degree d(n+ 1)− dim X + 3. So the contribution to [Q(3)
p ]vir is (−1)d(

∑

i �i )+meref

(V0,2,d)∩ (5.15) which is

(−1)d(
∑

i �i )+m
∑

a≥0

[C]dim X−2−a[B1B2]a−1 ∩
(

[M1,1] × [M0,3] × [Q′
0,2,d(X)]vir

)

.

��
Then Lemmas 5.6–5.8 and (1.6) prove Theorem 2.

5.6 Calabi–Yau 3-folds

Suppose that X is a Calabi-Yau 3-fold. Set

α := c1(H∨ � 1), β := c2(1 � ev∗TX ), ψ := c1(1 � L).
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5.6.1 i = 1 case

Then since α = c1(L∨ � 1) we have

[K ]2 =
[

c (H∨ � ev∗TX )

c (L∨ � L∨)

]

2
=

[

(1 + 3α + β)

(1 + α − ψ)

]

2
.

Its nontrivial contribution to the integration over [M1,1]×(eref(V1,1,d)∩[Qred
1,1,d(P

n)])
is only −αψ . On the other hand, since (ev1 × ev2)∗(�X ) ∈ H6(Q0,2,d(X)) and the
(complex) degree of [Q0,2,d(X)]vir is 2, we have [Q′

0,2,d(X)]vir = 0. Hence

[Q(1)
p ]vir = − (−1)d(

∑

i �i )+m

24
c1(L) ∩ (eref(V1,1,d) ∩ [Qred

1,1,d(P
n)])

Using [32, Corollary 1.3]

eref(V1,1,d) ∩ [Qred
1,1,d(P

n)] = [Q1,1,d(X)]vir − c (L)

12
[Q0,2,d(X)]vir,

we obtain

[Q(1)
p ]vir = − (−1)d(

∑

i �i )+m

24
c1(L) ∩ [Q1,1,d(X)]vir

+ 2
(−1)d(

∑

i �i )+m

242
c1(L1)c1(L2) ∩ [Q0,2,d(X)]vir. (5.16)

5.6.2 i = 2 case

Similarly we have

[K1K2]4 =
[

(1 + 3α1 + β1)

(1 + α1 − ψ1)
· (1 + 3α2 + β2)

(1 + α2 − ψ2)

]

4
.

The nontrivial contribution is α1α2(−3ψ1ψ2 − 3β1 − 3β2). Hence we obtain

[Q(2)
p ]vir = (−1)d(

∑

i �i )+m

2
α1α2(−3ψ1ψ2 − 3β1 − 3β2)

∩
(

[M1,1] × [Q0,2,d(X)]vir × [M1,1]
)

= −(−1)d(
∑

i �i )+m 3

2 · 242 (c1(L1)c1(L2)

+ c2(ev
∗
1TX ) + c2(ev

∗
2TX )) ∩ [Q0,2,d(X)]vir (5.17)

5.6.3 i = 3 case

Since [Q′
0,2,d(X)]vir = 0, we have [Q(3)

p ]vir = 0.
By (5.16), (5.17) and (1.6), we prove Theorem 1.
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