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Abstract

By the reduced component in a moduli space of stable quasimaps to n-dimensional
projective space P" we mean the closure of the locus in which the domain curves are
smooth. As in the moduli space of stable maps, we prove the reduced component is
smooth in genus 2, degree > 3. Then we prove the virtual fundamental cycle of the
moduli space of stable quasimaps to a complete intersection X in P" of genus 2,
degree > 3 is explicitly expressed in terms of the fundamental cycle of the reduced
component of P and virtual cycles of lower genus < 2 moduli spaces of X.
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Introduction

Computing Gromov—Witten invariants of the quintic 3-fold X has attracted interests of
both mathematicians and physicists due to its importance in mirror symmetry, which
mainly studies Calabi—Yau 3-folds. One effective way to conquer this computation
is to relate them with GW invariants of P* in which X is embedded. Then we apply
virtual localisation [23] for the natural torus action on P* to compute them. We will
call this principle relating GW invariants of X and P* the quantum Lefschetz property.

The name, quantum Lefschetz, is originally from the formula between genus 0
virtual cycles: Let ¢ : M(X) — M (P*) be the moduli spaces of stable maps to
X — P4, respectively. On M (P*) there is a coherent sheaf V := 7, f* Op+ (5) defined
via the universal curve 7 : C — M (P*) and the universal map f : C — P*. In genus
0, M(P*) is smooth and V is a vector bundle. Then the quantum Lefschetz formula
[29] asserts that

LIMOOTT = e(V) N [M(PY)]. (0.1)

Unfortunately, it turns out that (0.1) does not hold for higher genus invariants [22].
So we need more sophisticated version of the quantum Lefschetz property for higher
genus invariants.

Meanwhile, the explicit relationship between GW and stable quasimap invariants of
X is known to be wall-crossing formula [14, 16, 40]. Since we may expect a relatively
simpler version of quantum Lefschetz property for higher genus quasimap invariants,
wall-crossing formula allows us to study simpler quantum Lefschetz property to com-
pute GW invariants. For instance the original quantum Lefschetz formula (0.1) holds
true for genus 1 quasimap invariants, so it dramatically helps the computation of genus
1 GW invariants [30].
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Quantum Lefschetz property for genus... 1797

We notice that there have been several interesting quantum Lefschetz formulae for
higher genus GW or quasimap invariants, or relationships between invariants of X and
other invariants, developed in a recent few years [1, 3,5, 7,9-11, 17, 18, 20, 30, 33, 34,
41, 43]. These lead us some actual computations of higher genus invariants [4, 20, 24,
25, 30, 38, 42]. In our paper we would like to introduce one more quantum Lefschetz
formula for genus 2 quasimap invariants. Our formulae (0.2), (0.4) contain Zinger-
type reduced virtual cycles, which have not been studied in any of references above
for genus > 2 yet. Since it is expected to have some interesting properties—such as
integrability—we hope our new formulae would suggest some idea in studying higher
genus invariants.

To construct Zinger-type reduced virtual cycles, we need to study the reduced com-
ponents on which the cycles are supported (conjecturally), in the moduli spaces of
stable maps or stable quasimaps to P". It is firstly addressed in [26, 39] where they
studied genus 1 stable maps. Later [2, 27] studied genus 2 stable maps in different
ways—I[27] is closer to the original idea of [26, 39], whereas [2] uses curves with
Gorenstein singularities. Although [2] studied more general target spaces, we fol-
low the idea of [27] to construct our reduced virtual cycles due to its advantage on
computations.

We consider a slight more general situation. Let X = {f; = --- = f,;, = 0}
be a complete intersection in projective space P, where f; € I'(P", Op« (¢;)). When
n =4,m = land ¢, = 5itrecovers aquintic threefold X. We denote by Q¢ r 4 (X) —
Qg k,a(P") the moduli spaces of stable quasimaps to X < P" of genus g, degree d
with k marked points. Using the universal curve and map

C ; [(Cn+1/(c*]

|

Qg.k,dP"),

we define V, ;¢ 1= @O mf*O;), where O(d) = [C"*! x C/C*] is a bundle
defined by weight d representation. Let Q?”"}C’ 4 (P") be the closure of the open substack
in Qg k.4 (P") on which R'7.f*O(1) vanishes

m
i

Q;"f}(’d(IP’") = closure (Qg,k,d(IP’”) \suppRln*f*(’)(l)) C Qg kaP).

Then on the proper birational base change ngk,d(]P’”) — Qg k,a(P") in Sect. 2.4, the
proper transform of Qg"’c}{’ 4 (") is smooth and V; x 4 over there is a bundle. We denote
by LL; the tautological line bundle a;?wn associated to the j-th marked point, which
forms a section a; : Qg x,a(P") — C of m, where w; denotes the relative dualising
sheaf of 77. We often omit the subscript j in I.; throughout the paper when it is clear.

Then we prove the following quantum Lefschetz formula for a Calabi—Yau 3-fold.
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1798 S.Leeetal.

Theorem 1 When X is a Calabi-Yau 3-fold, d > 3, we have an equivalence in homol-
ogy group of Q2.0.4(X),

(02,0401 = ™ (V2,0.4) N [O5 4 (P™)] 0.2)
D)oy gt
24 o
1 (cipei(La)  3(evica(Tx) +eviea(Tx))
242 < 2 B 2

) N1Q0,2,.4(X)1'.

Using the defining section f = (f;); € T(P", ®;O;)) of X C P", the first
term in the RHS of (0.2) is localised to Q(X) := Q2,0.4(X) via refined Euler class
eref(Vz,ogd) [21, Section 14.1]" defined by the section 7,f* f € ['(V2,0.4) cutting out
Q(X) = (7,f* £)~1(0). The last two terms in the RHS are cycles on Q(X) via the
pushforwards of embeddings,

() 1 : My x Q11.a(X) = Q(X),

In fact, we have these extra terms in (0.2) as the sheaf @; R'7,.f*O(¢;) on Q(X)
does not vanish on the image of ¢;. Note that the image of ¢ is contained in the image
of ¢1, but the rank of @; R'7.f*O(¢;) jumps on the image of ¢,. This is why we have
the rwo extra terms in (0.2).

This sheaf @; R'7,.f*O(¢;) does not vanish on the image of

(3) 13: M1 x Q)5 4(X) = O(X),

/ L :,v/ T

(6 ( ( )
VA \ /
] \ \\ g/\\\ J

where Q6,2, 4(X) = Q0,2,4(X) is the closed substack on which the two evaluation
maps are the same ev; = eva,

as well. So it could have contributed nontrivially to the formula. Also there might
be another nontrivial contribution from its intersection with the image of ¢;. (Note
that it does not intersect with the image of ¢;.) And these are all the places where

! This is called the localised top Chern class there.
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Quantum Lefschetz property for genus... 1799

@®; R'm.f*O(¢;) does not vanish exactly. So we may not expect there are more extra
contributions to the formula. Actually we have the formula in Theorem 2 below for
a general complete intersection X C P" including the four contributions. The third
and fourth contributions vanishe when X is a Calabi—Yau 3-fold, and Theorem 1 is
obtained by Theorem 2 as a special case.

Before stating Theorem we introduce some (Chow) cohomology classes to simplify
the statement. Denoting by H the Hodge bundle 7w, we define the classes on the

product Mg, &, +{a) X Qg kartiat.d(X),

K, — c(HY X evZTX)7 Al c(HY K evZTX)’ B, = 1 and
c(LY ®LY) c(LY ¥ 1) c(IRLY)
t(t+1) v N X
[Caldim x—2—¢ = 2 c1(H)edim x—3—1(ev,Tx) — (t + 1)cdim x—2—:(ev,; Tx).

We omit the subscript a when the node a is clear. We denote by [K];, [A'];, [B]; the
degree i parts. We also define a (Chow) homology class

(0024 = (evy x ev2)*Ax N [Qo2.4(X)I'" (0.3)

using the diagonal class Ay € AY™X(X x X). The bundle V2.0.4 on ng%’d(IP’") is
defined by ®; . f*O(¢;).

Theorem 2 For d > 3, we have an equivalence in the Chow group of Q2.0,4(X),

(02041 = €™ (Vao,00) N[O50 4(PM]
+ [Kilaimx—1 0 (M1, % [Q1,0.a(O1™)

[K1K2]2dim x—2
+ (—m - [Kl]dimXI[K2]dimX1>

2
N ([Ml,{l}] x [Qo.(1.2).4 (X)) x [Ml,{Z}]) (0.4)
dmX—1 - _
+ 3 ; [A'1+l]dimX—1—i[3132]i—1 N <[M1,{1,2}] X [Qé,{lyz},d(X)]V“)

dim X—2 .
+ Z ([C3]dim X—2+4i — [Al3+2]dim X—2—i> [B1B2]i—1
i=1

N ([MI,B}] x [Mo,1,2,3] x [Qé,{l,z},d(x)]m) -

In Remark 5.2 we explain A’i‘H = Aé“ on M])] X Q6 5 4(X), so the fourth term is not
so strange. We emphasise Theorem 2 is a result in the Chow group whereas Theorem
1 is in homology.
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1800 S.Leeetal.

Notation

For a morphism f : X — Y of spaces and a perfect complex E on Y, we often denote
by E|x the derived pullback f*E. We sometimes regard a locally free sheaf E as its
total space.

We denote by 9, 4, or simply by 9, the Artin stack of prestable curves with
non-negative integer on each component (playing a role of degree) whose sum is d.
Similarly Emi,",’f 4» Or simply on'ine denotes the Artin stack of curves with degree d
line bundles. The Artin stack of curves with degree d divisors is denoted by Dﬁg’}c’ ar
or simply DY,

We denote by O the image of ¢; in the picture above (i) for either the moduli
spaces of stable quasimaps or the p-fields spaces. For instance on Q) the evaluation
maps (of the g = 0 quasimap) are the same ev; = ev,. Furthermore, we use the script
(i) for relevant objects of the embedding ¢; unless it needs an explanation. For instance
abundle on 0@ will be denoted with the script (7).

For variables with two subindices y;;, we say y; = 0if y;; = 0 for all j. Also we
say y =0if y;; =0 foralli and j.

1 Stable quasimaps, p-fields and the plan
Stable quasimaps

A genus g,degree d quasimap to the complete intersection X C P" cut out by homo-
geneous polynomials f; € T'(P", O(¢;)) with k marked points is a triple (C, L, u)
where C is a genus g, projective, nodal, prestable curve with k marked points, L is a
degree d line bundle on C, and u = (uo, ..., u,) is a section of L®+1 guch that

fi(u) =0e(C,L2%) forall i. (1.1)

Note thatapair (L, u : Oc — L®"*t1)definesamapf : C — [C"+!/C*]. Conversely,
when a map f : C — [C"T!/C*] is given, we obtain a pair (F*O(1),u : O¢c —
f*O(1)®"+1). Hence a triple (C, L, u) can be considered to be a pair (C, f) satisfying
L = f*O(1). A quasimap is stable if it satisfies the stability conditions?

- a)?g ® L® is ample onCfor anye > 0, and (1.2)

— the zero of u is a divisor which does not meet nodes nor marked points.

We denote by Qg «,q4(X), or simply by Q(X), the moduli space of stable quasimaps.
By [13, 15, 35], it is proper and equipped with a natural perfect obstruction theory so

2 In contrast, (C, L, u) is a stable map defining Gromov—Witten invariants if it satisfies the stability con-
ditions 1. wlé)g ® L®3 s ample on C, and 2. the zero of u is empty.
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Quantum Lefschetz property for genus... 1801

that the virtual fundamental class

[QXOTT € Aygim(Q(X)) (1.3)

is defined, where vdim denotes the virtual dimension
vdim = (dim X —3)(1 —g) +k —c1(Kx) Nd-[line].

The stable quasimap invariant of X is defined to be an integration over this virtual
class.

The reason why the quantum Lefschetz property for the quasimap invariants is
simpler is because a quasimap does not have a rational component with less than two
special points (called a rational tail) on its domain curve.

Stable quasimaps with p-fields

We have seen in Introduction that the coherent sheaf R'V := &; R'7,.f*O(¢;) on
O(P") may not vanish. We denote by Q, ¢ x,a(P"), or simply by Q. its dual space

0, = SpecOQ(Pn) <SymR1V>.

Itsfibreat (C, L, u) = (C,f) € Q(P")isthen®; H' (C, f*O;))" = @i H*(C, wc®
f*O(—¢;)) by Serre duality. Since L = f*O(1), Q) parametrises (C,L,u,p =
(pt, .., pm)) where (C, L, u) is a stable quasimap to P" and

pi € T(C,wc ® L74).

Recall that imposing the condition (1.1) defines the space Q(X) from Q(P"),
whereas the above extra data determines Q, from Q(P"). We will call the section
p=(p1,..., pm) p-fields.

The space O, may not be proper, but still comes with a natural perfect obstruction
theory, so that the virtual fundamental class

(0,1 € Awim(Q))

is defined. Denoting by £ := f*(O(1) the universal line bundle on the universal curve,
the dual perfect obstruction theory relative to 90t/"¢ is defined to be

E}, joine = (RTLO @ @) Ry (0r @ L579)]g,
i
= (Rm. Lo ® ED(Rm,.L2)[~1])] g, (1.4)
i
Using the map f = (fi,..., fw) : C"F' — C™ inducing Rm,.L®""! —
®; R, LZY, the pairing defines the cosection Eép/sm/ine — Og,[—1]. The p-field
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1802 S.Leeetal.

spaces and cosectjons are firstly introduced by Chang—Li in [6] to find a localised class
(O] of [Q,]Y" to a smaller space j : Q(X) — Q,,

[Qplhe € Avim(Q(X)), JjulQplioe = [Q,1", (1.5

using cosection localisation [28]. Then they proved GW invariants of X are equal to
those defined over p-field spaces up to sign. This result is improved in [8, 12, 31, 37]:
the localised class [Q,]\'% is equal to the class [Q(X)]'"" defined in (1.3) up to sign

loc

[Q(X)]wr _ ( 1)d(21[)+m(1 g)[Q ]Vlr (16)

Plan of the proof of Theorem 2

Using (1.6) we replace [Q(X)]" with +[Q p]lvég in the statement of Theorem 2. An
advantage in using Q , rather than Q(X) is that it is locally a nice cut-out of a smooth
space. In Sect. 2, we describe this explicit cut-out model of Q , after the suitable base-
change of Q in Sect. 2.4. Using this, we compute the intrinsic normal cone of 9, in

Sect. 3.2 to obtain a decomposition of the virtual class
[Qp204lie = [OFTT + [0V + (0P + (091", (1.7)

Note that the indices ‘red’, ‘(1)’, ‘(2)’ and ‘(3)’ reflect their geometric origins labelled
above. So Q(l) Q(Z) Q(3) are supported on the images of the node-identifying mor-
phisms ¢;, ignoring p-fields. In fact we will investigate that they are bundles over the
images in Sect. 3.2.
Then in Sect.4, we prove that [Q;fd]Vir follows the original quantum Lefschetz
formula (0.1)
[0 = (=D& & (Vy00) N [QF] 4B,

And we show the i-th cycle [Q,,)]Vlr is a part of the RHS of (0.4). For i = 1 for
instance, we obtain

N (M1 < 10551 17)  (18)

Vv *
[T = (—1)" [M}

cLVRLY) |, .,

via the pushforward by ¢;. A very brief interpretation of this equality is that the
difference of the obstruction bundles defining [Q(l)]Vlr and [Q“’1 1. d]Vir (in the K-
group of Q , via the pullback) can be written in terms of the bundle structure of Q(l)
over the image of ¢; as well as the pullback bundles of HY X ev*Ty, LY K LY. To
realise this interpretation to give an actual proof, we do massage spaces and bundles—
deformations, blowups and twistings by divisors, etc.—in Sect. 5 so that we can get a
tidy form (1.8). Once we do these for all i, then by using [32, Theorem 1.1]

(Vi) NIOF] 4] = [Q1.1.a O = [Klgim x—1 N ([M1,1] % [Q0,2.4 (X))
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Quantum Lefschetz property for genus... 1803

together with (1.6), the decomposition (1.7) proves Theorem 2.

2 Local defining equations of the p-field space

For a morphism of vector bundles d : A — B over a smooth Artin stack M, we
consider the kernel of d as a space

kerd = Specp,, (Sym(cokerd*)) C A = Specy,, (SymA*).
Denoting by 74 the tautological section, ker d has a cut-out model

B|a 2.1)

l jdm

kerd := (dots)~10) Cc A.

Hence the pullback complex {d : A — B}|kerq defines a dual perfect obstruction
theory of ker d relative to M. .
The purpose of this section is to write Q , as (an open substack of) ker d over omdiv,

2.1 Cut-out model of the p-field space

Unlike considering 9t//¢ there is no canonical forgetful morphism of the p-field
space Q0 — 9M9’v But it is defined locally as follows. For a point (C, L, u, p) € Op.
u = (uo, ..., uy) is not identically zero on any component of C. So we can pick a
combinationu = > a;u; € H 0(C, L) whose zero u~'(0) C C defines a divisor on
C and does not intersect with the special points. Since it is an open condition we have
a morphism

0, — MW (C,L,u,p) —> (C,u'(0)

on a local neighborhood.
Let D be the universal divisor on the universal curve 7 : C — 997% and consider
the complex

R, 0c(D)*" & () (Rm,Oc (¢ D)1 2.2)

1

It is explained in [31, Section 3] that we can choose its representative A %, B such
that the stability condition (1.2) defined on ker d is lifted to the total space of A. So this
lifted stability condition defines the open substack of A. Then the cut-out model (2.1)
restricted to this open substack gives a local cut-out model of Q, relative to omdiv,
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1804 S.Leeetal.

Since we work locally, we may assume A and B are trivial bundles. Then d can be
considered as a multi-valued function

d - mdiv x (CrankA N CrankB (2.3)

defining Q) as (an open substack of) its zero. In the rest of the section, we find a
simple expression of d by coordinate changes and blowups.

2.2 Key lemma

Now we focus on (g, k) = (2, 0) throughout the section. We work étale locally on
M4V sometimes without mentioning it. For instance by an element of I' (Ogyaiv ), we
mean an étale local function of 9%V,

As we have explained in Introduction, considering stable quasimaps has a big
advantage in making the quantum Lefschetz formula less complicated than considering
stable maps. But there is (essentially only) one technical thing to check, which is
obvious in stable maps—near a domain curve of a stable map f : C — P", f*O(1)
is linearly equivalent to O(Z?zl D;) with disjoint, fiberwise degree 1 divisors D;.
Unfortunately it is not immediately seen near a domain curve of a stable quasimap.
Since this was the important starting point to find local cut-out models for stable map
moduli spaces in [26, 27] we need the following Lemma.

In fact, the Lemma is quite general—it holds near any prestable curve, including
a domain curve of a stable quasimap, in genus 2. Let D be an effective divisor of
deg = d > 3 on the universal curve C of 21 supported off the special points.

Lemma 2.1 Locally D is linearly equivalent to a sum Z?:l D; of disjoint divisors of
degree 1 at each fiber.

The key idea of the proof is to construct a covering map C — P! by pick-
ing two linearly independent sections H 0(C, O(D)), whose dim = d + 1 — g +
dim H'(C, O(D)) > 2, not having common zeros. Then the inverse image of a generic
point of P! is d-many distinct points.

Proof Pick any local divisor 13 on C lying on the minimal genus 2 subcurve, having
degree 1 at each fiber and not meeting D. Because B N D = {, the evaluation mor-
phism 7, (Oc(D)) — Oc(D)|g = Ogy is surjective, where 7 : C — 9t denotes the
projection morphism. This induces an exact sequence

0 = 71,0c(D—B) - 7,(Oc(D)) - Ogp — 0. 2.4

Meanwhile, as in [27, Section 2.3], we can choose other divisors .4; and A; lying
on the minimal genus 2 subcurve such that

e Aj, A, Bare disjoint to each other, and
e A, A lie on different components if the genus 2 component consists of two genus
1 components.
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Quantum Lefschetz property for genus... 1805

Picking the divisors in this way ensures R ', (D + A + Ay — B) = 0. So 7,0¢(D +
A1 + Ay — B) is arank d vector bundle and hence locally is (’)593%1. By [27, Equation
(2.5)], we obtain a sequence

evy, D evy,

0 — mO0c(D-B) - 710D+ A +A—B) ————=05. (25)

Since d > 3, we can pick a nonzero local section s € I (m,O¢(D + A + Ax — B))
mapping to 0 by ev 4, @ ev 4,. Then it factors through 7,O¢(D — B), and hence, by
(2.4), it can be considered as a section

s O¢c — Oc(D),

which is zero on B. Since the canonical section sp of D does not vanish on 3, sp and
s are linearly independent on every fiber.

The common zero D’ of s and sp has then fiberwise degree d’ < d — 1 (which
may not be constant at each fiber) because s is zero on B but sp is not. Then at a
fiber the sections s ® s;, sp® s&l of O(D — D) defines a degree d — d’ morphism
¢ : C — P! Since it cannot be degree 1 (which means ¢ is an isomorphism), we
actually have d’ < d — 2. A generic fiber ¢_1([a; b)) consists of distinct divisors
Di...., Dy_g away from D', and hence we have

d—d’
Oc(D-D) = Op Z D;

i=1

Note that since D' + > D; is defined by bs — asp this isomorphism is not only at the
fiber, but an isomorphism locally on 1.

If d’ > 3, we do the same procedure by replacing D’ by D until we getd’ < 2. Then
we proved the lemma unless d’ = 2. Now let us assume that d’ = deg D’ = 2. Doing
the same procedure for D := D’ 4+ D; which has degree 3, the procedure terminates
since d’ < degD — 2 =3 — 2 = 1. Hence the proof is completed. O

Considering the universal divisor D on the universal curve C on Dﬁd“’, we obtain
the following immediate corollary from the exact sequences (2.4), (2.5) in the proof
of Lemma 2.1.

Corollary 2.2 In the derived category of a local neighborhood of MV, we obtain an
isomorphism induced by (2.4)

R1,00(D) = R,0c(D — B) @ [Ogyare — 0].
And the sequence (2.5) induces an isomorphism

eva; D evy,

Rr,.0¢(D — B) = [ 10D+ Ay + Ay — B) — - 022, } .
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1806 S.Leeetal.

In addition, a similar idea of [27, Lemma 2.4.1] allows us to have one more iso-
morphism.

Lemma 2.3 The canonical monomorphisms induce an isomorphism
@, 1.0c(D; + A1 + Ay — B) = 1,0¢(Dy + -+ Dy + A1 + Ay — B).

Combining all these Lemma 2.1, Corollary 2.2 and Lemma 2.3, we observe that
R, Oc(D) is quasi-isomorphic to

evy D evy, @2
Ogjtdiv gndiv]'

(2.6)

|: @?:177*0(3(1)1' + Al + AZ - B) ] (&) [Omdiu —O> O®2

2.3 Diagonalisation of the local representative

Picking any local identification 7. Oc(D; + Aj + Az — B) = Ogpaiv, ev4, S evy, in
(2.6) can be written as a 2 x d matrix (cj;), ¢ji € ['(Ogpaiv).
The goal of this section is to transform the matrix (cj;) to a nice diagonal form

(1000
(cji) <0620...()>_'C

by using row and column operations near a domain curve of a stable quasimap. In fact
it is already studied by Hu—Li—Niu [27, Section 5] over the domain curves of stable
maps: on a neighbourhood of a fixed domain curve they found a diagonal form. It
depends on a type of a boundary component in which the domain curve is. Since the
domain curves of stable quasimaps are simpler than the ones of stable maps, Hu—Li—
Niu already gave an answer to our goal. Below we list the cases which will appear as
the domain curves of stable quasimaps.

(1) Near a domain curve in the generic image of Ml,l X i)ﬁ‘f’f s Sm‘zh('j 4 one can
find a diagonal matrix ¢ with

where ¢ is the node smoothing function in I'(Ogyaiv). Combining with the fact that
there are no rational tails on the domain curves in Q7 0,4 ("), the proof comes from
[27, Section 5.3, Case 1]. The (cj;) matrix of [27] in this case contains node smooth-
ing functions of rations tails and an information of necessary blowups due to their
existence. It is simplified to our matrix.

(2) Near a domain curve in the image of ¢; : Ml, 1 X E)ﬁg’é’ a X Ml,l 2L 93?’21’(‘)’ 4 one
can find it to be

g =&, =0,
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where ¢; and ¢, are the node smoothing functions in I'(Ogyaiv). The proof is in [27,
Section 5.5, Case 1]. Note that the diagonal form in (1) is recovered by ¢» # O.
(3) Near a domain curve in the image of M, 2 X zmglg Pl 9)?‘21’3 4 we need a blowup
to obtain a diagonal transform of (c;;). Before we discuss it in the following Section,
we introduce some useful facts which we will use.

When the curve is not in the intersection with the image of (1), the entries cj; in
the matrix (c ;) are non-vanishing functions by [27, Proposition 2.5.1]. Therefore the

matrix (c;;) can be transformed to

1 0 0 0 0
0 detyp det;3 detyy - - - detjg

Clk € .
where detyy := det (Clk Cw ) Computing the ranks of co/kernels of evyq, @ ev4,,
2%k €20

we observe that dety; is a linear combination of the node smoothing functions ¢; and
&>. Moreover by [27, Section 5.4, Case 1] and [27, Lemma 2.7.3 (3)], we may assume
that the first two determinants can be written as

detpp=¢14+a-&, detiz=0+b-41,
with ab # 1. Hence the matrix is transformed to
1000---0
. 2.7
<0§1§20"'0) @7

(1 N 3). When the curve is in the intersection with the image of (1), [27, Section 5.4,
Case 2] and [27, Lemma 2.7.3 (3)] show the matrix is transformed to

10 O0O0---0
(0 £l C6 0 - 0)’ (2.8)

where ¢ is the node smoothing function for the component (1).
(4) Near a generic domain curve from the reduced space, one can find it to be

The proof is in [27, Section 5.2, Case 2]. This diagonal form is recovered from (1) by
letting ¢ # 0.

2.4 Base change
Consider the blowup spaces
M 2= Blon, 5 ox90.,.4MM2,0,4 and M = MU xgn M.
On 255?”””, the matrices (2.7) and (2.8) can be transformed to be diagonal forms.
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Outside of the intersection with the component in (1), the boundary component
M .2.0 X Mo.2.4 15 {1 = 2 = 0} locally. Thus on a neighborhood of the exceptional
divisor, we know either 1|42 or £2|¢1. Without loss of generality, we may assume that
Z1]¢2. Then the matrix (2.7) can be transformed to

100---0
070---0)°
Hence on the blowup, the matrix ¢ for the case (3) in Sect. 2.3 has a form with¢; = 1,

¢z = ¢1. Furthermore, the diagonal form in (4) is recovered by this by {1 # 1.
Similarly on the intersection with the component in (1), (2.8) is transformed to

1 00---0
0¢50--:0)
Note that the diagonal form in (1) is recovered by this by ¢ # 1. ~
The global forgetful morphism Q) — 9 defines the base change b : Q) :=

0p xom M — Q. Then the pullbacks of the perfect obstruction theory and the
cosection defines the cosection localised virtual cycle

(0,110 € Avdim(Ox).

By [19, Theorem 5.0.1], we obtain the base-change morphism of b between the (intrin-
sic) normal cones, which is of degree 1. In [31, Theorem 1.1], it is explained that
cosection localised Gysin maps are bivariant operators, so they commute with proper
push-forwards. These two prove

bl Qplit = [Qplie-
2.5 Local cut-out model of 5,,

Recall that we obtained an explicit representative (2.6) of R, O(D) with the diagonal
matrices c¢ in Sects. 2.3 and 2.4 as its differential morphism. We emphasise once again
that D need not be the universal divisor, cf. Lemma 2.1. So we apply these diagonal-
isations to get a local cut-out model not only of Q(}P’") = Q(P") xon EIR but also
of the p-field space Q p» relative to M1 as discussed in Sect.2.1. The induced local
defining Eq. (2.3) is

C x [T, (CP @ cti=l) > (c1(@)x1), c2(@x2)1=j<n % [1; (1) p1i, €2(2) pai), 0)

TC oT IC oT

MUY x [T1Z, (C2x COY) x €2 5 {2 % T (Cx1j x27). ) % ((pri pai))i<i<m-
(2.9)

Here, the morphisms []}_, (C* x C*~') — C* and C*" — []L, (C* @ C%71)
above represent the complexes R, O(D)®" and (@; R, O(¢; -D)[1])", respectively,
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whose direct sum is the local perfect obstruction theory (2.2). So at a point z =
(C, D) € MY the kernel of the first morphism (which is linear)

n

<C2 X Cd_l) — C2n, l_[((xlj»XZj)» vj) —> (c1(2)x1j, c2(2)x2j) 1< j<n
Jj=1 J

parametrises sections, I'(C, O(D)®"). Hence together with z, it parametrises objects
in Q(P"). The kernel of the second morphism

" — TT(C x ) (s padisizn — [] (@ @piis 2 p2). 0)
i=l1 i

parametrises p-fields, I'(C, ®;wc ® O(—¢; D)).

3 Perfect obstruction theories, cones and virtual cycles
3.1 Perfect obstruction theories

Although the cut-out model (2.9) is useful in computational aspects, there are also two
crucial drawbacks. One is it is not global and the other is this does not give a cut-out
model over 901"¢ since M"Y — M is not smooth. For later use it is important
how we can apply computations with the cut-out model (2.9) to the perfect obstruction
theory over 9T or Mine_In this section, we explain this. ~

First we recall the perfect obstruction theories. We keep denotingby 7 : C — Q,
thedpullback of the universal curve. The local perfect obstruction theory relative to
MY is

Eg fan = (Rm0c(D)®")” @Rn*ocw D[],

which is just the pullback of the dual of (2.2). Globally é p comes equipped with the
perfect obstruction theory relative to 9t/

Eg, s = (RmaL®") " © @) Rm.L511],
i

where L is the universal line bundle over the universal curve. And the cone of the
composition

EQ})/gﬁline[_l] — Lép/{fﬁline[_l] — Lﬁ?””"/ﬁt'é,,
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defines the global perfect obstruction theory Eép /50 relative to 91. Here L denotes
the cotangent complex. Then we have the following diagram of triangles

Eg,/m —Bg, jdtine — Lyine 51, [1]
Eg, o —Eg, gar — L stlg, [1]

| |

H—dﬁdiv/f)\ﬁline | Qp [l] — L{ﬁzdiv/éﬁline |§p [l]

In particular the middle horizontal triangle tells us that the local cut-out model (2.9)
defines Eép/gﬁ as well as Eép/gﬁd,-u since MY — N is smooth.>

So one way from local to global is to consider this forgetful morphism Mmdiv . M.
Via the morphism of perfect obstruction theories

Eép/éﬁ — Eép/éﬁdiv,

computations can move from one to the other, where the former is global whereas the
latter is local. For instance the smoothness shows that the two intrinsic normal cones

cé,,/ﬁﬁdiv and Qép/gﬁ

are related, the former maps to the latter via the morphism of bundle stacks

h]/ho (E\ép/ﬁid”) — hl/ho (Eép/ﬁ) '

which is actually an affine Tgzaiv /ﬁ-bundle, that is, the morphism is fit in the exact

) = h‘/ho(]EVé sg) of bundle stacks. The
p

precise proof is in [29, Proposition 3], but it is more or less obvious thanks to the

smoothness. Then the local computation of the cone on the LHS using the cut-out

model (2.9) will give the computation of the cone on the RHS.

sequence Tgyaiv 55 — h'/h°(E%
/ 0/

A solution to "€ is to consider the forgetful morphism M"¢ — NN. Since it is
smooth as well the morphism of perfect obstruction theories

Eép/éﬁ — Eép/éﬁline s
induces the relationship of the two intrinsic normal cones

€5, dine and €5 a5,

3 Beware that the local model (2.9) does not define Eép/g’ﬁline immediately because gndiv _, gpline jg

not smooth.
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namely, the former maps to the latter via the morphism of bundle stacks

0 \Y 0 \Y
' /h (E /m,m) — h'n (]E /W)

as before. It is also an affine Tgﬁ;i,,e/ﬁ-bundle, and so is Qép/ﬁ“ne over Qép/ﬁ.

3.2 Virtual cycles

As it is briefly explained in Sect. 1, the space é p is decomposed into four irreducible
components

0, =0%uoPuoPuo. 3.1

cf. the pictures in Introduction. From the local cut-out model (2.9) relative over v,
an étale local neighborhood of Q, is the spectrum of a ring

R = Bl[x, p,v] /(c1x1j, c2x2j, €1 p1i, C2P2i),

where Spec(B) is a smooth neighborhood of M1 From this we can read the decom-
position (3.1) as follows:

(1) Near a point in Q(l) \ (Q(Z) Q(3)) we have seen ¢y = 1 in Sect.2.3. Hence there
exists a neighbourhood of the image in 9t whose inverse has irreducible components®

ég)z{cl:xz:l’z:O}v éfd:{x:p:O}.

(2) Consider a point in @*;2). As the point is a 2 : 1 image, we consider an étale
neighbourhood. In this case, there exists an étale neighbourhood whose inverse image
has

0P =(c1=c2=0}, 0 =(x=p=0}.
0V ={c1=x2=py=0}U{cy =x; = p; =0}.

Beware that this does not mean ég) is reducible. The above description is on the
étale neighbourhood. Note that é;,z) does not meet ég) So the neighbourhood can
be chosen not to meet @ 3

(3) Near a point in Q(3) \ Q(l) we have ¢; = 1. So there exists a neighbourhood
whose inverse image has

OV =lcr=xa=pr=0}, O ={x=p=0)

4 We abbreviate the set of all variables X2 to xp. Similarly we abbreviate x;; to x. So x = 0 means
xpj = Oforall j and x = 0 means xz; = 0 forall k, j.
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(1 N 3) Near apointin Q(l) Q(3) c1 is divisible by the two node smoothing functions,
say ¢1 and &3 here. There exists a neighbourhood whose inverse image has

OV ={ti=x,=p=0, 0V ={3=x2=p=0}, OF'={x=p=0}

(4) Near a point outside Q(l) N Q(2) N Q(3) we have ¢; = ¢ = 1. Thus there exists
a neighbourhood in Q » on which Spec(R) defines Qred
Then the intrinsic normal cone CQF /5t can be decomposed into

¢ m = ¢ u e ue® u e u others, (3.2)

each of the first four terms is defined to be the closure of the complement open part in
¢ 3,9 For instance,

red - ~ o~ - - ~ o~
¢ s the closure of QQp/DJ”Qp\Q‘p”uQ(pz)qu) C QQ,,/SJI'

0 0
They are actually the closures in 2! /h ( Q,,/D)I) since €5 0,9 C h'/h ( 5, /m)

is a closed substack. In fact, one can check from the cut-out model (2.9) that others
in (3.2) is empty so that we obtain a decomposition

¢, m = ¢ u e ue®ue?. (3.3)

Here is a brief explanation. Letting A := B[x, v, p], one can read the decomposition
of Crya := CspecR/Speca, a pullback of Qﬁép JRrdiv from its spectrum of

R [X1j, X2j, P1i, P2l
(Mqu —xuXie, XwPu — puXiwe, puPu— plzPuc,>

3.4
X0k Xo1 — x21 X2, X0k Poy — p2iXok, paxPar — pai Pox

We know there are not higher order relations in X1, X2, Pj, P> in (3.4). Away from
the intersections, the cone is a bundle on each irreducible component. So all relations
are linear here. As Spec of (3.4) is the union of their closures which is contained in
the cone, there should not be higher order relations on the intersections neither.

(1) Near a point over Q(U\(Q(Z) Q(3)) (c2 = 1,x2 = p2 = 0), Cg/4 is decomposed
into irreducible components

CVi=fci=xa=pry =0}, C™:={x=p=0).
We can check irreducibility as follows. We observe that C™¢ is the bundle over the
smooth variety Spec(B[v]) since x = p = 0 kills the relations. In precise, it is the

spectrum of

(Blvl/ (e[ X1, X2, Pri, Pail. (3.5)
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Therefore it is irreducible. On the other hand, we observe that C V) is the spectrum of

(Blx1, p1i, v1/ ()X, X2j, P1i, P2l
(X — xuXie, xikPu — puXik, pucPu — puPu)’

This is a fibration over a smooth variety Spec(B[v, X2}, P2;]/(c1)), whose fiber is an
affine cone of the one-point blow-up BloC"*™ in the space C"*" x C"*™ Thus it
is also irreducible. We can show irreducibility of the components in other cases in a
similar manner.

The irreducibility ensures these are the base changes of ¢(1) and ¢4, respectively.
Note that over (x1, p1) # 0, C (D is a bundle because X5, P, are free variables and
(X1, P1) should be proportional to (x1, p1).

(2) Near a point over @;2), CRr/a is decomposed into

c® ={c1=c=0}, ¢V ={c1=x=p2=0}U{cr =x1 = p1 =0},
c* = {x=p=0

These are the base changes of ¢@ ¢ gpd gred, respectively. Over (x1, p1) # 0,
(x2,p2) #0,C @) is a rank 2 bundle.

(3) Near a point over Q(3) \ Q(l) (c2 =1,x2 = p2 =0), Cgy4a is decomposed into
C® ={ci=x2=pr=0}, C™:={x=p=0}.

These are the base changes of € and ¢4, respectively. Over (x1, p1) # 0, C® is
a bundle.

(1 N 3) Near a point over Q(l) Q(3) cy is divisible by ¢1¢3. In this case, Cgy4 is
decomposed into

CVi={=x2=p=0}, CV:={G=x=p =0}, C™:={x=p=0}.
Both C () and C® are bundles over (x1, p;) # 0.

4) Nearapomt over Qred \ (Q(l) N Q(z) N Q(S)) (c1r=c20=1,x=p=0),Cga
is C™ = {x = p = 0} which is a bundle.

So we could check there is no ‘others’ in € 3, /div- Combining this with the (local)
equivalence of

Q:él’/é\:ﬁ and Q:Qp/é\ﬁdiv = [CR/A/TA/B|R]

discussed in Sect.3.1 gives the decomposition (3.3).
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Note that the cut-out model (2.9) tells us the morphism d(c o ) : Ta|lg — Cgr/a
(defining the quotient via the composition T4,p — T4) takes

axl s ax2, apl s apz > ClaX] s 028){2, ClaPl s C28P2a

Ocys 0y > lejf?xlj + Zpliapli, szjaxzj + sziapz,-,
J i J i
3.6)

because Xjocot = c1x1, Xp0coT = X3, Plocot =cipjand Pocot = ¢ po.
So for instance, we have d X (d(c o t)dy,) = ¢ which implies d(c o T)0y, =cj 0x,.
The cosection introduced in [6] defining the localised virtual cycle [Q ]} men-

loc
tioned in (1.5) is indeed defined on the obstruction sheaf /! (E\é /iUt“ﬂE) over INHne,
4

v — Og,[—1]in the derived category. It is proven

0, /mli ne
in [6] that this actually fact(;rs through the absolute dual perfect obstruction theory

Eé,, — Og,[—1]. So the composition ]Eép/fm — Eép — Og,[—1] defines the

So this gives a morphism E

cosection localised Gysin map on the bundle stack /! /hO(Eép /zm) [28].

For Definition below, we use the perfect obstruction theory over M. The pullback

EY% ~ — Op [—1] of the above then defines the cosection localised Gysin map on
0,/ 9p

the bundle stack '/ ho(]Evép y 53’1)‘ We apply this to the decomposition 3.3.
Definition 3.1 The virtual cycle of the reduced part
[OXT € Ayaim(Qx N OFY
is defined by the image of [€™¢] by the cosection localised Gysin map. The cycles

[ég,])]“r, [@1(,,2)]"ir and [ég)]"ir are similarly defined by using [€(V], [¢®] and [¢]
respectively.

Hence we obtain a decomposition of the virtual class
[ép];gz — [éfd]vir + ['Q;I)]vir + [6572)]vir + [Q;S)]vir

providing (1.7) by the pushdown.

4 Quantum Lefschetz property for the reduced virtual cycle

Consider the bundle V := V5 o 4 in Theorems 1 and 2, which is precisely defined to
be

¢ 3,0 ~ ~ ~
Vo= &L = 1 (Eggen |~ lgs ).

where L is the universal line bundle on the universal curve 7 : C — é;f’d. As
in Sect.2.5, by replacing £ with O(D) locally, we can use the local cut-out model

@ Springer



Quantum Lefschetz property for genus... 1815

(2.9) to check V is locally free, cf. [27, Proposition 2.1.3]. Beware that this does not
mean h! (IEQ /Q(P,,)[ 1] Qred) is locally free. Each point in Qred has a section data
uel(C, L@”“) via the morphism Qred 0 »- Then, the defining equations of X,
f1, ..., fm takes the universal section u to a section f(u) = (f;(u))1<i<m € I' (V)
in ho. It defines the refined Euler class ¢™f (V) for Theorems 1 and 2.

Before proving the following proposition, note that we can prove it almost in a same

manner as [33, Proposition 4.1], [34, Section 4.3]. But here, we will give another proof.
Note that (—1)fakV = (—1)d(Xi t)—m gpd Qred Qred(IP’") which is smooth.

Proposition 4.1 The reduced virtual cycle satisfies the original quantum Lefschetz
formula (0.1)

Aredqvir o 1\d(QC; €i)—m ref Ared on
(@, 1" = (=D e” (V) N[O (EP")].
Proof Consider the induced perfect obstruction theory, that comes from the cut-out

model (2.9), and its restriction over é;fd (@;fd is an open dense subset of IMAiv
n d—1 . . Vi - . .
I =1 (C?7%)). It induces a local representative of [ 5, /ﬁIQrped, which is

n m
Qr;d x CZn x (C2m % 1_[ Cd—l Q;?d x F = (CZn % (CZm % l_[(cdf[—l’
j=1 i=1

4.1)
u X (x5, X2j, pP1i, p2i, Vj) —> u x (C1Xx1j, €2X2j, C1 P1i, C2P2i, 0).
The cone decomposition in Sect. 3.2, (3.5) says that
Cd = Q% x C" x C*" C F. (4.2)

On the other hand, we have the following morphism:

1,70 \Y - 1 \Y4 - Y - 2
h™/h (Eé,,/ﬁt|Q;?“> >k (EQ,;/EW'Q?“) (EQ,,/Q@n)'Q‘ﬁd) -V

Here, the first arrow is the morphism from the bundle stack to its coarse moduli space,
which is also a stack. The second arrow comes from the decomposition

! (Evép/ﬁJ - p*hl (EZ(P")/WJ ® h' <Eép/Q(P” )

for the projection p : él, — Q(IP’"), which comes from [32, (3.15)]. The third arrow
is the canonical morphism.
The local representative of IEVQ /{D‘ft|§red, (4.1), says that the composition h'!/h"
P P

(]Eép /W'Q‘ed) — VY is an epimorphism. Moreover, (4.2) says that its kernel is

locally represented by C™¢ in F, therefore it is equal to ¢"? < h!/h° (EV~ = | Nred).
Qp/m Ql’
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Hence, by using the functorial property of the cosection localised Gysin map [36,
Theorem 1.4], we have

~redqvir __ ! redy _ ! ~red
12,7 _Ohl/hO(IEVN e d> e N
Op/M Qrpe ’

Note that the composition of E% |grea — VV[—1] with f(u)Y[—1] is the given
cosection. Hence [Q;,ed]"lr is equaIDtO !

O!V\/’f(u)\/[é;ed] — (_l)rankveref(v’f(u)) — (_l)rank Veref(V)‘

5 Lower genus contributions from the rest cycles
5.1 Cones in the obstruction bundle

In this section we consider our space Q p over M, so use the perfect obstruction theory
E 3,9 the decomposition (3.3) and Definition 3.1 for virtual cycles. Letting

_ hdiv - 2 d—1 2m
A =M xj]:[l(c x C )xc

be the local smooth space of the cut-out model (2.9) having forgetful map A — M,

the dual perfect obstruction theory EVQ /5 is locally isomorphic to
P

. dleor) @ @dli+1
[Twﬁ - 0" o PO} }
. 5,

1

Using this local expression we check that 7! (E 0,/5 | ¢ >) is locally free. We denote
its dual by @ Note that E® is not 1! (Eé oo

P .
intersection. Outside of the intersection, theypare isomorphic. So E_(’) is the obstruction
bundle there. There is an induced morphism from the bundle E® to the obstruction

sheaf which is an isomorphism outside of the intersection, but it is not even an injection
on the intersection.

which is not locally free on the
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Picking any global locally free representative [ F LN Fi] of EX G,/ we obtain a

diagram

F1|Q<,>—>E(’)

l

¢ [Fi/Follgo-

Using this we define C') < E to be the image of the pullback of € — [F/Fp).
Then by the functorial property [36, Theorem 1.4] the cycle 0' EO loc [CD]is [Q(') vir
by Definition 3.1. We denote this Kiem-Li’s cosection localised Gysm map 0'

by eKL(E(’))5 so that we can write

E® loc
[OVTT = &HED)N[CD]. .1)

Now we consider other intrinsic normal cones € 5 59 ~ of Q ) over M. Since Q(')
is smooth over its image in M, we obtain the per%ect tangent complex T ~

oy /o
I:Tég)/ﬁfﬁ(i) — Nﬁ(i>/97t(Z,~)|§g)], where MO ¢ 9N is the image of

(D MyoxMira,

(2) My 1,0 x Mo2,a x My 1,0,

(3) Mi2,0 x Mo,2,45

under the node-identifying morphism. Here, Z; C M@ denotes the divisor defined to
be the intersection M NI wheni = 1, 3 and Z> = (. We need this twisting by
Z; because locally the normal bundle of Z(¢1¢3) restricted to Z(¢y) is different from

that of Z(¢1) by the divisor of the intersection. Then the cone € is isomorphic
to the bundle stack A? / ho(']T P /93«?). We define its pullback
V4

0y /m
Ciy = Ngpiysn(Z)] 50)-
@) oo /3 (2ol 5o
.. o o v .
Then the composition TQ?/SUI — TQ,,/im|Q§;> — EQ,,/Sleﬁ,') defines the morphism

Ciy — C50,550 Xta/ml FI — Filgo — E©. (5.2)

Using (3.6), we see that the first arrow is locally
(1) 9;, € Cay > d(c o T)(9¢,),

(2) 0¢y50c € Co) > d(coT)(0¢),d(coT)(0c),
(3) 9; € C3y —> d(coT1)(0).

5 This new notation seems not too strange because it follows the properties of Euler classes since it is a
bivariant class in rational coefficients [31].
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Since d(c o 7)(9.,) annihilates the defining equations of C @ for instance
d(co1)(0c)dxuXie —xu X)) = 0,
the morphism C(;y — E® factors through
Ciy — CO — EO,

Outside of the intersections with other components, C(;y maps isomorphic to C @ c
E®_ On the intersections it maps to zero as d(c o 7)(dc;) vanishes on either x; =
p1 = 0orx; = py = 0. Since Cy;) is a bundle we may expect an advantage of using
C(;) instead of C @) for computing (5.1). This is not an absurd fantasy since they are
isomorphic outside of the intersections.

Example 5.1 The local structure ring (3.4) tells us that C! is (locally) the spectrum
of

R/(x2, p2,c1) [ X1, Pii]
(xue Xy — xuXie, xikPu — puXik, puPu— puPi)-

So €M is a line bundle over (xj, p1) # 0, but has the full rank at (x1, p;) = 0.
Meanwhile by its definition C (1) is (locally) the spectrum of R/(x2, p2, ¢1)[Y ], where
the variable Y is a coordinate of d.,. Hence C(y) is a line bundle. The morphism
C(]) —> C(l) is

X1; V> x1;Y, P —> pit.

It maps isomorphically over (x1, p1) # 0, but zero over (x1, p1) = 0.
Over the blowup B of R/(x2, p2, c1) along (x1, p1) = 0 with the homogeneous
coordinate functions X1, p1, we consider the cone

B [X1;, Pi;]
(X1 X1 — XuX 1k, XiePiy —puXik, PucPu —puPix)

pushed down to C (D along the blowdown morphism. The pullback cone C(1)| p mapsto
this cone, which is isomorphic outside of the exceptional locus. Since it is a morphism
between line bundles, the cone is isomorphic to C(1)|p twisted by the exceptional
divisor. Hence we can use its pushdown instead of [C M7in (5.1).

5.2 Outline of the proof of Theorem 2

Letting p; = p2 = 0, (2.9) gives a local cut-out model of é = ~@J(]P’"). The decom-
position (3.1) of Q, then gives rise to the corresponding one of Q,

~

0 = éred U é(l) U Q(Z) U 5(3)'
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Then the components 0D are the images of the following node-identifying morphisms

(D) T : My x érf‘f,d - 0,

~ T -— 2:1 ~
(2) M1 x Qoo x My — 0,
(3) Z3ZM12 XPQ{),Z,dC_) Q

In (1), Qred d is the blowup of Qred d along MO 3 X Q0 24> where Q0 2.4 € Qo024 is

defined by ev| = ev;. The blowup locus is a part of the intersection M 1.1 X M, 0.3 X
Qo 2.d of (1) and (3) before the blowup. In (3), ]P’QO 2.d denotes the projectivisation
of ]LV @ Ly, sum of dual tautological line bundles over Q0 2.q- The following Remark

explains why Q(3) is the image of 3.

Remark 5.2 In fact, 0 should be (the image of) projectivisation of the pullback of
Nomy 5.0x Mo 2.0/Ma00 = = (LY ®LY) & (L, ®Ly)

on Ml,z X Q6,2,d since é is the base change of the blowup. Itis equal to Ml,z X PQ6,2,d
if L; = 1L; on Ml,z. Note that the evaluation map H Nwe) ® Tc,aj — C induces a

morphism H — LL; from Hodge to tautological line bundle on M 5. 1In[43, pp.1221-
1222], Zinger proved that it maps isomorphically to

H —> L;(-=D) — Lj,

where D = ﬁm X Mo’g — Ml,z is a boundary divisor of a collision of the two
marked points. Thus we have | = H(D) =L

As we have m_entioned in Sect. 1, local computation with (2.9) tells us that the i-th
p-field space QE,’) is a vector bundle over Q)

3y = (i (6 00cr)) 5, )

To avoid a confusion, we denote it by P) when we consider it as a bundle or as a
locally free sheaf of local sections of é(i) é(i) but use ég) for the space. So the
pullback of P on Q(l) is the tautological bundle. On Q(’), the obstruction bundle £
was defined in Sect.5.1. It is proven in [32, Equation (3.15)] that E) is decomposed
into EO = EV @ EI",

ED = ! (EN/Dﬁ|QW>‘v~(z>’ EY = R'z, (697:15@4,' ®wc) ~ ,T*( m £®e,>

From now on for simplicity, we denote by Q® the domain of the morphism 7;, by
(l) the fiber product Q) x o Q ) and by P®) the pullback of P, Explicitly,

1) QW =M x 0%,
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(2 QW =M1 x Qoaa x My,
(3) Q¥ =M x PO, 4

and the bundle P® is

(1) PO =H K @ ev*Opn (—£;),

) PO = (HX@’" Vi 0m (—6) ROy, ) D (O, BB eV O (—t) B H),
3) PO =H K @ eviOp: (—£;).

Recall that in (3), the two evaluation maps are the same ev| = ev,. We denote by
i Q) — 0.

the base change of the node-identifying morphism 7;. and let E®) := oE @) Then
the decomposition E®) = E\" @ E{" is
() E{Y = HY Rev'Tpn, By = O, | R (@im.LEY)Y,

@ _
@) EfY = (1Y Bev{Tm B Oy, ) @ (O, , BeviTm WHY),

2

EY = Oy | (ea,-n*L@@ ) Oy,
3) B = 1Y BeviTp, B = Og7 | B (@i LZ%)".
Then the pullback cosection o) : E@ — OQ(,-) is decomposed into
P
(l) E(’) — OQ(,> and 02() E(') — OQ(,->.

The cosection on the dual perfect obstruction theory (1.4) is decomposed into

p.(df/dx) and f. These correspond to a(') and oz(,i), respectively.
Using these cosections, we can define Klem L1’s cosection localised Gysin maps

eKL(ED) and K- (E(l)) Letting C®) := 7* i .C® the multiplicative property of Xl
[36 Theorem 1.4] tells us that (5.1) becomes

e 1 . .
(i)qvir __ ~ KL (i) (i)
(O = Gy Gt (FHED N1ED) (5:3)
L ORL (@) A KL i) @
= doa i (e ED) N XED) N [C ]).

Since the second cosection 02(') on E(l) (@ln*ﬁ‘gzl’)v is defined by the (dual
of) defining equation f as on V in Sect.4, the cycle X (E(l)) N [C®] is supported

on E(l) X QW Z((Uzl)) ) = E(') X Q) Z(f(u)), where f(u) is the pullback equation

on Q(P") defined in (1.1). This support is isomorphic to E( 2 me Q(l)(X) where
Q(l) (X) := Q< D x Q([pn) Q(X). Then the restriction of the first cosection a( D to this
support E Q(z) Q » (X ) is induced by the surjection

df Tpnlx — ®;O0pn(€)|x

@ Springer



Quantum Lefschetz property for genus... 1821

whose kernel is ker(df) = Ty, as follows. On Qg)(X ), df defines a short exact
sequence of bundles

0 — K? — EY — @)Y — o, (54)

where

(1) KO =1 Kev*Ty,

2) K = (H'HeviTx B Oy, ) @ (O, , MeviTy BHY),

(3) K& := 1Y ReviTy.

Then the tautological section of P() defines a cosection of (P))", and the composition

defines a cosection of EY) on Qg)(X ), which is the restriction of ol(i). Applying the
multiplicative property [36, Theorem 1.4] to the sequence (5.4), we have

oKL (EY)) n <eKL(Eg')) A [C(i)]) — M (K(i)) A KL ((P(i))v> n (eKL(Eg)) N [C(i)]) ’
5.5)

where ¢f™ denotes the Fulton-MacPherson intersection homomorphism, or Gysin
map.

In Sects. 5.3 and 5.4, we will explain the second and third equalities below, respec-
tively. The rest equalities and notations are explained after the equations:

1

@) qvir __
12,17 = deg(@y.i)

o (67 (K9) 8 (193) 0 65 (55) i)
G (62 (R9) 05 (7). (5 () 165, <1 02)
(5.6)

= @(ZN)* (eFM (Km) N Xt ((P(i))V) n (gKL (Eg)) NICwHlgn Xoo Qg)]))

_ b
deg(tp.i)

ﬁfp,i)(zpm (M (KO) et (7)1 g xqu QF 1)

=ty @ (7 (<) ool

_1\ymi K(f) i X .
-0 ), <e ('Q(’“)) ﬂ[Q(”(X)]“‘)

deg(zt) C(i)IQ(i)(X)

The first equality is from (5.3) and (5.5). We denote by Cy;) the pullback of C; (5.2)
t0 QY. Since C;) is a bundle, so is C()lgw over Q¥ which is smooth. Mimicking

Proposition 4.1, we can prove KL (Eg)) N[Cy) |Q(i) X Q) Qg)] is the pullback cycle
of

(1) (DI V0 0 (1] [0 ,B1)),
@ (=D& (Vo 0,0) O (M11] % [Qo.2.a B x [M1,1]),
(3) (=DIE D (Vo 2.0) 0 ([M1.2] % [P 41).0

6 Here, rank Vo,2,4 is d(3_; ¢;) although it is of genus 0 because ev| = evs.

@ Springer



1822 S.Leeetal.

via Cgilgi Xqu QV(x) — Q<l>(X) = QW x g@ny Q(X). We denote this pull-
back cycle by [Cqi)lgi Xqo Q,, (X)]VI*. Hence this explains the fourth equality.
Similarly, we denote the pullback cycle in A,(Q® (X)) by [Q¥)(X)]' and that in
A (Cpy |Q(,>(X)) by [Cqy |Q<,>(X)] . The cosection on (P@)V is given by the tautolog-
ical section of Q (X )y = pU )|Q<,>(X) So we obtain the fifth equality. In Sect 5.4, we
will see the bundle C;) |Q<,>( X)(after twisting by a divisor) is contained in E1 |Q<,>( X)-
Since there is no p-fields, the composition of the tautological section of Ei lo® (x)
and the homomorphism E1 loo(x) = (PO loi (x) in (5.4) is zero on the cone.
Hence the cone is contained in the kernel K¢ )|Q<,)( x> Which proves the last equality.
In the RHS of the second equality we denote by cl «, the closure of the restriction of
C% to Q\intersections. Then the second equality holds if the cone C*) is isomorphic

to the product C(i)[) X Q) Qg). Unfortunately C®) is not the product, but we deform
it to the product and then use this deformation to prove the second equality. We work
this in Sect.5.3.

We know C(;) — CH (5.2)is isomorphic outside of the intersection. Then taking
twistings by divisors after blowups, it induces an isomorphism which implies the third
equality. This work is addressed in Sect.5.4.

After we get (5.6), we prove Theorem 2 in Sect. 5.5. When X is a Calabi-Yau 3-fold
we prove Theorem 1 in Sect. 5.6.

5.3 Deformation of the cone

We start this section with our cone C) < E@ = E(i) ® E(i) The intersection
chn E(’) — Eg) is defined to be a cut-out of C) by the tautological section of E(’)
Hence we have

(i) (i) ]

Ceined e < B ©Ey" = E®

This cone is a deformation of C%) via deformation to the normal cone [21, Chapter
5]. If we write C = {(x, p, X, P) | (x, p) € QV, X € E | ), P € EY | p)),
it is

Cenprtd e = Jim (@ p. X, P) [ (v, p. X, P) e €V} — E{ @E) =E.
Since O'l(i) and 02(1') are independent of P and X, respectively, and they vanish on C%),

they are zero on C; AEY /i) either.

Lemma 5.3 The restriction of the cone CC<'>mE“>/C(') to Q(Z) c CcYn Eg) is its

component. Moreover it is isomorphic to a product

@) .
CC(i>ﬁE(2i)/C([) o ~ cY Q) X QW Qz(ﬂl) 5.7
p
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Other components vanish after taken by ¥t (E®).
Proof We prove this by using the local coordinate rings in Sect. 3.2 obtained by the
cut-out model (2.9). Recall from (3.4) that locally C @ is Spec of
R[X1j, X2j, P1i, P2l
<X1kX11 = xuXik, XiePu — puXik, puPu— plzplk,)

(5.8)
Xok Xo1 — x21 X2k, X0k Pop — p2i Xok, parPar — pai Pox

where R = B[x, p] /(c1x1, c2x2, 1 p1, ¢2p2) is a local coordinate ring of §p~

In a neighborhood of a point in ég) or @‘2,3), we have seen ¢ = 1 in Sects. 2.3
and 2.4, hence x; = p; = 0. Pulling back via the node-identifying morphism, C*)
is a component defined by {c2 = 0} as described in Sect.3.2 and C) NEY’ c C®
is defined by {X> = 0} = {X3; = --- = X2, = 0}. Recall that it is a cut-out by
the tautological section of EE'). Introducing a partner variable X/, of X, which forms
a basis of (E(l') )" (hence they are linear functions on Egl)), the cone C; AES ¢ is
Spec of

R/(Cz’-xls pl)[le’ X/213 Pliv P2l]
(x2x Xy — xu X5, Xk Pa, pak P — puPax ) -

Then it is the union of {x, = 0} and {P, = 0}. We show the component {x; = 0}
vanishes by ¢XE(E®). To do so it is enough to show that it vanishes by ¢KL(E!”) by

[36, Theorem 1.4]. We show this by degree reason. The cycle eKL(EEi)) N{xo, =0} is
of degree

dim (B[x, pl/(c2, x1, x2, p1)) [X1, X5, P1, P21/(pax Pyt — pai Pay) — rank E(li)
= dim B[X1, X}, Pi, p2] — rank E{’ = dim B[x, p] — rank B\’ = dim B[x, p] —n — 1.

On the other hand, X (EY)) N {xo = 0} is contained in the degeneracy locus of the
cosection {pr = 0}. It is contained in R/(c3, x, p) [X1, P1, P>] which has dimension
less than or equal to dim B[x, p] — n — 2. Thus eKL(EE’)) N {xy = 0} = 0. The
component { P, = 0} is Spec of

(B[x1/(c2, x1)) [X1, X}, P1]
(v Xy — 32Xy )

[p2] = (5‘8)|C2:x1:p1:0, p2=P>=0, X2:X/2[p2]

which defines the cone (5.7).
The cone C? is defined by {¢c; = ¢» = 0}, and C® NE®P is {X| = X, = 0} in
addition. Then it has 4 components

xi=x0=0U{x3=P =0} U {P=x=0} U {P =P, =0}

Similarly we can show the first three will be killed by ¢X-(E?)) by degree reason.
Precisely the first one is killed by Xl (Egz)). The bundle Egz) is decomposed into two
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parts because its dual is generated by X1, X». We use each to kill the second and third
ones. The fourth one is the cone (5.7). O

Lemma 5.3 shows
KEED) NCO] = KEED) N [CY), X0 QU
which proves the second equality of (5.6)

5.4 Local freeness of cones

In this section we relate the vector bundle C(i)|Q(;) and the cone C(’)(,.). We suppress
the notations |Q(i) and Q® throughout the section, which means p = 8and p=P=0
with local coordinates, respectively.

Fori = 1, 3, we consider the blowup b : a(i) — Q@ along the preimage of the
intersection 0 N 0™4. Let D®) denote the exceptional divisor.

Lemma5.4 Fori = 1,3, the bundle (b(i)*C(i))(D(i)) maps injectively to b(")*Egi).
Moreover, the cycle [(b(i)*C(i))(D(i))] € A*(b(")*EEZ)) pushes down to [CY] e
ALED),

Proof Consider the pullback morphism C;y — E® of (5.2) and its composition with
the projection to the first summand E© — E!",

Cy — E. (5.9)

It is an injection outside of the intersection because C(;, maps isomorphically to CY )
there, which is contained in Egi) as P = 0 on C® locally. It vanishes on the preimage
of the intersection by (3.6) and the computation below (5.2). Hence the twisting of the
pullback (b©*C;))(D?) maps injectively to b*E".

Tl:e) cycle (" )*C(i))(D(i) )] pushes down to the closure of the image of (5.9) which
is [C\]. O

For i = 2, we consider the composition of two blowups b : Q? - Q®:
the blowup along the preimage of the intersection Q® N Q™Y first and then the
blowup along the proper transform of the preimage of the intersection é(z) N Q(l).
Let D@D D2 denote the exceptional divisors of the first and the second blowups,
respectively. Then D??) is decomposed into D@2 = DEZ’Z) + Dgz,z) because the
proper transform of the preimage of 0 N O™ is a disjoint union of two different
components corresponding to the nodes. Locally we can check that the first blowup is
taken along {x; = 0}N{x, = 0}. Then the proper transforms of {x; = 0} and {x, = 0}
are disjoint. Let D§2) =D& ¢ Dﬁz’z) and D(22) =D& 4 D;z,z).

Recall that the bundle Cg) 1is the pullback of the normal bundle
le,lxm?o,zxml,l/mz.m

Co = (LYQ®LY)® (L) ®Ly).

@ Springer



Quantum Lefschetz property for genus... 1825

Lemma 5.5 The bundle (b®*C@))(D@) := b@* (LY @ LY) D) @ 5@*(LY
® LY) (DY) maps injectively to b*E\® and its fundamental cycle in A, (b@*E\?)
pushes down to [CP] € A, (Egz)).

Proof The morphism (5.9) for i = 2 is an injection outside of both éred andNQ(l). It
is of rank 1 on the preimage of QV\ 0™ and vanishes on the preimage of Q™9. So
the twisting by D@D of the pullback of C® by the first blowup is of rank 1 on the
proper transform. Hence (b®*C(2))(D®) injects into b(z)*E(lz).

As the closure of the image of (5.9) fori = 2 is [C!)], the cycle [(b(z)*C(z))(D(z))]
pushes down to [C?)]. o

We now use Lemmas 5.4 and 5.5 to explain the third equality of (5.6). In fact, these
Lemmas show

KHED) NCYL, xgo Q1 = eED) NbPIGP*Cihlgn D) x i Q1.

Hence from the third equality, (5.6) must be

1

deaiy ) P (P (RO) et (@) (X (B) 060 [0 Calgun D) < @' ]))

_ b M (D) A KL (VWYY A s® [0 DD . 0@ xy]T
= G - (e (KD) 0 ek (@) 160 [ Coplgun®®) xqu QY (0]

D™ (@) A0 [ N
= “qeay - (e (K?) 060 [0 Cplgn ) DD)]

(=pmi M) KU)I@“’(X) N0) vir
= — (@)« | e - — | N X .
dee@ P\ GO C iy @) ) M1

Meanwhile [34, Lemma 4.1] shows D® in the denominator in the last equation does
not contribute to the result after pushdown. This means we get (5.6)

~ (_1)m-i C(K(i)) . .
(i)qvir __ . (i) vir
(0,1 = deg (D) (@)« <|:C(C(,')):|* NQ™ (X)] ) , (5.10)

where x =dimX — 1 fori = 1,3and* =2dim X — 2 fori = 2.

5.5 Proof of Theorem 2

Recall that b : é p — Q) is the base change of the blowup morphism. In this Section,
we compute [Qf,ﬁ)]Vir = b*([ég)]m) explicitly using (5.10) to get Theorem 2.
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5.5.1i =1case

Lemma 5.6 We have

[QV1F = (=1 4 [K Jgim -1 0 ([M1,1] % [Q1,1.4COT™)

— (=) DM K Y gim x -1 [K 2 ]dim x—1

N ([¥111 % (o241 x [M11])
— (=D& DN A i x5 al Bi Bala -

a>1

N (V71,01 % [(Mo.31 x [Qf2,4CO1).

c(HYRev*Ty) 4¢ _ c(H'KMeviTy) ]
ey A = —comn @dB = vy

are defined in Introduction. In the last term, A2 s defined using the marked point
of M 1,1 and B is defined using the ones of Q/O,Z,d(X) as described in Theorem 2.

where the cohomology classes K =

Proof Recall from Sect. 5.2 that
o KU =HY Rev*Ty,
o C) =LYRLY(2),
o [QUONI = (=D et (V)1 4) 1 ((M1,1] x L[0T, P)]).

Here E = }P’Q{)’l 4 C ere‘} 4(P") is the exceptional divisor which is a projectivisation
over Mo 3 x Q6,2,d - er‘fcll’d(]P’") as defined in the beginning of Sect.5.2. We use
these to compute (5.10) fori = 1.

First of all, as ¢1 (LY X }LV)W1 xz = c1 (LY X O) we can compute

C1 (Oéflcﬁl d([pm)(z))a
(1 + cr(ILY))att

c(K(l))
c(Cqy)

= K +c(HY Rev*Ty) Z(—l)“

a>1

Ared red

Then by the projection formula for the morphism b : Q7 4P — or 1, d(]P’”)
applied to (5.10), the contribution of the first term K in the RHS to [Q(l) vir §

(=D (K gm0 (Vi) 0 (101 % (O 4 BM])
By [32, Theorem 1.1], we obtain

e (Vi,1.40) N[O 4(P)]
=[01.1.4COT" = [K lgim x—1 N ([Mm] X [Qo,z,d(X)]Vir> .
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So the contribution becomes

(=D O (K i o O ([M1.1] % (1,14 (01)

— (DT K i 1 [KaLaim x-1 0 ([F1,1] % [Q0,2,4001™ x [M1,1]> .

We next compute the contribution of the second term. This term is the pushforward
of the cycle on M1 x Mo3 x PQy, 5 4

CI(O]PQ&Z_[](_D)Q

v % _1ya+l
C(H X OKXev TX)Z( 1) (]+C1(Lv))‘l+2

a>0

=) A1 (Opgy, (D)

a>0

(5.11)

because the normal bundle Oz(Z) is OPQ ( 1). To compute its contribution to
[Q(l)]Vlr using the projection formula for the embeddlng M1 x My x ]P’QO 20 <

M1 % OF] 4 (B"). we need to cap (5.11) with (—1)*C D™ (Vo2.4) 0 ([M1,1]
[Mo3] x [PQ} , 4]) instead of [Q1) (X)]¥F = (=1)4Ci Derel (V) 1 4) N ([M1,1] x

[OFd ,(P")]) in degree of [Q},’1"'" which is d(n +1=3¢;) = dim X + 3. For this
projection formula, we use Vi 14|37 Mo3x ),y = = Vp,2.4. And then we need to push it
down to M1 1 X MO 3 X Qo 2. 4(X) via the blowdown morphism b.

Note that the blowdown morphism b over }P’Qoyzy 4 s the projection morphism
b: IEDQE)’Z’d — Q6’2’d(IE””). Then by definition of Segre classes [21, Chapter 3.1], we
have

b. (¢1Osgy, , (D) NPQh241) = sumt (L @ 1LF) N[Qf 2,4 (P)]
= [B1B2la—1 N [Q 5.4 ([PM].

So capping (5.11) with [M 1] x [M 3] x [PQ} , 4] and pushing it down to My x
Mo,g X Q6 5 4(P"), the projection formula gives

= [Algimx—2-al BiBala—1 N ((M11] x [Mo3] x [Q 5 4PM])  (5.12)

a>1

in degree d(n+ 1) —dim X + 3. Then the contribution to [Q;,l)]Vir is (— 1) t)tm pref
(Vo,2,4)N (5.12). To compute it we would like to calculate first

e (Vo2.0) N ((M1,1] x [Mo3] x [Q5.4(PM]) € Aguri—y 65y M1
x Mo3 x Q0.2.4(X)). (5.13)
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Denoting by j : Qg,z’d(IF’") — (o,2,4(P") the embedding and by Vo,z,d the bundle
@fnzln*ﬁz" on Qo,2,q4(P"), the evaluation morphism gives rise to a sequence

0 — Vo204 — j*VO,Z,d e ev’f 69?1:1 o)) — 0.
Denoting by Ap» € A" (P" x IP") the diagonal class, (5.13) becomes

e (Vo,2,4) — — . "
@, 06) N ([M1.1]1 % [Mo3] x ((evi x eva)*Apr N [Qo2.4(PM)]))
(evy x evp)* Apn

e(@7,0(¢(;))

= [M11] x [Mo3] x [Q)5. 41"

= [M11] x [Mo3] x ( ﬂ[Qo,z,d(X)]Vir>

where [Q6 2.d (X)]Vir is the cycle defined in (0.3). Note that Apr|x = e(Tpr|x) and
Ax|x = e(Tx). Hence the contribution is

—(= D& TN AT i ko a[B1Bolat N ([M1,1] x [Mo3] x [Qf 5, 4(X)1'™).

a>1

5.5.2 i = 2case

Recall from Sect.5.2 that
« KO = (H'HeviTy B Oy, ) @ (O, MeviTy BHY),

e Co =1y ®LY) @ Ly ® L), _ —
o [QPO)IMT = (=X tdFmeret (Vo 5 ) N ([M1,1] % [Q0,2,4(P)] x [M11]).

Putting these to (5.10) for i = 2 we have the following Lemma.

Lemma 5.7 We have

(_ 1)d(Zi i)+m

[Q2)r = -

[K1K2D2dimx—2 N ([M11] x [Q0,.2.4(X)]"" x [M11]).

5.5.3 i = 3 case

Lemma 5.8 We have

dim X—1
(O = (=@ ttm N [AT i x 1 -a[B1Bala—1 N ([M12] % [Q( 5. 4(X)1')
a>0
+ (= DIE DN C i x—2-al BiBala—1 0 (IM1.1] % [Mo3] % [Q) 5, 4(O1™) .
a>0
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where the cohomology class [Cldim x—2—a = @cl (HY)¢dim X—3—a (eviTx) —
(a4 1)cdim x—2—a (eVTTX) is defined in Introduction. In the last term, [Cldgim X —2—q IS
defined using the marked point ofM],l and B is defined using the ones of Q6,2,d (X)
as described in Theorem 2.

Proof Recall from Sect. 5.2 that

e KO =H"K eviTy,
° C(3) = LV(Z) X OPQE),z,d(_l)’

o [QDOOPT = (DI e (Vo) 0 (M) 2] % (PO}, 1)
Where_ OPQ(L%&(_I) is the tautological line bundle of PQE),z, 4 = P@LY ® L)) and

Z=M;1xMp3C Ml,z is a divisor. We use these to compute (5.10) fori = 3. The
class ¢ (K®)/c (C(3)) expands to

K® ¢ (K®)e (03, ,(2))°
— (R +3 (=1 . M2 .
+e1L) +¢1Opg,, (D) & (+a @) +e1(Opg, ,(—D)

We compute the contribution of the first term to [Qg)]m. It expands to

(=D 1(Opgy , (—1)°
(I + e (L))ot

c (K@)
= ¢ (K9).
[+a@) +aOsg_ ) & ;)

DA e1(Opgy, (D).

a>0
So its degree (dim X — 1)-part is
dim X—1
Y A M dimx—1-a - €1(Opgy , (D).
a>0 '

Capping this with [M 5] x [PQ6,2,d] and pushing it down to M » x Q/o,z,d(]Pn)’ it
becomes

dim X1
> A M dimx—1-alB1Bala1 0 ([M12] % [Q5,4(P")]). (5-14)

a>0

So the contribution to [Q 117 is (—1)4Xi () +meref (v 5 )N (5.14) which is
dim X—1

(=D S A Y x—1-a[Br Balamt 0 ([M1.2] % [Q5,4COT™)

a>0
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Now we compute the contribution of the second term. It is the pushforward of the
cyclein My 1 x Mo3 x PQg 5 4

c1(HY)
(1=c1(Opg,, (D)2

c(HYROReviTx) Y (=M

a>0

Here we used the fact that the normal bundle Oz (Z) is isomorphic to the dual Hodge
bundle 7 and the bundle L lies on the point M 3 (so its first Chern class is zero).
As c1(HY)? = 0, this becomes

_ Vv
c(HY &(f)xev*;Tx)( ! () )

(1=c1(Opg, , (N2 " (=c1(Opg,, (D)}

which extends to

(a+1)(a+2)

—c(H"XROK ev’fTX) Z <(a +1)-c (OPQ&;(/(I))“ _ 5

a>0

c1(H)e1 (Opgy (1»“) :

Its degree dim X — 2 part is

1
3 (“(“; 1 (MY )etim x—3-a @V T50) = (@ + Deimx—2-a (evf’&)) ¢1(Osg;, ()"

a>0

Capping it with [M | 1] x [M3] x [PQj , ,] and pushing it down to M 1 x M3 X
0p.5.4[P"), it becomes

Z[C]dimX—Z—a[BlBZ]a—l N(IM1.1] % [Mo3] x [Qg.4P"]) (5.15)

a>0

in degree d(n + 1) — dim X + 3. So the contribution to [QE?)]Vir is (— 1) ti)+m gref
(Vo.2.4)N (5.15) which is

(=D 0 S Clii x—2-al B Balamt 0 ([M1.1] % [Mo31 % [Qf 2,4 (X))

a>0
O
Then Lemmas 5.6-5.8 and (1.6) prove Theorem 2.
5.6 Calabi-Yau 3-folds
Suppose that X is a Calabi-Yau 3-fold. Set

a:=ci(H'X1), B:=c(1Xev'Ty), ¥ :=c1(1XL).

@ Springer



Quantum Lefschetz property for genus... 1831

5.6.1i = 1case

Then since o = c; (LY X 1) we have

(K], — [C(vaév*Tx)}
2

[(1 +3(x+,3)]
c(LVRLY) )

dI+a—-vy)

Its nontrivial contribution to the integration over [M 1lx (e™f (v 1.4)N [Qf‘li’ J@HD

is only —ay. On the other hand, since (ev x ev2)*(Ayx) € H6(Q0,2,d(X)) and the
(complex) degree of [Q0,2,4(X)]"'" is 2, we have [Q , ,(X)]""" = 0. Hence

(_1)d(z,~ £))+m

o 1 (L) N (€ (Vy1.0) NLOT] @]

Using [32, Corollary 1.3]

. L .
¢ (Vi1a) N 0T 4PH] = [Q1,1.4(X)]"" — %)[Qo,z,d(xnw,
we obtain
. ) )+ .
Q1" = —% c1@) N[Q11.a (O]
(—])d(Zz Li)+m )
2 ——al@eala) N[Qo2.4(OI™. (5.16)
5.6.2 i = 2 case
Similarly we have
1+3 1+3
(K1 Kol = [( +3a1 4+ 6 1+ a2+ﬂ2)} .
I+ar—y1) A+a—1y2) |4

The nontrivial contribution is ajaa (—3v1Y¥» — 381 — 382). Hence we obtain

(—l)d(Zi Li)+m

[P = S ——wiea(=3y1¥2 — 361 — 34
N (7111 % [Q024 (1™ x [M1.1])
3
— _(_l)d(z, £)+m 2 . 242 (C] (]L])C] (H—Q) |
+e2(eViTx) + e2(ev5Tx)) N [Qo.2.4 (X1 (5.17)

5.6.3 i = 3 case

Since [Q} 5 ,(X)I'" = 0, we have [0} = 0.
By (5.16), (5.17) and (1.6), we prove Theorem 1.
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