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Abstract
In this paper we obtain a Hadamard type formulae for simple and multiple eigenvalues
for a class of nonlocal eigenvalue problems. The cases that we consider include among
others, the classical nonlocal problems with Dirichlet and Neumann conditions. The
Hadamard formula is computed allowing domain perturbations given by embeddings
of n-dimensional Riemannian manifolds (possibly with boundary) of finite volume.

Mathematics Subject Classification Primary 45C05 · Secondary 45A05

1 Introduction

There are many works in the literature which connect the shape of a region to the
eigenvalues and eigenfunctions of a given operator. In this context, the rate of change
of simple eigenvalues plays an essential role and it has been studied since the pioneering
work of Hadamard [12] who in 1908 first computed the domain derivative of a simple
eigenvalue of the bi-Laplacian under Dirichlet boundary condition.
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Since then, the Hadamard formula has been generalized in a number of significant
ways. Such generalizations include the use of Neumann and Robin boundary condi-
tions, multiple eigenvalues, and second order variations for a large class of differential
and integral operators. Among many references, we cite the monographs [13, 14,
24] and the recent works [10, 11, 18, 19, 21], all of them concerned with boundary
perturbation problems to differential equations and their applications to eigenvalue
problems.

In this work, we study a class of nonlocal eigenvalue problems with non-singular
kernels on a n-dimensional Riemannian manifold (M, g) of finite volume. More
precisely, we consider an operator BM : L2(M) �→ L2(M) of the form

BMu(x) = aM(x)u(x) −
∫
M

J (x, y)u(y) dvg(y), x ∈ M. (1.1)

According to [20], nonlocal diffusion equations governed by these operators were
used in early population genetics models, see for instance [7]. In Ecology, Othmer
et al. [22] were the first authors to introduce a jump process to model the dispersion of
individuals, which later, was generalized by Hutson et al. [16] associating the kernel
of the nonlocal operator to a radial probability density. The prototype of the nonlocal
equation is given by considering aM(x) ≡ 1. For instance, if one takesM = � ⊂ R

n

a domain, J (x, y) = J (|x − y|) for some nonnegative J ∈ C(R,R) with J (0) > 0
and

∫
Rn J (|z|)dz = 1, and assumes u(x) ≡ 0 in Rn\�, the operator B� becomes

B�u(x) =
∫
Rn

J (|x − y|)(u(x) − u(y)) dy, x ∈ �.

In the context of population models, the set �c = R
n\� represents a hostile sur-

rounding, since the particles (whose density is set by u) die when they land in �c. As
observed, for instance in [1, 8], this is a nonlocal analog to the Laplace operator with
Dirichlet boundary condition in bounded domains of Rn .

On the other hand, if we take a�(x) = ∫
�
J (|x − y|) dy, we get a nonlocal analog

to the Laplacian with Neumann boundary condition

B�u(x) =
∫

�

J (|x − y|)(u(x) − u(y)) dy, x ∈ �.

In this case the particle can just jump inside of � living in an isolated surrounding. As
expected, under this Neumann condition, constants are eigenfunctions whenever one
takes λ(�) = 0.

Actually, several continuous models for species and human mobility have been
proposed using such nonlocal equations, in order to look for more realistic dispersion
models [2, 4, 5, 26]. Besides the applied models with such kernels, the mathematical
interest is mainly due to the fact that, in general, there is no regularizing effect and
therefore no general compactness tools are available.

In this paper, we obtain a Hadamard type formula for simple eigenvalues of the
operator (1.1), under certain conditions for the kernel J . These conditions will be
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discussed in detail in Sect. 2 and we denote then by (H). Then our first result reads as
follows.

Theorem 1.1 Let λ0 be a simple eigenvalue of BM with corresponding normalized
eigenfunction u0 and J ∈ C1(N × N ,R) satisfying (H). Also, let us assume that
� : Diff1(M) �→ C1(M) given by�(h)(x) = (h∗aMh )(x), x ∈ M, is differentiable
as a map defined between Banach spaces.

Then, there is a neighbourhood O of the inclusion iM ∈ Diff1(M), and C1-
functions uh and λh from O into L2(M) and R respectively satisfying for all h ∈ O
that

h∗Bh(M)h
∗−1uh(x) = λhuh(x), x ∈ M, (1.2)

with uh ∈ C1(M). Moreover, λh is a simple eigenvalue with (λiM , uiM) = (λ0, u0)
and the domain derivative

∂λ

∂h
(iM)V =

∫
M

u20(w) DT
t

(
h∗aMh

) ∣∣
t=0dvg(w)

−
∫

∂M
(aM(s) − λ0) u

2
0(s) 〈V T , N 〉(s) dS

−
∫
M

(aM − λ0)u
2
0(w)〈 
H , V⊥〉dvg(w)

−
∫
M

u20(w)〈∇waM, V⊥〉dvg(w),

(1.3)

for all V ∈ X 1(N ) where X 1(N ) denotes the set of C1 vector fields on N and
DT
t f = ∂ f

∂t − 〈V T ,∇ f 〉, V T is the component of V tangential to M and h∗ is the
composition map set by the embedding h. Note that at the boundary the tangent space
ofM splits into vectors that are tangential to ∂M (and toM) and one vector that is
normal to ∂M (and tangential to M). Then N ∈ T (M) denotes this unitary normal
vector that is normal to ∂M. 
H is the mean curvature vector associated to M and
V⊥ is the component of V normal to M.

As a corollary of this result we obtain

Corollary 1.1 Let uh be the family of eigenfunctions associated with the operator
Bh(M) and eigenvalues λh given by Theorem 1.1.

Then, the derivative of uh at h = iM and V ∈ X 1(N ) is the unique solution of

(λ0 − BM)w = fV

where fV ∈ L2(M) is the function given by

fV = −∂λ

∂h
(iM)V u0 + ∂

∂t

(
h∗ah(t,M)

) ∣∣∣
t=0

u0 +
[
JM, 〈V T ,∇(·)〉

]
u0

−
∫

∂M
J (y, w)u0(w)〈V T , N 〉 dS(w)
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−
∫
M

J (y, w)u0〈 
H , V⊥〉dvg(w)

−
∫
M

u0(w) 〈∇w(J (y, w)), V⊥〉dvg(w)

with ∂λ
∂h (iM)V given by (1.3), J is the non-local term in Bh(M) (see (2.7) for a

precise definition) and [·, ·] denotes the commutator.
We also analyze the case of eigenvalues of higher multiplicity, obtaining the fol-

lowing result.

Theorem 1.2 Letλ0 be an eigenvalue ofmultiplicitym of the operatorBM withm > 1.
Assume the non-singular kernel J : N × N �→ R is an analytic function satisfying
condition (H), h(t, x) = x + tV (x) for all t ∈ R and x ∈ M for some V ∈ X 1(N ).
In addition assume that � : R �→ C1(M), given by �(t) = (

h(t, ·)∗aMh(t,·)
)
is an

analytic map.
Then, if λ(t) is one of the curves given by Lemma 4.1, we have that λ̇ = ∂λ

∂t (0) is
an eigenvalue of the symmetric matrix B = (Bki )

m
k,i=1 defined by

Bki =
∫
M

DT
t

(
h(t, ·)∗ah(t,M)

) ∣∣∣
t=0

φkφi dvg −
∫

∂M
(aM − λ0) φiφk 〈V T , N 〉dS

−
∫
M

(aM − λ0) φkφi 〈 
H , V⊥〉 dvg −
∫
M

φiφk〈∇yaM, V⊥〉 dvg(y) (1.4)

where N is the unitary normal to ∂M, DT
t f = ∂ f

∂t −〈V T ,∇ f 〉, V T is the component

of V tangential to M, 
H is the mean curvature vector of M and {φ1, . . . , φm} is an
orthonormal basis for the eigenspace associated to λ0.

Notice that in the simplest case where M is an open domain of R
n+1 (with

co-dimension 0) we have V⊥ = 0, and then, V = V T . Hence, by Theorem 1.1,
the Hadamard formula for the simple eigenvalues of the Dirichlet problem (set by
aM(x) ≡ 1 at (1.1)) becomes

∂λ

∂h
(iM)V = −

∫
∂M

(1 − λ0) u
2
0(s) 〈V , N 〉 dS(s)

which agrees with the previous results obtained in [3, 9]. More generally, if λ(t) is the
analytic curve of eigenvalues given by Theorem 1.2 for the same Dirichlet problem
with λ0 = λ(0) being an m-fold eigenvalue, then, the rate dλ

dt (0) is an eigenvalue of
the matrix B = (Bki )

m
k,i=1 with

Bki = −
∫

∂M
(1 − λ0) 〈V , N 〉φk(x)φi (x)dS(x).

Other exampleswith additional geometric features can be found at the end of Sect. 3.
One of them is if we considerM = S

n andN = R
n+1 taking a ≡ 0, then this example
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has higher co-dimension, V⊥ is not necessarily equal to 0, 
H(p) = n
R p and dλ

dt (0) is
an eigenvalue of the matrix B = (Bki )

m
k,i=1 with

Bki = nλ0

R

∫
Sn

φk(w)φi (w)〈w, V⊥〉 dvg(w).

The organization of the paper is as follows. In Sect. 2 we discuss the set-up of
our problem, including the assumptions on our operators and preliminary results. The
Hadamard formulae for simple and multiple eigenvalues are computed respectively
in Sects. 3 and 4, in both cases using the approach developed in [14] to deal with
boundary perturbation problems. Finally, in Sect. 4.1, we discuss an application of
our results to the generic simplicity of the eigenvalues for the Dirichlet problem set
by (1.1) in open bounded sets of Rn .

2 Our nonlocal eigenvalue problem

Throughout this paper we consider an n-dimensional Riemannian manifold (M, g)
(possiblywith boundary) of finite volume andwe set the following nonlocal eigenvalue
problem

aM(x)u(x) −
∫
M

J (x, y)u(y)dvg(y) = λ(M) u(x), x ∈ M (2.5)

for some unknown value λ(M) where aM : M �→ R is assumed to be a continuous
function, and J is a non-singular kernel satisfying

(H)
J ∈ C(M × M,R) is a nonnegative, symmetric function (J (x, y) = J (y, x))

with J (x, x) > 0.

We also assume that
∫
M J (x, y)dvg(y) < ∞.

Remark 2.1 Here, dvg(y) refers to the measure on the manifold, which in coordinates
is equivalent to

√
g(y)dy and g is the determinant of the matrix gi j . The measure

induced at the boundary of our manifold will be denoted by dS.

Notice that analyzing the spectral properties of (2.5) is equivalent to study the
spectrum of the linear operator BM : L2(M) �→ L2(M) given by

BMu(x) = aM(x)u(x) −
∫
M

J (x, y)u(y) dvg(y), x ∈ M. (2.6)

See that BM is the difference of the multiplication operator aM, which maps u(x) �→
aM(x)u(x), and the integral operator JM : L2(M) �→ L2(M) given by

JMu(x) =
∫
M

J (x, y)u(y)dvg(y), x ∈ M (2.7)
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which is self-adjoint and compact by [25, Propositions 3.5 and 3.7] (since M is a
measurable metric space.)

The spectrum ofBM

It is known from [25, Theorem 3.24] (see also [20, Theorem 2.2] for open bounded
setsM = � ⊂ R

n) that the spectrum set σ(BM) of BM satisfies

σ(BM) = R(aM I ) ∪ {λn(M)}ln=0 (2.8)

for some l ∈ {0, 1, . . . ,∞} where R(aM I ) denotes de range of the map aM I and
λn(M) are the eigenvalues ofBM with finitemultiplicity. Also, the essential spectrum
of BM is given by

σess(BM) = [m, M]

where

m = min
x∈M

aM(x) and M = max
x∈M

aM(x).

As a consequence of the characterization (2.8), we notice that the eigenfunctions
of BM possess the same regularity of the functions J and aM. In fact, for all x ∈ M,
one has

BMu(x) = λ(M)u(x) ⇐⇒ (aM(x) − λ(M))u(x) =
∫
M

J (x, y)u(y) dvg(y).

(2.9)

On the other hand, the convolution-type operator (J ∗u)(x) = ∫
M J (x, y)u(y) dvg(y)

∈ Ck(M) whenever J (·, y) ∈ Ck(M) for every y ∈ M and u ∈ L1(M). Therefore,
if λ(M) is an eigenvalue of BM with corresponding eigenfunction u, we obtain from
(2.8) that λ(M) ∈ [m, M]c implying that aM − λ(M) �= 0 inM. Consequently, we
get from (2.9) that

u ∈ Ck(M) whenever J (·, y) and aM are Ck-functions for every fixed y ∈ M

for k = 0, 1, 2 . . .. In particular, u is analytic whenever J (·, y) and aM are analytical
for all y ∈ M.

Under appropriate conditions, the existence of the principal eigenvalue of BM is
guaranteed by [20, Theorem 2.1]. Recall that the principal eigenvalue of a linear and
bounded operator is the minimum of the real part of the spectrum which is simple,
isolated and it is associated with a continuous and strictly positive eigenfunction.
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3 Hadamard formula for simple eigenvalues

In this sectionwe proveTheorem1.1 andCorollary 1.1. Specifically, we perturb simple
eigenvalues of the operator BM computing derivatives with respect to several kinds
of variations of the manifold M. In the particular case of M = � ⊂ R

n a domain,
our approach agrees with the one introduced in [14] for perturbing a fixed domain �

by diffeomorphisms. As a consequence, we extend the expressions obtained for the
domain derivative for simple eigenvalues given in [3, 9].

Let (M, gM) and (N , gN ) be C1-regular manifolds (M, possibly with boundary).
Assume in addition that M is compact. If h : M �→ N is a C1 embedding, i.e., a
diffeomorphism to its image, we set the compositionmap h∗ (also called the pull-back)
by

h∗ũ(x) = (ũ ◦ h)(x), x ∈ M,

when ũ is any given function defined on h(M). The metric onN induces the pullback
metric on M through h as follows: for u, v ∈ Th−1(x)M we have h∗gN (u, v) =
gN (dhx (u), dhx (v)). It is not difficult to see that h∗ : L2(h(M), gN ) �→
L2(M, h∗gN ) is an isomorphism with inverse (h∗)−1 = (h−1)∗.

We assume that N has a Riemannian metric gN and we denote by gh = h∗gN
the metric on M induced by the embedding h. For instance, if M = � ⊂ R

n = N
then the metric h∗gN is given by gi j = ∂h

∂xi
· ∂h

∂x j
and in particular, if h = idRn in the

interior of � the metrics of M and N agree.
In general, for any embedding h we can consider the operator

(Bh(M)ũ
)
(y) = (ah(M) ◦ h)(x)(ũ ◦ h)(x) − (Jh(M)ũ

)
(h(x))

= (h∗ah(M))(x) (h∗ũ)(x) − (
h∗Jh(M)ũ

)
(x)

(3.10)

if y = h(x) for x ∈ M, where ah(M) : h(M) �→ R is assumed to be a continuous
function in h(M) for any isomorphism h. Notice that Bh(M) : L2(h(M), gN ) �→
L2(h(M), gN ) is a self-adjoint operator for any h as is the operator Jh(M).

On the other hand, we can use the pull-back operator h∗ to consider

h∗Bh(M)h
∗−1 : L2(M) �→ L2(M)

defined by h∗Bh(M)h∗−1u(x) = Bh(M) (u ◦ h)
(
h−1(x)

)
. Hence,

h∗Bh(M)h
∗−1u(x) = (h∗ah(M))(x) u(x) −

(
h∗Jh(M)h

∗−1u
)

(x), ∀x ∈ M.

(3.11)

As it is known, expressions (3.10) and (3.11) are the customary way to describe
deformations or motions of regions. Equation (3.10) is called the Eulerian description,
and (3.11) the Lagrangian one. The latter is written in fixed coordinates while the
Eulerian is not.
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1232 R. D. Benguria et al.

Due to (3.10) and (3.11), it is easy to see that

h∗Bh(M)h
∗−1u(x) = Bh(M)ũ(y) and h∗Jh(M)h

∗−1u(x) = Jh(M)ũ(y)

(3.12)

whenever y = h(x) and ũ(y) = (u ◦ h−1)(y) = h∗−1u(y) for y ∈ h(M).
Moreover, we have Bh(M)ũ(y) = λũ(y) for y ∈ h(M) and some value λ, if and

only if,

h∗Bh(M)h
∗−1u(x) = λu(x), ∀x ∈ M,

with ũ(y) = h∗−1u(y). Hence, λ is an eigenvalue of multiplicity m ∈ N of the
operator Bh(M), if and only if, is an eigenvalue of multiplicity m of h∗Bh(M)h∗−1.
As Bh(M) is a self-adjoint operator for any embedding h, we obtain that the spectrum
of h∗Bh(M)h∗−1 is also a subset of the real line. We have the following.

Proposition 3.1 Let h : M �→ N be an embedding. Then, σ
(
h∗Bh(M)h∗−1

)
=

σ
(Bh(M)

) ⊂ R where σ
(Bh(M)

)
is given by (2.8). More precisely, λ ∈ R is an

eigenvalue of Bh(M) with multiplicity m ∈ N, if and only if, is an eigenvalue of
h∗Bh(M)h∗−1 with multiplicity m. Also,

σess

(
h∗Bh(M)h

∗−1
)

= σess
(Bh(M)

)
.

Proof AsBh(M) is a self-adjoint operator in L2(h(M), gh), we have thatσ
(Bh(M)

) ⊂
R. It follows from the relationship (3.12) that a value λ is an eigenvalue of Bh(M) with
multiplicity m ∈ N, if and only if, is an eigenvalue of h∗Bh(M)h∗−1 with the same

multiplicity. Thus, σ
(
h∗Bh(M)h∗−1

)
= σ

(Bh(M)

) ⊂ R with σ
(Bh(M

)
given by

(2.8).
Now, it follows from (2.8) and expressions (2.6) and (3.11) that

σess
(Bh(M)

) = [mh, Mh] and σess

(
h∗Bh(M)h

∗−1
)

= [mh∗, Mh∗ ]

where

mh = min
y∈h(M)

ah(M)(y), Mh = max
y∈h(M)

ah(M)(y)

and

mh∗ = min
x∈M

ah(M)(h(x)), Mh∗ = max
x∈M

ah(M)(h(x)).

As mh = mh∗ and Mh = Mh∗ , the proof is complete. ��
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Remark 3.1 Notice that Proposition 3.1 guarantees that the essential spectrum of
Bh(M) does not change under perturbations given by embeddings h : M �→ N .

From now on, we consider a family of embeddings h : [0, T ] × M �→ N that
depends on a parameter t . We denote the perturbed domain h(t,M) by Mt in order
to simplify the notation. We study the differentiability of simple eigenvalues λ(Mt )

for BMt with respect to t . This corresponds to the Gâteaux derivative with respect to
the function h.

We remark that for a function f : N → R it holds that

d

dt

(
h∗ f (x, t)

) = d

dt
( f (h(x, t), t)) =

〈
h∗∇ f ,

∂h

∂t

〉
+ h∗ ∂ f

∂t
,

where ∇ denotes de tangential gradient on N . Then we denote

Dt = ∂

∂t
−

〈
∂h

∂t
,∇

〉
, (3.13)

where 〈·, ·〉 denotes the inner product in N .
If N = R

n and M = � ⊂ R
n this quantity can be written in coordinates as

Dt = ∂

∂t
−U (t, x) · ∂

∂x
with U (t, x) = ∂h

∂x

−1 ∂h

∂t
for x ∈ �

and it is known as the anti-convective derivative Dt in the reference domain �.
We denote by Diff1(M) ⊂ C1(M,N ) the set of C1-functions h : M �→ N which

are embeddings. We assume that N has a Riemannian metric gN and we denote by
gh = h∗gN the metric onM induced by the embedding h. For instance, ifM = � ⊂
R
n = N is an open domain then the metric h∗gN is given by gi j = 〈∂xi h, ∂x j h〉 and,

if the dimension of � is n, the tangent spaces of h(�) and Rn agree in the interior and
the volume element is |Dh| dx .

Consider the map

F : Diff1(M) × R × L2(M) �→ L2(M) × R

(h, λ, u) �→
((

h∗Bh(M)h
∗−1 − λ

)
u,

∫
M

u2(x)dvgh

)
.

Here dvgh is the volume element of the metric on gh . It is not difficult to see that
Diff1(M) is an open set of C1(M,N ) (which denotes the space of C1-functions from
M into N whose derivatives extend continuously to the closure M with the usual
supremum norm). Hence, F can be seen as a map defined between Banach spaces.

We will consider that M ⊂ N (perhaps by identifying M with its image with an
initial fixed embedding).

Notice that if λ0 ∈ R is an eigenvalue for BM for some u0 ∈ L2(M) with∫
M u20(x) dvg(x) = 1, then F(iM, λ0, u0) = (0, 1) where iM ∈ Diff1(M) denotes
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the inclusion map of M into N . On the other hand, whenever F(h, λ, u) = (0, 1),
we have from Proposition 3.1 that

BMh ũ(y) = λũ(y), y ∈ Mh, with
∫
Mh

ũ2(y) dvg(y) = 1

where ũ(y) = (u ◦ h−1)(y) for y ∈ Mh . In this way, we can proceed as in [3, 14]
using themap F to deal with eigenvalues and eigenfunctions ofBMh and h

∗BMh h
∗−1

perturbing the eigenvalue problem to the fixed manifoldM by diffeomorphisms h.
Now we proceed with the proof of the main theorem of this section.

Proof of Theorem 1.1 The proof of the existence of the neighbourhoodO ⊂ Diff1(M)

and the C1-functions uh and λh satisfying (1.2) is very similar to that one performed in
[3, Lemma 4.1]. As one can see, it is a consequence of the Implicit Function Theorem
applied to the map F . Here, we compute the derivative of λh at h = iM. For this, it
is enough to consider a curve of embeddings h(t, x) that satisfies h(0, x) = iM and
∂h
∂t = V (x) for a fixed vector field V ∈ X 1(N ). To simplify the notation, we denote
the eigenvalue and eigenfunction on h(t,M) by λt and ut respectively. It follows
from

h(t)∗Bh(t,M)h(t)∗−1ut (x) = λt ut , x ∈ M,

that

∂

∂t

(
h(t)∗Bh(t,M)h(t)∗−1ut (x)

) ∣∣∣
t=0

= ∂λt

∂t

∣∣∣
t=0

u0 + λ0
∂ut
∂t

∣∣∣
t=0

inM. (3.14)

Now, we need to compute the derivative of the left-hand side of (3.14). Notice that

∂

∂t

(
h(t)∗Bh(t,M)h(t)∗−1uh(t)

) ∣∣∣
t=0

= ∂

∂t

(
h∗ah(t,M)ut

) ∣∣∣
t=0

− ∂

∂t

(
h(t)∗Jh(t,M)h(t)∗−1ut

) ∣∣∣
t=0

inM.

Also, for any function w : M × [0, T ) → R it holds that ∂
∂t (h∗w) = h∗ ∂

∂t w +
〈h∗∇w, ∂h

∂t 〉. Here ∇ denotes de tangential gradient on N and 〈·, ·〉 the inner product
in N . Then we have

Dt

(
h(t)∗Jh(t,M)h(t)∗−1ut

)
= h(t)∗ ∂

∂t

(
Jh(t,M)h(t)∗−1ut

)
in N . (3.15)

where Dt is defined by (3.13).
In the case of domains of Rn this derivative is known under the Dirichlet condition

from [3, Lemma 4.1].
Hence, setting ũ(t, y) = h(t)∗−1ut (y) = ut (h−1(t, y)), y ∈ h(t,M), we get from

(3.12)

∂

∂t

(
Jh(t,M)h(t)∗−1ut

) ∣∣∣
t=0

= ∂

∂t

(Jh(t,M)ũ
) ∣∣∣

t=0
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= ∂

∂t

(∫
h(t,M)

J (y, w)ũ(t, w)dvt

) ∣∣∣
t=0

for y ∈ h(t,M).

Here dvt denotes the volume form related to the metric g(·, t). To explicitly com-
pute this derivative we recall that d

dt (dvt )
∣∣
t=0 = tr (g−1 dg

dt (0)) dvg . Since gi j (t) =
〈∂xi h, ∂x j h〉 we have that

dgi j
dt = 〈∂xi h, ∂x j V 〉 + 〈∂xi V , ∂x j h〉. Now we denote

V = V⊥ + V T , where V⊥ is normal component of V and V T the tangential one.
Then we have

dvt

dt

∣∣∣∣
t=0

= ( divM V T + 〈 
H , V⊥〉) dvg,

where 
H is the mean curvature vector associated toM. To keep in mind the variable
that we are using in the computation, we will add a subscript to ∇ (e.g. ∇w J (w, x) or
∇x J (w, x)). Then

∂

∂t

(∫
h(t,M)

J (y, w)ũ(t, w) dvt (w)

) ∣∣∣
t=0

=
∫
M

divM (J (y, w)ũ(0, w)V T ) dvg(w)

+
∫
M

J (y, w)
d

dt
ũ(0, w) dvg(w)

+
∫
M

J (y, w)ũ(t, w)〈 
H , V⊥〉 dvg(w)

+
∫
M

〈∇w(J (y, w)ũ(0, w)), V⊥〉) dvg(w)

=
∫

∂M
J (y, w)u0(w)〈V T , N 〉 dS

+
∫
M

J (y, w)Dtu dvg(w)

+
∫
M

J (y, w)u0〈 
H , V⊥〉 dvg(w)

+
∫
M

〈∇w(J (y, w)u0(w)), V⊥〉 dvg(w),

where N ∈ T (M) ∩ (T (∂M))⊥ is the unitary normal vector to ∂M. Since J is C1,
the eigenfunctions ut and their derivatives can be continuously extended to the border
∂M. Hence, ut possesses trace and the expression above is well defined. Since u0 is a
function defined onMwe have ∇N u0(w) = ∇Mu0(w) and, ∇Mu0(w) is tangential
toM, then 〈∇N u0(w), V⊥〉 = 0. We will also denote by a0 = ah(0,M) = aM.

Consequently, (3.13) and (3.15) imply

∂

∂t

(
h(t)∗Jh(t,M)h(t)∗−1ut

) ∣∣∣
t=0

= 〈V ,∇ (JMu0)〉 + JM(Dtu|t=0)
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+
∫

∂M
J (y, w)u0(w)〈V T , N 〉 dS(w)

+
∫
M

J (y, w)u0(w) 〈 
H , V⊥〉 dvg(w)

+
∫
M

u0(w) 〈∇w(J (y, w)), V⊥〉 dvg(w).

(3.16)

We get from (3.14) and (3.16) that

∂λt

∂t
(0)u0 + λ0

∂ut
∂t

∣∣∣∣
t=0

= ∂

∂t

(
h∗ah(t,M)

) ∣∣∣
t=0

u0

+a0
∂ut
∂t

− 〈V ,∇ (JMu0)〉 − JM(Dtu|t=0)

−
∫

∂M
J (y, w)u0(w)〈V T , N 〉 dS(w) −

∫
M

J (y, w)u0(w) 〈 
H , V⊥〉 dvg(w)

−
∫
M

u0(w) 〈∇w(J (y, w)), V⊥〉 dvg(w). (3.17)

Thus, multiplying (3.17) by the normalized eigenfunction u0 and integrating on M,
we obtain

∂λt

∂t
(0) + λ0

∫
M

∂ut
∂t

u0 dvg(x) =
∫
M

∂

∂t

(
h∗ah(t,M)

) ∣∣∣
t=0

u20 dvg(x)

+
∫
M

JMu0
∂ut
∂t

dvg(x) +
∫
M

(a0 − JM)u0
∂ut
∂t

dvg(x)

−
∫
M

〈V ,∇ (JM u0)〉 u0(x) dvg(x)

−
∫
M

u0

[
JM(Dtu|t=0) +

∫
∂M

J (x, z)u0(z) 〈V T , N 〉(z) dS(z)

]
dvg(x)

−
∫
M

∫
M

J (x, w)u0(x)u0(w)〈 
H , V⊥〉(w) dvg(w) dvg(x)

−
∫
M

∫
M

u0(x) u0(w) 〈∇w J (x, w), V⊥〉(w) dvg(w) dvg(x),

which in turn implies

∂λt

∂t

∣∣∣∣
t=0

=
∫
M

∂

∂t

(
h∗ah(t,M)

) ∣∣∣
t=0

u20 dvg(x)

+
∫
M

JMu0
∂ut
∂t

dvg(x) −
∫
M

u0 〈V ,∇ (JMu0)〉 dvg(x)

−
∫
M

u0(x)

[
JM(Dtu|t=0) +

∫
∂M

J (x, y)u0(z) 〈V T , N 〉(z) dS(z)

]
dvg(x)
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−
∫
M

JMu0(w)u0(w)〈 
H , V⊥〉 dvg(w)

−
∫
M

u0(w)〈∇w(JMu0(w)), V⊥〉 dvg(w), (3.18)

since (a0 − JM)u0 = λ0u0 in M. The last two integrals are obtained from the
symmetry J (x, w) = J (w, x), which also implies

∫
M

u0 [JM(Dtu|t=0) + 〈V ,∇x (JMu0)〉] dvg(x)

=
∫
M

∫
M

J (x, w)u0(x)

(
∂ut
∂t

(w) − 〈V (w),∇wu0(w)〉
)
dvg(w)dvg(x)

+
∫
M

u0〈V ,∇x (a0u0 − λ0u0)〉dv0(x)

=
∫
M

∂ut
∂t

JMu0 dv0(x) −
∫
M

(a0 − λ0)u0〈V ,∇u0〉dvg(x)

+
∫
M

u0〈V ,∇ (a0u0 − λ0u0)〉dvg(x)

=
∫
M

∂ut
∂t

JMu0 dv0(x) +
∫
M

u20〈V ,∇a0〉dv0(x).

Finally we observe

∫
M

u0(w)〈∇w(JMu0(w)), V⊥〉dvg(w) =
∫
M

u20(w)〈∇w(a0(w)), V⊥〉dvg(w).

Here we used that ∇u0 is tangential toM.
Consequently, we get from (3.18) that

∂λt

∂t
(0) =

∫
M

∂

∂t

(
h∗ah(t,M)

) ∣∣∣
t=0

u20 dvg(x) −
∫
M

u20〈V ,∇a0〉dv0(x)

−
∫
M

u0(x)
∫

∂M
J (x, y)u0(z) 〈V T , N 〉(z) dS(z) dvg(x)

−
∫
M

JMu0(w)u0(w)〈 
H , V⊥〉 dvg(w) −
∫
M

u20(w)〈∇w(a0(w)), V⊥〉dvg(w)

=
∫
M

u20 D
T
t (h∗at )

∣∣
t=0 dvt (x) −

∫
∂M

(a0 − λ0)u
2
0〈V , N 〉 dS

−
∫
M

(a0 − λ0)u
2
0(w)〈 
H , V⊥〉dvg(w) −

∫
M

u20(w)〈∇wa0(w), V⊥〉 dvg(w)

where DT
t f = ∂ f

∂t − 〈V T ,∇ f 〉. Observing that JMu0 = (a0 − λ0)u0 we complete
the proof. ��
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Remark 3.2 In the case thatM is an open domain of Rn+1 (with co-dimension 0) we
have V⊥ = 0, and then, V = V T . Hence, the Hadamard formula becomes

∂λ

∂h
(iM)V = −

∫
∂M

(aM(s) − λ0) u
2
0(s) 〈V , N 〉 dS(s)

+
∫
M

u20(x) Dt (h
∗ah(t,M))

∣∣
t=0dvg(x).

Proof of Corollary 1.1 Let us now determine the domain derivative of the function uh
introduced by Theorem 1.1.

Due to (3.17), we have for all V ∈ X 1(N ) that

∂λt

∂t
u0 + λ0

∂ut
∂t

= ∂

∂t

(
h∗ah(t,M)

) ∣∣∣
t=0

u0 + BM
(

∂uiM
∂t

)

+ [JM, 〈V ,∇(·)〉] u0 −
∫

∂M
J (y, w)u0(w)〈V , N 〉 dS(w)

−
∫
M

J (y, w)u0〈 
H , V⊥〉dvg(w)

−
∫
M

u0(w) 〈∇w(J (y, w)), V⊥〉dvg(w).

where [A, B] u := ABu − BAu, and then, [JM, 〈V ,∇(·)〉] u0 = JM(〈V ,∇u0〉) −
〈V ,∇(JMu0)〉.

Hence,

(λ0 − BM)
∂uiM

∂t
= −∂λiM

∂t
u0 + ∂

∂t

(
h∗ah(t,M)

) ∣∣∣
t=0

u0 + [JM, 〈V ,∇(·)〉] u0

−
∫

∂M
J (y, w)u0(w)〈V , N 〉 dS(w)

−
∫
M

J (y, w)u0〈 
H , V⊥〉dvg(w)

−
∫
M

u0(w) 〈∇w(J (y, w)), V⊥〉dvg(w). (3.19)

Thus, we can conclude that the derivative of uh at h = iM in V ∈ C1(N ,N ) is the
solution of

(λ0 − BM)w = fV

where fV ∈ L2(M) is the function given by the right side of (3.19) which is well

defined since u0, λ0,
∂λt
∂t and ∂

∂t

(
h∗ah(t,M)

) ∣∣∣
t=0

are known.

Notice that λ0 is a simple eigenvalue of BM, and then, we have

L2(M) = R(λ0 − BM) ⊕ [u0].
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Therefore, (3.19) possesses unique solution, if and only if,
∫
M u0 fV dvg(x) = 0 for

each V ∈ X 1(N ).
Indeed, it follows from (1.3) and the assumption BMu0 = λ0u0 inM that

∫
M

u0 fV dvg(x)

= −∂λt

∂t
+

∫
M

Dt (h
∗ah(t,·))

∣∣∣
t=0

u20 dvg(x)

+
∫
M

u0(u0〈V ,∇(·)〉aM + [JM, 〈V ,∇(·)〉] u0) dvg(x)

−
∫
M

∫
∂M

J (x, z)u0(x) u0(z) 〈V , N 〉 dS(z)dvg(x)

−
∫
M

∫
M

J (x, z)u0(x) u0(z) 〈 
H , V⊥〉dvg(z) dvg(x)

−
∫
M

∫
M

u0(x) u0(z) 〈(∇x J ), V⊥〉dvg(z) dvg(x)

=
∫
M

u0(x)
[
JM(〈V T ,∇u0〉) − aM〈V T ,∇u0〉 + λ0〈V T ,∇u0〉

]
dvg(x)

=
∫
M

u0(x) [λ0 − BM] (〈V T ,∇u0〉) dvg(x).

Thus, since BM is a self-adjoint operator, u0 is a C1-function and 〈V ,∇(·)〉u0 ∈
L2(M), one has

∫
M

u0 fV dx =
∫
M

〈V ,∇u0〉 (λ0 − BM) u0 dx = 0

for all V ∈ X 1(N ) which proves Corollary 1.1. ��

Examples

We finish this section with some concrete examples, by setting specific nonlocal oper-
ators and manifolds.

Example 3.1 (The sphere) Consider M = S
n and N = R

n+1. If we take a ≡ 0, then

H(p) = n

R p and

∂λt

∂t
(iSn )V = nλ0

R

∫
Sn

u20(w)〈w, V⊥〉 dvg(w).

Example 3.2 (The Dirichlet problem on the upper hemisphere) Consider M = S
n+

(that is p ∈ S
n with xn+1 ≥ 0) and N = R

n+1. If we take a ≡ 1, then 
H(p) = 1
R p
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and N (p) = en+1

∂λt

∂t
(iSn+)V = −(1 − λ0)

∫
∂Sn+

u20Vn+1 dS − n(1 − λ0)

R

∫
Sn

u20(w)〈w, V⊥〉 dvg(w).

Example 3.3 (Oneparameter family of functionsa)Consider� ⊂ R
n ,M = �×[0, 1]

and N = R
n+1. In this case 
H = 0, but assume that a depends on the variable xn+1

then

∂λ

∂h
(i�)V = −

∫
∂�

(a�(s) − λ0) u
2
0(s) (V · N )(s) dS +

∫
�

u20(x) Dt (h
∗a�h )

∣∣
t=0dx

−
∫

�×[0,1]
u20(w)〈∇wa�(w), V⊥〉 dvg(w).

Some examples in Euclidean spaces

In the sequel we compute some examples assuming M = � is a domain of Rn ,
J (x, y) = J (|x − y|), for some J ∈ C1(R) non negative satisfying J (0) > 0 and∫
Rn J (z)dz = 1. Here we use the Hadamard formula given by Remark 3.2. It is still
worth mentioning that such examples often appear in the literature associated with
nonlocal differential equations. We include below appropriate references for each
considered example.

Example 3.4 (Dirichlet problem) If we take a�(x) ≡ 1 in (2.6), we have what is called
the Dirichlet nonlocal problem. In this case, the Hadamard formula is known and it
was first obtained in [9] for the first eigenvalue. In [3], we have proved that the same
formula still holds for any simple eigenvalue. Since a� is constant, Dt (h∗a�h )

∣∣
t=0 = 0

and, from Theorem 1.1, we get

∂λ

∂h
(i�)V = − (1 − λ0)

∫
∂�

u20 V · N dS ∀V ∈ C1(�,Rn)

with · denoting the scalar product in Rn .

Example 3.5 (Neumann problem) In the literature, see for instance [1, 8, 16], the
nonlocal Neumann problem is established taking

a�(x) =
∫

�

J (|x − y|)dy, x ∈ R
n .

As expected, zero is its first eigenvalue for any measurable open set � which is
simple and it is associated with a constant eigenfunction. Clearly, the rate of the first
eigenvalue with respect to the domain must be null. Let us take its rate for any other
simple eigenvalue. For this, we first compute the anti-convective derivative of a� at
t = 0 assuming h(t, x) = x + tV (x) for some V ∈ C1(�,Rn). We have from [14,
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Lemma 2.1] and [14, Theorem 1.1] that

Dt
[
h∗(t)ah(t,�)

] ∣∣
t=0 = h∗(t) ∂

∂t

[∫
h(t,�)

J (| · −w|)dw

] ∣∣∣
t=0

=
∫

∂�

J (|x − s|)(V · N )(s) dS, x ∈ �.

Hence, we obtain from Theorem 1.1 that

∂λ

∂h
(i�)V = −

∫
∂�

(a�(s) − λ0) u
2
0(s) (V · N )(s) dS

+
∫

�

u20(x)
∫

∂�

J (|x − s|)(V · N )(s) dSdx

= −
∫

∂�

(a�(s) − λ0) u
2
0(s) (V · N )(s) dS +

∫
∂�

(J�u
2
0)(s)(V · N )(s) dS

= −
∫

∂�

(B� − λ0) u
2
0 (V · N )(s) dS.

Notice in the last integral the termJ�u20 which is the operatorJ� applied to the square
of the normalized eigenfunction u0.

Example 3.6 Let D ⊂ R
n be a bounded open set and take A ⊂ D, another open

bounded set strictly contained in D in such way that ∂A ∩ ∂D = ∅. Next, consider
� = D\A defining

a�(x) =
∫
Rn\A

J (|x − y|) dy, x ∈ R
n .

The nonlocal operator B� given for such function a� is a kind of Dirichlet/Neumann
problem. It takes Dirichlet boundary condition side out of D setting Neumann condi-
tion on the hole A. Such operator is given by

B�(x) =
∫
Rn\A

J (|x − y|)(u(x) − u(y)) dy, x ∈ �,

assuming u ≡ 0 in R
n\D and has been studied for instance in [23]. Let us compute

its Hadamard formula. Due to

a�(x) =
∫
Rn

J (|x − y|)dy −
∫
A
J (|x − y|) dy

= 1 −
∫
D
J (|x − y|) dy +

∫
�

J (|x − y|) dy, ∀x ∈ R
n,
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one gets again from [14, Lemma 2.1, Theorem 1.1] that

Dt
[
h∗(t)ah(t,�)

] ∣∣
t=0

= h∗(t) ∂

∂t

[
1 −

∫
h(t,D)

J (| · −y|) dy +
∫
h(t,�)

J (| · −y|) dy
] ∣∣∣

t=0

= −
∫

∂D
J (|x − s|)(V · N )(s) dS +

∫
∂�

J (|x − s|)(V · N )(s) dS

=
∫

∂A
J (|x − s|)(V · N )(s) dS, x ∈ �

since ∂� = ∂D ∪ ∂A with ∂D ∩ ∂A = ∅. Hence,
∂λ

∂h
(i�)V = −

∫
∂�

(a�(s) − λ0) u
2
0(s) (V · N )(s) dS

+
∫

∂A
(J�u

2
0)(s)(V · N )(s) dS.

4 Hadamard formula for multiple eigenvalues

In this section we prove Theorem 1.2. As we will see, it is based on the implicit
functional theorem and the Lyapunov–Schmidt method. Here, we use the domain of
definition of the solutions as a bifurcation parameter according to the pioneeringworks
[6, 14]. Under the additional condition J is analytic, we first ensure the existence of
analytic curves of eigenvalues and eigenfunctions for the eigenvalue problem

Bh(t,M)ũ(y) = λũ(y), y ∈ h(t,M)

when h(t, ·) is an analytic curve of diffeomorphisms in Diff1(M). Next, we compute
the Hadamard formula for an m-fold eigenvalue with m > 1.

It is worth noticing that the assumption of analyticity of J is not optimal. As wewill
see in the proof of Lemma 4.1, it is enough to hold the conditions of Puiseux’s theorem,
which guarantees the existence of the analytic curves. Notice that the case m = 1 is
considered in Theorem 1.1 without the additional assumption that J is analytic. A
complete discussion in this direction can be seen in [17] where a more general result,
which also includes Lemma 4.1, is presented. In our context, Lemma 4.1 and its proof
are important to compute the derivatives.

Lemma 4.1 Let λ0 be an eigenvalue of multiplicity m of the operator BM with m > 1.
Assume the non-singular kernel J : N × N �→ R is an analytic function satisfying
condition (H), h(t, ·) is an analytic curve of diffeomorphisms of classC1 with h(0, x) =
x inM, and � : R �→ C1(M), given by �(t) = (

h(t, ·)∗aMh(t,·)
)
is also an analytic

map.
Then, for some δ > 0, there exist m analytic curves λ1(t),…, λm(t) ∈ R with

λ1(0) = · · · = λm(0) = λ0, and m analytic curves u1(t),…, um(t) ∈ L2(M) setting
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respectively pairs of eigenvalues and eigenfunctions (λ j (t), u j (t)) for

h(t, ·)∗Bh(t,M)h(t, ·)∗−1u(x) = λu(x), x ∈ M,

for all t ∈ (−δ, δ).

Proof Since J is an analytic function, h is a C1 diffeomorphism and

h∗Jh(M)h
∗−1u(x) =

∫
M

J (h(x), h(z)) u(z)dvgh (z), x ∈ M,

where dvgh is the volume element of the metric on gh , we have that

(h, u) ∈ Diff1(M) × L2(M) �→ h∗Jh(M)h
∗−1u ∈ L2(M)

is an analytic map. Thus, under the hypotheses of the lemma, we conclude that

G : R × R × L2(M) �→ L2(M)

(t, λ, u) �→
(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − λ

)
u

is also an analytic map. Moreover, (λ, ũ) ∈ R × L2(h(t,M)) is an eigenpair for
Bh(t,M), if and only if, G(t, λ, u) = 0 with ũ = h(t, ·)∗−1u.

Now, let {φ1, . . . , φm} be an orthonormal basis of eigenfunctions for BM with
eigenvalue λ = λ0. Set P(·) = ∑m

i=1 φi
∫
M φi (·)dvg the orthogonal projection onto

the span of {φ1, . . . , φm}. We seek λ near λ0 and u �= 0 such that G(t, λ, u) = 0
for t near 0, and then, for h(t, ·) near iM. Notice that this is equivalent to finding
u = v + w �= 0 with

v = Pu and w = (I − P)u ∈ N (P)

such that

PG(t, λ, v + w) = 0 and (I − P)G(t, λ, v + w) = 0

where N (P) denotes the kernel of the orthonormal projection P and I the identity
operator. We rewrite the last equation as

0 = (I − P)
[(

h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − BM
)

+ (BM − λ)
]
(v + w)

= (I − P)
(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − BM

)

×(v + w) + (BM − λ)w − P (BM − λ)w.

Since w ∈ N (P) and R(BM) ⊥ N (P), where R(BM) denotes the image of the
operator BM, we have P(BM − λ)w = 0, and then,

0 = (I − P)
(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − BM

)
(v + w) + (BM − λ)w.
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Thus, G(t, λ, u) = 0 with u �= 0, if and only if, u = v + w �= 0 with v = Pu and
w = (I − P)u satisfies 0 = PG(t, λ, v + w) and

0 = (I − P)
(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − BM

)
(v + w) + (BM − λ)w ∈ N (P).

(4.20)

Now, since (BM − λ) : N (P) ∩ L2(M) �→ N (P) ⊂ L2(M) is an isomorphism
at λ = λ0, by the implicit function theorem, it is also an isomorphism for λ near λ0.
Hence, for λ near λ0, it possesses an inverse which we denote by Qλ. In addition Qλ

is an analytic function on λ. Thus, from (4.20)

w = −Qλ(I − P)
(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − BM

)
(v + w) ∈ N (P). (4.21)

See that (4.21) is solvable for w if t is near zero. In fact, if � : L2(M) �→ L2(M),
given by

�(t,λ,v)(w) = �(w) = −Qλ(I − P)
(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − BM

)
(v + w)

is a uniform contraction, then, by the fixed point theorem with parameter [15, Section
1.2.6], there exists a unique fixed point w for each (t, λ, v). Next, let us see that � is
a uniform contraction. First, we have that

‖�(w) − �(z)‖L2(M) ≤ ‖Qλ‖‖(I − P)‖∥∥∥
(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − BM

)∥∥∥ ‖w − z‖L2(M)

where ‖ · ‖ denotes the norm in the space of linear and bounded operators. Also,

∥∥∥
(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − BM

)
u
∥∥∥2
L2(M)

≤ 2
∥∥h(t, ·)∗ah(t,M) − aM

∥∥2
L∞(M)

‖u‖2L2(M)
+ 4

(
sup
M̄

|det(Dh(t, ·))|
)2

×
(∫

M

∫
M

|J (h(t, x) − h(t, y)) − J (x, y)|2dvg(x)dvg(y)

)

× ‖u‖2L2(M)
4

(
sup
M̄

|1 − |det(Dh(t, ·))||
)2

×
(∫

M

∫
M

J (x, y)2dvg(x)dvg(y)

)
‖u‖2L2(M)

.
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Hence, as h(t, ·)∗ah(t,M), |det(Dh(t, ·))| and J are continuous with M bounded,
there exists a positive constant C(t) with C(t) → 0 as t → 0 such that

∥∥∥
(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − BM

)∥∥∥ ≤ C(t), for t ≈ 0.

Thus, as Qλ is uniformly bounded in a neighborhood of λ0 and P is fixed, � is a
contraction for λ ≈ λ0 and h(t, ·) ≈ iM. Moreover, � is analytic in t , λ and v being
linear in v. Then, there exists a unique operator S(t, λ), analytic in (t, λ), which sets
the fixed points of (4.21) by w = S(t, λ)v. Also,

‖S(t, λ)v‖ = O

(
‖h(t, ·) − iM‖C1

(
M,N

)
)

.

In particular, S(0, λ)v = 0.
Next, we use the equation in R(P) to characterize the existence of the eigenpairs.

Since v = ∑m
i=1 ciφi , for some ci ∈ R, we have

u = v + w =
m∑
i=1

ci (1 + S(t, λ)) φi �= 0.

Thus, h(t, ·)∗−1u is an eigenfunction of the operator Bh(t,M) with eigenvalue λ ≈ λ0,
if and only if, there exist ci not all zero such that 0 = ∑m

k=1 Mik(t, λ)ck for all
1 ≤ i ≤ m where

Mik(t, λ) =
∫
M

φi

(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − λ

)
(1 + S(t, λ)) φkdvg. (4.22)

Therefore, λ is an eigenvalue, if and only if, det (M(t, λ)) = 0 where M(t, λ) =
(Mik(t, λ))mi,k=1.

Notice that (λ, t) �→ det (M(t, λ)) is analytic near t = 0 and λ = λ0. Hence,
since M(t, λ) is symmetric, it follows from Puiseux’s theorem (see for instance [27])
that there existm analytic curves λ1(t),…, λm(t), not necessarily distinct, solutions of
det (M(t, λ)) = 0. Also, for each curve λ j (t), there exists an analytic curve C j (t) =
(c j1(t), . . . , c

j
m(t)) ∈ R

m solution of M(t, λ j (t))C j (t) = 0 with C1(t),…, Cm(t)
linearly independent. Thus,

u j =
m∑
i=1

c ji (t)
(
φi + S(t, λ j (t))φi

)

is an analytic curve of associated eigenfunctions which completes the proof of the
lemma. ��
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Proof of Theorem 1.2 We have seen in Lemma 4.1 that there is an analytic eigenpair
(λ(t), u(t, ·)) such that

(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1 − λ(t)

)
u(t, x) = 0 inM

for all t near a neighborhood of 0. Thus

d

dt

(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1u(t, x)

) ∣∣∣
t=0

= dλ

dt
(0)u(t, x) + λ(0)

du

dt
(t, x).

Now, from the expression (3.16), we obtain

d

dt

(
h(t, ·)∗Bh(t,M)h(t, ·)∗−1u(t, x)

) ∣∣∣
t=0

= d

dt

(
h(t, ·)∗ah(t,M)u(t, x)

) ∣∣∣
t=0

− d

dt

(
h(t, ·)∗Jh(t,M)h(t, ·)∗−1u(t, x)

) ∣∣∣
t=0

= d

dt

(
h(t, ·)∗ah(t,M)

) ∣∣∣
t=0

u(t, x) + aM
du

dt
(t, x)

−
∫
M

J (x, y)Dtu(t, y)dvg(y) − 〈V T ,∇ (JMu(t, x))〉

−
∫

∂M
J (x, y)u(t, y)〈V T , N 〉dS(y) −

∫
M

J (x, y)u(t, y) 〈 
H , V⊥〉 dvg(y)

−
∫
M

u(t, y) 〈∇w(J (x, y)), V⊥〉 dvg(y).

Thus

d

dt

(
h(t, ·)∗ah(t,M)

) ∣∣∣
t=0

u(t, x) + aM
du

dt
(t, x) −

∫
M

J (x, y)Dtu(0, y)dvg(y)

−〈V T ,∇ (JMu(t, y))〉 −
∫
M

J (x, y)u(0, y)〈 
H , V⊥〉 dvg(y)

−
∫
M

u(0) 〈∇y(J (x, y)), V⊥〉 dvg(y)

−
∫

∂M
J (x, y)u(t, y)〈V T , N 〉dS(y) = dλ

dt
(0)u(t, x) + λ(0)

du

dt
(t, x). (4.23)

Notice that there exist c1,…, cm such that u(0, x) = ∑m
i=1 ciφi (x). Hence, multi-

plying (4.23) by the eigenfunction φk and integrating onM, we obtain

dλ

dt
(0) ck =

∫
M

dλ

dt
(0)u(0, x)φk(x)dvg(x)

=
∫
M

[(
h(t, ·)∗ah(t,M)

) ∣∣∣
t=0

u(0, x) + (
aM − λ0

) du
dt

(0, x)

]
φk(x)dvg(x)

−
∫
M

∫
M

J (x, y)
du

dt
(0, y)φk(x)dvg(y)dvg(x)
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−
∫
M

〈V T , ∇ (JMu(0, x)
)〉φk(x)dvg(x)

+
∫
M

∫
M

J (x, y)〈V T , ∇u(0, y)〉 φk(x)dvg(y)dvg(x)

−
∫
M

∫
∂M

J (x, y)u(0, y)〈V T , N 〉φk(x)dS(y)dvg(x)

−
∫
M

∫
M

φk(x)J (x, y)u(0, y)〈 
H , V⊥〉 dvg(y) dvg(x)

−
∫
M

∫
M

φk(x) u(0, y)〈∇y J (x, y), V⊥〉 dvg(y) dvg(x). (4.24)

Since J is symmetric,

∫
M

(aM − λ0)
du

dt
(0, x)φk(x)dvg(x)

−
∫
M

∫
M

J (x, y)
du

dt
(0, y) φk(x) dvg(y)dvg(x)

∫
M

du

dt
(0, x)

[
(aM − λ0) φk(x) −

∫
M

J (x, y)φk(y)dvg(y)

]
dvg(x)

=
∫
M

du

dt
(0, x) (BM − λ0) φk(x)dvg(x) = 0. (4.25)

In addition,

∫
M

〈V ,∇ (JMu(0, x))〉φk(x)dvg(x) =
∫
M

u(0, x)φk(x)〈V ,∇aM〉 dvg(x)

+
∫
M

(aM − λ0) 〈V ,∇u(0, x)〉φk(x) dvg(x)

and then,

−
∫
M

〈V ,∇ (JMu(0, x))〉φk(x)dvg(x)

+
∫
M

∫
M

J (x, y)〈V ,∇u(0, y)〉φk(x) dvg(y) dvg(x)

= −
∫
M

u(0, x)φk(x)〈V ,∇aM〉 dvg(x)

−
∫
M

〈V ,∇u(0, x)〉 [(aM − JM − λ0) φk(x)] dvg(x)

= −
∫
M

u(0, x)φk(x)〈V ,∇aM〉 dvg(x). (4.26)

We also have
∫
M

∫
∂M

J (x, y)u(0, y)〈V T , N 〉φk(x) dS(y)dvg(x)
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=
∫

∂M
u(0, y)〈V T , N 〉

(∫
M

J (x, y)φk(x)dvg(x)

)
dS(y)

=
∫

∂M
u(0, y)〈V T , N 〉 (aM − λ0) φk(y)dS(y). (4.27)

Similarly,

∫
M

∫
M

φk(x)J (x, y)u(0, y)〈 
H , V⊥〉 dvg(y) dvg(x)

=
∫
M

(JMφk)u(0, y)〈 
H , V⊥〉 dvg(y)

=
∫
M

(aM − λ0) φk(y) u(0, y)〈 
H , V⊥〉 dvg(y), (4.28)

and

∫
M

∫
M

φk(x) u(0, y)〈∇y(J (x, y)), V⊥〉 dvg(y) dvg(x)

=
∫
M

u(0, y)〈∇y(JMφk), V
⊥〉 dvg(y)

=
∫
M

u(0, y)〈∇y [(aM − λ0) φk] , V
⊥〉 dvg(y).

As in Sect. 3, since ∇φk are tangential toM, we have that

∫
M

u(0, y)〈∇y [(aM−λ0) φk] , V
⊥〉 dvg(y)=

∫
M

u(0, y)φk〈∇yaM, V⊥〉 dvg(y).

(4.29)

Therefore, it follows from (4.24), (4.25), (4.26), (4.27), (4.28) and (4.29) that

dλ

dt
(0) ck =

∫
M

(
h(t, ·)∗ah(t,M)

) ∣∣∣
t=0

u(0, x)φk(x) dvg(x)

−
∫
M

u(0, x))φk(x)〈V T ,∇aM〉 dvg(x)

−
∫

∂M
u(0, y)〈V T , N 〉 (aM − λ0) φk(y)dS(y)

−
∫
M

(aM − λ0) φk(y)u(0, y)〈 
H , V⊥〉 dvg(y)

−
∫
M

u(0, y)φk(y)〈∇yaM, V⊥〉 dvg(y).
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As u(0, ·) = ∑m
i=1 ciφi (·), we get

dλ

dt
(0) ck =

m∑
i=1

ci

∫
M

[(
h(t, ·)∗ah(t,M)

) ∣∣∣
t=0

− 〈V T ,∇aM〉
]
φk(x)φi (x)dvg(x)

−
m∑
i=1

ci

∫
M

(aM − λ0) φk(x)φi (x)〈 
H , V⊥〉 dvg(x)

−
m∑
i=1

ci

∫
∂M

〈V T , N 〉 (aM − λ0) φk(x)φi (x)dS(x)

−
m∑
i=1

ci

∫
M

φi (y)φk(y)〈∇yaM, V⊥〉 dvg(y).

Thus, dλ
dt (0) is an eigenvalue of the matrix B = (Bki )

m
k,i=1 given by

Bki =
∫
M

DT
t

(
h(t, ·)∗ah(t,M)

) ∣∣∣
t=0

φkφi dvg

−
∫

∂M
(aM − λ0) φi (x)φk(x)〈V T , N 〉dS(x)

−
∫
M

(aM − λ0) φk(x)φi (x)〈 
H , V⊥〉 dvg(x)

−
∫
M

φi (y)φk(y)〈∇yaM, V⊥〉 dvg(y).

which shows the theorem. ��

Remark 4.1 Notice that the examples given in Sect. 3 are easily adapted from simple
to multiple eigenvalues by Theorem 1.2. In particular, if aM(x) ≡ 1 in M, we
get the Hadamard formula for the Dirichlet problem. More precisely, if λ(t) is a
curve of eigenvalues, given under the conditions of Lemma 4.1 for the family of
operators Bh(t,M) with aM(x) ≡ 1, then, the rate dλ

dt (0) is an eigenvalue of the matrix
B = (Bki )

m
k,i=1 with

Bki = −
∫

∂M
(1 − λ0) 〈V T , N 〉φi (x)φk(x)dS(x)

−
∫
M

(1 − λ0) φk(x)φi (x)〈 
H , V⊥〉 dvg(x).

Remark 4.2 It is worth mentioning that the simple eigenvalue case, given by the con-
dition m = 1, is also recovered by formula (1.4).
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4.1 An application

Let us finish this section giving an application of Lemma 4.1 and Theorem 1.2. Here,
we assume M is an open bounded domain set in R

n . Also, we suppose BM is the
Dirichlet operator set by aM ≡ 1. We have the following result.

Theorem 4.1 Let λ0 be an m-fold eigenvalue of BM with aM ≡ 1 and under the
conditions of Lemma 4.1. Also, suppose the multiplicity of λ0 cannot be reduced
by small perturbations of M set by h ∈ Diff1(M). Then, there exists a ball O ⊂
Diff1(M) centered at iM such that, for each h ∈ O, there exists a unique eigenvalue
λh(M) of Bh(M), near λ0, which also has multiplicity m and satisfies λh(M) = λ0 for
all h ∈ O (that is, λh(M) is constant and equal to λ0 in O). Moreover, there exists a
neighborhood of ∂M where any eigenfunction of λh(M) must vanish.

Proof of the Theorem 4.1 We know from Lemma 4.1 that λ is an eigenvalue ofBh(t,M)

with λ ≈ λ0 and t ≈ 0, if and only if, λ = λ(t) for some t ≈ 0, and there exists
C(t) = (c1(t), . . . , cm(t)) ∈ R

n satisfying M(t, λ(t))C(t) = 0, where M is the
matrix given by (4.22). Hence, for all 1 ≤ i ≤ m,

0 =
m∑

k=1∫
M

φi

(
h∗(t, x)Bh(t,M)h

∗(t, x)−1 − λ(t)
)

(φk(x) + S(t, λ(t))φk(x)) ck(t)dvg(x)

=
n∑

k=1

pik(t, λ(t))ck(t) − λ(t)ci (t)

where pik(t, λ) is set by

pik(t, λ) =
m∑

k=1

∫
M

φi

(
h∗(t, x)Bh(t,M)h

∗(t, x)−1
)

(1 + S(t, λ(t))) φk(x)ck(t)dvg(x).

(4.30)

Consequently, it follows from our hypotheses that for each t ≈ 0, there is λ(t) ≈ λ0
an eigenvalue of Bh(t,M) having multiplicity m. Thus, from (4.30), we have

0 = 	(t, λ) = det
[
(λδik − pik(t, λ))mi,k=1

]

with the map pik(t, λ) analytic near (0, λ0). Moreover, we have pik(0, λ) = λ0δik and
	(0, λ) = (λ − λ0)

m . Then, by Rouché’s theorem, there are m real roots λ near λ0
such that the matrix (λδik − pik(t, λ))mi,k=1 has at least m independent null-vectors.
Hence, since pik = pki , such matrix is symmetric, and then, we can conclude that
pik(t, λ) = λδik for all 1 ≤ i, k ≤ m.

See now that, by (3.16),
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d

dt
(pik(t, λ(t))

∣∣∣
t=0

=
∫
M

φi
d

dt

[
h∗(t, ·)Bh(t,M)h

∗(t, x)−1
(1 + S(t, λ(t))) φk(x)

] ∣∣∣
t=0

dvg(x)

=
∫
M

φi (x)

[
d

dt

(
h(t, ·)∗ah(t,M)

) ∣∣∣
t=0

φk(x) + aM
d

dt
(φk(x) + S(t, λ(t))φk(x))

∣∣∣
t=0

]
dvg(x)

−
∫
M

J (x, y)
(
DT
t (φk(y) + S(t, λ(t))φk(y))

) ∣∣∣
t=0

dvg(y) − V · ∇ (JMφk)

−
∫

∂M
J (x, y)φk(x)V · N dS(y)dvg(x)

=
∫
M

φi (x)BM
d

dt
(S(t, λ(t))φk(x))

∣∣∣
t=0

dvg(x) −
∫
M

J (x, y)V · ∇φk(x)dvg(y)

−V · ∇ (JMφk(x)) −
∫

∂M
J (x, y)φk(y)V · N dS(y)dvg(x).

Hence, as
∫
M φi (x)V · ∇ (JMφk) dvg(x) = ∫

M φi (x)(1 − λ0)V · ∇φk(x) dvg(x), we have

∫
M

φi (x)

[∫
M

J (x, y)V · ∇φk(y)dvg(y) − V · ∇ (JMφk)

]
dvg(x)

=
∫
M

φi (x) (λ0 − BM) (V · ∇φk) dvg(x)

=
∫
M

(V · ∇φk) (λ0 − BM) φi (x)dvg(x) = 0.

Also,
∫
M φiBM d

dt (S(t, λ(t))φk)

∣∣∣
t=0

dvg(x) = 0, since S(t, λ(t))φk ∈ N (P) for all

t . Therefore, as the kernel J is symmetric, we have that

d

dt
(pik(t, λ(t))

∣∣∣
t=0

= −
∫
M

∫
∂M

φi J (x, y)φkV · N dS(y)dvg(x)

= −
∫

∂M
(1 − λ0)φkφi V · N dS(y). (4.31)

On the other hand, we obtain from pik(t, λ(t)) = λ(t)δik that

ṗik = d

dt
(pik(t, λ(t)))

∣∣∣
t=0

= dλ(0)

dt
δik .

Consequently, it follows from (4.31) that

∫
∂M

(1 − λ0)φkφi V · N dS(y) = 0 and
∫

∂M
(1 − λ0)(φ

2
k − φ2

i )V · N dS(y) = 0 ∀V ∈ X 1(M) and k �= i .

Then, φkφi = φ2
k − φ2

i ≡ 0 on ∂M for any k �= i . Thus,

φk ≡ 0 on ∂M, for all k = 1, . . . ,m, (4.32)
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and then, dλ(0)
dt = 0 by Theorem 1.2. Using once more that the multiplicity of λ0 can

not be reduced, it follows from the change of origin discussed in [14, pag. 25] that
dλ(0)
dt ≡ 0 in a neighborhood of t = 0. Thus, λ(t) = λ0 for all t ≈ 0. Since we are

considering an arbitrary perturbation, we conclude that λh(M) is constant and equal
to λ0 in a neighborhood of iM.

Finally, let us see that there exists a family of basis {ψk(t)}mk=1 for the eigenfunctions
of the m-fold eigenvalue λ0 satisfying ψk(t) ≡ 0 on ∂h(t,M) for all t ≈ 0. We take

ψk(t) = h∗(t, ·)−1
(φk + S(t, λ(t))φk) for each k = 1, . . . ,m. (4.33)

Since the multiplicity of λ0 can not be reduced, it follows from the definition of
φk + S(t, λ(t))φk and the fact h∗(t, ·)−1 is an isomorphism that {ψk(t)}mk=1 given by
(4.33) is a basis for the eigenfunctions of λ(t) = λ0. Also, by the change of origin
[14, pag. 25], it in enough to check that φk + S(0, λ0)φk = φk ≡ 0 on ∂M for any
k �= i . But, we have just done that at (4.32). Hence, we can conclude that {ψk(t)}mk=1
is a basis for the eigenfunctions of λ0 satisfying ψk(t) ≡ 0 on ∂h(t,M) for all t ≈ 0.
And then, we finish the proof. ��

Remark 4.3 It is worth noting that Theorem 4.1 is a kind of result which guarantees the
generic simplicity of eigenvalues for operators with the unique continuation property.
As we still do not know ifBM satisfies such property, we are not in a position to obtain
the generic simplicity of their eigenvalues. Indeed, if BM would satisfy the unique
continuation property, then their eigenfunctions could not vanish in a neighborhood of
∂M, and then, from Lemma 4.1, the multiplicity of their eigenvalues would decrease
to m = 1 as in the case of the Laplace operator with Dirichlet boundary condition.
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