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Abstract
We study a 3D fluid–rigid body interaction problem. The fluid flow is governed by
3D incompressible Navier–Stokes equations, while the motion of the rigid body is
described by a system of ordinary differential equations describing conservation of
linear and angular momentum. Our aim is to prove that any weak solution satisfying
certain regularity conditions is smooth. This is a generalization of the classical result
for the 3D incompressible Navier–Stokes equations, which says that a weak solution
that additionally satisfy Prodi–Serrin Lr −Ls condition is smooth.We show that in the
case of fluid–rigid body the Prodi–Serrin conditions imply W 2,p and W 1,p regularity
for the fluid velocity and fluid pressure, respectively.Moreover, we show that solutions
are C∞ if additionally we assume that the rigid body acceleration is bounded almost
anywhere in time variable.
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1 Introduction

1.1 Fluid–rigid body system

Let � ⊂ R
3 be a smooth bounded domain, and S0 ⊂ � be smooth such that

d(∂�, S0) > 0. S0 represents part of the domainoccupiedby the rigid bodyat the initial
state.�F = �\S0 is the fluid domain at the initial state which we will use as the refer-
ence domain. The unknowns of the system are fluid velocity u : [0, T ]×�F (t) → R

3,
fluid pressure p : [0, T ] × �F (t) → R, position of the center of mass of the rigid
body q : [0, T ] → R

3 and angular velocity of the rigid body ω : [0, T ] → R
3.

Here we used the following abuse of notation which is standard in analysis of moving
boundary problems:

(0, T ) × �F (t) =
⋃

t∈(0,T )

{t} × �F (t), (1.1)

where �F (t) = � \ S(t) is the fluid domain at time t , and S(t) is a part of the domain
occupied by the rigid body at time t and is defined by q and ω in the following way.
Let P be a skew-symmetric matrix such that P(t)x = ω(t)×x, x ∈ R

3. Then rotation
of the rigid body Q : [0, T ] → SO(3) is defined by relation

dQ

dt
Q

T = P. (1.2)

The domain S(t) is defined by an orientation preserving isometry

B(t, y) = q(t) + Q(t)(y − q(0)), y ∈ S0, t ∈ [0, T ], (1.3)

as the set

S(t) = {x ∈ R
3 : x = B(t, y), y ∈ S0} = B(t, S0), t ∈ [0, T ]. (1.4)

The Eulerian velocity of the rigid body is given by:

uS(t, x) := ∂tB(t,B−1(t, x)) = a(t) + P(t)(x − q(t)) for all x ∈ S(t),

(1.5)

where a = d
dt q is the translation velocity of the rigid body.

The equations modelling dynamics of the fluid–rigid body system read as follows:

∂tu + (u · ∇)u = div (T(u, p)) ,

div u = 0

}
in (0, T ) × �F (t),

d2

dt2
q = − ∫

∂S(t) T(u, p)n dγ (x),

d
dt (Jω) = − ∫

∂S(t)(x − q(t)) × T(u, p)n dγ (x)

⎫
⎬

⎭ in (0, T ),
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On the regularity of weak solutions… 1009

u = d

dt
q + ω × (x − q), on (0, T ) × ∂S(t),

u = 0 on ∂�,

u(0, ·) = u0 in �, q(0) = q0,
d

dt
q(0) = a0, ω(0) = ω0. (1.6)

Here T(u, p) = −pI + 2Du is the fluid Cauchy stress tensor, where Du =
1
2

(∇u + ∇uT
)
is symmetric part of the gradient, and J is the inertial tensor defined

as follows:

J =
∫

S(t)
(|x − q(t)|2I − (x − q(t)) ⊗ (x − q(t))) dx.

Notice that for simplicity we normalized all physical constants since their concrete
values do not influence our analysis.

Remark 1.1 (About the notation) Throughout the paper, we will denote by u both
the fluid velocity defined on �F and the global velocity defined on �. The global
velocity is obtained by extending the fluid velocity by setting u = uS on S(t). To
avoid confusion we will always write the domain of definition.

1.2 Statement of the results

The goal of the paper is to study the regularity of weak solution to fluid–rigid body
problem (1.6). Definition and existence of finite energy weak solutions (i.e. of Leray–
Hopf type) are well-known (see e.g. [6]). Here for the convenience of reader, we recall
the definition of weak solution: first we define a function space

V (t) = {v ∈ H1
0 (�) : div v = 0, Dv = 0 in S(t)}, (1.7)

and a weak solution is given by the following definition

Definition 1.1 [21] The couple (u,B) is a weak solution to the system (1.6) if the
following conditions are satisfied:

1. The function B(t, ·) : R3 → R
3 is an orientation preserving isometry given by the

formula (1.3), which defines a time-dependent set S(t) = B(t, S). The isometry B
is compatible with u = uS on S(t) in the following sense: the rigid part of velocity
u, denoted by uS , satisfies condition (1.5), and q, Q are absolutely continuous on
[0, T ] and satisfy (1.2) with a = d

dt q.
2. The function u ∈ L2(0, T ; V (t))∩L∞(0, T ; L2(�)) satisfies the integral equality

∫ T

0

∫

�

{u · ∂tϕ + (u ⊗ u) : Dϕ − 2Du : Dϕ } dxdt −
∫

�

u(T )ϕ(T ) dx

= −
∫

�

u0ϕ(0) dx, (1.8)

which holds for any test function ϕ ∈ H1(0, T ; V (t)).
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1010 B. Muha et al.

3. The energy inequality

1

2
‖u(t)‖2L2(�)

+ 2
∫ t

0

∫

�F (τ )

|Du|2 dx dτ ≤ 1

2
‖u0‖2L2(�)

.

holds for almost every t ∈ (0, T ).

Now we state the main result of the paper.

Theorem 1.1 Let (u,B) be a weak solution to the system (1.6). Assume that
d(S(t), ∂�) > δ, for some constant δ > 0. If d

dt a,
d
dt ω ∈ L∞(0, T ), and u satis-

fies Prodi–Serrin condition

u ∈ Lr (0, T ; Ls(�F (t))) for some s, r such that
3

s
+ 2

r
= 1, s ∈ (3,+∞)

(1.9)

then

u ∈ C∞((0, T ] × �F (t)), a,ω ∈ C∞((0, T ]).

It is a classical result in the theory of Navier–Stokes equations that any weak
solution to 3D Navier–Stokes equations satisfying condition (1.9) is smooth (see e.g.
[11] where also critical case s = ∞ and r = 3 was solved, and references within).
Our result is generalization of this classical result to the fluid–rigid body system (1.6).
Notice that we have two extra assumptions. The first assumption says that rigid body
do not touch the boundary of �, i.e. the fluid domain does not degenerate. It is well
known (e.g. [30]) that this condition is necessary since the domain degeneration leads
to non-smooth solutions. The second condition, i.e. boundedness of the rigid body
acceleration, is somewhat unexpected, and we will later elaborate more on technical
reasons that give rise to that condition. In absence of this condition we can show that
solutions are strong:

Theorem 1.2 Let (u,B) be a weak solution to the system (1.6). Assume that
d(S(t), ∂�) > δ, for some constant δ > 0. If u satisfies Prodi–Serrin condition
(1.9) then

u ∈ L p(ε, T ;W 2,p(�F (t))) ∩ W 1,p(ε, T ; L p(�F (t))), a,ω ∈ W 1,p(ε, T ) (1.10)

for all ε > 0 and for all 1 ≤ p < ∞.

1.3 Literature review

The global regularity of the incompressible Navier–Stokes equations in dimension 2
is a well-known result which was first proved by by Leray [25] and Ladyzhenskaya
[24], but in dimension 3 it is a famous open problem. However, there are regularity
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results for weak solutions that additionally satisfy Prodi–Serrin condition proved by
Leray [26] for � = R

3, including the case s = ∞, and by Fabes, Lewis and Riviere
[12, 13], and Sohr [29] for domains with a bounded boundary. These regularity results
were extended to the case s = 3 by von Wahl [33] on the bounded domain, and by
Giga [19] on the domainwith a bounded boundary. There are also plenty of conditional
regularity results with other types of conditions, e.g. on gradient of the fluid velocity
or the pressure (see e.g. Remarks 5.6 and 5.9 in [16]).1

In the case of the fluid–rigid body system theory is much less developed. 2D case is
studied in [2, 3, 20] where existence and uniqueness of global weak solution is proved
provided that rigid body does not touch the boundary. Moreover, they show that these
solutions are strong away from t = 0. In the three dimensional case there are results
of local-in-time strong solutions or global-in time solutions for small initial data [7,
8, 10, 17, 27, 31]. Moreover, global-in-time existence (or existence up to the time
of contact) of Leray–Hopf type weak solution were studied in [6, 9, 14, 15, 22]. We
also mention the existence results in the case of slip boundary conditions [2, 3, 5, 18,
34]. Uniqueness of weak solutions is still an open problem, but results of weak-strong
uniqueness type were proved in both slip and no-slip case [4, 21] which state that
the weak solution satisfying additional condition on the fluid velocity is unique in the
larger class of weak solutions.

Our regularity result stated in Theorem 1.1 is motivated by the classical regularity
result for the incompressible Navier–Stokes case [16, Theorem 5.2]). To the best of our
knowledge, this is the first result on the regularity of weak solution for the fluid-rigid
body interaction problem. Inspired by works [17, 31, 32] we use fixed point theorem
in combination with the maximal regularity result for the Stokes problem. The proof
strategy in more details is outline in the next Section.

2 Proof strategy

Here we follow the classical approach to linearize problem (1.6) around a solution
that satisfies the Prodi–Serrin condition, and to analyse the regularity properties of the
solution to the linear system. Since the linearized problem has a unique solution and a
solution to the nonlinear problem is the solution to the linearized problem, proving the
regularity for the linearized problem is enough. This approach has also been used to
prove a conditional regularity result for the incompressible Navier–Stokes equations
(see e.g. [16, Section 5]). However, adapting this strategy to the fluid–rigid body
system is very technically challenging as outlined below. The main steps of the proof
are:

• Linearization Let (̃u, p̃, q̃, ω̃) be a weak solution to the problem (1.6) which
satisfies Prodi–Serrin condition. We linearize around that solution and obtain a
linear fluid–rigid body problemwhere themovement of the rigid body is prescribed
by q̃ and ω̃. We show that the obtained linear problem has a unique weak solution
which we denote by (u, p, a,ω).

1 Let us mention also the conditional regularity of the type that one component of the velocity field is more
regular, see [28].
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• Transformation to the fixed reference domain Since the linear problem is posed
in the moving domain it is convenient to transform it a cylindrical domain, i.e. to
the reference domain that does not depend on time. We use a change of variable
that preserves the divergence free condition and is rigid near the rigid body. This
change of variables was introduced in [23] and by now is a standard tool in analysis
of the fluid–rigid body system. Solution to the linearized problemon the cylindrical
domain is denoted by (U, P,A,�).

• Strong solution We show that if ũ satisfied the Prodi–Serrin condition then
(U, P,A,�) is the strong solution, i.e. equations (1.6) are satisfied in the L p

sense. The main technical tool is the fixed point theorem and a maximal regularity
result for the fluid–rigid body operator. This finishes the proof of Theorem 1.2.

• Higher regularity In this step the goal is to bootstrap the argument from the
previous step to get the higher regularity estimates. Therefore, first we need to
prove regularity of the time derivatives. This is achieved by analysing the system
obtained by formally differentiating in time the linearized system from the previous
steps. The main issue here is to prove that the solution to the system obtained by
taking the time derivative is exactly the time derivative of the solution. This is a
nontrivial step because we do not have any a priori estimates for time derivatives
and our solution is obtained by the fixed point procedure and thus it is not possible
to directly justify the formal estimates. In this step we need an additional regularity
condition on the rigid body acceleration d2

dt2
q̃, d

dt ω̃ ∈ L∞(0, T ).

The paper is organized as follows. In Sect. 2.1, we introduce the linearized problem
and show that it admits a unique weak solution which is equal to the solution of (1.6).
The second step, transformation to the fixed reference domain is done in Sect. 2.2.
There we also state Proposition 2.1 (which corresponds to third step of the proof), and
Propositions 2.2 and 2.3 which correspond to the last step of the proof. The proofs of
these Propositions will be presented in Sects. 3, 4 and 5, respectively. The technical
core of the paper are Sects. 3 and 4. The additional condition on the boundedness
of the rigid body acceleration is needed in Sect. 4. Here we want to point out that
even though formal estimates do not require this condition, this condition is needed in
rigorous justification of the estimates. Namely, the standard methods for construction
of the solutions, such as Galerkin method or the regularization method, do not seem
to work in this context because of the presence of the moving boundary. Finally,
few technical proofs are relegated to the Appendix. Since the proof involves a lot of
notation, for the convenience of the reader we have summarized all notations used in
the paper in table at the end of Appendix.

2.1 Linear problem

Let (̃u, p̃, q̃, ω̃) be a weak solution to the problem (1.6) in a sense of Definition 1.1
which additionally satisfies the Prodi–Serrin condition. Let the rigid body domain
S(t) be defined by (̃q, ω̃) through formulas (1.3) and (1.4) as well as the fluid domain
�F (t) = � \ S(t). We define the following linear problem:
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Find (u, p, a,ω) such that

∂tu + (̃u · ∇)u = div (T(u, p)) ,

div u = 0

}
in (0, T ) × �F (t),

d
dt a = − ∫

∂S(t) T(u, p)n dγ (x),
d
dt (Jω) = − ∫

∂S(t)(x − q̃(t)) × T(u, p)n dγ (x)

}
in (0, T ),

u = a + ω × (x − q̃), on (0, T ) × ∂S(t),

u = 0 on ∂�,

u(0, ·) = u0 in �, a(0) = a0, ω(0) = ω0. (2.1)

Note that the problem is linear since the motion of the domain is a priori given and is
not computed via (a,ω).

Definition 2.1 A weak solution for (2.1) is a function u ∈ L2(0, T ; V (t)) ∩
L∞(0, T ; L2(�)) which satisfies

∫ t

0

∫

�

u · ∂tϕ dxdτ +
∫ t

0

∫

�F (t)
{(̃u ⊗ u) : ∇ϕT − 2Du : Dϕ } dxdτ

−
∫

�

u(t) · ϕ(t) dx = −
∫

�

u0 · ϕ(0) dx −
∫ t

0
ã × a · ϕω, (2.2)

for all ϕ ∈ H1(0, T ; V (t)), where

ϕ(t, x) = ϕa(t) + ϕω(t) × (x − q̃(t)), x ∈ S(t).

First, we show the uniqueness result for the linearized problem (2.1).

Lemma 2.1 Let ũ be aweak solution to the (1.6)which additionally satisfies the Prodi–
Serrin condition, and let u be a weak solution for (2.1). Then u = ũ almost everywhere
in (0, T ) × �.

Proof Let us denote ū = ũ − u, ā = ã − a, ω̄ = ω̃ − ω. By subtracting the equations

∫ t

0

∫

�

ũ · ∂tψ dxdτ +
∫ t

0

∫

�F (t)
{(̃u ⊗ ũ) : ∇ψT − 2Dũ : Dψ } dxdτ

−
∫

�

ũ(t)ψ(t) dx = −
∫

�

u0ψ(0) dx,
∫ t

0

∫

�

u · ∂tψ dxdτ +
∫ t

0

∫

�F (t)
{(̃u ⊗ u) : ∇ψT − 2Du : Dψ } dxdτ

−
∫

�

u(t)ψ(t) dx = −
∫

�

u0ψ(0) dx +
∫ t

0
ã × a · ψω dτ,
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we get

∫ t

0

∫

�

ū · ∂tϕ dxdτ +
∫ t

0

∫

�F (t)
{(̃u ⊗ ū) : ∇ϕT − 2Dū : Dϕ } dxdτ

−
∫

�

ū(t)ϕ(t) dx =
∫ t

0
ã × ā · ϕω︸ ︷︷ ︸

=∫S(τ ) ã×ū·ϕω

dτ.

We substitute ϕ = ūh and let h → 0. Here uh is a regularization of u as defined in
[21, Section 2.3]. We use [21, Lemma 2.4] to pass to the limit and get:

1

2
‖ū(t)‖2L2(�)

+ 2
∫ t

0

∫

�F (τ )

|Dū|2 dxdτ +
∫ t

0

∫

�F (τ )

ũ · ∇ū · ū dxdτ

=
∫ t

0

∫

S(τ )

(̃u − ã) × ū · ω̄ dxdτ.

To estimate the third term we use the Prodi–Serrin condition as in [21], and in the end
we get the inequality of the form

‖ū(t)‖2L2(�)
≤
∫ t

0
f (τ )‖ū(τ )‖2L2(�)

dτ,

where f ∈ L1(0, t), so Gronwall lemma implies that ū = 0. ��
Therefore, by Lemma 2.1 it follows that ũ is a uniqueweak solution to the linearized

problem (2.1). Therefore, in the rest of the paper we will consider linear problem (2.1)
and prove that the solution to the linear problem is regular.

2.2 The transformed problem

In order to transform the problem to the cylindrical domainweuse a change of variables
inspired by Inoue and Wakimoto [23], i.e. we define the mapping (u, p, a,ω) →
(U, P,A,�) with

⎧
⎪⎪⎨

⎪⎪⎩

U(t, y) = ∇Y(t,X(t, y))u(t,X(t, y)),
P(t, y) = p(t,X(t, y)),
A(t) = Q

T (t)a(t),
�(t) = Q

T (t)ω(t),

(2.3)

whereX(t) is a volume-preserving diffeomorphism from initial to the physical domain
described in [21], Appendix A.1, andY(t) is its inverse. By construction,X,Y belong
to W 1,∞(0, T ;C∞

c (�)) and depend on the domain of given solution, i.e. translation
velocity ã and angular velocity ω̃. In the following, (U, P,A,�) and (Ũ, P̃, Ã, �̃)

denote the transformations of solutions (u, p, a,ω) and (̃u, p̃, ã, ω̃) to the cylindrical
domain by mapping (2.3). Notice that lowercase letters refer to the solutions defined
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on the physical moving domain and uppercase letters to the solutions defined on the
fixed reference domain. Therefore (Ũ, P̃, Ã, �̃) is the solution to the following system
(which is equivalent to (2.1)):

∂tU − �U + ∇P = F(U, P),

divU = 0

}
in (0, T ) × �F ,

d
dtA = − ∫

∂S0
T (U, P)N dγ (y) + G(A)

d
dt (J�) = − ∫

∂S0
y × T (U, P)N dγ (y) + H(�)

}
in (0, T ),

U = � × y + A on (0, T ) × ∂S0,

U = 0 on (0, T ) × ∂�,

U(0, ·) = u0 in �, A(0) = a0, �(0) = ω0 (2.4)

where

F(U, P) := (L − �)U − MU − NU − (G − ∇)P, (2.5)

G(A) = −�̃ × A, H(�) = −�̃ × (J�),

T (U, P) = −P I + 2DU, J (t) = Q
T (t)J(t)Q(t). (2.6)

The operator L is the transformed Laplace operator and it is given by

(LU)i =
n∑

j,k=1

∂ j (g
jk∂kUi ) + 2

n∑

j,k,l=1

gkl�i
jk∂lU j

+
n∑

j,k,l=1

(
∂k(g

kl�i
jl) +

n∑

m=1

gkl�m
jl�

i
km

)
U j , (2.7)

the convection term is transformed into

(N (U))i = ((Ũ · ∇)U
)
i +

n∑

j,k=1

�i
jkŨ jUk, (2.8)

the transformation of time derivative and gradient is given by

(MU)i =
n∑

j=1

Ẏ j∂ jUi +
n∑

j,k=1

(
�i

jkẎk + (∂kYi )(∂ j Ẋk)
)
U j , (2.9)

and the gradient of pressure is transformed as follows:

(GP)i =
n∑

j=1

gi j∂ j P = (∇Y∇YT∇P)i . (2.10)
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Here we have denoted the metric covariant tensor

gi j = Xk,i Xk, j , Xk,i = ∂Xk

∂yi
, (2.11)

the metric covariant tensor

gi j = Yi,kY j,k Yi,k = ∂Yi

∂xk
, (2.12)

and the Christoffel symbol (of the second kind)

�k
i j = 1

2
gkl(gil, j + g jl,i − gi j,l), gil, j = ∂gil

∂y j
. (2.13)

Note that operators L,M,N and G are linear and depend on transformation X, i.e.
on functions Ã and �̃.

The first step of the proof is to show that the linear problem (2.4) admits a unique
strong solution, which by Lemma 2.1 means that the solution to the original nonlinear
problem is also a strong solution. Therefore Theorem 1.2 follows from the following
result:

Proposition 2.1 Let (Ũ, Ã, �̃) ∈ (L2(0, T ; V (0))∩L∞(0, T ; L2(�)))×L∞(0, T )×
L∞(0, T ) be a weak solution to the problem (1.6) that satisfies the Prodi–Serrin
condition. Then there exists a unique solution (U, P,A,�) of (2.4) in the sense of
Definition 2.1 satisfying the following regularity properties

U ∈ L p(ε, T ;W 2,p(�F )) ∩ W 1,p(ε, T ; L p(�F )),

P ∈ L p(ε, T ;W 1,p(�F ) /R),

A,� ∈ W 1,p(ε, T ),

for all ε > 0 and for all 1 ≤ p < ∞. Moreover, by Lemma 2.1, (Ũ, P̃, Ã, �̃) =
(U, P,A,�) and thus satisfies the same regularity properties. In particular,
(Ũ, P̃, Ã, �̃) is a strong solution to problem (1.6).

We relegate the proof to Sect. 3. Next, we state two Propositions which provide
higher regularity of the solution and thus finish the proof of Theorem 1.1. The proofs
of these Propositions are given in Sects. 4 and 5.

Proposition 2.2 Let Ũ be a weak solution satisfying the assumption of Lemma 2.1 and
d
dt Ã, d

dt �̃ ∈ L∞(0, T ). Then

∂ ltU, ∂ lt Ũ ∈ L p(ε, T ;W 2,p(�F )) ∩ W 1,p(ε, T ; L p(�F )),

∂ lt P, ∂ lt P̃ ∈ L p(ε, T ;W 1,p(�F ) /R),

dl

dt l
A,

dl

dt l
�,

dl

dt l
Ã,

dl

dt l
�̃ ∈ W 1,p(ε, T ),
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On the regularity of weak solutions… 1017

for all ε > 0, l ≥ 0 and for all 1 ≤ p < ∞.

Proposition 2.3 Let Ũ be a weak solution satisfying the assumption of Proposition
2.2. Then

∂ lt Ũ ∈ L2(ε, T ; Hk(�F )), ∂ lt P̃ ∈ L2(ε, T ; Hk−1(�F ) /R), ∀l ≥ 0, k ≥ 2.

3 Strong Solution

This sectiondealswith theproof ofProposition2.1. SinceX,Y ∈ W 1,∞(0, T ;C∞
c (�)),

the transformation (2.3) preserves integrability of functions, so we have

(Ũ, Ã, �̃) ∈ (L2(0, T ; V (0)) ∩ L∞(0, T ; L2(�))) × L∞(0, T ) × L∞(0, T )

and Ũ satisfies Prodi–Serrin condition. Sincewe are interested in the regularity exclud-
ing t = 0 we multiply (2.4) by t and define

(U∗, P∗,A∗,�∗) = (tU, t P, tA, t�),

which satisfy the following problem on a cylindrical domain with vanishing initial
conditions

∂tU∗ − �U∗ + ∇P∗ = F∗,
divU∗ = 0

}
in (0, T ) × �F ,

d
dtA

∗ = − ∫
∂S0

T (U∗, P∗)N dγ (y) + G∗
d
dt (J�∗) = − ∫

∂S0
y × T (U∗, P∗)N dγ (y) + H∗

}
in (0, T ),

U∗ = A∗ + �∗ × y on (0, T ) × ∂S0,

U∗ = 0 on (0, T ) × ∂�,

U∗(0, ·) = 0 in �, A∗(0) = 0, �∗(0) = 0, (3.1)

where

F∗ = F(U∗, P∗) + U, G∗ = G(A∗) + A, H∗ = H(�∗) + J�. (3.2)

It is sufficient to show that there is a unique strong solution to the problem (3.1)–
(3.2), with

(U,A,�) ∈ (L2(0, T ; V (0)) ∩ L∞(0, T ; L2(�F ))) × L2(0, T ) × L2(0, T )

(3.3)

are given functions. Then the problem (2.4) also has a unique strong solution on the
interval (ε, T ), for all ε > 0. Finally, by change of variables, i.e. returning to the
physical domain, follows that (̃u, ã, ω̃) is the strong solution of (1.6).

First we prove the following result:
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1018 B. Muha et al.

Proposition 3.1 Let

F∗ = F(U∗, P∗) + R, G∗ = G(A∗) + Ra, H∗ = H(�∗) + Rω,

where operators F, G and H are defined by (2.5)–(2.6).

a) Let

(Ũ, Ã, �̃) ∈ (L2(0, T ; V (0)) ∩ L∞(0, T ; L2(�))) × L∞(0, T ) × L∞(0, T )

satisfy Prodi–Serrin condition (1.9) and

R ∈ L2(0, T ; L2(�F )), Ra,Rω ∈ L2(0, T ). (3.4)

Then there is a unique solution (U∗, P∗,A∗,�∗) for (3.1) satisfying

U∗ ∈ H1(0, T ; L2(�F )) ∩ L2(0, T ; H2(�F )),

P∗ ∈ L2(0, T ; H1(�F ) /R),

A∗,�∗ ∈ H1(0, T ).

b) If in addition we assume

(Ũ, Ã, �̃) ∈ (L2m(0, T ;W 2,2m(�F )) ∩ W 1,2m(0, T ; L2m(�F )))

×W 1,2m(0, T ) × W 1,2m(0, T )

and

R ∈ L2m(0, T ; L2m(�F )), Ra,Rω ∈ L2m(0, T ), (3.5)

for m ∈ N. Then

U∗ ∈ W 1,2m(0, T ; L2m(�F )) ∩ L2m(0, T ;W 2,2m(�F )),

P∗ ∈ L2m(0, T ;W 1,2m(�F ) /R),

A∗,�∗ ∈ W 1,2m(0, T ).

Especially, for

R = U, Ra = A, Ra = J�,

we obtain the right hand side (3.2) which satisfies (3.4).
We will prove Proposition 3.1 by using the fixed point theorem and the following

maximal regularity result
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Theorem 3.1 [17, Theorem 4.1] Let � be a domain with boundary of class C2,1 and
p, q ∈ (1,∞). Let F∗ ∈ L p(0, T ; Lq(�F )), and G∗, H∗ ∈ L p(0, T ). Then for every
T > 0, problem (3.1) admits a unique solution

U∗ ∈ XT
p,q := W 1,p(0, T ; Lq(�F )) ∩ L p(0, T ;W 2,q(�F )),

P∗ ∈ Y T
p,q := L p(0, T ;W 1,q(�F ) /R),

A∗,�∗ ∈ W 1,p(0, T ),

which satisfies the estimate

‖U∗‖XT
p,q

+ ‖P∗‖Y T
p,q

+ ‖A∗‖W 1,p(0,T ) + ‖�∗‖W 1,p(0,T )

≤ C
(‖F∗‖L p(0,T ;Lq (�F )) + ‖G∗‖L p(0,T ) + ‖H∗‖L p(0,T )

)
,

where the constant C depends only on the geometry of the rigid body and on T .

Remark 3.1 From the proof of the above Theorem it can be seen that the constant C
is non-decreasing with respect to T .

For fixed R > 0, which we will choose later, we define a set

KR := { (Û, P̂, Â, �̂) ∈ XT
p,q × Y T

p,q × W 1,p(0, T ) × W 1,p(0, T ) :
‖Û‖XT

p,q
+ ‖P̂‖Y T

p,q
+ ‖Â‖W 1,p(0,T ) + ‖�̂‖W 1,p(0,T ) ≤ R

}
,

and a function

S : (Û, P̂, Â, �̂) → (U∗, P∗,A∗,�∗)

where (U∗, P∗,A∗,�∗) is solution to the problem (3.1) with the right hand side which
depends on (Û, P̂, Â, �̂), i.e. we consider problem (3.1) with

F∗ = F(Û, P̂) + R = (L − �)Û − MÛ − N Û − (G − ∇)P̂ + R, (3.6)

G∗ = G(Â) + Ra = −�̃ × Â + Ra, H∗ = H(�̂) + Rω = −�̃ × (J �̂) + Rω.

(3.7)

We will prove that S is a contraction and will use the Banach’s fixed point theorem.
More precisely, we will show that:

• S is well defined on KR and S(KR) ⊂ KR ,
• S is a contraction,

which yields a unique fixed point of S, i.e. a unique solution (U∗, P∗,A∗,�∗) ∈ KR

to problem (3.1)–(3.2).
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3.1 Estimates on the right hand side

In order to use Theorem 3.1 we have to estimate the right hand side (3.6)–(3.7).
First, we state an auxiliary Lemma which directly follows form the basic properties

of the transformations X and Y. Since these estimates follow by direct calculations in
the standard way (see e.g. [31, Section 6.2]) we omit the proof.

Lemma 3.1 If Ã, �̃ ∈ Wl,p(0, T ), for l ≥ 0 and 1 < p ≤ ∞, then

‖X‖Wl,∞(0,T ;W 3,∞(�)) + ‖Y‖Wl,∞(0,T ;W 3,∞(�)) ≤ C,

‖X‖Wl+1,p(0,T ;W 3,∞(�)) + ‖Y‖Wl+1,p(0,T ;W 3,∞(�)) ≤ C,

‖gi j‖Wl,∞(0,T ;W 1,∞(�)) + ‖gi j‖Wl,∞(0,T ;W 1,∞(�)) + ‖�k
i j‖Wl,∞(0,T ;L∞(�)) ≤ C,

‖g jk − δ jk‖L∞(0,T ;L∞(�) + ‖g jk − δ jk‖L∞(0,T ;L∞(�) ≤ C

(
T

1
p′ + T

2
p′
)

,

for all t ∈ [0, T ], where 1
p + 1

p′ = 1 and constant C depends on K p = ‖Ã‖Wl,p(0,T ) +
‖�̃‖Wl,p(0,T ) nondecreasingly.

For the convective term we have the following result.

Lemma 3.2 Assume that Û ∈ XT
2,2 and Ũ ∈ Lr (0, T ; Ls(�F )), such that 3

s + 2
r = 1,

s ∈ (3,∞). Then

‖(Ũ · ∇)Û‖L2(0,T ;L2(�F )) ≤ C‖Ũ‖Lr (0,T ;Ls (�F ))‖Û‖XT
2,2

.

Proof By using the following embeddings

L2(0, T ; H2(�F )) ∩ H1(0, T ; L2(�F )) ↪→ H
1
r (0, T ; H2

(
1− 1

r

)

(�F ))

= H
1
r (0, T ; H 3

s +1(�F )) ↪→ Lr ′
(0, T ;W 1,s′(�F ))

for 1
r + 1

r ′ = 1
2 ,

1
s + 1

s′ = 1
2 ,we conclude that∇Û ∈ Lr ′

(0, T ; Ls′(�F )), and therefore
we have

‖(Ũ · ∇)Û‖2L2(0,T ;L2(�F ))

=
∫ T

0

∫

�F

|(Ũ · ∇)Û|2 dydτ ≤
∫ T

0
‖Ũ‖2Ls (�F )‖∇Û‖2

Ls′ (�F )
dτ
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≤
(∫ T

0
‖Ũ‖rLs (�F ) dτ

) 2
r
(∫ T

0
‖∇Û‖r ′

Ls′ (�F )
dτ

) 2
r ′

= ‖Ũ‖2Lr (0,T ;Ls (�F ))‖∇Û‖2
Lr ′ (0,T ;Ls′ (�F ))

.

��
Now, we can show the following Lemma to estimate the right-hand side given by

(3.6).

Lemma 3.3 Assume that Ã, �̃ ∈ L p(0, T ), for all 1 ≤ p < ∞ and Ũ ∈
Lr (0, T ; Ls(�F )), such that 3

s + 2
r = 1, s ∈ (3,∞). Then for Û ∈ XT

2,2, P̂ ∈ Y T
2,2

the following estimates hold:

‖N Û‖L2(0,T ;L2(�F )) ≤ C‖Ũ‖Lr (0,T ;Ls (�F ))‖Û‖XT
2,2

,

‖(L − �)Û‖L2(0,T ;L2(�F )) ≤ CT
1
4 ‖Û‖XT

2,2
,

‖MÛ‖L2(0,T ;L2(�F )) ≤ CT
1
4 ‖Û‖XT

2,2
,

‖(G − ∇)P̂‖L2(0,T ;L2(�F )) ≤ CT
1
2 ‖P̂‖Y T

2,2
,

for T ≤ 1, where constant C > 0 depends on T nondecreasingly.

Proof Lemma 3.1 and 3.2 imply the estimate for the convective term.

‖N Û‖2L2(0,T ;L2(�F ))
=
∫ T

0

∫

�F

⎛

⎝|(Ũ · ∇)Û|2 +
n∑

i, j,k=1

|�i
jkŨ j Ûk |2

⎞

⎠ dydτ

≤ ‖(Ũ · ∇)Û‖2L2(0,T ;L2(�F ))

+
(
sup
i, j,k

‖�i
jk‖2∞,∞

)
n∑

i, j,k=1

∫ T

0

∫

�F

|Ũ j Ûk |2 dydτ

≤ C(1 + T )‖Ũ‖2Lr (0,T ;Ls (�F ))‖Û‖2
XT
2,2

.

The second estimate comes from Lemma 3.1

‖(L − �)Û‖L2(0,T ;L2(�F )) ≤ C

(
sup
j,k

∥∥∥g jk − δ jk

∥∥∥
L∞(0,T ;L∞(�))

‖
Û‖L2(0,T ;L2(�F ))

+
(∥∥∥∂ j g

jk
∥∥∥
L∞(0,T ;L∞(�))

+
∥∥∥gki

∥∥∥
L∞(0,T ;L∞(�))

∥∥∥�i
jk

∥∥∥
L∞(0,T ;L∞(�))

)
T

1
4 ‖∇Û‖L4(0,T ;L2(�F ))

+
(∥∥∥∂k gkl

∥∥∥
L∞(0,T ;L∞(�))

∥∥∥�i
kl

∥∥∥
L∞(0,T ;L∞(�))

+
∥∥∥gkl

∥∥∥
L∞(0,T ;L∞(�))

∥∥∥∂k�i
kl

∥∥∥
L∞(0,T ;L∞(�))

+
∥∥∥gkl

∥∥∥
L∞(0,T ;L∞(�))

∥∥∥�m
jl

∥∥∥
L∞(0,T ;L∞(�))

∥∥∥�i
km

∥∥∥
L∞(0,T ;L∞(�))

)
T

1
4 ‖Û‖L4(0,T ;L2(�F ))

)

≤ C
(
T

1
4 + T

)
‖Û‖XT

2,2
,
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‖MÛ‖L2(0,T ;L2(�F )) =
∥∥∥∥∥∥

n∑

j=1

Ẏ j ∂ j Ûi +
n∑

j,k=1

(
�i

jk Ẏk + (∂kYi )(∂ j Ẋk)
)
Û j

∥∥∥∥∥∥
L2(0,T ;L2(�F ))

≤ T
1
4 ‖Ẏ‖L∞(0,T ;L∞(�))‖∇Û‖L4(0,T ;L2(�F ))

+ (sup
i, j,k

‖�i
jk‖L∞(0,T ;L∞(�))‖Ẏ‖L∞(0,T ;L∞(�))

+ ‖∇Y‖L∞(0,T ;L∞(�))‖∇Ẋ‖L∞(0,T ;L∞(�)))T
1
4 ‖Û‖L4(0,T ;L2(�F ))

≤ CT
1
4 ‖Û‖XT

2,2
,

since L2(0, T ; H2(�F )) ∩ H1(0, T ; L2(�F )) ↪→ H
1
2 (0, T ; H1(�F )) ↪→

L4(0, T ; H1(�F )) and Ã, �̃ ∈ L∞(0, T ).
Finally, for the pressure term we get

‖(G − ∇)P̂‖L2(0,T ;L2(�F )) ≤ C sup
j,k

∥∥∥g jk − δ jk

∥∥∥
L∞(0,T ;L∞(�F ))

‖∇ P̂‖L2(0,T ;L2(�F ))

≤ C
(
T

1
2 + T

)
‖∇ P̂‖L2(0,T ;L2(�F )).

��

Corollary 3.1 Assume that Ã, �̃ ∈ L p(0, T ), for all 1 ≤ p < ∞ and Ũ ∈ XT
2m,2m,

for some m ∈ N. Then for Û ∈ XT
2(m+1),2(m+1), P̂ ∈ Y T

2(m+1),2(m+1) the following
estimates hold:

‖N Û‖L2(m+1)(0,T ;L2(m+1)(�F )) ≤ C‖Ũ‖XT
2m,2m

‖Û‖XT
2(m+1),2(m+1)

,

‖(L − �)Û‖L2(m+1)(0,T ;L2(m+1)(�F )) ≤ CT
1

2(m+1) ‖Û‖XT
2(m+1),2(m+1)

‖MÛ‖L2(m+1)(0,T ;L2(m+1)(�F )) ≤ CT
1

2(m+1) ‖Û‖XT
2(m+1),2(m+1)

,

‖(G − ∇)P̂‖L2(m+1)(0,T ;L2(m+1)(�F )) ≤ CT
1
2 ‖P̂‖Y T

2(m+1),2(m+1)
,

for T ≤ 1, where a constant C > 0 depends on T nondecreasingly.

Proof Let m ∈ N. By using the interpolation result in [1, Theorem 5.2] for s0 =
1, s1 = 0, p0 = p1 = 2m we conclude that

XT
2m,2m = L2m(0, T ;W 2,2m(�F )) ∩ W 1,2m(0, T ; L2m(�F ))

↪→ Ws,2m(0, T ;W 2θ,2m(�F )),

for all θ ∈ (0, 1) and s < 1−θ . Now for θ = 3
4m(m+1) ,we can choose

1
2m < s < 1−θ

since

1 − θ − 1

2m
= 4m2 + 2m − 5

4m(m + 1)
≥ 1

4m(m + 1)
> 0,

123



On the regularity of weak solutions… 1023

and get

Ũ ∈ XT
2m,2m ↪→↪→ Ws,2m(0, T ;W 2θ,2m(�F )) ↪→ L∞(0, T ; L2(m+1)(�F )),

Û ∈ XT
2(m+1),2(m+1) = L2(m+1)(0, T ;W 2,2(m+1)(�F )) ∩ W 1,2(m+1)(0, T ; L2(m+1)(�F ))

↪→ L2(m+1)(0, T ;W 1,∞(�F )),

Therefore, we have

‖(Ũ · ∇)Û‖L2(m+1)(0,T ;L2(m+1)(�F )) ≤ ‖Ũ‖L∞(0,T ;L2(m+1)(�F ))‖∇Û‖L2(m+1)(0,T ;L∞(�F )).

and by Lemma 3.1 we get

‖N Û‖L2(m+1)(0,T ;L2(m+1)(�F )) ≤ C‖Ũ‖XT
2m,2m

‖Û‖XT
2(m+1),2(m+1)

.

Next, we have

‖MÛ‖L2(m+1)(0,T ;L2(m+1)(�F ))

=
∥∥∥∥∥∥

n∑

j=1

Ẏ j ∂ j Ûi +
n∑

j,k=1

(
�i

jk Ẏk + (∂kYi )(∂ j Ẋk)
)
Û j

∥∥∥∥∥∥
L2(m+1)(0,T ;L2(m+1)(�F ))

≤ T
1

2(m+1) ‖Ẏ‖L∞(0,T ;L∞(�F ))‖∇Û‖L∞(0,T ;L2(m+1)(�F ))

+
(
sup
i, j,k

‖�i
jk‖L∞L∞‖Ẏ‖L∞L∞ + ‖∇Y‖L∞L∞‖∇Ẋ‖L∞L∞

)
T

1
2(m+1) ‖Û‖L∞(0,T ;L2(m+1)(�F ))

≤ CT
1

2(m+1) ‖Û‖XT
2(m+1),2(m+1)

.

The last inequality follows by embedding

XT
2(m+1),2(m+1) ↪→ W

3
8 ,2(m+1)(0, T ;W 1,2(m+1)(�F )) ↪→ L∞(0, T ;W 1,2(m+1)(�F )).

The other terms can be estimated in a similar way as before. In the same way, we can
get estimates for arbitrary m ∈ N. ��

3.2 Proof of Proposition 3.1

Now, we can finish the proof of Proposition 3.1. First we are going to show that
S(KR) ⊂ KR for suitably chosen R and T . For (Û, P̂, Â, �̂) ∈ KR , Lemma 3.3
implies that

‖F∗‖L2(0,T ;L2(�F )) = ∥∥(L − �)Û − MÛ − N Û − (G − ∇)P̂ + R
∥∥
L2(0,T ;L2(�F ))

≤ ‖(L − �)Û‖L2L2 + ‖MÛ‖L2(0,T ;L2(�F )) + ‖N Û‖L2(0,T ;L2(�F ))

+ ‖(G − ∇)P̂‖L2(0,T ;L2(�F )) + ‖R‖L2(0,T ;L2(�F ))
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≤ C(T
1
4 + ‖Ũ‖Lr (0,T ;Ls (�F )))

(
‖Û‖XT

2,2
+ ‖P̂‖Y T

2,2

)
+ ‖R‖L2(0,T ;L2(�F )),

and since

‖G∗‖L2(0,T ) ≤ ‖�̃ × Â‖L2(0,T ) + ‖Ra‖L2(0,T )

≤ ‖�̃‖L2(0,T )‖Â‖L∞(0,T ) + ‖Ra‖L2(0,T ) ≤ ‖�̃‖L2(0,T )‖Â‖H1(0,T )

+ ‖Ra‖L2(0,T )

‖H∗‖L2(0,T ) ≤ ‖�̃ × (J �̂)‖L2(0,T ) + ‖Rω‖L2(0,T ) ≤ C
(‖�̃‖L2(0,T )‖�̂‖H1(0,T )

+‖Rω‖L2(0,T )

)

we obtain

‖F∗‖L2(0,T ;L2(�F )) + ‖G∗‖L2(0,T ) + ‖H∗‖L2(0,T )

≤ C(T
1
4 + ‖Ũ‖Lr (0,T ;Ls (�F )) + ‖Ã‖L2(0,T ) + ‖�̃‖L2(0,T ))

×
(
‖Û‖XT

2,2
+ ‖P̂‖Y T

2,2
+ ‖Â‖H1(0,T ) + ‖�̂‖H1(0,T )

)

+ ‖R‖L2(0,T ;L2(�F )) + ‖Ra‖L2(0,T ) + ‖Rω‖L2(0,T )

≤ C(T
1
4 + ‖Ũ‖Lr (0,T ;Ls (�F )) + ‖Ã‖L2(0,T ) + ‖�̃‖L2(0,T ))R + 1

2C0
R

for R > 0 large enough, where C0 > 0 is the constant form Theorem 3.1. Also, we
can choose T = T0 > 0 small enough, i.e. such that

C
(
T

1
4 + ‖Ũ‖Lr (0,T ;Ls (�F )) + ‖Ã‖L2(0,T ) + ‖�̃‖L2(0,T )

)
<

1

2C0

and, therefore we get

C0
(‖F∗‖L2(0,T ;L2(�F )) + ‖G∗‖L2(0,T ) + ‖H∗‖L2(0,T )

) ≤ R.

By Theorem 3.1 we conclude that S is well defined on KR , and S(KR) ⊂ KR . It
remains to show that S is a contraction.

For (Û, P̂, Â, �̂) ∈ KR and

Ũ ∈ L2(0, T ; V (t)) ∩ L∞(0, T ; L2(�F )) ∩ Lr (0, T ; Ls(�F )), �̃ ∈ L2(0, T ),

we have

‖F∗(Û1, P̂1) − F∗(Û2, P̂2)‖L2(0,T ;L2(�F ))

≤ C(T
1
4 + ‖Ũ‖Lr (0,T ;Ls (�F )))

(
‖Û1 − Û2‖XT

2,2
+ ‖P̂1 − P̂2‖Y T

2,2

)

‖G∗(Â1) − G∗(Â2)‖L2 ≤ ‖�̃‖L2‖Â1 − Â2‖H1

‖H∗(�̂1) − H∗(�̂2)‖L2 ≤ c‖�̃‖L2‖�̂1 − �̂2‖H1
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Hence,

‖S(Û1, P̂1, Â1, �̂1) − S(Û2, P̂2, Â2, �̂2)‖
≤ C0C(T

1
4 + ‖Ũ‖Lr (0,T ;Ls (�F )) + ‖Ã‖L2(0,T ) + ‖�̃‖L2(0,T ))

×
(
‖Û1 − Û2‖XT

2,2
+ ‖P̂1 − P̂2‖Y T

2,2
+ ‖Â1 − Â2‖H1(0,T ) + ‖�̂1 − �̂2‖H1(0,T )

)

and, again, for T = T0 > 0 small enough, we get

‖S(Û1, P̂1, Â1, �̂1) − S(Û2, P̂2, Â2, �̂2)‖
≤ μ‖(Û1, P̂1, Â1, �̂1) − (Û2, P̂2, Â2, �̂2)‖

for some 0 < μ < 1, so S i contraction. Banach fixed point theorem implies that S
has a unique fixed point (U∗, P∗,A∗,�∗) ∈ KR , which is a unique solution to the
problem (3.1)–(3.2). Therefore, we have shown part a) of Proposition 3.1.

Remark 3.2 The choice of the time T0 does not depend on the solution itself, but
only on the norms ‖Ũ‖Lr (0,T0;Ls (�F )), ‖Ã‖L2(0,T0) and ‖�̃‖L2(0,T0). Since the norms
‖Ũ‖Lr (0,T ;Ls (�F )), ‖Ã‖L2(0,T ) and ‖�̃‖L2(0,T ) are given, we can split the interval
[0, T ] into smaller ones

[
Ti−1, Ti

]
, such that

‖Ũ‖Lr (Ti−1,Ti ;Ls (�F )) + ‖�̃‖L2(0,T ) + ‖�̃‖L2(0,T0) < ε

repeat the procedure at each interval.

For part b) of Proposition 3.1 we can proceed as in part a) by using Corollary 3.1
instead of Lemma 3.3.

Notice that Theorem 1.2 follows directly from our construction and Proposition
3.1. Namely, Proposition 3.1 a), change of coordinates and Lemma 2.1 implies

U, Ũ ∈ L2(ε, T ; H2(�F )) ∩ H1(ε, T ; L2(�F )),

P, P̃ ∈ L2(ε, T ; H1(�F ) /R),

A,�, Ã, �̃ ∈ H1(ε, T ),

for all ε > 0. By induction and using Proposition 3.1 b) we get property (1.10).

4 Higher time derivatives estimates

To summarize, in the previous section we proved that:

Ũ,U ∈ W 1,p(ε, T ; L p(�F )) ∩ L p(ε, T ;W 2,p(�F )),

P̃, P ∈ L p(ε, T ;W 1,p(�F ) /R),

Ã,A, �̃,� ∈ W 1,p(ε, T ),

(4.1)
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1026 B. Muha et al.

for all ε > 0 and all 1 ≤ p < ∞. Now, we want to show inductively that all time
derivatives of the solution has the following regularity properties:

∂ lt Ũ, ∂ ltU ∈ W 1,p(ε, T ; L p(�F )) ∩ L p(ε, T ;W 2,p(�F )),

∂ lt P̃, ∂ lt P ∈ L p(ε, T ;W 1,p(�F ) /R),

dl

dt l
Ã,

dl

dt l
A,

dl

dt l
�̃,

dl

dt l
� ∈ W 1,p(ε, T ),

(4.2)

for all l ≥ 1 and all ε > 0.
In this section, for simplicity of presentation, we prove (4.2) for l = 1 and p = 2,

while the general case is done in Appendix, see Sect. 6.1. We consider the problem
(3.1) with right hand side

F∗ = F∗
1 = F(U∗, P∗) + t F1(U, P) + ∂tU,

G∗ = G∗
1 = G(A∗) + tG1(A) + d

dt
A,

H∗ = H∗
1 = H(�∗) + t H1(�) + J

(
d

dt
�

)
,

(4.3)

where

F1(U, P) = L1(U) − M1(U) − N1(U) − G1(P). (4.4)

G1 = − d

dt
�̃ × A, H1 = − d

dt
�̃ × (J�), (4.5)

and L1, M1, N1 and G1 denote operators obtained by taking time derivative of the
coefficients in operators L, M, N and G

(N1(U))i = ((∂t Ũ · ∇)U
)
i −

n∑

j,k=1

∂t (�
i
jkŨ j )Uk (4.6)

(M1(U))i =
n∑

j=1

∂t (Ẏ j )∂ jUi + ∂t

(
�i

jkẎk + (∂kYi )(∂ j Ẋk)
)
U j (4.7)

(L1(U))i =
n∑

j,k=1

∂ j (∂t g
jk∂kUi ) + 2

n∑

j,k,m=1

∂t (g
km�i

jk)∂mU j

+
n∑

j,k,m=1

∂t

(
∂k

(
gkm�i

jm

)
+

n∑

m=1

gkm�m
jm�i

km

)
U j (4.8)

G1(P) =
n∑

j=1

∂t g
i j∂ j P. (4.9)
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Remark 4.1 This problem is obtained by formal differentiation of (2.4) w.r.t. time
variable, multiplication by t (to cut-off initial condition), and setting

U∗ = U∗
1 = t∂tU, P∗ = P∗

1 = t∂t P, A∗ = A∗
1 = t

d

dt
A, �∗ = �∗

1 = t
d

dt
�.

To have vanishing initial data, the time derivative ∂tU should not explode too fast at
t = 0. Since

U ∈ L2(ε, T ; H2(�F )) ∩ H1(ε, T ; L2(�F )), ∀ε > 0,

it is better to multiply by t − ε′ and look at the solution for t > ε′. Here, for ε > 0
arbitrary small, we can chose ε < ε′ < 2ε such that ∂ ltU(ε′) ∈ L2(�F ). After the
translation t → t + ε′, we obtain (3.1) with right hand side (4.3). Therefore, in the
following we can replace ε with 0 in the assumption (4.1).

Inwhat followswe show that describedproblemhas aunique solution (U∗, P∗,A∗,�∗)
such that

U∗ ∈ H1(0, T ; L2(�F )) ∩ L2(0, T ; H2(�F )),

P∗ ∈ L2(0, T ; H1(�F ) /R),

A∗,�∗ ∈ H1(0, T ),

and that it equals
(
t∂tU, t∂t P, t d

dtA, t d
dt �
)
. Then it follows that

∂tU ∈ H1(ε, T ; L2(�F )) ∩ L2(ε, T ; H2(�F )),

∂t P ∈ L2(ε, T ; H1(�F ) /R),

d

dt
A,

d

dt
� ∈ H1(ε, T ),

for all ε > 0. We use Proposition 3.1 with

R = t F1(U, P) + ∂tU, Ra = tG1(A) + d

dt
A, Rω = t H1(�) + d

dt
�.

Therefore, it is sufficient to show that

R ∈ L2(0, T ; L2(�F )) Ra ∈ L2(0, T ), Rω ∈ L2(0, T ).

The critical term is (4.6) which comes from the convective term. By Theorem 1.2
and Remark 4.1 we have

Ũ,U ∈ L4(0, T ;W 2,4(�F )) ∩ W 1,4(0, T ; L4(�F )).
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1028 B. Muha et al.

Therefore

‖(∂t Ũ · ∇)U‖2L2(0,T ;L2(�F ))

=
∫ T

0

∫

�F

| ∂t Ũ︸︷︷︸
∈L4

t L4
x

|2 | ∇U︸︷︷︸
∈L4

t W
1,4
x

|2 dydt ≤
∫ T

0
‖∂t Ũ‖2L4(�F )

‖∇U‖2L4(�F )
dt

≤ ‖∂t Ũ‖2L4(0,T ;L4(�F ))
‖∇U‖2L4(0,T ;L4(�F ))

≤ C‖Ũ‖2W 1,4(0,T ;L4(�F ))
‖U‖2L4(0,T ;W 2,4(�F ))

All other terms can be estimated as in Sect. 3, so by Proposition 3.1 we conclude that
there exists a unique strong solution (U∗

1, P
∗
1 ,A∗

1,�
∗
1) satisfying

U∗
1 ∈ L2(0, T ; H2(�F )) ∩ H1(0, T ; L2(�F )),

P∗
1 ∈ L2(0, T ; H1(�F ) /R),

A∗
1,�

∗
1 ∈ H1(0, T ).

(4.10)

It remains to prove that the obtained solution equals
(
t∂tU, t∂t P, t d

dtA, t d
dt �
)
,which

will imply the statement of Proposition 2.2 for l = 1 and p = 2.

4.1 (U∗
1, P

∗
1,A

∗
1,Ä

∗
1) =

(
t@tU, t@tP, t ddtA, t ddtÄ

)

So far we have shown that there is a unique strong solution (U, P,A,�) of problem
(2.4) satisfying (4.1), and a unique strong solution (U∗

1, P
∗
1 ,A∗

1,�
∗
1) of (3.1) with right

hand side (4.3) satisfying (4.10). In order to complete the proof of Proposition 2.2, it
is necessary to show that

(U∗
1, P

∗
1 ,A∗

1,�
∗
1) =

(
t∂tU, t∂t P, t

d

dt
A, t

d

dt
�

)
.

Notice that while the above equality formally holds, it is delicate to prove it because
we do not have any information on ∂t P . We consider problem (2.4) in the form

∂tU = F(U) − G(P),

divU = 0

}
in (0, T ) × �F ,

d
dtA = − ∫

∂S0
T (U, P)N dγ (y) + G(A)

d
dt (J�) = − ∫

∂S0
y × T (U, P)N dγ (y) + H(�)

}
in (0, T ),

U = � × y + A on (0, T ) × ∂S0,

U = 0 on (0, T ) × ∂�,

U(0, ·) = u0 in �, A(0) = a0, �(0) = ω0 (4.11)
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On the regularity of weak solutions… 1029

where

F(U) = LU − MU − NU,

G(A) = −�̃ × A, H(�) = −�̃ × (J�),
(4.12)

and the problem (3.1) with the right hand side (4.3)

∂tU∗
1 = F(U∗

1) − G(P∗
1 ) + t F1(U, P) + ∂tU,

divU∗
1 = 0

}
in (0, T ) × �F ,

d
dtA

∗
1 = − ∫∂S0 T (U∗

1, P
∗
1 )N dγ (y) + G(A∗

1) + tG1(A) + d
dtA

d
dt (J�∗

1) = − ∫∂S0 y × T (U∗
1, P

∗
1 )N dγ (y) + H(�∗

1) + t H1(�) + J
(
d
dt �

)
}

in (0, T ),

U∗
1 = A∗

1 + �∗
1 × y on (0, T ) × ∂S0,

U∗
1 = 0 on (0, T ) × ∂�,

U∗
1(0, ·) = 0 in �, A∗

1(0) = 0, �∗
1(0) = 0. (4.13)

Operators L,M,N and G are defined by formulas (2.7)–(2.10), operators F1,G1 and
H1 by (4.4)–(4.5).

In order to compare solutions of (4.11) and (4.13) we would like to differentiate
(4.11) with respect to time, but the right-hand side is not regular enough, since ∂tU ∈
L2(ε, T ; L2(�F )) and the pressure P is not regular enough in time variable. This
means that we have to use some regular approximations of the solution for (4.11). The
idea is to use Galerkin’s method. First we will multiply the equation (4.11)1 by

G = (gi j ) = ∇XT∇X

and obtain pressure term ∇P on the right-hand side in the equation

G∂tU = GF(U) − ∇P in (0, T ) × �F , (4.14)

since GG(P) = ∇P. Then we can get rid of the pressure by using a divergence-free
test function, write down an approximative problem and to show that it has a unique
solution which is a good approximation for U. That allows us to differentiate the
approximative problem with respect to time and get estimates for ∂tU. Finally, we
will show that U∗

1 = t∂tU by using the equation for approximative problem and the
equation for U∗

1. The point is that in this way we will avoid the term with ∂t P .
We are going to use following function spaces

• H(�F )={(v, a,ω)∈L2(�)×R3 × R
3 : div v=0, v·n|∂� =0, v|S0(y)=a+ω × y

}

• V(�F ) = {(v, a,ω) ∈ H1
0 (�) × R

3 × R
3 : div v = 0, v|S0(y) = a + ω × y

}

Let
{ (

� i ,�
a
i ,�

ω
i

)
, i ∈ N

}
be an orthonormal basis for H(�F ) with scalar product

(
(ϕ,ϕa,ϕω), (ψ,ψa,ψω)

) =
∫

�F

ψ · ϕ dy + ϕa · ψa + J ϕω · ψω. (4.15)
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1030 B. Muha et al.

We define finite-dimensional space

Vm = span
{ (

�1,�
a
1,�

ω
1

)
, . . . ,

(
�m,�a

m,�ω
m

) }

For m ∈ N we observe the following approximate problem

∫

�F

G∂tUm · � i dy + d

dt
Am · �a

i + d

dt
(J�m) · �ω

i

+ 〈GF(Um),� i
〉− G(Am) · �a

i − H(�m) · �ω
i = 0

(4.16)

for i = 1, . . . ,m, where

〈
GF(Um),� i

〉 = 〈GLUm,� i
〉+
∫

�F

G(MUm + NUm) · � i dy, (4.17)

〈GLU,ψ〉 =
∫

�F

(
2DU · Dψ + (gikg

jl − δikδ jl)∂ jUi∂lψk

+
(
�m
kl gimg

jl + �
j
ik

)
∂ jUiψk +

(
�m
i j gimg

jl + �l
i jδ jk

)
Ui∂lψk

+
(
�m
i j�

p
kl gmpg

jl + �l
i j�

j
kl

)
Uiψk

)
dy (4.18)

and

(
Um(t, y),Am(t),�m(t)

) =
m∑

j=1

c jm(t)
(
� j (y),�a

j ,�
ω
j

)
, c jm ∈ H1(0, T ).

Equation (4.16) is obtained by summing the equation (4.14) multiplied by the test
function � i and integrated over �F with the equations (4.11)3 and (4.11)4 multiplied
by the test functions �a

i and �ω
i , respectively. Then from (4.18) using integration by

parts we obtain

〈GL(U),ψ〉 = −
∫

�F

GLU · ψ dy +
∫

∂S0
T (U, P)N · ψ dγ (y) +

∫

�F

∇P · ψ dy,

and therefore,

〈GF(U),ψ〉 = −
∫

�F

GF(U) · ψ dy +
∫

∂S0
T (U, P)N · ψ dγ (y)

+
∫

�F

∇P · ψ dy, (4.19)

for regular enough and divergence-free functions U,ψ .
Together with the initial conditions
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(
Um(0, y),Am(0),�m(0)

) =
m∑

j=1

c0jm

(
� j (y),�a

j ,�
ω
j

)
,

c0jm =
(
(u0, a0,ω0) ,

(
� j (y),�a

j ,�
ω
j

))
.

there exists a unique solution (Um,Am,�m) for (4.16) on some interval [0, Tm],
Tm ≤ T (c jm ∈ H1(0, Tk)).

To show that (Um,Am,�m) converges to the solution (U,A,�), we have to derive
the energy estimates. We multiply (4.16) by c jm , and sum over j from 1 to m, and if
we go back to physical domain �F (t) with

um(t, x) = ∇X(t,Y(t, x))Um(t,Y(t, x)), am(t) = Q(t)Am(t), ωm(t) = Q(t)�m(t)

we will obtain

∫

�F (t)
∂tum · um dx + d

dt
(Jωm) · ωm + d

dt
am · am

+
∫

�F (t)
2|Dum |2 dx +

∫

�F (t)
ũ · ∇um · um dx = 0.

Since

∫

�F (t)
∂tum · um dx + d

dt
(Jωm) · ωm + d

dt
am · am

=
∫

�F (t)

1

2
∂t |um |2 dx + d

dt
(Jωm) · ωm + d

dt
am · am

= 1

2

d

dt
‖um(t)‖2L2(�)

− 1

2

∫

�F (t)
ũ · ∇|um |2 dx

it follows that

1

2

d

dt
‖um(t)‖2L2(�)

+
∫

�F (t)
2|Dum |2 dx = 0.

By integrating the equality on (0, t) we obtain the estimate

1

2
‖um(t)‖2L2(�)

+ 2
∫ t

0
‖Dum‖2L2(�F (τ ))

dτ = 1

2
‖um(0)‖2L2(�)

≤ 1

2
‖u0‖2L2(�)

, ∀t ∈ [0, Tm]

from which we conclude that |c jm(t)| < ‖u0‖L2(�), so the inequality holds for all
t ∈ [0, T ]. Hence, um is bounded in L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)) which
implies that um → ū weakly in L2(0, T ; H1(�)) and weakly-* in L∞(0, T ; L2(�)).
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Let us show that ū is a weak solution for (1.6). We take test function

(
ψ(t, y),ψa(t),ψω

) = h(t)
(
� j (y),�a

j ,�
ω
j

)
h ∈ C∞

c ([0, T )),

multiply (4.16) by h(t) and write the equation in the physical domain �F (t)

∫

�F (t)
∂tum · ϕ dx + d

dt
(Jωm) · ϕω + d

dt
am · ϕa +

∫

�F (t)
2Dum · Dϕ dx

+
∫

�F (t)
ũ · ∇um · ϕ dx = 0

with

ϕ(t, x) = ∇X(t,Y(t, x))ψ(t,Y(t, x)), ϕa(t) = Q(t)ψa(t),

ϕω(t) = Q(t)ψω(t).

By integrating on (0, T ) and using the integration by parts we obtain

∫ T

0

∫

�F (t)
um · ∂tϕ dxdt +

∫ T

0

(
Jωm · d

dt
ϕω + am · d

dt
ϕa

)
dt

−
∫ T

0

∫

�F (t)
2Dum · Dϕ dxdt +

∫ T

0

∫

�F (t)
(̃u ⊗ um) · ∇ϕT dxdt

= −
∫

�F

um(0) · ϕ(0) dx − Jωm(0) · ϕω(0) − am(0) · ϕa(0).

Now, we let m → ∞
∫ T

0

∫

�F (t)
ū · ∂tϕ dxdt +

∫ T

0

(
Jω̄ · d

dt
ϕω + ā · d

dt
ϕa

)
dt

−
∫ T

0

∫

�F (t)
2Dū · Dϕ dxdt +

∫ T

0

∫

�F (t)
(̃u ⊗ ū) · ∇ϕT dxdt

= −
∫

�F

ū(0) · ϕ(0) dx − Jω0 · ϕω(0) − a0 · ϕa(0)

(4.20)

and go to the cylindrical domain

∫ T

0

∫

�F

Ū · ∂t (Gψ) dydt +
∫ T

0

(
Ā · d

dt
ψa + J �̄ · d

dt
ψω

)
dt

−
∫ T

0

〈
GF(Ū),ψ

〉
dt +

∫ T

0

(
G(Ā) · ψa + H(�̄) · ψω

)
dt

= −
∫

�F

u0 · ψ(0) dy − a0 · ψa(0) − Jω0 · ψω(0)
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with

ū(t, x) = ∇X(t,Y(t, x))Ū(t,Y(t, x)), ā(t) = Q(t)Ā(t), ω̄(t) = Q(t)�̄(t).

By taking ψ = hi (t)� i and summing up over i from 1 to m the equality holds for
all test functions in Vm which is dense in V(�F ). It is not difficult to show that
the equation (4.20) is equivalent to (2.2) from Definition 2.1 and therefore we call
the function Ū a weak solution for (4.11). Finally, the uniqueness of weak solution
implies Ū = U ∈ L2(0, T ; H2(�)) ∩ H1(0, T ; L2(�)). Then, since Ū = Ā+ �̄ × y
and U = A+ � × y on S0, we conclude that Ā = A and �̄ = � belong to H1(0, T ).

4.1.1 Estimates for time derivatives

In this step we would like to show that

∂t Ũ, ∂tU ∈ L∞(ε, T ; L2(�)) ∩ L2(ε, T ; H1(�)).

By (4.16) solution (Um,Am,�m) satisfies

∫

�

G∂tUm · � i dy + 〈GF(Um),� i
〉− G(Am) · �a

i − H(�m) · �ω
i = 0,

for i = 1, . . .m. This is a consequence of G = I on S0 and equality

∫

�F

G∂tUm · � i dy + d

dt
Am · �a

i + d

dt
(J�m) · �ω

i

=
∫

�F

G∂tUm · � i dy +
∫

S0
∂tUm · � i dy

=
∫

�

G∂tUm · � i dy.

We differentiate the equation in time

∫

�

∂t (G∂tUm) · � i dy + 〈GF(∂tUm),� i
〉+ 〈∂t (GF)(Um),� i

〉

−G

(
d

dt
Am
)

· �a
i − H

(
d

dt
�m
)

· �ω
i − (G1

(
Am) · �a

i + H1
(
�m) · �ω

i

) = 0.

(4.21)

We recall that operators G, H are defined by (2.6), and G1 and H1 by (4.5). We
multiply the above equation by d

dt cim and sum over i form 1 to m to obtain
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∫

�

∂t (G∂tUm) · ∂tUm dy + 〈GF(∂tUm), ∂tUm 〉+ 〈∂t (GF)(Um), ∂tUm 〉

−G

(
d

dt
Am
)

· d

dt
Am − H

(
d

dt
�m
)

· d

dt
�m

−
(
G1
(
Am) · d

dt
Am + H1

(
�m) · d

dt
�m
)

= 0. (4.22)

Then we integrate the equation on [t1, t2] ⊂ (0, T ] and estimate each term. For the
first term we have

∫

�

∂t (G∂tUm) · ∂tUm dy = 1

2

d

dt

∫

�

G∂tUm · ∂tUm dy

+ 1

2

∫

�

∂tG ∂tUm · ∂tUm dy,
∣∣∣∣
∫ t2

t1

∫

�

∂tG ∂tUm · ∂tUm dydτ

∣∣∣∣ ≤ ‖∂tG‖L∞(0,T ;L∞(�))‖∂tUm‖2L2(t1,t2;L2(�))
,

which implies

∫

�

∂t (G∂tUm) · ∂tUm dy ≥ 1

2

d

dt
‖∇X∂tUm‖2L2(�)

− 1

2
‖∂tG‖L∞(0,T ;L∞(�))‖∂tUm‖2L2(t1,t2;L2(�F ))

.

By the definition of 〈GF(U),ψ〉 and Lemma 3.1 we get

∣∣∣
〈
GL(∂tUm), ∂tUm 〉− 2‖D(∂tUm)‖2L2(�)

∣∣∣

≤
(
‖(gikg jl − δikδ jl)‖L∞(�) + μ

)
‖∇∂tUm‖2L2(�F )

+ C‖∂tUm‖2L2(�)∣∣∣∣
∫

�F

GM(∂tUm) · ∂tUm dy

∣∣∣∣ ≤ μ‖∇∂tUm‖2L2(�F )
+ C‖∂tUm‖2L2(�)

∣∣∣∣
∫

�F

GN (∂tUm) · ∂tUm dy

∣∣∣∣ =
∣∣∣∣
∫

�F (t)
ũ · ∇umt · umt dy

∣∣∣∣

=
∣∣∣∣
∫

∂S(t)

1

2
|umt |2 ũ · n dγ (x)

∣∣∣∣

≤ C

∣∣∣∣
∫

∂S0

1

2
|∂tUm |2 Ũ · N dγ (y)

∣∣∣∣

≤ C(|Ã| + |�̃|)
(∣∣∣∣

d

dt
Am
∣∣∣∣
2

+
∣∣∣∣
d

dt
�m
∣∣∣∣
2
)

≤ C‖Ũ‖L2(�)‖∂tUm‖2L2(�)
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for arbitrary μ > 0 and umt = ∇X∂tUm . Hence, for the second term in (4.22) we
obtain

∣∣∣∣
∫ t2

t1

〈
GF(∂tUm), ∂tUm 〉 dτ −

∫ t2

t1
2‖D∂ ltU

m‖2L2(�F )
dτ

∣∣∣∣

≤
(
‖(gikg jl − δikδ jl)‖L∞(t1,t2;L∞(�)) + 2μ

) ∫ t2

t1
‖∇∂tUm‖2L2(�F )

dτ

+ C
∫ t2

t1
‖∂tUm‖2L2(�)

dτ.

where constant C > 0 depends on T non-decreasingly.
Now, for the third term we compute

∣∣〈∂t (GL)(Um), ∂tUm 〉∣∣ ≤ μ‖∇∂tUm‖2L2(�F )
+ C‖∂tUm‖2L2(�)

+ C‖Um‖2H1(�F )∣∣∣∣
∫

�F

∂t (GM)(Um) · ∂tUm dy

∣∣∣∣ ≤ C‖∂tUm‖2L2(�)

+ (‖Ã‖W 1,∞(t1,t2) + ‖�̃‖W 1,∞(t1,t2)

)2 ‖Um‖2H1(�F )∣∣∣∣
∫

�F

G(∂tN )(Um) · ∂tUm dy

∣∣∣∣ ≤ ‖G‖L∞(�)

(∣∣∣∣
∫

�F

∂t Ũ · ∇Um · ∂tUm dy

∣∣∣∣

+
∣∣∣∣∣∣

∫

�F

n∑

i, j,k=1

∂t (�
i
jkŨ j )Um

k ∂tUm
i dy

∣∣∣∣∣∣

⎞

⎠

∣∣∣∣
∫

�F

∂t Ũ · ∇Um · ∂tUm dy

∣∣∣∣ ≤ ‖∂t Ũ‖L4(�F )‖∇Um‖L2(�F )‖∂tUm‖L4(�F )

≤ C‖∂t Ũ‖2L4(�F )
‖∂tUm‖2L4(�F )

+ ‖∇Um‖2L2(�F )

≤ C‖∂t Ũ‖2L4(�F )
‖∂tUm‖

3
2
L2(�F )

‖∇∂tUm‖
1
2
L2(�F )

+ ‖∇Um‖2L2(�F )

≤ C‖∂t Ũ‖8L4(�F )
‖∂tUm‖2L2(�F )

+ μ‖∇∂tUm‖2L2(�F )
+ ‖∇Um‖2L2(�F )

.

Hence,

∣∣∣∣
∫ t2

t1

〈
∂t (GF)(Um), ∂tUm 〉 dτ

∣∣∣∣ ≤ μ

∫ t2

t1
‖∇∂tUm‖2L2(�F )

dτ

+C
∫ t2

t1
‖∂tUm‖2L2(�)

dτ + C‖Um‖2L2(t1,t2;H1(�F ))
,

for arbitrary μ > 0, where constant C > 0 depends on T non-decreasingly, since
∂t Ũ ∈ L8(ε, T ; L4(�)), ∀ε > 0 by (4.1) and since d

dt Ã, d
dt �̃ ∈ L∞(0, T ) by the

assumption of Proposition 2.2. Here we emhasize that this assumption was necessary
for bounding term involving ∂t (GM)(Um).
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Note that

‖∇Xψ‖L2(�) ≥ 1

‖∇Y‖L∞(0,T ;L∞(�))

‖ψ‖L2(�),

since ∇Y∇X = I, so all together, we get

‖∂tUm‖2L2(�)
(t2) + 4‖D∂tUm‖2L2(t1,t2;L2(�F ))

≤ ‖∂tUm‖2L2(�)
(t1) + C

∫ t2

t1
‖∂tUm‖2L2(�)

dτ

+ C
(
‖(gikg jl − δikδ jl)‖L∞(0,T ;L∞(�)) + μ

) ∫ t2

t1
‖∇∂ ltU

m‖2L2(�F )
dτ

+ C‖Um‖2L2(t1,t2;H1(�F ))

where ‖(gikg jl − δikδ jl)‖L∞(0,T ;L∞(�)) is small for small T , by Lemma 3.1.
Now, we take sufficiently small T , integrate the inequality on t1 ∈ (ε, t2) and by

Gronwall’s Lemma we find

‖∂tUm(t)‖2L2(�)
+ C

∫ t

ε

‖D∂tUm‖2L2(�F )
dτ ≤ M,

for all t ∈ (ε, t), where constant M > 0 depends on the norms ‖∂t Ũ‖L8(ε,T ;L4(�)),
‖Ũ‖L2(ε,T ;H1(�)), ‖Um‖L2(0,T ;H1(�)), ‖Ã‖W 1,∞(0,T ) and ‖�̃‖W 1,∞(0,T ). Finally, since
‖Um‖L2(0,T ;H1(�)) is bounded, on the limit we get that ∂tU ∈ L2(ε, T ; H1(�)) ∩
L∞(ε, T ; L2(�)).

4.1.2 Uniqueness for time-derivative system

Now we are able to show that U∗
1 = t∂tU. (U, P) satisfies the following weak formu-

lation

∫

�F

∂tG ∂tU · ψ dy −
∫

�F

∂tGF(U) · ψ dy +
∫

�F

∂tGG(P) · ψ dy = 0 (4.23)

for all ψ ∈ V (0), and (U∗, P∗,A∗,�∗) satisfies

∫

�

G∂tU∗
1 · ψ dy + 〈GF(U∗

1),ψ
〉+ t

(
〈GF1(U),ψ〉 +

∫

�F

GG1(P) · ψ dy
)

−G(A∗
1) · ψa − H(�∗

1) · ψω − t
(
G1 (A) · ψa + H1 (�) · ψω

)

−
∫

�F

G∂tU · ψ dy − d

dt
A · ψa − J

(
d

dt
�

)
· ψω = 0, (4.24)
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where

〈GF1(U),ψ〉 = −
∫

�F

GF1(U) · ψ dy

with F1 = L1 −M1 −N1 and operators L1,M1,N1, G1 are defined by (4.6)–(4.9).
For j ∈ N and (ψ,ψa,ψω) = h(t)(� j ,�

a
j ,�

ω
j ) we have

∫

�

G∂t∂tUm · ψ dy +
∫

�F

∂tG ∂tUm · ψ dy

+ 〈GF(∂tUm),ψ
〉+ 〈GF1(Um),ψ

〉+ 〈∂tGF(Um),ψ
〉

− G

(
d

dt
Am
)

· ψa − H

(
d

dt
�m
)

· ψω − (G1
(
Am) · ψa + H1

(
�m) · ψω

) = 0,

(4.25)

where

〈∂tGF(U),ψ〉 = −
∫

�F

∂tGF(U) · ψ dy.

Note that the second row in (4.25) is the time derivative of 〈GF(Um),ψ〉, for time
independent ψ , which holds from (4.19) sinceG = I on S0 andUm is regular enough.
We multiply the above equation by t and subtract from the previous one with

(Ûm
1 , Âm

1 , �̂
m
1 ) =

(
U∗
1 − t∂tUm, A∗

1 − t
d

dt
Am, �∗

1 − t
d

dt
�m
)

.

Then, by using (4.23), we obtain

∫

�

G∂t Ûm
1 · ψ dy + t

∫

�F

∂tG ∂t (U − Um) · ψ dy

− 〈GF(Ûm
1 ),ψ

〉− t
(〈
GF1(U − Um),ψ

〉+ 〈∂tGF(U − Um),ψ
〉)

−t
∫

�F

GG1(P) · ψ dy − t
∫

�F

∂tGG(P) · ψ dy

− G(Âm) · ψa − H(�̂
m
) · ψω

− t
(
G1
(
A − Am) · ψa + H1

(
� − �m) · ψω

)

−
∫

�F

G∂t (U − Um) · ψ dy −
(
d

dt
(A − Am)

)
· ψa

−
(
d

dt
(� − �m)

)
· ψω. = 0

Since

GG1(P) + ∂tGG(P) = G∂tG
−1∇P + ∂tGG

−1∇P = ∂t (GG
−1)∇P = 0,
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terms with the pressure cancels, and after integrating above equation on (0, t), we get

∫

�

G(t)Ûm
1 (t) · ψ(t) dy −

∫ t

0

∫

�

GÛm
1 · ∂tψ dydτ −

∫ t

0

∫

�F

∂tGÛm
1 · ∂tψ dydτ

+ t
∫ t

0

∫

�F

∂tG ∂t (U − Um) · ψ dy dτ

−
∫ t

0

〈
GF(Ûm

1 ),ψ
〉
dτ − t

∫ t

0

(〈
GF1(U − Um),ψ

〉+ 〈∂tGF(U − Um),ψ
〉)
dτ

−
∫ t

0

(
G(Âm

1 ) · ψa + H(�̂
m
1 ) · ψω

)
dτ

− t
∫ t

0

(
G1
(
A − Am) · ψa + H1

(
� − �m) · ψω

)
dτ

−
∫ t

0

∫

�F

G∂t (U − Um) · ψ dy dτ −
∫ t

0

(
d

dt
(A − Am)

)
· ψa dτ

−
∫ t

0

(
d

dt
(� − �m)

)
· ψω dτ = 0.

We let m → ∞ and obtain the equation

∫

�

G(t)Û1(t) · ψ(t) dy −
∫ t

0

∫

�

Û1 · ∂t (Gψ) dydτ

−
∫ t

0

〈
GF(Û1),ψ

〉
dτ −

∫ t

0

(
G(Â1) · ψa + H(�̂1) · ψω

)
dτ = 0,

where

(Û1, Â1, �̂1) =
(
U∗
1 − t∂U,A∗

1 − d

dt
A,�∗

1 − t
d

dt
�

)

By linearity and density, the above equality holds for all (ψ,ψa,ψω) ∈ V. Then we
substitute

(ψ,ψa,ψω) = (Û1, Â1, �̂1)

and get the equality

1

2

∥∥∇XÛ1(t)
∥∥2
L2(�)

−
∫ t

0

∫

�

∇XT ∂t∇XÛ1 · Û1 dxdτ

−
∫ t

0

〈
GF(Û1), Û1

〉
dτ −

∫ t

0

(
G(Â1) · Â1 + H(�̂1) · �̂1

)
dτ = 0.
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Now, as before, we can get the estimate

∥∥Û1(t)
∥∥2
L2(�)

+ C1

∫ t

0

∫

�F

|DÛ1|2 dydτ ≤
∫ t

0
C2
∥∥Û1(τ )

∥∥2
L2(�)

dτ

+μ

∫ t

0

∫

�F

|DÛ1|2 dydτ

for all μ > 0 and for sufficiently small μ we get

∥∥Û1(t)
∥∥2
L2(�)

≤
∫ t

0
C
∥∥Û1(τ )

∥∥2
L2(�)

dτ.

Finally, Gronwall’s Lemma implies Û1 = 0 which means that U∗
1 = t∂tU. Then the

equations (4.11)1 and (4.13)1 give∇P∗
1 = t∇∂t P . Moreover, sinceU∗

1 = A∗
1+�∗

1×y
and ∂tU = d

dtA + d
dt � × y on S0, it follows that A∗

1 = t d
dtA and �∗

1 = t d
dt �.

5 Spatial derivatives estimates

Let (Ũ, P̃, Â, �̃) be a weak solution satisfying the assumption of Lemma 2.1. We
want to show that

∂ lt Ũ ∈ L2(ε, T ; Hk(�F )),

∂ lt P̃ ∈ L2(ε, T ; Hk−1(�F ) /R),

for all l ≥ 0, k ≥ 2. The case k = 2 is exactly the statement of Proposition 2.2.
As in previous sections, we consider a linear problem on cylindrical domain (2.4)

and follow the proof for the Navier–Stokes case (see eg. [16, Section 5]). Let k ≥ 2
and let us assume that solution (U, P,A,�) to the system (2.4) satisfies

∂ ltU ∈ L2(ε, T ; Hk(�F )), ∂ lt P ∈ L2(ε, T ; Hk−1(�F ) /R),

dl

dt l
A,

dl

dt l
� ∈ L2(ε, T ), ∀l ≥ 0, ∀ε > 0,

and by uniqueness

∂ lt Ũ ∈ L2(ε, T ; Hk(�F )), ∂ lt P̃ ∈ L2(ε, T ; Hk−1(�F ) /R),

dl

dt l
Ã,

dl

dt l
�̃ ∈ L2(ε, T ), ∀l ≥ 0, ∀ε > 0,

which by Sobolev embeddings means that

U, Ũ ∈ C∞((0, T ]; Hk(�F )), P, P̃ ∈ C∞((0, T ]; Hk−1(�F ) /R),

A,�, Ã, �̃ ∈ C∞(0, T ],
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We want to show that

∂ ltU(t) ∈ Hk+1(�F ), ∂ lt P(t) ∈ Hk(�F ) /R, ∀l ≥ 0, ∀t ∈ (0, T ].

The solution for (2.4) satisfies the following system

�∂ ltU = ∂ l+1
t U − F(∂ ltU, ∂ lt P) − Fl(U, P) + ∇∂ lt P,

div ∂ ltU = 0

}
in (0, T ] × �F ,

∂ ltU = dl

dt l
A + dl

dt l
� × y on (0, T ] × ∂S0,

U = 0 on (0, T ] × ∂�, (5.1)

for all l ≥ 0,where operators F and Fl are defined by (2.5) and (4.6)–(4.9) respectively,
and if we define F0(U, P) = 0.

The idea is to use the following well known result for the steady Stokes system (see
[16, Lemma 5.2]).

Lemma 5.1 Let � be a bounded domain of Rn, of class Ck+2. For any F ∈ Wk,q(�),
there exists one and only one solution (U, P) to the following Stokes problem

−�U = F + ∇P,

divU = 0

}
in �,

U = 0 on ∂�,

(5.2)

such that

U ∈ Wk+2,q(�), P ∈ Wk+1,q(�)

and

∫

�

P dy = 0.

This solution satisfies the estimate:

‖U‖Wk+2,q (�) + ‖P‖Wk+1,q (�) ≤ C‖F‖Wk,q (�) (5.3)

Therefore, first for l = 0 by Lemma 5.1 and fixed point argument we will obtain that

(U, P)(t) ∈ Hk+1(�F ) × (Hk(�F ) /R), ∀t ∈ (0, T ],

and by uniqueness

(Ũ, P̃)(t) ∈ Hk+1(�F ) × (Hk(�F ) /R), ∀t ∈ (0, T ].
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Then for l ≥ 1 if we assume that

(∂rU, ∂r P)(t) ∈ Hk+1(�F ) × (Hk(�F ) /R), ∀t ∈ (0, T ],∀r ≤ l − 1

we will conclude that

(∂lU, ∂l P)(t) ∈ Hk+1(�F ) × (Hk(�F ) /R), ∀t ∈ (0, T ].

First we define a smooth divergence-free extension of the rigid velocity

bA,�(t, y) = Ext(A(t) + �(t) × y).

Operator Ext(·) extends a function from solid domain S0 to the domain � such that
it preserves regularity of function and the divergence-free property. The construction
of the operator can be found in [21, Appendix A.1]. Since div bA,� = 0, functions
Ūl = ∂ ltU − ∂ lt bA,� and P̄l = ∂ lt P satisfy

�Ūl = −F(Ūl , P̄l ) − Fl (U, P) + ∂l+1
t U − F(∂lt bA,�) + ∇ P̄l

div Ūl = 0

}
in (0, T ] × �F

Ūl = 0 on (0, T ] × ∂�F ,

(5.4)

for all l ≥ 0, where

F(U) = L(U) − M(U) − N (U), (5.5)

and L, M, N are defined by (2.7), (2.9), (2.8) respectively. Now, for l ≥ 0, we use
fixed point argument, and consider the following problem

�Ūl = −F(Û, P̂) − Fl(U, P) + ∂ l+1
t U − F(∂ lt bA,�) + ∇ P̄l

div Ūl = 0

}
in (0, T ] × �F ,

Ūl = 0 on (0, T ] × ∂�F ,

(5.6)

with

(Û, P̂)(t) ∈ Hk+1(�F ) × (Hk(�F ) /R), ∀t ∈ (0, T ].

By Lemma 5.1, it is enough to show that

−F(Û, P̂)(t) − Fl(U, P)(t) ∈ Hk−1(�F ) ∀t ∈ (0, T ].

since ∂ lt bA,� ∈ C∞((0, T ) × �), and ∂ l+1
t U ∈ C∞((0, T ]; Hk(�F )) by assumption.

The only critical terms are derivatives of the convective term. For k = 2, l = 1 we

123



1042 B. Muha et al.

have

‖Ũ · ∇∂t Û‖L2(�F ) ≤ ‖Ũ‖L∞(�F )‖∇∂t Û‖L2(�F ) ≤ ‖Ũ‖H2(�F )‖∂t Û‖H1(�F )

‖∂i Ũ · ∇∂t Û‖L2(�F ) ≤ ‖∂i Ũ‖L4(�F )‖∇∂t Û‖L4(�F ) ≤ ‖Ũ‖H2(�F )‖∂t Û‖H2(�F )

‖Ũ · ∇∂i∂t Û‖L2(�F ) ≤ ‖Ũ‖L∞(�F )‖∇∂i∂t Û‖L2(�F ) ≤ ‖Ũ‖H2(�F )‖∂t Û‖H2(�F )

‖∂t Ũ · ∇U‖L2(�F ) ≤ ‖∂t Ũ‖L4(�F )‖∇U‖L4(�F ) ≤ ‖∂t Ũ‖H1(�F )‖U‖H2(�F )

‖∂t∂i Ũ · ∇U‖L2(�F ) ≤ ‖∂t∂i Ũ‖L4(�F )‖∇U‖L4(�F ) ≤ ‖∂t Ũ‖H2(�F )‖U‖H2(�F )

‖∂t Ũ · ∇∂iU‖L2(�F ) ≤ ‖∂t Ũ‖L∞(�F )‖∇∂iU‖L2(�F ) ≤ ‖∂t Ũ‖H2(�F )‖U‖H2(�F )

and in the general case the estimates can be obtained in the same way.
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6 Appendix

6.1 Time derivatives-general case

In Sect. 4, we have presented the proof of Proposition 2.2 for case l = 1. Here we
are going to present the induction step for general l ∈ N. The proof in general case is
conceptually the same, but with more complicated expressions in the equations.

Let l ≥ 1 and let us assume that

∂ l−1
t Ũ, ∂ l−1

t U ∈ W 1,p(ε, T ; L p(�F )) ∩ L p(ε, T ;W 2,p(�F )),

∂ l−1
t P̃, ∂ l−1

t P ∈ L p(ε, T ;W 1,p(�F ) /R),

dl−1

dt l−1 Ã,
dl−1

dt l−1A,
dl−1

dt l−1 �̃,
dl−1

dt l−1� ∈ W 1,p(ε, T ),

for all ε > 0 and 1 ≤ p < ∞. We consider the problem (3.1) with right hand side

F∗ = F∗
l = F(U∗, P∗) + t Fl(U, P) + ∂ ltU,

G∗ = G∗
l = G(A∗) + tGl(A) + dl

dt l
A,

H∗ = H∗
l = H(�∗) + t Hl(�) + J dl

dt l
�,

(6.1)
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where

Fl(U, P) =
l−1∑

p=0

(
l

p

) (
Fl−p

(
∂
p
t U
)− Gl−p

(
∂
p
t P
))

=
l−1∑

p=0

(
l

p

)(
Ll−p

(
∂
p
t U
)− Ml−p

(
∂
p
t U
)

−Nl−p
(
∂
p
t U
)− Gl−p

(
∂
p
t P
) )

(6.2)

Gl(A) = −
l−1∑

p=0

(
l

p

)
dl−p

dt l−p
�̃ × dp

dt p
A,

Hl(�) = −
l−1∑

p=0

(
l

p

)
dl−p

dt l−p
�̃ × J

(
dp

dt p
�

)
. (6.3)

Subscript l− p in operatorsLl−p,Ml−p,Nl−p and Gl−p denotes (l− p)th order time
derivative of the coefficients in operators L, M, N and G. As for l = 1, to show that
described problem has a unique solution (U∗

l , P
∗
l ,A∗

l ,�
∗
l ) such that

U∗
l ∈ H1(0, T ; L2(�F )) ∩ L2(0, T ; H2(�F )),

P∗
l ∈ L2(0, T ; H1(�F ) /R),

A∗
l ,�

∗
l ∈ H1(0, T )

(6.4)

it is sufficient to show that

R = t Fl(U, P) + ∂ ltU, Ra = tGl(A) + dl

dt l
A, Rω = t Hl(�) + dl

dt l
�.

satisfy

R ∈ L2(0, T ; L2(�F )) Ra ∈ L2(0, T ), Rω ∈ L2(0, T ).

All the terms can be estimated as in Sect. 4, so by Proposition 3.1 there exists a unique
strong solution (U∗

l , P
∗
l ,A∗

l ,�
∗
l ) of (3.1)with the right hand side (6.1) satisfying (6.4).

Again, we have to prove that the obtained solution equals
(
t∂ ltU, t∂ lt P, t dl

dtl
A, t dl

dtl
�
)
.

Lemma 6.1 Let (U, P,A,�) be a unique strong solution for (2.4), and
(U∗

l , P
∗
l ,A∗

l ,�
∗
l ) be a unique strong solution for (3.1) with the right hand side (6.1)

satisfying (6.4). Suppose that

U, Ũ ∈ Wl−1,p(ε, T ;W 2,p(�F )) ∩ Wl,p(ε, T ; L p(�F )),

P, P̃ ∈ Wl−1,p(ε, T ;W 1,p(�F ) /R),

A,�, Ã, �̃ ∈ Wl,p(ε, T ) ∩ W 1,∞(ε, T )

(6.5)
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hold for some l ∈ N and for all ε > 0 and all 1 ≤ p < ∞. Then

(U∗
l , P

∗
l ,A∗

l ,�
∗
l ) =

(
t∂ ltU, t∂ lt P, t

dl

dt l
A, t

dl

dt l
�

)
. (6.6)

6.2 Proof of Lemma 6.1

Let (U, P,A,�) be a unique strong solution for (2.4) satisfying (6.5) and let
(U∗

l , P
∗
l ,A∗

l ,�
∗
l ) be a unique strong solution for (3.1) with the right hand side (6.1).

We want to show (6.6). Since we have already shown that the statement is valid for
l = 1 in Sect. 4.1, we can suppose that l ≥ 2.

We use Galerkin approximations (Um,Am,�m), as in Sect. 4.1, and assume that

‖Um‖Wl−1,∞(ε,T ;L2(�)) + ‖Um‖Hl−1(ε,T ;H1(�)) < M,

for some constant M > 0. This assumption comes from the previous step of the
induction.

We want to show that

‖∂ ltUm‖L∞(ε,T ;L2(�)) + ‖∂ ltUm‖L2(ε,T ;H1(�)) < M .

for some constant M > 0, which implies that

∂ lt Ũ, ∂ ltU ∈ L∞(ε, T ; L2(�)) ∩ L2(ε, T ; H1(�)).

By (4.16) approximation (Um,Am,�m) satisfies

∫

�

G∂tUm · � i dy + 〈GFUm,� i
〉− G(Am) · �a

i − H(�m) · �ω
i = 0

for i = 1, . . .m. We differentiate the equation in time l times

∫

�

∂ lt (G∂tUm) · � i dy −
〈
GF(∂ ltU

m),� i

〉
−

l∑

k=1

(
l

k

) 〈
∂kt (GF)(∂ l−k

t Um),� i

〉

−G

(
dl

dt l
Am
)

· �a
i − H

(
dl

dt l
�m
)

· �ω
i −

l∑

k=1

(
l

k

)(
Gk

(
dl−k

dt l−k
Am
)

· �a
i

+Hk

(
dl−k

dt l−k
�m
)

· �ω
i

)

= 0,

multiply by dl

dtl
cim and sum over i form 1 to m to obtain
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∫

�

∂ lt (G∂tUm) · ∂ ltU
m dy −

〈
GF(∂ ltU

m), ∂ ltU
m
〉

−
l∑

k=1

(
l

k

) 〈
∂kt (GF)(∂ l−k

t Um), ∂ ltU
m
〉

−G

(
dl

dt l
Am
)

· dl

dt l
Am − H

(
dl

dt l
�m
)

· dl

dt l
�m

−
l∑

k=1

(
l

k

)(
Gk

(
dl−k

dt l−k
Am
)

· dl

dt l
Am + Hk

(
dl−k

dt l−k
�m
)

· dl

dt l
�m
)

= 0.

Then we integrate the equation on [t1, t2] ⊂ (0, T ] and, in the same way as in Sect.
4.1.1, estimate

∫

�
∂lt (G∂tUm) · ∂ltU

m dy

=
∫

�
G∂l+1

t Um · ∂ltU
m dy +

l∑

k=1

(
l

k

)∫

�
∂kt G ∂l−k+1

t Um · ∂ltU
m dy

= 1

2

d

dt

∫

�
G∂ltU

m · ∂ltU
m dy −

∫

�
∂tG ∂ltU

m · ∂ltU
m dy

+
l∑

k=1

(
l

k

)∫

�
∂kt G ∂l−k+1

t Um · ∂ltU
m dy

∣∣∣∣∣∣
−
∫ t2

t1

∫

�
∂tG ∂ltU

m · ∂ltU
m dydτ +

l∑

k=1

(
l

k

)∫ t2

t1

∫

�
∂kt G ∂l−k+1

t Um · ∂ltU
m dydτ

∣∣∣∣∣∣

≤ C‖Um‖2Hl (t1,t2;L2(�))∣∣∣∣
∫ t2

t1

〈
GF

(
∂ltU

m
)

, ∂ltU
m
〉
dτ −

∫ t2

t1

∫

�F

2|D∂ltU
m |2 dydτ

∣∣∣∣

≤
(
‖gikgil − δikδil‖L∞(0,T ;L∞(�)) + μ

) ∫ t2

t1

∫

�F

|∇∂ltU
m |2 dydτ

+ C
∫ t2

t1
‖∂ltUm‖2L2(�)

dτ

The only difference from Sect. 4.1.1 is in the following estimate

∣∣∣∣∣

∫ t2

t1

l∑

k=1

(
l

k

)∫

�F

∂kt (GM)(Um), ∂ ltU
m dydτ

∣∣∣∣∣

≤
∫ t2

t1
‖∂ ltUm‖2L2(�)

dτ + C
(‖Ã‖Wl,4(t1,t2)

+‖�̃‖Wl,4(t1,t2)

)2 ‖Um‖2Wl−2,4(t1,t2;H1(�F ))

+ C
(‖Ã‖Wl−1,∞(t1,t2) + ‖�̃‖Wl−1,∞(t1,t2)

)2 ‖Um‖2Hl−1(t1,t2;H1(�F ))
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≤
∫ t2

t1
‖∂ ltUm‖2L2(�)

dτ + C‖Um‖2Hl−1(t1,t2;H1(�F ))
.

The last inequality follows from the fact that Ã, �̃ ∈ Wl,4(ε, T ) ∩ W 1,∞(ε, T ) and
embedding Wl−2,4(t1, t2; H1(�F )) ↪→ Hl−1(t1, t2; H1(�F )) for l ≥ 2. Therefore,
we get

∣∣∣∣
∫ t2

t1

〈
∂kt (GF)(∂ l−k

t Um), ∂ ltU
m
〉
dydτ

∣∣∣∣

≤ μ

∫ t2

t1

∫

�F

|∇∂ ltU
m |2 dydτ + C

∫ t2

t1
‖∂ ltUm‖2L2(�)

dτ

+ C‖Um‖2Hl−1(t1,t2;H1(�F ))

All together, we get

‖∂ ltUm‖L2(�)(t2) + ‖D∂tUm‖2L2(t1,t2;L2(�F ))

≤ C‖∂ ltUm‖L2(�)(t1) + C
∫ t2

t1
‖∂ ltUm‖2L2(�)

dt

+ C
(
‖gikgil − δikδil‖L∞(0,T ;L∞(�)) + μ

) ∫ t2

t1
‖∇∂ ltU

m‖2L2(�F )
dτ

+ C‖Um‖2Hl−1(t1,t2;H1(�F ))
,

for arbitrary μ > 0, where ‖gikgil − δikδil‖L∞(0,T ;L∞(�)) is small for small T . Now,
we take sufficiently small T , integrate the inequality on t1 ∈ (ε, t2) and by Gronwall’s
Lemma we find

‖∂ ltUm(t)‖2L2(�)
+
∫ t

ε

‖D∂ ltU
m‖2L2(�F )

dτ ≤ M,

where constantM>0dependson thenorms‖Ũ‖Hl−1(ε,T ;H1(�)),‖Um‖Hl−1(0,T ;H1(�)),
‖Ã‖W 1,∞(ε,T ), ‖Ã‖Wl,4(ε,T ), ‖�̃‖W 1,∞(ε,T ), ‖�̃‖Wl,4(ε,T ) and T . Finally, in the limit
we get that ∂ ltU ∈ L2(ε, T ; H1(�)) ∩ L∞(ε, T ; L2(�)), for all ε > 0.

6.2.1 Uniqueness

In previous section, we showed that ∂ ltU ∈ L2(ε, T ; H1(�)) ∩ L∞(ε, T ; L2(�)), for
all ε > 0. Now we are able to show that U∗

l = t∂ ltU. We know that (U, P) satisfies

∫

�F

∂kt G ∂ l−k+1
t U · ψ dy −

∫

�F

∂kt G ∂ l−k
t (F(U)) · ψ dy

+
∫

�F

∂kt G ∂ l−k
t (G(P)) · ψ dy = 0, 1 ≤ k ≤ l, (6.7)
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for all ψ ∈ V (0), and (U∗
l , P

∗
l ,A∗

l ,�
∗
l ) satisfies

∫

�F

G∂tU∗
l · ψ dy + d

dt
A∗
l · ψa + d

dt
(J�∗

l ) · ψω

+ 〈GF(U∗
l ),ψ

〉+ t
l∑

k=1

(
l

k

)(〈
GFk(∂

l−k
t U),ψ

〉
+
∫

�F

GGl(∂ l−k
t P) · ψ dy

)

−G(A∗
l ) · ψa − H(�∗

l ) · ψω − t
l∑

k=1

(
l

k

)(
Gk

(
dl−k

dt l−k
A
)

· ψa + Hk

(
dl−k

dt l−k
�

)
· ψω

)

−
∫

�F

G∂ ltU · ψ −
(
dl

dt l
A
)

· ψa −
(
dl

dt l
�

)
· ψω = 0, (6.8)

where

〈
GFk(∂

l−k
t U),ψ

〉
= −

∫

�F

GFk(∂
l−k
t U) · ψ dy, 1 ≤ k ≤ l.

For (ψ,ψa,ψω) = h(t)(� j ,�
a
j ,�

ω
j ) we have

∫

�F

G∂t∂
l
tU

m · ψ dy +
l∑

k=1

(
l

k

)∫

�F

∂kt G ∂ l−k+1
t Um · ψ dy

+ dl

dt l
J
(

d

dt
�m
)

· ψω + dl+1

dt l+1A
m · ψa +

〈
GF(∂ ltU

m),ψ
〉

+
l∑

k=1

(
l

k

) 〈
GFk(∂

l−k
t Um), ψ

〉
+

l∑

k=1

(
l

k

) 〈
∂kt G ∂ l−k

t

(F(Um)
)
, ψ
〉

−G

(
dl

dt l
Am
)

· ψa − H

(
dl

dt l
�m
)

· ψω −
l∑

k=1

(
l

k

)(
Gk

(
dl−k

dt l−k
Am
)

· ψa + Hk

(
dl−k

dt l−k
�m
)

· ψω

)

= 0, (6.9)

where

〈
∂kt G ∂ l−k

t (F(U)) ,ψ
〉
= −

∫

�F

∂kt G ∂ l−k
t (F(U)) · ψ dy, 1 ≤ k ≤ l.

We multiply the above equation by t and subtract from the previous one with

(Ûm, Âm, �̂
m
) =

(
U∗
l − t∂ ltU

m, A∗
l − t

dl

dt l
Am, �∗

l − t
dl

dt l
�m
)
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Then, by using (6.7), we obtain

∫

�F

G∂t Ûm · ψ dy + t
l∑

k=1

(
l

k

)∫

�F

∂kt G ∂ l−k+1
t (U − Um) · ψ dy

+ d

dt
Âm · ψa + d

dt
(J �̂

m
) · ψω

− 〈GF(Ûm),ψ
〉− t

l∑

k=1

(
l

k

)(〈
GFk(∂

l−k
t (U − Um)),ψ

〉

+
〈
∂kt G ∂ l−k

t

(
F(U − Um)

)
,ψ
〉)

−t
l∑

k=1

(
l

k

)∫

�F

GGl(∂ l−k
t P) · ψ dy − t

l∑

k=1

(
l

k

)∫

�F

∂kt G ∂ l−k
t (G(P)) · ψ dy

− G(Âm) · ψa − H(�̂
m
) · ψω

− t
l∑

k=1

(
l

k

)(
Gk

(
dl−k

dt l−k
(A − Am)

)
· ψa + Hk

(
dl−k

dt l−k
(� − �m)

)
· ψω

)

−
∫

�F

G∂ lt (U − Um) · ψ dy

−
(
dl

dt l
(A − Am)

)
· ψa −

(
dl

dt l
(� − �m)

)
· ψω = 0

It can be shown that the terms with the pressure cancels, i.e. it holds

l∑

k=1

(
l

k

)
GGl(∂ l−k

t P) +
l∑

k=1

(
l

k

)
∂kt G ∂ l−k

t (G(P)) = 0, (6.10)

and after integrating above equation on (0, t), we get

∫

�F

G(t)Ûm(t) · ψ(t) dy −
∫ t

0

∫

�F

GÛm · ∂tψ dydτ −
∫ t

0

∫

�F

∂tGÛm · ∂tψ dydτ

+ t
l∑

k=1

(
l

k

)∫ t

0

∫

�F

∂kt G ∂ l−k+1
t (U − Um) · ψ dy dτ

+ Âm(t) · ψa(t) + J �̂
m
(t) · ψω(t) −

∫ t

0

(
Âm · d

dt
ψa + J �̂

m · d

dt
ψω

)
dτ

−
∫ t

0

〈
GF(Ûm), ψ

〉
dτ − t

l∑

k=1

(
l

k

)∫ t

0

(〈
GFk(∂

l−k
t (U − Um)), ψ

〉
+
〈
∂ ltG ∂ l−k

t F(U − Um),ψ
〉)

dτ

−
∫ t

0

(
G(Âm) · ψa + H(�̂

m
) · ψω

)
dτ

− t
l∑

k=1

(
l

k

)∫ t

0

(
Gk

(
dl−k

dt l−k
(A − Am)

)
·ψa+Hk

(
dl−k

dt l−k
(� − �m)

)
· ψω

)
dτ
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−
∫ t

0

∫

�F

G∂ lt (U − Um) · ψ dy dτ −
∫ t

0

(
dl

dt l
(A − Am)

)
· ψa dτ

−
∫ t

0

(
dl

dt l
(� − �m)

)
· ψω dτ = 0.

We let m → ∞ and obtain the equation

∫

�F

G(t)Û(t) · ψ(t) dy −
∫ t

0

∫

�F

Û · ∂t (Gψ) dydτ

+ Â(t) · ψa(t) + J �̂(t) · ψω(t) −
∫ t

0

(
Â · d

dt
ψa + J �̂ · d

dt
ψω

)
dτ

−
∫ t

0

〈
GF(Û),ψ

〉
dτ −

∫ t

0

(
G(Â) · ψa + H(�̂) · ψω

)
dτ = 0

where

(Û, Â, �̂) =
(
U∗
l − t∂ lU,A∗

l − dl

dt l
A,�∗

l − t
dl

dt l
�

)
.

By the linearity and the density, the above equality holds for all (ψ,ψa,ψω) ∈ V.
Then we can substitute

(ψ,ψa,ψω) = (Û, Â, �̂)

and get the equality

1

2

∥∥(∇XÛ)(t)
∥∥2
L2(�)

−
∫ t

0

∫

�

∇XT ∂t∇XÛ · Û dydτ

−
∫ t

0

〈
GF(Û), Û

〉
dτ −

∫ t

0

(
G(Â) · Â + H(�̂) · �̂) dτ = 0.

Now, as in Sect. 4, we can get the estimate

∥∥Û(t)
∥∥2
L2(�)

+ C1

∫ t

0

∫

�F

|DÛ|2 dydτ ≤
∫ t

0
C
∥∥Û(τ )

∥∥2
L2(�)

dτ

+μ

∫ t

0

∫

�F

|DÛ|2 dydτ

for all μ > 0 and for sufficiently small μ we get

∥∥Û(t)
∥∥2
L2(�)

≤
∫ t

0
C
∥∥Û(τ )

∥∥2
L2(�)

dτ.

Finally, Gronwall’s Lemma implies Û = 0 which means that U∗
l = t∂ ltU. Then the

equations for U and U∗
l give ∇P∗

l = t∇∂t P , and since U∗
l = A∗

l + �∗
l × y and

∂tU = dl

dtl
A + dl

dtl
� × y on S0, it follows that A∗

l = t dl

dtl
A and �∗

l = t dl

dtl
�.
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7 Notation

Label Description Definition/1st appearance

(̃u, p̃, ω̃, ã) Solution for the original nonlinear
problem (1.6) on physical domain

Section 2.1

(u, p, ω, a) Solution for the linear problem (2.1)
on the physical domain

Section 2.1

(Ũ, P̃, �̃, Ã) Solution for the nonlinear problem on
the cylindrical domain

Section 2.2, Eq. (2.3)

(U, P, �,A) Solution for the linear problem (2.4)
on the cylindrical domain

Section 2.2, Eq. (2.3)

(ϕ, ϕω, ϕa) Test function on the physical domain Definition 1.1
(ψ,ψω, ψa) Test function on the cylindrical

domain
Section 4.1

X(t, y) Changes of variables Section 2.2
Y(t, x) Changes of variables Section 2.2
F(U, P), G(A), H(�) Right-hand side of the linear problem

(2.4) on the cylindrical domain,
Equations (2.5) and (2.6)

F(U, P) = (L−
)U−MU−NU−
(G − ∇)P

LU The transformed Laplace operator Equation (2.7)
MU The transformation of time derivative

and gradient
Equation (2.9)

NU The transformation of the convection
term

Equation (2.8)

GP GP = ∇Y∇YT ∇P , the transforma-
tion of the gradient of the pressure

Equation (2.10)

FU FU = LU − MU − NU − GP Equation (4.12)
(U∗, P∗, �∗,A∗) The fixed point, the solution for the

transformed problem
Section 3

(Û, P̂, �̂, Â) The fixed point, functions on the right-
hand side

Section 3

F∗, G∗, H∗ The right-hand side for the Stokes
problem

Section 3

XT
p,q , Y

T
p,q XT

p,q := W 1,p(0, T ; Lq (�F )) ∩
L p(0, T ;W 2,q (�F )) Y T

p,q :=
L p(0, T ;W 1,q (�F ))

Section 3, Theorem 3.1

Fl (U, P) “Fl (U, P) = ∂lt (F(U, P)) −
F(∂ltU, ∂lt P)”

(4.6)–(4.9)

Gl (A) “Gl (A) = dl

dtl
(G(A)) − G

(
dl

dtl
A
)
” (4.5) (l = 1) and (6.3) (general case)

Hl (�) “Hl (�) = dl

dtl
(H(�)) − H

(
dl

dtl
�
)
” (4.5) (l = 1) (6.3) (general case)

Gl (P) The operator obtained by taking l th

order time derivative of the coeffi-
cients in operator G, i.e. Gl (P) =
∂lt (∇Y∇YT )∇P

Section 4.1 (l = 1), Appendix 6.1 (gen-
eral case)

Fl (U) Fl (U) = Ll (U)−Ml (U)−Nl (U)−
Gl (P), Ll ,Ml ,Nl are operators
obtained by taking l th order time
derivative of the coefficients in opera-
tors L,M,N

Section 4.1 (l = 1), Appendix 6.1 (gen-
eral case)

G G = ∇XT ∇X Section 4.1
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