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Abstract

Important information about the dynamical structure of a differential system can be
revealed by looking into its invariant compact manifolds, such as equilibria, periodic
orbits, and invariant tori. This knowledge is significantly increased if asymptotic prop-
erties of the trajectories nearby such invariant manifolds can be determined. In this
paper, we present a result providing sufficient conditions for the existence of invariant
tori in perturbative differential systems. The regularity, convergence, and stability of
such tori as well as the dynamics defined on them are also investigated. The condi-
tions are given in terms of their so-called higher order averaged equations. This result
is an extension to a wider class of differential systems of theorems due to Krylov,
Bogoliubov, Mitropolsky, and Hale.

Mathematics Subject Classification 34C23 - 34C29 - 34C45

1 Introduction and statement of the main result

The averaging method has been employed by Krylov, Bogoliubov, and Mitropolski [1,
16] to study the existence of invariant tori in the extended phase space of T -periodic
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non-autonomous perturbative differential equations of the kind x = ¢ F (¢, x). Those
results were generalized by Hale in [11] and [12] and assert that the existence of
invariant tori is associated to the existence of limit cycles of the so-called averaged
equation,

1 T
X — — Fi(t,x)dt.
% T/O (1, %)

In this paper, we are concerned with a wider class of T-periodic non-autonomous
perturbative differential equations of the following kind:

N
X = ZgiF,-(t, x)+ eNTE@, x,e), (1,x,8) € R x D x [0, g], )
i=1

where D is an open bounded subset of R”, &9 > 0, and the functions F; : Rx D — R”",
i € {l1,...,N}, and F:RxD x [0,e0] — R™ are of class C", r > 2, and
T -periodic in the variable 7. Our goal is to extend the mentioned results of Krylov,
Bogoliubov, Mitropolsky, and Hale concerning the existence of invariant tori to the
differential equation (1). More specifically, we aim to provide sufficient conditions
for the existence of invariant tori in the extended phase space of (1) which, due to the
periodicity in the variable 7, can be seen as a vector field defined on a cylinder:

/=1
’ , - s!x D 2
{x/ = ZlNzls’Fi(r,x) +eNt1FE(T, x, 8), (T.x) €5 x D, 2)

where S! = R/(T'Z). In addition, results concerning the regularity, convergence, and
stability of such tori as well as information about the dynamics defined on them will
also be presented.

1.1 Introduction to the averaging theory

Some notions from the averaging theory will appear in the statement of our main
result, Theorem A. Thus, in order to state it, we must provide a brief introduction to
the averaging method, with special attention to the concept of higher order averaged
functions.

The averaging method or averaging theory stemmed from the works of Clairaut,
Lagrange, and Laplace regarding perturbartions of differential equations (see [22,
Appendix A]), even though its formalization was only established much later, by Fatou,
Krylov, Bogoliubov, and Mitropolsky (see [1, 2, 8, 16]). It is particularly useful in the
study of nonlinear oscillating systems which are affected by small perturbations, by
providing asymptotic estimates for solutions of non-autonomous differential equations
given in the standard form (1).

The estimates provided by the averaging method depend on the averaged functions,
g : D — R'fori € {1,..., N}, which appear as solutions of homological equations
when transforming system (1) according to the following result.
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Theorem 1 ([22, Lemma 2.9.1]) There exists a T -periodic near-identity transforma-
tion of class C"

N
x=U(t,2,6) =2+ ) & ut,2), 3)
i=1

satisfying U (0, z, €) = z, such that the differential equation (1) is transformed into

N
i=Y dg@+eN Ty z ).

i=1

The condition U (0, z, €) = z, called stroboscopic condition, ensures that the func-
tions g; are uniquely determined. In that case, g; is named the averaged function of
order i. One can easily verify that g; is, indeed, the time-average of Fj(z, X), that is,

1 T
g1(z) = 7/ Fi(s,z)ds. 4
0

In general terms, the averaging theory guarantees that, for time O(1/¢) and ¢ small,
any solution of (1) remains & -close to the solution of the truncated averaged equation

N
1= g,
i=1

with the same initial conditions.

In addition to the aforesaid quantitative estimates, the averaging theory has found
great success when applied to investigate invariant manifolds; for instance, to guarantee
the existence of invariant tori, as mentioned in the introduction of this work, [1, 4, 11,
12]. It has also been successfully applied to the study of simpler compact invariant
manifolds, such as periodic solutions (see, for example, [3, 13, 17, 19, 21, 24]).

Recently, the paper [20] provided a general recursive formula for the higher order
averaged functions in terms of Melnikov functions. Accordingly, define the Melnikov
function of order i, f;, fori € {0, ..., N}, by

yi(T, z)
i!

fo(Z) =0 and fl' (Z) = s (5)

where

t
YI(I,Z)=[ Fi(s,z)ds and
0

, i1 i (6)
yi(t, ) =/0 <i!F,~(s,z)+ZZ %a;"Fi,j(s,z)Bj,m(yl,...,yj,mﬂ)(s,z))ds,

j=lm=1 J:
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fori € {2,..., N}. In the formulae above, for p and g positive integers, B, , denotes
the partial Bell polynomials (see, for instance, [6]). Roughly speaking, the Melnikov
functions determine the N-jet in ¢ of the time-T-map of (1), that is, ¢(T,z,¢) =
z+ ZlNzl &'f; (z) + O(eN 1), where (¢, z, &) corresponds to the solution of (1) with
initial condition ¢ (0, z, ¢) = z (see [17, 18]).

In particular, (4) and (6) ensure that f;(z) = 7'g;(z). The next result states that
the same holds for higher order averaged functions provided that some conditions are
satisfied.

Proposition 1 ([20, Corollary A]) Let £ € {2, ..., N}. If eitherf; = --- =f,_1 =0
orgr=---=gi_1 =0,thenf; =Tg; fori € {1,...,¢}.

The relationship established in Proposition 1 allows us to directly calculate the first
non-vanishing averaged function, thus motivating the main result of this work, i.e., an
extension of the results of Krylov, Bogoliubov, Mitropolsky, and Hale to higher order
averaged functions.

1.2 Statement of the main theorem

The existence of invariant tori in a differential system, as in the case of existence
of equilibria and periodic orbits, reveals important information about the dynami-
cal structure of the differential system. This knowledge is significantly increased if
asymptotic properties of the trajectories nearby such invariant tori can be determined.
Thus, before introducing our main result, we must set forth the following definition
regarding asymptotic stability of invariant manifolds.

Definition 1 Let
X = F(x) (7N
be an autonomous differential system in R"” and let x(¢, Xg) be the solution of (7)

satisfying x(0, xg) = Xg. Let also M be an m-dimensional invariant manifold of
system (7) and V be a neighborhood of the manifold M.

(a) The local stable set of M with respect to V is
SX, = {xo eV :x(t,x9) € V forall t > 0 and tl_i)rgod(x(t,xo), M)) = O} .
(b) The local unstable set of M with respect to V is
L{A‘fl = {xo eV :x(t,x0) € Vforallt <0 and tiir}lood(x(t, Xp), M)) = O} .

Now, we are ready to provide our main result.

Theorem A Consider the C", r > 2, differential equation (1) and its extension (2).
Suppose that, for some £ € {1,..., min(N,r —2)},fo = ... =f,_; =0, f, #0.

@ Springer



Invariant tori via higher order averaging method. . . 547

Assume that the guiding system 7 = g¢(z) has an w-periodic hyperbolic limit cycle
@(t). Then, there exists € > 0 such that, for each ¢ € (0, €], the following statements
hold:

(a) Existence: The differential system (2) has an invariant torus M. In addition,
there exists a neighborhood V. C D of T := {e(t) : t € R} such that any
invariant compact manifold of (2) contained in S! x V must be contained in M.
In particular, M is the unique invariant torus in St x v.

(b) Regularity: The invariant torus My is of class C"*. Furthermore, there is
a CO-continuous family of C"=% functions F, : R*> — R", T—periodic in
the first coordinate and w-periodic in the second coordinate, such that M, =
{(r, Fe(1,0)) : (1,0) € S! x R}.

(c) Convergence: There is a continuous function § : [0, €] — Ry satisfying 5(0) = 0

such that | Fe(t,0) — U(t, 9(0), €)|| < 8(¢) for every (t,0) € R?, where U is

the transformation given by Theorem 1. In particular, M, converges to S' x T in

the Hausdorff distance as ¢ — 0.

Stability: Let k < n — 1 be the number of characteristic multipliers of T with

modulus less than 1. Then, there are neighborhoods W, Vi, W, and V, of M

such that

(d.1) Sﬁ‘fja N Wy is a (k + 2)-dimensional manifold embedded in R"+!;
a2y U XI‘; N W, isa (n — k + 1)-dimensional manifold embedded in R"*!.

d

~

(e) Dynamics: The flow of (2) restricted to M defines a first return map pe : Se — Se
where, for ¥ = {(0, X) : x € D}atransversal sectionof (2), S := XNM, is cr—t
diffeomorphic to the circle S'. Moreover, p, is of class C"*; its rotation number
p(&) is a continuous function on ¢ € [0, €] satisfying p(&) = e'T Jw + O(e**1);
and, finally, if r — € > 4, then p maps zero Lebesgue measure sets to zero Lebesgue
measure sets, and there exists a positive Lebesgue measure set E C [0, €] such that,
for every ¢ € E, p(g) is irrational and p, is C" '3 conjugated to an irrational
rotation.

Theorem A is proved in Sect. 3 after establishing some preliminary results in Sect. 2.

Remark 1 Since p, is at least of class C (because r — £ > 2),if p(¢) is irrational, then
Pe 1s topologically conjugate to an irrational rotation (see, for instance, [13, Theorems
2.4 and 2.5]). In this case, the dynamics of (2) on the invariant torus M, corresponds to
an irrational flow and, therefore, the torus M, is a minimal invariant compact manifold,
in the sense that there is no other compact invariant manifold of (2) contained in M,
besides itself. Therefore, since p(g) = ! T Jw+O(¢t+1) is continuous, we can always
find ¢* € (0, €] such that M.+ is minimal.

Remark 2 The conclusion provided by statement e) that “if r —£ > 4, then p maps zero
Lebesgue measure sets to zero Lebesgue measure sets” is known as Luzin-N-property
of the function p.
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1.3 Application: invariant tori in 4D vector fields

Theorem A provides a means for investigating the existence of invariant tori also in
higher dimensional vector fields. For instance, for a positive integer N > 2, consider
the following 4D autonomous differential system

==y eV iy, uv) eV g,y uv) FeN TR (x, v, u, v, ),

N+1

v=x4eNfHx,y,u, )+ eV o, v, u,v) + VNP ho(x, y,u, v, 8),

N+1

®)

i=eV 300, y,u,v) + eV ea(x, y, u, v) + N (x, v, u, 0, 8),

N+1

0=eN fa(x, v, u,v) + N gu(x, v, u, v) + NP hy(x, y,u, v, 8),

where ¢ is a small positive parameter; u € {—1, 1}; f;,fori € {1, 2, 3, 4}, are functions
of class C”, r > 4, satisfying that

0 +— cos(0) f1(r cos(0), r sin(0), u, v) + sin(@) f>(r cos(@), r sin(0), u, v),
0 +— f3(rcos(@), rsin(@), u, v), and )
0 +— fa(r cos(@), rsin(@), u, v)

have vanishing average over 6 € [0, 2 ]; g;, fori € {1, 2, 3, 4}, are given by

g1(x, y, u,v) = px(x* 4+ y%),
(x, v, u,v) = —puy(x* + yH?,
g3(x,y,u,v) = xz(u(—u2 —? + 1) +v),

ga(x, y,u,v) = y2(v(—u® —v* + 1) —u);
and h;, fori € {1, 2, 3,4}, are C", r > 4, functions.

Proposition 2 Assume the conditions above for the differential system (8). Then, for
any integer N > 2 and ¢ > 0 sufficiently small, the differential system (8) has an
invariant torus T, converging, as € goes to 0, to T = S' x S'. Moreover, the invariant
torus is asymptotically stable provided that & = 1 and has an unstable direction
provided that @ = —1.

Proposition 2 is proven in Sect. 4.

Example 1 Assuming that
filx, y,u,v) =yu, folx,y,u,v) =—xv,
fy uv) =27 and folx,y,u,v) =y,
one can easily see that the functions given in (9) have vanishing average. Thus, Proposi-

tion 2 can be applied to provide the existence of an invariant torus for ¢ > 0 sufficiently
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Fig.1 Assuming N =2, u=1,h; =0,i=1,..., 4, and ¢ = 1/15, we show 10345 iterations of the
Poincaré map of (8), defined on the section ¥ = {(x, 0, u, v) : x > 0}, for the initial values: (1.01, 0, 2, 0),
(0.99, 0, 2,0), (1.01, 0,0.5,0), and (0.99, 0, 0.5, 0). The orbits are attracted by the closed curve y,, which
corresponds to the intersection between the invariant torus T, with the section X. For the web version of
the paper, purple points indicate a low number of iterations, whilst red points indicate a high number of
iterations

small. InFig. 1, assuming N =2, u = 1,h; =0,i = 1,...,4,ande = 1/15, we pro-
vide a numeric simulation (performed on Mathematica) of the Poincaré map defined
on the section ¥ = {(x, 0, u, v) : x > 0} of the differential system (8). The asymptot-
ically stable invariant tori T, corresponds to an asymptotically stable invariant closed
curve ¥, := T, N X for the Poincaré map.

2 Fundamental Lemma

The proof of Theorem A makes use of some results concerning integral manifolds of
a class of perturbed differential systems. Such results, and the methods employed for
obtaining them, are similar to those established by Hale in [11, Lemmas 2.1, 2.2 and
2.3] (see also [2, Sect. 28, Lemmas 1, 2, and 3] and [12]). In this section, we state and
prove those results in the form of a single Lemma, along with Propositions addressing
the issue of regularity of the integral manifolds obtained.

Throughout the paper, we will adopt the notation diag(Aq, ..., A,) to represent
the direct sum A; @ - - - @ A, of the square matrices A;, i € {1, ..., n}. We will also
employ the notation B, (p, r) for the n-dimensional open ball {x € R" : ||x — p|| < r}.

We consider a one-parameter family of differential systems of the form

0" =1+(t.0,y. 2,8,
y/:Hl')"f‘;l(t»@’y’ZsE)» (10)
7 =Hy-z+0(t,0,y,2,8),

@ Springer



550 D. D. Novaes, P. C. C. R. Pereira

where 0 € R, y € R", z € R", ¢ is a real parameter, H; is a real m X m matrix,
Hj is a real n x n matrix, and the continuous functions ¢y : R x R x B, (0, p1) x
B, (0, p2) x (0,e0] = R, ¢1 : R xR x B, (0, p1) X B, (0, p2) x (0, g9] — R™, and
& : RxR x By, (0, p1) x B,(0, p2) x (0, 9] — R" have Lipschitz continuous partial
derivatives with respect to (@, y, z) up to the p-th order, where p > 1, p1, p2 > 0,
and gy > 0. For conciseness, we define, for each (o, u) € (0, p1) x (0, p2), the set

20, =R xR x By(0,0) x B,(0, ) x (0, &o].

We suppose that the following hypotheses are satisfied by (10):

(i) There is w > 0 such that

So(t,0 +w,y,z,8) =, 0,y, =z, €),
gl(tae-’_a)vyﬂzﬂg)Zé-l(tvevya_zas)a
§2(t,9+0)7 )’» Z,S) =_§2(I795 ya _Z,S)'

(i1) There is a continuous function M : [0, 9] — R4 such that M (0) = 0 and the
functions ¢; satisfy [¢o(¢, 0,0,0,¢)| < M(e), |[£1(¢,60,0,0, )| < M(e), and
1£2(2,60,0,0,¢8)|| < M(e) forall (£,0,¢e) e R x R x (0, &].

(iii) There is a continuous function L : (0, go] x [0, p1) x [0, p2) — R4 such that

lim L(e,o,n) =0,
(¢,0,)—(0,0,0) ( M)

and, for (¢, 601, y1, 21, €), (t, 602, y2,22,€) € Ei‘fﬂ, the following inequalities

hold true:

[So(, 01, y1, 21, €) — Co(t, 02, y2, 22, &)| < L(e, 0, W01, y1, 21) — (62, 2, 22) I,
151(2, 01, y1, 21, €) — &1(2, 02, y2, 22, &) || < L(e, o, )| (61, y1, 21) — (82, y2, 22) I,
182(t, 601, y1, 21, €) — Qa(t, 02, y2, 22, &) || < L(e, 0, (01, y1, 21) — (62, y2, 22) .

(iv) The eigenvalues of H; and H, have non-zero real parts.

Let (6(t. 10, 60, Y0, 20, €), ¥(t, t0, 60, Yo, 20, €). 2(t, to, 6o, Yo, 20, €)) denote the
solution of (10) with initial conditions (fy, 6o, Yo, 20, €). Having set forth the hypothe-
ses above, we are now ready to state the Lemma.

Lemma 1 Consider system (10) with the hypotheses presented in this section. There
are g1 € (0, g9) and families of continuous functions f. : R x R — R™ and g, :
R x R — R" such that, for each ¢ € (0, 1], the autonomous system

=1,

0/=1+ tsev ’ 781

/ Zo( v, 2,€) (11
Y =H -y+4(t,0,y,z,¢),

7 =Hy-z+0(t,0,y,2,8),
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has an invariant manifold given by y = f.(t,0), z = g¢(t, 0). The families f, and g,
also satisfy:

(a) There is a continuous function D : [0, e1] — Ry such that D(0) = 0 and

[ fe(@ O < D(e), llge(t, 0)| < D(e)

forall (t,0,e) € R x R x (0, &1). Furthermore, there is a constant Cyg > 0,
depending only on the matrices Hy and H», such that D(e) = Cy M (g), where
M (e) is the function appearing in hypothesis ii).

(b) There is a continuous function A : [0, 1] — Ry such that A(0) = 0 and

[ fe (2, 01) — fe(t,02)]| < A(e)|01 — 62,
8e(t, 01) — g:(t, )|l < A(e)|601 — 62|

forallt e R, all 61,0, € Rand all ¢ € (0, &1].

(c) fe is w-periodic in 0 for all ¢ € (0, e1] and g, satisfies g (t,0 + w) = —g.(t,0)
forall (t,0,e) e R x R x (0, &1];

(d) If, for a given ¢ € (0, ¢e1], the functions ¢y(t,0,y,z,¢€), {1(t,0,V,z,¢€), and
0 (t,0,y,z,¢) are Tg-periodic in the variable t, then so are fo and g¢;

(e) fe and g. have bounded and uniformly continuous derivatives with respect to 0
up to the p-th order for all ¢ € (0, e1];

(f) Letry : R™ x R" — R™ and wp : R™ x R" — R" be the canonical projections.
If mg < m of the eigenvalues of Hy and ny < n of the eigenvalues of Hy have
negative real parts, there are positive constants r, A, C, og, and o1 such that
r < o9, D(e) < 09 < o1, and, for each (ty,0p,¢) € R x R x (0, e1], there is
in By, (0, 00) x B, (0, 00) a local (ms + ny)-dimensional embedded submanifold
S(to, 6o, €) of R™ x R", containing the point (f¢(ty, 60), g¢(t0, 60)), and having
the following properties:

(f-1) If (yo, z0) € Bm(O, 0p) X B,,(O, 00)\S(t0, 0o, €), there is t, > to for which
(4, 10, 60, Y0, 20, €), 2t 10, 60, Y0, 20, €)) & B (0, 01) x By (0, 01).
(f-2) Reciprocally, if (yo, z0) € S(t0, 6o, €), then, for all t > ty,
(¥(2. 10, 60, Y0 20. €). 2(t, 10, 60, Y0, 20. €)) € B (0, 01) x By (0, 01)
and the following inequalities hold:

ly(, 10, 60, yo, 20, €) — fe(t, 0(t, 10, 0o, fe(t0,60), 8 (10, 60), &)l
< Celyo — felto, o),

1z(z, 10, 60, Yo, 20, €) — &&(t, 0(2, 10, b0, fe(t0,60), 8= (10, 60), &)l
< Ce7)iz0 — g (to, 60) .
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(f:3) There is a continuous function ¢7 - R xR x Bms 0, r) x an ©O,r) —
By—m, (0, 00) such that

71 (S(to, 0o, €)) = {(#5 (to, 0, &1, £2), &1) : (€1, &2) € By, (0,7) x By (0,7)}.

Similarly, there is a continuous function @5 RxRx Bms 0, r)x an O, r) —
By, (0, 00) such that

72(S (10, 00, €)) = {($5 (10, 00, €1, £2), &) = (£1, &) € By, (0,7) x B, (0, 1)}
(f-4) The functions ¢ and ¢5 satisfy
¢ (1o, 60 + w, &1, &) = ¢7 (10, b0, &1, —&2)

and

@5 (10, 00 + w, &1, &) = —¢5(t0, 0o, &1, —&2)

for all (19, 60. €1 &) € R x R x By, (0,r) x By, (0, r).

Proof The argument is very similar to the one found in [11, Lemmas 2.1, 2.2, and
2.3] (see also [2, Sect. 28, Lemmas 1, 2, and 3]). We will omit computations when
analogous ones can be found in those references, simply referring the reader to them.

Without loss of generality, suppose that H; = diag(Hl+ JH) and H, =
diag(H2Jr , Hy"), with the eigenvalues of Hl.Jr and H;", i € {1, 2}, having respectively
positive and negative real parts. For each i € {1, 2}, define

et
- ) 1 0;
[ 0 0 g

0 0
0 e—tH | t <0.

Consider the complete metric space P, (D, A) of continuous functions F €
C(R?; R™) satisfying:

o F(t,0 +w) = F(t,0) forall (t,0) e R x R;
o |F(t,0)] < Dforall (,6) € R x R;
o ||[F(t,601) — F(t,00)|| < Al6r — 0| forall (t,01), (t,62) €e R x R,

Ji(t) =

where the metric is given by the uniform norm. Similarly, consider the complete metric
space A, (D, A) of continuous functions G € C(R%; R") satisfying:

e G(t,0 +w)=—G(t,0) forall (#,0) € R x R;
e |G(t,0)|| < Dforall (1,0) e R x R;
o [|G(1,01) — G(1,02)|| < Al — 01| forall (,01), (1,02) € R x R.
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Foreach (F, G) € P,(D, A)xAy(D, A),let Tr g (t, to, 0o, €) denote the solution
of

0" =1+ ¢(t,0, F(t,0),G(t,0), €)

satisfying Tr g (to, to, B0, €) = 6p. Since Tr G (t, to, o+w, €) and Tr (¢, to, Op, €)+
w are both solutions of the same initial problem, it follows that

Tr.g(t, 10,00 +w,e) =TF g(t, 1o, 0p, €) + w. (12)
For each ¢ € (0, &], define the function S*(F, G) = (S{(F, G), S5(F,G)) €

C(R%; R™) x C(R*; R"), acting on the metric space P, (D, A) x Ay(D, A) and
given by

o0
S{(F,G)(t,0) = / JI)G (@ +x, Trgt +x,t,0,¢), F(t
—00
+x,Trg(t +x,t,0,¢), Gt +x,Trg(t +x,t,0,¢)), €)dx,
o0
SHF.G)(1.0) = | 006+ X, Trgl +x.1.0.0). @
—0oQ0

+x,Trc(t+x,t,0,8),Gt +x,Trcg(t +x,1,0,¢)), e)dx.

By performing the change of variable of integration t = x + ¢ and differentiating
the compositions F (¢, Tr g (t, to, 6o, €)) and G (¢, Tr g (¢, to, 6o, €)) with respect to
t, it is easy to see that, if (fe, g¢) is a fixed-point of S¢, then the manifold given by
y = fe(t,0), z = g-(¢,0) is invariant under (11). Thus, the problem is reduced to
proving that S admits a fixed-point.

Following the arguments found in [11, Lemma 2.1], we conclude that it is possible
to find &1 € (0, g9] and define D(e) and A(¢e) such that, for ¢ € (0, &;], the function
S¢ is a contraction of P, (D(g), A(g)) x A, (D(e), A(e)) into itself. The only change
compared to the arguments found in the reference is that, in order to guarantee that
S5(F, G) € A(D(g), A(g)), we need to show that S5 (F, G) satisfies S5(F, G)(¢, 6 +
w) = —S5(F, G)(t,0). However, this is easily seen by considering (12) and the
properties of functions ¢ and ¢,. Furthermore, since in [11] itis proved that A(g) — 0
as ¢ — 0 and that there is Cyy > 0 such that D(g) = Cy M (¢), properties (a) and (b)
are ensured to hold.

It remains to show that properties (c) to (f) are valid. Observe that property (c)
follows directly from the fact that (fe, g.) € Po(D(e), A(e)) x Ay(D(g), A(€)).
Property (d) follows from the same argument found in [11, Lemma 2.2]. Property (e)
is not directly discussed in [11], but it is stated and proved in [2, Sect. 28, Lemma 1].
The proof in our case is essentially the same.

Finally, we proceed to discussing property (f). For #p, 00, v € R and k € N, let
C,io (00, v) be the complete metric space of continuous functions W : [fg, 00) xR — RK
satisfying:

o [W(t,0)| < oo forall (t,6) € [ty, 00) x R;
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o [[W(t,01) — W(,0)l < v|61 — 62 forall (z,61), (7, 62) € [10, 00) x R.

The metric of C,t(0 (00, v) is given by the uniform norm.
Let 79, 00, v € R be given. For each by € R™ and each b, € R", define the
following functions acting on CY (o0, v) and C2 (o9, v), respectively:

SEPL Wy, Wa)(8, 0) = Ji(to — Dby

o0
+/ Ji(t =)o, Twy,wy (T, 8,0, 8), Wi(t, Tw,,w, (1, 1,0, ¢)),
1o

WZ(T, TW],Wz(rﬂ t? 95 8))7 S)d‘[9
SEP2 (W, W) (8, 0) = Ja(to — ba

o0
+/ Jo(t — )0, Twy,w,y (1, 8,0, 8), Wiz, Tw,, w, (7, 1,0, ¢)),
1o

Wa(t, Tw, w,(T, 1,0, ¢)), e)dr.

Let S©P-22 act on Cl(0p,v) x CP(0p,v) by SEPLP2(Wi, Wy) = (SO
(Wq, Wa), S;*bz(Wl, W53)). Then, following the same procedure as before, we can
ensure that, by taking €1, og, v, and r < o sufficiently small, §&:01:b2 pecomes a
contraction of C22 (o9, v) x C¥ (0, v) into itself if ||by ]|, | b2l < r.

Define W{"" and W5 tobe such that (¢, 8) > (W]"(z, 6, by, ba), W5z, 6, by, by))
is the fixed point of the operator S¢71:%2_ Then, it is easy to see that there is Co > 0
such that

W0 (2.0, b1, b2) — W70 (1. 0. b1, by)|
< Coe 00 (b = bull + 1b2 = b21l) + vi6 — ] (13)

fori € {1,2},t € (t9, 400),6,6 € R, by, by € B,(0,r), and by, by € B,(0, r). This
ensures, in particular, that, for i € {1, 2}, \Iff 10 js continuous if seen as a function on
[tg, +00) X R X By, (0, 7) x B, (0, r).

Following the argument in [2, Sect. 28, Lemma 3], we can prove that, if o1 > oy,
every solution of (11) satisfying

° yO e ém(os UO) and y(ty tOv 007 )’O, ZO! 8) e _Bm(ov Gl),
e 20 € By(0, 00) and z(z, 19, 6o, y0, 20, €) € Bn(0, 01)

mustbe of the form (¢, 6(¢), Wi (¢, 0(1), b1, ba), W5 (t,0(t), b1, b)) forsome (by, bo) €
B,,(0,r) x B,(0, r), where 0(¢) denotes Tq,f,q,g (t, t9, 6p, €). Conversely, every solu-
tion of the form given above clearly satisfies the two conditions set forth. Therefore,
define

S(to, 6o, ) 1= lim. (W70, 60, b1, b2), W3 (t, 00, b1, b2)) = (b1, b2) € Bw(0,7) x By(0,7) ¢ .

l—)lo

Then, considering also (13), properties (f.1) and (f.2) follow immediately.
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Observe that, from the definition of the operators S‘f’b‘ and Sg’bz, it follows that
the last m; and n; elements of the vectors \Ilf’to (taL, 0, by, by) and \Ilg’to (t(')", 0, by, b))
coincide with, respectively, the last m and n elements of the vectors by and b;. Thus,
foreachi € {1, 2}, define ¢; by

(i (0, 60, 61, 62), &) = lim Wi, 60, (0, &1), (0, £2)).

=1y

Then, it is clear that ¢ is continuous. It is also clear from this definition that property
(f.3) holds.

Finally, since the change of variables (¢, 6, y, z) — (7,6, 7,2) = (1,0 —w, y, —2)
carries system (11) into an identical system, it follows from the already proved
properties (f.1) and (f.2) that: a point (yx, zx) € R”™ x R" is in S(fy, 0y + w, &)
if, and only if, (y«, —z«) € S(fo, 6o, €). Hence, it follows that, for each (&1, &) €
B, (0,7) x By, (0, r), there is (£1, &) € By, (0,7) x By, (0, r) such that

(95 (t0, B0 + w, &1, &), £1) = (@ (10, 60, &1, £2), &1),

and

(95 (to, B0 + w, &1, &), £2) = — (5 (10, 60, &1, &2), £2).

Therefore, & = & and & = —&, and property (f.4) follows. This concludes the proof
of the Lemma. ]

The following corollary addresses the issue of uniqueness of the invariant manifold
found in the previous Lemma. Its proof will not be presented here, but it follows
essentially from the stability property provided by statement (f) (see, for instance, [11,
Remark 2.2] and, for more details, [2, Remark of page 494]).

Corollary 1 For each ¢ € (0, 1], the invariant manifold given by y = f(t,0), z =
g:(t, 0) is unique in R x R x By, (0, 09) x B, (0, 0p), that is, every invariant manifold
contained in R x R x B,,(0, 09) x B, (0, 09) must be contained in the set given by
y=felt,0), z=g:(1,0).

The remainder of this section is devoted to present technical propositions to address
issues of regularity. Their proofs are provided in the Appendix. The first proposition
is concerned with the regularity of the invariant manifold whose existence was estab-
lished in the previous Lemma.

Proposition 3 Consider system (10) with the hypotheses presented in this section. Sup-
pose that, for each ¢ € (0, e1] and eachi € {0, 1, 2} fixed, the functions (t,0,y, z) —>
gi(t,0,y,z,¢)are of class CP. Then, the invariant manifold found in Lemma 1 above,
that is, the manifold M, = {(¢t, 0, f:(t,0), g-(¢,0)) € RxRx By, (0, 0p) X B, (0, 0p) :
(t,0) € R x R}, is of class CP. Moreover, for each ¢ € (0, 1], the functions
(t,0) — fe(t,0)and (t,0) — g.(t,0) are also of class C?.
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The next three propositions consider the issue of regularity of the family (f, g¢)
with respect to the parameter . They will be crucial when we discuss the statement
concerning dynamics of Theorem A.

Proposition 4 Consider system (10) with the hypotheses presented in this section.
Suppose that ¢o, £1, and & are of class C. Let ¢ - (0, e1) — C(R%; R™) x C(R?; R")
be defined by c(g) = (f, g¢), where C(R*; R™) and C(R?; R") are equipped with
the uniform norm. If &1 > 0 is sufficiently small, then c is of class C.

Proposition 5 Consider system (10) with the hypotheses presented in this section.
Suppose that £o, 1, and ¢ are of class CPT'. Let TFr.c be defined as in the proof
of Lemma 1. Then, if ¢1 > 0 is sufficiently small, then the following holds: there is
Nt € N and, for each compact interval [a, b] C (0, &1], there are C4p) > 0 and
Miq.p) > O such that

/e 07ge
207 | = Clap1; H 294 | = Cla,b1,
and
‘%(l +x,1,0,¢8)| < Miq.p) eNTL(S)(l""ZA(S))Ix\
0

forallg € {1,...,p+ 1}andall ¢ € [a, b].

Proposition 5 admits the following corollary which is a straightforward application
of the mean value inequality.

Corollary 2 Consider system (10) with the hypotheses presented in this section. Sup-
pose that o, ¢1, and & are of class CPYL. Then, if &1 > 0 is sufficiently small, then
the following holds: for each compact interval [a, b] C (0, 1], there is Ciq,p) > 0
such that

a4 f, 4 f,
H 39: (t,0) — 89118 (t,01)| < Cla.p)02 — 611,
01 94
H 396;5 ¢ 62) - aeé;g (.61 = Cra.p)|62 — 61

forallg € {l,...,p}, allt, 01,0, € R, and all ¢ € [a, b].

Proposition 6 Consider system (10) with the hypotheses presented in this section.
Suppose that ¢, ¢1, and ¢> are of class CPT'. Let g < p be a non-negative integer.
Then, if 1 > 0 is sufficiently small, then the functions

are locally Lipschitz continuous in the uniform norm for e € (0, e1].
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3 Proof of Theorem A

This section is devoted to the proof of Theorem A. In Sect. 3.1, we perform the change
of variables that transforms system (1) into a system to which Lemma 1 can be applied.
In Sect. 3.2, we apply this Lemma in order to prove the statements regarding existence,
regularity, and convergence of Theorem A. In Sect. 3.3, we prove the statement regard-
ing stability, and finally, in Sect. 3.4, the statement regarding the dynamics on the object
M, of the same Theorem.

3.1 Change of variables

Consider the differential equation (1). We shall first find a change of coordinates
transforming this system into one to which we can apply Lemma 1. Thus, let £ €
{1,..., min(N,r—2)}besuchthatf; = ---f,_; = Oandf; # 0. By Theorem 1, there
exists a T-periodic near-identity transformation (3) that transforms the differential
equation (1) into

z=c'gi@) + e,z 6). (14)
Observe that the formulas given in (6) ensure that gy is of class C" 1 Moreover, ry
is of class C" .

Consider the w-periodic hyperbolic limit cycle ¢(s) of the guiding system z =
g¢(z). Also, consider the linear variational equation

d
d—f = Dgi(p(1)) - y. (15)

Observe that ¢’ (¢) is a solution to the linear periodic system (15). Let ®(r) denote a
fundamental matrix solution of this system. We will use Floquet theory to obtain a
useful change of variables in a neighborhood of the limit cycle I'.

We remind the reader that the characteristic multipliers of (15) are, for any choice
of ®, the eigenvalues of the monodromy matrix d~1(0)D (w) (see, for instance, [5]).
Since I' is hyperbolic, we know that 1 is an eigenvalue of multiplicity exactly 1 of this
matrix, all its other eigenvalues being outside the unit circle. By taking into account
the real Jordan canonical form of the monodromy matrix, we see that ®(¢) can be
chosen satisfying

o 0)®(w) = diag(1, J1, ), (16)

where J; € R—d=Dx@m—=d=1) anq 7, ¢ RY*4 are matrices in the real Jordan canon-
ical form satisfying the following condition: each Jordan block of 7 associated to a
real negative eigenvalue appears an even number of times, and every Jordan block of
J> is associated to a real negative eigenvalue and appears only once in this matrix.
We remark that, with this choice, the first of column of ® must be the only w-periodic
solution of (15), which is given by ¢’ ().
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Let I; denote the d x d identity matrix. Under the above-mentioned conditions, by
considering the logarithm of the matrices Ry and R; (see, [7] and [9, page 100]), we
know that there exist real matrices R and R suchthat e®®! = 7, and e®®eti7le = 7,
In particular, we remark that the eigenvalues of Rj and R» all have non-zero real parts.
For the same reason, the number of eigenvalues (counting multiplicity) of the Poincaré
map defined in a transversal section of I" with modulus less than 1 is equal to the number
of eigenvalues (counting multiplicity) of R := diag(R, R») with strictly negative real
part.

Define the matrices

B = diag (o, Ri, Ry + igld)
and
B :=diag (0, Ry, Ry) = diag(0, R).
It is easy to see that e“® = &1 (0)® (w) and €28 = 2B = (d~1(0)d(w))>.
Since Dg¢(¢(1)) is w-periodic, Floquet’s theorem ensures that there are a w-periodic

matrix function ¢t — P(t) € C"" and a 2w-periodic matrix function 7 > P(t) €
R"*" both of class C" ¢+, such that

(1) = P(t)e'B = P(1)e'B.
In particular, since the first column of ®(r) is ¢'(¢), it follows that P (¢) is of the form
P@t)=[¢' 1) Q0)],

where 1 — Q(r) € R" =1 js 2w-periodic. Also, considering that B and B clearly
commute, it follows that

Pt +w) = P0)e” PP = [¢'(t) | Q1) 4],
where
A = diag(Iy—_q_1, —12). (17)
Thus, it is clear that O satisfies
0t +w) = QA (18)

forallt € R.
Since ®(r) solves (15), it follows that

P'(t) + P(t) - B = Dgi(p(1)) - P(1).
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Thus, by restricting the equality above to the last n — 1 columns, we obtain
Q'(t) + Q1) - R = Dge(p(1) - Q(1), 19)

forall t € R.
We apply the transformation z — (s, h) € R x R”~! given by

zZ=¢(s)+ Q(s) - h. (20)
Observe that, by taking h to be sufficiently small and s € [0, w), we can ensure that
the transformation (s, h) — z is injective. Accordingly, we will assume henceforth
that ||h|| < 4p, ensuring that our transformation is bijective. Let us find the differential

equation in (s, h) that is equivalent to (14). In order to do so, we differentiate (20)
with respect to ¢ and obtain

2= (¢'(s)+ Q'(s)-h)s + Q(s)h.
Thus, by (14), it follows that

@' () + Q'(s) - h)s+ Q(s) - h = e’g(p(s) + O(s) - h)
+e"rt, o(s) + O(s) -h,e).  (21)

Observe that (19) ensures that

e'¢/(5) +°Q'(s) - h+ Q)R - h = egu(p(s)) + " Dge(p(s)) - Q(s) - h.
(22)

Let us define the functions

Y(s,h) :=gp(p(s) + O(s) - h) — ge(@(s)) — Dge(p(s)) - O(s) - h,
Z(t,s,h, &) :=re(t,p(s) + Q(s) -h,g).

By subtracting (22) from (21), we obtain

(¢'(s) + Q') G — ) + Q(s)(h — "R -h) = Y (s, h) + T Z(1, 5, h, &).

(23)
Observe that (23) can be rewritten as:
¢'(s)+0'(s)-h it
o(@s) || . =Y (s.h) + e Z(1, 5. h, o).
h—&‘R-h
(24)
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Observe that the C”~¢ matrix function

9'(s)+Q'(s)-h

C(s,h) = Q(s)

satisfies C(s,0) = P(s) for all s € R. Since P(s) is non-singular, for sufficiently
small values of h, the matrix C (s, h) can be inverted. Therefore, assuming that p > 0
is sufficiently small, if ||h|| < 4p, then (24) can be transformed into

[ﬂ =gt [th] +e8Cs,h) 7 Y(s,h) + ¢TH(Cs,h) 7! Z(@t, s, h, 6).

(25)

Seth = (v, w) € R4~ x R4 Define Ao(s, v, w)and ]\o(t, s, V, W, €) to be the first
line of the products (C (s, h))’1 -Y (s, h) and (C(s, h))’1 - Z(t, s, h, ¢), respectively.
Similarly, define A(s, v, w) and 1~\1 (t,s,v,w,e¢) to be the next n — d — 1 lines and
Ao (s, v,w) and 1~\2(t, s, V, W, ¢) to be the last d lines of those products. Then, (25)
becomes

§=e"+ sng(s, vV, W) + 8“1]\0([, S,V,W, ¢€),
v=c'Ri -v+e'AiGs,v,w) + AL, s, v, W, e), (26)

w=c"'Ry-w+elAas,v,w) + e Ast, s, v, w, &).
We apply the time rescaling ‘7 = 7 to (26) and finally obtain

s' =1+ Ao(s, v, W) +eAo(f/e", s, v, w, ),
V=R -V+Ai(s,v,W) +eA(7/e", s, v, W, &), 27)

W = Ry - W+ Aa(s, v, W) +eAr(i/e’, s, v, w, €).

where 7 denotes a derivative with respect to 7. Such differential system is well defined
on(f,s,v,w,8) e Rx R x B,_4_1(0,2p) x B4(0,2p) x (0, &o].

3.2 Existence, regularity, and convergence

Henceforth, we consider that (27) is defined over R x R x B,,_4_1(0, p) x B4(0, p) x
(0, &9]. Observe that (27) is of the form considered in Lemma 1. We must now show that
the hypotheses required for the application of that Lemma hold in our case. Observe
that the fact that the parameter ¢ appears in the denominator of the first argument of
1~\0, [\1, and ]\2 in (27) will not be an impediment to the application of the Lemma,
since it is not required in its hypotheses that the functions appearing in the system
be defined at ¢ = 0. In fact, the conditions concerning boundedness, be it of the
functions themselves or of their Lipschitz constants, can still be proved by resorting
to the periodicity of Z.
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For convenience, we will henceforth adopt the following notation

(€71 ¥)(s,h) == (C(s, )™ - Y (s, h),
(€' 2)@,s,h, &) = (C(s,h)" - Z(@,s,h, e),
(C' Y +eC7V . 2)(¢,5,h,8) = (C(s,h)~" - Y(s,h) + e(C(s, )" - Z(&, s, h, &).

With that in mind, we proceed to proving that Lemma 1 can be applied to (27).

As remarked before, the eigenvalues of the matrix R have non-zero real parts, so
that it is immediate that hypothesis (iv) holds. Regarding hypothesis (i), observe that,
by their definitions, we know that Y (s + @, h) = Y (s, A-h) and Z(¢t, s + w, h, ¢) =
Z(t,s, A -h,¢). Furthermore,

¢'(s) + Q'(s)A-h

C(s+o,h) = ‘ O(s)A =C(s,A-h)[(1)2]

Thus, since A2 = I,,_1, it follows that

€ +om = [gg] o amt

Hence, it is easily verified that the following conditions hold:

o Aog(s +w,v,w) = Ag(s, v, —W);

° ]\o(t, S+w,V,wW, &) = f\o(t, S+ w,V,—W,¢);
o Ai(s+w,v, W) = Aji(s, Vv, —W);
° 1~\1(t,s+a),v, w, s):]\l(t,s—f—w,v, —W, &);

Ao(s +w,v, W) = —As(s, v, —W);

° ]\z(t, s+w,V,w,g) = —[\z(t,s +w,v,—wW,e¢).

This ensures that (i) is valid. It remains to show that hypotheses (ii) and (iii) hold.
In order to do so, let B, (p, r) denote the open ball {x € R" : ||x — p|| < r}. Also,
let us define the following functions:

-1,
ay(s,h) = Hu(s,h)

3

(s, h)
ac-1.2)
(s, h)

aZ(S’h’ t’ 8) := (t7s7h7 E)

’

where || - || denotes the operator norm.
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Let g9 > 0 be fixed. For o € (0, p), define
L(o) :==sup{ay(s,h) : (s,h) € R x B,_1(0,0)}.
Observe that lim,_,g L(0) = 0, because

-1
ay (s, h) < Hu
as

H a(c L.y

o] [P

and Y(s,0) = %—’S/(s,O) = %—ﬁ(s,O) = 0 for all s € R. Thus, we can extend L
continuously to [0, p) by setting L(0) = 0. Moreover, since (C -1, Y) is also of class
C"t, with r — € > 2, it follows by the mean value inequality that there is M o >0
such that

ay(s,h) = My|h| < Mo

for all (s,h) € R x B,_(0,0), where ¢ € (0, 0). Then, again by the mean value
inequality, we conclude that

€™ ¥)(s1, 1) — (€71 Y)(s2, h2) | < L(0) (51, hy) — (52, o) |
= Mpoli(si,hy) — (s2,ho)ll,  (28)

for all (s1, hy), (s2,h2) € R x B,_1(0, o).

Since r — £ > 2, and since the C" ¢ function ||C~! - Z|| is T-periodic in its first
entry and 2w-periodic in its second entry, it follows that there is M > 0 such that

sup{H(C_l - Z)(F /6,5, ) H (.s.he) R x R x {0} x (0, 80]} <M,
and
sup {az(f/se, s.h,e): (F.s.h &) €R xR x B,_1(0, p) x (0, 80]} <M
Thus, it follows on the one hand that

le(C™ - Z2)(F/e%, 5,0, 8)l = I(C™" - ¥)(s,0)
+e(C71 - Z)(i /et 5,0, )| < eM, (29)

forall (,s, &) € R x R x (0, &g, proving that (ii) is valid with M (g) = M. On the
other hand, the mean value inequality ensures that

(€' Z) /et s1,hy, ) — (C71 - Z)(T /€%, 52, hp, 8|
< M||(s1, h1) — (52, hp)], (30)
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for all (s, hy), (s2,hy) € R x B,_1(0, p) and all (7, &) € R x (0, &o]. Hence, com-
bining (28) and (30), we conclude that

(€™ Yy +eC™ - 2) (i /el 51,1, ) = (CT1- Y +eC71 - 2)(T/6b, 52, hy, o) ||
< Mpo +eM)l(s1, 1) — (52, ho)], 31)

for (s1, 1), (s2,h2) € R x B,_1(0,0) and (7, &) € R x (0, g, ensuring that (iii)
also holds.

Hence, all the hypotheses required for the application of Lemma 1 are valid for
system (27). Since (C™! - Y) and (¢, s, h) — (C~!- Z)(¢, s, h, ¢) are of class C" ¢,
Proposition 3 may also be applied with p = r — £. Applying the above-mentioned
results, we obtain & > 0 and families of functions {f, € C"¢(R?; R*—4-1) .
e € (0,e])and {g; € C"E(R% RY) : ¢ € (0, £1]} such that

(I) Foreach ¢ € (0, &1], the set defined by the relation h = (f. (7, 5), ge(f, 5)) is an
invariant manifold for system

[lﬂ = [I;h} + (7" Y)(s,h)y +e(C7 - 2)(i/ et s, he), T =1.
(32)

(I) There is D(e) > O such that [[fillco < D(e), llgellco < D(e) and
limg;_.0 D(¢) = 0. Furthermore, there is a constant Cg > 0, depending only
on the matrix R, such that D(¢) = CrRM(¢) = CreM.

(III) There is A(¢) > 0 such that f; and g, are Lipschitz continuous in s with
Lipschitz constant A(¢) and limg_.o A(e) = 0.

av) feis o- per10d1c in s and g, satisfies g. (7, s + w) = —g(&, ).

(V) feand gg are ¢ T-periodic in 7.

(VD Let 7 : R4l x R4 — R*=4=1 gnd 7 : R" 91 x RY — RY be the
canonical projections. Also, let k; < n —d — 1 and ko < d of the eigenvalues
of R and R», respectively, have negative real parts. There are positive constants
r, A, C, 09, and o7 such that r < oy, D(s) <oy <01 <p, and, for each
(70, 50, €) € R x R x (0, 1], there is in B,_s—1(0, 09) x Bg(0, o9) a local
(k; + k»)-dimensional embedded submanifold S(fo, so, €) of R"~4~1 x R4,
containing the point (f: (9, 50), g (70, 50)), and having the following properties:

(VL1) Ifhy € B,_4_1(0, 09) x By(0, 59)\S(fo, 50, €), there is 7, > fo for which
h(i, fo, 0. o, &) ¢ By_a—1(0, 01) x B4(0,01).

(V1.2) Reciprocally, if hg € S(7o, so, €), then, for all f > £,
h(7, 7. 50, hy, &) € By_q_1(0, 01) x B4(0, 01)
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and the following inequality holds:

|h(, 7o, s0. ho, &) — h(F, fo, s0, (fe (0. 50), g& (Fo. 50)), &) ||
< Ce M=) |hg — (f. ({0, 50), ge (f0, sO))|I-

(VL3) There is a continuous function ¢ : R x R x By, (0,r) x By, (0,r) —

B,—4—k,—1(0, 0p) such that

71(S (o, 50, €)) = {(¢5 (70, 50, &1, £2), 1) : (€1, &2) € By, (0,7) x By, (0,7)).

Similarly, there is a continuous function 5t RxRx Ekl 0, r) x Bkz O, r) —>
B4k, (0, 09) such that

m2(S (G0, 80, €)) = {(¢3 {0, 50, €1, £2), &2) = (§1, &) € By, (0, 7) X By, (0, 1r)}.
(VL4) The functions ¢ and ¢5 satisfy
1 (fo, s0 + w, &1, &) = ¢j (fo, S0, 1, —&2)
and
5 (fo, so + @, &1, £2) = — @3 (fo, 50, &1, —62)

for all (fy, s0, &1, £2) € R x R x By, (0, 7) x By, (0, 7).

Let & be the function associated to the change of coordinates we have performed,
that is,

X(s,h) =¢(s) + Q(s) - h.

Define w, : R x R — R x R" by

we (T, s) 1= (r, X (s, (fg(sgr, 5), go (', s))) )

Since X isinjective fors € [0, w) and ||/h|| < p, the function w, restricted to R x [0, w)
is injective. It is also clear that &1 can be taken sufficiently small as to ensure that w,
is an immersion for all ¢ € (0, £1].

It is easy to see that property (IV) above guarantees that w; is w-periodic in s. In
fact, considering (18) and the definition of A given in (17), we have that

we(t, s + o) = (r, p(s)+ Q(s)A- (fg(sgr, s), —g,s(szt, s))) = we (1, s).
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Thus, W, := {w.(z,s) : (r,s) € R x R} C R x R" is an embedded cylinder of class
C’~* that is invariant under the flow of

;L £+1

{z/:‘i gf(z)—i_‘g r[(z, T,E), (33)

Property (V) ensures that w, satisfies w.(t + T,s) = (T,0) + we(z,s). We can
thus consider 7 an angular variable modulo 7 in (33), and W, becomes an invariant
torus in S! x R”, Finally, the torus M., invariant under (2), is obtained from W, by
reverting the near-identity periodic transformation x = U(z, z, ¢) that we employed
in the beginning of the proof. This proves the existence of M, stated in Theorem A.
The fact that there is a neighborhood V of I" such that any compact manifold that is
invariant under (2) and contained in S' x V must also be contained in M, follows
from Corollary 1.

We proceed to proving the statement regarding regularity of M, in Theorem A.
Define F, by

Fe(t,s) = U(r, X (s, (fg(eet, s), gg(szr,s))) ,e).

Observe that {F,}, is a family of C" ¢ functions that are also w-periodic in s and
T -periodic in 7, and that M, is given by the relation x = F,(t, 5), i.e.,

M. = {(z, Fe(1,5)) € S' x R" : (1,5) € R x R}.

Moreover, by Proposition 4, it follows that the family {F.}. is C 0_continuous, that is,
continuous in the C%-norm, provided that € is chosen sufficiently small. In fact, this
Proposition guarantees that this family is C' in the C°-norm.

Regarding the statement about convergence, observe that it follows from property
(IT) that there is D*(¢) such that

[% (5. (e, 9). 8o .9)) ) = 00| < Do)

and limg_o D’(¢) = 0. Then, considering that U is locally Lipschitz in its second
argument and that both functions appearing inside the norm of the inequality above
are periodic, it follows that there is §(¢) > 0 such that §(0) = 0 and || F¢(7,s) —
U, ¢(s), o)ll < 8(e).

3.3 Stability

Let the non-negative integers kj < n —d — 1 and kp < d denote the number of
eigenvalues with negative real parts of the matrices R1 and R respectively. Define the
function g, : R X R x By, (0,7) x B, (0,r) = R x R" by

ge(r.5 61,8 = (n U (7. X (5, (9] ("7, 5.61. 8. 61,05 5. 61.£2). &) . ¢) ).
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Let Sy, be the image of g;. We will show that Sy, is an embedded submanifold in
R x R”".

For convenience, we denote by g, |y the restriction of g, to the set R x I x By, (0, r) x
By, (0, r), where I C R. Observe that the properties of ¢{ and ¢5 givenin (V1.4), along
with (18), ensure that Sy, is contained in the image of g¢ |[0, »). Hence, Sy, is contained
in the union of the images of g |(o,) and q8|(_% 2).

Now, since r < g9 < p, X (s, h) is injective for (s, h) € [0, w) X Bn_l(O, 00),
ensuring that g¢|(0,,) and g | (—2,2)are injective. It is then easy to see that g; |0, ,) and
qel(~9,¢) are homeomorphisms onto their images, proving that S, is a (k1 +k2+2)-
dimensional embedded submanifold of R x R”. As remarked before, in Sect. 3.1, if k
is the number of characteristic multipliers of the limit cycle I' whose absolute values
are less than 1, then k = ky + k>. Thus, Sy, is k-dimensional.

We will prove that Sy, is locally the stable set of M. Suppose that hy €
S(fo, 50, €). For convenience, let us define s.(7) = s(7, o, 50, ho, &), sy, (1) =
s(t:, t~9, 50, (fs(tz), 50), gs(fg, 50)), &), h () := h(7, Ty, so, ho, &), and finally hyy, (7) :=
h(z, 1, s0, (f (10, 50), &= (0, 50)), €). Also, let

u(@) = s+ (@) — syl + (@) = hp, @) |-

Observe that, considering (27), along with the boundedness and Lipschitz continuity
properties that Ao and Ag are proved to satisfy, we have that

r
u(t) < |h.() +hM€(t~)|| +[ (Mpoy + eM)u(x)dx.
0]

Thus, considering property (VI.2) and applying Gronwall’s inequality, it follows that
u(@) < CelHHMLAFEDTN by — (£, (F, $0). ge(Fo. 50)) I

Hence, if p and ¢; are chosen sufficiently small, we ensure that u(f) — 0 as 7 — oo.
Thus, it follows that, if hy € S(7y, so, €), then

Iim [|X (54 (D), b (D) — X (sa, (D), hy (D) = 0. (34)

t—00

Since o1 < p, we know that X (s, h) is injective for (s, h) € [0, w) x B,_1(0, o).
Consider the following neighborhoods of M,:

Vi :={(r,U (r, X(s,h),e)) : (r,5,h) e Rx R x B,_1(0,01)},
Wy :={(r,U (t, X(s,h),e)) : (r,s,h) e Rx R x B,_1(0, 09)} .

It is then clear, considering (34) and the fact that M, is an invariant manifold, that the

local stable set of M, with respect to V; satisfies S ng NWs = Suy,.
The same argument with time reversed proves the analogous statement for the

local unstable set U A‘//Il; N W,. In this case, the dimension of the manifold obtained is
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24 (m—1—k) =n—k+ 1, because the number of eigenvalues of R with positive
real partisn — 1 — k.

3.4 Dynamics

Let S, C R"" be defined as the section t = O of the torus M,, that
is, the image of the real l-periodic function I, : 6 +— (0, F:(0,w0)). It
is clear that S, is C’_e—diffeomorphic to the circle S!. Once more, let 1 —
(s(t, to, S0, hyg, ), h(z, 19, 50, ho, €)) be the solution of (25) satisfying (s(to, o,
50, ho, €), h(t, to, so, hg, €)) = (s0, hg). Define, for (v,0) € R x R,

se(v,0) :=s(T,0,0, (f:(0,0), g:(0, 0)), &).

Since t/ = 1 in (2), it follows that the first-return map p. defined on S, under the
action of this differential system is well defined. Moreover, it is clear that

pe(M.(0)) = T, (—Se(l’ ‘”9)> .

w

Thus, the real function

sg (1, wb)
w

De i 60—

is a lift of p, with respect to the covering map I1, : R — S,. Moreover, this ensures
that p, is at least of class C” .
Observe that

]52(9) _ Se(n, wb)

for all n € N. Then, it is clear that the rotation number of p, is given by

pe (@) —0 o se(n, wh) — wh
- = lim ——.

p(e) := lim
n—00 n n—o0 nw

We will rewrite this limit so as to be able to calculate it up to £-th order of ¢.
Integrating the first equation of (26) from ¢t = 0to r = nT, we obtain

nT
se(n,0) =60 +&'nT + 84/ Ao(s(z,0,6, (f:(0,6), g:(0,6)), &),
0
h(fv 01 97 (fé‘ (0’ 9)7 gé‘(ov 6))7 8))dt
nT
+Se+l / AO(T,S(T, 0597 (fé‘(ov 0)’ 88(0’ 9))’8)7
0

h(r, 0,6, (f:(0,0), g-(0,6)), e), 8))d‘L’. (35)
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Thus, we can define the sequence of functions

1 [T A
Gp(0,¢8) = ;/0 g(s(r,0,9(fg(0,9),gs(0,9)),8),h(r, 0,6, (f:(0,6).,8:(0,0)), &))dt
nT
+% f Ao(7.5(1,0,0, (fe(0,0), 8:(0.0)), h(r, 0,0, (f:(0,0), g:(0,0)), £))d7,
0

so that (35) becomes
se(n,0) =60 + e'nT + 0 G, 0, o).
Since M., is an invariant manifold, it is clear that

h(t’ Ov 01 (fS(O’ 9)’ g&‘(os 9))s 8) = (fé‘(rv S(‘C7 Ov 91 (f8(0$ 9)’ g&‘(os 9))s 8))7
gS(Tv S(Tv Ov 97 (fS(Oﬂ 9)7 gS(Ov 9))7 8)))

Then, by changing the variables in the integral, it follows that

T Ao

G0, ) :=/ 20 507,06, (10,0, 80,0, ),
0

h(”lT, O, 97 (fé‘(oa 0)» g&‘(o» 6))7 8))dt

T
+/ Ao(nt, s(n7, 0,0, (f:0,6), g:(0,0)), &),
0

h(nt, 0,0, (f:(0,0), g:.(0, 0)), &), 8))d‘L’.
Observe that

[Ao(s, h) 4+ eAg(t, s, h, &)|| < [|[Ao(s, h) +eAo(t, s, h, &) —eAp(t,s,0,8)|l
+lleAo(t, 5,0, )]

forall (¢, s,h, &) e RxRx B,,_1(0, p) x (0, &9]. Then, considering that A (s, 0) = 0,
it follows from (29) and (31) that

| Ao(s, (fe(nt,s), g.(nt,s)))
+Ao(nt, s, (fe(nt,5), ge(nz, $)), &)l < Mp(l fell + ligel) +eM

for all (s, 7, &) € R x R x (0, £1]. Then, from property (II), it follows that
1A0(s, (fe(nT,5), ge(n,5))) + Ao(nt, s, (fe(nt,s), ge(n7, ), )|l < Cge,
where Cg := 2M [ CrM + M. Hence, it is easy to see that
|Gn(0,8)] = CaT (36)
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forall® € R and all € € (0, &1].
Considering that

, w0) — wb T
M:ge__i_g
nw w w

v41Gn(@0, €)

and since the limit

. Sg(n, w8) — wb
lim —
n—o0 nw
corresponding to the rotation number exists and does not depend on 6, it is ensured
that

G(e) = nlinolo G, (w0, ¢)

is well defined. Moreover, from (36), it is clear that |G ()| < CgT. Hence, it follows
at once that

T G, (w0, T G
p(e) = lim ' = + gK'HM — el 4t (¢) _
n—0oo w w w _w

elz + 0.

w
By Proposition 6 combined with the definition of p, it follows that the family {p.}.
is continuous in the space of homeomorphisms of S! with the C° topology. Hence, p
is continuous in (0, £1]. Since we also know that system (2) becomes 7/ = 1,x’ = 0,
when ¢ = 0, it follows that p(0) = 0, so that p is actually continuous in [0, g1]. In
particular, the relation wp(g) = e'T 4 ¢t G (¢) ensures that G is also continuous in
0, &1].

In order to prove the rest of the statement concerning Dynamics of Theorem A, we
will make use of the following result, which can be found in [15, Theorem 6.1].

Theorem 2 Lety > 3 and DY (SY) be the class of C? -diffeomorphisms of the circle S!
endowed with the norm CY . Let ¢ : [a, b] — DY (S') be a continuous path satisfying:
c is of class C 1 if considered as a function on DYSY). Ler p (L) denote the rotation
number of c(X), A € [a, b]. If p(a) # p(b), then the Lebesgue measure A of the set

{x €ela,b]:cx)is C}'_z—conjugated to an irrational rotation}

is strictly positive. Also, p maps zero Lebesgue measure sets to zero Lebesgue measure
sets.

Suppose that r — £ > 4. Then, Propositions 4 and 6 ensure that ¢ — p, satisfies
the regularity conditions stated in Theorem 2 with y = r — £ — 1. Moreover, from the
fact that wp(e) = T + (’)(8”1), it is clear that there is an interval [a, b] C (0, &;]
such that p(a) # p(b). Hence, there is a subset of I C [a, b] of positive Lebesgue
measure such that j, is C" ~¢73-conjugated to an irrational rotation for all ¢ € I.
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4 Invariant torus in 4D vector fields

Consider the differential system (8) under the assumptions established in Sect. 1.3. By
applying the cylindrical change of coordinates (x, y, u, v) = (rcosf,rsiné, u, v),
r > 0, system (8) becomes

J— (cos(0) f1(r cos(0), rsin(@), u, v) + sin(0) f>(r cos(9), r sin(0), u, v))
N+1

£ (7 = (7 + 1) cos20) — 1) + O ),
G =146V (cos(@)fz(r cos(0), rsin(0), u, v) — sin(0) f1(r cos(0), r sin(9), u, v))

r

—eVF 1 (1% 5in(9) cos(0) + r sin(9) cos(8)) + O (N2,
i =&V f3(rcos(0), rsin@), u, v) + eV T2 cos?(O)(u — u® + v — uv?) + OEN?),
v =&V fa(rcos(®), rsin(@), u, v) + V2 sin?(0) (v — u — utv — v¥) + OV ),

(37)

Since 6 = 1 + (9(82) > 0, it follows that 6 > 0fore sufficiently small. Thus, we can
take 0 to be the independent variable, and system (37) becomes

r'=eVRy@,r,u,v) + eV Ry 10, 7w, v) + OV,
u' = eNUNO, 7 u,v) + VT UNL1(0, 7, u, 0) + O@ENT?), (38)

v =eNVy@,r u,v) + NV 0,7, u, 0) + 0N,

where ' indicates derivative with respect to the variable 6, and the functions R;, U;,
and V;,i € {N, N + 1}, are given by

Ry (@, r,u,v) = cos(0) f1(r cos(0), r sin(0), u, v)
+ sin(@) f>(r cos(@), r sin(0), u, v);
1

Ryn+1(0,r,u,v) = §r3u ((r2 + 1) cos(20) — r? + 1) ;

Un@,r,u,v) = f3(rcos(®), rsin(®), u, v); (39)
Un+10,r,u,v) = 2 cosz(e) (—u3 — uv? +u+ v) ;

VN0, r,u,v) = fa(rcos(0),rsin(0), u, v);
V10,7, u,v) = —r? sin2(9) (uzv +u+v— v) .

We remark that each of the functions defined above is 2 -periodic in 6. By defining
x = (r, u, v), system (38) can be written as

X =eVNFy0,x) + eV Ey 10, %) + N TPE@, x, ), (40)
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where
Fi (8, %) = (R; (8, %), U;i (8, x), Vi (8, x)). 41

Using formulas (5) and (6), we can calculate the Melnikov function of order N for
this system as

2
fy(x) = / Fy (s, x)ds. (42)
0

Since, by hypothesis, the average of functions Ry, Uy, and Vy over 6 € [0, 2]
vanish identically, then it follows that fiy = 0, so that formulas (5) and (6) provide

2
fs1(x) = /0 Fya1(s. x)ds

3 r2

r2
:(ME(I—rz),E(—u3—uv2+u+v),—?(u2v+u+v3—v)),

(43)

because F; = Oforalli € {1,2,..., N — 1} and y; = 0 in this case. Thus, since it is
clear thatf; = O foralli € {1,2,..., N — 1}, it follows from Proposition 1 that

1
gvr1(x) = —fy ().
2

Let us prove that the guiding system X' = gy_;(x) has a hyperbolic limit cycle.
First, observe that the curve

y() = |(1,cos i) sin yp
iy = (o I . t 1 t _
y(t) = < s _E sin (E) s —E Ccos (E)) = gN+1(V(t)),

and is therefore a Snz—periodic orbitof X' = gy +1(x). Define I as the image of y ().
Notice that I' = {1} x S'.

In order to show that I" is indeed a hyperbolic limit cycle, we shall find the eigen-
values of the Poincaré map P associated to it. Observe that

satisfies

5r4 r2

v gy (X) M4n+4n +3u —4u v

By [23, Corollary 12.5], we know that the determinant of the derivative of P at a
point X in the periodic orbit I is equal to the determinant of the monodromy matrix
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associated to I". Thus, by Liouville’s formula, we have

87
det(DP(xp)) = expf divgy 1 (y(s))ds = e~ 410, (44)
0

Since the surface given by r = 1 is an invariant manifold for this system, we can
also study I" as a periodic orbit of the system x" = gy ; (x) restricted to such surface,
which is the planar system (u’, v') = g, (u, v), given by

1

= —(—u® —uv* +u+v),
4

(45)

/

__ .2 3_
V= (uwv+u-+v v).
4

Let L be the intersection of the surface r = 1 with the transversal section corresponding
to the Poincaré map P. Then, once again by [23, Corollary 12.5], the determinant of
derivative of the restriction P|;, at Xo is given by

det(D(P|L)(x0)) = G:XP/O&T2 divgy, (cos (%) —sin (4;)) ds = e 7.

Since D(P|L)(Xp) acts on a one-dimensional space, it follows that its eigenvalue is
equal to e =47,

We have thus found one of the eigenvalues of D P (xp), to wit, e < 1. In order
to find the other, it suffices to notice that the determinant of D P (x¢) must be equal
to the product of its two eigenvalues. Therefore, it follows from (44) that the other
eigenvalue is e=#7#* £ 1. Hence, it follows that I is a hyperbolic limit cycle and that
the eigenvalues of the derivative of the Poincaré map associated to it are A} = e~*7
and A, = e~ 4,

Thus, Theorem A ensures that there is g > 0 such that, foreach ¢ € [0, go], system

—4r

0'=1, X =eVFy@®,x)+eV T Fy1(0,x) + V20, x, ¢)

admits an invariant torus M, of class C" 3. Moreover, M, converges to S! x I' as
& — 0. The stability of M, is controlled by the parameter . If © = 1, then M, is
asymptotically stable, since S; Ys ' locally becomes a neighborhood of M. If, on the
other hand, © = —1, then S v, 18 locally a 3-dimensional manifold embedded in R4

Transforming back to the orlgmal coordinates, we obtain, for each ¢ € [0, gg], a
invariant torus T, converging as ¢ — 0 to the torus T = S! x S! parameterized by
@,1) € [0,27] x [0,27] — (cos@,sinb, cost, —sint).

Data availability All data generated or analysed during this study are included in this published article
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Appendix
Proof of Proposition 3

Let ¢ € (0, 1] be fixed throughout all the proof. We shall prove that M, can be
parameterized by a C” function «. (¢, 6). In fact, let T — ¢, (7, t9, 6o, Yo, z0) be the
flow of system (11) satisfying ¢, (0, t9, 60, Yo, 20) = (%0, 6o, Yo, zo). Then, results
about smooth dependence on initial conditions (see, for instance, [14, Corollary 4.1 of
Chapter V]) ensure that ¢, is of class C?. Define oy : R xR — R x R x B, (0, 0p) X
By, (O, 00) by

e (1,0) == ¢e(1,0,0, f:(0,6), g:(0,0)).

Observe that statement (e) of Lemma 1 guarantees that «, is of class C?. Let us prove
that o, is injective and that its image is M.

In order to prove that «, is injective, let (t1, 01), (f2,62) € R x R be such that
ag(t1,01) = ag(t2, 02). Define the functions t.(t, tg, 6o, Yo, 20), 0= (T, t0, 60, Y0, 20)>
ve (T, to, 00, Yo, 20), and z.(t, to, 6o, Yo, z0) as being the components of the flow
©e (T, 19, 60, Yo, z0). Then, it is clear by (11) that #.(z, t9, 6y, yo) = to + 7. Hence,
a(ty, 01) = altp, 62) implies at once that t; + 19 = to + 1o, that is, #; = t,. There-
fore, the uniqueness of the flow ¢, ensures that the points (0, 61, f:(0, 61), g:(0, 61))
and (0, 62, f:(0, 02), g:(0, 62)) must be the same. Thus, 6; = 6, and «; is indeed
injective.

To show that the image of o is M, we first observe that, since (0, 8, f; (0, 6), g:(0, 0))
€ M, for all & € R and M, is invariant, it follows that a.(7,0) = ¢.(¢,0,0,
f:(0,0), g:(0,0)) € M, for all (r,#) € R x R, i.e., the image of o, is con-
tained in M,. On the other hand, every point in M is, by definition, of the form
(t,0, f:(t,0), g-(t,0)) for some (¢,0) € R x R. By properties of the flow, defining
O, = 6:(—1,1,0, fo(t,0), g(t,0)), we have

(t.0, fo(t,0), 8:(t,0)) = e (1,0, 8¢, £:(0,0;), g:(0,6,)) = ae (2, 6e),

which implies that M, is contained in the image of «.. Thus, we have proved that
a; is an injective function of class C” whose image is M, and, therefore, is a C”
parametrization of M,. This ensures that M, is of class C?.

We shall now prove that f; and g, are of class C?. In order to do so, we remark that
(t, 0, fe(t,0), g:(t,0)) € M forevery (¢, 0) € RxR. Then, foreach (z,0) € RxR,
there is (7, 0) € R x R such that
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(1,6, fo(t,0), go(t.0)) = a7, 0) = (7, 6:(7, 0,6, £:(0,0), g:(0,0)), y:(7, 0,0,
£:(0,0), g:(0,0)), z:(7, 0,6, f:(0,6), g:(0,))). (46)

Define the function h (7, 0) = (f, 0:(7,0,6, £.(0,60), g:(0, 5))). It is then clear that
the inverse of & exists and is given by

R, 0) = (1, 0:(—1,1,0, fo(1,0), g:(t,0))).
Now, by taking (7(z, 0), 6(¢,0)) = h~' (¢, 0), we get from (46) that

fo(t,0) = y:(i(1,6),0,0, f(0,0(t,0)), g (0,0(t, 0)),
ge(t,0) = z:({(1,0),0,0, f:(0,0(t,0)), g:(0,0(t, 0)).

Thus, since ye, z¢, and 6 — g.(0, 0) are of class C”, in order to prove that f, and
ge are of class C? it only remains to show that ! is of class C?. First, observe that
h is clearly of class C?, because 6 > (0, ) and 6 +— 2:(0, 6) are of class CP
by statement (e¢) of Lemma 1. From the Inverse Function Theorem, it suffices then to
prove that the derivative of £ is non-singular at every point (¢, 8) € R x R. Observe
that

- 1 0
Dh(i, ) = 3 By 3 I, - .
L+mm%ﬂm@»&m®ww%+ﬁfﬁmw+ﬁ-%mm}

where the argument of 6, and its partial derivatiyes is (1, 0, é, 1 (0, 5), 2:(0, é)) and
has been omitted for conciseness. Thus, DA(Z, 0) is non-singular if, and only if,

00, . ~ ~ ~
8_90(t7 09 97 f6(05 9)7 88(07 0))
+ 2 70,0, £.00.6), 00,0 - 220, ) @7)
370 20

00, . -~ ~ ~ 0ge -
+ —(,0,0, f:(0,0),8:(0,0)) - —(0,0) # 0.
920 00

The matrix

e 0ty Be Ole
dtg 90y dyo 920
30 99 86e 90
dtg 90y dyo 920
e e Iye Dye
drg 36y dyo 9z0
9z 0ze 9ze 0Ze

drg 36y dyo 9z0

M(z, 19, 6o, yo, 20) =

where the argument of each entry is given by (t, 79, 6o, Yo, zo) is a fundamental solu-
tion of the first variational equation associated to (11). Thus, M(z, tg, 6o, yo, z0) is
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invertible. Moreover, since t (7, ty, 6y, Yo) = T + fo, it follows that

1 0 0 O
30, 90, 90, 00,

019 06 dyo 9z0
M(z, tg, 6o, 0, 20) = dye dye Bye Oye |

dtg 96 dyo 9z0

92e 0z¢ 0z 0ze

daty 96y dyp dzo

Hence, we conclude that

39 20 29
36, (T2 10,90, Y0, 20) 53 (T, 10, 00, Y0, Z0) y;(f 10, 60, Y0, Z0)

N (z, 1,600, Y0, 20) := %(T 10, 60 ¥0. 20) d)o( 1. 60, ¥0. Z0) dzo = (7. 10, 60 Y0, 20)

d(,o 2 (2, 10, 60, Y0, 20) 5 7 (T, 0,60, Y0, 20) 2= (. to, 60, Y0. Z0)

52
is invertible for all (z, g, 6o, Yo, z0) € [—2, QIXR xR x B,,(0, p) x B,,, (0, p), where
[—€2, €] is the maximal interval where the flow is defined. In particular, if 5 = 0,
6y = g, yo = fe(0, 5), and zg = g:(0, 5), then the flow is defined for all T € R, and
it follows that N'(7, 0, 6, £.(0, 6), g.(0, §)) is invertible for all (7, ) € R x R. Thus,
the product

90, 30,  0fe 90; 08

1 3% T oy 90 T oz 90

~ ~ ~ ~ d fe A dye dye 0fe dye , 08
N(G.0.0, £o(0.6),8:0.0)) - | 32(0.0) | = | B Joe . O Sy dee
ng 0zZe 9z 0fe 9z 0ge

5(0.0) 7t as 35 T ot 5

cannot vanish, where the arguments of the derivatives of 6., y, and z., as well as
the arguments of the derivatives of f; and g, have been omitted, but should be read,
respectively, as (7, 0, 6, 1&(0, 6), gs (0, 6)) and (0, §). Suppose, by contradiction, that
(47) does not hold at (7, 0*) € R2, so that the first line of product above vanishes. Let
us show that this implies that the product vanishes altogether.

In fact, observe that the invariance of M, ensures that, for all (7, 5) € R?,

Ye(@, 0,68, £:(0,6), g:(0,6)) = fe(F, 6:(7, 0,6, £:(0,6), g(0,6))),
26(7,0,0, fe(0,6), g:(0,0)) = g: (7, 6: (7, 0,6, f:(0,6), g:(0,0))).

Thus, differentiating with respect to ] , it follows that

e e B e D O[89, 20 0 00 de]

3  dyo 90  dzg 90 30 a_(90+ﬁ'%+a_m'ae

and

dzc 0z Ofe 0z Oge  0ge [00, 30, 0fe 06, 0
92 | 0z 3fe | 9z ﬁ_ﬁ[_mr_f. fe | 90 ﬁ}

3  dyo 90 | dzo 096 a0 | a6y  dyo 90 9z 90
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where, once again, the arguments of the derivatives of 6,, y, and z,, as well as the
arguments of the derivatives of f, and g., have been omitted, but should be read,
respectively, as (7, 0,8, £.(0,8), g-(0,9)) and (0, 6).

Since we assumed that (47) does not hold at (7, é*), it follows at once that

0 | 00  Bfe | 00: g
3 T dy 90 T 9z 90
ye 4 Oye Ofe | Oye 08 | _
390+ay0‘30+az0 26 =0
9z¢ 4 9ze  fe 4 3z 98
36 T ay 90 T 9z 96

when ~the arguments of the derivatives of 6, y. and z. are given by (7,0, 5*,
Je(0,604), g¢(0, 6x)) and the arguments of the derivatives of f, and g, are given by
(0, 64). Therefore,

1
N, 0,85, fo(0,6,), g:(0,6,)) - | 30,6, | =o0.
%2 (0. 6.)

As remarked above, this would imply that N (Z, 0, 9~*, 1 (0, é*), g:(0, é*)), which we
have proved to be invertible, is not invertible. Since we have reached a contradiction, it
is proved that 2! is indeed of class C”, which concludes the proof of the proposition.

Proof of Proposition 4

Itis not difficult to see that we can assume without loss of generality that the function L
appearing in hypothesis (ii) of the Lemma satisfies: L(e, o, ) > ¢ for all (¢, o, ) €
(0, e0] x [0, p1) x [0, p2).

Let D(¢), A(e), J1, J2 be given as in the proof of Lemma 1. It is clear that there
are K > 0 and @ > 0 such that || J;(r)|| < Ke~| forall i € {1, 2}. By choosing &
to be sufficiently small, we can then ensure that the following inequalities hold for all
g€ (0,¢]:

o Ae) < % and D(e) < p := min(p1, p2);
e 32L(e, D(e), D(¢)) < a;
e 64K L(e, D(¢e), D(¢)) < «.

Let P, (D, A), A, (D, A), and the operator S¢ be given as in the proof of Lemma
1. For each ¢ € (0, e1], define the sequence (Px, Ax)keN, Where Py : (0,&1) —
P,(D, A) and Ay : (0, 1) — A, (D, A) are functions of class C! given by:

o (Py(e), Ap(e)) = (0,0) forall ¢ € (0, &1);
o (Pry1(8), Aps1(8)) = S¢(Py(e), Ap(e)) forall k € Nand all ¢ € (0, &7).

From Lemma 1, it is clear that this sequence satisfies

Jim (Pe(e), Ar(e) = (fe, go)- (48)
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Let a,b € (0, e1) be fixed. Effecting cumbersome calculations, which are very
similar to those presented in the proofs of Propositions 5 and 6, and for this reason are
omitted, we can show that the following hold for all ¢ € [a, b] and all k € N:

() [Piya(e) — Pep1@] + lArs2(e) — Acni@l < 4[I1Per1(@) — P
H dPria(e)  IPrt1(e) H dAr12(e)  Ary1(e)
a0 a6 a6 a6

+ | At1(8) = A(@)Il]-
(2) There is C1 > 0 such that

< C1 | Pret1(e) — Pe(e)|| + | Ak+1(e) — Ak(8)||]
|:H3Pk+](8) d Pr(e) ‘ n dAr1(e)  0Ak(e)

06 206 006
” Plé+2(5) - Pl£+1(8) ” + ||A;<+2(8) - A;<+1(8) ”

]

(3) There is C» > 0 such that

< Cz[IIPkH(S) — Pr(@)| + [[Ars1(e) — Ar (o)l

‘ H 0Arr1(e)  Ax(e)

2P aPe) B
a0 00

00 a0

H

From those inequalities, it follows easily that there is C > 0 such that

1 / / / /
t3 [ Pisi(e) = PUO | + [ Afsr () = Ak ]

wp [Pini @ = B@| + [ Ak @ = 4@ =

e€la,b

for all k € N. Hence, the sequence (P,é , A;() xeN converges uniformly on [a, b]. Since
a and b were arbitrary, this implies that (P/, A})xen converges uniformly on compact
subsets of (0, &1). Therefore, considering (48), it follows that the function ¢ given in
the statement of this Lemma is of class C'! (see, for instance, [ 10, Theorem 85, Chapter
1]), concluding the proof.

Proof of Proposition 5

Let D(e), A(e), J1, J2, and Tr g be given as in the proof of Lemma 1. It is clear
that there are K > 0 and o > O such that || J; ()| < Ke %l for all i € {1,2}.
For convenience, we will denote L(e, D(¢g), D(g)) by L(¢e) throughout the proof. As
in Proposition 4, we assume that the function L appearing in hypothesis (ii) of the
Lemma satisfies: L(¢g, o, u) > ¢ for all (g, o, u) € (0, g9] x [0, p1) x [0, p2).

Let (P, Ax)ken be the sequence defined in Proposition 4. For convenience, define
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° T;f’t’g(e) = The) ae)t + X, 1,0, 8);
o APVHO) = (1 +x.0, P(e)(t +x,0), Ar(e)(r + x,0), £);
o GNO) == G+ X6, Ple)t +x.0), Akle)( +x.0).8) = & 0 AL (6).

We will prove by induction on g that, if €] is sufficiently small, the following hold for
eachg e {l,...,p+ 1}
(P1.) Thereis N, € N and, for each [a, b] C (0, &1], there is Cy 4, > 0 such that

|(715) % @)] < Co g Meb@I280N,

forallk e Nandall (x,7,0,¢) e Rx R xR x [a, b].
(P2.) For each [a, b] C (0, 1], there is Cy 4 > 0 such that

|5+

forallk €e Nandall € € [a, b].

99 Py (e)
204

97 Ak(e)
004

=< Cl,qa

Let us then consider the case g = 1. Observe that, from the definition of Tkx ’t’s, it
follows that

0 (0T P(e). Axe)
0x

00
= Dgo (A" (TE @) - (") (T25©) - (177°) ).

) (t+x,t,0,¢)
49)

Hence, we obtain by changing order of derivatives and integrating

‘(Tkx,z,s)’ ©) — (TkO,t,e)/ ®)

< /O L)1 +24) (1) ©)] dx.
Since
(IfJﬁ)/(e)zzl,
it follows by an application of Gronwall’s inequality that
’(Tkx,t,a)/ (9)) < LEUF28E, (50)

This proves property (P1.). Property (P2.) follows directly, with Cy 1 = sup,¢(, 5 A(),
from the fact that (Py, Ax) € P,(D(e), A(e)) x A, (D(e), A(e)) forall k € N.

Let N € {2,..., p 4+ 1} be given and suppose that the Lemma is true for every
q € Nsuchthat 1 < g < N — 1. We will show that the Lemma also holds forg = N.
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Henceforth, we will employ the index i to denote any element of the set {0, 1, 2},
since the considerations done below are the same. By Faa di Bruno’s formula, since
¢ = g0 A", it follows that

(@) »
({ifl,c[’s) 4 ©) = Z D(J)fz([\x LE)) - B, ((Ar t a) ®)..... (Az,r,a)(q Jj+D (0)> ’

j=1

for each ¢ € {l,...,p + 1}, where B, ; is a Bell polynomial. Observe that
DWy¢; (A;”’S(e)) is a symmetric multilinear map that can be thought of as being
applied to a “product” of vectors. Its application to a polynomial is simply a linear
combination of different applications to such “products"”. In particular, forg = N, we
can write

(;;f’k"ﬁ)(m ©) = DM (AP 0)) - <( o) (9))
n D{,(AX I3 £(9)) - (( AN e)(N) (0)>

+ Z D(j)g-i(l\z't's(e)) “By, <( AN S) ). . ( AT g)(N j+D (9)) )
=

By the same formula, we also have:

(é.i)fl,{t,e (Tkx’l’g(Q)))(N) _ (Ci)fkl a)( ) ( Tt 5(0)) (( Tt 5) (9))
+ (é‘i,kt e) ( xts(e)) (( xte)(N) (0))
D
+ 3 (a) T (@)
By, (( Tt 8) ®), . ( T 8)(N J+D (9)) .

Thus, it follows that

(e ()™
_ D(N);. ( X,t,€ ( kx,t,a(e))) ) <(Az’t’€)/ (Tkx,t,s(e)))N - (( Tt 8) (9)>
+Ds ( INZL s( x,z,e(e))) ) ((Ai,t,s)(N) (Tkx,t,s(e))) . (( T e) (9))
Z D(.])é_ x t,e ( kx,t,s(e)))
'BN,j ((A;(c,t,S)’ (Tkx,t,s(e)) . (A;(c,t,s)(N*j+l) ( X,t, 8(9))) (( T 8) (9))N
+Dg; ( ALE ( kx,t,s(g))) ] ((Ai,t,s) ( T 5(9))> <( T s)(N) (9))
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N-1

J
+ 20 2[00 (" (1 )

/:2 =1

B (0 () ()]
xBy.j ((Tx t, 8) ®), . ( T 8)(N JjtDh (9)) )

~

(5D

For simplicity, we will denote the summands on the right-hand side of this equation
by I,11,111,1V,and V,respectively.
By definition of 7;"""* (), it follows that

N [(aTp (¢),Ax(e) . . (N)
39N ( kax ‘ )(l+x,t,9,,9) = (;&k (1 8(9))) _ (52)

Observe that, forg € {1, ..., p + 1},

q q9A
(Az,t,s)(q) ©) = (O, 51q. 09 P (e) (t +x.0). 1Ak (¢e)

Tq Sog 9)0)

where §;; is the Kronecker delta. Thus, since N > 2, it follows that

| (a3 (@) - (7)™ (1 @)

aN Pr(e) N A (e)
< L(e) s daa iy
00 00
which, combined with (50), ensures that
0" Pi(e) 0V Ak@) | Ne©a 286k
IIIIIISL(S)[ 59N + 9aN eV e o, (53)

Moreover, we also have

| D& (A (17 @) - (A (1 @) )|

aPe) | [ 9AK(e)
o[+ k]
so that
1TV < L)1+ 2a()) (T49) ™ (). (54)
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Observe that, since ¢; is of class cP*tland periodic in its first two entries, there is
C; > 0 such that

[p@a (it (@ @) = ¢

forallg € {1,..., p+ 1}, allk € N,and all (x, 7,0, ¢) € R x R x R x [a, b]. Thus,
considering the hypothesis of induction, it follows that there are C>0andN €N,
where C depends on the choice of the interval [a, b] but N does not, such that

ITI 4+ [T + [V < CeNE@ 28I, (55)

Therefore, considering (53), (54), and (55), it follows by changing the order of
derivatives of (52) and integrating with respect to x that

C eNL(s)(HZA(s))Ix\

T““N) 0 [ L)1 +2A rts(N) 0 e
‘( ()‘ | LEA+ (5))’( ()‘ NL(e)(1 + 2A(e))

"

Thus, by taking N, := max(N + 1, N + 1), an application of Grénwall’s inequality
N Pr(e) ‘ H N A (e)

ensures that
C 1
750 e (N) 9 _
‘( ( )‘ “\NL(¢e) + 1+2A(e) aoN 06N

oNaLEUF2AE)Ix| (56)

N Pe(e)
2N

AN A (e)
2N

N 1 eNLEU+2A() x|
N1 +2A())

Having proved (56), we proceed to showing that (P2.) holds for ¢ = N. This will
be done by induction on k € N. Define

48K C
I,N = ——.
o

Since (Py, Ag) = (0, 0), property (P2.) is trivially true with this constant for ¢ = N
and k = 0. Suppose it holds for all non-negative integers up to a given k € N. Let us
show that is must also hold for k + 1. Observe that

N Py (e)
9oN

o0 (N)
(t,@):f B (e (1 ©)) da,

—00
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Hence, considering (53), (54), (55), and (56), it follows that

N _
0" Peni(@) || _ ™ ¢ maix [ CAE2AE) =) NL@O+286) I gy
96N - N
—00
o0 AN Pi(e) AN Ar(e)
o [ e [0+ [
o 9oN 9oN

oNaLEU+28) x| g,

If &1 is sufficiently small as to ensure that 2N, L(e)(1 + 2A(e)) < aforall ¢ €
(0, &1], and considering the hypothesis of induction, it follows that

We proceed identically for A4 and obtain

N Pryi(e)
96N

C Cin. (57)
o« N

‘ _4K (C(l +246) | ) | BKLG)

avaA
H ﬂ Cin. (58)

aoN

‘ _ 4K (C(l +24() +@) L 8KL®
o N o

If ¢ is also chosen sufficiently small as to ensure that 32K L(¢) < @ and 2A(e) < 1
for all ¢ € (0, £1], then

AN Py (e) NA(e)|| 24KC  Cin
< < C R
’ s | T e [T e T2 SO
proving property (P2.).

Observe that the validity of property (P1.) for ¢ = N follows immediately from
(56) and the fact that (P2.) holds for ¢ = N. Therefore, by induction on g, it is proved
that both properties hold for all ¢ € {1,..., p + 1}. The Lemma then follows by
defining

N7t = max Ny,
qefl,....p+1}

and, for each interval [a, b] C (0, £1], the positive constants

Clap) = max Ciyg, M) = max Co,g,
gell,..., p+1} qefl,..., p+1}

and observing that ( fe, g.) is the limit of the sequence (P (¢), Ak (€))keN-
Proof of Proposition 6

Let D(¢e), A(e), J1, J2, and TF g be given as in the proof of Lemma 1. It is clear that
there are K > 0 and > O such that || J; (r)|| < Ke~®! foralli € {1, 2}. Once again,
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we will denote L(g, D(e), D(g)) by L(e) throughout the proof. As in Proposition 4,
we assume that the function L appearing in hypothesis (ii) of the Lemma satisfies:
L(e,o,n) > eforall (e,0, 1) € (0, 0] x [0, p1) x [0, p2).

For convenience, define

o TH5(0) =Ty, g (1 +x,1,0);
o AYVE@)=(t+x,0, fo(t +x,0), go(t +x,0), &);
o §NO) = Gt 43,0, folt +x,0), ge(t +x,0),8) = & 0 AT (D).

First, let us consider k = 0. Let us restrict the possible values of the parameter
€ to a compact interval [a, b] C (0, 1], and let p > 0 be such that D(¢) < p for
all ¢ € (0, 1]. In this case, the functions ¢o, {1, {» are Lipschitz continuous with
Lipschitz constant R over R x R x By, (0, ) X B, (0, p) X [a, b]. Thus, it is clear that,
ife, & € [a, b] C (0, 1], then

ITH(0) — TV (9)] < /Ox L(e)(1 4 2A@)| T (0) — TT"¥(0)|dT

ﬁAL®mﬂ—ﬁWW&—&mw

X
+/ Rle — &|dx.
0

Hence, from Gronwall’s inequality, it follows that

eL©U+2A@) x| _

< 1
IT*050) = T4 (0)] < NG Ll fe — fall + lge — gzll]

R(eL(a)(HZA(S))IXI D
L(e)(1+2A(e))

le — &l. (59)

Now, since (fe, ge) is a fixed point of the operator $° given in the proof of Lemma
1, it follows by subtracting S7( fz, gz) from S7(f, g.) that

I fe(2,0) = fe(, O)l S/OO Ke ®ML(e)(1+2A)| T (0) — TV"(0)|dx

+/ Ke ™ML [1fo — fll + lge — gelldx

—00

o
+f Ke ®XRle — Fldx.
—00

Thus, considering (59), if €1 is chosen sufficiently small so that 2L (&) (14+2A(¢)) < «
for all ¢ € (0, £1], it follows that

4K L(¢)
o

I fe(2,0) = fa(t, D)l = Ulfe — fell + llge — gzlll + Rle — €]
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A similar argument ensures that

4K L(e)
o

llge (2, 0) — gz(z, O)|| < [l fe — fall + lge — 8z ll] + Rle — &I

Therefore, if €1 is also small enough to ensure that 16K L(¢) < « for all ¢ € (0, e1],
it follows that

I fe — fell + l1ge — gzl < 4Rle — €] (60)

if &, & € [a, b]. The procedure can be repeated for any choice of interval [a, b] with
the exact same conditions required for the choice of €1, yielding generally different
constants R, but ensuring local Lipschitz continuity nonetheless.

Consider the following properties, where ¢ € {0, ..., p}:

(Q.1) Thereis N, € N and, for each [a, b] C (0, &1], there is Cg 4 > 0 such that

< CO,q|8 _ gleNqL(s)(l+2A(a))|x\

'(TX,Z,S)((]) (9) _ (TX,[,§>((1) (9)

forall (x,7,0) e Rx R x Randalleg, ¢ € [a,b].
(Q.2) For each [a, b] C (0, &1], there is C1,4 > O such that

| "

forall ¢, € € [a, b].
We will prove by induction that those properties hold for all ¢ € {0, ..., p}.

Before we proceed to the proof itself, we make some considerations. Once again,
the index i will be used to denote any element of the set {0, 1, 2}, since the arguments
are the same. Let the interval [a, b] C (0, &1] be fixed. First, since ¢; is of class C ptl
periodic in its first two entries, and since f; and g, are bounded for ¢ € [a, b], it follows
that there are constants C; > 0 and L; > 0 such that, for all j € {0, 1, ..., p}, the
function DW)¢; satisfies

3 fe  01f

064 0649

07ge 04g;z

264 264

=< Cl,q|8 _EI

IDD g A< @)] < C; (61)
and
1DV (AY40)) = DV G (A F @) < Le[AY(0) = A @) (62)
forall j € {0,..., p},all (x,7) € R x Randall (0, ¢), (é, &) € R x [a, b].
Furthermore, considering the definition of A**"-¢ and (60), it follows that, for each

[a, b] C (0, &1], there is R > 0 such that

[AT(6) — AVE(@)|| < 4R|e — &| + (1 +2A(e))]0 — 6 (63)
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forall (x,7) € R x R and all (0, &), (5, €) € R x [a, b]. Also, observe that for any
je{l,....,p+1},

ey ooy S fe 3/ ge
(A™52) (9)—<0,51],—39j (t+x,0), =5

(t+x,6’),0>, (64)
where §;; is the Kronecker delta. Thus, it follows that
[(ax) @ = 1+280), (63)

forall (x,7,0,¢e) € R xR xR x (0, £1]. Moreover, from Proposition 5, there is, for
each [a, b] C (0, e1], a constant C» > 0 such that

H (Ax,t,s)(j) (9)” <C, (66)

forall j € {2,...,p+ 1} and all (x,7,0,e) € R x R x R x [a, b]. Also, from
Corollary 2, it follows that

X)) wi\Y 5 3 f. B f g 8gs
H (A7 - (A ) (9)” = H 207 067 | |90 ~ 67
+Cal6 -6 (67)

forall j e {I,..., p},all (x,7) € R x Randall (8, ¢), (5, g) € R x [a, b].
Finally, observe that, from Proposition 5, there are N7 and, for each [a, b] C (0, &1],
a constant C7 > 0 such that

‘(Tx,t,a)(j) (9)‘ < CreNTLEU+2AE)Ix| (68)

forall j e {l,...,p+ 1}andall (x,7,6,¢e) e Rx R xR x [a, b].

We start the discussion of the induction argument. Observe that the case ¢ = 0
follows directly from (59) and (60). Let N € {1, ..., p} and assume that properties
(Q.1) and (Q.2) are valid for 0 < g < N — 1. We will show that this ensures that such
properties also hold forg = N.
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Proceeding exactly as in the proof of Proposition 5, we obtain the following from
Faa di Bruno’s formula:

(é_ix,t,s (Tx,t,S(g)))(N)
’ N , N
— D(N)é'i (Ax,t,s (Tx,t,e(e))) . ((Ax,t,s) (Tx,t,s(e))> . ((Tx,t,e) (0))
. AN
+ Dy (Ax,t,e (Tx,t,e(e))) ) ((Ax,z,g)(N) (Tx”ﬁ(e))) ) <(Tx,t,€) (9))

N—1
+ Z D(])é-l (AX,I,&‘ (TX,I,S(G)))
j=2

/ i ’ N
“By ((Ax,t,s) (Tx,t,g(g)) o (Ax,t,s)(N j+D (Tx,t,s(g))) ((Tx,t,a) (9)>
+ D& (Ax,t,s (T4 (0))) - ((Ax,t,s)/ (Tx,t,s(e))) . ((Tx,t,g)(N) (9))

N—
Z [D(l)f Ax 1,8 (Tx J, 8(9)))

=2 [=1

.

B] ; X, Tx o, 8(9)) (Ax,t,s)(/—H‘l) (Tx,t,a(e))>]

A l‘S
x By, ((TW’E) ®), ..., (TX»’»S)(N*““ ®).
(69)

For simplicity, we will denote the summands on the right-hand side of this equation
by I, 11,111, 1V, and V, respectively. If ¢ is replaced by &, we will denote those
terms by I/, II', I11', IV’, and V', respectively

Considering the hypothesis of induction combined with (61), (62), (65), (67) and
(68), it follows that there is N; > 0 and, for each [a, b] C (0, &1], C; > 0 such that

1= 1'|| < CpeMrH@UF2AEN e _ g, (70)

for all (x,7,0) € Rx R xR and all ¢, & € [a, b]. Similarly, since By, ; and B}
are polynomials, there are Ny;; > 0 and Ny > 0, and, for each [a, b] C (0, &1],
Crrr > 0and Cy > 0 such that

I —I1T'|| < CpppeNiHEURAE g 7 (71)
and
IV — V|| < Cye"VEOUHR8EM g 7|, (72)
forall (x,7,0) e Rx R x Randall g, € € [a, b].
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Regarding 11, observe that (64), (67), and the properties of Lipschitz continuity of
g; given in hypothesis (iii) guarantee that

HDG (Ax,t,s (Tx,t,g(e))) ) ((Ax,t,g)(N) (Tx,t,s(e)) _ (Ax,t,g>(N) <Tx,t,§(9))) H
aNfe aNfé + ‘ aNge . aNgé :|

aoN 9N aoN 99N
+ L(e)Ca ‘T""'S(Q) - T""'g(Q)‘ .

Thus, the hypothesis of induction, combined with (62), (67), (65), (67) and (68),

ensures that there is N;; > 0 and, for each [a, b] C (0, 1], C;; > 0 such that

cuof

I —I1'| < CjpeNit@©U+28@NIx 1 _ g
‘8Nfa 3Nf§

aoN aoN

+LeE) [ 90N~ 9oN

N N
Ha g 07gs H]eN”L(e)(IJrZA(s){%')

forall (x,7,0) e Rx Rx Randalleg, ¢ € [a,b].
Finally, a similar argument ensures that there is N;y € N and, for each [a, b] C
(0, &1], Cyry > 0 such that

11V — IV/|| < CIVeNIVL(S)(l-i-ZA(s))le|8 — g

L) +2A) [(T704) N (9) - (Tx”ﬁ)(m (9)‘ (74)

forall (x,7,0) e R x R x Randalle¢, € € [a, b].
By definition of 7"+, it follows that

aN (8Tfs,ge

89_N 9x ) (t+x,t,0,¢) = (;6‘”’5 (Tx,t,e(g)))(N) .

Thus, considering inequalities (70)—(74), it follows that there is N7 € Nand, for each
[a, b] C (0, &1], Cr > 0 such that
‘(Tx,l‘,é‘)(N) (9) _ (Tx,l,g‘)(N) (9)‘

(N)

< /x L(e)(142A(e)) ‘(TW?)
0

‘aNfe aNfé

-\ (N)
©) — (17) (9)‘511
+ N ge _ " gz
26N 96N

1
* 1+2A() |: aoN  9eN
4+ Crle — 5|6NTL(8)(1+2A(8))\x|

} o NTLE(1+2A()) x|
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for all (x,7,0) € R xR x R and all ¢, ¢ € [a, b]. From Gronwall’s inequality, it
follows that

(V)
'(Tx,t,s)(N) ®) — (Tx,t,s) (9)'

aNfa aNfE

1
1+2A(e) [H aoN oM aoN 9N H
eNT+DLE 124 ) x| (75)

B aN aN~
s[cm—m H e Ve

forall (x,7,0) e R x R x Randalle¢, € € [a, b].
Let us prove that property (Q.2) holds for ¢ = N. Observe that

aN ; o) Cre e
ae)£ (t,6) :/ T (508 (104 0)) ™ dx.

Thus, proceeding just as above, we obtain, for each [a, b] C (0, &1], a constant C>0
such that

aNfs aNfS *© —a|x| 7,t,e\(N) w5\
‘ =%~ 3oV H 5/700 Ke L(e)(l+2A(8))‘(T ) (0)—(T ) ©)|dr
N N ¢ N N,
+/OoKefa\x|L(8) 0 fsia fz + d geia 8z
PSS aON aoN 9N aoN
 NILE 28| +/°° Kol |g — g]NT L2286
—0Q
Define
16K C - -
Ciyi=—, N :=max{Ny + 1, N;;}.
o

If &1 is sufficiently small as to ensure that 2NL()(142A(g)) < aforalle € (0, &1],
then it follows by integrating and considering (75) that

Nfe 0N Ve Vg 4KC -
+ le — .

- -

3N 9N 3N 90N

oVfe oMfe| _8KL@) [
N N | T o |

Proceeding similarly for g, we obtain

3N 9N | T « h + a

aoN aoN aoN aoN

WNg. oNg:| S8KL@e)[|Vf. aNf: R L 4KC
< + le — €.
o

Hence, if ¢; is also chosen small enough to ensure that 32L(¢)(1 4+ 2A(¢)) < «, it
follows that

H Ve oV H N ‘ Ng.  0Ng:

aoN aoN

39N 861\, = |8_§|=C1,N|8_§|7

16K C
<
B
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proving that property (Q.2) holds for ¢ = N. Thus, the validity of property (Q.1) for
this value of g follows immediately considering (75).

Therefore, we have proved by induction that properties (Q.1) and (Q.2) are valid

for g € {0, ..., p}. This concludes the proof of the Lemma, because property (Q.2)
ensures local Lipschitz continuity of the functions considered.
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