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Abstract
Important information about the dynamical structure of a differential system can be
revealed by looking into its invariant compact manifolds, such as equilibria, periodic
orbits, and invariant tori. This knowledge is significantly increased if asymptotic prop-
erties of the trajectories nearby such invariant manifolds can be determined. In this
paper, we present a result providing sufficient conditions for the existence of invariant
tori in perturbative differential systems. The regularity, convergence, and stability of
such tori as well as the dynamics defined on them are also investigated. The condi-
tions are given in terms of their so-called higher order averaged equations. This result
is an extension to a wider class of differential systems of theorems due to Krylov,
Bogoliubov, Mitropolsky, and Hale.

Mathematics Subject Classification 34C23 · 34C29 · 34C45

1 Introduction and statement of themain result

The averaging method has been employed byKrylov, Bogoliubov, andMitropolski [1,
16] to study the existence of invariant tori in the extended phase space of T -periodic
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non-autonomous perturbative differential equations of the kind ẋ = εF1(t, x). Those
results were generalized by Hale in [11] and [12] and assert that the existence of
invariant tori is associated to the existence of limit cycles of the so-called averaged
equation,

ẋ = 1

T

∫ T

0
F1(t, x)dt .

In this paper, we are concerned with a wider class of T -periodic non-autonomous
perturbative differential equations of the following kind:

ẋ =
N∑
i=1

εi Fi (t, x) + εN+1 F̃(t, x, ε), (t, x, ε) ∈ R × D × [0, ε0], (1)

where D is an open bounded subset ofRn, ε0 > 0, and the functions Fi : R×D → R
n,

i ∈ {1, . . . , N }, and F̃ : R × D × [0, ε0] → R
n are of class Cr , r ≥ 2, and

T -periodic in the variable t . Our goal is to extend the mentioned results of Krylov,
Bogoliubov, Mitropolsky, and Hale concerning the existence of invariant tori to the
differential equation (1). More specifically, we aim to provide sufficient conditions
for the existence of invariant tori in the extended phase space of (1) which, due to the
periodicity in the variable t , can be seen as a vector field defined on a cylinder:

{
τ ′ = 1,
x′ = ∑N

i=1 εi Fi (τ, x) + εN+1 F̃(τ, x, ε),
(τ, x) ∈ S

1 × D, (2)

where S1 = R/(TZ). In addition, results concerning the regularity, convergence, and
stability of such tori as well as information about the dynamics defined on them will
also be presented.

1.1 Introduction to the averaging theory

Some notions from the averaging theory will appear in the statement of our main
result, Theorem A. Thus, in order to state it, we must provide a brief introduction to
the averaging method, with special attention to the concept of higher order averaged
functions.

The averaging method or averaging theory stemmed from the works of Clairaut,
Lagrange, and Laplace regarding perturbartions of differential equations (see [22,
AppendixA]), even though its formalizationwas only establishedmuch later, by Fatou,
Krylov, Bogoliubov, and Mitropolsky (see [1, 2, 8, 16]). It is particularly useful in the
study of nonlinear oscillating systems which are affected by small perturbations, by
providing asymptotic estimates for solutions of non-autonomous differential equations
given in the standard form (1).

The estimates provided by the averaging method depend on the averaged functions,
gi : D → R

n for i ∈ {1, . . . , N },which appear as solutions of homological equations
when transforming system (1) according to the following result.
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Theorem 1 ([22, Lemma 2.9.1]) There exists a T -periodic near-identity transforma-
tion of class Cr

x = U (t, z, ε) = z +
N∑
i=1

εi ui (t, z), (3)

satisfying U (0, z, ε) = z, such that the differential equation (1) is transformed into

ż =
N∑
i=1

εigi (z) + εN+1rN (t, z, ε).

The conditionU (0, z, ε) = z, called stroboscopic condition, ensures that the func-
tions gi are uniquely determined. In that case, gi is named the averaged function of
order i . One can easily verify that g1 is, indeed, the time-average of F1(t, x), that is,

g1(z) = 1

T

∫ T

0
F1(s, z) ds. (4)

In general terms, the averaging theory guarantees that, for timeO(1/ε) and ε small,
any solution of (1) remains εN -close to the solution of the truncated averaged equation

ż =
N∑
i=1

εigi (z),

with the same initial conditions.
In addition to the aforesaid quantitative estimates, the averaging theory has found

great successwhen applied to investigate invariantmanifolds; for instance, to guarantee
the existence of invariant tori, as mentioned in the introduction of this work, [1, 4, 11,
12]. It has also been successfully applied to the study of simpler compact invariant
manifolds, such as periodic solutions (see, for example, [3, 13, 17, 19, 21, 24]).

Recently, the paper [20] provided a general recursive formula for the higher order
averaged functions in terms of Melnikov functions. Accordingly, define theMelnikov
function of order i , fi , for i ∈ {0, . . . , N }, by

f0(z) = 0 and fi (z) = yi (T , z)
i ! , (5)

where

y1(t, z) =
∫ t

0
F1(s, z) ds and

yi (t, z) =
∫ t

0

(
i !Fi (s, z) +

i−1∑
j=1

j∑
m=1

i !
j !∂

m
x Fi− j (s, z)Bj,m

(
y1, . . . , y j−m+1

)
(s, z)

)
ds,

(6)
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for i ∈ {2, . . . , N }. In the formulae above, for p and q positive integers, Bp,q denotes
the partial Bell polynomials (see, for instance, [6]). Roughly speaking, the Melnikov
functions determine the N -jet in ε of the time-T -map of (1), that is, ϕ(T , z, ε) =
z+∑N

i=1 εi fi (z) +O(εN+1), where ϕ(t, z, ε) corresponds to the solution of (1) with
initial condition ϕ(0, z, ε) = z (see [17, 18]).

In particular, (4) and (6) ensure that f1(z) = T g1(z). The next result states that
the same holds for higher order averaged functions provided that some conditions are
satisfied.

Proposition 1 ([20, Corollary A]) Let � ∈ {2, . . . , N }. If either f1 = · · · = f�−1 = 0
or g1 = · · · = g�−1 = 0, then fi = T gi for i ∈ {1, . . . , �}.

The relationship established in Proposition 1 allows us to directly calculate the first
non-vanishing averaged function, thus motivating the main result of this work, i.e., an
extension of the results of Krylov, Bogoliubov, Mitropolsky, and Hale to higher order
averaged functions.

1.2 Statement of themain theorem

The existence of invariant tori in a differential system, as in the case of existence
of equilibria and periodic orbits, reveals important information about the dynami-
cal structure of the differential system. This knowledge is significantly increased if
asymptotic properties of the trajectories nearby such invariant tori can be determined.
Thus, before introducing our main result, we must set forth the following definition
regarding asymptotic stability of invariant manifolds.

Definition 1 Let

ẋ = F(x) (7)

be an autonomous differential system in R
n and let x(t, x0) be the solution of (7)

satisfying x(0, x0) = x0. Let also M be an m-dimensional invariant manifold of
system (7) and V be a neighborhood of the manifold M .

(a) The local stable set of M with respect to V is

SV
M :=

{
x0 ∈ V : x(t, x0) ∈ V for all t > 0 and lim

t→∞ d(x(t, x0), M)) = 0
}

.

(b) The local unstable set of M with respect to V is

UV
M :=

{
x0 ∈ V : x(t, x0) ∈ V for all t < 0 and lim

t→−∞ d(x(t, x0), M)) = 0

}
.

Now, we are ready to provide our main result.

Theorem A Consider the Cr , r ≥ 2, differential equation (1) and its extension (2).
Suppose that, for some � ∈ {1, . . . ,min(N , r − 2)}, f0 = . . . = f�−1 = 0, f� �= 0.

123



Invariant tori via higher order averaging method. . . 547

Assume that the guiding system ż = g�(z) has an ω-periodic hyperbolic limit cycle
ϕ(t). Then, there exists ε > 0 such that, for each ε ∈ (0, ε], the following statements
hold:

(a) Existence: The differential system (2) has an invariant torus Mε. In addition,
there exists a neighborhood V ⊂ D of � := {ϕ(t) : t ∈ R} such that any
invariant compact manifold of (2) contained in S1 × V must be contained in Mε.
In particular, Mε is the unique invariant torus in S1 × V .

(b) Regularity: The invariant torus Mε is of class Cr−�. Furthermore, there is
a C0-continuous family of Cr−� functions Fε : R

2 → R
n, T−periodic in

the first coordinate and ω-periodic in the second coordinate, such that Mε =
{(τ,Fε(τ, θ)) : (τ, θ) ∈ S

1 × R}.
(c) Convergence: There is a continuous function δ : [0, ε] → R+ satisfying δ(0) = 0

such that ‖Fε(τ, θ) − U (τ, ϕ(θ), ε)‖ < δ(ε) for every (τ, θ) ∈ R
2, where U is

the transformation given by Theorem 1. In particular, Mε converges to S
1 × � in

the Hausdorff distance as ε → 0.
(d) Stability: Let k ≤ n − 1 be the number of characteristic multipliers of � with

modulus less than 1. Then, there are neighborhoods Ws, Vs, Wu, and Vu of Mε

such that

(d.1) SVs
Mε

∩ Ws is a (k + 2)-dimensional manifold embedded in R
n+1;

(d.2) UVu
Mε

∩ Wu is a (n − k + 1)-dimensional manifold embedded in R
n+1.

(e) Dynamics: The flow of (2) restricted to Mε defines a first returnmap pε : Sε → Sε

where, for� = {(0, x) : x ∈ D} a transversal section of (2), Sε := �∩Mε isCr−�

diffeomorphic to the circle S1. Moreover, pε is of class Cr−�; its rotation number
ρ(ε) is a continuous function on ε ∈ [0, ε] satisfying ρ(ε) = ε�T /ω + O(ε�+1);
and, finally, if r−� ≥ 4, then ρ maps zero Lebesgue measure sets to zero Lebesgue
measure sets, and there exists a positive Lebesguemeasure set E ⊂ [0, ε] such that,
for every ε ∈ E, ρ(ε) is irrational and pε is Cr−�−3 conjugated to an irrational
rotation.

TheoremA is proved in Sect. 3 after establishing some preliminary results in Sect. 2.

Remark 1 Since pε is at least of classC2 (because r−� ≥ 2), if ρ(ε) is irrational, then
pε is topologically conjugate to an irrational rotation (see, for instance, [13, Theorems
2.4 and 2.5]). In this case, the dynamics of (2) on the invariant torus Mε corresponds to
an irrational flow and, therefore, the torusMε is aminimal invariant compactmanifold,
in the sense that there is no other compact invariant manifold of (2) contained in Mε

besides itself. Therefore, since ρ(ε) = ε�T /ω+O(ε�+1) is continuous, we can always
find ε∗ ∈ (0, ε] such that Mε∗ is minimal.

Remark 2 The conclusion provided by statement e) that “if r−� ≥ 4, then ρ maps zero
Lebesgue measure sets to zero Lebesgue measure sets” is known as Luzin-N-property
of the function ρ.
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1.3 Application: invariant tori in 4D vector fields

Theorem A provides a means for investigating the existence of invariant tori also in
higher dimensional vector fields. For instance, for a positive integer N ≥ 2, consider
the following 4D autonomous differential system

ẋ = −y + εN f1(x, y, u, v) + εN+1g1(x, y, u, v) + εN+2h1(x, y, u, v, ε),

ẏ = x + εN f2(x, y, u, v) + εN+1g2(x, y, u, v) + εN+2h2(x, y, u, v, ε),

u̇ = εN f3(x, y, u, v) + εN+1g3(x, y, u, v) + εN+2h3(x, y, u, v, ε),

v̇ = εN f4(x, y, u, v) + εN+1g4(x, y, u, v) + εN+2h4(x, y, u, v, ε),

(8)

where ε is a small positive parameter;μ ∈ {−1, 1}; fi , for i ∈ {1, 2, 3, 4}, are functions
of class Cr , r ≥ 4, satisfying that

θ → cos(θ) f1(r cos(θ), r sin(θ), u, v) + sin(θ) f2(r cos(θ), r sin(θ), u, v),

θ → f3(r cos(θ), r sin(θ), u, v), and

θ → f4(r cos(θ), r sin(θ), u, v)

(9)

have vanishing average over θ ∈ [0, 2π ]; gi , for i ∈ {1, 2, 3, 4}, are given by

g1(x, y, u, v) = μx(x2 + y2),

g2(x, y, u, v) = −μy(x2 + y2)2,

g3(x, y, u, v) = x2(u(−u2 − v2 + 1) + v),

g4(x, y, u, v) = y2(v(−u2 − v2 + 1) − u);

and hi , for i ∈ {1, 2, 3, 4}, are Cr , r ≥ 4, functions.

Proposition 2 Assume the conditions above for the differential system (8). Then, for
any integer N ≥ 2 and ε > 0 sufficiently small, the differential system (8) has an
invariant torus Tε converging, as ε goes to 0, to T = S

1 ×S
1. Moreover, the invariant

torus is asymptotically stable provided that μ = 1 and has an unstable direction
provided that μ = −1.

Proposition 2 is proven in Sect. 4.

Example 1 Assuming that

f1(x, y, u, v) = yu, f2(x, y, u, v) = −xv,

f3(x, y, u, v) = x3, and f4(x, y, u, v) = y3,

one can easily see that the functions given in (9) have vanishing average. Thus, Proposi-
tion 2 can be applied to provide the existence of an invariant torus for ε > 0 sufficiently
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Fig. 1 Assuming N = 2, μ = 1, hi = 0, i = 1, . . . , 4, and ε = 1/15, we show 10345 iterations of the
Poincaré map of (8), defined on the section� = {(x, 0, u, v) : x > 0}, for the initial values: (1.01, 0, 2, 0),
(0.99, 0, 2, 0), (1.01, 0, 0.5, 0), and (0.99, 0, 0.5, 0). The orbits are attracted by the closed curve γε , which
corresponds to the intersection between the invariant torus Tε with the section �. For the web version of
the paper, purple points indicate a low number of iterations, whilst red points indicate a high number of
iterations

small. In Fig. 1, assuming N = 2, μ = 1, hi = 0, i = 1, . . . , 4, and ε = 1/15, we pro-
vide a numeric simulation (performed on Mathematica) of the Poincaré map defined
on the section� = {(x, 0, u, v) : x > 0} of the differential system (8). The asymptot-
ically stable invariant tori Tε corresponds to an asymptotically stable invariant closed
curve γε := Tε ∩ � for the Poincaré map.

2 Fundamental Lemma

The proof of Theorem A makes use of some results concerning integral manifolds of
a class of perturbed differential systems. Such results, and the methods employed for
obtaining them, are similar to those established by Hale in [11, Lemmas 2.1, 2.2 and
2.3] (see also [2, Sect. 28, Lemmas 1, 2, and 3] and [12]). In this section, we state and
prove those results in the form of a single Lemma, along with Propositions addressing
the issue of regularity of the integral manifolds obtained.

Throughout the paper, we will adopt the notation diag(A1, . . . , An) to represent
the direct sum A1 ⊕ · · · ⊕ An of the square matrices Ai , i ∈ {1, . . . , n}. We will also
employ the notation Bn(p, r) for the n-dimensional open ball {x ∈ R

n : ‖x− p‖ < r}.
We consider a one-parameter family of differential systems of the form

θ ′ = 1 + ζ0(t, θ, y, z, ε),

y′ = H1 · y + ζ1(t, θ, y, z, ε),

z′ = H2 · z + ζ2(t, θ, y, z, ε),

(10)
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where θ ∈ R, y ∈ R
m , z ∈ R

n , ε is a real parameter, H1 is a real m × m matrix,
H2 is a real n × n matrix, and the continuous functions ζ0 : R × R × Bm(0, ρ1) ×
Bn(0, ρ2) × (0, ε0] → R, ζ1 : R×R× Bm(0, ρ1) × Bn(0, ρ2) × (0, ε0] → R

m , and
ζ2 : R×R× Bm(0, ρ1)× Bn(0, ρ2)× (0, ε0] → R

n have Lipschitz continuous partial
derivatives with respect to (θ, y, z) up to the p-th order, where p ≥ 1, ρ1, ρ2 > 0,
and ε0 > 0. For conciseness, we define, for each (σ, μ) ∈ (0, ρ1) × (0, ρ2), the set

�ε0
σ,μ := R × R × B̄m(0, σ ) × B̄n(0, μ) × (0, ε0].

We suppose that the following hypotheses are satisfied by (10):

(i) There is ω > 0 such that

ζ0(t, θ + ω, y, z, ε) = ζ0(t, θ, y,−z, ε),

ζ1(t, θ + ω, y, z, ε) = ζ1(t, θ, y,−z, ε),

ζ2(t, θ + ω, y, z, ε) = −ζ2(t, θ, y,−z, ε).

(ii) There is a continuous function M : [0, ε0] → R+ such that M(0) = 0 and the
functions ζi satisfy |ζ0(t, θ, 0, 0, ε)| ≤ M(ε), ‖ζ1(t, θ, 0, 0, ε)‖ ≤ M(ε), and
‖ζ2(t, θ, 0, 0, ε)‖ ≤ M(ε) for all (t, θ, ε) ∈ R × R × (0, ε0].

(iii) There is a continuous function L : (0, ε0] × [0, ρ1) × [0, ρ2) → R+ such that

lim
(ε,σ,μ)→(0,0,0)

L(ε, σ, μ) = 0,

and, for (t, θ1, y1, z1, ε), (t, θ2, y2, z2, ε) ∈ �
ε0
σ,μ, the following inequalities

hold true:

|ζ0(t, θ1, y1, z1, ε) − ζ0(t, θ2, y2, z2, ε)| ≤ L(ε, σ, μ)‖(θ1, y1, z1) − (θ2, y2, z2)‖,
‖ζ1(t, θ1, y1, z1, ε) − ζ1(t, θ2, y2, z2, ε)‖ ≤ L(ε, σ, μ)‖(θ1, y1, z1) − (θ2, y2, z2)‖,
‖ζ2(t, θ1, y1, z1, ε) − ζ2(t, θ2, y2, z2, ε)‖ ≤ L(ε, σ, μ)‖(θ1, y1, z1) − (θ2, y2, z2)‖.

(iv) The eigenvalues of H1 and H2 have non-zero real parts.

Let
(
θ(t, t0, θ0, y0, z0, ε), y(t, t0, θ0, y0, z0, ε), z(t, t0, θ0, y0, z0, ε)

)
denote the

solution of (10) with initial conditions (t0, θ0, y0, z0, ε). Having set forth the hypothe-
ses above, we are now ready to state the Lemma.

Lemma 1 Consider system (10) with the hypotheses presented in this section. There
are ε1 ∈ (0, ε0) and families of continuous functions fε : R × R → R

m and gε :
R × R → R

n such that, for each ε ∈ (0, ε1], the autonomous system

t ′ = 1,

θ ′ = 1 + ζ0(t, θ, y, z, ε),

y′ = H1 · y + ζ1(t, θ, y, z, ε),

z′ = H2 · z + ζ2(t, θ, y, z, ε),

(11)
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has an invariant manifold given by y = fε(t, θ), z = gε(t, θ). The families fε and gε

also satisfy:

(a) There is a continuous function D : [0, ε1] → R+ such that D(0) = 0 and

‖ fε(t, θ)‖ ≤ D(ε), ‖gε(t, θ)‖ ≤ D(ε)

for all (t, θ, ε) ∈ R × R × (0, ε1]. Furthermore, there is a constant CH > 0,
depending only on the matrices H1 and H2, such that D(ε) = CHM(ε), where
M(ε) is the function appearing in hypothesis ii).

(b) There is a continuous function � : [0, ε1] → R+ such that �(0) = 0 and

‖ fε(t, θ1) − fε(t, θ2)‖ ≤ �(ε)|θ1 − θ2|,
‖gε(t, θ1) − gε(t, θ2)‖ ≤ �(ε)|θ1 − θ2|

for all t ∈ R, all θ1, θ2 ∈ R and all ε ∈ (0, ε1].
(c) fε is ω-periodic in θ for all ε ∈ (0, ε1] and gε satisfies gε(t, θ + ω) = −gε(t, θ)

for all (t, θ, ε) ∈ R × R × (0, ε1];
(d) If, for a given ε ∈ (0, ε1], the functions ζ0(t, θ, y, z, ε), ζ1(t, θ, y, z, ε), and

ζ2(t, θ, y, z, ε) are Tε-periodic in the variable t , then so are fε and gε;
(e) fε and gε have bounded and uniformly continuous derivatives with respect to θ

up to the p-th order for all ε ∈ (0, ε1];
(f) Let π1 : Rm ×R

n → R
m and π2 : Rm ×R

n → R
n be the canonical projections.

If ms ≤ m of the eigenvalues of H1 and ns ≤ n of the eigenvalues of H2 have
negative real parts, there are positive constants r , λ, C, σ0, and σ1 such that
r ≤ σ0, D(ε) < σ0 < σ1, and, for each (t0, θ0, ε) ∈ R × R × (0, ε1], there is
in B̄m(0, σ0) × B̄n(0, σ0) a local (ms + ns)-dimensional embedded submanifold
S(t0, θ0, ε) of Rm × R

n, containing the point ( fε(t0, θ0), gε(t0, θ0)), and having
the following properties:

(f.1) If (y0, z0) ∈ B̄m(0, σ0) × B̄n(0, σ0)\S(t0, θ0, ε), there is t∗ > t0 for which

(y(t∗, t0, θ0, y0, z0, ε), z(t∗, t0, θ0, y0, z0, ε)) /∈ B̄m(0, σ1) × B̄n(0, σ1).

(f.2) Reciprocally, if (y0, z0) ∈ S(t0, θ0, ε), then, for all t ≥ t0,

(y(t, t0, θ0, y0, z0, ε), z(t, t0, θ0, y0, z0, ε)) ∈ B̄m(0, σ1) × B̄n(0, σ1)

and the following inequalities hold:

‖y(t, t0, θ0, y0, z0, ε) − fε(t, θ(t, t0, θ0, fε(t0, θ0), gε(t0, θ0), ε))‖
≤ Ce−λ(t−t0)‖y0 − fε(t0, θ0)‖,

‖z(t, t0, θ0, y0, z0, ε) − gε(t, θ(t, t0, θ0, fε(t0, θ0), gε(t0, θ0), ε))‖
≤ Ce−λ(t−t0)‖z0 − gε(t0, θ0)‖.
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(f.3) There is a continuous function φε
1 : R × R × B̄ms (0, r) × B̄ns (0, r) →

B̄m−ms (0, σ0) such that

π1(S(t0, θ0, ε)) = {(φε
1(t0, θ0, ξ1, ξ2), ξ1) : (ξ1, ξ2) ∈ B̄ms (0, r) × B̄ns (0, r)}.

Similarly, there is a continuous function φε
2 : R×R× B̄ms (0, r)× B̄ns (0, r) →

B̄n−ns (0, σ0) such that

π2(S(t0, θ0, ε)) = {(φε
2(t0, θ0, ξ1, ξ2), ξ2) : (ξ1, ξ2) ∈ B̄ms (0, r) × B̄ns (0, r)}.

(f.4) The functions φε
1 and φε

2 satisfy

φε
1(t0, θ0 + ω, ξ1, ξ2) = φε

1(t0, θ0, ξ1,−ξ2)

and

φε
2(t0, θ0 + ω, ξ1, ξ2) = −φε

2(t0, θ0, ξ1,−ξ2)

for all (t0, θ0, ξ1, ξ2) ∈ R × R × B̄ms (0, r) × B̄ns (0, r).

Proof The argument is very similar to the one found in [11, Lemmas 2.1, 2.2, and
2.3] (see also [2, Sect. 28, Lemmas 1, 2, and 3]). We will omit computations when
analogous ones can be found in those references, simply referring the reader to them.

Without loss of generality, suppose that H1 = diag(H+
1 , H−

1 ) and H2 =
diag(H+

2 , H−
2 ), with the eigenvalues of H+

i and H−
i , i ∈ {1, 2}, having respectively

positive and negative real parts. For each i ∈ {1, 2}, define

Ji (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
[
e−t H+

i 0
0 0

]
, t > 0;

[
0 0

0 e−t H−
i

]
, t < 0.

Consider the complete metric space Pω(D,�) of continuous functions F ∈
C(R2;Rm) satisfying:

• F(t, θ + ω) = F(t, θ) for all (t, θ) ∈ R × R;
• ‖F(t, θ)‖ ≤ D for all (t, θ) ∈ R × R;
• ‖F(t, θ1) − F(t, θ2)‖ ≤ �|θ2 − θ1| for all (t, θ1), (t, θ2) ∈ R × R,

where themetric is given by the uniform norm. Similarly, consider the completemetric
space Aω(D,�) of continuous functions G ∈ C(R2;Rn) satisfying:

• G(t, θ + ω) = −G(t, θ) for all (t, θ) ∈ R × R;
• ‖G(t, θ)‖ ≤ D for all (t, θ) ∈ R × R;
• ‖G(t, θ1) − G(t, θ2)‖ ≤ �|θ2 − θ1| for all (t, θ1), (t, θ2) ∈ R × R.
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For each (F,G) ∈ Pω(D,�)×Aω(D,�), let TF,G(t, t0, θ0, ε) denote the solution
of

θ ′ = 1 + ζ0(t, θ, F(t, θ),G(t, θ), ε)

satisfying TF,G(t0, t0, θ0, ε) = θ0. Since TF,G(t, t0, θ0+ω, ε) and TF,G(t, t0, θ0, ε)+
ω are both solutions of the same initial problem, it follows that

TF,G(t, t0, θ0 + ω, ε) = TF,G(t, t0, θ0, ε) + ω. (12)

For each ε ∈ (0, ε0], define the function Sε(F,G) = (Sε
1(F,G), Sε

2(F,G)) ∈
C(R2;Rm) × C(R2;Rn), acting on the metric space Pω(D,�) × Aω(D,�) and
given by

Sε
1(F,G)(t, θ) =

∫ ∞

−∞
J1(x)ζ1(t + x, TF,G(t + x, t, θ, ε), F(t

+ x, TF,G(t + x, t, θ, ε)),G(t + x, TF,G(t + x, t, θ, ε)), ε)dx,

Sε
2(F,G)(t, θ) =

∫ ∞

−∞
J2(x)ζ2(t + x, TF,G(t + x, t, θ, ε), F(t

+ x, TF,G(t + x, t, θ, ε)),G(t + x, TF,G(t + x, t, θ, ε)), ε)dx .

By performing the change of variable of integration τ = x + t and differentiating
the compositions F(t, TF,G(t, t0, θ0, ε)) and G(t, TF,G(t, t0, θ0, ε)) with respect to
t , it is easy to see that, if ( fε, gε) is a fixed-point of Sε, then the manifold given by
y = fε(t, θ), z = gε(t, θ) is invariant under (11). Thus, the problem is reduced to
proving that Sε admits a fixed-point.

Following the arguments found in [11, Lemma 2.1], we conclude that it is possible
to find ε1 ∈ (0, ε0] and define D(ε) and �(ε) such that, for ε ∈ (0, ε1], the function
Sε is a contraction ofPω(D(ε),�(ε))×Aω(D(ε),�(ε)) into itself. The only change
compared to the arguments found in the reference is that, in order to guarantee that
Sε
2(F,G) ∈ A(D(ε),�(ε)), we need to show that Sε

2(F,G) satisfies Sε
2(F,G)(t, θ +

ω) = −Sε
2(F,G)(t, θ). However, this is easily seen by considering (12) and the

properties of functions ζ1 and ζ2. Furthermore, since in [11] it is proved that�(ε) → 0
as ε → 0 and that there is CH > 0 such that D(ε) = CHM(ε), properties (a) and (b)
are ensured to hold.

It remains to show that properties (c) to (f) are valid. Observe that property (c)
follows directly from the fact that ( fε, gε) ∈ Pω(D(ε),�(ε)) × Aω(D(ε),�(ε)).
Property (d) follows from the same argument found in [11, Lemma 2.2]. Property (e)
is not directly discussed in [11], but it is stated and proved in [2, Sect. 28, Lemma 1].
The proof in our case is essentially the same.

Finally, we proceed to discussing property (f). For t0, σ0, ν ∈ R and k ∈ N, let
Ct0k (σ0, ν)be the completemetric space of continuous functionsW : [t0,∞)×R → R

k

satisfying:

• ‖W (t, θ)‖ ≤ σ0 for all (t, θ) ∈ [t0,∞) × R;
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• ‖W (t, θ1) − W (t, θ2)‖ ≤ ν|θ1 − θ2| for all (t, θ1), (t, θ2) ∈ [t0,∞) × R.

The metric of Ct0k (σ0, ν) is given by the uniform norm.
Let t0, σ0, ν ∈ R be given. For each b1 ∈ R

m and each b2 ∈ R
n , define the

following functions acting on Ct0m (σ0, ν) and Ct0n (σ0, ν), respectively:

Sε,b1
1 (W1,W2)(t, θ) = J1(t0 − t)b1

+
∫ ∞

t0
J1(τ − t)ζ1(τ, TW1,W2(τ, t, θ, ε),W1(τ, TW1,W2(τ, t, θ, ε)),

W2(τ, TW1,W2(τ, t, θ, ε)), ε)dτ,

Sε,b2
2 (W1,W2)(t, θ) = J2(t0 − t)b2

+
∫ ∞

t0
J2(τ − t)ζ2(τ, TW1,W2(τ, t, θ, ε),W1(τ, TW1,W2(τ, t, θ, ε)),

W2(τ, TW1,W2(τ, t, θ, ε)), ε)dτ.

Let Sε,b1,b2 act on Ct0m (σ0, ν) × Ct0n (σ0, ν) by Sε,b1,b2(W1,W2) = (Sε,b1
1

(W1,W2), S
ε,b2
2 (W1,W2)). Then, following the same procedure as before, we can

ensure that, by taking ε1, σ0, ν, and r < σ0 sufficiently small, Sε,b1,b2 becomes a
contraction of Ct0m (σ0, ν) × Ct0n (σ0, ν) into itself if ‖b1‖, ‖b2‖ ≤ r .

Define�
ε,t0
1 and�

ε,t0
2 to be such that (t, θ) → (�

ε,t0
1 (t, θ, b1, b2),�

ε,t0
2 (t, θ, b1, b2))

is the fixed point of the operator Sε,b1,b2 . Then, it is easy to see that there is C0 > 0
such that

‖�ε,t0
i (t, θ, b1, b2) − �

ε,t0
i (t, θ̃ , b̃1, b̃2)‖

≤ C0e
−α
2 (t−t0)

(
‖b1 − b̃1‖ + ‖b2 − b̃2‖

)
+ ν|θ − θ̃ | (13)

for i ∈ {1, 2}, t ∈ (t0,+∞), θ, θ̃ ∈ R, b1, b̃1 ∈ B̄m(0, r), and b2, b̃2 ∈ B̄n(0, r). This
ensures, in particular, that, for i ∈ {1, 2}, �ε,t0

i is continuous if seen as a function on
[t0,+∞) × R × B̄m(0, r) × B̄n(0, r).

Following the argument in [2, Sect. 28, Lemma 3], we can prove that, if σ1 ≥ σ0,
every solution of (11) satisfying

• y0 ∈ B̄m(0, σ0) and y(t, t0, θ0, y0, z0, ε) ∈ B̄m(0, σ1);
• z0 ∈ B̄n(0, σ0) and z(t, t0, θ0, y0, z0, ε) ∈ B̄n(0, σ1)

must beof the form (t, θ(t),�ε
1(t, θ(t), b1, b2),�ε

2(t, θ(t), b1, b2)) for some (b1, b2) ∈
Bm(0, r) × Bn(0, r), where θ(t) denotes T�ε

1 ,�ε
2
(t, t0, θ0, ε). Conversely, every solu-

tion of the form given above clearly satisfies the two conditions set forth. Therefore,
define

S(t0, θ0, ε) :=
{
lim
t→t+0

(
�

ε,t0
1 (t, θ0, b1, b2),�

ε,t0
2 (t, θ0, b1, b2)

) : (b1, b2) ∈ B̄m(0, r) × B̄n(0, r)

}
.

Then, considering also (13), properties (f.1) and (f.2) follow immediately.
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Observe that, from the definition of the operators Sε,b1
1 and Sε,b2

2 , it follows that
the last ms and ns elements of the vectors �

ε,t0
1 (t+0 , θ, b1, b2) and �

ε,t0
2 (t+0 , θ, b1, b2)

coincide with, respectively, the lastms and ns elements of the vectors b1 and b2. Thus,
for each i ∈ {1, 2}, define φε

i by

(φε
i (t0, θ0, ξ1, ξ2), ξi ) = lim

t→t+0
�

ε,t0
i (t, θ0, (0, ξ1), (0, ξ2)).

Then, it is clear that φε
i is continuous. It is also clear from this definition that property

(f.3) holds.
Finally, since the change of variables (t, θ, y, z) → (t̃, θ̃ , ỹ, z̃) = (t, θ −ω, y,−z)

carries system (11) into an identical system, it follows from the already proved
properties (f.1) and (f.2) that: a point (y∗, z∗) ∈ R

m × R
n is in S(t0, θ0 + ω, ε)

if, and only if, (y∗,−z∗) ∈ S(t0, θ0, ε). Hence, it follows that, for each (ξ1, ξ2) ∈
B̄ms (0, r) × B̄ns (0, r), there is (ξ̃1, ξ̃2) ∈ B̄ms (0, r) × B̄ns (0, r) such that

(φε
1(t0, θ0 + ω, ξ1, ξ2), ξ1) = (φε

1(t0, θ0, ξ̃1, ξ̃2), ξ̃1),

and

(φε
2(t0, θ0 + ω, ξ1, ξ2), ξ2) = −(φε

2(t0, θ0, ξ̃1, ξ̃2), ξ̃2).

Therefore, ξ1 = ξ̃1 and ξ2 = −ξ̃2, and property (f.4) follows. This concludes the proof
of the Lemma. ��

The following corollary addresses the issue of uniqueness of the invariant manifold
found in the previous Lemma. Its proof will not be presented here, but it follows
essentially from the stability property provided by statement (f) (see, for instance, [11,
Remark 2.2] and, for more details, [2, Remark of page 494]).

Corollary 1 For each ε ∈ (0, ε1], the invariant manifold given by y = fε(t, θ), z =
gε(t, θ) is unique inR×R× Bm(0, σ0)× Bn(0, σ0), that is, every invariant manifold
contained in R × R × Bm(0, σ0) × Bn(0, σ0) must be contained in the set given by
y = fε(t, θ), z = gε(t, θ).

The remainder of this section is devoted to present technical propositions to address
issues of regularity. Their proofs are provided in the Appendix. The first proposition
is concerned with the regularity of the invariant manifold whose existence was estab-
lished in the previous Lemma.

Proposition 3 Consider system (10)with the hypotheses presented in this section. Sup-
pose that, for each ε ∈ (0, ε1] and each i ∈ {0, 1, 2} fixed, the functions (t, θ, y, z) →
ζi (t, θ, y, z, ε) are of class C p. Then, the invariant manifold found in Lemma 1 above,
that is, themanifold Mε = {(t, θ, fε(t, θ), gε(t, θ)) ∈ R×R×Bm(0, σ0)×Bn(0, σ0) :
(t, θ) ∈ R × R}, is of class C p. Moreover, for each ε ∈ (0, ε1], the functions
(t, θ) → fε(t, θ) and (t, θ) → gε(t, θ) are also of class C p.
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The next three propositions consider the issue of regularity of the family ( fε, gε)

with respect to the parameter ε. They will be crucial when we discuss the statement
concerning dynamics of Theorem A.

Proposition 4 Consider system (10) with the hypotheses presented in this section.
Suppose that ζ0, ζ1, and ζ2 are of class C2. Let c : (0, ε1) → C(R2;Rm)×C(R2;Rn)

be defined by c(ε) = ( fε, gε), where C(R2;Rm) and C(R2;Rn) are equipped with
the uniform norm. If ε1 > 0 is sufficiently small, then c is of class C1.

Proposition 5 Consider system (10) with the hypotheses presented in this section.
Suppose that ζ0, ζ1, and ζ2 are of class C p+1. Let TF,G be defined as in the proof
of Lemma 1. Then, if ε1 > 0 is sufficiently small, then the following holds: there is
NT ∈ N and, for each compact interval [a, b] ⊂ (0, ε1], there are C[a,b] > 0 and
M[a,b] > 0 such that

∥∥∥∥∂q fε
∂θq

∥∥∥∥ ≤ C[a,b],
∥∥∥∥∂qgε

∂θq

∥∥∥∥ ≤ C[a,b],

and
∣∣∣∣∣
∂qT fε,gε

∂θ
q
0

(t + x, t, θ, ε)

∣∣∣∣∣ ≤ M[a,b] eNT L(ε)(1+2�(ε))|x |

for all q ∈ {1, . . . , p + 1} and all ε ∈ [a, b].
Proposition 5 admits the following corollary which is a straightforward application

of the mean value inequality.

Corollary 2 Consider system (10) with the hypotheses presented in this section. Sup-
pose that ζ0, ζ1, and ζ2 are of class C p+1. Then, if ε1 > 0 is sufficiently small, then
the following holds: for each compact interval [a, b] ⊂ (0, ε1], there is C[a,b] > 0
such that

∥∥∥∥∂q fε
∂θq

(t, θ2) − ∂q fε
∂θq

(t, θ1)

∥∥∥∥ ≤ C[a,b]|θ2 − θ1|,
∥∥∥∥∂qgε

∂θq
(t, θ2) − ∂qgε

∂θq
(t, θ1)

∥∥∥∥ ≤ C[a,b]|θ2 − θ1|

for all q ∈ {1, . . . , p}, all t, θ1, θ2 ∈ R, and all ε ∈ [a, b].
Proposition 6 Consider system (10) with the hypotheses presented in this section.
Suppose that ζ0, ζ1, and ζ2 are of class C p+1. Let q ≤ p be a non-negative integer.
Then, if ε1 > 0 is sufficiently small, then the functions

ε → ∂q fε
∂θq

and ε → ∂qgε

∂θq

are locally Lipschitz continuous in the uniform norm for ε ∈ (0, ε1].
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3 Proof of Theorem A

This section is devoted to the proof of Theorem A. In Sect. 3.1, we perform the change
of variables that transforms system (1) into a system towhich Lemma 1 can be applied.
In Sect. 3.2, we apply this Lemma in order to prove the statements regarding existence,
regularity, and convergence of TheoremA. In Sect. 3.3, we prove the statement regard-
ing stability, and finally, in Sect. 3.4, the statement regarding the dynamics on the object
Mε of the same Theorem.

3.1 Change of variables

Consider the differential equation (1). We shall first find a change of coordinates
transforming this system into one to which we can apply Lemma 1. Thus, let � ∈
{1, . . . ,min(N , r−2)} be such that f1 = · · · f�−1 = 0 and f� �= 0. ByTheorem 1, there
exists a T -periodic near-identity transformation (3) that transforms the differential
equation (1) into

ż = ε�g�(z) + ε�+1r�(t, z, ε). (14)

Observe that the formulas given in (6) ensure that g� is of class Cr−�+1. Moreover, r�
is of class Cr−�.

Consider the ω-periodic hyperbolic limit cycle ϕ(s) of the guiding system ż =
g�(z). Also, consider the linear variational equation

dy

dt
= Dg�(ϕ(t)) · y. (15)

Observe that ϕ′(t) is a solution to the linear periodic system (15). Let �(t) denote a
fundamental matrix solution of this system. We will use Floquet theory to obtain a
useful change of variables in a neighborhood of the limit cycle �.

We remind the reader that the characteristic multipliers of (15) are, for any choice
of �, the eigenvalues of the monodromy matrix �−1(0)�(ω) (see, for instance, [5]).
Since � is hyperbolic, we know that 1 is an eigenvalue of multiplicity exactly 1 of this
matrix, all its other eigenvalues being outside the unit circle. By taking into account
the real Jordan canonical form of the monodromy matrix, we see that �(t) can be
chosen satisfying

�−1(0)�(ω) = diag(1,J1,J2), (16)

where J1 ∈ R
(n−d−1)×(n−d−1) and J2 ∈ R

d×d are matrices in the real Jordan canon-
ical form satisfying the following condition: each Jordan block of J1 associated to a
real negative eigenvalue appears an even number of times, and every Jordan block of
J2 is associated to a real negative eigenvalue and appears only once in this matrix.
We remark that, with this choice, the first of column of � must be the only ω-periodic
solution of (15), which is given by ϕ′(t).
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Let Id denote the d × d identity matrix. Under the above-mentioned conditions, by
considering the logarithm of the matrices R1 and R2 (see, [7] and [9, page 100]), we
know that there exist realmatrices R1 and R2 such that eωR1 = J1 and eωR2+iπ Id = J2.
In particular, we remark that the eigenvalues of R1 and R2 all have non-zero real parts.
For the same reason, the number of eigenvalues (countingmultiplicity) of the Poincaré
mapdefined in a transversal section of�withmodulus less than 1 is equal to the number
of eigenvalues (counting multiplicity) of R := diag(R1, R2)with strictly negative real
part.

Define the matrices

B̃ := diag
(
0, R1, R2 + i

π

ω
Id
)

and

B := diag (0, R1, R2) = diag(0, R).

It is easy to see that eω B̃ = �−1(0)�(ω) and e2ωB = e2ω B̃ = (�−1(0)�(ω))2.
Since Dg�(ϕ(t)) isω-periodic, Floquet’s theoremensures that there are aω-periodic

matrix function t → P̃(t) ∈ C
n×n and a 2ω-periodic matrix function t → P(t) ∈

R
n×n , both of class Cr−�+1, such that

�(t) = P̃(t)et B̃ = P(t)et B .

In particular, since the first column of �(t) is ϕ′(t), it follows that P(t) is of the form

P(t) = [
ϕ′(t) | Q(t)

]
,

where t → Q(t) ∈ R
n×(n−1) is 2ω-periodic. Also, considering that B and B̃ clearly

commute, it follows that

P(t + ω) = P(t)eω(B̃−B) = [
ϕ′(t) | Q(t)A

]
,

where

A := diag(In−d−1,−Id). (17)

Thus, it is clear that Q satisfies

Q(t + ω) = Q(t)A (18)

for all t ∈ R.

Since �(t) solves (15), it follows that

P ′(t) + P(t) · B = Dg�(ϕ(t)) · P(t).
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Thus, by restricting the equality above to the last n − 1 columns, we obtain

Q′(t) + Q(t) · R = Dg�(ϕ(t)) · Q(t), (19)

for all t ∈ R.

We apply the transformation z → (s,h) ∈ R × R
n−1 given by

z = ϕ(s) + Q(s) · h. (20)

Observe that, by taking h to be sufficiently small and s ∈ [0, ω), we can ensure that
the transformation (s,h) → z is injective. Accordingly, we will assume henceforth
that ‖h‖ ≤ 4ρ, ensuring that our transformation is bijective. Let us find the differential
equation in (s,h) that is equivalent to (14). In order to do so, we differentiate (20)
with respect to t and obtain

ż = (ϕ′(s) + Q′(s) · h) ṡ + Q(s)ḣ.

Thus, by (14), it follows that

(ϕ′(s) + Q′(s) · h) ṡ + Q(s) · ḣ = ε�g�(ϕ(s) + Q(s) · h)

+ε�+1r(t, ϕ(s) + Q(s) · h, ε). (21)

Observe that (19) ensures that

ε�ϕ′(s) + ε�Q′(s) · h + ε�Q(s)R · h = ε�g�(ϕ(s)) + ε�Dg�(ϕ(s)) · Q(s) · h.

(22)

Let us define the functions

Y (s,h) := g� (ϕ(s) + Q(s) · h) − g�(ϕ(s)) − Dg�(ϕ(s)) · Q(s) · h,

Z(t, s,h, ε) := r� (t, ϕ(s) + Q(s) · h, ε) .

By subtracting (22) from (21), we obtain

(
ϕ′(s) + Q′(s)h

)
(ṡ − ε�) + Q(s)(ḣ − ε�R · h) = ε�Y (s,h) + ε�+1Z(t, s,h, ε).

(23)

Observe that (23) can be rewritten as:

⎡
⎣

ϕ′(s) + Q′(s) · h
Q(s)

⎤
⎦ ·

⎡
⎣ ṡ − ε�

ḣ − ε�R · h

⎤
⎦ = ε�Y (s,h) + ε�+1Z(t, s,h, ε).

(24)
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Observe that the Cr−� matrix function

C(s,h) =
⎡
⎣

ϕ′(s) + Q′(s) · h
Q(s)

⎤
⎦

satisfies C(s, 0) = P(s) for all s ∈ R. Since P(s) is non-singular, for sufficiently
small values of h, the matrix C(s,h) can be inverted. Therefore, assuming that ρ > 0
is sufficiently small, if ‖h‖ ≤ 4ρ, then (24) can be transformed into

[
ṡ
ḣ

]
= ε�

[
1
Rh

]
+ ε�(C(s,h))−1 · Y (s,h) + ε�+1(C(s,h))−1 · Z(t, s,h, ε).

(25)

Set h = (v,w) ∈ R
n−d−1×R

d . Define�0(s, v,w) and �̃0(t, s, v,w, ε) to be the first
line of the products (C(s,h))−1 · Y (s,h) and (C(s,h))−1 · Z(t, s,h, ε), respectively.
Similarly, define �1(s, v,w) and �̃1(t, s, v,w, ε) to be the next n − d − 1 lines and
�2(s, v,w) and �̃2(t, s, v,w, ε) to be the last d lines of those products. Then, (25)
becomes

ṡ = ε� + ε��0(s, v,w) + ε�+1�̃0(t, s, v,w, ε),

v̇ = ε�R1 · v + ε��1(s, v,w) + ε�+1�̃1(t, s, v,w, ε),

ẇ = ε�R2 · w + ε��2(s, v,w) + ε�+1�̃2(t, s, v,w, ε).

(26)

We apply the time rescaling ε�t = t̃ to (26) and finally obtain

s′ = 1 + �0(s, v,w) + ε�̃0(t̃/ε
�, s, v,w, ε),

v′ = R1 · v + �1(s, v,w) + ε�̃1(t̃/ε
�, s, v,w, ε),

w′ = R2 · w + �2(s, v,w) + ε�̃2(t̃/ε
�, s, v,w, ε).

(27)

where ′ denotes a derivative with respect to t̃ . Such differential system is well defined
on (t̃, s, v,w, ε) ∈ R × R × Bn−d−1(0, 2ρ) × Bd(0, 2ρ) × (0, ε0].

3.2 Existence, regularity, and convergence

Henceforth, we consider that (27) is defined overR×R× Bn−d−1(0, ρ)× Bd(0, ρ)×
(0, ε0]. Observe that (27) is of the formconsidered inLemma1.Wemust now show that
the hypotheses required for the application of that Lemma hold in our case. Observe
that the fact that the parameter ε appears in the denominator of the first argument of
�̃0, �̃1, and �̃2 in (27) will not be an impediment to the application of the Lemma,
since it is not required in its hypotheses that the functions appearing in the system
be defined at ε = 0. In fact, the conditions concerning boundedness, be it of the
functions themselves or of their Lipschitz constants, can still be proved by resorting
to the periodicity of Z .
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For convenience, we will henceforth adopt the following notation

(C−1 · Y )(s,h) := (C(s,h))−1 · Y (s,h),

(C−1 · Z)(t, s,h, ε) := (C(s,h))−1 · Z(t, s,h, ε),

(C−1 · Y + εC−1 · Z)(t, s,h, ε) := (C(s,h))−1 · Y (s,h) + ε(C(s,h))−1 · Z(t, s,h, ε).

With that in mind, we proceed to proving that Lemma 1 can be applied to (27).
As remarked before, the eigenvalues of the matrix R have non-zero real parts, so

that it is immediate that hypothesis (iv) holds. Regarding hypothesis (i), observe that,
by their definitions, we know that Y (s + ω,h) = Y (s, A · h) and Z(t, s + ω,h, ε) =
Z(t, s, A · h, ε). Furthermore,

C(s + ω,h) =
⎡
⎣

ϕ′(s) + Q′(s)A · h
Q(s)A

⎤
⎦ = C(s, A · h)

[
1 0
0 A

]
.

Thus, since A2 = In−1, it follows that

(C(s + ω,h))−1 =
[
1 0
0 A

]
(C(s, A · h))−1.

Hence, it is easily verified that the following conditions hold:

• �0(s + ω, v,w) = �0(s, v,−w);

• �̃0(t, s + ω, v,w, ε) = �̃0(t, s + ω, v,−w, ε);

• �1(s + ω, v,w) = �1(s, v,−w);

• �̃1(t, s + ω, v,w, ε) = �̃1(t, s + ω, v,−w, ε);

• �2(s + ω, v,w) = −�2(s, v,−w);

• �̃2(t, s + ω, v,w, ε) = −�̃2(t, s + ω, v,−w, ε).

This ensures that (i) is valid. It remains to show that hypotheses (ii) and (iii) hold.
In order to do so, let Bn(p, r) denote the open ball {x ∈ R

n : ‖x − p‖ < r}. Also,
let us define the following functions:

αY (s,h) :=
∥∥∥∥∂(C−1 · Y )

∂(s,h)
(s,h)

∥∥∥∥ ,

αZ (s,h, t, ε) :=
∥∥∥∥∥
∂(C−1 · Z̃)

∂(s,h)
(t, s,h, ε)

∥∥∥∥∥ ,

where ‖ · ‖ denotes the operator norm.
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Let ε0 > 0 be fixed. For σ ∈ (0, ρ), define

L(σ ) := sup
{
αY (s,h) : (s,h) ∈ R × B̄n−1(0, σ )

}
.

Observe that limσ→0 L(σ ) = 0, because

αY (s,h) ≤
∥∥∥∥∂(C−1 · Y )

∂s
(s,h)

∥∥∥∥ +
∥∥∥∥∂(C−1 · Y )

∂h
(s,h)

∥∥∥∥

and Y (s, 0) = ∂Y
∂s (s, 0) = ∂Y

∂h (s, 0) = 0 for all s ∈ R. Thus, we can extend L
continuously to [0, ρ) by setting L(0) = 0. Moreover, since (C−1 · Y ) is also of class
Cr−�, with r − � ≥ 2, it follows by the mean value inequality that there is Mρ > 0
such that

αY (s,h) ≤ Mρ‖h‖ ≤ Mρσ

for all (s,h) ∈ R × B̄n−1(0, σ ), where σ ∈ (0, ρ). Then, again by the mean value
inequality, we conclude that

‖(C−1 · Y )(s1,h1) − (C−1 · Y )(s2,h2)‖ ≤ L(σ )‖(s1,h1) − (s2,h2)‖
≤ Mρσ‖(s1,h1) − (s2,h2)‖, (28)

for all (s1,h1), (s2,h2) ∈ R × B̄n−1(0, σ ).
Since r − � ≥ 2, and since the Cr−� function ‖C−1 · Z‖ is T -periodic in its first

entry and 2ω-periodic in its second entry, it follows that there is M > 0 such that

sup
{∥∥∥(C−1 · Z)(t̃/ε�, s,h, ε)

∥∥∥ : (t̃, s,h, ε) ∈ R × R × {0} × (0, ε0]
}

≤ M,

and

sup
{
αZ (t̃/ε�, s,h, ε) : (t̃, s,h, ε) ∈ R × R × B̄n−1(0, ρ) × (0, ε0]

}
≤ M .

Thus, it follows on the one hand that

‖ε(C−1 · Z)(t̃/ε�, s, 0, ε)‖ = ‖(C−1 · Y )(s, 0)

+ε(C−1 · Z)(t̃/ε�, s, 0, ε)‖ ≤ εM, (29)

for all (t̃, s, ε) ∈ R × R × (0, ε0], proving that (ii) is valid with M(ε) = εM . On the
other hand, the mean value inequality ensures that

‖(C−1 · Z)(t̃/ε�, s1,h1, ε) − (C−1 · Z)(t̃/ε�, s2,h2, ε)‖
≤ M‖(s1,h1) − (s2,h2)‖, (30)
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for all (s1,h1), (s2,h2) ∈ R × B̄n−1(0, ρ) and all (t̃, ε) ∈ R × (0, ε0]. Hence, com-
bining (28) and (30), we conclude that

‖(C−1 · Y + εC−1 · Z)(t̃/ε�, s1,h1, ε) − (C−1 · Y + εC−1 · Z)(t̃/ε�, s2,h2, ε)‖
≤ (MLσ + εM)‖(s1,h1) − (s2,h2)‖, (31)

for (s1,h1), (s2,h2) ∈ R × B̄n−1(0, σ ) and (t̃, ε) ∈ R × (0, ε0], ensuring that (iii)
also holds.

Hence, all the hypotheses required for the application of Lemma 1 are valid for
system (27). Since (C−1 · Y ) and (t, s,h) → (C−1 · Z)(t, s,h, ε) are of class Cr−�,
Proposition 3 may also be applied with p = r − �. Applying the above-mentioned
results, we obtain ε1 > 0 and families of functions { fε ∈ Cr−�(R2;Rn−d−1) :
ε ∈ (0, ε1]} and {gε ∈ Cr−�(R2;Rd) : ε ∈ (0, ε1]} such that

(I) For each ε ∈ (0, ε1], the set defined by the relation h = ( fε(t̃, s), gε(t̃, s)) is an
invariant manifold for system

[
s′
h′

]
=

[
1
Hh

]
+ (C−1 · Y )(s,h) + ε(C−1 · Z)(t̃/ε�, s,h, ε), t̃ ′ = 1.

(32)

(II) There is D(ε) > 0 such that ‖ fε‖C0 ≤ D(ε), ‖gε‖C0 ≤ D(ε) and
limε→0 D(ε) = 0. Furthermore, there is a constant CR > 0, depending only
on the matrix R, such that D(ε) = CRM(ε) = CRεM .

(III) There is �(ε) > 0 such that fε and gε are Lipschitz continuous in s with
Lipschitz constant �(ε) and limε→0 �(ε) = 0.

(IV) fε is ω-periodic in s and gε satisfies gε(t̃, s + ω) = −g(t̃, s).
(V) fε and gε are ε�T -periodic in t̃ .
(VI) Let π1 : R

n−d−1 × R
d → R

n−d−1 and π2 : R
n−d−1 × R

d → R
d be the

canonical projections. Also, let k1 ≤ n − d − 1 and k2 ≤ d of the eigenvalues
of R1 and R2, respectively, have negative real parts. There are positive constants
r , λ, C , σ0, and σ1 such that r < σ0, D(ε) < σ0 < σ1 < ρ, and, for each
(t̃0, s0, ε) ∈ R × R × (0, ε1], there is in B̄n−d−1(0, σ0) × B̄d(0, σ0) a local
(k1 + k2)-dimensional embedded submanifold S(t0, s0, ε) of Rn−d−1 × R

d ,
containing the point ( fε(t̃0, s0), gε(t̃0, s0)), and having the following properties:

(VI.1) If h0 ∈ B̄n−d−1(0, σ0) × B̄d(0, σ0)\S(t̃0, s0, ε), there is t̃∗ > t̃0 for which

h(t̃∗, t̃0, s0,h0, ε) /∈ B̄n−d−1(0, σ1) × B̄d(0, σ1).

(VI.2) Reciprocally, if h0 ∈ S(t̃0, s0, ε), then, for all t̃ ≥ t̃0,

h(t̃, t̃0, s0,h0, ε) ∈ B̄n−d−1(0, σ1) × B̄d(0, σ1)
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and the following inequality holds:

∥∥h(t̃, t̃0, s0,h0, ε) − h(t̃, t̃0, s0, ( fε(t̃0, s0), gε(t̃0, s0)), ε)
∥∥

≤ Ce−λ(t̃−t̃0)‖h0 − ( fε(t̃0, s0), gε(t̃0, s0))‖.

(VI.3) There is a continuous function φε
1 : R × R × B̄k1(0, r) × B̄k2(0, r) →

B̄n−d−k1−1(0, σ0) such that

π1(S(t̃0, s0, ε)) = {(φε
1(t̃0, s0, ξ1, ξ2), ξ1) : (ξ1, ξ2) ∈ B̄k1(0, r) × B̄k2(0, r)}.

Similarly, there is a continuous function φε
2 : R×R× B̄k1(0, r)× B̄k2(0, r) →

B̄d−k2(0, σ0) such that

π2(S(t̃0, s0, ε)) = {(φε
2(t̃0, s0, ξ1, ξ2), ξ2) : (ξ1, ξ2) ∈ B̄k1(0, r) × B̄k2(0, r)}.

(VI.4) The functions φε
1 and φε

2 satisfy

φε
1(t̃0, s0 + ω, ξ1, ξ2) = φε

1(t̃0, s0, ξ1,−ξ2)

and

φε
2(t̃0, s0 + ω, ξ1, ξ2) = −φε

2(t̃0, s0, ξ1,−ξ2)

for all (t̃0, s0, ξ1, ξ2) ∈ R × R × B̄k1(0, r) × B̄k2(0, r).

Let X be the function associated to the change of coordinates we have performed,
that is,

X (s,h) = ϕ(s) + Q(s) · h.

Define wε : R × R → R × R
n by

wε(τ, s) :=
(
τ,X

(
s,
(
fε(ε

�τ, s), gε(ε
�τ, s)

)) )
.

SinceX is injective for s ∈ [0, ω) and ‖h‖ ≤ ρ, the functionwε restricted toR×[0, ω)

is injective. It is also clear that ε1 can be taken sufficiently small as to ensure that wε

is an immersion for all ε ∈ (0, ε1].
It is easy to see that property (IV) above guarantees that wε is ω-periodic in s. In

fact, considering (18) and the definition of A given in (17), we have that

wε(τ, s + ω) =
(
τ, ϕ(s) + Q(s) A · ( fε(ε�τ, s),−gε(ε

�τ, s)
)) = wε(τ, s).
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Thus, Wε := {wε(τ, s) : (τ, s) ∈ R×R} ⊂ R×R
n is an embedded cylinder of class

Cr−� that is invariant under the flow of

{
z′ = ε�g�(z) + ε�+1r�(z, τ, ε),
τ ′ = 1.

(33)

Property (V) ensures that wε satisfies wε(τ + T , s) = (T , 0) + wε(τ, s). We can
thus consider τ an angular variable modulo T in (33), and Wε becomes an invariant
torus in S

1 × R
n . Finally, the torus Mε, invariant under (2), is obtained from Wε by

reverting the near-identity periodic transformation x = U (τ, z, ε) that we employed
in the beginning of the proof. This proves the existence of Mε stated in Theorem A.
The fact that there is a neighborhood V of � such that any compact manifold that is
invariant under (2) and contained in S

1 × V must also be contained in Mε follows
from Corollary 1.

We proceed to proving the statement regarding regularity of Mε in Theorem A.
Define Fε by

Fε(τ, s) = U
(
τ,X

(
s,
(
fε(ε

�τ, s), gε(ε
�τ, s)

))
, ε

)
.

Observe that {Fε}ε is a family of Cr−� functions that are also ω-periodic in s and
T -periodic in τ , and that Mε is given by the relation x = Fε(τ, s), i.e.,

Mε = {(τ,Fε(τ, s)) ∈ S
1 × R

n : (τ, s) ∈ R × R}.

Moreover, by Proposition 4, it follows that the family {Fε}ε is C0-continuous, that is,
continuous in the C0-norm, provided that ε1 is chosen sufficiently small. In fact, this
Proposition guarantees that this family is C1 in the C0-norm.

Regarding the statement about convergence, observe that it follows from property
(II) that there is D∗(ε) such that

∥∥∥X
(
s,
(
fε(ε

�τ, s), gε(ε
�τ, s)

)) − ϕ(s)
∥∥∥ < D∗(ε)

and limε→0 D′(ε) = 0. Then, considering that U is locally Lipschitz in its second
argument and that both functions appearing inside the norm of the inequality above
are periodic, it follows that there is δ(ε) ≥ 0 such that δ(0) = 0 and ‖Fε(τ, s) −
U (τ, ϕ(s), ε)‖ < δ(ε).

3.3 Stability

Let the non-negative integers k1 ≤ n − d − 1 and k2 ≤ d denote the number of
eigenvalues with negative real parts of the matrices R1 and R2 respectively. Define the
function qε : R × R × Bk1(0, r) × Bk2(0, r) → R × R

n by

qε(τ, s, ξ1, ξ2) =
(
τ,U

(
τ,X

(
s,
(
φε
1(ε

�τ, s, ξ1, ξ2), ξ1, φ
ε
2(ε

�τ, s, ξ1, ξ2), ξ2
))

, ε
))

.
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Let SMε be the image of qε. We will show that SMε is an embedded submanifold in
R × R

n .
For convenience,we denote by qε|I the restriction of qε to the setR× I×Bk1(0, r)×

Bk2(0, r), where I ⊂ R. Observe that the properties ofφε
1 andφε

2 given in (VI.4), along
with (18), ensure that SMε is contained in the image ofqε|[0, ω). Hence, SMε is contained
in the union of the images of qε|(0,ω) and qε|(− ω

2 , ω
2 ).

Now, since r ≤ σ0 ≤ ρ, X (s,h) is injective for (s,h) ∈ [0, ω) × B̄n−1(0, σ0),
ensuring that qε|(0,ω) and qε|(− ω

2 , ω
2 ) are injective. It is then easy to see that qε|(0,ω) and

qε|(− ω
2 , ω

2 ) are homeomorphisms onto their images, proving that SMε is a (k1+k2+2)-
dimensional embedded submanifold of R×R

n . As remarked before, in Sect. 3.1, if k
is the number of characteristic multipliers of the limit cycle � whose absolute values
are less than 1, then k = k1 + k2. Thus, SMε is k-dimensional.

We will prove that SMε is locally the stable set of Mε. Suppose that h0 ∈
S(t̃0, s0, ε). For convenience, let us define s∗(t̃) := s(t̃, t̃0, s0,h0, ε), sMε (t̃) :=
s(t̃, t̃0, s0, ( fε(t̃0, s0), gε(t̃0, s0)), ε),h∗(t̃) := h(t̃, t̃0, s0,h0, ε), andfinallyhMε (t̃) :=
h(t̃, t̃0, s0, ( fε(t̃0, s0), gε(t̃0, s0)), ε). Also, let

u(t̃) := ‖s∗(t̃) − sb(t̃)‖ + ‖h∗(t̃) − hMε (t̃)‖.

Observe that, considering (27), along with the boundedness and Lipschitz continuity
properties that �0 and �̃0 are proved to satisfy, we have that

u(t̃) ≤ ‖h∗(t̃) + hMε (t̃)‖ +
∫ t̃

t̃0
(MLσ1 + εM)u(x)dx .

Thus, considering property (VI.2) and applying Grönwall’s inequality, it follows that

u(t̃) ≤ Ce(−λ+MLσ1+εM)(t̃−t̃0)‖h0 − ( fε(t̃0, s0), gε(t̃0, s0))‖.

Hence, if ρ and ε1 are chosen sufficiently small, we ensure that u(t̃) → 0 as t̃ → ∞.
Thus, it follows that, if h0 ∈ S(t̃0, s0, ε), then

lim
t̃→∞

‖X (s∗(t̃),h∗(t̃)) − X (sMe(t̃),hMε (t̃))‖ = 0. (34)

Since σ1 < ρ, we know that X (s,h) is injective for (s,h) ∈ [0, ω) × B̄n−1(0, σ1).
Consider the following neighborhoods of Mε:

Vs := {(τ,U (τ,X (s,h), ε)) : (τ, s,h) ∈ R × R × Bn−1(0, σ1)} ,

Ws := {(τ,U (τ,X (s,h), ε)) : (τ, s,h) ∈ R × R × Bn−1(0, σ0)} .

It is then clear, considering (34) and the fact that Mε is an invariant manifold, that the
local stable set of Mε with respect to Vs satisfies SVs

Mε
∩ Ws = SMε .

The same argument with time reversed proves the analogous statement for the
local unstable set UVu

Mε
∩ Wu . In this case, the dimension of the manifold obtained is
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2 + (n − 1 − k) = n − k + 1, because the number of eigenvalues of R with positive
real part is n − 1 − k.

3.4 Dynamics

Let Sε ⊂ R
n+1 be defined as the section τ = 0 of the torus Mε, that

is, the image of the real 1-periodic function �ε : θ → (0,Fε(0, ωθ)). It
is clear that Sε is Cr−�-diffeomorphic to the circle S1. Once more, let t →
(s(t, t0, s0,h0, ε),h(t, t0, s0,h0, ε)) be the solution of (25) satisfying (s(t0, t0,
s0,h0, ε),h(t0, t0, s0,h0, ε)) = (s0,h0). Define, for (ν, θ) ∈ R × R,

sε(ν, θ) := s(νT , 0, θ, ( fε(0, θ), gε(0, θ)), ε).

Since τ ′ = 1 in (2), it follows that the first-return map pε defined on Sε under the
action of this differential system is well defined. Moreover, it is clear that

pε

(
�ε(θ)

) = �ε

(
sε(1, ωθ)

ω

)
.

Thus, the real function

p̃ε : θ → sε(1, ωθ)

ω

is a lift of pε with respect to the covering map �ε : R → Sε. Moreover, this ensures
that pε is at least of class Cr−�.

Observe that

p̃nε (θ) = sε(n, ωθ)

ω

for all n ∈ N. Then, it is clear that the rotation number of pε is given by

ρ(ε) := lim
n→∞

p̃nε (θ) − θ

n
= lim

n→∞
sε(n, ωθ) − ωθ

nω
.

We will rewrite this limit so as to be able to calculate it up to �-th order of ε.
Integrating the first equation of (26) from t = 0 to t = nT , we obtain

sε(n, θ) = θ + ε�nT + ε�

∫ nT

0
�0

(
s(τ, 0, θ, ( fε(0, θ), gε(0, θ)), ε),

h(τ, 0, θ, ( fε(0, θ), gε(0, θ)), ε)
)
dτ

+ε�+1
∫ nT

0
�̃0

(
τ, s(τ, 0, θ, ( fε(0, θ), gε(0, θ)), ε),

h(τ, 0, θ, ( fε(0, θ), gε(0, θ)), ε), ε)
)
dτ. (35)
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Thus, we can define the sequence of functions

Gn(θ, ε) := 1

n

∫ nT

0

�0

ε

(
s(τ, 0, θ( fε(0, θ), gε(0, θ)), ε),h(τ, 0, θ, ( fε(0, θ), gε(0, θ)), ε)

)
dτ

+ 1

n

∫ nT

0
�̃0

(
τ, s(τ, 0, θ, ( fε(0, θ), gε(0, θ)),h(τ, 0, θ, ( fε(0, θ), gε(0, θ)), ε)

)
dτ,

so that (35) becomes

sε(n, θ) = θ + ε�nT + ε�+1n Gn(θ, ε).

Since Mε is an invariant manifold, it is clear that

h(τ, 0, θ, ( fε(0, θ), gε(0, θ)), ε) = ( fε(τ, s(τ, 0, θ, ( fε(0, θ), gε(0, θ)), ε)),

gε(τ, s(τ, 0, θ, ( fε(0, θ), gε(0, θ)), ε))).

Then, by changing the variables in the integral, it follows that

Gn(θ, ε) :=
∫ T

0

�0

ε

(
s(nτ, 0, θ, ( fε(0, θ), gε(0, θ)), ε),

h(nτ, 0, θ, ( fε(0, θ), gε(0, θ)), ε)
)
dτ

+
∫ T

0
�̃0

(
nτ, s(nτ, 0, θ, ( fε(0, θ), gε(0, θ)), ε),

h(nτ, 0, θ, ( fε(0, θ), gε(0, θ)), ε), ε)
)
dτ.

Observe that

‖�0(s,h) + ε�̃0(t, s,h, ε)‖ ≤ ‖�0(s,h) + ε�̃0(t, s,h, ε) − ε�̃0(t, s, 0, ε)‖
+‖ε�̃0(t, s, 0, ε)‖

for all (t, s,h, ε) ∈ R×R×Bn−1(0, ρ)×(0, ε0]. Then, considering that�(s, 0) = 0,
it follows from (29) and (31) that

‖�0(s, ( fε(nτ, s), gε(nτ, s)))

+�̃0(nτ, s, ( fε(nτ, s), gε(nτ, s)), ε)‖ ≤ ML(‖ fε‖ + ‖gε‖) + εM

for all (s, τ, ε) ∈ R × R × (0, ε1]. Then, from property (II), it follows that

‖�0(s, ( fε(nτ, s), gε(nτ, s))) + �̃0(nτ, s, ( fε(nτ, s), gε(nτ, s)), ε)‖ ≤ CGε,

where CG := 2MLCRM + M . Hence, it is easy to see that

|Gn(θ, ε)| ≤ CGT (36)
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for all θ ∈ R and all ε ∈ (0, ε1].
Considering that

sε(n, ωθ) − ωθ

nω
= ε� T

ω
+ ε�+1Gn(ωθ, ε)

ω
,

and since the limit

lim
n→∞

sε(n, ωθ) − ωθ

nω

corresponding to the rotation number exists and does not depend on θ , it is ensured
that

G(ε) := lim
n→∞Gn(ωθ, ε)

is well defined. Moreover, from (36), it is clear that |G(ε)| ≤ CGT . Hence, it follows
at once that

ρ(ε) = lim
n→∞ ε� T

ω
+ ε�+1Gn(ωθ, ε)

ω
= ε� T

ω
+ ε�+1G(ε)

ω
= ε� T

ω
+ O(ε�+1).

By Proposition 6 combined with the definition of p̃ε, it follows that the family { p̃ε}ε
is continuous in the space of homeomorphisms of S1 with the C0 topology. Hence, ρ
is continuous in (0, ε1]. Since we also know that system (2) becomes τ ′ = 1, x′ = 0,
when ε = 0, it follows that ρ(0) = 0, so that ρ is actually continuous in [0, ε1]. In
particular, the relation ωρ(ε) = ε�T + ε�+1G(ε) ensures that G is also continuous in
(0, ε1].

In order to prove the rest of the statement concerning Dynamics of Theorem A, we
will make use of the following result, which can be found in [15, Theorem 6.1].

Theorem 2 Let γ ≥ 3 and Dγ (S1) be the class of Cγ -diffeomorphisms of the circle S1

endowed with the norm Cγ . Let c : [a, b] → Dγ (S1) be a continuous path satisfying:
c is of class C1 if considered as a function on D0(S1). Let ρ(λ) denote the rotation
number of c(λ), λ ∈ [a, b]. If ρ(a) �= ρ(b), then the Lebesgue measure λ of the set

{x ∈ [a, b] : c(x) is Cγ−2-conjugated to an irrational rotation}

is strictly positive. Also, ρ maps zero Lebesgue measure sets to zero Lebesgue measure
sets.

Suppose that r − � ≥ 4. Then, Propositions 4 and 6 ensure that ε → p̃ε satisfies
the regularity conditions stated in Theorem 2 with γ = r − �− 1. Moreover, from the
fact that ωρ(ε) = ε�T + O(ε�+1), it is clear that there is an interval [a, b] ⊂ (0, ε1]
such that ρ(a) �= ρ(b). Hence, there is a subset of I ⊂ [a, b] of positive Lebesgue
measure such that p̃ε is Cr−�−3-conjugated to an irrational rotation for all ε ∈ I .
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4 Invariant torus in 4D vector fields

Consider the differential system (8) under the assumptions established in Sect. 1.3. By
applying the cylindrical change of coordinates (x, y, u, v) = (r cos θ, r sin θ, u, v),
r > 0, system (8) becomes

ṙ = εN (cos(θ) f1(r cos(θ), r sin(θ), u, v) + sin(θ) f2(r cos(θ), r sin(θ), u, v))

− εN+1

2
r3μ

(
r2 − (

r2 + 1
)
cos(2θ) − 1

) + O(εN+2),

θ̇ = 1 + εN
(
cos(θ) f2(r cos(θ), r sin(θ), u, v) − sin(θ) f1(r cos(θ), r sin(θ), u, v)

r

)

−εN+1μ
(
r2 sin(θ) cos(θ) + r4 sin(θ) cos(θ)

) + O(εN+2),

u̇ = εN f3(r cos(θ), r sin(θ), u, v) + εN+1r2 cos2(θ)(u − u3 + v − uv2) + O(εN+2),

v̇ = εN f4(r cos(θ), r sin(θ), u, v) + εN+1r2 sin2(θ)(v − u − u2v − v3) + O(εN+2).

(37)

Since θ̇ = 1+O(ε2) > 0, it follows that θ̇ > 0 for ε sufficiently small. Thus, we can
take θ to be the independent variable, and system (37) becomes

r ′ = εN RN (θ, r , u, v) + εN+1RN+1(θ, r , u, v) + O(εN+2),

u′ = εNUN (θ, r , u, v) + εN+1UN+1(θ, r , u, v) + O(εN+2),

v′ = εNVN (θ, r , u, v) + εN+1VN+1(θ, r , u, v) + O(εN+2),

(38)

where ′ indicates derivative with respect to the variable θ , and the functions Ri , Ui ,
and Vi , i ∈ {N , N + 1}, are given by

RN (θ, r , u, v) = cos(θ) f1(r cos(θ), r sin(θ), u, v)

+ sin(θ) f2(r cos(θ), r sin(θ), u, v);
RN+1(θ, r , u, v) = 1

2
r3μ

((
r2 + 1

)
cos(2θ) − r2 + 1

)
;

UN (θ, r , u, v) = f3(r cos(θ), r sin(θ), u, v);
UN+1(θ, r , u, v) = r2 cos2(θ)

(
−u3 − uv2 + u + v

)
;

VN (θ, r , u, v) = f4(r cos(θ), r sin(θ), u, v);
VN+1(θ, r , u, v) = −r2 sin2(θ)

(
u2v + u + v3 − v

)
.

(39)

We remark that each of the functions defined above is 2π -periodic in θ . By defining
x = (r , u, v), system (38) can be written as

x′ = εN FN (θ, x) + εN+1FN+1(θ, x) + εN+2 F̃(θ, x, ε), (40)
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where

Fi (θ, x) = (Ri (θ, x),Ui (θ, x), Vi (θ, x)). (41)

Using formulas (5) and (6), we can calculate the Melnikov function of order N for
this system as

fN (x) =
∫ 2π

0
FN (s, x)ds. (42)

Since, by hypothesis, the average of functions RN , UN , and VN over θ ∈ [0, 2π ]
vanish identically, then it follows that fN = 0, so that formulas (5) and (6) provide

fN+1(x) =
∫ 2π

0
FN+1(s, x)ds

=
(

μ
r3

2

(
1 − r2

)
,
r2

2

(−u3 − uv2 + u + v
)
,−r2

2

(
u2v + u + v3 − v

))
,

(43)

because Fi = 0 for all i ∈ {1, 2, . . . , N − 1} and y1 = 0 in this case. Thus, since it is
clear that fi = 0 for all i ∈ {1, 2, . . . , N − 1}, it follows from Proposition 1 that

gN+1(x) = 1

2π
fN+1(x).

Let us prove that the guiding system x′ = gN+1(x) has a hyperbolic limit cycle.
First, observe that the curve

γ (t) =
(
1, cos

(
t

4π

)
,− sin

(
t

4π

))

satisfies

γ ′(t) =
(
0,− 1

4π
sin

(
t

4π

)
,− 1

4π
cos

(
t

4π

))
= gN+1(γ (t)),

and is therefore a 8π2-periodic orbit of x′ = gN+1(x). Define � as the image of γ (t).
Notice that � = {1} × S

1.
In order to show that � is indeed a hyperbolic limit cycle, we shall find the eigen-

values of the Poincaré map P associated to it. Observe that

div gN+1(x) = −μ
5r4

4π
+ r2

4π

(
2 + 3μ − 4u2 − 4v2

)
.

By [23, Corollary 12.5], we know that the determinant of the derivative of P at a
point x0 in the periodic orbit � is equal to the determinant of the monodromy matrix
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associated to �. Thus, by Liouville’s formula, we have

det(DP(x0)) = exp
∫ 8π2

0
div gN+1(γ (s)) ds = e−4π(1+μ). (44)

Since the surface given by r = 1 is an invariant manifold for this system, we can
also study � as a periodic orbit of the system x′ = gN+1(x) restricted to such surface,
which is the planar system (u′, v′) = ḡn+1(u, v), given by

u′ = 1

4π
(−u3 − uv2 + u + v),

v′ = − 1

4π
(u2v + u + v3 − v).

(45)

Let L be the intersection of the surface r = 1with the transversal section corresponding
to the Poincaré map P . Then, once again by [23, Corollary 12.5], the determinant of
derivative of the restriction P|L at x0 is given by

det(D(P|L)(x0)) = exp
∫ 8π2

0
div ḡN+1

(
cos

( s

4π

)
,− sin

( s

4π

))
ds = e−4π .

Since D(P|L)(x0) acts on a one-dimensional space, it follows that its eigenvalue is
equal to e−4π .

We have thus found one of the eigenvalues of DP(x0), to wit, e−4π < 1. In order
to find the other, it suffices to notice that the determinant of DP(x0) must be equal
to the product of its two eigenvalues. Therefore, it follows from (44) that the other
eigenvalue is e−4πμ �= 1. Hence, it follows that � is a hyperbolic limit cycle and that
the eigenvalues of the derivative of the Poincaré map associated to it are λ1 = e−4π

and λ2 = e−4πμ.
Thus, TheoremA ensures that there is ε0 > 0 such that, for each ε ∈ [0, ε0], system

θ ′ = 1, x′ = εN FN (θ, x) + εN+1FN+1(θ, x) + εN+2 F̃(θ, x, ε)

admits an invariant torus Mε of class Cr−3. Moreover, Mε converges to S
1 × � as

ε → 0. The stability of Mε is controlled by the parameter μ. If μ = 1, then Mε is
asymptotically stable, since SVs

Mε
locally becomes a neighborhood of Mε. If, on the

other hand, μ = −1, then SVs
Mε

is locally a 3-dimensional manifold embedded in R4.
Transforming back to the original coordinates, we obtain, for each ε ∈ [0, ε0], an

invariant torus Tε converging as ε → 0 to the torus T = S
1 × S

1 parameterized by
(θ, t) ∈ [0, 2π ] × [0, 2π ] → (cos θ, sin θ, cos t,− sin t).
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Appendix

Proof of Proposition 3

Let ε ∈ (0, ε1] be fixed throughout all the proof. We shall prove that Mε can be
parameterized by a C p function αε(t, θ). In fact, let τ → ϕε(τ, t0, θ0, y0, z0) be the
flow of system (11) satisfying ϕε(0, t0, θ0, y0, z0) = (t0, θ0, y0, z0). Then, results
about smooth dependence on initial conditions (see, for instance, [14, Corollary 4.1 of
Chapter V]) ensure that ϕε is of class C p. Define αε : R×R → R×R× Bm(0, σ0)×
Bn(0, σ0) by

αε(t, θ) := ϕε(t, 0, θ, fε(0, θ), gε(0, θ)).

Observe that statement (e) of Lemma 1 guarantees that αε is of class C p. Let us prove
that αε is injective and that its image is Mε.

In order to prove that αε is injective, let (t1, θ1), (t2, θ2) ∈ R × R be such that
αε(t1, θ1) = αε(t2, θ2). Define the functions tε(τ, t0, θ0, y0, z0), θε(τ, t0, θ0, y0, z0),
yε(τ, t0, θ0, y0, z0), and zε(τ, t0, θ0, y0, z0) as being the components of the flow
ϕε(τ, t0, θ0, y0, z0). Then, it is clear by (11) that tε(τ, t0, θ0, y0) = t0 + τ . Hence,
α(t1, θ1) = α(t2, θ2) implies at once that t1 + t0 = t2 + t0, that is, t1 = t2. There-
fore, the uniqueness of the flow ϕε ensures that the points (0, θ1, fε(0, θ1), gε(0, θ1))
and (0, θ2, fε(0, θ2), gε(0, θ2)) must be the same. Thus, θ1 = θ2, and αε is indeed
injective.

To show that the imageofαε isMε,wefirst observe that, since (0, θ, fε(0, θ), gε(0, θ))

∈ Mε for all θ ∈ R and Mε is invariant, it follows that αε(t, θ) = ϕε(t, 0, θ,

fε(0, θ), gε(0, θ)) ∈ Mε for all (t, θ) ∈ R × R, i.e., the image of αε is con-
tained in Mε. On the other hand, every point in Mε is, by definition, of the form
(t, θ, fε(t, θ), gε(t, θ)) for some (t, θ) ∈ R × R. By properties of the flow, defining
θ̃ε = θε(−t, t, θ, fε(t, θ), gε(t, θ)), we have

(t, θ, fε(t, θ), gε(t, θ)) = ϕε

(
t, 0, θ̃ε, fε(0, θ̃ε), gε(0, θ̃ε)

) = αε(t, θ̃ε),

which implies that Mε is contained in the image of αε. Thus, we have proved that
αε is an injective function of class C p whose image is Mε and, therefore, is a C p

parametrization of Mε. This ensures that Mε is of class C p.
We shall now prove that fε and gε are of classC p. In order to do so, we remark that(

t, θ, fε(t, θ), gε(t, θ)) ∈ Mε for every (t, θ) ∈ R×R. Then, for each (t, θ) ∈ R×R,
there is (t̃, θ̃ ) ∈ R × R such that
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(
t, θ, fε(t, θ), gε(t, θ)) = αε(t̃, θ̃

) = (
t̃, θε(t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ )), yε(t̃, 0, θ̃ ,

fε(0, θ̃ ), gε(0, θ̃ )), zε(t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ ))
)
. (46)

Define the function h(t̃, θ̃ ) = (
t̃, θε(t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ ))

)
. It is then clear that

the inverse of h exists and is given by

h−1(t, θ) = (
t, θε(−t, t, θ, fε(t, θ), gε(t, θ))

)
.

Now, by taking (t̃(t, θ), θ̃ (t, θ)) = h−1(t, θ), we get from (46) that

fε(t, θ) = yε(t̃(t, θ), 0, θ̃ , fε(0, θ̃ (t, θ)), gε(0, θ̃ (t, θ)),

gε(t, θ) = zε(t̃(t, θ), 0, θ̃ , fε(0, θ̃ (t, θ)), gε(0, θ̃ (t, θ)).

Thus, since yε, zε, and θ → gε(0, θ) are of class C p, in order to prove that fε and
gε are of class C p it only remains to show that h−1 is of class C p. First, observe that
h is clearly of class C p, because θ̃ → fε(0, θ̃ ) and θ̃ → gε(0, θ̃ ) are of class C p

by statement (e) of Lemma 1. From the Inverse Function Theorem, it suffices then to
prove that the derivative of h is non-singular at every point (t, θ) ∈ R × R. Observe
that

Dh(t̃, θ̃ ) =
[

1 0

1 + ζ0(t̃, θε, fε(t̃, θε), gε(t̃, θε), ε)
∂θε

∂θ0
+ ∂θε

∂ y0
· ∂ fε

∂θ
(0, θ̃ ) + ∂θε

∂z0
· ∂gε

∂θ
(0, θ̃ )

]
,

where the argument of θε and its partial derivatives is (t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ )) and
has been omitted for conciseness. Thus, Dh(t̃, θ̃ ) is non-singular if, and only if,

∂θε

∂θ0
(t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ ))

+ ∂θε

∂ y0
(t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ )) · ∂ fε

∂θ
(0, θ̃ )

+ ∂θε

∂z0
(t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ )) · ∂gε

∂θ
(0, θ̃ ) �= 0.

(47)

The matrix

M(τ, t0, θ0, y0, z0) :=

⎡
⎢⎢⎢⎢⎢⎣

∂tε
∂t0

∂tε
∂θ0

∂tε
∂ y0

∂tε
∂z0

∂θε

∂t0
∂θε

∂θ0

∂θε

∂ y0
∂θε

∂z0
∂ yε
∂t0

∂ yε
∂θ0

∂ yε
∂ y0

∂ yε
∂z0

∂zε
∂t0

∂zε
∂θ0

∂zε
∂ y0

∂zε
∂z0

⎤
⎥⎥⎥⎥⎥⎦

,

where the argument of each entry is given by (τ, t0, θ0, y0, z0) is a fundamental solu-
tion of the first variational equation associated to (11). Thus, M(τ, t0, θ0, y0, z0) is
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invertible. Moreover, since tε(τ, t0, θ0, y0) = τ + t0, it follows that

M(τ, t0, θ0, y0, z0) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
∂θε

∂t0
∂θε

∂θ0

∂θε

∂ y0
∂θε

∂z0
∂ yε
∂t0

∂ yε
∂θ0

∂ yε
∂ y0

∂ yε
∂z0

∂zε
∂t0

∂zε
∂θ0

∂zε
∂ y0

∂zε
∂z0

⎤
⎥⎥⎥⎥⎥⎦

,

Hence, we conclude that

N (τ, t0, θ0, y0, z0) :=

⎡
⎢⎢⎣

∂θε

∂θ0
(τ, t0, θ0, y0, z0)

∂θε

∂ y0
(τ, t0, θ0, y0, z0)

∂θε

∂z0
(τ, t0, θ0, y0, z0)

∂ yε
∂θ0

(τ, t0, θ0, y0, z0)
∂ yε
∂ y0

(τ, t0, θ0, y0, z0)
∂ yε
∂z0

(τ, t0, θ0, y0, z0)
∂zε
∂θ0

(τ, t0, θ0, y0, z0)
∂zε
∂ y0

(τ, t0, θ0, y0, z0)
∂zε
∂z0

(τ, t0, θ0, y0, z0)

⎤
⎥⎥⎦

is invertible for all (τ, t0, θ0, y0, z0) ∈ [−�,�]×R×R×Bm(0, ρ)×Bm(0, ρ), where
[−�,�] is the maximal interval where the flow is defined. In particular, if t0 = 0,
θ0 = θ̃ , y0 = fε(0, θ̃ ), and z0 = gε(0, θ̃ ), then the flow is defined for all τ ∈ R, and
it follows thatN (t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ )) is invertible for all (t̃, θ̃ ) ∈ R×R. Thus,
the product

N (t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ )) ·
⎡
⎢⎣

1
∂ fε
∂θ

(0, θ̃ )

∂gε

∂θ
(0, θ̃ )

⎤
⎥⎦ =

⎡
⎢⎢⎣

∂θε

∂θ0
+ ∂θε

∂ y0
· ∂ fε

∂θ
+ ∂θε

∂z0
· ∂gε

∂θ

∂ yε
∂θ0

+ ∂ yε
∂ y0

· ∂ fε
∂θ

+ ∂ yε
∂z0

· ∂gε

∂θ

∂zε
∂θ0

+ ∂zε
∂ y0

· ∂ fε
∂θ

+ ∂zε
∂z0

· ∂gε

∂θ

⎤
⎥⎥⎦

cannot vanish, where the arguments of the derivatives of θε, yε and zε, as well as
the arguments of the derivatives of fε and gε, have been omitted, but should be read,
respectively, as (t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ )) and (0, θ̃ ). Suppose, by contradiction, that
(47) does not hold at (t̃∗, θ̃∗) ∈ R

2, so that the first line of product above vanishes. Let
us show that this implies that the product vanishes altogether.

In fact, observe that the invariance of Mε ensures that, for all (t̃, θ̃ ) ∈ R
2,

yε(t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ )) = fε(t̃, θε(t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ ))),

zε(t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ )) = gε(t̃, θε(t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ ))).

Thus, differentiating with respect to θ̃ , it follows that

∂ yε
∂θ0

+ ∂ yε
∂ y0

· ∂ fε
∂θ

+ ∂ yε
∂z0

· ∂gε

∂θ
= ∂ fε

∂θ

[
∂θε

∂θ0
+ ∂θε

∂ y0
· ∂ fε

∂θ
+ ∂θε

∂z0
· ∂gε

∂θ

]

and

∂zε
∂θ0

+ ∂zε
∂ y0

· ∂ fε
∂θ

+ ∂zε
∂z0

· ∂gε

∂θ
= ∂gε

∂θ

[
∂θε

∂θ0
+ ∂θε

∂ y0
· ∂ fε

∂θ
+ ∂θε

∂z0
· ∂gε

∂θ

]
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where, once again, the arguments of the derivatives of θε, yε and zε, as well as the
arguments of the derivatives of fε and gε, have been omitted, but should be read,
respectively, as (t̃, 0, θ̃ , fε(0, θ̃ ), gε(0, θ̃ )) and (0, θ̃ ).

Since we assumed that (47) does not hold at (t̃∗, θ̃∗), it follows at once that
⎡
⎢⎢⎣

∂θε

∂θ0
+ ∂θε

∂ y0
· ∂ fε

∂θ
+ ∂θε

∂z0
· ∂gε

∂θ

∂ yε
∂θ0

+ ∂ yε
∂ y0

· ∂ fε
∂θ

+ ∂ yε
∂z0

· ∂gε

∂θ

∂zε
∂θ0

+ ∂zε
∂ y0

· ∂ fε
∂θ

+ ∂zε
∂z0

· ∂gε

∂θ

⎤
⎥⎥⎦ = 0

when the arguments of the derivatives of θε, yε and zε are given by (t̃∗, 0, θ̃∗,
fε(0, θ̃∗), gε(0, θ̃∗)) and the arguments of the derivatives of fε and gε are given by
(0, θ̃∗). Therefore,

N (t̃∗, 0, θ̃∗, fε(0, θ̃∗), gε(0, θ̃∗)) ·
⎡
⎢⎣

1
∂ fε
∂θ

(0, θ̃∗)
∂gε

∂θ
(0, θ̃∗)

⎤
⎥⎦ = 0.

As remarked above, this would imply thatN (t̃∗, 0, θ̃∗, fε(0, θ̃∗), gε(0, θ̃∗)), which we
have proved to be invertible, is not invertible. Since we have reached a contradiction, it
is proved that h−1 is indeed of classC p, which concludes the proof of the proposition.

Proof of Proposition 4

It is not difficult to see that we can assumewithout loss of generality that the function L
appearing in hypothesis (ii) of the Lemma satisfies: L(ε, σ, μ) ≥ ε for all (ε, σ, μ) ∈
(0, ε0] × [0, ρ1) × [0, ρ2).

Let D(ε), �(ε), J1, J2 be given as in the proof of Lemma 1. It is clear that there
are K > 0 and α > 0 such that ‖Ji (t)‖ ≤ Ke−α|t | for all i ∈ {1, 2}. By choosing ε1
to be sufficiently small, we can then ensure that the following inequalities hold for all
ε ∈ (0, ε1]:
• �(ε) < 1

2 and D(ε) < ρ := min(ρ1, ρ2);
• 32L(ε, D(ε), D(ε)) < α;
• 64K L(ε, D(ε), D(ε)) < α.

Let Pω(D,�), Aω(D,�), and the operator Sε be given as in the proof of Lemma
1. For each ε ∈ (0, ε1], define the sequence (Pk, Ak)k∈N, where Pk : (0, ε1) →
Pω(D,�) and Ak : (0, ε1) → Aω(D,�) are functions of class C1 given by:

• (P0(ε), A0(ε)) = (0, 0) for all ε ∈ (0, ε1);
• (Pk+1(ε), Ak+1(ε)) = Sε(Pk(ε), Ak(ε)) for all k ∈ N and all ε ∈ (0, ε1).

From Lemma 1, it is clear that this sequence satisfies

lim
k→∞(Pk(ε), Ak(ε)) = ( fε, gε). (48)
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Let a, b ∈ (0, ε1) be fixed. Effecting cumbersome calculations, which are very
similar to those presented in the proofs of Propositions 5 and 6, and for this reason are
omitted, we can show that the following hold for all ε ∈ [a, b] and all k ∈ N:

(1) ‖Pk+2(ε) − Pk+1(ε)‖ + ‖Ak+2(ε) − Ak+1(ε)‖ ≤ 1
4

[‖Pk+1(ε) − Pk(ε)‖
+ ‖Ak+1(ε) − Ak(ε)‖

]
.

(2) There is C1 > 0 such that

∥∥∥∥∂Pk+2(ε)

∂θ
− ∂Pk+1(ε)

∂θ

∥∥∥∥ +
∥∥∥∥∂Ak+2(ε)

∂θ
− ∂Ak+1(ε)

∂θ

∥∥∥∥
≤ C1

[‖Pk+1(ε) − Pk(ε)‖ + ‖Ak+1(ε) − Ak(ε)‖
]

+ 1

4

[∥∥∥∥∂Pk+1(ε)

∂θ
− ∂Pk(ε)

∂θ

∥∥∥∥ +
∥∥∥∥∂Ak+1(ε)

∂θ
− ∂Ak(ε)

∂θ

∥∥∥∥
]

.

(3) There is C2 > 0 such that

∥∥P ′
k+2(ε) − P ′

k+1(ε)
∥∥ + ∥∥A′

k+2(ε) − A′
k+1(ε)

∥∥
≤ C2

[
‖Pk+1(ε) − Pk(ε)‖ + ‖Ak+1(ε) − Ak(ε)‖

+
∥∥∥∥∂Pk+1(ε)

∂θ
− ∂Pk(ε)

∂θ

∥∥∥∥ +
∥∥∥∥∂Ak+1(ε)

∂θ
− ∂Ak(ε)

∂θ

∥∥∥∥
]

+ 1

4

[∥∥P ′
k+1(ε) − P ′

k(ε)
∥∥ + ∥∥A′

k+1(ε) − A′
k(ε)

∥∥] .

From those inequalities, it follows easily that there is C > 0 such that

sup
ε∈[a,b]

∥∥P ′
k+1(ε) − P ′

k(ε)
∥∥ + ∥∥A′

k+1(ε) − A′
k(ε)

∥∥ ≤ C

2k

for all k ∈ N. Hence, the sequence (P ′
k , A′

k)k∈N converges uniformly on [a, b]. Since
a and b were arbitrary, this implies that (P ′

k, A
′
k)k∈N converges uniformly on compact

subsets of (0, ε1). Therefore, considering (48), it follows that the function c given in
the statement of this Lemma is of classC1 (see, for instance, [10, Theorem 85, Chapter
1]), concluding the proof.

Proof of Proposition 5

Let D(ε), �(ε), J1, J2, and TF,G be given as in the proof of Lemma 1. It is clear
that there are K > 0 and α > 0 such that ‖Ji (t)‖ ≤ Ke−α|t | for all i ∈ {1, 2}.
For convenience, we will denote L(ε, D(ε), D(ε)) by L(ε) throughout the proof. As
in Proposition 4, we assume that the function L appearing in hypothesis (ii) of the
Lemma satisfies: L(ε, σ, μ) ≥ ε for all (ε, σ, μ) ∈ (0, ε0] × [0, ρ1) × [0, ρ2).

Let (Pk, Ak)k∈N be the sequence defined in Proposition 4. For convenience, define
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• T x,t,ε
k (θ) := TPk (ε),Ak (ε)(t + x, t, θ, ε);

• �
x,t,ε
k (θ) = (t + x, θ, Pk(ε)(t + x, θ), Ak(ε)(t + x, θ), ε);

• ζ
x,t,ε
i,k (θ) := ζi (t + x, θ, Pk(ε)(t + x, θ), Ak(ε)(t + x, θ), ε) = ζi ◦ �

x,t,ε
k (θ).

We will prove by induction on q that, if ε1 is sufficiently small, the following hold for
each q ∈ {1, . . . , p + 1}:
(P1.) There is Nq ∈ N and, for each [a, b] ⊂ (0, ε1], there is C0,q > 0 such that

∣∣∣(T x,t,ε
k

)(q)
(θ)

∣∣∣ ≤ C0,q e
Nq L(ε)(1+2�(ε))|x |,

for all k ∈ N and all (x, t, θ, ε) ∈ R × R × R × [a, b].
(P2.) For each [a, b] ⊂ (0, ε1], there is C1,q > 0 such that

∥∥∥∥∂q Pk(ε)

∂θq

∥∥∥∥ +
∥∥∥∥∂q Ak(ε)

∂θq

∥∥∥∥ ≤ C1,q ,

for all k ∈ N and all ε ∈ [a, b].
Let us then consider the case q = 1. Observe that, from the definition of T x,t,ε

k , it
follows that

∂

∂θ

(
∂TPk (ε),Ak (ε)

∂x

)
(t + x, t, θ, ε)

= Dζ0
(
�

x,t,ε
k

(
T x,t,ε
k (θ)

)) · (�x,t,ε
k

)′ (
T x,t,ε
k (θ)

) · (T x,t,ε
k

)′
(θ).

(49)

Hence, we obtain by changing order of derivatives and integrating

∣∣∣∣
(
T x,t,ε
k

)′
(θ) −

(
T 0,t,ε
k

)′
(θ)

∣∣∣∣ ≤
∫ x

0
L(ε)(1 + 2�(ε))

∣∣∣(T x,t,ε
k

)′
(θ)

∣∣∣ dx .

Since

(
T 0,t,ε
k

)′
(θ) = 1,

it follows by an application of Grönwall’s inequality that

∣∣∣(T x,t,ε
k

)′
(θ)

∣∣∣ ≤ eL(ε)(1+2�(ε))|x |. (50)

This proves property (P1.). Property (P2.) followsdirectly,withC1,1 = supε∈[a,b] �(ε),
from the fact that (Pk, Ak) ∈ Pω(D(ε),�(ε)) × Aω(D(ε),�(ε)) for all k ∈ N.

Let N ∈ {2, . . . , p + 1} be given and suppose that the Lemma is true for every
q ∈ N such that 1 ≤ q ≤ N − 1. We will show that the Lemma also holds for q = N .
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Henceforth, we will employ the index i to denote any element of the set {0, 1, 2},
since the considerations done below are the same. By Faà di Bruno’s formula, since
ζ

ε,x,t
i,k = ζi ◦ �

x,t,ε
k , it follows that

(
ζ
x,t,ε
i,k

)(q)

(θ) =
q∑
j=1

D( j)ζi (�
x,t,ε
k (θ)) · Bq, j

((
�

x,t,ε
k

)′
(θ), . . . ,

(
�

x,t,ε
k

)(q− j+1)
(θ)

)
,

for each q ∈ {1, . . . , p + 1}, where Bq, j is a Bell polynomial. Observe that
D( j)ζi (�

x,t,ε
k (θ)) is a symmetric multilinear map that can be thought of as being

applied to a “product" of vectors. Its application to a polynomial is simply a linear
combination of different applications to such “products". In particular, for q = N , we
can write

(
ζ
x,t,ε
i,k

)(N )

(θ) = D(N )ζi (�
x,t,ε
k (θ)) ·

((
�

x,t,ε
k

)′
(θ)

)N

+ Dζi (�
x,t,ε
k (θ)) ·

((
�

x,t,ε
k

)(N )
(θ)

)

+
N−1∑
j=2

D( j)ζi (�
x,t,ε
k (θ)) · BN , j

((
�

x,t,ε
k

)′
(θ), . . . ,

(
�

x,t,ε
k

)(N− j+1)
(θ)

)
.

By the same formula, we also have:

(
ζ
x,t,ε
i,k

(
T x,t,ε
k (θ)

))(N ) =
(
ζ
x,t,ε
i,k

)(N ) (
T x,t,ε
k (θ)

) ·
((
T x,t,ε
k

)′
(θ)

)N

+
(
ζ
x,t,ε
i,k

)′ (
T x,t,ε
k (θ)

) ·
((
T x,t,ε
k

)(N )
(θ)

)

+
N−1∑
j=2

(
ζ
x,t,ε
i,k

)( j) (
T x,t,ε
k (θ)

) ·

BN , j

((
T x,t,ε
k

)′
(θ), . . . ,

(
T x,t,ε
k

)(N− j+1)
(θ)

)
.

Thus, it follows that

(
ζ
x,t,ε
i,k

(
T x,t,ε
k (θ)

))(N )

= D(N )ζi
(
�

x,t,ε
k

(
T x,t,ε
k (θ)

)) ·
((

�
x,t,ε
k

)′ (
T x,t,ε
k (θ)

))N ·
((
T x,t,ε
k

)′
(θ)

)N

+Dζi
(
�

x,t,ε
k

(
T x,t,ε
k (θ)

)) ·
((

�
x,t,ε
k

)(N ) (
T x,t,ε
k (θ)

)) ·
((
T x,t,ε
k

)′
(θ)

)N

+
N−1∑
j=2

D( j)ζi
(
�

x,t,ε
k

(
T x,t,ε
k (θ)

))

·BN , j

((
�

x,t,ε
k

)′ (
T x,t,ε
k (θ)

)
, . . . ,

(
�

x,t,ε
k

)(N− j+1) (
T x,t,ε
k (θ)

)) ((
T x,t,ε
k

)′
(θ)

)N

+Dζi
(
�

x,t,ε
k

(
T x,t,ε
k (θ)

)) ·
((

�
x,t,ε
k

)′ (
T x,t,ε
k (θ)

)) ·
((
T x,t,ε
k

)(N )
(θ)

)
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+
N−1∑
j=2

j∑
l=1

[
D(l)ζi

(
�

x,t,ε
k

(
T x,t,ε
k (θ)

))

·Bj,l

((
�

x,t,ε
k

)′ (
T x,t,ε
k (θ)

)
, . . . ,

(
�

x,t,ε
k

)( j−l+1) (
T x,t,ε
k (θ)

))]

×BN , j

((
T x,t,ε
k

)′
(θ), . . . ,

(
T x,t,ε
k

)(N− j+1)
(θ)

)
.

(51)

For simplicity, we will denote the summands on the right-hand side of this equation
by I , I I , I I I , I V , and V , respectively.

By definition of T x,t,ε
k (θ), it follows that

∂N

∂θN

(
∂TPk (ε),Ak (ε)

∂x

)
(t + x, t, θ, ε) =

(
ζ
x,t,ε
0,k

(
T x,t,ε
k (θ)

))(N )

. (52)

Observe that, for q ∈ {1, . . . , p + 1},

(
�

x,t,ε
k

)(q)
(θ) =

(
0, δ1q ,

∂q Pk(ε)

∂θq
(t + x, θ),

∂q Ak(ε)

∂θq
(t + x, θ), 0

)
,

where δi j is the Kronecker delta. Thus, since N ≥ 2, it follows that

∥∥∥Dζi
(
�

x,t,ε
k

(
T x,t,ε
k (θ)

)) ·
((

�
x,t,ε
k

)(N ) (
T x,t,ε
k (θ)

))∥∥∥
≤ L(ε)

[∥∥∥∥∂N Pk(ε)

∂θN

∥∥∥∥ +
∥∥∥∥∂N Ak(ε)

∂θN

∥∥∥∥
]

,

which, combined with (50), ensures that

‖I I‖ ≤ L(ε)

[∥∥∥∥∂N Pk(ε)

∂θN

∥∥∥∥ +
∥∥∥∥∂N Ak(ε)

∂θN

∥∥∥∥
]
eNL(ε)(1+2�(ε))|x |. (53)

Moreover, we also have

∥∥∥Dζi
(
�

x,t,ε
k

(
T x,t,ε
k (θ)

)) ·
((

�
x,t,ε
k

)′ (
T x,t,ε
k (θ)

))∥∥∥
≤ L(ε)

[
1 +

∥∥∥∥∂Pk(ε)

∂θ

∥∥∥∥ +
∥∥∥∥∂Ak(ε)

∂θ

∥∥∥∥
]

,

so that

‖I V ‖ ≤ L(ε)(1 + 2�(ε))
(
T x,t,ε
k

)(N )
(θ). (54)
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Observe that, since ζi is of class C p+1 and periodic in its first two entries, there is
Cζ > 0 such that

∥∥∥D(q)ζi
(
�

x,t,ε
k

(
T x,t,ε
k (θ)

))∥∥∥ ≤ Cζ

for all q ∈ {1, . . . , p + 1}, all k ∈ N, and all (x, t, θ, ε) ∈ R×R×R× [a, b]. Thus,
considering the hypothesis of induction, it follows that there are C̃ > 0 and Ñ ∈ N,
where C̃ depends on the choice of the interval [a, b] but Ñ does not, such that

‖I‖ + ‖I I I‖ + ‖V ‖ ≤ C̃eÑ L(ε)(1+2�(ε))|x |. (55)

Therefore, considering (53), (54), and (55), it follows by changing the order of
derivatives of (52) and integrating with respect to x that

∣∣∣(T x,t,ε
k

)(N )
(θ)

∣∣∣ ≤
∫ x

0
L(ε)(1 + 2�(ε))

∣∣∣(T τ,t,ε
k

)(N )
(θ)

∣∣∣ dτ + C̃ eÑ L(ε)(1+2�(ε))|x |

Ñ L(ε)(1 + 2�(ε))

+ 1

N (1 + 2�(ε))

[∥∥∥∥∂N Pk(ε)

∂θN

∥∥∥∥ +
∥∥∥∥∂N Ak(ε)

∂θN

∥∥∥∥
]
eNL(ε)(1+2�(ε))|x |.

Thus, by taking Nq := max(N + 1, Ñ + 1), an application of Grönwall’s inequality
ensures that

∣∣∣(T x,t,ε
k

)(N )
(θ)

∣∣∣ ≤
(

C̃

Ñ L(ε)
+ 1

1 + 2�(ε)

[∥∥∥∥∂N Pk(ε)

∂θN

∥∥∥∥ +
∥∥∥∥∂N Ak(ε)

∂θN

∥∥∥∥
])

eNq L(ε)(1+2�(ε))|x |. (56)

Having proved (56), we proceed to showing that (P2.) holds for q = N . This will
be done by induction on k ∈ N. Define

C1,N := 48KC̃

α
.

Since (P0, A0) = (0, 0), property (P2.) is trivially true with this constant for q = N
and k = 0. Suppose it holds for all non-negative integers up to a given k ∈ N. Let us
show that is must also hold for k + 1. Observe that

∂N Pk+1(ε)

∂θN
(t, θ) =

∫ ∞

−∞
J1(x)

(
ζ
x,t,ε
1,k

(
T x,t,ε
k (θ)

))(N )

dx .
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Hence, considering (53), (54), (55), and (56), it follows that

∥∥∥∥∂N Pk+1(ε)

∂θN

∥∥∥∥ ≤
∫ ∞

−∞
Ke−α|x |

(
C̃(1 + 2�(ε))

Ñ
+ C̃

)
eNq L(ε)(1+2�(ε))|x |dx

+
∫ ∞

−∞
Ke−α|x |2L(ε)

[∥∥∥∥∂N Pk(ε)

∂θN

∥∥∥∥ +
∥∥∥∥∂N Ak(ε)

∂θN

∥∥∥∥
]

eNq L(ε)(1+2�(ε))|x |dx .

If ε1 is sufficiently small as to ensure that 2Nq L(ε)(1 + 2�(ε)) ≤ α for all ε ∈
(0, ε1], and considering the hypothesis of induction, it follows that

∥∥∥∥∂N Pk+1(ε)

∂θN

∥∥∥∥ ≤ 4K

α

(
C̃(1 + 2�(ε))

Ñ
+ C̃

)
+ 8K L(ε)

α
C1,N . (57)

We proceed identically for Ak+1 and obtain

∥∥∥∥∂N Ak+1(ε)

∂θN

∥∥∥∥ ≤ 4K

α

(
C̃(1 + 2�(ε))

Ñ
+ C̃

)
+ 8K L(ε)

α
C1,N . (58)

If ε1 is also chosen sufficiently small as to ensure that 32K L(ε) < α and 2�(ε) < 1
for all ε ∈ (0, ε1], then

∥∥∥∥∂N Pk+1(ε)

∂θN

∥∥∥∥ +
∥∥∥∥∂N Ak+1(ε)

∂θN

∥∥∥∥ ≤ 24KC̃

α
+ C1,N

2
≤ C1,N ,

proving property (P2.).
Observe that the validity of property (P1.) for q = N follows immediately from

(56) and the fact that (P2.) holds for q = N . Therefore, by induction on q, it is proved
that both properties hold for all q ∈ {1, . . . , p + 1}. The Lemma then follows by
defining

NT := max
q∈{1,...,p+1} Nq ,

and, for each interval [a, b] ⊂ (0, ε1], the positive constants

C[a,b] := max
q∈{1,...,p+1}C1,q , M[a,b] := max

q∈{1,...,p+1}C0,q ,

and observing that ( fε, gε) is the limit of the sequence (Pk(ε), Ak(ε))k∈N.

Proof of Proposition 6

Let D(ε), �(ε), J1, J2, and TF,G be given as in the proof of Lemma 1. It is clear that
there are K > 0 and α > 0 such that ‖Ji (t)‖ ≤ Ke−α|t | for all i ∈ {1, 2}. Once again,
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we will denote L(ε, D(ε), D(ε)) by L(ε) throughout the proof. As in Proposition 4,
we assume that the function L appearing in hypothesis (ii) of the Lemma satisfies:
L(ε, σ, μ) ≥ ε for all (ε, σ, μ) ∈ (0, ε0] × [0, ρ1) × [0, ρ2).

For convenience, define

• T x,t,ε(θ) := T fε,gε (t + x, t, θ);
• �x,t,ε(θ) = (t + x, θ, fε(t + x, θ), gε(t + x, θ), ε);
• ζ

x,t,ε
i (θ) := ζi (t + x, θ, fε(t + x, θ), gε(t + x, θ), ε) = ζi ◦ �x,t,ε(θ).

First, let us consider k = 0. Let us restrict the possible values of the parameter
ε to a compact interval [a, b] ⊂ (0, ε1], and let ρ > 0 be such that D(ε) < ρ for
all ε ∈ (0, ε1]. In this case, the functions ζ0, ζ1, ζ2 are Lipschitz continuous with
Lipschitz constant R overR×R× B̄m(0, ρ)× B̄n(0, ρ)×[a, b]. Thus, it is clear that,
if ε, ε̃ ∈ [a, b] ⊂ (0, ε1], then

|T x,t,ε(θ) − T x,t,ε̃(θ)| ≤
∫ x

0
L(ε)(1 + 2�(ε))|T τ,t,ε(θ) − T τ,t,ε̃(θ)|dτ

+
∫ x

0
L(ε) [‖ fε − fε̃‖ + ‖gε − gε̃‖] dx

+
∫ x

0
R|ε − ε̃|dx .

Hence, from Grönwall’s inequality, it follows that

|T x,t,ε(θ) − T x,t,ε̃(θ)| ≤ eL(ε)(1+2�(ε))|x | − 1

1 + 2�(ε)
[‖ fε − fε̃‖ + ‖gε − gε̃‖]

+ R(eL(ε)(1+2�(ε))|x | − 1)

L(ε)(1 + 2�(ε))
|ε − ε̃|. (59)

Now, since ( fε, gε) is a fixed point of the operator Sε given in the proof of Lemma
1, it follows by subtracting Sε̃

1( fε̃, gε̃) from Sε
1( fε, gε) that

‖ fε(t, θ) − fε̃(t, θ)‖ ≤
∫ ∞

−∞
Ke−α|x |L(ε)(1 + 2�(ε))|T x,t,ε(θ) − T x,t,ε̃(θ)|dx

+
∫ ∞

−∞
Ke−α|x |L(ε) [‖ fε − fε̃‖ + ‖gε − gε̃‖] dx

+
∫ ∞

−∞
Ke−α|x |R|ε − ε̃|dx .

Thus, considering (59), if ε1 is chosen sufficiently small so that 2L(ε)(1+2�(ε)) < α

for all ε ∈ (0, ε1], it follows that

‖ fε(t, θ) − fε̃(t, θ)‖ ≤ 4K L(ε)

α
[‖ fε − fε̃‖ + ‖gε − gε̃‖] + R|ε − ε̃|.
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A similar argument ensures that

‖gε(t, θ) − gε̃(t, θ)‖ ≤ 4K L(ε)

α
[‖ fε − fε̃‖ + ‖gε − gε̃‖] + R|ε − ε̃|.

Therefore, if ε1 is also small enough to ensure that 16K L(ε) < α for all ε ∈ (0, ε1],
it follows that

‖ fε − fε̃‖ + ‖gε − gε̃‖ ≤ 4R|ε − ε̃| (60)

if ε, ε̃ ∈ [a, b]. The procedure can be repeated for any choice of interval [a, b] with
the exact same conditions required for the choice of ε1, yielding generally different
constants R, but ensuring local Lipschitz continuity nonetheless.

Consider the following properties, where q ∈ {0, . . . , p}:
(Q.1) There is Nq ∈ N and, for each [a, b] ⊂ (0, ε1], there is C0,q > 0 such that

∣∣∣∣
(
T x,t,ε)(q)

(θ) −
(
T x,t,ε̃

)(q)

(θ)

∣∣∣∣ ≤ C0,q |ε − ε̃|eNq L(ε)(1+2�(ε))|x |

for all (x, t, θ) ∈ R × R × R and all ε, ε̃ ∈ [a, b].
(Q.2) For each [a, b] ⊂ (0, ε1], there is C1,q > 0 such that

∥∥∥∥∂q fε
∂θq

− ∂q fε̃
∂θq

∥∥∥∥ +
∥∥∥∥∂qgε

∂θq
− ∂qgε̃

∂θq

∥∥∥∥ ≤ C1,q |ε − ε̃|

for all ε, ε̃ ∈ [a, b].
We will prove by induction that those properties hold for all q ∈ {0, . . . , p}.

Before we proceed to the proof itself, we make some considerations. Once again,
the index i will be used to denote any element of the set {0, 1, 2}, since the arguments
are the same. Let the interval [a, b] ⊂ (0, ε1] be fixed. First, since ζi is of class C p+1,
periodic in its first two entries, and since fε and gε are bounded for ε ∈ [a, b], it follows
that there are constants Cζ > 0 and Lζ > 0 such that, for all j ∈ {0, 1, . . . , p}, the
function D( j)ζi satisfies

‖D( j)ζi (�
x,t,ε(θ))‖ ≤ Cζ (61)

and

‖D( j)ζi (�
x,t,ε(θ)) − D( j)ζi (�

x,t,ε̃(θ̃ ))‖ ≤ Lζ ‖�x,t,ε(θ) − �x,t,ε̃(θ̃ )‖ (62)

for all j ∈ {0, . . . , p}, all (x, t) ∈ R × R and all (θ, ε), (θ̃ , ε̃) ∈ R × [a, b].
Furthermore, considering the definition of �x,t,ε and (60), it follows that, for each

[a, b] ⊂ (0, ε1], there is R > 0 such that

‖�x,t,ε(θ) − �x,t,ε̃(θ̃ )‖ ≤ 4R|ε − ε̃| + (1 + 2�(ε))|θ − θ̃ | (63)
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for all (x, t) ∈ R × R and all (θ, ε), (θ̃ , ε̃) ∈ R × [a, b]. Also, observe that for any
j ∈ {1, . . . , p + 1},

(
�x,t,ε)( j) (θ) =

(
0, δ1 j ,

∂ j fε
∂θ j

(t + x, θ),
∂ j gε

∂θ j
(t + x, θ), 0

)
, (64)

where δi j is the Kronecker delta. Thus, it follows that

∥∥∥(�x,t,ε)′ (θ)

∥∥∥ ≤ 1 + 2�(ε), (65)

for all (x, t, θ, ε) ∈ R × R × R × (0, ε1]. Moreover, from Proposition 5, there is, for
each [a, b] ⊂ (0, e1], a constant C� > 0 such that

∥∥∥(�x,t,ε)( j) (θ)

∥∥∥ ≤ C� (66)

for all j ∈ {2, . . . , p + 1} and all (x, t, θ, ε) ∈ R × R × R × [a, b]. Also, from
Corollary 2, it follows that

∥∥∥∥
(
�x,t,ε)( j) (θ) −

(
�x,t,ε̃

)( j)
(θ̃ )

∥∥∥∥ ≤
∥∥∥∥∂ j fε

∂θ j
− ∂ j fε̃

∂θ j

∥∥∥∥ +
∥∥∥∥∂ j gε

∂θ j
− ∂ j gε̃

∂θ j

∥∥∥∥
+C�|θ − θ̃ | (67)

for all j ∈ {1, . . . , p}, all (x, t) ∈ R × R and all (θ, ε), (θ̃ , ε̃) ∈ R × [a, b].
Finally, observe that, fromProposition 5, there are NT and, for each [a, b] ⊂ (0, ε1],

a constant CT > 0 such that

∣∣∣(T x,t,ε)( j) (θ)

∣∣∣ ≤ CT e
NT L(ε)(1+2�(ε))|x | (68)

for all j ∈ {1, . . . , p + 1} and all (x, t, θ, ε) ∈ R × R × R × [a, b].
We start the discussion of the induction argument. Observe that the case q = 0

follows directly from (59) and (60). Let N ∈ {1, . . . , p} and assume that properties
(Q.1) and (Q.2) are valid for 0 ≤ q ≤ N − 1. We will show that this ensures that such
properties also hold for q = N .
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Proceeding exactly as in the proof of Proposition 5, we obtain the following from
Faà di Bruno’s formula:

(
ζ
x,t,ε
i

(
T x,t,ε(θ)

))(N )

= D(N )ζi
(
�x,t,ε (T x,t,ε(θ)

)) ·
((

�x,t,ε)′ (T x,t,ε(θ)
))N ·

((
T x,t,ε)′ (θ)

)N

+ Dζi
(
�x,t,ε (T x,t,ε(θ)

)) ·
((

�x,t,ε)(N ) (
T x,t,ε(θ)

)) ·
((
T x,t,ε)′ (θ)

)N

+
N−1∑
j=2

D( j)ζi
(
�x,t,ε (T x,t,ε(θ)

))

· BN , j

((
�x,t,ε)′ (T x,t,ε(θ)

)
, . . . ,

(
�x,t,ε)(N− j+1) (

T x,t,ε(θ)
)) ((

T x,t,ε)′ (θ)
)N

+ Dζi
(
�x,t,ε (T x,t,ε(θ)

)) ·
((

�x,t,ε)′ (T x,t,ε(θ)
)) ·

((
T x,t,ε)(N )

(θ)
)

+
N−1∑
j=2

j∑
l=1

[
D(l)ζi

(
�x,t,ε (T x,t,ε(θ)

))

·Bj,l

((
�x,t,ε)′ (T x,t,ε(θ)

)
, . . . ,

(
�x,t,ε)( j−l+1) (

T x,t,ε(θ)
))]

× BN , j

((
T x,t,ε)′ (θ), . . . ,

(
T x,t,ε)(N− j+1)

(θ)
)

.

(69)

For simplicity, we will denote the summands on the right-hand side of this equation
by I , I I , I I I , I V , and V , respectively. If ε is replaced by ε̃, we will denote those
terms by I ′, I I ′, I I I ′, I V ′, and V ′, respectively

Considering the hypothesis of induction combined with (61), (62), (65), (67) and
(68), it follows that there is NI > 0 and, for each [a, b] ⊂ (0, ε1], CI > 0 such that

‖I − I ′‖ ≤ CI e
NI L(ε)(1+2�(ε))|x ||ε − ε̃|. (70)

for all (x, t, θ) ∈ R × R × R and all ε, ε̃ ∈ [a, b]. Similarly, since BN , j and Bj,l

are polynomials, there are NI I I > 0 and NV > 0, and, for each [a, b] ⊂ (0, ε1],
CI I I > 0 and CV > 0 such that

‖I I I − I I I ′‖ ≤ CI I I e
NI I I L(ε)(1+2�(ε))|x ||ε − ε̃| (71)

and

‖V − V ′‖ ≤ CV e
NV L(ε)(1+2�(ε))|x ||ε − ε̃|. (72)

for all (x, t, θ) ∈ R × R × R and all ε, ε̃ ∈ [a, b].
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Regarding I I , observe that (64), (67), and the properties of Lipschitz continuity of
ζi given in hypothesis (iii) guarantee that

∥∥∥∥Dζi
(
�x,t,ε (T x,t,ε(θ)

)) ·
((

�x,t,ε)(N ) (
T x,t,ε(θ)

) −
(
�x,t,ε̃

)(N ) (
T x,t,ε̃(θ)

))∥∥∥∥
≤ L(ε)

[∥∥∥∥∂N fε
∂θN

− ∂N fε̃
∂θN

∥∥∥∥ +
∥∥∥∥∂N gε

∂θN
− ∂N gε̃

∂θN

∥∥∥∥
]

+ L(ε)C�

∣∣∣T x,t,ε(θ) − T x,t,ε̃(θ)

∣∣∣ .

Thus, the hypothesis of induction, combined with (62), (67), (65), (67) and (68),
ensures that there is NI I > 0 and, for each [a, b] ⊂ (0, ε1], CI I > 0 such that

‖I I − I I ′‖ ≤ CI I e
NI I L(ε)(1+2�(ε))|x ||ε − ε̃|

+L(ε)

[∥∥∥∥∂N fε
∂θN

− ∂N fε̃
∂θN

∥∥∥∥ +
∥∥∥∥∂N gε

∂θN
− ∂N gε̃

∂θN

∥∥∥∥
]
eNI I L(ε)(1+2�(ε))|x |.(73)

for all (x, t, θ) ∈ R × R × R and all ε, ε̃ ∈ [a, b].
Finally, a similar argument ensures that there is NIV ∈ N and, for each [a, b] ⊂

(0, ε1], CIV > 0 such that

‖I V − I V ′‖ ≤ CIV e
NIV L(ε)(1+2�(ε))|x ||ε − ε̃|

+L(ε)(1 + 2�(ε))

∣∣∣∣
(
T x,t,ε)(N )

(θ) −
(
T x,t,ε̃

)(N )

(θ)

∣∣∣∣ (74)

for all (x, t, θ) ∈ R × R × R and all ε, ε̃ ∈ [a, b].
By definition of T x,t,ε, it follows that

∂N

∂θN

(
∂T fε,gε

∂x

)
(t + x, t, θ, ε) = (

ζ
x,t,ε
0

(
T x,t,ε(θ)

))(N )
.

Thus, considering inequalities (70)–(74), it follows that there is ÑT ∈ N and, for each
[a, b] ⊂ (0, ε1], C̃T > 0 such that

∣∣∣∣
(
T x,t,ε)(N )

(θ) −
(
T x,t,ε̃

)(N )

(θ)

∣∣∣∣
≤

∫ x

0
L(ε)(1 + 2�(ε))

∣∣∣∣
(
T τ,t,ε)(N )

(θ) −
(
T τ,t,ε̃

)(N )

(θ)

∣∣∣∣ dτ

+ 1

1 + 2�(ε)

[∥∥∥∥∂N fε
∂θN

− ∂N fε̃
∂θN

∥∥∥∥ +
∥∥∥∥∂N gε

∂θN
− ∂N gε̃

∂θN

∥∥∥∥
]
eÑT L(ε)(1+2�(ε))|x |

+ C̃T |ε − ε̃|eÑT L(ε)(1+2�(ε))|x |
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for all (x, t, θ) ∈ R × R × R and all ε, ε̃ ∈ [a, b]. From Grönwall’s inequality, it
follows that

∣∣∣∣
(
T x,t,ε)(N )

(θ) −
(
T x,t,ε̃

)(N )

(θ)

∣∣∣∣
≤

[
C̃T |ε − ε̃| + 1

1 + 2�(ε)

[∥∥∥∥∂N fε
∂θN

− ∂N fε̃
∂θN

∥∥∥∥ +
∥∥∥∥∂N gε

∂θN
− ∂N gε̃

∂θN

∥∥∥∥
]]

e(ÑT +1)L(ε)(1+2�(ε))|x | (75)

for all (x, t, θ) ∈ R × R × R and all ε, ε̃ ∈ [a, b].
Let us prove that property (Q.2) holds for q = N . Observe that

∂N fε
∂θN

(t, θ) =
∫ ∞

−∞
J1(x)

(
ζ
x,t,ε
1

(
T x,t,ε(θ)

))(N )
dx .

Thus, proceeding just as above, we obtain, for each [a, b] ⊂ (0, ε1], a constant C̃ > 0
such that

∥∥∥∥∂N fε
∂θN

− ∂N fε̃
∂θN

∥∥∥∥ ≤
∫ ∞

−∞
Ke−α|x |L(ε)(1 + 2�(ε))

∣∣∣∣
(
T τ,t,ε)(N )

(θ) −
(
T τ,t,ε̃

)(N )

(θ)

∣∣∣∣ dτ

+
∫ ∞

−∞
Ke−α|x |L(ε)

[∥∥∥∥∂N fε
∂θN

− ∂N fε̃
∂θN

∥∥∥∥ +
∥∥∥∥∂N gε

∂θN
− ∂N gε̃

∂θN

∥∥∥∥
]

× eNI I L(ε)(1+2�(ε))|x | +
∫ ∞

−∞
Ke−α|x |C̃ |ε − ε̃|eÑT L(ε)(1+2�(ε))|x |.

Define

C1,N := 16KC̃

α
, Ñ := max{ÑT + 1, NI I }.

If ε1 is sufficiently small as to ensure that 2Ñ L(ε)(1+2�(ε)) ≤ α for all ε ∈ (0, ε1],
then it follows by integrating and considering (75) that

∥∥∥∥∂N fε
∂θN

− ∂N fε̃
∂θN

∥∥∥∥ ≤ 8K L(ε)

α

[∥∥∥∥∂N fε
∂θN

− ∂N fε̃
∂θN

∥∥∥∥ +
∥∥∥∥∂N gε

∂θN
− ∂N gε̃

∂θN

∥∥∥∥
]

+ 4KC̃

α
|ε − ε̃|.

Proceeding similarly for gε, we obtain

∥∥∥∥∂N gε

∂θN
− ∂N gε̃

∂θN

∥∥∥∥ ≤ 8K L(ε)

α

[∥∥∥∥∂N fε
∂θN

− ∂N fε̃
∂θN

∥∥∥∥ +
∥∥∥∥∂N gε

∂θN
− ∂N gε̃

∂θN

∥∥∥∥
]

+ 4KC̃

α
|ε − ε̃|.

Hence, if ε1 is also chosen small enough to ensure that 32L(ε)(1 + 2�(ε)) < α, it
follows that

∥∥∥∥∂N fε
∂θN

− ∂N fε̃
∂θN

∥∥∥∥ +
∥∥∥∥∂N gε

∂θN
− ∂N gε̃

∂θN

∥∥∥∥ ≤ 16KC̃

α
|ε − ε̃| = C1,N |ε − ε̃|,
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proving that property (Q.2) holds for q = N . Thus, the validity of property (Q.1) for
this value of q follows immediately considering (75).

Therefore, we have proved by induction that properties (Q.1) and (Q.2) are valid
for q ∈ {0, . . . , p}. This concludes the proof of the Lemma, because property (Q.2)
ensures local Lipschitz continuity of the functions considered.
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