
Mathematische Annalen (2024) 389:745–763
https://doi.org/10.1007/s00208-023-02652-4 Mathematische Annalen

Many regular triangulations andmany polytopes

Arnau Padrol1 · Eva Philippe2 · Francisco Santos3

Received: 19 July 2022 / Revised: 2 June 2023 / Accepted: 5 June 2023 /
Published online: 1 July 2023
© The Author(s) 2023

Abstract
We show that for fixed d > 3 and n growing to infinity there are at least (n!)d−2±o(1)

different labeled combinatorial types of d-polytopes with n vertices. This is about
the square of the previous best lower bounds. As an intermediate step, we show that
certain neighborly polytopes (such as particular realizations of cyclic polytopes) have
at least (n!)�(d−1)/2�±o(1) regular triangulations.

1 Introduction

A polytope is the convex hull of a finite set of points in a real Euclidean space. Its
combinatorial type is given by its poset of faces (subsets of the polytope maximized
by linear functionals, ordered by inclusion). In the preface of his now classical book
in polytope theory [11], Grünbaum traces the problem of enumerating the number of
combinatorial types of polytopes back to Euler, and cites its difficulty as one of the
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746 A. Padrol et al.

main reasons for the “decline in the interest in convex polytopes” at the beginning of
the XXth century.

These efforts were concentrated in the case of 3-dimensional polytopes, starting
with many contributions by Cayley and Kirkman, according to Grünbaum’s his-
torical remarks in [11, Chapter 13.6]. Thanks to Steinitz’s Theorem, which gives
a correspondence between combinatorial types of 3-dimensional polytopes and 3-
connected planar graphs, nowadays we have quite precise knowledge on the number
of 3-polytopes with n vertices [5, 21] and the distribution of many combinatorial
parameters [4].

In contrast, for higher-dimensional polytopes the problem is still very far frombeing
solved. One of the main difficulties lies in the lack of a combinatorial characteriza-
tion of face lattices of polytopes. Mnëv’s Universality Theorem [16] and its extension
by Richter-Gebert [22], imply that deciding whether a poset is the face lattice of a
4-dimensional polytope is computationally hard (∃R-complete). It seems thus that a
simple combinatorial characterization is impossible, which is one of the intrinsic dif-
ficulties of the enumeration problem. The problem remains hard even when restricting
to the “generic” case of simplicial polytopes, where all faces except the whole poly-
tope are simplices (equivalently, polytopes whose combinatorial type does not change
when the vertices are perturbed), see [1].

However, the mere number of polytopes is relatively small. In 1986 Goodman and
Pollack [10] showed that the number of (labeled) combinatorially different simplicial
d-polytopes with n vertices is bounded by (n!)cd for some constant cd depending
solely on d, and Alon [2] proved that this upper bound is valid for non-necessarily
simplicial polytopes too. This contrasts with the number of combinatorially different
simplicial (d − 1)-spheres with n vertices, which grows at least as e�(n�d/2�) [12, 17].

In 1982 Shemer [23] had devised constructions producing about (n!) 1
2±o(1) differ-

ent simplicial polytopes. This matches the upper bound, except for the fact that the
constant cd in the upper bound of Goodman and Pollack and Alon is d2 ± o(1), much
bigger than the 1/2 obtained by Shemer. The construction was greatly improved by
Padrol [18] (see also [8]) who showed that there are at least (n!)�d/2�±o(1) (labeled)
neighborly polytopes. There are alternative constructions that give these many differ-
ent combinatorial types of polytopes, which led Nevo and Padrol to ask whether the
number of d-dimensional polytopes with n vertices and m facets was bounded above
by mn+o(n) (unpublished). As the maximal number of facets of a d-polytope with n
vertices is O(n�d/2�) by the Upper Bound Theorem [14], this would imply that the
bound of (n!)�d/2�±o(1) is asymptotically tight.

The main result in this paper gives a negative answer to this question, by essentially
doubling the exponent of n! in the construction of Padrol:

Theorem 1.1 The number of different labeled combinatorial types of d-polytopes with
n vertices for fixed d > 3 and n growing to infinity is at least (n!)d−2±o(1).

All the polytopes that we construct are �(d − 1)/2�-neighborly. That is, they are
neighborly for odd d, but only

( d
2 − 1

)
-neighborly if d is even. In fact, for even d

the number of neighborly polytopes in our family is at most the same as in the family
constructed by Padrol. See Remark 4.12 for more details.
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Many regular triangulations and many polytopes 747

Enumerating polytopes is intimately tied to enumerating regular triangulations of
point configurations; that is, triangulations arising as lower envelopes of polytopes
of one dimension more. In fact, the number of (combinatorial types of) simplicial
d-polytopes with n vertices coincides with that of (d − 1)-dimensional regular trian-
gulations with n − 1 vertices. See the beginning of Sect. 4 for details on this relation.
In the same vein, counting all triangulations, regular or not, is related to counting
simplicial spheres.

In particular, the Goodman-Pollack bound implies the same upper bound of
(n!)d2±o(1) for the number of regular triangulations, while the construction of Kalai
[12] can be adapted to derive that the cyclic d-polytope with n vertices has at
least e�(n�d/2�) triangulations in total [6, Theorem 6.1.2].

Observe that the upper bound is for the total number of (combinatorially different)
regular triangulations of all polytopes (for fixed parameters n and d), while the con-
struction of Kalai counts triangulations of a single polytope. For regular triangulations
of a single polytope, it is shown in [6, Theorem 7.2.10] that the Cartesian product of
a cyclic 3-polytope with n vertices and a segment has at least (n/2)! = (n!)1/2±o(1)

regular triangulations. The second result in this paper is a significant improvement of
this lower bound, showing for example that:

Theorem 1.2 For fixed d ≥ 3 and n going to infinity, there are realizations of the
cyclic d-polytope with n vertices having at least

(n!)
⌊
d−1
2

⌋
±o(1)

regular triangulations.

It has to be noted that the total number of triangulations of a polytope (or point
configuration) depends only on its oriented matroid (another combinatorial invariant
that is finer than the combinatorial type), while the number of regular triangulations
varies for different realizations of the same oriented matroid.

Apart of its intrinsic interest, Theorem 1.2 is an intermediate step for Theorem 1.1;
the proof of Theorem 1.1 consists in showing that all of the many polytopes con-
structed by Padrol [18] admit realizations with the many regular triangulations stated
in Theorem 1.2.

This makes our proof of Theorem 1.1more geometric, as opposed to combinatorial,
than previous constructions of “many” polytopes. In fact, the combinatorial types of
polytopes obtained with our method may depend on choices made along the construc-
tion, for example via the choice of realizations used for the Padrol polytopes, which
affects what triangulations of them are regular, or via the particular lifting vectors used
for the regular triangulations.

2 Definitions and notation

We will follow [24] and [6] for the terminology concerning convex polytopes, point
configurations, and triangulations, and we refer the reader to these references for
background on these topics.
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748 A. Padrol et al.

A point configuration is an ordered sequence P = (p1, . . . , pn) ∈ R
d×n . We

formally consider P a sequence rather than a set since the ordering of the points
pi is sometimes important, but we will slightly abuse notation and write things like
pi ∈ P , or call the points pi the elements of P . In this paper we will usually assume
that the points in P are distinct and in convex position, where the latter means that all
of them are vertices of the polytope conv(P). We say that P is k-neighborly if any
subset of k points is the vertex set of a face of conv(P), and just neighborly if it is⌊ d
2

⌋
-neighborly; the latter makes sense since the simplex is the only d-polytope that

is more than
⌊ d
2

⌋
-neighborly.

A triangulation T of P is a simplicial complex on a subset of [n] such that

(i)
⋃

F∈T conv({pi |i ∈ F}) = conv(P),
(ii) for all F, F ′ ∈ T , conv({pi |i ∈ F}) ∩ conv

( {
pi |i ∈ F ′} )

is a common face of
conv({pi |i ∈ F}) and conv

( {
pi |i ∈ F ′} )

.

More generally, a subdivision of P is a collection T of subsets of [n], closed under
taking faces (if F ∈ T then the set of indices of points in P in a face of conv({pi |i ∈ F})
must be in T too), that fulfills the two conditions above. See [6, Sec. 2.3] for details.

A subdivision T of P is regular if there is a lifting vector w ∈ R
[n] such that for

any F ∈ T , conv({(pi , w(i))|i ∈ F}) is a lower face of conv({(pi , w(i))|i ∈ [n]}).
Here, we call a face F of a polytope P inRd+1 lower if its outer normal cone contains
a vector with last coordinate negative. That is, if there is a functional c ∈ R

d+1 with
cd+1 < 0 that is maximized on F . We denote T (P) the set of regular triangulations of
P . For a triangulation T , we call cells its maximal faces. (These are sometimes called
facets, but we reserve the word facet for facets of a polytope).

A point q /∈ P is said to be in general position with respect to P if no hyperplane
spanned by points of P contains q, and in very general position with respect to P if
moreover no small perturbation of q changes T (P ∪{q}). An argument similar to that
in [3, Part 2] shows that configurations in very general position form a dense open
subset of the space of all point configurations.

Two points pi , p j ∈ P are said to be triangulation-inseparable in P if we have
that

(i) T (P \ {pi }) = T (P \ {p j }) up to relabeling j to i , and
(ii) for any T ∈ T (P \ {pi }) there is a lifting vector w ∈ R

[n] which restricted to
both P \{pi } and P \{p j } produces T as a regular triangulation (up to relabeling
j to i).

Let p be a vertex of conv(P). We define P/p to be any point configuration obtained
as the intersection of the half-lines positively spanned by

{
p′ − p|p′ ∈ P\{p}} with

an affine hyperplane that does not contain p and intersects all these half-lines. Fol-
lowing [6, Definition 4.2.9] we call P/p the contraction of P at the point p. All the
configurations that can be obtained as P/p have the same triangulations and the same
regular triangulations. In fact, regular triangulations of P/p are exactly the links at
p of regular triangulations of P [6, Lemmas 4.2.20 and 4.2.22]. Here, the link of a
triangulation T at a point pi , which we denote T /pi , is defined as

T /pi := {F ⊂ [n] \ {i}|F ∪ {i} ∈ T } .
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Many regular triangulations and many polytopes 749

3 Many regular triangulations

The main idea of our construction of configurations with a large number of regular tri-
angulations is to split a point into two triangulation-inseparable points and to estimate
the number of regular triangulations generated after this operation. This is inspired by
the study of triangulations of cyclic polytopes done in [19, 20].

First, we show that we can indeed obtain triangulation-inseparable pairs by such a
splitting.

Lemma 3.1 Let P be a point configuration in Rd and p ∈ P in very general position
with respect to P \ {p}. Then there is an ε > 0 such that p and p′ are triangulation-
inseparable in P ∪ {p′} for any p′ ∈ B(p, ε) in very general position with respect to
P. Here B(p, ε) denotes the ball of radius ε centered at p.

Proof Up to relabeling, we can assume that P = (p1, . . . , pn) and p = pn . By
definition of being in very general position with respect to P \ {pn}, there exists some
η > 0 such that T (P) = T (P \ {pn} ∪ {p′}) for all p′ ∈ B(pn, η). In particular, any
such a p′ fulfills the first condition for being triangulation-inseparable with p.

For each regular triangulation T ∈ T (P) we can choose a specific lifting vector
wT ∈ R

[n] that induces T , and choose it so that the point (pn, wT (n)) is still in general
position with respect to the lifted configuration {(pi , wT (i))|i ∈ [n − 1]}. Hence there
is some 0 < εT < η such that {(pi , wT (i))|i ∈ [n]} and {(pi , wT (i))|i ∈ [n − 1]} ∪
{(p′, wT (n))} have the same faces, for all p′ ∈ B(pn, εT ,). This means that wT

induces T as a regular triangulation of P \ {pn} ∪ {p′} for all p′ ∈ B(pn, εT ).
If we take ε = minT∈T (P) εT , we obtain that p and p′ are triangulation-inseparable

in P ∪ {p′} for all p′ ∈ B(p, ε). ��

The following result is our main technical lemma, which provides lower bounds for
the number of triangulations under the presence of triangulation-inseparable points.
The main ideas are illustrated in Example 3.3.

Lemma 3.2 Let P be a point configuration inRd and let p ∈ P be a vertex of conv(P)

that is in very general position with respect to P \ {p}. We denote C the minimum
number of cells in a regular triangulation of P/p.

Let p′ be such that p and p′ are triangulation-inseparable in P ∪{p′}, p′ is in very
general position with respect to P, and p′ is a vertex of conv(P ∪{p′}). Then we have

|T (P ∪ {p′})| ≥ |T (P)| × (C + 1).

Proof We denote P ′ the point configuration P \ {p} ∪ {p′}.
Let us call a regular triangulation T̃ of P ∪ P ′ good if there is a regular triangu-

lation T of P such that T and T̃ coincide when restricted to P \ {p}. Since a regular
triangulation of P is determined by its restriction to P \ {p}, this definition implicitly
gives a map

φ : { good triangulations of P ∪ P ′} → T (P).
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750 A. Padrol et al.

We claim that for every T ∈ T (P) we have

|φ−1(T )| ≥ c(T /p) + 1 ≥ C + 1,

where we denote by c(L) (and call size of L) the number of cells of a pure polyhedral
complex L . This formula implies the statement.

Let T be a regular triangulation of P . To avoid confusion we denote by T ′ the
triangulation T but considered as a triangulation of P ′. Let w ∈ R

P∪P ′
be a lifting

vector producing T and T ′ when restricted to P and P ′, which exists because p and
p′ are triangulation-inseparable. We will assume moreover a genericity condition on
w that will be detailed later at item (8).

For each t ∈ R we consider the following lifting vector wt ∈ R
P∪P ′

, which varies
continuously with t :

• For q ∈ P \ {p}, wt (q) := w(q) is independent of t .
• If t ≤ 0 then wt (p) := w(p) and wt (p′) := w(p′) − t .
• If t ≥ 0 then wt (p) := w(p) + t and wt (p′) := w(p′).
Let Tt be the regular subdivision of P ∪ P ′ produced by wt . We have that:

(1) The restriction of Tt to P \ {p} coincides with the restriction of T : Indeed, if
σ is a face of T contained in P \ {p} then w, and hence any wt , sends all of
P ∪ P ′ \ σ above some supporting hyperplane of the lift of σ ; hence, σ is a face
in Tt . Conversely, suppose σ is a cell in Tt for some t that is contained in P \{p}.
If t ≤ 0 then wt , and hence w, sends P \ σ above the hyperplane. Hence, σ is
a cell of T . If t ≥ 0 then wt , and hence w, sends P ′ \ σ above the hyperplane.
Hence, σ is a cell of T ′, which restricted to P \ {p} coincides with T .

(2) If t ≤ 0 then for every cell σ ∈ Tt , σ \ {p′} is a face in T : This is because for
t ≤ 0 we have that wt restricted to P equals w, which produces T as a regular
triangulation of P .

(3) If t ≥ 0 then for every cell σ ∈ Tt , σ \ {p} is a face in T ′: Same proof.
(4) If Tt is not a triangulation for a certain t then every non-simplicial cell is of

the form τ ∪ {p, p′} where τ is a cell of T /p. Let σ be a non-simplicial cell of
Tt . By claims (2) and (3), σ uses both of p and p′ and either σ \ {p′} is in T or
σ \ {p} is in T ′. Hence, σ \ {p, p′} is in T /p = T ′/p′.

(5) Each such τ ∪ {p, p′} appears as a cell for at most one value of t :
If t ≤ 0 then the value of t is fixed by the fact thatwt (p′) = w(p′)− t equals the
height at which the lifted hyperplane containing τ ∪ {p} meets the vertical line
{p′} × R; same, changing p and p′, if t ≥ 0. Thus, we at most have one value
of t in (−∞, 0] and one in [0,∞). Moreover, there cannot be two values, one
negative and one positive. Indeed, if τ ∪{p, p′} is a cell of Tt for t < 0, then the
point (p′, w(p′)) is below the lifted hyperplane containing τ ∪{p}, so (p, w(p))
is above the lifted hyperplane containing τ ∪ {p′} and there is no t ′ > 0 such
that τ ∪ {p, p′} is a cell of Tt ′ .

(6) Assuming Tt is a triangulation, let Lt := Tt/p\p′ and L ′
t := Tt/p′\p. Lt and

L ′
t are contained in T /p and they are complementary in the sense that their

union equals T /p and their intersection is lower dimensional. Lt and L ′
t are

contained in T /p = T ′/p′ by properties (2) and (3). They are complementary
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Many regular triangulations and many polytopes 751

because every cell τ ∈ T /p needs to be joined to one and only one of p and p′
to give a cell of Tt .

(7) In the limit when t → −∞ we have that Lt = T /p (and hence L ′
t is lower-

dimensional) and in the limit t → +∞ we have that L ′
t = T /p (and hence

Lt is lower-dimensional). In these limits, Tt equals the triangulation obtained
by placing point p′ (respectively p) in T (respectively in T ′). This implies
Lt = T /p (respectively L ′

t = T /p).
(8) We can take w sufficiently generic so that no Tt contains two different non-

simplicial cells.Suppose that (τ1, τ2) is a pair of cells in T /p such that τ1∪{p, p′}
and τ2 ∪ {p, p′} are in Tt for the same value of t . Let H1 and H2 be the two
hyperplanes in Rd+1 spanned by the lifts of τ1 ∪ {p} and τ2 ∪ {p} for that t . Our
hypothesis implies that H1 and H2 intersect the vertical line {p′}×R at the same
height (namely, at heightwt (p′)). If this happens for a sufficiently generic choice
of w then the intersection of H1 with {p′} × R does not change when slightly
perturbing the heights of all points in τ1 \ τ2: This implies that this intersection
point lies in the affine span of (the lifted) configuration (τ1 ∩ τ2) ∪ {p}. Hence,
p′ lies in the affine span of (the original) (τ1 ∩ τ2)∪ {p}, and p′ is not in general
position.

(9) If Tt is not a triangulation, and ε > 0 is small enough, then c(Lt+ε) = c(Lt−ε)−
1 and c(L ′

t+ε) = c(L ′
t−ε)+1. There is a single cell of Tt of the form τ ∪{p, p′}.

If s is in the neighborhood of t , all the cells of Ts not contained in τ ∪ {p, p′}
remain unchanged because they are defined by an open condition on s. For s < t ,
we have that τ ∪ {p} is a cell of Ts but τ ∪ {p′} is not, because p′ is above the
hyperplane spanned by τ ∪ {p}. Similarly, for s > t , we have that τ ∪ {p} is not
a cell of Ts but τ ∪ {p′} is.

Claim (1) says that whenever Tt is a triangulation it is a good triangulation and it lies
in the preimage of T . As we move t continuously from −∞ to +∞ there are finitely
many values of t where Tt is not a triangulation, by claims (4) and (5). Of course,
outside those values the triangulation Tt is constant, and claim (8) says that (if p′ is
in general position and w is generic) at those values the change in the triangulation
is a geometric bistellar flip in a cell of the form τ ∪ {p, p′}. This flip changes the
numbers of cells of T /p contained in Lt and in L ′

t by one unit, increasing L ′
t and

decreasing Lt as t increases, by (9). By property (7) the size of L ′
t grows from zero

to c(T /p) as t goes from −∞ to +∞, so we encounter at least c(T /p) + 1 different
good triangulations in the preimage of T along the process. ��

Example 3.3 To illustrate Lemma 3.2, we use a two-dimensional example (reminiscent
of some classical proofs of the recurrence relation for Catalan numbers). It has the
advantage of clarity, as it can be easily depicted, see Fig. 1.

When a point p is split into {p, p′}, the facets of the polytope that were incident to p
are divided into two families, those that remain facets after the splitting, and those that
replace p by p′. Moreover, new facets containing both p and p′ are created. Similarly,
the cells incident to p in a triangulation are divided into two families, those containing
p and those containing p′, and new cells containing both p and p′ are created. This
can be read in the link T /p, which is divided into two parts, Lt and L ′

t , without full
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752 A. Padrol et al.

Fig. 1 A two-dimensional illustration of the proof of Lemma 3.2. In the left picture, a triangulation of
a hexagon. In the rest, the vertex p is split into {p, p′}, and increasing values of the parameter t induce
different good triangulations of the heptagon P ∪ P ′

dimensional intersection: We have that F ∪{p} ∈ Tt whenever F ∈ Lt , F ∪{p′} ∈ Tt
whenever F ∈ L ′

t , and that F ∪ {p, p′} ∈ Tt whenever F ∈ Lt ∩ L ′
t .

When t = −∞, we have that Lt ∩ L ′
t = L ′

t , and it coincides with the boundary
faces of T /p that are incident to p′ in conv(P ∪ {p′}). As the values of t increase,
Lt ∩L ′

t flips successively through each of the simplices of T /p, giving rise to different
triangulations. At the end, when t = ∞, we have that Lt ∩ L ′

t = Lt , and it coincides
with the boundary faces of T /p that are incident to p in conv(P ∪ {p′}). The number
of different triangulations thus created is therefore one more than the number of cells
in the link T /p.

There are some important differences that only appear in higher dimensions. First
of all, all triangulations of a polygon are regular, while starting in dimension 3 there are
polytopes with non-regular triangulations. Moreover, in dimension two there is only
one way to go from T−∞ to T∞ since the link T /p is one-dimensional, while in higher
dimensions there are usually several different paths between these two triangulations.
The c(T /p) + 1 triangulations Tt that we see as t ranges from −∞ to ∞ will depend
on the relative position of p and p′ and the choice of the lifting vector w. Finally, in
a polygon, the vertex figure is just a segment (with interior points) and the number C
in the statement is always 1, so the lemma does not give an interesting bound in that
case.

Without any further constraint this lemma is not very useful, as conv(P/p) could
be a simplex and C = 1. However, a lower bound on C can be proved if we have
knowledge on the neighborliness of P/p, thanks to the following lemma.

Recall that for a pure d-dimensional simplicial complex C and 0 ≤ j ≤ d + 1 we
denote

h j (C) =
j∑

k=0

(−1) j−k
(
d + 1 − k

d + 1 − j

)
fk−1(C),

where fk(C) is the number of faces of C of dimension k. The numbers
h0(C), . . . , hd+1(C), collectively called the h-vector of C, are known to be nonnegative
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Many regular triangulations and many polytopes 753

in certain special cases, which include C being a topological sphere; see [24, Chapter
8].

Lemma 3.4 Let d > 2 and 1 ≤ k ≤ d + 1. Let Q be a d-dimensional simplicial
polytope on n vertices. Then the number of cells in any triangulation of Q is bounded
from below by hk(∂Q).

In particular, if Q is k-neighborly for 1 ≤ k ≤ ⌊ d
2

⌋
, then this number is bounded

by:

hk(∂Q) =
(
n − d − 1 + k

k

)
.

Proof Let T be a triangulation of Q. We want a bound on fd(T ).
We use the following result from McMullen and Walkup [15, Thm. 2], cited in a

modern version in [6, Thm. 2.6.11]. For any 0 ≤ j ≤ d,

h j (∂Q) − h j−1(∂Q) = h j (T ) − hd+1− j (T ),

where ∂Q is the boundary simplicial complex of Q, of dimension d − 1, and we take
h−1(∂Q) = 0.

Then we have:

fd(T ) =
d+1∑

l=0

hl(T )

= hk(∂Q) − h−1(∂Q) +
k∑

j=0

hd+1− j (T ) +
d+1∑

l=k+1

hl(T )

≥ hk(∂Q).

The first h-coefficients of neighborly polytopes are well known, as they achieve
the maximum allowed by the Upper Bound Theorem ( [14, Lemma 2], see also [24,
Lemma 8.26]). In particular we have:

hk(∂Q) =
(
n − d − 1 + k

k

)
.

��
Remark 3.5 From the proof one derives that for 1 ≤ k ≤ ⌊ d

2

⌋
, a triangulation T has

exactly hk(∂(Q)) cells if, and only if, h j (T ) = 0 for every j ≥ k + 1. This, in turn,
is equivalent to all interior cells of T having dimension at least d − k.

As a consequence of the previous two lemmas we have:

Theorem 3.6 Let P = (p1, . . . , pn−1, q) be a configuration of n points in very general
convex position in Rd such that:
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754 A. Padrol et al.

(i) for every d + 1 ≤ i ≤ n − 1, pi and q are triangulation-inseparable in Pi :=
(p1, . . . , pi , q), and

(ii) the point configuration P/q is k-neighborly.

Then

|T (P)| ≥
n−1∏

m=d

(
m − d + k

k

)
,

which is of order (n!)k±o(1) for fixed k and d.

Proof For k = 0 the statement is void, therefore we assume that k ≥ 1. We proceed
by induction on n. In the base case n = d + 1 we have that P = Pd is a simplex, with
only one regular triangulation, so the result is trivial.

Assume that the theorem is true for n = m−1. Note that Pm−1 satisfies the hypothe-
ses of the theorem. Indeed, the first condition is automatic and the second follows
because Pm/q is a subset of P/q, and a subset of a k-neighborly point configuration
is still k-neighborly.

Now, since pm and q are triangulation-inseparable in Pm by the first hypothesis,
we can apply Lemma 3.2 to deduce that

|T (Pm)| ≥ |T (Pm−1)| × (Cm + 1),

where Cm is the minimum number of cells in a regular triangulation of Pm/q =
(P/q)\{pm+1, . . . , pn−1}. And since Pm/q is a k-neighborly (d−1)-dimensional sim-
plicial polytope on m vertices (all points are vertices since it is at least 1-neighborly),
Lemma 3.4 implies that Cm ≥ (m−d+k

k

)
.

At the end, using the induction hypothesis we conclude that:

|T (P)| ≥
n−1∏

m=d

(
m − d + k

k

)

≥
n−1∏

m=d

(
m − d + k

k

)k

= ((n − d − 1 + k)!)k × 1
(
(k − 1)!k(n−d)

)k

= exp(kn log n + o(n log n)).

��
The combination of these results provides Theorem 1.2: a lower bound of order

(n!)
⌊
d−1
2

⌋
±o(1)

for the number of regular triangulations of cyclic polytopes in certain
realizations. Recall that the cyclic d-polytopewith n vertices is a neighborly simplicial
polytope that can be realized as the convex hull of n arbitrary points p1, . . . , pn along
the moment curve

{
(t, t2, . . . , td) ∈ R

d |t ∈ R
}
. See for example [24] for details.
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Proof of Theorem 1.2 We first fix the last vertex q = pn on the moment curve and
then define the points p1, . . . , pn−1 consecutively. At step i , we slide the point pi
along the moment curve until it is close enough to pn so that Lemma 3.1 implies them
to be triangulation-inseparable, after a perturbation of pi into very general position
if needed. For d ≥ 3, the contraction of the last vertex in a cyclic polytope with n
vertices is a (d −1)-dimensional cyclic polytope with n−1 vertices, and in particular⌊ d−1

2

⌋
-neighborly. Hence Theorem 3.6 gives the result.

It is not clear to us whether cyclic polytopes (or neighborly polytopes in general)
do indeed have more triangulations than “typical” simplicial polytopes of the same
dimension and number of vertices. In fact, in dimension two quite the opposite is true:
the convex n-gon minimizes the number of triangulations and of regular triangulations
among point configurations of n points in general position [9, 13].

4 Many polytopes

Let us call polytopal (simplicial) d-ball any (labeled) simplicial complex that can be
realized as a regular triangulation of a configuration of points in dimension d. By
adding a point “at infinity” to a polytopal d-ball one obtains a polytopal d-sphere
with one more vertex, and viceversa. Thus, the number of combinatorially different
labeled polytopal d-balls with n vertices coincides with the number of combinatorially
different labeled simplicial (d + 1)-polytopes with n + 1 vertices.

On the other hand, if two simplicial polytopes are combinatorially different then
no triangulation of the first can be combinatorially equal to one of the second,
because we can recover the boundary complex of a simplicial polytope from any
of its triangulations. Hence:

Lemma 4.1 If P1, . . . , PN are configurations of dimension d and size n in convex and
general position and with combinatorially different convex hulls, then there are at
least

N∑

i=1

|T (Pi )|

combinatorially different labeled simplicial (d + 1)-polytopes with n + 1 vertices.

In this sectionwe show that not only cyclic polytopes but all theGale sewn polytopes
introduced in [18] fulfill (in certain realizations) the conditions of Theorem 3.6. This
provides us with a large family of polytopes withmany regular triangulations, to which
we can apply Lemma 4.1 and obtain even more polytopes.

In order to have a self-contained presentation, we give in Sect. 4.1 all the definitions
and lemmas that are used in the proofs of the constructions in the Sect. 4.2. Most of
the contents of the latter can be traced back to [8, 18], but observe that the presentation
in [18] is formulated in the Gale dual setting of extensions while ours, and the one in
[8], is already formulated in a primal setting of liftings.
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Fig. 2 A positive lexicographic lifting P̂ ⊂ R
2 of a configuration P ⊂ R

1

4.1 Lexicographic liftings

A central tool for our construction are lexicographic liftings, which are a way to derive
(d + 1)-dimensional point configurations from d-dimensional point configurations.

Definition 4.2 A positive lexicographic lifting of a point configuration P =
(p1, . . . , pn) ⊂ R

d (with respect to the order induced by the labels) is any
configuration P̂ = ( p̂1, . . . , p̂n, q̂) of n + 1 labeled points in Rd+1 such that:

(i) q̂ is a point in the halfspace xd+1 > 0,
(ii) for 1 ≤ i ≤ n, the point p̂i lies in the half-line from q̂ through (pi , 0),
(iii) for d + 2 ≤ i ≤ n, and for every hyperplane H spanned by d + 1 points taken

among { p̂1, . . . , p̂i−1}, the points q̂ and p̂i lie on the same side of H .

Remark 4.3 Positive lexicographic liftings exist for every point configuration, and are
a special case of the lexicographic liftings produced with a sign vector in {+,−}n , as
defined e.g. in [8, Def. 4.1]. One way to construct a positive lexicographic lifting is
to choose q̂ arbitrarily with xd+1 > 0 and then take p̂i := (1 − εi )q̂ + εi (pi , 0) for
constants 0 < εn � εn−1 � · · · � ε1. See Fig. 2.

The faces of conv(P̂) that do not contain q̂ give a particular subdivision of P that
is called the placing, or pushing, triangulation. We refer the reader to Section 4.3.1 of
[6] for more details.

Definition 4.4 A face F of a polytope Q is visible from a point p ∈ R
d if there is

an affine functional that is zero on F , strictly positive on p and strictly negative on
Q \ F . F is hidden from p if there is an affine functional that is zero on F and strictly
negative both on p and on Q\F . Note that a face that is not a facet can be both visible
and hidden from p, and if p is in general position with respect to Q and p /∈ Q, then
any face of Q (even facets) is either visible or hidden from p.

Let P = (p1, . . . , pn) be a point configuration in general position inRd .We denote
Pi := (p1, . . . , pi ). The placing triangulation Tn of Pn is defined iteratively by taking
for T1 the singleton {1} and for Ti the union of the faces of Ti−1 with all simplices
of the form F ∪ {i} where F gives a face of conv(Pi−1) that is visible from pi . Ti
is the only triangulation of Pi that contains Ti−1. The pulling triangulation of P is
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Many regular triangulations and many polytopes 757

the union of all simplices that give proper faces of conv(P) and all F ∪ {n} where
F ⊆ [n − 1] gives a proper face of conv(P). (Proper faces are those different from
the whole polytope).

Lemma 4.5 Let P̂ = ( p̂1, . . . , p̂n, q̂) be a positive lexicographic lifting of the point
configuration P = (p1, . . . , pn) ⊂ R

d in convex position. For i ∈ [n] we denote
Pi := (p1, . . . , pi ) and P̂i := ( p̂1, . . . , p̂i ). Then:

(i) The faces of conv(P̂n) that are hidden from q̂ are exactly the liftings of faces of
the placing triangulation of Pn.

(ii) The faces of conv(P̂n) that are visible from q̂ are exactly the liftings of faces of
the pulling triangulation of Pn.

(iii) For i ∈ [n − 1], the faces of conv(P̂i ) that are hidden, resp. visible, from p̂i+1
coincide with the faces that are hidden, resp. visible, from q̂.

(iv) The faces of conv(P̂) are exactly the faces of conv(P̂n) that are hidden from
q̂, which are the liftings of faces of the placing triangulation of Pn, and all
conv({ p̂i |i ∈ F} ∪ {̂q}) where F gives a face of conv(Pn).

Proof Items (i) and (ii) are reformulations of [6, Lemma 4.3.4] and [6, Lemma 4.3.6],
which correspond to the case where the point q̂ is “at infinity”. In that case, the faces
of conv(P̂n) hidden from q̂ correspond to the lower faces of conv(P̂n), thus to faces
of the corresponding induced regular subdivision of Pn . The faces of conv(Pn) visible
from q̂ correspond to the lower faces of the lifting of Pn induced by the opposite
(negative) heights. Then, in both [6, Lemma 4.3.4] and [6, Lemma 4.3.6] where we
take the opposite heights, the condition on the constant c0 and the heights amounts to
asking that the lifting is a positive lexicographic lifting.

Item (iii) follows from the definitions and the fact that a face of a polytope Q is
hidden, resp. visible, from a point p if and only if it is contained in a facet of Q that
is hidden, resp. visible from p.

For (iv), notice that the faces of conv(P̂) that do not contain q̂ are exactly the faces
of conv(P̂n) hidden from q̂ . The same argument as before shows that they form the
placing triangulation of P̂n . If F ⊆ [n] is such that F ∪ {̂q} gives a face of P̂ , let h be
a supporting hyperplane of this face. Then the intersection of h with the hyperplane
wd+1 = 0 is a supporting hyperplane of the face given by F for conv(Pn) inRd ×{0}.

��
Corollary 4.6 Let P = (p1, . . . , pn) ⊂ R

d be a point configuration in convex position.
Let P̂ = ( p̂1, . . . , p̂n, p̂n+1) be a positive lexicographic lifting of P and let ̂̂P =
(̂̂p1, . . . , ̂̂pn, ̂̂pn+1, ̂̂pn+2) be a positive lexicographic lifting of P̂, with respect to the
same order. Then the combinatorial type of conv(̂̂P) is completely determined by (the
oriented matroid of) the point configuration P.

Proof According to Lemma 4.5 (iv), the faces of conv(̂̂P) are the liftings of faces of the
placing triangulation of P̂n+1 and all conv(

{
̂̂pi |i ∈ F

}∪{̂̂pn+2})where F gives a face
of conv(P̂n+1). The definition of the placing triangulation and Lemma 4.5 (i), (ii), (iii)
imply that the placing triangulation of P̂n+1 (and thus also the faces of conv(P̂n+1))
is determined by the placing and pulling triangulations of the Pi . ��
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If one starts with a 0-dimensional point configuration (that is a point repeated
multiple times), and then perfoms a sequence of positive lexicographic liftings always
with respect to the same order, then one obtains a cyclic polytope. If the order is
altered at each step, then many combinatorial types of polytopes are obtained, but not
necessarily neighborly. Moreover, different lifting orders might give rise to equivalent
polytopes. However, if one restricts to changing the order of the lifting only every
two dimensions, then neighborliness is preserved and the combinatorial type can be
controlled. This is used in [18] to construct many neighborly polytopes. The original
presentation in [18] is in terms of lexicographic extensions of the Gale dual, but we
refer to the following primal version for liftings taken from [8]. We repeat the main
ideas of that proof for the reader’s convenience.

Theorem 4.7 [8, Theorem5.5(i)]Let P = (p1, . . . , pn) ⊂ R
d be a k-neighborly point

configuration in general position. Let P̂ = ( p̂1, . . . , p̂n, p̂n+1) be a positive lexico-
graphic lifting of P and let ̂̂P = (̂̂p1, . . . , ̂̂pn, ̂̂pn+1, ̂̂pn+2) be a positive lexicographic
lifting of P̂, with respect to the same order. Then ̂̂P is (k + 1)-neighborly.

Proof Let S be a subset of [n] of size k or k − 1. Then {pi |i ∈ S} is the vertex set of
a face of conv(P). Hence, it follows from Lemma 4.5 (iv) that { p̂i |i ∈ S} ∪ { p̂n+1} is
the vertex set of a face of conv(P̂). The same reasoning shows that any subset of ̂̂P
of size k + 1 that contains ̂̂pn+2 or ̂̂pn+1 is the vertex set of a face of ̂̂P .

For the remaining cases, let S be a subset of [n] of size k +1. We want to show that{
̂̂pi |i ∈ S

}
is the vertex set of a face of conv(̂̂P). Letm ≤ n be the largest element of S.

Denote Pm = (p1, . . . , pm) and P̂m = ( p̂1, . . . , p̂m). We have that S\{m} gives a face
of conv(Pm−1) by neighborliness, thus S \{m} gives a face of the pulling triangulation
of Pm−1, thus S \ {m} gives a face of P̂m−1 visible from p̂m by Lemma 4.5 (ii), thus S
gives a face of the placing triangulation of P̂m , and thus S gives a face of the placing
triangulation of P̂ . It follows from Lemma 4.5 (iv) that S gives a face of ̂̂P . ��

The following lemma allows us to prove that the combinatorial type can be con-
trolled without explicitly using the rigidity of neighborly oriented matroids of odd
rank as it was originally done in [18, Proposition 6.7].

Lemma 4.8 Let P = (p1, . . . , pn) be an r-neighborly point configuration in even
dimension d = 2r such that n > d+2. Let P̂ = ( p̂1, . . . , p̂n, p̂n+1) be a lexicographic
lifting of P and let ̂̂P = (̂̂p1, . . . , ̂̂pn, ̂̂pn+1, ̂̂pn+2) be a positive lexicographic lifting
of P̂, with respect to the same order. Then n is the only index k ∈ [n] such that the
double contraction ̂̂P/{̂̂pn+1, ̂̂pk} is r-neighborly.

Proof For r ≥ 1, we know that ̂̂P is 2-neighborly, so all pairs {n+1, k} for k ∈ [n] give
edges of ̂̂P , and all points of the configuration ̂̂P/{̂̂pn+1} are vertices. This justifies
that the double contraction ̂̂P/{̂̂pn+1, ̂̂pk} is well-defined. If d = r = 0, ̂̂P/{̂̂pn+1}
is a 1-dimensional configuration of points ordered linearly n, n − 1, . . . , 2, 1, n + 2.
Thus, the double contraction is well-defind only for k = n + 2 and k = n and we
already have the result of the lemma.
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Many regular triangulations and many polytopes 759

Note that P is a realization of ̂̂P/{̂̂pn+2, ̂̂pn+1}. It follows from the definition of
contraction that a set S ⊆ [n]\{k} gives a face of conv(̂̂P/{̂̂pn+1, ̂̂pk}) if and only if
S ∪ {n + 1, k} gives a face of conv(̂̂P).

We denote P̂i := ( p̂1, . . . , p̂i ) for i ∈ [n].
We first show that ̂̂P/{̂̂pn+1, ̂̂pn} is r -neighborly. Let S ⊆ [n + 2] \ {n + 1, n} be

a subset of cardinality r . If S contains n + 2, we define S′ := S ∪ {n}\{n + 2}. S′ is a
subset of [n] of cardinality r , hence it defines a face of conv(P) and S ∪ {n + 1, n} =
S′ ∪ {n + 1, n + 2} indeed defines a face of conv(̂̂P). If S does not contain n + 2,
then it is a subset of [n] of cardinality r and hence it gives a face of conv(P). Thus,
S ∪ {n} gives a face of the pulling triangulation of P , and by Lemma 4.5(ii) a face
of conv(P̂n) that is visible from p̂n+1. Therefore, S ∪ {n, n + 1} gives a face of the
placing triangulation of conv(P̂), thus a face of conv(̂̂P).

Now, let k be an element of [n−1]. To show that ̂̂P/{̂̂pn+1, ̂̂pk} is not r -neighborly,
we will exhibit a subset S ⊆ [n] \ {n + 1, k} of cardinality r such that S ∪ {n + 1, k}
does not give a face of conv(̂̂P). Since n > d + 2, we can find a subset W of [n] of
cardinality d + 2 = 2(r + 1) that contains k but not n. Radon’s theorem implies that
there is a partition of W into two subsets W1 and W2 such that conv({pi |i ∈ W1}) ∩
conv(

{
p j | j ∈ W2

}
) �= ∅. In particular, W1 and W2 do not give faces of conv(P).

Since P is r -neighborly, W1 and W2 necessarily have at least r + 1 elements, so they
are both exactly of cardinality r +1. (This is where the assumption of even dimension
is used). We define T to be the Wi that contains k, and S := T \ {k}. Since T does
not give a face of conv(P) and does not contain n, it does not give a face of P̂n that
is visible from p̂n+1. Hence, T ∪ {n + 1} = S ∪ {n + 1, k} does not give a face of
the placing triangulation of P̂ . However, all faces of ̂̂P not containing n + 2 must be
faces of the placing triangulation of P̂ by Lemma 4.5(iv). Thus, S ∪ {n + 1, k} does
not give a face of ̂̂P . ��
Corollary 4.9 [18, Proposition 6.1] and [8, Lemma 6.1] Let P = (p1, . . . , pn) be an
r-neighborly point configuration in even dimension d = 2r . Then there are at least

n!
(d+2)! distinct labeled combinatorial types of (d + 2)-polytopes with n + 2 vertices
obtained by the following construction:

• Choose a permutation σ of n.
• Define the point configuration Pσ = (pσ(1), . . . , pσ(n)).

• Let P̂σ be a positive lexicographic lifting of Pσ and let ̂̂Pσ =
(̂̂pσ(1), . . . , ̂̂pσ(n), ̂̂pn+1, ̂̂pn+2) be a positive lexicographic lifting of P̂σ .

• Define ̂̂P = (̂̂p1, . . . , ̂̂pn, ̂̂pn+1, ̂̂pn+2).
• Take the convex hull conv(̂̂P).

Remark 4.10 In fact, [8, Lemma 6.1] gives a bound improved by a factor n + 1, but
this does not change the asymptotics of the bound on the total number of polytopes.

Proof Let ̂̂P = (̂̂p1, . . . , ̂̂pn, ̂̂pn+1, ̂̂pn+2) be a point configuration in R
d+2 obtained

as in the statement, with a permutation σ that we do not know. We will show that we
can recover σ(n), σ (n−1), . . . , σ (d+3) from P and the face lattice of conv(̂̂P). This
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implies that distinct choices for σ(n), σ (n − 1), . . . , σ (d + 3) give distinct labeled
combinatorial types conv(̂̂P), and there are n!

(d+2)! such choices.
We will consecutively recover the values of σ(m) starting from m = n until m =

d+3. Suppose that we have already recovered σ(n), σ (n−1), . . . , σ (m+1) for some
d +3 ≤ m ≤ n. We consider the point configuration ̂̂Pm := ̂̂P\{̂̂pσ(n), . . . , ̂̂pσ(m+1)}
(where we abuse notation for the labels but the only important thing is to record the last
two points). It follows from Corollary 4.6 that its combinatorial type is well defined,
because it is obtained as the relabeling of the double lifting of the point configuration
(pσ(1), . . . , pσ(m)) (with the two additional points ̂̂pn+1 and ̂̂pn+2). Moreover, since
the point configuration (pσ(1), . . . , pσ(m)) is r -neighborly, it follows from Lemma 4.8

that we can recover σ(m) as the only index k ∈ [m] such that ̂̂Pm/{̂̂pn+1, ̂̂pk} is
r -neighborly. ��

4.2 Construction of many polytopes

We will use the following slight variation of the construction used in [18] to give a
lower bound for the number of polytopes.

Theorem 4.11 [18, Theorem 6.8] The number of labeled combinatorial types of
neighborly d-polytopes with n > d vertices obtained from a 0-dimensional point
configuration by a sequence of positive lexicographic liftings (with orders that might
change along each step of the sequence) is at least

(n!)
⌊
d
2

⌋
±o(1)

.

Proof We build iteratively sets P2k that contain realizations of distinct labeled
combinatorial types of neighborly polytopes of dimension 2k with n−d+2k vertices.

We define P0 to be the singleton with the degenerate configuration of n−d labeled
points in the 0- dimensional space.

Suppose that we have constructed P2k for some 0 ≤ k <
⌊ d
2

⌋
. Let P2k+2 be the

union over all configurations P ∈ P2k of the distinct labeled point configurations
obtained from P by relabelings and two positive lexicographic liftings in the same
order, as in Corollary 4.9. This union is disjoint because if ̂̂P is a double lifting of P ,
we can recover the combinatorial type of P by taking ̂̂P/{̂̂pn−d+2k+2, ̂̂pn−d+2k+1}.
Hence, Corollary 4.9 gives that |P2k+2| ≥ |P2k | × (n−d+2k)!

(2k+2)! . Theorem 4.7 ensures
that the point configurations in P2k+2 are neighborly.

For k = ⌊ d
2

⌋
we obtain that:

|P
2
⌊
d
2

⌋| ≥

⌊
d
2

⌋
−1

∏

k=0

(n − d + 2k)!
(2k + 2)!
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≥ ((n − d)!)
⌊
d
2

⌋

∏
⌊
d
2

⌋

k=1 (2k)!
= (n!)

⌊
d
2

⌋
+o(1)

.

If d is odd, instead of taking a pyramid as in [18, Corollary 6.10], we do one

last positive lexicographic lifting on all the elements of P
2
⌊
d
2

⌋ to obtain (n!)
⌊
d
2

⌋
+o(1)

realizations of distinct labeled combinatorial types of d-polytopeswith n vertices. This
variant still conserves the number of distinct combinatorial types since we recover the
polytopes in P

2
⌊
d
2

⌋ by taking the contractions of the last labeled point. ��

Thecombinationof these constructions allowsus to proveTheorem1.1:Thenumber
of different labeled combinatorial types of d-polytopes with n vertices for fixed d > 3
and n growing to infinity is at least (n!)d−2±o(1).

Proof of Theorem 1.1 We start by applying Theorem 4.11 in dimension d −1. The last
step of the construction of the many (d−1)-polytopes in that theorem is a positive lex-
icographic lifting P̂ = ( p̂1, . . . , p̂n−1, q̂) from a

⌊ d−2
2

⌋
-neighborly (d − 2)-polytope

P .
Lemma 3.1 ensures that we can do this lifting step by step so that for every i from

d to n−1, p̂i and q̂ are triangulation-inseparable in ( p̂1, . . . , p̂i , q̂). Indeed, the value
of εi in Remark 4.3 can be taken arbitrarily small. While very general position is not
guaranteed by the construction, note that these configurations are in general position,
and hence we can do a small perturbation into very general position if needed without
changing the combinatorial type.

Moreover, note that by construction P is the contraction P̂/q̂ , and that similarly
(p1, . . . , pi ) = ( p̂1, . . . , p̂i , q̂)/q̂ . These contractions are thus

⌊ d−2
2

⌋
-neighborly.

Hence Theorem 3.6 applies: each of these polytopes has at least (n!)
⌊
d−2
2

⌋
n±o(1)

regular triangulations. Then Lemma 4.1 gives us a lower bound of (n!)d−2±o(1) labeled
simplicial types of d-polytopes with n vertices.

Remark 4.12 It follows from the construction that all these many d-polytopes
are

⌊ d−1
2

⌋
-neighborly, because they come from regular triangulations of Padrol’s

neighborly (d − 1)-polytopes.
Hence, for odd d our polytopes are neighborly, since in this case

⌊ d
2

⌋ = ⌊ d−1
2

⌋
.

On the other hand, if d is even then the following lemma shows that we do not
improve Padrol’s bound on the number of neighborly polytopes, because each of the
Padrol polytopes that we use has at most one neighborly triangulation.

Lemma 4.13 A polytope in odd dimension 2k + 1 has at most one triangulation that
is (k + 1)-neighborly.

Proof This is a direct consequence of the observation after [7, Lemma 3.1], see also
[6, Lemma 8.4.1]: a triangulation of a d-polytope is completely determined by its
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⌊ d
2

⌋
-skeleton. For a triangulation of a (2k + 1)-polytope, being (k + 1)-neighborly

exactly means that its k-skeleton is complete. ��
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