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Abstract

The Chabauty—Kim method is a tool for finding the integral or rational points on vari-
eties over number fields via certain transcendental p-adic analytic functions arising
from certain Selmer schemes associated to the unipotent fundamental group of the
variety. In this paper we establish several foundational results on the Chabauty—Kim
method for curves over number fields. The two main ingredients in the proof of these
results are an unlikely intersection result for zeroes of iterated integrals, and a care-
ful analysis of the intersection of the Selmer scheme of the original curve with the
unipotent Albanese variety of certain Q,-subvarieties of the restriction of scalars of
the curve. The main theorem also gives a partial answer to a question of Siksek on
Chabauty’s method over number fields, and an explicit counterexample is given to the
strong form of Siksek’s question.
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1 Introduction

Let X be a hyperbolic curve over a number field K. Then, by a theorem of Siegel in the
case X is affine [49] and by Faltings [20] in general, X has only finitely many integral
points. Both these proofs are ineffective, in the sense that they do not give a way to
determine the set of integral points. The Chabauty—Kim method seeks to give a method
for determining this set of points, by constructing a set of p-adic points containing the
integral points, which one can prove is finite and compute in practice. Before explaining
the Chabauty—Kim method more precisely, we clarify what we mean by integral points.

Let X be a smooth projective curve over K, with X C X and complement D := X—X.

We assume that X is hyperbolic, i.e. that 2g(X) + #D(K) > 2. Let X be a regular
model of X over Ok s, for S afinite set of prlmes D C X anormal crossings divisor
with generic fibre equal to D, and X’ := X — D. Then the theorems of Faltings and
Siegel imply that X' (Ok ) is finite.

Let p be a prime which splits completely in K and which is a prime of good reduction
for X (henceforth when we say that a rational prime is a prime of good reduction for
X, we will mean that for all v|p, v is not in S, X has good reduction at v and D
is étale over O, ). Then Kim’s method produces nested subsets X'(Ox ® Zp)s,»
and X (Ok,)s,n of X(Ox ® Zp) = [],, X(Ok,) and X (Ok,) respectively, each
containing the S-integral points of X:

vlp

X(Ok ®Zp) D X(Ok ®Zp)s,1 D X(Ok @ Zp)sz D -+ D X(Ok,s),
X(Ok,) D X(Ok,)s1 D X(Ok,)s2D -+ D X(Ok,s).

When S is empty, these sets will be written simply as X(Og ® Z), and X (Ok,)n,
and in the case X = X is projective, they will be written simply as X (K ® Q p)n and
X (Ky),. Adetailed description of X (Ox ®Z,)s,, and X (O, ) s, is givenin Sect. 3.1.
A valuable feature of the Chabauty—Kim method is that the sets X (Og ® Zp)s.,, and
X (Ok,)s,n are often computable in practice, and can be used to determine X (O s)
(seee.g. [4, 6, 15, 16]).
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Unlikely intersections and the Chabauty-Kim method... 3

In this paper we establish foundational results about the scope of the Chabauty—
Kim method over number fields, by establishing when we should expect the sets
X(Ok ® Zp)s,u to be finite. The algorithmic side of the Chabauty—Kim method has
also been developed in certain cases in depths one (see for example [50]) and two [3],
and hence these results also suggest that the Chabauty—Kim method may be a practical
method for the determination of rational points on hyperbolic curves of small genus
over number fields.

1.1 Main results

The main result of this paper is that, essentially, the status of the Chabauty—Kim
method over arbitrary number fields is the same as that over Q. More precisely, we
show that the Chabauty—Kim sets X(Ox ® Z,)s,, are finite under the same sets of
hypotheses as those needed over Q. As we explain below, the proofs of these results
are however quite different from their analogues over Q.

Theorem 1.1 Let K be a number field, and p a (rational) prime which splits completely
in K, and S a finite set of primes disjoint from K. Then X(Ok @ Zp)s,, is finite for
all n > 0 in each of the following cases.

(1) X =P' — D, where D C IP’}( is a closed subscheme with #D(K) > 2.
(2) X/K is a smooth projective curve of genus g > 1, and the conjecture of Jannsen,
or the conjecture of Bloch—Kato, hold for all the product varieties X".

In each of the following cases, there exists a finite extension L|K, such that for all
rational primes p which split completely in L, there is a prime v of K above p such
that X(Ok,)s.n is finite for all n > 0.

(3) X = E — O, where E/K is an elliptic curve with complex multiplication.
(4) X /K is a smooth projective curve of genus g > 1 whose Jacobian is geometrically
simple and has complex multiplication.

Remark 1.1 The last two cases of Theorem 1.1 involve two conditions on the primes
involved, which were erroneously not included in a previous version of this paper.
The first, that of restricting to a positive proportion of primes, already occurs in the
original work of Kim and Coates—Kim, since they require p to split completely in
the CM field by which the Jacobian has complex multiplication. It also occurs in our
work because we pass to a finite extension of K, and require p to split completely in
that. The condition of only working with one prime above p seems difficult to remove
without a deeper understanding of localisation maps in Galois cohomology.

Remark 1.2 When K = Q, Theorem 1.1 is already known: cases (1), (2) and (3) are
due to Kim [35-37]. Case (4) is due to Coates and Kim [13]. As in Ellenberg and Hast
[19] this implies finiteness of X (K, ), for any curve X which geometrically dominates
a hyperbolic curve with geometrically simple CM Jacobian (since we prove finiteness
over all number fields, we can just pass to a finite extension over which the cover is
defined, and note that for a cover X — Y, finiteness of Y (K, ), implies finiteness of
X (Ky)n). In particular, it implies finiteness of X (K) for all hyperelliptic curves X and
number fields K.

@ Springer



4 N. Dogra

When K is totally real, case (1) was proved independently by Hadian [26] and Kim
[38].

Remark 1.3 As explained below, the main input into the proof of Theorem 1.1 is an
unlikely intersection result (Proposition 4.1) for Kim’s unipotent Albanese morphism.
The idea of relating unlikely intersections to the Chabauty—Kim method also appears in
the thesis of Daniel Hast [30, §5], where he shows that, when K has areal place, case (2)
(assuming Bloch—Kato) and case (4) of the above theorem are implied by a sufficiently
strong unlikely intersection result [30, Conjecture 5.1], which is a generalisation of
a question of Siksek on Chabauty’s method over number fields. In Sect. 2.2, we give
a counterexample to this strong unlikely intersection result, which also provides a
negative answer to Siksek’s question.

Hast has independently obtained related results pertaining to the relationship
between the Chabauty—Kim method and generalisations of the Ax—Schanuel theorem
[31]. Rather than proving finiteness of X'(Og ® Z,)s,», Hast gives a Chabauty—Kim
proof of finiteness of the set X' (O ) of integral points, assuming Klingler’s Ax—
Schanuel conjecture [40, Conjecture 7.5] for variations of mixed Hodge structure, as
well as the assumptions in (1) to (4). The point of divergence in proving finiteness of
X (Ok,s) rather than X (O ®Z,) s, or X (Ok o) s, x is that, in both proofs, one wants
to prove finiteness of the Zariski closure of a set of points (either Resk g (X)(Q) or
Reskg(X)(Qp),) by considering its image under the unipotent Albanese morphism
and intersecting with a Selmer scheme. Whilst the former descends to Q, the latter
will in general just be defined over Q ,—this phenomenon already occurs in the case
of Chabauty’s method over QQ, where the set X(Q,); would be expected to typically
contain non-algebraic points even when it is finite. We elaborate on the issue of fields
of definition in the subsequent subsection.

Remark 1.4 1t would be interesting to adapt the proof of Theorem 1.1 to give a method
for determining the rational points on more general higher dimensional varieties
which have non-abelian unipotent fundamental groups. For example, can one apply
the Chabauty—Kim method to determine the rational points on some of the higher
dimensional Shimura varieties considered by Dimitrov and Ramakrishnan in [18]?

1.2 Unlikely intersections and fields of definition

The main new result used in the proof of Theorem 1.1 is a way of understanding the
zeroes of certain transcendental functions (iterated integrals) on higher dimensional
varieties. Kim’s method works by constructing, under certain Galois cohomological
assumptions, certain nontrivial locally analytic transcendental (Coleman) functions
on nvl » X (Oy) whose zero locus contains X' (O ). Since Coleman functions have
only finitely many zeroes on X'(Z), this proves finiteness when K = Q.

Over number fields, ]_[v‘ » X (Oy) is no longer one dimensional and hence the prob-
lem is to rule out that these functions conspire to have many zeroes in common. In this
paper we resolve this problem by proving a foundational result (Proposition 4.1) on
unlikely intersections for iterated integrals. In the abelian case, the main unlikely inter-
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Unlikely intersections and the Chabauty-Kim method... 5

section result (Proposition 4.1) is a straightforward consequence of the Ax—Schanuel
theorem for abelian varieties.

To describe how such unlikely intersections can occur, consider the case of the
product of Pl — {0, 1, oo} with itself, with co-ordinate functions z1, z2. Then the
Coleman functions log(z;) — log(z2) and log(1 — z1) — log(1 — z7) are independent,
in a suitable sense, but their common zero set is not codimension 2, as it contains the
diagonal. The zero locus is not Zariski dense, however. A rather complicated way of
seeing this is to observe that, on any positive dimensional component of the zero locus,
dz _ 2 gpg 42— 42 gre colinear. Hence such a component must be contained

21 22 1-z; I-22
in the subspace

21(z2 = 1) = z22(z1 = 1).

In this paper we show that unlikely intersections of this form are, in some sense, the
only thing that can go wrong. More precisely, in Proposition 4.1 we prove the following
Ax-Schanuel-type statement for iterated integrals: if the codimension of the zero set
of a set of iterated integral functions on a smooth geometrically connected quasi-
projective variety is ‘smaller than expected’, then this zero set is not Zariski dense in the
subvariety. The method of proof is an elaborate version of the example above, inspired
by Ax’s original proof of the Ax—Schanuel theorem for tori and abelian varieties. A
similar strategy is used by Bldzquez-Sanz, Casale, Freitag and Nagloo [7], where a
stronger and vastly more general Ax—Schanuel type theorem is proved used a suitable
nonabelian generalisation of Ax’s proof. Indeed, their work, specialised to the specific
context of unipotent connections on products of curves, gives an elegant conceptual
explanation for some of the more elaborate (and apparently unmotivated) calculations
in Sect. 4. Although their argument is phrased in the language of connections on
principal bundles for varieties over the complex numbers, standard arguments show
their results imply unlikely intersection results for Coleman integrals. This will be
pursued further in a subsequent work.

The second difficulty is establishing the existence of non-trivial Coleman functions
vanishing on X (Ok ® Z) s, . In the case K = Q, by a theorem of Kim this is proved
by showing that a localisation map from a Selmer scheme to local Galois cohomology
variety is not dominant (this is a nonabelian, Galois cohomological analogue of the
fact that Chabauty’s method depends on showing that the rank of the Jacobian is
less than the genus). In the Chabauty—Kim method over (Q non-dominance is typically
proved via (often conjectural) dimension bounds on certain Bloch—Kato Selmer groups
associated to the étale fundamental groups of X¢. Using Proposition 4.1, we are
then able to deduce Zariski non-density results for X(Og ® Z)s,, from results on
dimension bounds on certain Bloch—Kato Selmer groups. To prove finiteness results,
we argue by contradiction, assuming that X(Og ® Z,)s,, is infinite, and taking Z
to be its Zariski closure. To apply the unlikely intersection result via the Chabauty—
Kim method, we have to bound the intersection of Selmer groups associated to the
fundamental group of the Weil restriction Resk g X7 with local Galois cohomology
groups associated to fundamental group of the Z@p.
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6 N. Dogra

Since the unipotent fundamental group of Zg need not surject onto that of

Resk|q X, weare compelled to study a slightly novel local-global problem in Galois
cohomology. Instead of needing to bound the image of the Bloch—Kato Selmer group
of a global Galois representation V in the local Galois cohomology of V, we need
to bound the intersection of the image of the Bloch—Kato Selmer group of V with
that of the local Galois cohomology of a subspace W C V which is stable under
Gal(@p |Qp), but which need not be stable under Gal(Q|Q). This is done in several
stages. First, although we cannot assume that Z descends to a number field, we can
descend the image of its Albanese variety in that of the Weil restriction of X (see
Lemma 5.5), and we know that the Albanese of Z must surject onto the Jacobian of
one of the factors of Resk|(X). For case (2), we then use this to show that there
are pieces of the fundamental group of Resk|p(X) whose global Galois cohomology
cannot contain the fundamental group. Because our assumptions in this case imply
strong bounds on the relevant H? groups, this suffices by standard duality arguments
to prove finiteness.

For cases (3) and (4), this is not enough, because our unconditional bounds on H 2
in this case are weaker. This is why we instead prove finiteness of X (Ok, )s,, for some
v above p. To explain how this simplifies the proof, consider the case where, for all
distinct embeddings 01,02 : K — K, Hom(Alb(Xf_m), Alb(X?,oz)) = 0. Then,
up to isogeny, the image of the unipotent fundamental group of X in the fundamental
group of Res(X) is the product of the images in the individual factors of Res(X). This
allows us to reduce to the case where the image is very large. On the other hand, if
K|Q is Galois and X is defined over Q, then there is an action of Gal(K |Q) on the
Galois cohomology over K of the fundamental group of X. This gives an additional
structure to show that the Galois cohomology of the fundamental group of Z/Q,, is
not contained in the global Galois cohomology of the fundamental group of Res(X).
In cases (3) and (4) we interpolate between these two techniques, using our strong
assumptions on the Jacobian of X.

1.3 Applications to explicit Chabauty-Kim

Theorem 1.1 guarantees that the algorithms of Dan-Cohen—Wewers, Dan-Cohen and
Corwin-Dan-Cohen [14-16] for computing O s-points on P! — {0, 1, co} provably
produce finite sets, extending the theoretical scope of the algorithms beyond totally
real fields. To use the Chabauty or Chabauty—Kim method to determine X (K) for X of
genus bigger than one, at present one typically needs finiteness of X (K ® Q,), when
n = 1or2. When K = Q, the foundational work of Chabauty implies that X (Q))
is finite if r < g, where r is the Mordell-Weil rank of the Jacobian of X, and g is the
genus. The ‘quadratic Chabauty lemma’ [4, Lemma 3.2] states that X (Q),)> is finite
whenr < g+ p(Jac(X)) — 1, where p(Jac(X)) denotes the rank of the Neron—Severi
group of Jac(X) (over Q). We prove a partial generalisation of this result to number
fields. We also give sufficient conditions for finiteness of X(K ® Q), providing
a partial answer to a question of Siksek (see below). The latter result, which can
be phrased purely in terms of the classical Chabauty—Coleman method, is proved
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Unlikely intersections and the Chabauty-Kim method... 7

separately in Sect. 2, although it is also a special case of the more general results
obtained later in the paper.

Proposition 1.1 Let K|Q be a finite extension of degree d, and let r1(K) and ry(K)
denote the number of real and complex places. Let Pr denote the set of real places
of K, and for each v € Pg, let ¢, € Gk denote complex conjugation with respect to
an embedding K — C extending v. Let X /K be a smooth projective geometrically
integral curve of genus g > 1, and let p be a prime which splits completely in
K and such that, for all v|p, X has good reduction at v. Let r denote the rank of
Jac(X)(K). Suppose that for any two distinct embeddings o1, 05 : K < Q, we have
Hom(Jac(X )@’ o Jac(X )@, 02) = 0. Then we have the following finiteness results.

(D) Ifr <d(g — 1), then for all primes p of good reduction and splitting completely
in K, there is a prime v of K lying above p such that X (Ky) is finite.
@ If H}(GK,T, Tp(Jac(X))) ® Qp) <d(g — 1) + (r2(K) + ) (pUac(X)) — 1)

+ Y pUcw) — pUJry)
vePpr

then for all primes p as in part (1), there is a prime v above p such that X (Ky)>
is finite.

Remark 1.5 Assuming the finiteness of the p-primary part of the Tate—Shafarevich
group for (Jac(X), we have rk H}(GK,T, Tp,(Jac(X)) ® Qp) = rklJac(X)(K). By
modifying the definition of the Selmer scheme as in [4, Definition 2.2] to include a
condition on mapping to J(K) ® Q, (condition (c) of [4, Definition 2.2]), one can
prove finiteness of a modified version of X (K, ), for v as above, whenever

r=d(g—1+ (rn(K)+ D(p(Jac(X)) — 1) + Z p(Jcw) — p(Jr,v)
ve PR

(still assuming Hom(Jac(X)@’U1 , Jac(X)@m) = 0 for all o1 # 02). This modified
version of the Selmer scheme is also easier to compute with (see [4]) but as this
distinction is not needed elsewhere in the paper, we use the simpler definition.

In the case K = Q, case (2) of Proposition 1.1 is in fact more general than the
quadratic Chabauty lemma [4, Lemma 3.2] mentioned above. Instead it reduces to [5,
Proposition 2], which states that X (Q),)> is finite whenever

tk(J) < g = 1+ p(J) + k(NS(Jg)*=h),

where J is Jacobian of X, and ¢ € Gal(@|(@) is a complex conjugation.

Although the condition on Hom(Jac(X )@,01 ,Jac(X )@m) is generic when X is not
defined over a subfield of K, and is practical to check for curves of small genus and
number fields of low degree, it is natural to wonder whether a weaker condition is
sufficient. There are known examples where X (K ® Q)1 is infinite and r = d(g —1)
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8 N. Dogra

coming from the fact that X descends to a subfield of K|Q. In[50], Siksek asks whether
a sufficient condition for finiteness of X (K ® Q)1 is that r < d(g — 1) and X is not
defined over any intermediate extension of K |Q. In Sect. 2, we show that this question
has a negative answer, but it is not clear that the condition that we obtain is optimal.

Remark 1.6 In the case when K is an imaginary quadratic field, Proposition 1.1 (mod-
ified as in the above remark) implies that X (K, ), is finite whenever tk J(K) < 2g
and p(J) > 1, which has applications to the scope of the algorithms developed by
Balakrishnan, Besser, Bianchi and Miiller [3].

1.4 Notation and plan of the paper

In Sect. 2, we explain the relation between the application of the Ax—Schanuel theorem
to questions on Chabauty’s method over number fields. Although the main result is
essentially a special case of results proved later in the paper, we give an independent
exposition that involves none of the machinery from Kim’s method. We hope this may
be of independent interest, and provide an illustration of how unlikely intersection
results imply finiteness of Chabauty—Kim sets. In Sect. 3, we provide a brief re-
cap on the Chabauty—Kim method over Q and over number fields. We also explain
how the Chabauty—Kim method for X /K is related to the Chabauty—Kim method
for Resg|(X)/Q, where Resk | (X) denotes the Weil restriction of X (following an
analogous construction of Stix, in the context of the section conjecture, in [52]). In
Sect. 3.5, we recall the explicit description of the p-adic iterated integrals (or more
precisely, the unipotent connections) which arise in Kim’s method given in [36]. This
enable us to reduce the unlikely intersection statement required to a statement about
zeroes of iterated integrals. In Sect. 4, we then prove the unlikely intersection result,
following the strategy outlined above. In 5, we describe how to reduce the proof of
finiteness of X (Okx ® Z,)s., to specific inequalities for the dimension of (abelian)
Galois cohomology groups. In Sect. 6 we complete the proof of Theorem 1.1 by
verifying these inequalities.

The following notation will be used throughout the paper. If X is a rigid analytic
space over Q,, with formal model X, then, for any subscheme Y of the special fibre
XF/I’ we denote by ]Y[C X the tube of Y in the sense of Berthelot. This is a rigid
analytic space whose QQ,-points are exactly the Q ,-points of X which reduce to Y (F,)
modulo p. When Y is an [F ,-point of X, we refer to ]Y[ as a residue disk. If X and Y
are rigid analytic spaces over Q,, and X has a fixed formal model X, a locally analytic
morphism F : X(Q,) — Y (Q) will mean a morphism of sets which, for all residue
disks ]b[, b € X (F ), has the property that F[jp[(q,) comes from a morphism of rigid
analytic spaces ]b[— Y.We will often view such a morphism as a morphism of rigid
analytic spaces

F': ubeX(Fp)]b[_) Y.
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Unlikely intersections and the Chabauty-Kim method... 9

In particular, when we refer to the graph of F, we will mean the image of the graph
of F’" under the map

Upex @, Ib[xY — X x Y.

When we talk about irreducible components of a rigid analytic space, the rigid
analytic space will always be a closed affinoid subspace of a polydisk, or a union of
such spaces.

We denote the Galois group of a field F' by Gr. When F is a number field, and S
is a set of primes of a subfield L C F, we denote by G r s the maximal quotient of
G r unramified outside above all primes above S.

Recall that, given a scheme Z over K, we say that a Q-scheme is the Weil restriction
of X, denoted Resk|(Z), if it represents the functor on QQ-algebras

S Z(S xg K).

We will sometimes write Resk|@(Z) simply as Res(Z). The only statements about
existence of Weil restrictions that we will need are that smooth projective curves and
abelian varieties over fields, or over Dedekind domains, admit Weil restrictions [10,
7.6.4].

Given an algebraic (or pro-algebraic) group U we denote by C; U the central series
filtration

CUU=UDCQU=[U,UIDCGU=[U,CU]D---

and, unless otherwise indicated, we denote C;/C;4+1U by gr;U. We similarly define
C;L and gr; L for a Lie algebra L.

If K is a number field, and T O S U {v|p} are finite sets of primes of K, and
U is a unipotent group over Q, with a continuous action of Gk, 7, we denote by
H } s(Gk.r, U) the set of isomorphism classes of G g, r-equivariant U -torsors which
are unramified at all primes not in SU {v| p} and are crystalline at all primes above p in
the sense of [35]. In the case where U is a vector space, this recovers the usual Bloch—
Kato Selmer group [8]. For a continuous G-representation W, we define hi(G, W) =
dimg, H'(G, W), and similarly define h}’ (G, W) etc.

If L|K is a finite extension of fields, we will write Indf and Resf to denote the
functors Indgf and Resgf on Galois representations.

2 Ax-Schanuel and Chabauty’s method over number fields
2.1 Chabauty’s method and p-adic unlikely intersections
The Ax—Schanuel theorem for abelian varieties [2] can be translated into the following

statement (the translation is identical to the geometric statement of Ax—Schanuel for
tori [1] as stated in [55]).
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10 N. Dogra

Theorem 2.1 (Ax—Schanuel [2]) Let A be an abelian variety over C of dimension n.
Let Aexp C A x Lie(A) be the graph of the exponential, and let p : A x Lie(A) — A
be the projection. Let V be a subvariety of A x Lie(A). Let W be an irreducible
component of the complex analytic space V¥ N Aexp. Suppose codimya (W) < n.
Then p(W) is contained in a translate of a proper abelian subvariety of A.

Remark 2.1 This theorem can be deduced from Ax’s original theorem as follows.
Theorem 1 of [2] says that there exists a complex analytic sub-group B of A x Lie(A),
containing V" and Ay, such that

codimpg (Aexp) < codimyyzar (W).

where W% C A x Lie(A) denotes the Zariski closure of W. Let B be the subgroup
variety of A x Lie(A) generated by W72, By Chevalley’s theorem, B’ is of the form
B x By, for By an abelian subvariety of A and B; a sub-vector space of Lie(A). If
p(W) is not contained in a translate of a proper abelian subvariety of A, then p(WZ%)
generates A, and hence By = A, and p(V) U Agp generates A x Lie(A), so that
codimp (Aexp) = n.

Now let A/Q), be an abelian variety with good reduction (the generalisations of
these statements to the case of bad reduction are also well known, but we omit them as

we don’t use them, and haven’t defined the notion of locally analytic in this setting).
The p-adic logarithm defines a locally analytic group homomorphism

log, : A(Q,) — Lie(A).

in the sense of Sect. 1.4. Theorem 2.1 can be translated into a statement about log 4
via the following Lemma.

Lemma2.1 Let A/Q, be an abelian variety with good reduction. Let Ajpg C A X
Lie(A) denote the graph of the p-adic logarithm. Choose an embedding Q, — C.
Let
Aexp C Ac x Lie(A)c
denote the formal completion of the graph of the exponential at (0, 0). Then
Zexp = Z]og,(C-

Proof ’A\log,@ and Kexp are the graphs of the morphisms of formal groups

log, :Ac — Lie(A)c,
&xp, :Lie(A)c — Ac.

The morphisms €xp 4 and 167{; 4 are inverse, hence their graphs agree. O
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Unlikely intersections and the Chabauty-Kim method... 1

Now let X be a smooth projective geometrically irreducible curve of genus g over a
number field K of degree d over Q, and let J be the Jacobian of X. Let p be a rational
prime of good reduction for X. Let Res(X) := Resk|p(X) denote the Weil restriction
of X. Recall that this is a smooth projective variety of dimension d = [K : Q] over
Q. The morphism Res(X) — Res(J) induces a morphism Alb(Res(X)) — Res(J),
which can be seen to be an isomorphism by base changing to Q. Let ¥ denote the
formal completion of Res J x Lie(Res(J)) at (0, 0).
Let log; denote the p-adic logarithm map

Res(/)(Qp) — Lie(Res(J))Qp.

Since log; is locally analytic, the graph of log; gives a rigid analytic space Ajog,
and the formal completion at the point (0, 0) defines a formal subscheme Ajo, of
Yg,. Let AJ : Res(X) — Res(J) denote the Abel-Jacobi map with respect to the

chosen basepoint b € Res(X)(Q). Let J(K) C LieRes(J)q, denote the Q,-vector
space generated by the image of Res(J)(Q) in Lie Res(J )@, under the map log. Let

X(K®Qp) C Res(X)%‘p denote the rigid analytic space (log oANI(J(K)).
Corollary 2.1 Let Z be a positive dimensional geometrically irreducible subvariety of

Res(X)Qp. Let L denote the image of Lie(Alb(Z)) in Lie(Res(J))Qp. Let W be an
irreducible component of Z N X(K ® Qp)1. Suppose

codimz (W) < codimz (L N J(K)).

Then the projection of W to Res(X)q, is not Zariski dense in Z. In particular, if

tk(J(K)) <d(g — 1), then X(K ® Q)1 is not Zariski dense in nvlp X(Ky).

Proof Let B denote the image of Alb(Z) in Res(J)q,- Define V. C Res(J)q, x
Lie(Res(J))@p by

V =AJ(Z) x J(K).
Then the map (AJ, log; cAJ) induces an isomorphism
X(K®Q)INZxAgNV.

Let D be a residue disk of Jg, x Lie(J)q, intersecting Ajog N V' non-trivially. For
any point (x,log(x)) in Ajg(Q)), the group law on Jo, X Lie(J)Qp induces an
isomorphism

Jg, x Lie(/)g, —> Jo, x Lie(J)q,- (1)
sending (x, log(x/)\) to (0,0). Let P be a point of W. Using (1), we may assume

P = (0, 0). Let W denote the formaLcompletion of W at P. Choose an embedding
Qp < C. Then, by Lemma 2.1, W¢ is an irreducible component of the formal
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12 N. Dogra

completion of V¢ N Aeyp at the (0, 0). Then Wc is the formal completion at (0, 0) of
an irreducible component W of Aexp N V satisfying

codimy, (W) < dim(B).

Hence, by Theorem 2.1, p(W) is contained in a translate of a proper abelian subvariety
of Bc, hence the same holds for W and hence for W. Let B’ C B be the translate of a
proper abelian subvariety containing W. This implies that the Zariski closure of W is
contained in the pre-image of B’. In particular, the Zariski closure does not equal Z,
since it does not generate Alb(Z). m]

2.2 Applications to Siksek’s question

In [50], Siksek examined the question of when X (K ® Q) can be proved to be finite
for a curve X of genus g. In particular, he asked whether a sufficient condition for
finiteness of X (K ® Q) is that, for all intermediate extensions K|L|Q over which
X admits a model X’/L, the Chabauty—Coleman condition

rk(Jac(X")(L)) < (g — DIL : Q] @

is satisfied.

This question has a negative answer, as one can construct counterexamples as
follows. Let X be a curve of genus go defined over Q, such that the p-adic closure of
Jac(X0)(Q) in Jac(X)(Q,) has finite index. Let K|Q be a finite extension such that
the rank of Jac(Xo)(K) is < [K : Q](go — 1). Let X — X k be a cover such that X
is not defined over a proper subfield of K, and the Prym variety P = Ker(Jac(X) —
Jac(X)x)? has the property that the p-adic closure of P(K) in nvlp P(K,) has
finite index. Then X satisfies (2), but X(K ® Q,); will contain the pre-image of
X0(Qp) C ]_[U‘p X0(Qyp) in Hvlp X(Qy), and in particular will be infinite.

For example, we can take X to be the curve

2 _ x4_£ x2_2_7 ’
27 11

take K = Q(+/33), and take X to be the degree two cover of X given by

, g 2916-b4+484 , —128304-b+ 168112 ,
X

o= 297 8019
214057728 - b — 35529472 , | ~10784721024 - b + 8742087508
23181643 64304361 ’
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where b := /11/27. The Jacobian of X is isogenous to Jac(Xg) g times the rank two
elliptic curve

5 2916-b+484 276156864 - b 4+ 116895680

o 97 0T 2381643 4
3, 384912-b— 168112x2 N 3594907008 - b — 4270950016x
a 8019 21434787 '

This also gives a counterexample to Conjecture 5.1 of [30], which is a generalisation of
Siksek’s question to the setting of Kim’s method. A generalisation of this construction
has recently been considered in [54], where it is referred to as a base change Prym
obstruction.

The Ax—Schanuel Theorem implies the following weaker form of Siksek’s question
has a positive answer. Informally, we can phrase the result as follows: Siksek’s question
asks whether, for finiteness of X(K ® Q)1, it is sufficient for all subvarieties of
Resk|p(X) arising from the diagonal embedding of Resy g(X) to satisfy the usual
Chabauty—Coleman condition, where L C K is a subfield. Whilst this is not true in
general, the corollary below says that it is sufficient for all irreducible subvarieties of
Resg (X )@p to satisfy a Chabauty—Coleman-type condition.

Corollary 2.2 Let X be a smooth projective curve of genus g over K. Let J — B be
a quotient of J defined over K. Suppose that the cokernel of

Res(B)(K) ® Q, — Lie(Res(B))g,

has rank > [K : Q. If X(K ® Q)1 is infinite then there exists a positive dimensional
subvariety Z of ResK|Q(X)@ , such that the image A of Alb(Z) in ResK|Q(B)@

P P
satisfies

codimyp je(4) Lie(A) N B(K) < dim(Z),
where B(K) denotes the @p-subspace ofLie(ReSK‘Q(B))@ generated by B(K).
P

Proof Let Z C Res(X )g, bea positive dimensional irreducible component of the
P
Zariski closure of X(K ® Q,)1. Let A denote the image of Alb(Z) in ResK‘Q(B)@ .
4
Since X (K ® Qp)1 N Z is Zariski dense in Z by construction, Corollary 2.1 implies

that the codimension of Lie(A) N J(K) ® @[, in Lie(A) is less than the dimension of
Z. O

Proof of Proposition 1.1, case (1) Recall that we suppose that
Hom(Jac(X)@m , Jac(X)@m) =0 3)
whenever o1 # 02. Let Z C Res(X)q, be an irreducible component of the Zariski

closure of Res(X)(Q,)1. Note that, since Z is an irreducible component of the Zariski
closure of a set of Q,-points of Res(X)q,, it is actually geometrically irreducible.
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14 N. Dogra

Suppose, for contradiction, that the projection of Z to every factor of Res(X)q, =~
l—[v‘ » XK, is dominant. Then, by assumption, Alb(Z) surjects onto every factor of
Res(J)Qp. Then, by (3), it must be the case that Alb(Z) surjects onto Res(J)Qp. This
contradicts Corollary 2.2. O

Remark 2.2 Note that the condition in Proposition 1.1 (concerning the homomor-
phisms between J, ¢ for different embeddings o) certainly implies that X does not
descend to a subfield, however it s strictly stronger. The explicit counterexample given
above has the property that it can be explained by a quotient curve which does descend
to Q. It is natural to wonder if there exist ‘stronger’ counterexamples not explained by
a quotient curve which descends to a subfield. For example, does there exist a genus
two curve X defined over a quadratic field K |Q, with simple Jacobian J, which gives
a negative answer to Siksek’s question?

3 The Chabauty-Kim method
3.1 Selmer varieties

To describe the main obstacle to proving finiteness over general number fields, we
first explain Kim’s method over Q, following [35, 36]. Let X', S and p be as in the
introduction. Let Ty denote the union of the set of primes in S, the set of primes
ramifying in K|Q and the set of primes of bad reduction for X, and let T := Ty U
{v|p}. Suppose we have a K -rational point b € X (Ok s). For any field L|K, and
any L-point y € X (L), we have a Gal(Z|L)—equivariant nf‘(Xz, b)-torsor (where
nft(Xz,’ b) denotes the étale fundamental group of X7) given by the étale torsor of
paths 7{'(X7; b, y). Hence we have a commutative diagram

X(Ok.s) H' (G, n{' (X%, b))
loc
[Tx&o < [T ®©Ox) ———[[#' G, 7l Xz, .00
ves veT\S veT

Hence a natural obstruction to (x,) € ]_[Ues X(Ky) x HUGT\S X (Ok,) coming from
x € X(Ok s) is that [nf‘(Xfu; b, x,)] lies in the subspace loc H' (G, nft(Xf, b)).

In practice, the set H LGk, nlé‘(X@, b)) is rather mysterious, and Kim’s method
starts by replacing it with a more tractable object. Namely, for any variety Z over

a field K of characteristic zero, and b € Z(L), we define nf tQp (X7, b) to be the
Qp-unipotent completion of nft(Zz, b) [17, §10], and define

Un(Z) = Un(Z)(b) 1= ," ¥ (Z7. b) [ Copr . "% (27 b).
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Returning to the setting of X'/Ok s and b € X(Ok_s) as above, we have a com-
mutative diagram

Jn

X(Ok.s) HY(Gk 1. Un(X)(b))
loc,
[Tx&) x [T *0k,) —=———[] #' Gk, U.)®)),
ves veT\S [T jn.v veT
veT

where the map j, may be defined as follows: by definition of the unipotent completion,
we have a Galois equivariant map 7 {* (Xg b) — U,(X)(b), and hence by functoriality
a map

HY Gk, n{'(Xg, b)) = H' (G, Un(b)).

By Grothendieck’s specialization theorem [47, §X], the image of [nf‘(Xf; b,x)]in
H'(Gg, Uy, (b)) will be unramified at all v outside of T, and hence defines an element
of the subspace H! (Gk.1,Un(D)).

Hence a natural obstruction to (x,) € [[,c5 X(Ky) X ]_[UeT\S X (Ok,) coming
from x € X(Ok ) is that (j,,,(xy)) lies in the subspace loc, HI(GK,T, U, (b)). For
a rational prime p we denote by X' (Ok ® Z)s,, the image
of ([,er jnw) Moc, HY(Gk 1, Uy) in Hvlp X (Oy) under the projection

[[x&n x [] k)= []x©w.

ves veT\S v|p

That is, X(Ok ® Zp)s,, is simply the set of all tuples (x,) in ]_[Ulp X (Ok,) which
extend to a tuple (x,) in [, g X(Ky) X ]_[UeT\S X (Ok,) for which (j,,»(xy)) lies in
the image of HI(GK’T, U, (X)(b)). For v a prime above p, we define X (Ok, )s,, to
be the projection of X (Og ®Zp)s.» to X (K, ). Equivalently, it is the set of Ok, -points
whose H'! (Gk,, Up) class extends to a Hv’eT\S H! (Gk, > Un) class in the image of
HY(Gg 1, Uy).

By a theorem of Kim and Tamagawa [39, Corollary 0.2], for v prime to p and not in
S, the map j, , has finite image. Let o € ]_[UGTWS Jnv(X(O(Ky))). Let Sel(Up)y C
H },T(G k.7, Un(b)) denote the fibre of o with respect to the localisation map (the
Selmer scheme of U, with local conditions «). Let X (Ok 5)e C X (Ok s) denote the
subset of points mapping to Sel(U, )« (Q)) under j,, and let X (O ® Z, ) denote the
subset of p-adic points mapping to loc, (Sel(Uy)q). There is a commutative diagram
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16 N. Dogra

Jn
X (Ok,$)a ————— Sel(Un)a

i ) ilocp
I—[U|p Jn,v

[T, X©O0) == T1,, H}(Gk,, Un(X)(b)). 5

We define
Sel(Uy) := U,Sel(U,)q,

where the disjoint union is over all « in the finite set

[T vk c [ H'Gk, Un(X)B)).

veTp—S veTyp—S
Note that

-1

X(Zp@O)=|[]i] (SelWn).
vlp

More generally for any Gg-stable quotient U of U,, we can define maps j, :
X(K,) — Hl(GK, U), Selmer schemes Sel(U), and global maps j : X(Og.s) —
Sel(U), and X (Z, ® Ok)s,u. Whenever U is a quotient of U ', we have an inclusion

X(Zp, @ Ok)s,u D X(Zp @ Og)s,u-

We recall the interpretation of Sel(U),, in terms of twisting.

Lemma3.1 Ler @ € HI(GK,T, U) be a cohomology class whose image in
[Toes H! (Gk,, U) is equal to a = (o). Let U denote the twist of U by the torsor
a. Then we have an inclusion

Sel(U)g = H} s(Gg.1.U%)

Proof Recall from [48, §1.5.2 Proposition 34] that the twisting construction defines
an isomorphism

H'(Ggr.U%) ~ H' (Gg.1.U),
which sends the trivial torsor to the class of &, and is functorial in both arguments.
Hence, under this isomorphism, classes which are trivial at v # p go to classes which

are equal to oy, at v, and classes which are crystalline go to classes which are crystalline.
O
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In [36], Kim proves two fundamental properties of the diagram (5). First, the Galois
cohomology sets Sel(U) and H'! (GQ , U) are representable by QQ,-schemes of finite
type, in such a way that the morphlsm loc,, is algebraic. Second, the map loc, is
algebraic, and that for all v|p, j, is locally analytic (in the sense defined in the intro-
duction), and for all z € X(O,), the map j, |}, has Zariski dense image. If K = Q
and loc,, is not dominant, then the set X' (Z ), is thus finite, since on each residue disk
it is given by a non-trivial power series.

3.2 Trading degree for dimension in the Chabauty-Kim method

Over number fields, the situation is sli ghtly more complicated. Suppose that the image
of loc,, has codimension d in Hvl » H (Gk,, U(b)). Then, on each residue polydisk

1z[C Hvlp X (O,), we deduce that ]z[ﬂX((’)K ® Zp) is contained in the zeroes of d
power series. However, this does not imply that |z[NX (O ® Z,) is finite.

First, we replace the problem of finding K -rational points on X with that of finding

Q-rational points on the Weil restriction Resg|p(X). We recall some properties of
the Weil restriction from [52]. Given topological groups G, H, N with H < G finite
index and a continuous action of H on N, define Indg (N) to be group of continuous
left H-equivariant maps G — N. This has a natural continuous action of G (see [48,
1.5.8]).
Proposition 3.1 ([52, Proposition 8]) Let G be a profinite group, and H a finite
index subgroup. Let U be a topological group with a continuous action of H, and
let Indg U — U denote the non-abelian induction, as defined in [52, 2.1.2). Then the
natural map

HY(G,nd% U) — H'(H, U).
is an isomorphism.

Lemma 3.2 (Stix, [52]) There is an isomorphism
7 (Res(X), b) ~ IndL 7§'(X, b),
inducing a Gg-equivariant isomorphism
7§ (Res(X)g. b) = Indy 7{' (X% b).
By Proposition 3.1, this induces an isomorphism

H' (G, 7{'(Xg, b)) ~ H' (Gg, 7} (Res(X)g, b)),
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giving a commutative diagram whose vertical maps are bijections

X(K) ——— H'(Gg, 1 (Xg, b)) ——— H'(Gk, Un(X)(b))

|

Res(X)(Q) —— H!(Gy, nft(Res(X)@, b) —— H'(Gg, U, (Res(X)(b)).

Lemma 3.3 Ler G be a topological group, H a finite index subgroup, and K < G a
closed subgroup. Let U be a topological group with a continuous action of H. Then
we have a K -equivariant isomorphism of topological groups

G ~ K
Indf W)~ [] Indk_ . . U"
xeH\G/K

where U* denote the group U with action twisted by conjugating by x.

Proof Recall that Indf, (U) is, by definition, the set of continuous H -equivariant func-
tions G — U. Such a function is uniquely determined by where it sends H\G. Hence,
via the bijection G/H =~ Lyey\G/k Hx K, we obtain a bijection

nd% (U) — ]—[ IndX

x
KNxHx™! U-.
xeH\G/K

which may be checked to be K-equivariant, as in the classical case of Mackey’s

restriction formula. O

Lemma 3.3 and Proposition 3.1 together imply that, for all primes [ # p, we have
isomorphisms

[[H#' Gk, Un(X)(b) =~ H' (Gqy,, Un(Res(X)(b)). ©)
vl|l

For the remainder of this paper, we denote U, (Res(X))(b) by U, (b), or sometimes
simply Uj,.

Lemma 3.4 At p, we have an isomorphism of unipotent groups with filtration over

Qp

URReskio(X)g,) ) >~ [] UR(Xq,.0)bo).
0:K—=Q),

where the product is over all o in Hom(K, Q).
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Proof This follows from the fact that, since p splits completely in K, we have

Resgo(X) xq Qp ~ HX XK.o Qp.
o

Hence we obtain a commutative diagram whose vertical maps are bijective

[Ty X(Ko) ——T1,, H}(Gk,, Un(X)(0) —— T, USR (Xk,)/ F°

Res(X)(Qp) — H}(Gq,, Un(Res(X)) (b)) —— UgR (Res(X)q,)/ F°

If S C §', then by definition X(Z, ® Ok)s,n C X(Z, ® Ok)s », and in particular
finiteness of the latter implies finiteness of the former. Hence, enlarging the set S if
necessary, we may assume that S is of the form {v|/ : [ € Sp}, for a finite set Sp of
rational primes. Then, by (6) and the preceding commutative diagrams, the bijection
X(Ok @Zp) ~ ResoK,S|ZS0 (X)(Zp) induces a bijection

RCSOK_S\ZSO (X)(ZP)S(),VL x~ X(OK X Zp)S,n- (7)

To ease notation, we will sometimes write ResOKMZS0 (X) simply as Resg | (X), or
Res(X). Hence (7) reduces Theorem 1.1 to proving finiteness of Resg | (X)(Zp)s,n-

We recall the following result from [6]. Although the proof was given for curves,
it also applies for any smooth geometrically irreducible quasi-projective variety.

Lemma 3.5 [6, §2] Let U (b) be a quotient of U, (b), and b’ another basepoint. Let
U (') be the corresponding quotient of U, (V). Then
XQpuw) = XQpuw)-
3.3 Tangential localization
In this subsection we recall Kim’s description of the map on tangent spaces
dloc, : T.H{(Gq,r. Un) = Tioe,(0)H} (Gg,. Un)

in terms of (abelian) Galois cohomology. For a variety Z, we let L, (Z) denote the
Lie algebra of the group U, (Z), and similarly denote by LgR(Z) the Lie algebra of
U,?R(Z). When Z = Res(X), we write these simply as L, and LgR. The following
result is proved by Kim for Galois-stable quotients of fundamental groups of curves.
Iterated intersection with generic hyperplanes then implies the result for unipotent
fundamental groups of arbitrary smooth geometrically connected projective varieties,
by the Lefschetz hyperplane theorem for fundamental groups [25, XII Corollary 3.5].
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Proposition 3.2 ([38, Propositions 1.1, 1.2 and 1.3]) Foranyc € H}(GQ,T, U,), there
is a commutative diagram whose vertical maps are isomorphisms

| dloc, |
TCHf’S(GQ,Ts Uy — Tlocp(c) Hf(G@p» Un)
1 c IOCp 1 c
H} §(Go.r. L) ——— H}(Gq,, L)

where L{, denotes the twist of L,, by c¢ by the adjoint action of U, on L,. In particular,
if the map loc, : H},S(GQ,T, L) — H}.(G@p, LY) is not surjective then loc,, :
H}’S(GQ,T, U,) — H} (Gq,, Un) is not dominant in a neighbourhood of c.

Lemma 3.6 Let U be a Galois stable quotient of U, with Lie algebra L. Let UR .=
Dar(U). Let H be a G, -stable subgroup of U. Let W be an irreducible component

of loc,, H}’ s(Gq,r. U) N Dar(H)/F°. Then

dim W < max  dimloc, H} ¢(Gg.r. L) N Lie(Dar (H'?))/F°,
ceH},S(G@,T,U) ’

where Lie(H)"*r¢/F° is defined to be zero if loc pC Iis not in the image in
H/F° and loc,, H},S(GQ,Tv LY C H}(GQP, L' €Y is viewed as a subscheme of
Lie(Dgr (U'¢r ©))/ FO via the Bloch-Kato exponential.

Proof The dimension of W is bounded by the generic dimension of its tangent space
(i.e. the dimension of the tangent space at the generic point n € W). Since the map

Te(loc,' W) = Tioc, ) W
is generically surjective, we have

dim W < dim T,;(W)
< max dimdloc, TCH}’S(GQ,T, Uu)yn Tlocp(c)(DdR(H)/FO)

celoc,! H/FO
= max loc, H} (Go.r. L) N Lie(Dar (H'*” )/ F°.
ceH}(GQ,T,U) ’

O

By avirtual basepoint, we shall mean a Q,-point z € Res(X')(Z,) such that j(z)
lies in the image of Sel(U), together with a torsor P € Sel(U) such that loc, (P) =
Jj (P). In particular, the notion of a virtual basepoint depends on a choice of quotient of
nft’Q” (Res(X)@, b), but by Lemma 3.5 the property of z € Res(X)(Z,) extending to
a virtual basepoint is independent of the choice of basepoint. Given a virtual basepoint
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(z, P), we obtain a Q,-unipotent group U P defined to be the twist of U by the Go,r-
equivariant U-torsor P. Then U " is equipped with an action of Gq, 7, and morphisms

Jew :Res(X)(@Q,) — H'(Gg,, U")
Jz.p :Res(X)(Qp) — H}(GQP, UP)
Jo :X(Ok.5) — Sel(UP).

Lemma 3.7 For every collection of local conditions such that X (O ® Zp)y is non-
empty, there is a virtual basepoint (b, P) € X(Q)) such that

X(Ok ® Lp)a C jj, '(locy H} o(Go,r.U")). ®)

Proof If X(Okx ® Zp)y is non-empty, then by definition there exists P €
Hl(GK,T, U, (X)) such that loc,(P)) = a, forall v € Tp — §, and loc, (P) = j(b)
for some b € Res(X)(Q),). Then, taking (b, P) as a virtual basepoint, we deduce (8)
from Lemma 3.1. O

Often, when we work with virtual basepoints (b, P), we will simply write U rather
than U”, and write the virtual basepoint simply as b.

3.4 The unipotent Albanese morphism

We now recall some properties of the morphism X' (O,) — H}(G K, Un) when v|p
from [36]. We refer to [36] and the references therein for the background material
regarding p-adic Hodge theory. As we always take p to be a prime which splits
completely in K, we henceforth fix an isomorphism K, ~ @Q, and work over Q,.
Let X be a smooth curve over Z,. Fontaine’s functor Dc;s sends continuous Q,
representations of G, to filtered ¢-modules over Q. Recall that a filtered ¢-module
over Q,, is a finite dimensional vector space W over Q,, equipped with a Q,-linear
Frobenius automorphism ¢, and a decreasing filtration F* on W.

Asexplained in [36], Fontaine’s functor induces functors Dcjs and Dgr on unipotent
groups over Q, with a continuous action of G, . The target of Dqyis is the category of
unipotent groups U over QQ,,, together with an automorphism ¢ of U, and a filtration
Fil by subgroups on U (we shall refer to an object of this category as a filtered ¢-
group). The target of Dgr is the category of unipotent groups over QQ, equipped
with a filtration by subgroups. We say a Gg,-equivariant U-torsor P is crystalline
if it admits a G » -equivariant trivialisation when base changed to Bgss (if O(U) is
ind-crystalline, this is the same as saying that O(P) is ind-crystalline). The functor
D.is induces an equivalence of categories between crystalline U -torsors and filtered ¢-
torsors over Dgis(U) (where a filtered ¢-torsor for a filtered ¢-group is simply a torsor
with compatible filtration and ¢-action). By [36, Proposition 1], if U is crystalline and
Deris (U)?=! = 1, this induces an isomorphism of Q ,-schemes (a ‘non-abelian Bloch—
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Kato logarithm’)
H}(Gg,. U) = Dir(U)/F°.

Let U°S(b) denote the Tannakian fundamental group of the category of unipotent
isocrystals on Af,. This is a pro-unipotent group over Q. Let U dR (p) denote the
Tannakian fundamental group of the category of unipotent flat connections on Xq,,.
This is a pro-unipotent group over Q,. By Chiarellotto-Le Stum [12, Proposition
2.4.1], we have an isomorphism of Q,-group schemes

U (b) = UR(b).

Let U,fris (b) and U,?R (b) denote the respective maximal n-unipotent quotients. Then
US"S(b) has the structure of a filtered ¢ group over Q »- By Olsson’s non-abelian com-
parison theorem [46, Theorem 1.11], U,, (b) is crystalline, and we have an isomorphism
of filtered ¢ groups over Q,

Deris(Un (b)) == U;™(b).
Putting all this together, we obtain a locally analytic morphism
Jnp : X(Zp) — URD)/FO.

3.5 The universal connection

Let b € X(Z)) be a virtual base-point. The goal of this subsection is to describe the
map jy, p in a formal neighbourhood of b, following Kim [36]. Let CIR(X) denote the
category of unipotent flat connections on X. A pointed flat connection will be a flat
connection V on X, together with an element v € b*V .

Definition 3.1 (The depth n universal connection, [36, section 1], [26, section 2]). The
depth n universal connection &, on a pointed geometrically integral variety (Z, b) is
a pointed flat connection (&,, e,;) that is r-unipotent, such that for all n-unipotent
flat connections V, and v € b*V, there exists a unique morphism of connections
f & — V such that b*(f)(e;) = v. When we want to emphasise the dependence
on Z, we write it as £, (Z).

Lemma 3.8 For all n, a universal n-unipotent pointed flat connection exists, and there
is a canonical isomorphism

limb*&, =~ ULie(7{R(Z, b))),

where U (Lie(JT]dR(Z , b))) denotes the universal enveloping algebra of the Lie algebra
dR
of i~ (Z, b).
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Proof More generally, we can define a depth n universal object in any Tannakian
category (C, w) with as a pair (V,, v,), where V, is an n-unipotent object of C, vy, is
an element of w(V,), and for all n-unipotent objects W, and w € w (W), there is a
unique morphism V, — W sending v, to w.

If F: (C,w) — (C’, ) is an equivalence of Tannakian categories, then it sends
universal n-unipotent objects to universal n-unipotent objects. In particular, if C is
the category C®R(Z) of unipotent flat connections on Z, with fibre functor b*, then
C has a universal n-unipotent object if and only if the category of representations of
n{iR (CIR(Z), b), with fibre functor given by the forgetful functor, does.

Using the equivalence between nfR (CdR(Z ), b)-representations and
Z/I(Lie(nfR(Z, b)))-modules, we see that Z/I(Lie(nfR(Z, b)))/I"*! is a universal n-
unipotent object, where I denotes the augmentation ideal. O

The following Lemma describes the morphisms of connections of the universal
unipotent connection corresponding to certain natural morphisms of nfR(Z , b) mod-
ules.

Lemma 3.9 Let &, be as above.

(1) Let x € b*&,, and let m(—, x) : &, — &, denote the unique morphism of connec-
tions which, in the fibre at b, sends 1 to x. Then, for all y € b*&,,

y-x =b*(m(, x))(y).

More generally, for any unipotent flat connection V, and any v € b*V,x €
1(i£1b*€,,, the action of x on v is given by b*(f)(x), where f : 1(i£15n -V
is the unique (pro-)morphism of connections sending 1 to v.

(2) Let

A @gn g 1(&1(5,1 ® &) )

denote the unique morphism of pro-connections which, in the fibre at b, sends 1
t0 1®1. Then b* A is equal to the co-multiplication on 1(1r_n b*&p.

Proof As in the proof of Lemma 3.8, it is enough to check this with CI® (Z) replaced
by the category of n{lR(Z , b)-representations. Hence part (1) is immediate. For part
(2), the co-multiplication is a morphism of (pro-)representations of nfR (Z,b). H/gnce,
by universal properties, it is uniquely determined by the fact that it sends 1 to 1®1. O

Let Z' be an affine open of b, and let Z denote the formal completion of Z at b.
The bundle &, is unipotent, and hence admits a trivialisation

T: &y — Oz @ b*E,.
With respect to this trivialisation, the connection V,, is given by d — A, for some
A e End(b*é’,fR(b)) ®x Qzx. The universal connection (&,) carries a filtration by
sub-bundles (l(ir_n F*¢&,) satisfying the Griffiths transversality condition

Va(F'&) C F'7lE ® QY
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(see [26, §3]). Replacing Z’ by a smaller affine open neighbourhood if necessary,
we may choose a group-like section (F},) € 1(£1 HO(Z’, FY€,)—i.e. a section which
satisfies

A((Fa)n) = (Fa®Fy)n.
The connection &,, admits a trivialisation on Z ,1.e. an isomorphism of connections
G: (&3 V) = W ER @k OZ), d)
Viathe trivialisation G, we may view F;, as a function 7Z — b*én. Via the trivialisation
7, we obtain an endomorphism (t|3)o G~ linEnd(b*E,)®O(Z). This endomorphism

sends 1 to something in 147 (recall that / denotes the augmentation ideal of l(in b*&p),
hence we have a well-defined element

Tz =log((r|3) 0 G~ (1)) € IP*E(Z)RO(Z).
In words, exp(J,.7) is a horizontal section of (£,, V,) on a formal neighbourhood

of b, described with respect to the affine chart 7. In particular, by definition J, - (G)
satisfies

dexp(Jn,:(G)) = Aexp Ju,c(G)). (10)

Lemma 3.10 The section exp(J ;) := (exp(J,,z))n is group-like, i.e. it satisfies

A(exp(J 7)) = (exp(J)®(exp(J1)).

Proof Since they are both horizontal sections of Vege, the left hand side and right
hand side are equal if and only if they are equal at one fibre, and at b they both equal
1®1. o

We deduce that J, ; lies in LgR(Z)®O(2) (recall that LSR(Z) is defined to be the
Lie algebra of U,‘ER(Z)). We also sometimes think of J, ; as a morphism

Ju::Z— LR (2Z)

Remark 3.1 At this point, there is no obvious reason for working with J, ; rather
than exp(J 7). The reason for working with J, ; is that, (as a consequence of (10)),
J .- satisfies a particularly simple differential equation (see (21) and Lemma 4.6)
which is used in the proof of the unlikely intersection result needed for the proof of
Theorem 1.1.

@ Springer



Unlikely intersections and the Chabauty-Kim method... 25

Lemma3.11 Let X be a smooth geometrically irreducible curve over Q,, and b a Q,
point of X. Let T be a trivialisation of Lln En (D) as above. Then the unipotent Albanese
morphism

X(@Qp) > UR(Xq,)/F°

is given, on a formal neighbourhood of b, by exp(J,¢) - F;l.

Proof This follows from Kim’s explicit description of the map j, in [36, §1]. The map
Jjn can be defined by sending z to the class of u in USR / FO, where u € USR is defined as
follows: let py be the unique element of PIR (b, z)?=!, and choose pyy € FOPIR(b, 2),
then define u by py = u - py. Although u depends on the choice of pg, its class in
UR/FY does not.

This is related to the parallel transport map as follows. The element p® (b, z) is
an element of Hom(b*&,, z*E,). When b and z are on the same residue disk, this
homomorphism is given by (rigid analytic) parallel transport (see [36], above Lemma
4). Hence, in a formal neighbourhood of b, it is given by exp(J 1), and similarly pg
is given by F,, hence u = exp(J,.) - F, ' ]

3.6 Higher Albanese manifolds

Recall that, given a quasi-projective variety Z over C, we can define a higher
Albanese manifold as follows [27, 28]. Let U,?R(Z ) denote the n-unipotent de Rham
fundamental group of Z. Let U,?C(Z) denote the Q-unipotent Betti fundamental
group of Z at b, i.e. the maximal n-unipotent quotient of the Q-unipotent comple-
tion of 1 (Z(C), b). Abusing notation, we will denote by U,?e(Z)(Z) the image of
m1(Z(C), b) in Uf’e(Z)(Q). By the Riemann-Hilbert correspondence, we have an
isomorphism of unipotent groups over C

UB(2)c ~ UR(2).
The nth higher Albanese manifold of Z is the double quotient
Hu 1= Uy (Z)@\USN(Z)(©)/ FOUR(Z)(©).
There is an nth higher Albanese map (see [28, §5])
JnS 1 Z(C) — Ha,

which is a map of complex manifolds. Roughly speaking the definition in loc. cit. is
as follows. For any b, z € Z(C), we may naturally give the path space

(Zr1(Z, b)) 1" Xy (z(©).p) T1(Z(C); b, 2)

a mixed Hodge structure (where I is the augmentation ideal), in such a way that
the associated graded is independent of b and z. This defines a map from Z x Z to a
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variety of isomorphism classes of mixed Hodge structure with fixed associated graded.
Fixing one component (i.e. restricting to {b} x Z) one may then show that the image
is contained in a variety isomorphic to H,,.

The formal completion of H,, at the identity is isomorphic to the formal completion
of U,?R(Z)((C) JFO U,‘ER(Z) (C) at the identity, hence we have a morphism of formal
schemes

-B —~ —
Jnt i Ze = URJFO.

Lemma 3.12 The formal completion ofj}?e is given by is given by
e =exp(Uno) - Fy

where J, 1 and F,, are as in Sect. 3.5. In particular, for any isomorphism @p ~ Cwe
obtain an identification of the formal completions of j,, , at b (base changed to C and
the formal completion of jfe atb,

Proof This follows from the description of the unipotent Albanese morphism given in
[28, §5] and [27, Proposition 3.2, (3.3)]. ]

We deduce the following Lemma.

Lemma3.13 Leti : Z — Res(X)@p be an irreducible subvariety, and b € Z(@p) N
Res(X)(Qp). Let Z and ﬁ(X )@p denote the formal completions at b. Then the

restriction of jn, p to Z lands in the image of ﬁ,‘,jR(Z)/F0 in ﬁ,fR(Res(X))/FO, and
the diagram

—1
/EbXP(Jn ) nfst(Z)/FO

Res(X)p —" DR (Res(X))/ FO.

commutes. In particular, the pre-image of the graph of j, in Z x ﬁSR /FO under the
map

Z x LR(Z) > Res(X) x UR/FO
(z.x) > (i(2), exp(x) - F; ' (2))
is equal to the graph of Jp 1.

Proof This follows from the previous lemma, together with the fact that Hain’s higher
Albanese morphism is functorial in complex manifolds [28, §3]. O
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4 Unlikely intersections among zeroes of iterated integrals

The aim of this section is to prove the following proposition, which is the unlikely
intersection result needed to establish Theorem 1.1. Given a scheme V, and a formal
subscheme W of the formal completion of V at a point x, we say that W is Zariski
dense if there is no proper closed subscheme of V whose formal completion at x
contains W.

Proposition 4.1 Let Z be a smooth irreducible subvariety of Res(X )@ Let V be an

irreducible subvariety of LdR(Z) x Z, containing (0,b) € LdR(Z) X Z, such that
the projection of V to Z is dominant and (0, b) is a smooth point of V. Let V and
LdR(Z) denote the formal completions of V and LdR(Z) at b and 0 respectively. Let
A C LdR(Z) x Z denote the graphof J, . Let W = AN V. Suppose W is irreducible
and

codima W < codimar (7). 7 V.
n

Then W is not Zariski dense in V.

For example, we can apply this result when V is the Zariski closure of A, and
W = A. Then W is Zariski dense in V by definition, and hence we deduce

0 = codima (W) = codimpar 7y, z V. (11)

(i.e. the graph of J, ; is Zariski dense in LﬂR(Z ) x Z). This could also more elegantly
be proved following the topological argument in [21].

Proposition 4.1 can be informally thought of as saying that algebraic relations
between n-unipotent iterated integrals must have a geometric explanation. In the
1—unipotent (or abelian) case, this is due to Ax [2]. The idea of the general proof
is inspired by Ax’s approach: we inductively show that non-trivial algebraic relations
between n-unipotent iterated integrals come from geometry by differentiating them to
produce relations between (n — 1)-unipotent iterated integrals (the difficult part being
to show that these relations must also be non-trivial).

We also note that this Proposition translates into a criterion for finiteness of
Res(X)(Zp), which will be used repeatedly in subsequent sections. To state the crite-
rion, we introduce the following notation: for (Z, z) — (Y, y) amorphism of varieties
over a ﬁeld L sending z to y, we define U, (Z/Y) C U,(Y) = U,(Y)(y) to be the

image of 711 Q”(Z*, z) in U, (Y). For i < n, we define
gr;(Un(Z/Y)) = Ker(Ui(Z/Y) — U;i—1(Z/Y)),

and similarly for Ul.dR(Z /Y). Note that, in general, gr; (U;(Z/Y)) is not the same as
Ci(Ui(Z/Y))/Ci+1(U;(Z/Y)). Since the homomorphism

7Yz ) = 2 (v y)
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respects the central series filtrations, we have an induced morphism
Un(Z’ Z) - U}’l(Y’ }’)7

however this morphism need not be strict with respect to the central series filtration.
For example, this non-strictness occurs when Z = E — {x1, x»}, for E an elliptic curve
with points x; and x2, ¥ = (E — {x1}) X (E — {x2}), and the map is the diagonal
embedding Z — Y. However if X is projective morphisms will be strict, since the
weight filtration on U, will agree with the central series filtration.

Proposition 4.2 Suppose that, for every irreducible subvariety Z C Res(X)q,, we
have

codimyar (7 Res(xy), 70 (10¢p (Sel(Uy)) N UK (Z/Res(X))/F%) = dim Z. (12)
Then Res(X)(Zp), is finite.

Proof Fix an IF), point b of Res(X). Let ZcC Res(X)q, denote the Zariski closure
of Res(X)(Zp),N N]b[. Let Z = ZoU ZyU--- U Zy be a stratification of Z into
smooth irreducible subvarieties. Since Z is the Zariski closure of a set of Qp-points of
Res(X)q,, the irreducible components are geometrically irreducible. Let Z = Z; be a
component of the stratification. To prove finiteness of Res(X)(Z, )y, it will be enough
to prove that Z NRes(X)(Zp), is zero dimensional. We do this using Proposition 4.1
applied to Z.

To apply Proposition 4.1, we must define a subvariety V of Z x LgR (Z) where (b, 0)
is smooth. We do this in the next two paragraphs. If there is a point " of Res(X)(Z), N
ZN1b[ where j, (b') is a smooth point of loc,(Sel(U,)) N USR(Z/Y)/F° (here and
below, we view this as a reduced subscheme of U,‘,iR(Z /Y)/FY), then we define V; :=
loc,(Sel(Uy)) N U,‘SR(Z/Y)/FO. If not, then j, (Res(X)(Zp), N ZN1b]) lands in the
singular locus of loc,, (Sel(U, (b)))N U,?R(Z/Y, b)/FY, and hence stratifying as above
there is a proper closed subvariety V of loc(Sel(U,,) N U,‘,iR(Z /Y)/F 0 which contains
Jn(Res(X)(Zp), N ZN1b[) and a point b’ of Res(X)(Zp)n N ZN1b[) such that Ja(d)) is
a smooth point of Vy. By Lemma 3.5, we may assume b = b’. Since our condition on b
holds outside a closed analytic subset, we may also assume that the formal completion
of Res(X)(Zp), N Z at b is irreducible.

Let Wy denote the formal completion of Res(X YWZ p)n N Z at b. Recall that, by
Lemma 3.13, the pre-image of the graph of j, in Zb X LdR(Z ) is given by the graph
of J, . We apply Proposition 4.1 with V being the product of Z with the pre-image
of Vpin LgR(Z). By our choice of b, W := V N A is an irreducible formal scheme
(recall A is the graph of J, ;). We then apply Proposition 4.1 to deduce

codimp (W) > codimL’le(Z) V. (13)
On the other hand by definition of V we have
codim 1 ar 7, (V) > codimyar 7y, po(loc, (Sel(Uy,)) N UR(z/Y)/F%). (14)
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Since j(Wy) C loc,(Sel(U,)), we have Wy C W, and (12), (14) and (13) together
imply the Lemma. O

4.1 Universal connections and reduced form

In the proof of Proposition 4.1, it will be useful to have a fairly explicit description of
the map J .1, and hence of the connection (&, V,). For this, we introduce the notion
of the reduced form of a connection, which is inspired by Kim’s description of the
universal connection [36]. As above, Z is a smooth irreducible affine subvariety of
Res(X )@p. Let d,, denote the rank of &,, and let r,, denote the dimension of U,‘liR(Z ).

Definition 4.1 (Reduced form) Let Q be a complement of dO(Z) in H*(Z, Q).

A n-nilpotent matrix M € End(@;’zo V)®HYZ, Q) (for Vg, ..., V, vector spaces
over K) is in reduced form (relative to the complement Q) if it is block n-nilpotent
and all of its entries lie in Q.

An n-unipotent connection (), V) in reduced form is an isomorphism V =~
®'_,Oz ® V; with respect to which V = d + A, where A € End(®V;) ® H(Z, Q)
is an n-nilpotent matrix in reduced form.

Lemma 4.1 Let V be an n-unipotent connection on a smooth affine variety Z over a
field K of characteristic zero. Then'V can be written in reduced form. All morphisms f
between connections (BV; @ Oz, V), (®W; Oz, V') in reduced form are K -linear,
i.e. f € Hom(®V;, ®W;) ® O(Z) actually has entries in Mat,, ,, (K).

Proof This may be proved in a similar fashion to [36, Lemma 2]. We argue by induction
on n, the case n = 0 being immediate. If V is an extension of an (n — 1)-unipotent
connection V' by a trivial connection V"’ = (V" ® O, d), then we can assume V' can
be written in reduced form, say

Vel GVi=ei,)Vieo

sothat Vyy = d + A, where A = 3 _; _;_, Ajj and A;; € Hom(V;, V;) ® Q. Since
Z is affine, we can choose a vector bundle splitting of the short exact sequence

0>V -V->YV -0, (15)
so that we can write V as V' @ V", with connection given by d + A + A’, where
A’ € Hom(V', V") ® H°(Z, ). We want to show that, changing the basis by an
element of 1 + Hom()’, V"), we can make A’ of the form ) A/, where

A} € Hom(V;, V") ® Q. (16)

Write A" as ) A}, with A} in Hom(V;, V") ® H%(Z, Q). If we change the splitting
of (15) by 1 + ) M;, where M; € Hom(V;, V"), this will change A’ by

Aj > Aj+dM; =Y MjoAjj. (17)

j>i
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We show that we can change our basis so that the A} satisfy (16) by descending
induction on i. When i = n — 1, (16) implies that there is an M € Hom(V,,_1, V")
such that

A, —dM € Hom(V,_;, V") ® Q.
Changing the splitting of (15) by M, we obtaining a splitting for which A/ _, satisfies
(16). Now suppose we have a splitting of (15) such that A} _,,..., A, satisfy
(16). Then (16) implies there is an M € Hom(V,_;, V") such that

A . —dM e Hom(V,_;, VY ® Q.

n—i

If we change the splitting of (15) by M, then by (17), A/,_,,..., Ay—i+1 will be
unchanged, and A, _; will now lie in Hom(V,,_;, V") ® Q. Hence V is in reduced
form.

For the second part of the lemma, write the homomorphism f as ) f;;, where
fij € Hom(@V;, ®W)) @ O(Z). Write V.=d + >, _; Ajjand V' =d + 3, _; Agj
with the notation as above. Then the identity

i<j

dfij + ZALjfik = kaink,

k<j i<k

and the fact that Q NdO(Z) = 0, shows df;; = O foralli and j by a double induction
oni and j. O

Definition 4.2 We write &, in reduced form as 69;1’;0(9 7 - ¢; (i.e. we write it in reduced
form, and then pick a basis for each vector space V;), and V,, = d 4+ A,. The matrix
A, is n-nilpotent, and its upper left k-nilpotent submatrix is equal to &, forallk < n
(i.e. the quotient &, — & is just given by projecting onto the first (k 4+ 1)-blocks).
If 7 is a trivialisation of &£, coming from its reduced form, we denote J, ; simply by

Jn.

4.2 An explicit description of the universal connection

The main result of this section is a differential equation satisfied by J,,, which is used
in the inductive step of the proof of Proposition 4.1. Let £, =~ Oezad" be a bundle
trivialisation of &, putting it in reduced form. Let A, be the connection matrix for its
reduced form. Recall that by Lemma 3.8, l(ln b*&, is isomorphic via Tannaka duality
to the universal enveloping algebra of nfR(Z ,b), viewed as a pro-representation of
nfR(Z, b).Recall that the Lie algebra Lg‘.} (Z2) C 1(&11 b*&, is defined to be the subspace
satisfying €(x) = 0 and A(x) = x®1 + 1®x, and LSR(Z) C b*&, is the image
of Lie({R(Z, b)) in b*&,. By making a K-linear change of basis (preserving the
unipotent filtration) if necessary, we may (and do) henceforth assume that there is a
sub-basis e;; of e; forming a basis of LgR(Z). Define b;jjx € K, 1 < i, j, k < ry, by

ler,. er;1 =) bijrey,. (18)
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Lemma4.2 There is an element @ = Z?:l e, @ w; ofLﬂR(Z) ® H%(Z, Q) such that
the connection Vy, on &, is given by

V> @-v+dv,

and w = V(1,).

Proof First, we show that @ := V(1,) has the property that, for all v in b*&,, V(v ®
1) = w - v. Let f be the unique morphism &, — &, such that b*(f)(1,) = v. Then,
since f is K-linear with respect to the trivialisation, we have

Vol = f(w).

By Lemma 3.9, f(®) = @ - v.
We now show that @ is in LgR(Z Y® HY(Z, Q). It is convenient to instead show this
in the limit over n: i.e. that w € lim H%(Z, &, ® Q") lies in lim H%(Z, LgR(Z) RQh.
H
Since, in &y, we have V(1) = &the first condition @ € Ker(e ® 1) is satisfied. The
second condition is that A(®) = 0®1, + 1,Qw. By Lemma 3.9, A is the unique
morphism of pro-connections

lim &, — lim(&, ® &)

sending (1,) to (1, ® 1,). Hence A(w) = V(1,81,) = ®®1, + 1,®w, by definition
of the tensor product of two connections. O

We write J =) J; ® e, € 0(2) ® LgR(Z). Recall J(b) = 0 and
dexp(J) = w - exp(J) (19)

in H 0(2 ,Q). Lett; € O(ZﬂR(Z)) be the ith coordinate function with respect to the
basis (e;;). Define

t=) 1®e € HULR2).0) @ Li*(2).

Recall A C Z x ZgR (Z) denotes the graph of J. Then A is the zero set of the functions
t; — J; (here we view t; and J; as functions on 7 x de(Z ) via pulling back; to ease
notation we suppress the pull-back from the notation).

To describe the derivative of J, we make use of Poincaré’s Lemma on the deriva-
tive of the exponential function. Given an N-nilpotent Lie algebra L, and a formal
power series F = Zi>0 a;t', and x € L, we write F(ad,) to mean the operator

Z,N= 0ai (ad,)! on L. Finally, if F, G are nonzero power series in K[[¢] such that
H := F/G lies in K[t]], we further abuse notation by writing F'(ady)/G(ady) to
mean the operator H (ad,).
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Lemma4.3 Letexp: LﬂR(Z) — b*&,(Z) denote the exponential function. Then

ad, _ 1
ad,

dexp(x) = (dx) - e*.

Proof 1t will be enough to prove this identity in the universal enveloping algebra of
LgR(Z), as b*&,(Z) is a quotient of the universal enveloping algebra of LSR(Z),
compatible with the exponential and logarithm maps. Hence this follows from the
usual version of Poincaré’s formula (see e.g. [11, IL.5.11]). O

We define §; € HO(LIR(Z) x Z, Q) by
d;

— L
— .
ad,

S G =0="

We define 6; to be the image of 5, in HO(V, Q) and 6; to be the image of 6; in
H(V, Q) @ O(W).

Remark 4.1 The 6; have the following interpretation in terms of foliations on principal
bundles. The frame bundle on R descends to a UR-bundle P. The choice of trivi-
alisation of £IR on Z defines a trivialisation of P, i.e. an isomorphism P ~ USR x Z.
With respect to this isomorphism, the connection form €2 on P can be viewed as an
element of H O(Z X U,‘liR, Q)R LgR. As explained in [7, 2.7], the connection form is

given by t~'dt — t~'wt. Via the exponential map, this may be viewed as an element
Q of H%(Z x LR, Q) ® LIR. Then we see that

Q =t "0t

Hence finding linear relations between the 6; is equivalent to finding linear relations
between the coefficients of €2, as in the proof of Theorem 3.6 of loc. cit.

Let V and W be as in Proposition 4.1. Let I C O(/\;) denote the ideal of functions
vanishing on W. We have an exact sequence [24, 20.7.20]

1/17 > QV@,, R O(W) — QW@p —0. (20)

Lemma 4.4 The image of I /1% in §V|K ® O(W) under
I/I2 — ﬁle ® O(W)

is spanned by 01,..., gr,,'

Proof The image of I/I2 is spanned by the functions dty —dJy, ..., dt,, —dJ,,, so

it will be enough to show that the submodule spanned by these differentials is equal

to the submodule spanned by 61, ..., 6,,. By (10) and Lemma 4.2, exp(J) satisfies
d(exp(J)) = @ - exp(J).
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Hence, by Lemma 4.3, the function J satisfies the differential equation

adJ
ety — |

dJ = (®). (21)

Hence the image of 1/1° is equal to the submodule spanned by

dat— () 22)
ede — 1777
since t; = J; on W. Finally, the map
ad, _ 1
V> v
ad, (v)

is an O(W)-linear automorphism of LgR(Z) ® O(W), hence the submodule spanned
by the coordinates of @ is equal to the submodule spanned by the coordinates of
adt 9 which equals (22). m|

eddr —1

4.3 Proof of Proposition 4.1

We suppose that the codimension of A in W is less than the codimension of V' in
LﬂR(Z ) x Z.Let Q, (V) denote the function field of V', and Q, (W) the function field
of W. By the exact sequence (20)

o R B _
1@ QyW) — Q. 5, ®Qp(W) — Qg g, = 0

and the inequality dim(W) < rk QW@ , we deduce that 6, ..., 0, are linearly
. P
dependentin QVI@ RQ »(W). We henceforth assume that W is Zariski dense in V, and
P

assume, as hypothesis for contradiction, that the §; are Q p(W)-linearly dependent. By

our assumption that W is Zariski dense in V, this implies that the §; are Q p(V)-linearly
dependent. In this subsection, we aim to show that such a dependence contradicts the
Zariski density of W. The following elementary Lemma gives a couple of ways to
prove that a formal sub-scheme is not Zariski dense.

Lemma4.5 Let V be an integral variety over @P and W an integral closed formal
subscheme of the formal completion of V at a @p—point b at which V is smooth.

(1) Suppose there are hy, hy in @F(V) such that hidh, is zero in Q@p(W)I@p’ but
non-zero in Q= = . Then W is not Zariski dense in V.
Q[)(V)‘Qp _
(2) Let M_be an OV_-submodule of (9?,9’. Supp_ose the Q,(W)-rank _of the image of
M ® Q,(W) in @p(W)@’ is less than the Q,(V)-rank of M ® Q, (V). Then W
is not Zariski dense in V.
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Proof (1) If hidh, = O then ecither iy = 0 or dhp, = 0. Write h; = f;/gi, with
fi» & € Oy p. Then in the first case W is contained in the zero locus of fi. In the
second case hj is constant on W, say equal to A, and hence W is contained in the
zero locus of fo — Ago.

(2) Suppose the generic rank of M is s, and my, ..., my are generically independent
elements of M, say m; = ) fije;. Then W is contained in the zero set of the
determinants of the (s, s)-minors of (f;;).

O

Combining this with Lemma 4.4, we deduce that to prove Proposition 4.1, it will be

enough to prove that, if 6y, ..., 6, are not @p(V)-linearly independent, then there
exists hy, hy € Q,(V) such that hydhy # 0, and hidh; is in the Q,(V)-span of
01, ..., 6y,. We prove this by induction on n.
The case n = 1 is elementary: in this case 6; is of the form dt; — w;, where
1, ..., wy are closed 1-forms forming a basis of Hle(Z/@p). Suppose
r
> aiti =0 (23)
i=1

in Qg g, Suppose (23) is minimal among all non-trivial relations, in the sense
p P

that it has a minimal number of nonzero a; among all relations (23) for which the a;
are not identically zero. Without loss of generality a; is non-zero, and re-scaling if
necessary, we may assume a; = 1. Since w; are closed fori < rq, we have

da; NO; = d(Zai NO;) = 0

in Q2 . If all of the da; are zero in Q@p W@, then we have

Q,MIQ,
d <Za,~ti> = Zaiwi,

hence the map Hle(Z@p /@p) — H(}R(V /@p) has a non-trivial kernel. Dually, this
implies that the map on Albanese varieties is not dominant, and hence that V. — Z is
not dominant, giving a contradiction.

If the da; are not all zero, but are in the @ »(V)-span of the 6;, then the Proposition
is proved, by Lemma 4.5. Hence we reduce to the case that the da; are not all zero,
and not all in the @p(V)—span of the 6; (say day ¢ Z@,,(V) - 0;). Then there is a
derivation

D : Q@p(v)l@p - Q,(V)
for which D(6;) = 0 for all i but D(da>) # 0. Then
> D(da;)-6; =0
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is a non-trivial relation, which has fewer non-zero terms than (23) since da; = 0,
contradicting our assumption that (23) was minimal.
Now suppose n > 1, and let M} denote the submodule of Q@p R0} spanned by
p

01, ..., 0. We suppose that
{hidhy = hy, hy € Q,(V)} N M, = 0.

Hence, by induction rk M,,_1; = r,—1. Suppose as hypothesis for contradiction that
rk M,, < ry, and hence there are non-zero a; € Q »(V) such that

I'n
Za,ﬂi =0. (24)
i=1

To deduce the inductive step, we use the following differential equation satisfied
by the 6; (in the notation of Remark 4.1, this identity could also be deduced from the
Cartan structure equation for the connection form £2).

Lemma 4.6 6 satisfies

(here the Lie bracket may be thought of as the Lie bracket on the differential graded
Lie algebra LgR(Z) ® HO(Ln x Z,Q°%)). Equivalently, we have

- - 1~
doy = Zbijkgi A (59,' +wj),
i,j

where b;j are as in (18).

Proof We prove this in l(gl LgR(Z) ® H%L, x Z,Q*). Then it is enough to prove

~ 1 ~ ~ ~
since ady is injective on 1(1r_n LSR(Z) ® HY(U, x Z, 2*). From Lemma 4.3 we derive
d(@ . dty=d(e - dt-e")

adt _ l
— |:e 3 dt, ead’dti| .
ady
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Since the connection V is flat we have dw = %[w, w]. Hence

[t,d0] = [t,d + w] — [t, dw]
—d[t,0 + w] — [dt,0 + ] —[t,do]

— [0+ Ydt] — 0+ w,dt] — %[t, (@, ®]]
- - ~ 1
=0 +w[t0+w]—0+od]— E[t’ (@, ®]]

1 ~ ~ 1
= E[t, [0+ w, 0 + w]] — E[t, (@, ®]].

O

Note that, since 61, ..., 6,, , are linearly independent, there is r,—1 < i < ry
such that a; # 0. We choose the g; minimally in the sense that the size of the set
{i € {rn—1+1,...,m} : ai # 0} is minimal among all non-trivial relations (24)

(where non-trivial simply means the g; are not all zero).
By Lemma 4.6 we have

d (Z a59i> = ZQ,' A (—da,' + Zb,’jkak (%9(/ + w,)) =0. (25)

Suppose that for r,_; < i < r,, the g; are not all constant. Pick jo between r;,_1
and r;, such that aj, is non-zero. Rescaling if necessary, we may assume aj, = 1.
We claim that, after this rescaling, the a; are all constant for i > r,_1. Suppose a,
is non-constant. Since, by assumption, daj, is not in the span of the 6;, there is a
derivation

D: Qg g, = QL)

suchthat D(6;) = Oforalli,and D(daj,) # 0. Writec; := D(—da;+Y_ bijxax(30;+
w;)). Then

n n—1
D (d (Za,ﬂi)) = ¢ =0 (26)
i=1 i=1
Since b;jx = 0 whenever i or j are greater than ry_1, we have, forall i > r,_1,
C = D(—da,-).

In particular cj; # 0 and c¢j, = 0. Then (26) is a non-trivial relation with a smaller
number of non-zero terms between r,_; and r,, contradicting our assumption of
minimality of (24).
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Hence we may assume that for r,_; < i < ry, the g; are in Q P Define

o = da,' - Zbijkakwj-
Then (25) can be rewritten
Fn—1

Z@i N = %Zak Z bl-jke,- /\9]'.
i=1 k

i, j<rn-1

Hence, bl our assumption that 6, ..., 6,,_, are @ p(V)-linearly independent, each o;
is in the Q,,(V)—span of 61, ...,6,,_,,and in fact can be written as
@ =Y xijb; (27)
where
Aij —Aji = Zbijkak- (28)
k

A solution to (27) has the following interpretation. We can define a connection on
LgR(Z) ® Oz by x — [w, x], or with respect to our chosen basis by

el_/. (ard Z bijkwl,v €l -

Let ch (Z) denote the unipotent flat connection corresponding, by Tannaka duality,
to LSR(Z) with the adjoint action of nfR(Z, b). By Lemmas 3.9 and 4.2, we have
L3R (Z) ~ LIR(Z) ® Oz with connection given by

VR 1+~ [w,v].

The dual connection Vdr+ on L',gR(Z)* is given by

k *
iy X by,

Hence the ¢; can also be interpreted as the coefficients, with respect to the basis el”;,
of ngR* (@), wherea = ) _ q; eZ. As the following lemma explains, the condition that

a; € M,_ for all i is equivalent to the existence of a morphism &,_; — ESR(Z)*.
Let 7 : V — Z denote the projection.

Lemmad4.7 (1) M, is equal to the submodule spanned by the coefficients of
¥V, (exp(t)) with respect to the basis e;, where w*V, denotes the connection
ER(Z) pulled back to V.
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(2) Suppose {0} = {h1dhy : hi,hy € @p(V)} NM,_1, and Ttk M,,_| = r,_1. Let
V= (O?N , V) be an (n — 1)-unipotent flat connection on Z in reduced form.

Let x € V(@p), and let Oy  denote the local ring of V at x. Then, for each
v € x**V, alift of v to v € w*V(Oy ) such that V= (v) lies in the subspace
O;‘?N ® M, _1 is unique if it exists.

(3) Given any morphism of flat connections

P:& 41—V
on Z, we have a solution to
Vap(v) € =V Q@ M, (29)
given by v = Pexp(t). In particular, by the universal property of &y, for all
m > 0, and any v in b*V, there exists a unique lift of v to v € w*V (V) satisfying
Vip(v) € My,.

Proof (1) As in the proof of Lemma 4.6, this follows from Lemma 4.3, which gives

Vi (exp(#)) = d exp(t) — w - exp(?)
=0 -exp(?).

(2) We prove this by induction on the minimal degree of unipotence of V. For 0-
unipotent connections, V(> a; ® ¢;) = da; ® e;, so the result is immediate.
Given the result for k-unipotent connections, let V be (k 4 1)-unipotent, and let

0>V >V-5V 50
be a short exact sequence where V' is O-unipotent and V" is k-unipotent. Let
v and w be two lifts of v to sections in 7*V(Oy ) such that V «p(v) and
Vesp(w) are in 7%V ® M, _1. Then t(v) and t(w) are equal at x, and satisfy
Ve (T(0)), Vs (T(w)) € 7*V” ® M,_. Since V" is k-unipotent, we have
7(v) = t(w), hence v — w is a section of the trivial connection V' satisfying
Very (v — w) € 7%V @ M, _1, hence is zero.

(3) By Lemma 4.1, the morphism is K -linear, since both connections are in reduced
form. Hence it satisfies

PV,_1 =VyP,

hence P exp(t) satisfies (29).

Now suppose we have a solution to

@ =Y kijb (30)
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with4;; in Q »(V).Letx be a point at which none of the 4;; have a pole, then by Lemma
29, a solution to (30) with A;; € O(Z), is unique given their value at x, and for every
choice of (¢;;) with ¢;; in @p, there is a unique lift to A;; € O(Z), satisfying A;; (x) =
cij, and coming from a morphism of flat connections &£, — L, . In particular the A;;
are actually in O(Z). We claim that foralli € {r,_> + 1,...,r,—1},j €{1,..., 1},
if (28) holds then, foralli > r,_» +1,1;; =0.

Fori e {r,_o+1,...r,_1}, we have

n
o = da,' — Z bijkaka)j.
k=rp_1+1

since b;jp = 0ifi > r,_2 andk < r,_1. Since gy is constant for k > r,_1, we deduce

a; = Z bijkaktj

is a solution, hence fori in {r,_; + 1, ..., r,}, we have

n
Aij = Z bjjka.

k=rp—1+1

This completes the proof of the claim.
This means that the map

gn,1 — ,C:

factors through &,_», or equivalently that the action of b*&,_1 on Zake;: factors
through b*&,_». Since we assume ay is non-zero for some k € {r,—1 + 1,...,r,},
the b*E,_1-module generated by ) ake;’; is not (n — 2)-unipotent. Hence we obtain
a contradiction, completing the proof of Proposition 4.1.

5 The intersection of j,(Z) with the Selmer variety

In this section we prove certain techniques for proving finiteness of X(Og ® Zp)s,»
and X (Ok,)s.»- First, we prove a general result which allows to prove finiteness after
passing to a finite extension. The only wrinkle this introduces is that, as we have chosen
to work with a prime which splits completely in K, passing to a finite extension will
compel us to work with a prime splitting completely in the extension field.

Lemma5.1 Let L|K be a finite extension of Q, and X a curve over K as in the
introduction. Let p be a rational prime which splits completely in L.

(D) If X(OL ® Zp)s,u is finite, then X (Ok @ Zp)s,n 1s finite.
(2) Letw be aprime of K lying above p, and v a prime of L lying above w. If X (Oy)s.»
is finite, then X (Oy)s , is finite.
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Proof We have diagonal embeddings of Resk|g(X) into Res;g(Xz) which, upon
base change to Q,, induce embeddings of Xk, into ]_[U/|w X Ly where the product
is over primes of L lying above w. On the other hand, we also have inclusions of
H},S(GK,S, U, (X)) into H}‘S(GL,S, U, (X)). We obtain a commutative diagram

Resg|o(X)(Q) — H}, (G5, IndY U, (X))

| |

Resig(XL)(Q — H} (Gg.s, Ind} Uy (X)),

and similarly for local fields, giving inclusions
X(Ok @ Zp)sn = X(OL ® Zp)s.n
and
X(Ok,)sn = X(OL,)sn

O

Lemma5.2 Let U be a Galois-stable finite-dimensional quotient of the Q ,-unipotent
Sfundamental group of X. Suppose Hom(Jy, .c, Jo,.c) = 0 for all distinct embeddings
o; : K — C. Then, if

n n
D WGk, gr(U) <[K : Q1+ ) ) dim Dgr(U)/F°,
i=1 i=1 vlp
then there is a prime v|p of K such that X (K,)y is finite.

Proof By Proposition 3.2, dim Sel(U) is bounded above by dim H}(GK, Lie(U¢))
for all twists of U by cocycles ¢ € Sel(U). Since gr; (U) =~ gr; (U°), for each such c,
we have

n
h} (G, Lie(U)) < > hi(Gk. gr;(U))
i=1
On the other hand
n
Z dim UR(X,)/F° = dim Z Z dim Dy (gr; (U))/F°.
v|p i=1 v|p

Hence, if the inequality in the statement of the Lemma holds, then by Proposition 4.2
the Zariski closure of X(K ® Q,)y is a proper subvariety, all of whose positive
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dimensional irreducible components Z satisfy
codimyar (7 Res(x)), 70 (10¢, (Sel(U)) N UM (X /Res(X))/F°) <dimZ. (31)

Since there are no nonzero homomorphisms between the different factors of Res(J)g s
the image of Alb(Z) inRes(J)q » is the product of the images in the different factors.
Hence if Z dominates each factor of Res(X)q,, then its geometric unipotent funda-
mental group surjects onto the geometric unipotent fundamental group of Res(X)q,,
contradicting (31). O
This straightforwardly implies case (2) of Proposition 1.1.

Proofof 1.1, case (2) Let U be, as in [5, Proposition 2.2], the quotient of U, which is
an extension of V,,J by Ker(NS(Jz) — NS(X%)) ® Q,(1). By [5, Lemma 2.3], we
have

hi (G s, gryU) = Z (dim NS(J) =" — dim NS(J)).
ve PR

Hence case (2) of Proposition 1.1 follows from Lemma 5.2. ]

5.1 Semi-simplicity properties of graded pieces of fundamental groups

Letn > 0, and let X be a smooth projective curve of genus g > 1 over K withn — 1
marked points x; € X(K). Let Y = X — {x1,..., x,—1}. Let M, , x denote the
moduli stack of n-pointed curves of genus g over K. For x, € Y (K), we have a short
exact sequence

1 — m (Y, x) = 11 (Mg a g, [(X, 6)I_DD) — 711 (Mg a1k, [(X, )/ZHD— 1,

(see e.g. Nakamura—Tsunogai [44]). This induces an outer action of w1 (Mg ,_1 k,
[(X, (x:))]) on nft(Yf, Xn), which induces an outer action on the Malcev completion
of nft(Yf, Xn), and hence an action on the graded pieces gr; (U; (Y)(x). Whenn = 1
or 2, the action of 7w (Mg »—1,k, [(X, (x))]) on U1 (Y) = Hlét(Xf, Qp) has Zariski
dense image in GSp(U1(X)) (see e.g. [29, §8]). The action of Gk on gr;(U;(Y))
factors through the action of 1 (M, 0 x, [X]) via the morphism

Gal(K|K) — 71(Mgn—1,k, [(X, (xi)]) (32)

induced by the morphism Spec(K) — M, ,_1 g induced by [(X, (x;))].
Lemma 5.3 Let X/K be either projective or a projective curve minus a point.

(1) The commutator homomorphism
U1(X)® — gr,(Ui(X))
admits a G g -equivariant section.
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(2) Let U; = U;(Res(X)), and let W C V = U denote the image of the Q,-Tate
module of an abelian subvariety of Res(J)r, for some L|Q. Then the image of
W in gr; (U;) is a G, r-stable direct summand of gr; (U;).

Proof Let n = 1 or 2 depending on whether X is projective or projective minus a
point x € X(K), and let S = @ or {x}. By the homomorphism (32), to prove the
first claim it is enough to prove them with G g replaced by w1 (M, ,—1 k., (X, D).
Since 1 (Mg n—1,k, [(X, S)]) has Zariski dense image in GSp(U; (X)), it is enough
to prove them with 7y (M, 1k, [(X, S)]) replaced by GSp(U; (X)), which proves
the Lemma. The second claim follows from part (1), together with the fact that the
image of W in V® ig a direct summand, since W C V is a direct summand. O

5.2 Further reductions

Given Proposition 4.2, to prove finiteness of X'(Og ® Z,),, it is enough to prove
that, for any positive-dimensional, geometrically irreducible smooth quasi-projective
subvariety Z C Res(X)q),, and any virtual basepointb € Z (Qp)NRes(X)(Q)), there
is a Galois-stable quotient U of U, (Res(X)), such that

codimy; 7/ res(x)), ro 10y (Sel(U)o) NU(Z/ Res(X))/FO) > dim(Z). (33)

First, we reduce proving (33) to proving an inequality involving abelian Galois
cohomology. Recall from Lemma 3.7 that, by changing b to a ‘virtual basepoint’
we may assume « is the trivial collection of local conditions, and hence Sel(U), C
H } s(Gq,r, U). Recall that, by Proposition 3.2, we have

dim H} (Gg,r. U) NU™(Z/Res(X))/F°
< max  dimloc, H} ¢(Go,r. L) N L™(Z/Res(X))"/F°,

ceH} ((Gor.U)

where LIR(Z/Res(X))¢/F? is defined to be 0 if ¢ is not in UIR(Z/Res(X))/F°.
Hence we can estimate the dimension of H}-,S(G@,T, U)NUR(Z/Res(X))/FO° using
the following Lemma.

Lemma5.4 Let U be a Galois stable quotient of Uy, with Lie algebra L, and
c € H}’S(GQ,T, Un). Let Z C Res(X)q, be an irreducible subvariety, and let

d . . dR .
LR (Z/Res(X)) denote the image ofl(u_n Li™(Z) in Dgr(L). We have

codim ar 7/ Res(xyye/r0 10¢p Hp g(Go.r, L) N LN(Z/Res(X))*/FO)
N
: 1 dR 0
= Z COdlmgri(LdR(z/Res(x)))/FO H_f,s(GQ,Ta gr; (L)) N (gr; (L™ (Z/Res(X)))/F”)
i=1
N—-1
— Y dimKer(H} (Go.r. gr;(L)) = H[(Gg,.gr;(L))).

i=1
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Proof We have

N
dim LR (Z/Res(X))/F° = Z dim gr; (LR(Z/ Res(X)))/ F°.
i=1

Hence it is enough to prove that

dim 1ocp(H}’S(GQ,T, L)) N L®R(Z/Res(X))¢/F°
N
<Y dimloc, H} ¢(Go,r. gr; (L)) N (gr; (L (Z/Res(X)))/F°)
i=1
N—-1
+ Y dimKer(H} ¢(Go.r.gr; (L)) — H[(Gq,.gr;(L))).

i=1

Note that U, acts unipotent on L, hence we may replace gr; (L) with gr; (L) in the
above.

This is then just linear algebra: more generally suppose A = A,, B = B, are finite
dimensional vector space with separated exhaustive decreasing filtrations, such that A
is a strict filtered subspace of B, and C; ; (i < j) are finite dimensional vector spaces
such that, for all i < j < k, we have a commutative diagram with exact rows

0 Cik Cix Ci,j
Jd)j,k J‘ﬁi,k J¢j,k
OHBj/Bk B,’/Bk Bi/Bj 0.

Then
dim Ker(¢;, ; (C; ;) N (Ai/Aj) = ¢ii+1(Ciit1) N (Ai/Ait1))
< dimKer(¢; ;1) +dim¢; 11 ;j(Cit1,7) N (Air1/Aj).
Hence, foralli < j,

dim¢; j(C; j) N (A;/Aj) < Z dim ¢y f+1(C k1) N (A /Ag+1)

i<k<j
+ Y dimKer(¢x—1.0)-
i<k<j
Applying this when B; = C;LR, A; = C;L®(Z/Res(X)) and C;; =
H}, s(Gq,r, CiL/C;L) completes the proof of Lemma. O
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One subtlety in estimating the dimension of the intersection of gr; U dR(Z/Res(X))
/F0 with loc,, H}-,S(G@,T, er; (U))@,, is that we do not assume that Z is defined over

Q, or even over a number field. However in spite of this, gr;U dR(Z/Res(X))/F°
behaves as if it was defined over a number field, in the following sense.

Lemma5.5 Let A = Alb(Res(X)), where X is either a projective curve or a projective
curve minus apoint. Let f : Z < Res(X)q, be a geometrically irreducible subvariety

ofRes(X)@ . There exists a finite extension L|Q such that f, Hlét(Alb(Z)@ ,Qp) C
P P
Hlet(A@ , Qp) is stable under the action of Gal(L|Q).

P

Proof First, note that since X is projective, or projective minus a point, its Albanese

variety is abelian. Hence it is enough to show that, for any injective morphism of

abelian varieties g : B — A@ , defined over Q p» there is a finite extension L|Q such
P

that g, Hlét(B, Qp) is G -stable. There is an endomorphism ¢ € End(A@ ) such that
4

g H{'(B,Q)) = ¢, (Hf' (AbRes(X))g. Q).
Indeed, we may take the endomorphism to be the composite

_ * * _
AQP—>AQP—>B —>B—>AQP,

for some choice of polarisation on B (since the map AT@ — B* is surjective,
P

the image of Hlét(A@ ,@Qp) under this endomorphism is exactly g*Hlét(B, Qp)).
P

Hence it is enough to show that there exists a finite extension L|Q such that

End(Ap) >~ End(A@ ), which follows from the classification of endomorphisms of
54

abelian varieties [43, Corollary IV.1]. O

Lemma 5.6 Let K|Q be a finite extension, and n > 1. Let W be a subspace of V :=
Ind% Qp(n), stable under GQP' Then

dimloc, H'(Gg,r, V) N H'(Gg,, W) < dim W="",

where ¢ € G is complex conjugation with respect to an inclusion Q< C.

Proof Let L|Q denote a totally imaginary Galois extension containing K |Q, with
Galois group G, and H := Gal(L|K). Let M := Ind(L@ Qp(n). We have an isomor-
phism M ~ Q,[G](n), and an inclusion

Vo W.
Hence it is enough to prove that for any W C Q,[G], we have

)n+l

dimloc, H'(Gg,r, M) N H'(Gg,. W(n)) < dim w=C"1
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By Shapiro’s lemma, we have a commutative diagram whose vertical arrows are iso-
morphisms

HY(Ggr.M) ——— H'(Ggq,. M)

l l

HY (GL71,Q,(n) — @y pH(GL,, Qp(n))

hence it is enough to prove the claim for the dimension of the image of the bottom hor-
izontal map. Both Hl(GL,T, Qp(n)) and EBw\le(GLw, Qp(n)) have the structure
of Gal(L|Q)-modules, with respect to which the localisation map is Gal(L|Q)-
equivariant.

We claim that we have an isomorphism of Galois modules

H'(GL1, Qp(m)) =~ Indgy H1@ e, (34)

where yx is the unique nontrivial character of (c), and ¢ now denotes the image of ¢ in
Gal(L|Q), and an isomorphism

H'(Gg,.Q,[G](n) ~ Q,[G]. (35)

induced by H'(Gq,. Q,(n)) ~ Q,.
For the first claim, note that Borel’s theorem [9] proves a Gal(L|Q)-equivariant
isomorphism K7, 41 (L)QR =~ Ind%l(u@) X

isomorphism K, +1(L) @ Q ~ Ind(GE;1

obtain the isomorphism (34).

For the isomorphism (35), we may use the fact that the Bloch—Kato logarithm
is Galois-equivariant by construction, and hence we have Gal(L,,|Q,)-equivariant
isomorphisms

"+1@R. This implies a Galois-equivariant

L1 X”“. Hence, by Soulé’s theorem [51], we

H'(GL,,Qpn) ~ H{(GL,,Qp(n) = Ly.

Having proved these isomorphisms, we deduce that the image of H 1(GQ,T, V) in
H' (GQp’ V) must be contained in Ker(1 + (—1)"¢). This implies the Lemma. O

5.3 Metabelian quotients of fundamental groups

We say a group G is metabelian if [[G, G], [G, G]] is zero, and similarly a Lie algebra
L is metabelian if [[L, L], [L, L]] = 0. The free metabelian Lie algebra on a vector
space W is simply the quotient of the free pro-nilpotent Lie algebra L on W by the
double commutator [[L, L], [L, L]]. Given a vector space W, we denote by S/ya. (W)
the completion of the symmetric algebra on W with respect to the ideal generated by
W.If L is a metabelian Lie algebra, the adjoint action of L on [L, L] factors through

L and gives [L, L] the structure of a module over S/yE. (L),
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In the proof of cases (3) and (4) of Theorem 1.1, we will use metabelian quotients
of the unipotent fundamental group. This follows the proof of these results over Q [13,
37]. To extend the arguments of loc. cit. to the number field situation, we will need
the following properties of metabelian Lie algebras.

Lemma 5.7 Let L™ be the free metabelian Qp-Lie algebra on generators x1, . .., Xy.
(1) Let M denote the Qplx1, ..., x,] module

M ={(vi, ..., v,) € Sym*(L™*)®" . "vix; = 0}.
Then we have an isomorphism of Q,l[x1, ..., x,1l modules
M~ [Lma, [ may,

via the identification S/yE.(Lma’ab) >~ Qpllxt, ..., xall

(2) Let L™ be the maximal metabelian quotient on the Lie algebra of the Q ,-unipotent
fundamental group of a smooth projective irreducible curve X over an alge-
braically closed field F of characteristic zero. Let x1, ...x2, be a symplectic

basis of H := Hlét(X, Qp). Define

M ={(v1,...,v,) € Sym*(H)®" : > " vix; = 0},

and define m := (vg41,...,V2g, —V1, ..., —Vg) € M. Then we have an isomor-
phism of S/ya. (H)-modules.
(L™, ™ ~ M/Sym' (H) - m.
Given an element x of [L™?, L™], we refer to the coefficients v; of the corresponding

element of M as the Fox differentials of x (motivated by Thara’s construction, used in
the proof of Lemma 5.7).

Proof (1) Let G be the free pro-p group on generators y1, ..., ¥,. Let G be the
maximal metabelian quotient

G :=G/[[G, G],[G, G]l.

We claim that L™ is isomorphic to the Lie algebra of the Q ,-Malcev completion of
G. This follows from universal properties: L™? is the Lie algebra of the metabelian
quotient U of the free pro-unipotent Q@ ,-group on generators x;, which we will
denote by U. The category of continuous QQ,-representations of G is equivalent
to the category of metabelian representations of U, which is equivalent to the
category of representations of U.

Let G; and U; denote the maximal i-unipotent quotients of G and U respectively.

We have an isomorphism of S/ya.(V)-modules
[G.G]®z, Qp ~ [U;, Uil.
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@)

Hence it is enough to compute the action of the Lie algebra of G on [G, G]. Let
L denote the Z,-Lie algebra of G: this is the Z,-module Lln Bi<ngr; (G), with
Lie bracket induced by the commutator on G. Then, by [45, 2.3.2], we have an
isomorphism of Q,-Lie algebras

L®z,Q, ~ L™, (36)

The conjugation action of G? on [G, G] gives it the structure of a Z), [G?]-
module. On the other hand, the Lie bracket on [£, L] gives it the structure of
a module over Z pIIGab]]. From the definitions, we obtain an isomorphism of
Zp [G?]-modules

(L, L] ~ gr*[G, G]. (37

In particular, we obtain a non-canonical isomorphism of Q[x1,...,x,]-
modules

[Lmav Lmd] x~ [6’ 6]®Zl,ﬂGabJ]Qp[[x1’ R xl’l:ﬂ

where x; acts on [G, G] by y; — 1. Hence it will be enough to prove that we have
an isomorphism of Z,[[x1, . .., x, ]-modules

[G, Gl > {(v1, ..., va) € Zp[G®] : Y vix; =0}

This is a special case of a theorem of Thara [32, Theorem 2.2].
By [29], we know that gr'zma is isomorphic to a free pro-nilpotent Q ,-Lie algebra
on generators Xxi, ..., X2 4, modulo the Lie ideal generated by Zle[xi, Xgtil
Hence part (2) follows from part (1).

m]

6 Proof of Theorem 1.1

We first recall the following result, which is a corollary of Euler characteristic
formulae/Poitou-Tate duality for finite Galois representations, and roughly says that
for global Galois cohomology, showing that ! is small, showing that H? is small,
and showing that H! of the Tate dual is small are equivalent problems.

Lemma6.1 (1) [34, Lemma 2| For any finite dimensional Q ,-representation W of

Gk.1, we have

b (Gr.r, W) =h2(Gr.r, W) +0(Gxr, W)+ 3 dim wer=""
vePp
L(#Po) - dim W,
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where Pr and Pc denote the set of real and complex places of K respectively, and
the decomposition group at v € PR is generated by cy.
(2) [22, Remark 1.2.4] If K = Q, and H'(Gg.r, W), H(Go.r, W*(1)) and
Deris (W)= are all zero, then
h}(Gg,. W) —h}(Go.r. W)
=h"(Gg. W) — dim H{(Gg,r. W*(1)).

(3) [22, 1.2.2] For any number field K and Q ,-Galois representation W,

dim(Ker(H (Gk .7, W) = ®per H (Gk,, W)))
= dimKer(H*(Gg.7, W*(1)) = ®per H*(Gk,, W*(1))).

6.1 Theorem 1.1, case (1)
In this subsection we prove Theorem 1.1 in the case X = IP’lK — D. First, we make use
of the following Lemma to reduce to the case where S is empty.

Lemma6.2 Foralli > 1, any Galois stable quotient W of gr;(U), and any v # p,
we have HI(GQU, W) =0.

Proof Let I, < Gq, denote the inertia subgroup, and ¢, a generator of Gg, /1,. Tate
duality gives an exact sequence (see e.g. [22, 3.3.9])
0 — H'(Gp,, W) - H'(Gg,, W) — H'(Gg,, W*(1))* — 0.
We have
H'(Gp,, W) =~ Wh /(¢ — HDW".
Since W and W*(1) have weight —2i and 2 — 2i respectively, we deduce
H'(Gg,, W) =0. O

Using the Euler characteristic formula above, we can reduce the computation of dimen-
sions of Galois cohomology groups of Artin—Tate representations (i.e. Tate twists of
Artin representations) to a theorem of Soulé [51, Theorem 5].

Theorem 6.1 (Soulé) For any number field K, and any n > 1,

h(Gk.r,Q,(n)) =0,

We deduce case (1) of Theorem 1.1 as follows. Let Z be an irreducible Q ,-subvariety
of Res(X)Qp, and let U, (Z/X) be as in Proposition 4.2. By Lemma 5.4, and The-
orem 6.1, it is enough to prove that for infinitely many n, gr,(USR(Z/X))/F° =
gr, (USR(Z/X)) is not contained in loc,, H}(GQ, gr,(Uy,)). By Lemma 5.6, it is

enough to prove that, for infinitely many n, gr,, (U, (Z /X)) is not contained in U,f:_l.
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This follows from the fact that &, gr, (U,(Z/X)) is a sub-Lie algebra of the graded
Lie algebra @, gr, U,.

6.2 Theorem 1.1, case (2)

In this subsection we prove Theorem 1.1 in the case X is a smooth projective curve
of genus g > 0, and we assume either the Bloch—-Kato conjectures or Jannsen’s
conjecture, which we now recall.

Conjecture 6.1 (Bloch—Kato, [8, Conjecture 5.3]) Let Z be a smooth projective variety
over Q. For any n > 0 and 2r — 1 # n, the map

chnr : Koro1-n(Z) ® Qp — Hy(Go, H"(Zg, Qy(r))

is an isomorphism.

Conjecture 6.2 (Jannsen, [34, Conjecture 1]) Let Z be a smooth projective variety
over K with good reduction outside T. Then

H*(Gk,r, H (Z%, Qp(n))) =0

wheneveri +1 <nori > 2n.

In particular, when 2r — 1 —n < 0, since negative K -groups are zero, Conjecture 6.1
implies H}(GQ, HY(Zg, Qp(r) = 0.

6.2.1 Finiteness assuming Conjecture 6.1

Part (2) of Lemma 6.1 implies the following corollary of Conjecture 6.1.

Lemma 6.3 Let X be a smooth projective geometrically irreducible curve of genus

g > 1. Suppose Conjecture 6.1 holds for Hg[(X%, Qp(n)). Then, for any Galois

stable direct summand W of Hé”[(X%, Qp(n)), we have

h}(Gg,. W) —h}(Go.r. W) =h%(Gr, W)

whenn > 2.

This means that, for all but finitely many i,
Ker(H}(Go,r. gr;(Ui) — H}(Gg,. gr;(U)) = 0.

Similarly, by part (3) of Lemma 6.1, Jannsen’s conjecture implies that the localisa-
tion map

Hi(Gg.r. Hy (X5, Qi) < @upH (G, Hy (X5 Qp(0))) (38
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is injective for i > 1. This implies that

n
ZdimKer(locp : Hi(Gq,r. gr;(Up) - H}{(Gg,. gr;(U)))

i=1

= dimKer(H}(Gg,r. V) — H}(Gg,. V). (39)

To prove finiteness of X (K ® Q,),, we now show that U, (Z/Res(X)) contains a
large Artin—Tate part, and use this to apply Lemma 5.6. This is done by showing that
the unipotent fundamental group of a projective curve contains many Tate motives.

Lemma 6.4 (Hain) Let X be projective. Then
gr6(Us (X)) P10 2 0.

Proof This is proved in Hain [29, §9]. For the sake of completeness we briefly recall
the argument. Let p := lim @gr; (U; (X)), viewed as a graded Lie algebra, so that
U1(X) has weight —1, anﬁet sp(U1(X)) := Lie(Sp(U1(X))). By computing the Lie
algebra cohomology of p, Hain shows that, for all i < —2, the complex

0B g () 'y 0

is exact. Hence given the irreducible representations arising in gr,(U;(X)),...,
gr;_; (U; (X)), one may compute gr; (U; (X)) as an sp(Uj (X))-representation using the
complex grf’i (A®p). We obtain a non-zero morphism of sp(Uj(X))-representations
Qp — 2rs(Us(X)). o

Lemma 6.5 Let X be a smooth projective curve over a number field K. Let gr® (L) be
the associated graded of the Lie algebra of the Q, pro-unipotent completion of the
étale fundamental group of X. Then gr®(L) contains a free Lie algebra generated

by Qp(3) and Qp(5).

Proof By the previous lemma, Q,(3) is a direct summand of gr6 (L). This follows
from the fact that it is enough to prove this as a statement about representations of
GSp(V), for V a 2g-dimensional vector space with a nondegenerate symplectic form.
Namely one wants to prove the corresponding statement for L(V'), which we define to
be the free Lie algebra on V modulo the Lie ideal generated by Q,(1) C A%V . Then
it is enough to replace GSp(V) with Sp(V) and prove that L(V), as a representation
of Sp(V), contains an invariant vector in gréL(V).

Similarly, to prove the Lemma it is enough to prove that L(V) contains a free Lie
algebra with trivial Sp(V) action, and generators lying in gr®(L(V)) and gr'®(L(V)).
By a theorem of Labute [42, Theorem 1], if L is a free Lie algebra on a vector space V
of dimension > 2, modulo a Lie ideal generated by one element in A2V, then [L, L]
is a free Lie algebra (more precisely Labute’s theorem says it is a sub-Lie algebra of
a free Lie algebra, and thus is free by Shirsov’s theorem). Hence, to prove that L(V)
contains the free Lie algebra mentioned above, it is enough to prove that gré(L(V))
and gr'®(L(V)) both contain copies of the trivial representation.
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Hain proves in loc. cit. that gr®(L(V)) contains a copy of the trivial representation.
Now let I be the Lie ideal in [L(V), L(V)] generated by the copy of Q,(3) in the 6th
graded piece. By another theorem of Labute [41, Theorem 1], I/[I, I] is a free rank
one U/ (L/I) module, where U/(L/I) is the universal enveloping algebra of L/I. In
particular, foralli > 6, gri_6(Z/l(L/I)) is a direct summand of gr’ (L(V)) as an Sp(V)
representation. To show that gr'®(L(V)) contains a copy of the trivial representation,
it is hence enough to show that gr*Z/ (L /I) contains a copy of the trivial representation.
By the Poincaré-Birkhoff—Witt theorem, /(L /I) is isomorphic, as a representation
of Sp(V), to the symmetric algebra on /(L/I). In particular, we see that I/[1, I]
contains a copy of Sym? gr?(L), which contains a copy of the trivial representation.
This can be seen by direct computation, or from the fact that, since gr?(L) is self-dual
as a representation of Sp(V), either Sym? gr?(L) or A%gr?(L) must contain a copy of
the trivial representation, and the latter does not. O

We now deduce case (2) of Theorem 1.1, assuming Jannsen’s conjecture, as
follows. Let L' be the maximal Artin-Tate subspace of the graded Lie algebra
®gr’ (Lie(U; (Res(X)))), i.e. the maximal subrepresentation each of whose summands
becomes a Tate twist after a finite extension. By Lemma 6.5, this is infinite dimen-
sional, and contains a free Lie algebra. Since gr*(U,(Z/Res(X))) is Galois stable
over a finite extension of QQ, and U,,(Z/ Res(X)) surjects onto a factor of U, (Res(X)),
the intersection of gr® (U, (Z/Res(X)) with L’ is infinite-dimensional and contains
a free Lie algebra. Hence the dimension of the image of ®gr;U;(Z/Res(X)) N L’
in L' /(L")*="! is infinite dimensional, and hence by Lemma 5.6, together with (39),
X(K ® Qp), is finite.

6.3 Proof of Theorem 1.1, case (3)

We follow the argument in [37]. Recall E/K is an elliptic curve with complex multi-
plicationand X = E — O. Let U, denote the maximal metabelian quotient of U, (X).
By Lemma 5.7, lim[U ,, U, ] is a free module of rank one over the completed symmet-
ric algebra of V := V, E. The Tate module has a decomposition T, E ~ T, E @ T E
over L where L|K is the field over which the CM is defined. Let a and b be generators
of Lie(U,) whose images in V generate V, E := Q p @ T E and VzE :=Q, @ TrE
respectively. Then Lie(U,) hasa Qpbasisa, band ad(a)'ad(b)/[a, blfori+j < n—2.
Let L>; > ; denote the subspace generated by ad (a)kad(b)’ [a, b]fork > i,l > j.Then
L>;>;is a Lie ideal, and L>; >; + L>; >; is a Gal(K|K)-stable Lie ideal. Let L,
denote the quotient of Lie(U,) by L>1 >1. We have isomorphisms

gr; Ly =~ (IndX (v, (B)®"))(1)

forall3 <i <n.

By Lemma 5.1 we may enlarge the field K and hence we may assume that K |Q
is Galois, and that all isogenies between E  for different embeddings o are in fact
defined over K. Hence, if H < Gal(K|Q) is the subgroup generated by all o such
that E is isogenous (over K or equivalently K) to E,, then V descends to a Galois
representation Vy of Ko := K H
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Let L(V) be the associated graded Lie algebra of lim L,. Equivalently, we may
define L(V) to be the free metabelian Lie algebra on V modulo the ideal generated
by Q,(2). We may similarly define L(Vp). Recall that we have an isomorphism of
representations of Gal(@p 1Qp)

Resgp Ind%, L(Vo) = ®up Resg) L(Vo).

and that in this way we think of H }(G Kow> 8, L(Vp)) as a direct summand of
H}(Gqg,. Indg, gr,L(Vp)).

Lemma 6.6 For any infinite set S of positive integers, there is a prime w of Ko lying
above p with the following property. For a positive proportion of n in S, the intersection
of loc, H}(G@, Ind%) gr,(L(Vp))) with H}(G Ko.ws &6, (L(V0))) has dimension at
most one.

Proof Since E has potentially good reduction at all primes, for all v in S there is a
finite Galois extension L, | K, such that the action of G, on V,(E) is unramified of
weight —1. Hence for all i > 2, and any G -stable quotient W of gr; (U), arguing
as in Lemma 6.2, we have H'(G L,» W) = 0. By the Hochschild—Serre spectral
sequence, and the fact that H'(Gal(L,|K,), W) = 0 for all representations W’ (or
that H(G,,, W) = 0), we deduce that H!(G,,, W) = 0 for all i > 2. Hence for
alli > 2, we have

Hi(Ggyr.guLi) = Hp o(Gko 1. g5, Li).

It will be enough to prove that for all but finitely many i, h' (G Ko.T» gL L(Vp)) =
[Ko : Q]. By Lemma 6.1, it will hence be enough to prove that h? (Gky.1>gr; L(Vp)) =
0, or equivalently that hlf (Gk,,1, g1; L(Vp)*(1)) = 0. It will hence be enough to prove
that

H' (G, Va(E)®") = @uer H (G, Vi (E)®")

is injective for all but finitely n (and similarly for V& (E).

Let X denote the Galois group of the maximal unramified Z ,-extension Lo, of
L, where A = Z,[[Gal(Loo|L)]l. From the Hochschild—Serre spectral sequence we
have an exact sequence

HY(Gal(Loo|L), Vo (E)®') — H' (G 1, Vi (E)®") — Homa (Xoo, Vi (E)®),

using the isomorphism Homa (X oo, Vir (E)®) ~ H%(Gal(Ls|L), H'(Gal(Q|Lso),
Ve (E)®)). Since H'(Gal(Loo|L), Ve (E)®") = 0forall i # 0, it is enough to bound
the dimension of Homp (X0, Vi (E)®). By Iwasawa’s theorem [33, Theorem 5], X oo
is a torsion A-module, hence Hom (X0, Vi (E)®') = 0 for all but finitely many i,
and similarly for V&#(E). O
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Now we take S to be 2 + e - Z~, where ¢ := #u(F), F = End(Eg) ® Q
and w(F) is its group of roots of unity. Let w be a prime as in Lemma 6.6 for
the set S. Let Z C (Resk|g E)q, be an irreducible subvariety dominating a fac-
tor above w. We will henceforth identify Ind% L(Vp) with the associated graded
Lie algebra of the corresponding quotient of 1(131 U,(Res(X)). Let L;(Z/Res(X))
denote the image of the Q,-nilpotent Lie algebra of Z@p in Ind% L;. To complete the
proof of case (3) of Theorem 1.1, we need to show that, for infinitely many i > 0,
H}(GQP, gr;(L;i(Z/Res(X)))) is not contained in loc, H}(GQ,S,Ind% ar; (Ly)).
Since there are no isogenies between Ef,vl and Ef,vz if v; lies above w and vy
does not, the image of V), Alb(Z) in V,,(Res(J)) =~ Ind% V), E is a direct sum of the
image in ®yy Vp Ey and the image in DOupw VpEw- It follows that U, (Z/ Res(X)) is
ojw Un(Xy) and its image in ]_[v;(w U, (X,). Hence,
to show that for infinitely many i, H }(G@p’ gr; (Ui (Z/Res(X)))) is not contained
in loc, H } 5(Gq,s, Ind% gar; (Ui (X))), it will be enough to show that for infinitely
many i, the image of H}(Gq,, gr;(Ui(Z/Res(X)))) in ®yjuwH [(Gk,, gr;(Uy)) is
not contained in M; := loc, H}(GQ,S, Ind% gar; amnn @U‘wH}(GKU, gar; {U)).

a direct product of its image in [ |

Viatheisomorphism V' >~ Resﬁ0 Vo, we have an H -action on H} (G Ind% gr; (Uy)),
compatible with the H-action on @, H }(G K, g1;(U;)). In particular, M; is an
H-submodule of eav|wH}(GKv, gr;(U;)). Hence we deduce that it is enough to
show that for infinitely many i, the H-module N; generated by the image of
H}(GQP, gr; (U;(Z/Res(X)))) in @v|wH}(GKU, gr; (U;)) is not contained in M;. In
fact, we show that N l.H is not contained M l.H . Note that M ,.H is equal to the intersection
of loc, H} (G, gr; (L(Vo)) with H' (G, gr; (L(Vo))).

Note that, via the isomorphism @U‘wH}(GKU, gar; (L)) ~ QplH]®
H}.(G Ko.w» &L (L;)), the subspace M,.H can be identified with the image of
H} (Gq,, gr; (Li(Z) ]_[v‘w Xy)))in H} (Gko,» 8L (L;)) with respect to the norm map

Nm: Q,[H]® H}(Gk,,.gr;(L)) > H}(Gk,,. gr;(L))

induced by the co-unit map Q,[H] — Q,.

Proposition 6.1 Ler Z C (Resk|q E)q, be an irreducible subvariety. Suppose Z
dominates a factor above w. Let W C Indg‘J Vo denote the image of V, Alb(Z).
Let L(W) C Indgo L(Vy) denote the sub-Lie algebra of L(V) generated by W.

Then for infinitely many i > 0, the norm map, restricted to gr;(L(W)), surjects
onto gr; (L(Vo))u-

Proof In fact we will show this for a positive proportion of i > 0. By embedding Q,
into C, we can descend W to a sub-Q-vector space Wg of Hi(Reskg(E)c, Q). It
follows that Wg is an F := End(E@) ® Q-subspace, hence we may assume it is of
the form (A1, ..., A;,) - Hi(Ec, Q) for some A; € F not all zero. Fix an embedding
of F into Q,. Then, choosing a basis e, e of Vj such F acts on e by the embedding
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and on e by its conjugate, it follows that the ith graded piece of L(W) is spanned by
elements of the form

(O R (X2 LY
We see that it will be enough to prove that for a positive proportion of i > 0,

ZK;H_IXJ' #0 (40)

J

(technically, this just shows that the norm is nonzero, but conjugating (40) shows that
the map is surjective).

Without loss of generality, we may assume all the X; are nonzero. Re-ordering, we
may assume that A{, ..., A} are pairwise distinct and A{ € {A{,..., A{} for all i. If
k = 1, then it is enough to prove that

D hjkj #0,

which follows from the fact that A jX j > 0.If k = 2, then by the same argument as
for k = 1, (40) can be rewritten as

2
> aps 0.
j=1

for some rational constants a; > 0. Since A # A5, we have that )J'le # Aée for all
i > 0, since distinct eth powers in F* cannot differ by a root of unity. Hence (40)
holds for all but at most one i.

Now suppose k > 3. By Szemerédi’s theorem [53], it will be enough to prove that
the set of i such that (40) does not hold does not contain an arithmetic progression of
length k. Let iy, ..., iy be an arithmetic progression in eZ-q. Let d = i» — i1. Then
to prove that (40) holds for at least one of the i}, it is enough to prove that for any
positive constants ¢; in Q, we have

k
Zaj)»ljlvj #0

j=1

where v; € F* is the vector (1, Ade A?e(k_l)). Taking determinants, this follows

from the fact that de #* Ajd fori # j between 1 and k. O
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6.4 Proof of Theorem 1.1, case (4)

As in [13] and [19], the key estimate in the proof of case (4) of Theorem 1.1 is the
following theorem of Coates and Kim, coming from Greenberg’s generalisation of
Iwasawa’s theorem to the case of Zg extensions ([23, Theorem 1]).

Theorem 6.2 (Coates, Kim [13, Theorem 0.1]) Let Y /L be a curve of genus g whose
Jacobian has complex multiplication. Let U, (Y) be the maximal metabelian quotient
of U, (Y). Then, for any finite extension L'|L, we have

n
> hA(Grr. g (Ua(Y)) < Bn*¢™,
Jj=1

for some constant B depending on L' and Y .

As in case (3), by Lemma 5.1 we may enlarge K if necessary to assume that K|Q
is Galois and that all isogenies between J, ¢ for different embeddings o are in fact
defined over K. Hence, if V := V,J and H < Gal(K|Q) is the subgroup generated
by all o such that Jac(X) is isogenous (over K or equivalently K) to Jac(X,), then V
descends to a Galois representation Vg of K¢ := K.

Let F := End(Jg) ® Q be the CM field by which J has complex multiplication.
Let e := #u(F’), where F’ is the Galois closure of F. Over a finite extension of Q,
Vo decomposes as a direct sum of characters x; for 1 <i < 2 g. Over K, the Galois
action permutes the y;. In particular, if S C {1, ..., 2g}" is stable under the action of
S»¢» then the subspace

@(i_,-)eS ® Xi_/'

of V0®" is stable under the action of Gk . Let L denote the free metabelian Lie algebra
generated by Vj. Forn divisible by e, let Vo[n] C gr, (L) denote the subspace generated

by the image of ]_[12 8 1 Sym¥ (x;) ® xj ® xx in L under the nested commutator map,
where a; are such thatag; isine - Zsq ifi # j,k,and a; + 1 € e - Z~ otherwise.

Lemma 6.7 There is a positive constant cy < 1 with the following property: there is
a prime w of Ko lying above p such that, for a positive proportion of n dividing e, the
intersection of loc, H}»(GQ, Ind%0 Voln]) with H}(GKO,W, Voln)) is at most cq times
the dimension of H}(GKO’W , Voln]).

Proof It will be enough to show that the dimension of loc, H ;-(GQ, Ind%0 Voln)) is
at most ¢ < 1 times that of ‘

H}(Gg,.Indg, Voln]) = ®uipH} Gy, Voln)).
dimand%0 Voln])e="

dim(Ind g, Voln))
below by a constant > 0 for n sufficiently large. If K contains one complex place,

By Lemma 6.1 and Theorem 6.2 is enough to show that is bounded
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then it follows that the dimension is at least [ K : @]’1 - dim Vy[n]. Hence suppose
K is totally real. Complex conjugation defines an involution of Vy which nontrivially
permutes the vector subspaces x;. Hence V| := &; Xi®e C Sym‘ Vj is stable under
conjugation and the minus eigenspace of V; is nontrivial. Via the action of Sym*® Vj
on [L, L], the module @®,, Vp[n] is a module under Sym*® Vi, and by Lemma 5.7, for
any nonzero element x of Sym® Vi, the kernel of the action of x on @, Vo[n] is zero.
Choosing a nonzero element of V; in the minus eigenspace with respect to complex
conjugation, we get an injection

Voln]="! < Vy[n + e]*=".

Since dim Vy[n]/Vo[n + €] is bounded by a nonzero constant, we see that Vj [n]°=!is
a positive proportion of Vy[n]. O

For a prime v of K, let L, denote the free metabelian Lie algebra generated by
Vy := VpJac(X,), and L, the associated graded of the Lie algebra of the metabelian
quotient of the Q,-unipotent fundamental group of X o, Then, by Lemma 5.7, we

"N

have an isomorphism of G, -representations
Ly = Ly/ Sym* (V) (D). (41)

Let w be a prime of K. The action of G g, on @), V;, induces an action on @,y Ly,
giving an isomorphism

Indf° L =~ @, Ly. (42)

For each v, we have a decomposition of V,, as 691.2 f | Xi,v> such that the isomorphisms
Vi =~ Res V) restrict to isomorphisms between Res y; , and Res x; (where the latter
restrictions are to a suitably large finite extension of Ko). In the same way as for Vj,
we can define subspaces V,[n] of gr,,(L,) for n divisible by e.

Note that we do not assume that the isogenies between Jac(X,) for different v
above w respect polarisations, and hence we cannot automatically use (41) and (42)
to identify @L, with the induction of a quotient Lie algebra of L. However, since
we restrict attention to the spaces Vy[n] and Vy[n], we can ignore this subtlety by the
following lemma.

Lemma 6.8 The surjection L, — L, restricts to an injection on @, Vy[nl.

Proof Let x be an element of V,[n] N Ker(L, — L,). Then there is an element f of
Sym”"~2(V,) such that x = f - ¢, where r € A2V, is a generator of Ker(L, — L,).
Lemma 5.7 implies that x is uniquely determined by its Fox differentials. Let z; be
a generator of x; ,. We may order the characters y; , so that ¢ is a one-dimensional
subspace of @lexz‘,v ® Xg-+i,v SUrjecting onto x; y ® xg+i,» for all i, hence the Fox
differential of x with respect to z; is givenby «; - f - zg4; (Wheni < g)oro; -x -z,
(when i > g) for some nonzero a; € Q. Since the Fox differential with respect to z;
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of an element of V,[n] must necessarily be in

ea(ai)Ee-Zi% Symuiil(X") ® (®j¢i Sym”j (Xj))’

we see that the congruence conditions force x to be an element of

D o226 SYM™ ™ (00 ® Sym L (i) (® 41 g4 Sym™ (X))

forall 1 <i < g. It follows that x must equal zero. O

Let Z C Res(X)q,, be an irreducible subvariety which dominates a factor of Res(X)

at a prime lying above w. Let W C Indio(V) denote the image of V), Alb(Z) in
Vp Res J. Let L(W) denote the sub-Lie algebra of L generated by W. For n divisible
by e, let W[n] denote the intersection of gr,, (L(W)) with @, Vy[n].

By Lemma 6.8 and Theorem 6.2, to complete the proof of case (4) of Theorem 1.1,
it will be enough to show that

> dim(H}(Gg,. WIiD)/loc, H}(Gg. Indg Vi) N H}(Gg,. W) > n®

i<nel|i
(i.e. that it is bounded below by a nonzero constant times n28). Since
lim dim Vp[n]/ dim gr,L(Vp) > O,
n— oo

it is enough to show that this sum of dimensions makes up a positive proportion of

ZiSn:eli dim Vy[i].
As in the proof of case (3), we reduce to estimating the size of the image of
H}(G@p, WIi]) in @U|wH}(GKU, WTi]) modulo M;, where

M; :=loc, H}(Gq. nd¥ Vi n BuwH (G, WIi)).

The dimension of this image is at least # dim N;/M;, where N; is the H-module
generated by the image of H} (GQp’ WIi]) in ®U|wH} (Gk,, Volil).

We use this to reduce to comparing the subspaces MiH and NiH of Ind%0 Wli] =~
]_[v‘w Vyli]. As in case (3), we have an isomorphism

MH ~loc, H}(Gg.s, Indy, Voln]) N H}(Gk,,,. Voln]) € H'(Gg,. Indg, Voln)).

Hence, by Lemma 6.7, we know that for i sufficiently large, dim MiH / h}(G Ko Yoli1)
is bounded above by a constant strictly less than 1. Hence it will be enough to prove
that dim NiH/h}(GKo,w, Voli]) tends to 1. Since dim Fo(gr[(Ul-)) = 0(i%), we have
that dim FOW[i] and dim Vy[i] are both~0 (i%). Hence, by the p-adic corEparison
theorem, it is enough to prove that dim NiH / dim Vy[i] tends to 1, where N; is the
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H-module generated by the image of W[i] in Vy[i] with respect to the composite of
the projection to @y, Vy[i] with the norm map

Nm : @y Volil >~ Qp[H] ® Volil — Volil.

Hence to complete the proof of case (4) of Theorem 1.1, it is enough to prove the
following lemma regarding the image of W[n] under the composite of the projection
to @yjw Vy[n] and the norm map above.

Lemma 6.9 Let NmW[n] C Vy[n] denote the image of W[n] with respect to the norm
map. Then

dim NmW{[n]/dim Vy[n] — 1

asn € e - Z~o tends to infinity.

Our proof of Lemma 6.9 is rather elaborate. We first need the following result.
Lemma6.10 Let x1, ..., x, be nonzero elements of a field F such that for allm > 0
and alli # j, x" # x;?l. Let yi, ..., y, be nonzero elements of F. Then, as m tends

to infinity, the proportion of i in {0, ..., m} such that Zj ij;- # 0 tends to one
uniformly in m. More precisely, for any € > 0, there is an m¢ independent of x; and
v;i such that, for all m > me, Z?:l ij;. # 0 for at least (1 — €)m elements of
{1,...,m}.

Proof If n < 2 the resul; is clear, so assume n > 2. Let S, C {0, ..., m} be the
set of i such that ) iy jx’l. = 0. By Szemerédi’s theorem, it will be enough to show
that S, does not contain any arithmetic progression of length n. Let {i, ..., i,} C

{1, ..., m} be an arithmetic progression in {1, ..., m}. Letd := iy —i1. Let So C S

Then, since the xlfi are pairwise distinct by hypothesis, the Vandermonde determinant

det(xfl'(j_l))lfi,jfn is nonzero. Hence the vectors (xj.l, R xj.”) € F',forl < j <n,
are linearly independent. It follows that there is a k such that

Z ijj.k £ 0.
J

]

Now let F := End° (Jac(X)%) ®Q be the CM field associated to X, and let oy, ..., o2,
be the embeddings of F into Q.

Lemma6.11 Let Ay, ..., Ay, be m elements of F which are not all zero, and are all
eth powers. Let S(n) := {(a1,...,a24) €€ Zzzf) : Zaj =n}. Then, asn € e - Z~g
tends to infinity, the proportion of (a;) in S(n) such that

m 2g

F(ai, ..., az) = Z Haj(ki)aj

i=1 j=1

is nonzero tends to 1.
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Proof Firstly, clearly we can remove all A; equal to zero, hence we may assume that
all A; are nonzero. We may also rescale so that A = 1.

We filter the set {1, ..., m} by subsets as follows. For 1 <i < 2g, define T; to be
the set of j in {1, ..., m} such that oy (A ;) = 01(A;) forall 1 < k < i. We prove, by
descending induction on i, that for all i < m, as N tends to infinity the proportion of
(aj) in S(n) such that

2g
Fi(ay, ..., azg) = Z l_[ oj )Y

keT; j=1

is nonzero tends to 1. In the case where i = 2g, we see that all the A for k in T, ¢ are
in fact in Q. Since all the g; are even and all A; are nonzero, each summand is strictly
positive (also, since A1 = 1, T2 4 is nonempty).

Now fix a k between 2 and 2 g, and suppose that the proportion of (a;) such that
Fi(ay, ..., azg) is nonzero tends to 1 for (g;) all divisible by e. If Ty = T;_; there
is nothing to prove in the next inductive step, so assume that there is a j in Tjy_
such that o1(A;) # ox(A;). Let (b1, ..., b2g) be a tuple such that Fi (b1, ..., bag)
is nonzero. Let R(b1, ..., bag) be the set of tuples (a;) € e - Zif; such that a; = b;
fori ¢ 1,k —1,and a1 + ax—1 = b1 + bx—1. Let uq, ..., ue be the set of (distinct)
possible values of oy (A?) /01 ()\j) for j in Ty_1, such that u; = 1. Then there are
constants ci, ..., cg such that, for any (g;) in R(by, ..., byg), we can write

12
—b
Fr_i(ay, ..., az) = Zci ,Mlgal /e
i=1

In particular, ¢; = Fi (b1, ..., bag) # 0, and hence the constants ¢; are not all zero.
Since the pu; are all eth powers, for all i > 0 and j; # jo, ,u’jl * "’Lljz' Hence the
proportion of (a;) in R(by, ..., bag) such that Fy_j(ay, ..., az,) is nonzero tends to

1 uniformly in b; 4 bx—1, by Lemma 6.10. Since, for any ng, the proportion of (b;) in
S(n) such that by + bx—1 < ng tends to zero, we deduce that the proportion of (a;) in
S(n) such that Fy_i(ai, ..., azg) is nonzero tends to 1 as required. O

Proof of Lemma 6.9 By embedding Q, into C and viewing Z as a complex subvariety,
we can descend the subspace W of @y, V, to a subspace Wo of [ Hi (X, ¢, Q).
Then we may assume W is a subspace of Vj" of the form (A1, ..., A;,) - Vo, for some
X in F C End(Vy). The action of A € F on ; is given by o; (1) (after re-ordering the
o; if necessary). Hence Nm W [r] consists of elements of the form

m 2g 2g
Y oo | [Toi | | T1e7 | lexs el (43)
i=1 j=1 j=1

for a; € S(n), where e; is a generator of y;. Hence, to show that the kernel of the
induced map Vy[n] — Vp[n] has dimension o(dim Vy[n]), itis enough to show that the
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proportion of @; in S(n) such that (43) is zero is o(1), which follows from Lemma 6.11.
O
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