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Abstract
The Chabauty–Kim method is a tool for finding the integral or rational points on vari-
eties over number fields via certain transcendental p-adic analytic functions arising
from certain Selmer schemes associated to the unipotent fundamental group of the
variety. In this paper we establish several foundational results on the Chabauty–Kim
method for curves over number fields. The two main ingredients in the proof of these
results are an unlikely intersection result for zeroes of iterated integrals, and a care-
ful analysis of the intersection of the Selmer scheme of the original curve with the
unipotent Albanese variety of certain Qp-subvarieties of the restriction of scalars of
the curve. The main theorem also gives a partial answer to a question of Siksek on
Chabauty’s method over number fields, and an explicit counterexample is given to the
strong form of Siksek’s question.
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1 Introduction

Let X be a hyperbolic curve over a number field K . Then, by a theorem of Siegel in the
case X is affine [49] and by Faltings [20] in general, X has only finitely many integral
points. Both these proofs are ineffective, in the sense that they do not give a way to
determine the set of integral points. The Chabauty–Kimmethod seeks to give amethod
for determining this set of points, by constructing a set of p-adic points containing the
integral points,whichone canprove is finite and compute in practice.Before explaining
theChabauty–Kimmethodmore precisely,we clarifywhatwemean by integral points.
Let X be a smooth projective curve over K , with X ⊂ X and complement D := X−X .
We assume that X is hyperbolic, i.e. that 2g(X) + #D(K ) > 2. Let X be a regular
model of X over OK ,S , for S a finite set of primes, D ⊂ X a normal crossings divisor
with generic fibre equal to D, and X := X − D. Then the theorems of Faltings and
Siegel imply that X (OK ,S) is finite.

Let p be aprimewhich splits completely in K andwhich is a primeof good reduction
for X (henceforth when we say that a rational prime is a prime of good reduction for
X , we will mean that for all v|p, v is not in S, X has good reduction at v and D
is étale over OKv ). Then Kim’s method produces nested subsets X (OK ⊗ Zp)S,n

and X (OKv )S,n of X (OK ⊗ Zp) = ∏
v|p X (OKv ) and X (OKv ) respectively, each

containing the S-integral points of X :

X (OK ⊗ Zp) ⊃ X (OK ⊗ Zp)S,1 ⊃ X (OK ⊗ Zp)S,2 ⊃ · · · ⊃ X (OK ,S),

X (OKv ) ⊃ X (OKv )S,1 ⊃ X (OKv )S,2 ⊃ · · · ⊃ X (OK ,S).

When S is empty, these sets will be written simply as X (OK ⊗ Zp)n and X (OKv )n ,
and in the case X = X is projective, they will be written simply as X(K ⊗ Qp)n and
X(Kv)n . Adetailed description ofX (OK⊗Zp)S,n andX (OKv )S,n is given inSect. 3.1.
A valuable feature of the Chabauty–Kim method is that the sets X (OK ⊗ Zp)S,n and
X (OKv )S,n are often computable in practice, and can be used to determine X (OK ,S)

(see e.g. [4, 6, 15, 16]).
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In this paper we establish foundational results about the scope of the Chabauty–
Kim method over number fields, by establishing when we should expect the sets
X (OK ⊗ Zp)S,n to be finite. The algorithmic side of the Chabauty–Kim method has
also been developed in certain cases in depths one (see for example [50]) and two [3],
and hence these results also suggest that the Chabauty–Kimmethodmay be a practical
method for the determination of rational points on hyperbolic curves of small genus
over number fields.

1.1 Main results

The main result of this paper is that, essentially, the status of the Chabauty–Kim
method over arbitrary number fields is the same as that over Q. More precisely, we
show that the Chabauty–Kim sets X (OK ⊗ Zp)S,n are finite under the same sets of
hypotheses as those needed over Q. As we explain below, the proofs of these results
are however quite different from their analogues over Q.

Theorem 1.1 Let K be a number field, and p a (rational) primewhich splits completely
in K , and S a finite set of primes disjoint from K . Then X (OK ⊗ Zp)S,n is finite for
all n � 0 in each of the following cases.

(1) X = P1 − D, where D ⊂ P1
K is a closed subscheme with #D(K ) > 2.

(2) X/K is a smooth projective curve of genus g > 1, and the conjecture of Jannsen,
or the conjecture of Bloch–Kato, hold for all the product varieties Xn.

In each of the following cases, there exists a finite extension L|K, such that for all
rational primes p which split completely in L, there is a prime v of K above p such
that X (OKv )S,n is finite for all n � 0.

(3) X = E − O, where E/K is an elliptic curve with complex multiplication.
(4) X/K is a smooth projective curve of genus g > 1whose Jacobian is geometrically

simple and has complex multiplication.

Remark 1.1 The last two cases of Theorem 1.1 involve two conditions on the primes
involved, which were erroneously not included in a previous version of this paper.
The first, that of restricting to a positive proportion of primes, already occurs in the
original work of Kim and Coates–Kim, since they require p to split completely in
the CM field by which the Jacobian has complex multiplication. It also occurs in our
work because we pass to a finite extension of K , and require p to split completely in
that. The condition of only working with one prime above p seems difficult to remove
without a deeper understanding of localisation maps in Galois cohomology.

Remark 1.2 When K = Q, Theorem 1.1 is already known: cases (1), (2) and (3) are
due to Kim [35–37]. Case (4) is due to Coates and Kim [13]. As in Ellenberg and Hast
[19] this implies finiteness of X(Kv)n for any curve X which geometrically dominates
a hyperbolic curve with geometrically simple CM Jacobian (since we prove finiteness
over all number fields, we can just pass to a finite extension over which the cover is
defined, and note that for a cover X → Y , finiteness of Y (Kv)n implies finiteness of
X(Kv)n). In particular, it implies finiteness of X(K ) for all hyperelliptic curves X and
number fields K .
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When K is totally real, case (1) was proved independently by Hadian [26] and Kim
[38].

Remark 1.3 As explained below, the main input into the proof of Theorem 1.1 is an
unlikely intersection result (Proposition 4.1) for Kim’s unipotent Albanese morphism.
The idea of relating unlikely intersections to theChabauty–Kimmethod also appears in
the thesis ofDanielHast [30, §5],where he shows that,when K has a real place, case (2)
(assuming Bloch–Kato) and case (4) of the above theorem are implied by a sufficiently
strong unlikely intersection result [30, Conjecture 5.1], which is a generalisation of
a question of Siksek on Chabauty’s method over number fields. In Sect. 2.2, we give
a counterexample to this strong unlikely intersection result, which also provides a
negative answer to Siksek’s question.

Hast has independently obtained related results pertaining to the relationship
between the Chabauty–Kim method and generalisations of the Ax–Schanuel theorem
[31]. Rather than proving finiteness of X (OK ⊗ Zp)S,n , Hast gives a Chabauty–Kim
proof of finiteness of the set X (OK ,S) of integral points, assuming Klingler’s Ax–
Schanuel conjecture [40, Conjecture 7.5] for variations of mixed Hodge structure, as
well as the assumptions in (1) to (4). The point of divergence in proving finiteness of
X (OK ,S) rather thanX (OK ⊗Zp)S,n orX (OK ,v)S,n is that, in both proofs, one wants
to prove finiteness of the Zariski closure of a set of points (either ResK |Q(X)(Q) or
ResK |Q(X)(Qp)n) by considering its image under the unipotent Albanese morphism
and intersecting with a Selmer scheme. Whilst the former descends to Q, the latter
will in general just be defined over Qp—this phenomenon already occurs in the case
of Chabauty’s method over Q, where the set X(Qp)1 would be expected to typically
contain non-algebraic points even when it is finite. We elaborate on the issue of fields
of definition in the subsequent subsection.

Remark 1.4 It would be interesting to adapt the proof of Theorem 1.1 to give a method
for determining the rational points on more general higher dimensional varieties
which have non-abelian unipotent fundamental groups. For example, can one apply
the Chabauty–Kim method to determine the rational points on some of the higher
dimensional Shimura varieties considered by Dimitrov and Ramakrishnan in [18]?

1.2 Unlikely intersections and fields of definition

The main new result used in the proof of Theorem 1.1 is a way of understanding the
zeroes of certain transcendental functions (iterated integrals) on higher dimensional
varieties. Kim’s method works by constructing, under certain Galois cohomological
assumptions, certain nontrivial locally analytic transcendental (Coleman) functions
on

∏
v|p X (Ov) whose zero locus contains X (OK ,S). Since Coleman functions have

only finitely many zeroes on X (Zp), this proves finiteness when K = Q.
Over number fields,

∏
v|p X (Ov) is no longer one dimensional and hence the prob-

lem is to rule out that these functions conspire to have many zeroes in common. In this
paper we resolve this problem by proving a foundational result (Proposition 4.1) on
unlikely intersections for iterated integrals. In the abelian case, themain unlikely inter-

123
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section result (Proposition 4.1) is a straightforward consequence of the Ax–Schanuel
theorem for abelian varieties.

To describe how such unlikely intersections can occur, consider the case of the
product of P1 − {0, 1,∞} with itself, with co-ordinate functions z1, z2. Then the
Coleman functions log(z1) − log(z2) and log(1− z1) − log(1− z2) are independent,
in a suitable sense, but their common zero set is not codimension 2, as it contains the
diagonal. The zero locus is not Zariski dense, however. A rather complicated way of
seeing this is to observe that, on any positive dimensional component of the zero locus,
dz1
z1

− dz2
z2

and dz1
1−z1

− dz2
1−z2

are colinear. Hence such a component must be contained
in the subspace

z1(z2 − 1) = z2(z1 − 1).

In this paper we show that unlikely intersections of this form are, in some sense, the
only thing that can gowrong.More precisely, in Proposition 4.1we prove the following
Ax–Schanuel-type statement for iterated integrals: if the codimension of the zero set
of a set of iterated integral functions on a smooth geometrically connected quasi-
projective variety is ‘smaller than expected’, then this zero set is not Zariski dense in the
subvariety. The method of proof is an elaborate version of the example above, inspired
by Ax’s original proof of the Ax–Schanuel theorem for tori and abelian varieties. A
similar strategy is used by Blázquez-Sanz, Casale, Freitag and Nagloo [7], where a
stronger and vastly more general Ax–Schanuel type theorem is proved used a suitable
nonabelian generalisation of Ax’s proof. Indeed, their work, specialised to the specific
context of unipotent connections on products of curves, gives an elegant conceptual
explanation for some of the more elaborate (and apparently unmotivated) calculations
in Sect. 4. Although their argument is phrased in the language of connections on
principal bundles for varieties over the complex numbers, standard arguments show
their results imply unlikely intersection results for Coleman integrals. This will be
pursued further in a subsequent work.

The second difficulty is establishing the existence of non-trivial Coleman functions
vanishing on X (OK ⊗Zp)S,n . In the case K = Q, by a theorem of Kim this is proved
by showing that a localisation map from a Selmer scheme to local Galois cohomology
variety is not dominant (this is a nonabelian, Galois cohomological analogue of the
fact that Chabauty’s method depends on showing that the rank of the Jacobian is
less than the genus). In the Chabauty–Kimmethod over Q non-dominance is typically
proved via (often conjectural) dimension bounds on certainBloch–Kato Selmer groups
associated to the étale fundamental groups of XK . Using Proposition 4.1, we are
then able to deduce Zariski non-density results for X (OK ⊗ Zp)S,n from results on
dimension bounds on certain Bloch–Kato Selmer groups. To prove finiteness results,
we argue by contradiction, assuming that X (OK ⊗ Zp)S,n is infinite, and taking Z
to be its Zariski closure. To apply the unlikely intersection result via the Chabauty–
Kim method, we have to bound the intersection of Selmer groups associated to the
fundamental group of the Weil restriction ResK |Q XQ with local Galois cohomology
groups associated to fundamental group of the ZQp

.
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6 N. Dogra

Since the unipotent fundamental group of ZQp
need not surject onto that of

ResK |Q XQ, we are compelled to study a slightly novel local–global problem in Galois
cohomology. Instead of needing to bound the image of the Bloch–Kato Selmer group
of a global Galois representation V in the local Galois cohomology of V , we need
to bound the intersection of the image of the Bloch–Kato Selmer group of V with
that of the local Galois cohomology of a subspace W ⊂ V which is stable under
Gal(Qp|Qp), but which need not be stable under Gal(Q|Q). This is done in several
stages. First, although we cannot assume that Z descends to a number field, we can
descend the image of its Albanese variety in that of the Weil restriction of X (see
Lemma 5.5), and we know that the Albanese of Z must surject onto the Jacobian of
one of the factors of ResK |Q(X). For case (2), we then use this to show that there
are pieces of the fundamental group of ResK |Q(X) whose global Galois cohomology
cannot contain the fundamental group. Because our assumptions in this case imply
strong bounds on the relevant H2 groups, this suffices by standard duality arguments
to prove finiteness.

For cases (3) and (4), this is not enough, because our unconditional bounds on H2

in this case are weaker. This is why we instead prove finiteness of X(OKv )S,n for some
v above p. To explain how this simplifies the proof, consider the case where, for all
distinct embeddings σ1, σ2 : K → K , Hom(Alb(XK ,σ1

),Alb(XK ,σ2
)) = 0. Then,

up to isogeny, the image of the unipotent fundamental group of X in the fundamental
group of Res(X) is the product of the images in the individual factors of Res(X). This
allows us to reduce to the case where the image is very large. On the other hand, if
K |Q is Galois and X is defined over Q, then there is an action of Gal(K |Q) on the
Galois cohomology over K of the fundamental group of X . This gives an additional
structure to show that the Galois cohomology of the fundamental group of Z/Qp is
not contained in the global Galois cohomology of the fundamental group of Res(X).
In cases (3) and (4) we interpolate between these two techniques, using our strong
assumptions on the Jacobian of X .

1.3 Applications to explicit Chabauty–Kim

Theorem 1.1 guarantees that the algorithms of Dan-Cohen–Wewers, Dan-Cohen and
Corwin–Dan-Cohen [14–16] for computing OK ,S-points on P1 − {0, 1,∞} provably
produce finite sets, extending the theoretical scope of the algorithms beyond totally
real fields. To use the Chabauty or Chabauty–Kimmethod to determine X(K ) for X of
genus bigger than one, at present one typically needs finiteness of X(K ⊗ Qp)n when
n = 1 or 2. When K = Q, the foundational work of Chabauty implies that X(Qp)1
is finite if r < g, where r is the Mordell–Weil rank of the Jacobian of X , and g is the
genus. The ‘quadratic Chabauty lemma’ [4, Lemma 3.2] states that X(Qp)2 is finite
when r < g+ρ(Jac(X))− 1, where ρ(Jac(X)) denotes the rank of the Neron–Severi
group of Jac(X) (over Q). We prove a partial generalisation of this result to number
fields. We also give sufficient conditions for finiteness of X(K ⊗ Qp)1, providing
a partial answer to a question of Siksek (see below). The latter result, which can
be phrased purely in terms of the classical Chabauty–Coleman method, is proved
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separately in Sect. 2, although it is also a special case of the more general results
obtained later in the paper.

Proposition 1.1 Let K |Q be a finite extension of degree d, and let r1(K ) and r2(K )

denote the number of real and complex places. Let PR denote the set of real places
of K , and for each v ∈ PR, let cv ∈ GK denote complex conjugation with respect to
an embedding K ↪→ C extending v. Let X/K be a smooth projective geometrically
integral curve of genus g > 1, and let p be a prime which splits completely in
K and such that, for all v|p, X has good reduction at v. Let r denote the rank of
Jac(X)(K ). Suppose that for any two distinct embeddings σ1, σ2 : K ↪→ Q, we have
Hom(Jac(X)Q,σ1

, Jac(X)Q,σ2
) = 0. Then we have the following finiteness results.

(1) If r ≤ d(g − 1), then for all primes p of good reduction and splitting completely
in K , there is a prime v of K lying above p such that X(Kv)1 is finite.

(2) If rk H1
f (GK ,T , Tp(Jac(X))) ⊗ Qp) ≤ d(g − 1) + (r2(K ) + 1)(ρ(Jac(X)) − 1)

+
∑

v∈PR

ρ(JC,v) − ρ(JR,v)

then for all primes p as in part (1), there is a prime v above p such that X(Kv)2
is finite.

Remark 1.5 Assuming the finiteness of the p-primary part of the Tate–Shafarevich
group for (Jac(X), we have rk H1

f (GK ,T , Tp(Jac(X)) ⊗ Qp) = rk Jac(X)(K ). By
modifying the definition of the Selmer scheme as in [4, Definition 2.2] to include a
condition on mapping to J (K ) ⊗ Qp, (condition (c) of [4, Definition 2.2]), one can
prove finiteness of a modified version of X(Kv)2, for v as above, whenever

r ≤ d(g − 1) + (r2(K ) + 1)(ρ(Jac(X)) − 1) +
∑

v∈PR

ρ(JC,v) − ρ(JR,v)

(still assuming Hom(Jac(X)Q,σ1
, Jac(X)Q,σ2

) = 0 for all σ1 
= σ2). This modified
version of the Selmer scheme is also easier to compute with (see [4]) but as this
distinction is not needed elsewhere in the paper, we use the simpler definition.

In the case K = Q, case (2) of Proposition 1.1 is in fact more general than the
quadratic Chabauty lemma [4, Lemma 3.2] mentioned above. Instead it reduces to [5,
Proposition 2], which states that X(Qp)2 is finite whenever

rk(J ) < g − 1 + ρ(J ) + rk(NS(JQ)c=−1),

where J is Jacobian of X , and c ∈ Gal(Q|Q) is a complex conjugation.

Although the condition on Hom(Jac(X)Q,σ1
, Jac(X)Q,σ2

) is generic when X is not
defined over a subfield of K , and is practical to check for curves of small genus and
number fields of low degree, it is natural to wonder whether a weaker condition is
sufficient. There are known examples where X(K ⊗Qp)1 is infinite and r = d(g−1)
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coming from the fact that X descends to a subfield of K |Q. In [50], Siksek askswhether
a sufficient condition for finiteness of X(K ⊗ Qp)1 is that r ≤ d(g − 1) and X is not
defined over any intermediate extension of K |Q. In Sect. 2, we show that this question
has a negative answer, but it is not clear that the condition that we obtain is optimal.

Remark 1.6 In the case when K is an imaginary quadratic field, Proposition 1.1 (mod-
ified as in the above remark) implies that X(Kv)2 is finite whenever rk J (K ) ≤ 2 g
and ρ(J ) > 1, which has applications to the scope of the algorithms developed by
Balakrishnan, Besser, Bianchi and Müller [3].

1.4 Notation and plan of the paper

In Sect. 2, we explain the relation between the application of theAx–Schanuel theorem
to questions on Chabauty’s method over number fields. Although the main result is
essentially a special case of results proved later in the paper, we give an independent
exposition that involves none of the machinery from Kim’s method. We hope this may
be of independent interest, and provide an illustration of how unlikely intersection
results imply finiteness of Chabauty–Kim sets. In Sect. 3, we provide a brief re-
cap on the Chabauty–Kim method over Q and over number fields. We also explain
how the Chabauty–Kim method for X/K is related to the Chabauty–Kim method
for ResK |Q(X)/Q, where ResK |Q(X) denotes the Weil restriction of X (following an
analogous construction of Stix, in the context of the section conjecture, in [52]). In
Sect. 3.5, we recall the explicit description of the p-adic iterated integrals (or more
precisely, the unipotent connections) which arise in Kim’s method given in [36]. This
enable us to reduce the unlikely intersection statement required to a statement about
zeroes of iterated integrals. In Sect. 4, we then prove the unlikely intersection result,
following the strategy outlined above. In 5, we describe how to reduce the proof of
finiteness of X (OK ⊗ Zp)S,n to specific inequalities for the dimension of (abelian)
Galois cohomology groups. In Sect. 6 we complete the proof of Theorem 1.1 by
verifying these inequalities.

The following notation will be used throughout the paper. If X is a rigid analytic
space over Qp with formal model X , then, for any subscheme Y of the special fibre
XFp , we denote by ]Y [⊂ X the tube of Y in the sense of Berthelot. This is a rigid
analytic space whoseQp-points are exactly theQp-points of X which reduce to Y (Fp)

modulo p. When Y is an Fp-point of X , we refer to ]Y [ as a residue disk. If X and Y
are rigid analytic spaces overQp, and X has a fixed formal modelX , a locally analytic
morphism F : X(Qp) → Y (Qp) will mean a morphism of sets which, for all residue
disks ]b[, b ∈ X (Fp), has the property that F |]b[(Qp) comes from a morphism of rigid
analytic spaces ]b[→ Y .We will often view such a morphism as a morphism of rigid
analytic spaces

F ′ : �b∈X (Fp)]b[→ Y .
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Unlikely intersections and the Chabauty–Kimmethod... 9

In particular, when we refer to the graph of F , we will mean the image of the graph
of F ′ under the map

�b∈X (Fp)]b[×Y → X × Y .

When we talk about irreducible components of a rigid analytic space, the rigid
analytic space will always be a closed affinoid subspace of a polydisk, or a union of
such spaces.

We denote the Galois group of a field F by GF . When F is a number field, and S
is a set of primes of a subfield L ⊂ F , we denote by GF,S the maximal quotient of
GF unramified outside above all primes above S.

Recall that, given a scheme Z over K , we say that aQ-scheme is theWeil restriction
of X , denoted ResK |Q(Z), if it represents the functor on Q-algebras

S → Z(S ×Q K ).

We will sometimes write ResK |Q(Z) simply as Res(Z). The only statements about
existence of Weil restrictions that we will need are that smooth projective curves and
abelian varieties over fields, or over Dedekind domains, admit Weil restrictions [10,
7.6.4].

Given an algebraic (or pro-algebraic) groupU we denote by CiU the central series
filtration

C1U = U ⊃ C2U = [U ,U ] ⊃ C3U = [U ,C2U ] ⊃ · · ·

and, unless otherwise indicated, we denote Ci/Ci+1U by griU . We similarly define
Ci L and gri L for a Lie algebra L .

If K is a number field, and T ⊃ S � {v|p} are finite sets of primes of K , and
U is a unipotent group over Qp with a continuous action of GK ,T , we denote by
H1

f ,S(GK ,T ,U ) the set of isomorphism classes of GK ,T -equivariantU -torsors which
are unramified at all primes not in S�{v|p} and are crystalline at all primes above p in
the sense of [35]. In the case whereU is a vector space, this recovers the usual Bloch–
Kato Selmer group [8]. For a continuous G-representationW , we define hi (G,W ) :=
dimQp H

i (G,W ), and similarly define hif ,S(G,W ) etc.

If L|K is a finite extension of fields, we will write IndKL and ResKL to denote the

functors IndGK
GL

and ResGK
GL

on Galois representations.

2 Ax–Schanuel and Chabauty’s method over number fields

2.1 Chabauty’s method and p-adic unlikely intersections

TheAx–Schanuel theorem for abelian varieties [2] can be translated into the following
statement (the translation is identical to the geometric statement of Ax–Schanuel for
tori [1] as stated in [55]).
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10 N. Dogra

Theorem 2.1 (Ax–Schanuel [2]) Let A be an abelian variety over C of dimension n.
Let �exp ⊂ A×Lie(A) be the graph of the exponential, and let p : A×Lie(A) → A
be the projection. Let V be a subvariety of A × Lie(A). Let W be an irreducible
component of the complex analytic space V an ∩ �exp. Suppose codimV an(W ) < n.
Then p(W ) is contained in a translate of a proper abelian subvariety of A.

Remark 2.1 This theorem can be deduced from Ax’s original theorem as follows.
Theorem 1 of [2] says that there exists a complex analytic sub-group B of A×Lie(A),
containing V an and �exp, such that

codimB(�exp) ≤ codimWZar (W ).

where WZar ⊂ A × Lie(A) denotes the Zariski closure of W . Let B ′ be the subgroup
variety of A × Lie(A) generated by WZar. By Chevalley’s theorem, B ′ is of the form
B1 × B2, for B1 an abelian subvariety of A and B2 a sub-vector space of Lie(A). If
p(W ) is not contained in a translate of a proper abelian subvariety of A, then p(WZar)

generates A, and hence B1 = A, and p(V ) ∪ �exp generates A × Lie(A), so that
codimB(�exp) = n.

Now let A/Qp be an abelian variety with good reduction (the generalisations of
these statements to the case of bad reduction are also well known, but we omit them as
we don’t use them, and haven’t defined the notion of locally analytic in this setting).
The p-adic logarithm defines a locally analytic group homomorphism

logA : A(Qp) → Lie(A).

in the sense of Sect. 1.4. Theorem 2.1 can be translated into a statement about logA
via the following Lemma.

Lemma 2.1 Let A/Qp be an abelian variety with good reduction. Let �log ⊂ A ×
Lie(A) denote the graph of the p-adic logarithm. Choose an embedding Qp ↪→ C.
Let

�̂exp ⊂ ÂC × L̂ie(A)C

denote the formal completion of the graph of the exponential at (0, 0). Then

�̂exp = �̂log,C.

Proof �̂log,C and �̂exp are the graphs of the morphisms of formal groups

l̂ogA : ÂC → L̂ie(A)C,

êxpA :L̂ie(A)C → ÂC.

The morphisms êxpA and l̂ogA are inverse, hence their graphs agree. ��
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Unlikely intersections and the Chabauty–Kimmethod... 11

Now let X be a smooth projective geometrically irreducible curve of genus g over a
number field K of degree d over Q, and let J be the Jacobian of X . Let p be a rational
prime of good reduction for X . Let Res(X) := ResK |Q(X) denote the Weil restriction
of X . Recall that this is a smooth projective variety of dimension d = [K : Q] over
Q. The morphism Res(X) → Res(J ) induces a morphism Alb(Res(X)) → Res(J ),
which can be seen to be an isomorphism by base changing to Q. Let Y denote the
formal completion of Res J × Lie(Res(J )) at (0, 0).

Let logJ denote the p-adic logarithm map

Res(J )(Qp) → Lie(Res(J ))Qp .

Since logJ is locally analytic, the graph of logJ gives a rigid analytic space �log,
and the formal completion at the point (0, 0) defines a formal subscheme �̂log of
YQp . Let AJ : Res(X) → Res(J ) denote the Abel–Jacobi map with respect to the

chosen basepoint b ∈ Res(X)(Q). Let J (K ) ⊂ Lie Res(J )Qp denote the Qp-vector
space generated by the image of Res(J )(Q) in Lie Res(J )Qp under the map log. Let

X(K ⊗ Qp)1 ⊂ Res(X)an
Qp

denote the rigid analytic space (log ◦AJ)−1(J (K )).

Corollary 2.1 Let Z be a positive dimensional geometrically irreducible subvariety of
Res(X)Qp . Let L denote the image of Lie(Alb(Z)) in Lie(Res(J ))Qp . Let W be an
irreducible component of Z ∩ X(K ⊗ Qp)1. Suppose

codimZ (W ) < codimL(L ∩ J (K )).

Then the projection of W to Res(X)Qp is not Zariski dense in Z. In particular, if
rk(J (K )) ≤ d(g − 1), then X(K ⊗ Qp)1 is not Zariski dense in

∏
v|p X(Kv).

Proof Let B denote the image of Alb(Z) in Res(J )Qp . Define V ⊂ Res(J )Qp ×
Lie(Res(J ))Qp by

V = AJ(Z) × J (K ).

Then the map (AJ, logJ ◦AJ) induces an isomorphism

X(K ⊗ Qp)1 ∩ Z � �log ∩ V .

Let D be a residue disk of JQp × Lie(J )Qp intersecting �log ∩ V non-trivially. For
any point (x, log(x)) in �log(Qp), the group law on JQp × Lie(J )Qp induces an
isomorphism

JQp × Lie(J )Qp

�−→ JQp × Lie(J )Qp . (1)

sending (x, log(x)) to (0, 0). Let P be a point of W . Using (1), we may assume
P = (0, 0). Let Ŵ denote the formal completion of W at P . Choose an embedding
Qp ↪→ C. Then, by Lemma 2.1, ŴC is an irreducible component of the formal
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12 N. Dogra

completion of VC ∩ �exp at the (0, 0). Then ŴC is the formal completion at (0, 0) of
an irreducible component W̃ of �exp ∩ VC satisfying

codimVC
(W̃ ) < dim(B).

Hence, by Theorem 2.1, p(W̃ ) is contained in a translate of a proper abelian subvariety
of BC, hence the same holds for Ŵ and hence for W . Let B ′ ⊂ B be the translate of a
proper abelian subvariety containing W . This implies that the Zariski closure of W is
contained in the pre-image of B ′. In particular, the Zariski closure does not equal Z ,
since it does not generate Alb(Z). ��

2.2 Applications to Siksek’s question

In [50], Siksek examined the question of when X(K ⊗Qp)1 can be proved to be finite
for a curve X of genus g. In particular, he asked whether a sufficient condition for
finiteness of X(K ⊗ Qp)1 is that, for all intermediate extensions K |L|Q over which
X admits a model X ′/L , the Chabauty–Coleman condition

rk(Jac(X ′)(L)) ≤ (g − 1)[L : Q] (2)

is satisfied.
This question has a negative answer, as one can construct counterexamples as

follows. Let X0 be a curve of genus g0 defined over Q, such that the p-adic closure of
Jac(X0)(Q) in Jac(X0)(Qp) has finite index. Let K |Q be a finite extension such that
the rank of Jac(X0)(K ) is ≤ [K : Q](g0 − 1). Let X → X0,K be a cover such that X
is not defined over a proper subfield of K , and the Prym variety P = Ker(Jac(X) →
Jac(X0)K )0 has the property that the p-adic closure of P(K ) in

∏
v|p P(Kv) has

finite index. Then X satisfies (2), but X(K ⊗ Qp)1 will contain the pre-image of
X0(Qp) ⊂ ∏

v|p X0(Qv) in
∏

v|p X(Qv), and in particular will be infinite.
For example, we can take X0 to be the curve

y2 =
(

x4 − 11

27

) (

x2 − 27

11

)

,

take K = Q(
√
33), and take X to be the degree two cover of X0 given by

y2 = x8 + 2916 · b + 484

297
x6 + −128304 · b + 168112

8019
x4

+ 214057728 · b − 35529472

23181643
t2 + −10784721024 · b + 8742087808

64304361
,
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Unlikely intersections and the Chabauty–Kimmethod... 13

where b := √
11/27. The Jacobian of X is isogenous to Jac(X0)K times the rank two

elliptic curve

y2 + 2916 · b + 484

297
xy + 276156864 · b + 116895680

2381643
y

= x3 + 384912 · b − 168112

8019
x2 + 3594907008 · b − 4270950016

21434787
x .

This also gives a counterexample to Conjecture 5.1 of [30], which is a generalisation of
Siksek’s question to the setting of Kim’s method. A generalisation of this construction
has recently been considered in [54], where it is referred to as a base change Prym
obstruction.

TheAx–Schanuel Theorem implies the followingweaker form of Siksek’s question
has a positive answer. Informally,we can phrase the result as follows: Siksek’s question
asks whether, for finiteness of X(K ⊗ Qp)1, it is sufficient for all subvarieties of
ResK |Q(X) arising from the diagonal embedding of ResL|Q(X) to satisfy the usual
Chabauty–Coleman condition, where L ⊂ K is a subfield. Whilst this is not true in
general, the corollary below says that it is sufficient for all irreducible subvarieties of
ResK |Q(X)Qp

to satisfy a Chabauty–Coleman-type condition.

Corollary 2.2 Let X be a smooth projective curve of genus g over K . Let J → B be
a quotient of J defined over K . Suppose that the cokernel of

Res(B)(K ) ⊗ Qp → Lie(Res(B))Qp

has rank ≥ [K : Q]. If X(K ⊗Qp)1 is infinite then there exists a positive dimensional
subvariety Z of ResK |Q(X)Qp

, such that the image A of Alb(Z) in ResK |Q(B)Qp

satisfies

codimLie(A) Lie(A) ∩ B(K ) < dim(Z),

where B(K ) denotes the Qp-subspace of Lie(ResK |Q(B))Qp
generated by B(K ).

Proof Let Z ⊂ Res(X)Qp
be a positive dimensional irreducible component of the

Zariski closure of X(K ⊗ Qp)1. Let A denote the image of Alb(Z) in ResK |Q(B)Qp
.

Since X(K ⊗ Qp)1 ∩ Z is Zariski dense in Z by construction, Corollary 2.1 implies
that the codimension of Lie(A) ∩ J (K ) ⊗ Qp in Lie(A) is less than the dimension of
Z . ��
Proof of Proposition 1.1, case (1) Recall that we suppose that

Hom(Jac(X)Q,σ1
, Jac(X)Q,σ2

) = 0 (3)

whenever σ1 
= σ2. Let Z ⊂ Res(X)Qp be an irreducible component of the Zariski
closure of Res(X)(Qp)1. Note that, since Z is an irreducible component of the Zariski
closure of a set of Qp-points of Res(X)Qp , it is actually geometrically irreducible.
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14 N. Dogra

Suppose, for contradiction, that the projection of Z to every factor of Res(X)Qp �∏
v|p XKv is dominant. Then, by assumption, Alb(Z) surjects onto every factor of

Res(J )Qp . Then, by (3), it must be the case that Alb(Z) surjects onto Res(J )Qp . This
contradicts Corollary 2.2. ��

Remark 2.2 Note that the condition in Proposition 1.1 (concerning the homomor-
phisms between Jσ,C for different embeddings σ ) certainly implies that X does not
descend to a subfield, however it is strictly stronger. The explicit counterexample given
above has the property that it can be explained by a quotient curve which does descend
to Q. It is natural to wonder if there exist ‘stronger’ counterexamples not explained by
a quotient curve which descends to a subfield. For example, does there exist a genus
two curve X defined over a quadratic field K |Q, with simple Jacobian J , which gives
a negative answer to Siksek’s question?

3 The Chabauty–Kimmethod

3.1 Selmer varieties

To describe the main obstacle to proving finiteness over general number fields, we
first explain Kim’s method over Q, following [35, 36]. Let X , S and p be as in the
introduction. Let T0 denote the union of the set of primes in S, the set of primes
ramifying in K |Q and the set of primes of bad reduction for X , and let T := T0 ∪
{v|p}. Suppose we have a K -rational point b ∈ X (OK ,S). For any field L|K , and
any L-point y ∈ X(L), we have a Gal(L|L)-equivariant π ét

1 (XL , b)-torsor (where
π ét
1 (XL , b) denotes the étale fundamental group of XL ) given by the étale torsor of

paths π ét
1 (XL ; b, y). Hence we have a commutative diagram

X (OK ,S) H1(GK , π ét
1 (XK , b))

∏

v∈S
X(Kv) ×

∏

v∈T \S
X (OKv )

∏

v∈T
H1(GKv , π

ét
1 (XK v

, b))

loc

(4)

Hence a natural obstruction to (xv) ∈ ∏
v∈S X(Kv)×∏

v∈T \S X (OKv ) coming from

x ∈ X (OK ,S) is that [π ét
1 (XKv

; b, xv)] lies in the subspace loc H1(GK , π ét
1 (XK , b)).

In practice, the set H1(GK , π ét
1 (XQ, b)) is rather mysterious, and Kim’s method

starts by replacing it with a more tractable object. Namely, for any variety Z over

a field K of characteristic zero, and b ∈ Z(L), we define π
ét,Qp
1 (XL , b) to be the

Qp-unipotent completion of π ét
1 (ZL , b) [17, §10], and define

Un(Z) = Un(Z)(b) := π
ét,Qp
1 (ZL , b)/Cn+1π

ét,Qp
1 (ZL , b).
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Unlikely intersections and the Chabauty–Kimmethod... 15

Returning to the setting of X /OK ,S and b ∈ X (OK ,S) as above, we have a com-
mutative diagram

X (OK ,S) H1(GK ,T ,Un(X)(b))

∏

v∈S
X(Kv) ×

∏

v∈T \S
X (OKv )

∏

v∈T
H1(GKv ,Un(X)(b)),

jn

locn

∏

v∈T
jn,v

where themap jn may be defined as follows: by definition of the unipotent completion,
we have aGalois equivariantmapπ ét

1 (XQ, b) → Un(X)(b), and hence by functoriality
a map

H1(GK , π ét
1 (XK , b)) → H1(GK ,Un(b)).

By Grothendieck’s specialization theorem [47, §X], the image of [π ét
1 (XK ; b, x)] in

H1(GK ,Un(b))will be unramified at all v outside of T , and hence defines an element
of the subspace H1(GK ,T ,Un(b)).

Hence a natural obstruction to (xv) ∈ ∏
v∈S X(Kv) × ∏

v∈T \S X (OKv ) coming

from x ∈ X (OK ,S) is that ( jn,v(xv)) lies in the subspace locn H1(GK ,T ,Un(b)). For
a rational prime p we denote by X (OK ⊗ Zp)S,n the image
of (

∏
v∈T jn,v)

−1 locn H1(GK ,T ,Un) in
∏

v|p X (Ov) under the projection

∏

v∈S
X(Kv) ×

∏

v∈T \S
X (OKv ) →

∏

v|p
X (Ov).

That is, X (OK ⊗ Zp)S,n is simply the set of all tuples (xv) in
∏

v|p X (OKv ) which
extend to a tuple (xv) in

∏
v∈S X(Kv) × ∏

v∈T \S X (OKv ) for which ( jn,v(xv)) lies in

the image of H1(GK ,T ,Un(X)(b)). For v a prime above p, we define X (OKv )S,n to
be the projection ofX (OK ⊗Zp)S,n to X(Kv). Equivalently, it is the set ofOKv -points
whose H1(GKv ,Un) class extends to a

∏
v′∈T \S H1(GKv′ ,Un) class in the image of

H1(GK ,T ,Un).
By a theorem of Kim and Tamagawa [39, Corollary 0.2], for v prime to p and not in

S, the map jn,v has finite image. Let α ∈ ∏
v∈T0−S jn,v(X (O(Kv))). Let Sel(Un)α ⊂

H1
f ,T (GK ,T ,Un(b)) denote the fibre of α with respect to the localisation map (the

Selmer scheme ofUn with local conditions α). LetX (OK ,S)α ⊂ X (OK ,S) denote the
subset of points mapping to Sel(Un)α(Qp) under jn , and letX (OK ⊗Zp)α denote the
subset of p-adic points mapping to locp(Sel(Un)α). There is a commutative diagram

123



16 N. Dogra

X (OK ,S)α Sel(Un)α

∏
v|p X (Ov)

∏
v|p H1

f (GKv ,Un(X)(b)).

jn

locp∏
v|p jn,v

(5)

We define

Sel(Un) := �αSel(Un)α,

where the disjoint union is over all α in the finite set

∏

v∈T0−S

jn,v(X (OKv )) ⊂
∏

v∈T0−S

H1(GKv ,Un(X)(b)).

Note that

X (Zp ⊗ OK )n =
⎛

⎝
∏

v|p
jv

⎞

⎠

−1

(Sel(Un)).

More generally for any GK -stable quotient U of Un , we can define maps jv :
X(Kv) → H1(GK ,U ), Selmer schemes Sel(U ), and global maps j : X (OK ,S) →
Sel(U ), and X (Zp ⊗ OK )S,U . WheneverU is a quotient ofU ′, we have an inclusion

X (Zp ⊗ OK )S,U ⊃ X (Zp ⊗ OK )S,U ′ .

We recall the interpretation of Sel(U )α in terms of twisting.

Lemma 3.1 Let α̃ ∈ H1(GK ,T ,U ) be a cohomology class whose image in∏
v∈S H1(GKv ,U ) is equal to α = (αv). Let U α̃ denote the twist of U by the torsor

α̃. Then we have an inclusion

Sel(U )α ↪→ H1
f ,S(GK ,T ,U α̃)

Proof Recall from [48, §1.5.2 Proposition 34] that the twisting construction defines
an isomorphism

H1(GK ,T ,U α̃) � H1(GK ,T ,U ),

which sends the trivial torsor to the class of α̃, and is functorial in both arguments.
Hence, under this isomorphism, classes which are trivial at v 
= p go to classes which
are equal toαv at v, and classeswhich are crystalline go to classeswhich are crystalline.

��
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Unlikely intersections and the Chabauty–Kimmethod... 17

In [36], Kim proves two fundamental properties of the diagram (5). First, the Galois
cohomology sets Sel(U ) and H1

f (GQp ,U ) are representable by Qp-schemes of finite
type, in such a way that the morphism locp is algebraic. Second, the map locα is
algebraic, and that for all v|p, jv is locally analytic (in the sense defined in the intro-
duction), and for all z ∈ X (Ov), the map jv|]z[ has Zariski dense image. If K = Q

and locα is not dominant, then the setX (Zp)α is thus finite, since on each residue disk
it is given by a non-trivial power series.

3.2 Trading degree for dimension in the Chabauty–Kimmethod

Over number fields, the situation is slightly more complicated. Suppose that the image
of locα has codimension d in

∏
v|p H1

f (GKv ,U (b)). Then, on each residue polydisk
]z[⊂ ∏

v|p X (Ov), we deduce that ]z[∩X (OK ⊗ Zp) is contained in the zeroes of d
power series. However, this does not imply that ]z[∩X (OK ⊗ Zp) is finite.

First, we replace the problem of finding K -rational points on X with that of finding
Q-rational points on the Weil restriction ResK |Q(X). We recall some properties of
the Weil restriction from [52]. Given topological groups G, H , N with H < G finite
index and a continuous action of H on N , define IndGH (N ) to be group of continuous
left H -equivariant maps G → N . This has a natural continuous action of G (see [48,
I.5.8]).

Proposition 3.1 ([52, Proposition 8]) Let G be a profinite group, and H a finite
index subgroup. Let U be a topological group with a continuous action of H, and
let IndGH U → U denote the non-abelian induction, as defined in [52, 2.1.2]. Then the
natural map

H1(G, IndGH U ) → H1(H ,U ).

is an isomorphism.

Lemma 3.2 (Stix, [52]) There is an isomorphism

π ét
1 (Res(X), b) � IndQ

K π ét
1 (X , b),

inducing a GQ-equivariant isomorphism

π ét
1 (Res(X)Q, b) � IndQ

K π ét
1 (XK , b).

By Proposition 3.1, this induces an isomorphism

H1(GK , π ét
1 (XK , b)) � H1(GQ, π ét

1 (Res(X)Q, b)),
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18 N. Dogra

giving a commutative diagram whose vertical maps are bijections

X(K ) H1(GK , π ét
1 (XK , b)) H1(GK ,Un(X)(b))

Res(X)(Q) H1(GQ, π ét
1 (Res(X)Q, b) H1(GQ,Un(Res(X)(b)).

Lemma 3.3 Let G be a topological group, H a finite index subgroup, and K < G a
closed subgroup. Let U be a topological group with a continuous action of H. Then
we have a K -equivariant isomorphism of topological groups

IndGH (U ) �
∏

x∈H\G/K

IndKK∩xHx−1 U
x .

where Ux denote the group U with action twisted by conjugating by x.

Proof Recall that IndGH (U ) is, by definition, the set of continuous H -equivariant func-
tionsG → U . Such a function is uniquely determined by where it sends H\G. Hence,
via the bijection G/H � �x∈H\G/K HxK , we obtain a bijection

IndGH (U ) →
∏

x∈H\G/K

IndKK∩xHx−1 U
x .

which may be checked to be K -equivariant, as in the classical case of Mackey’s
restriction formula. ��
Lemma 3.3 and Proposition 3.1 together imply that, for all primes l 
= p, we have
isomorphisms

∏

v|l
H1(GKv ,Un(X)(b)) � H1(GQ�

,Un(Res(X)(b)). (6)

For the remainder of this paper, we denoteUn(Res(X))(b) byUn(b), or sometimes
simply Un .

Lemma 3.4 At p, we have an isomorphism of unipotent groups with filtration over
Qp

U dR
n (ResK |Q(X)Qp )(b) �

∏

σ :K ↪→Qp

U dR
n (XQp,σ )(bσ ),

where the product is over all σ in Hom(K , Qp).
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Unlikely intersections and the Chabauty–Kimmethod... 19

Proof This follows from the fact that, since p splits completely in K , we have

ResK |Q(X) ×Q Qp �
∏

σ

X ×K ,σ Qp.

��
Hence we obtain a commutative diagram whose vertical maps are bijective

∏
v|p X(Kv)

∏
v|p H1

f (GKv ,Un(X)(b))
∏

v|p U dR
n (XKv )/F

0

Res(X)(Qp) H1
f (GQp ,Un(Res(X))(b)) U dR

n (Res(X)Qp )/F
0

If S ⊂ S′, then by definition X (Zp ⊗ OK )S,n ⊂ X (Zp ⊗ OK )S′,n , and in particular
finiteness of the latter implies finiteness of the former. Hence, enlarging the set S if
necessary, we may assume that S is of the form {v|l : l ∈ S0}, for a finite set S0 of
rational primes. Then, by (6) and the preceding commutative diagrams, the bijection
X (OK ⊗ Zp) � ResOK ,S |ZS0

(X )(Zp) induces a bijection

ResOK ,S |ZS0
(X )(Zp)S0,n � X (OK ⊗ Zp)S,n . (7)

To ease notation, we will sometimes write ResOK ,S |ZS0
(X ) simply as ResK |Q(X ), or

Res(X ). Hence (7) reduces Theorem 1.1 to proving finiteness of ResK |Q(X )(Zp)S,n .
We recall the following result from [6]. Although the proof was given for curves,

it also applies for any smooth geometrically irreducible quasi-projective variety.

Lemma 3.5 [6, §2] Let U (b) be a quotient of Un(b), and b′ another basepoint. Let
U (b′) be the corresponding quotient of Un(b′). Then

X(Qp)U (b) = X(Qp)U (b′).

3.3 Tangential localization

In this subsection we recall Kim’s description of the map on tangent spaces

d locp : TcH1
f (GQ,T ,Un) → Tlocp(c)H

1
f (GQp ,Un)

in terms of (abelian) Galois cohomology. For a variety Z , we let Ln(Z) denote the
Lie algebra of the group Un(Z), and similarly denote by LdR

n (Z) the Lie algebra of
U dR
n (Z). When Z = Res(X), we write these simply as Ln and LdR

n . The following
result is proved by Kim for Galois-stable quotients of fundamental groups of curves.
Iterated intersection with generic hyperplanes then implies the result for unipotent
fundamental groups of arbitrary smooth geometrically connected projective varieties,
by the Lefschetz hyperplane theorem for fundamental groups [25, XII Corollary 3.5].
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Proposition 3.2 ([38, Propositions 1.1, 1.2 and 1.3])For any c ∈ H1
f (GQ,T ,Un), there

is a commutative diagram whose vertical maps are isomorphisms

TcH1
f ,S(GQ,T ,Un) Tlocp(c)H

1
f (GQp ,Un)

H1
f ,S(GQ,T , Lc

n) H1
f (GQp , L

c
n)

d locp

locp

where Lc
n denotes the twist of Ln by c by the adjoint action of Un on Ln. In particular,

if the map locp : H1
f ,S(GQ,T , Lc

n) → H1
f (GQp , L

c
n) is not surjective then locp :

H1
f ,S(GQ,T ,Un) → H1

f (GQp ,Un) is not dominant in a neighbourhood of c.

Lemma 3.6 Let U be a Galois stable quotient of Un, with Lie algebra L. Let U dR :=
DdR(U ). Let H be a GQp -stable subgroup of U. Let W be an irreducible component
of locp H1

f ,S(GQ,T ,U ) ∩ DdR(H)/F0. Then

dimW ≤ max
c∈H1

f ,S(GQ,T ,U )

dim locp H
1
f ,S(GQ,T , Lc) ∩ Lie(DdR(H locp c))/F0,

where Lie(H)locp c/F0 is defined to be zero if locp c is not in the image in
H/F0, and locp H1

f ,S(GQ,T , Lc) ⊂ H1
f (GQp , L

locp c) is viewed as a subscheme of

Lie(DdR(U locp c))/F0 via the Bloch–Kato exponential.

Proof The dimension of W is bounded by the generic dimension of its tangent space
(i.e. the dimension of the tangent space at the generic point η ∈ W ). Since the map

Tc(loc
−1
p W ) → Tlocp(c)W

is generically surjective, we have

dimW ≤ dim Tη(W )

≤ max
c∈loc−1

p H/F0
dim d locp TcH

1
f ,S(GQ,T ,U ) ∩ Tlocp(c)(DdR(H)/F0)

= max
c∈H1

f (GQ,T ,U )

locp H
1
f ,S(GQ,T , Lc) ∩ Lie(DdR(H locp c))/F0.

��
By a virtual basepoint, we shall mean a Qp-point z ∈ Res(X )(Zp) such that j(z)

lies in the image of Sel(U ), together with a torsor P ∈ Sel(U ) such that locp(P) =
j(P). In particular, the notion of a virtual basepoint depends on a choice of quotient of

π
ét,Qp
1 (Res(X)Q, b), but by Lemma 3.5 the property of z ∈ Res(X )(Zp) extending to

a virtual basepoint is independent of the choice of basepoint. Given a virtual basepoint
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(z, P), we obtain a Qp-unipotent groupU P defined to be the twist ofU by the GQ,T -
equivariantU -torsor P . ThenU P is equipped with an action of GQ,T , and morphisms

jz,v :Res(X)(Qv) → H1(GQv
,U P )

jz,p :Res(X)(Qp) → H1
f (GQp ,U

P )

jz :X (OK ,S) → Sel(U P ).

Lemma 3.7 For every collection of local conditions such that X (OK ⊗ Zp)α is non-
empty, there is a virtual basepoint (b, P) ∈ X(Qp) such that

X (OK ⊗ Zp)α ⊂ j−1
b (locp H

1
f ,S(GQ,T ,U P )). (8)

Proof If X (OK ⊗ Zp)α is non-empty, then by definition there exists P ∈
H1(GK ,T ,Un(X)) such that locv(P)) = αv for all v ∈ T0 − S, and locp(P) = j(b)
for some b ∈ Res(X )(Qp). Then, taking (b, P) as a virtual basepoint, we deduce (8)
from Lemma 3.1. ��

Often, when we work with virtual basepoints (b, P), we will simply write U rather
than U P , and write the virtual basepoint simply as b.

3.4 The unipotent Albanesemorphism

We now recall some properties of the morphism X (Ov) → H1
f (GKv ,Un) when v|p

from [36]. We refer to [36] and the references therein for the background material
regarding p-adic Hodge theory. As we always take p to be a prime which splits
completely in K , we henceforth fix an isomorphism Kv � Qp and work over Qp.
Let X be a smooth curve over Zp. Fontaine’s functor Dcris sends continuous Qp

representations of GQp to filtered φ-modules over Qp. Recall that a filtered φ-module
over Qp is a finite dimensional vector space W over Qp, equipped with a Qp-linear
Frobenius automorphism φ, and a decreasing filtration F• on W .

As explained in [36], Fontaine’s functor induces functors Dcris and DdR onunipotent
groups over Qp with a continuous action of GQp . The target of Dcris is the category of
unipotent groups U over Qp, together with an automorphism φ of U , and a filtration
Fil by subgroups on U (we shall refer to an object of this category as a filtered φ-
group). The target of DdR is the category of unipotent groups over Qp equipped
with a filtration by subgroups. We say a GQp -equivariant U -torsor P is crystalline
if it admits a GQp -equivariant trivialisation when base changed to Bcris (if O(U ) is
ind-crystalline, this is the same as saying that O(P) is ind-crystalline). The functor
Dcris induces an equivalence of categories between crystallineU -torsors andfilteredφ-
torsors over Dcris(U ) (where a filtered φ-torsor for a filtered φ-group is simply a torsor
with compatible filtration and φ-action). By [36, Proposition 1], ifU is crystalline and
Dcris(U )φ=1 = 1, this induces an isomorphism ofQp-schemes (a ‘non-abelian Bloch–
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Kato logarithm’)

H1
f (GQp ,U ) � DdR(U )/F0.

Let U cris(b) denote the Tannakian fundamental group of the category of unipotent
isocrystals on XFp . This is a pro-unipotent group over Qp. Let U dR(b) denote the
Tannakian fundamental group of the category of unipotent flat connections on XQp .
This is a pro-unipotent group over Qp. By Chiarellotto–Le Stum [12, Proposition
2.4.1], we have an isomorphism of Qp-group schemes

U cris(b) � U dR(b).

Let U cris
n (b) and U dR

n (b) denote the respective maximal n-unipotent quotients. Then
U cris
n (b) has the structure of a filtered φ group over Qp. By Olsson’s non-abelian com-

parison theorem [46, Theorem1.11],Un(b) is crystalline, andwe have an isomorphism
of filtered φ groups over Qp

Dcris(Un(b)) � U cris
n (b).

Putting all this together, we obtain a locally analytic morphism

jn,p : X (Zp) → U dR
n (b)/F0.

3.5 The universal connection

Let b ∈ X (Zp) be a virtual base-point. The goal of this subsection is to describe the
map jn,p in a formal neighbourhood of b, following Kim [36]. Let CdR(X) denote the
category of unipotent flat connections on X . A pointed flat connection will be a flat
connection V on X , together with an element v ∈ b∗V .
Definition 3.1 (The depth n universal connection, [36, section 1], [26, section 2]). The
depth n universal connection En on a pointed geometrically integral variety (Z , b) is
a pointed flat connection (En, en) that is n-unipotent, such that for all n-unipotent
flat connections V , and v ∈ b∗V , there exists a unique morphism of connections
f : En → V such that b∗( f )(en) = v. When we want to emphasise the dependence
on Z , we write it as En(Z).

Lemma 3.8 For all n, a universal n-unipotent pointed flat connection exists, and there
is a canonical isomorphism

lim←− b∗En � U(Lie(πdR
1 (Z , b))),

where U(Lie(πdR
1 (Z , b))) denotes the universal enveloping algebra of the Lie algebra

of πdR
1 (Z , b).
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Proof More generally, we can define a depth n universal object in any Tannakian
category (C, ω) with as a pair (Vn, vn), where Vn is an n-unipotent object of C, vn is
an element of ω(Vn), and for all n-unipotent objects W , and w ∈ ω(W), there is a
unique morphism Vn → W sending vn to w.

If F : (C, ω) → (C′, ω′) is an equivalence of Tannakian categories, then it sends
universal n-unipotent objects to universal n-unipotent objects. In particular, if C is
the category CdR(Z) of unipotent flat connections on Z , with fibre functor b∗, then
C has a universal n-unipotent object if and only if the category of representations of
πdR
1 (CdR(Z), b), with fibre functor given by the forgetful functor, does.
Using the equivalence between πdR

1 (CdR(Z), b)-representations and
U(Lie(πdR

1 (Z , b)))-modules, we see that U(Lie(πdR
1 (Z , b)))/I n+1 is a universal n-

unipotent object, where I denotes the augmentation ideal. ��
The following Lemma describes the morphisms of connections of the universal

unipotent connection corresponding to certain natural morphisms of πdR
1 (Z , b) mod-

ules.

Lemma 3.9 Let En be as above.
(1) Let x ∈ b∗En, and let m(−, x) : En → En denote the unique morphism of connec-

tions which, in the fibre at b, sends 1 to x. Then, for all y ∈ b∗En,

y · x = b∗(m(, x))(y).

More generally, for any unipotent flat connection V , and any v ∈ b∗V, x ∈
lim←− b∗En, the action of x on v is given by b∗( f )(x), where f : lim←− En → V
is the unique (pro-)morphism of connections sending 1 to v.

(2) Let

� : lim←− En → lim←−(En ⊗ En) (9)

denote the unique morphism of pro-connections which, in the fibre at b, sends 1
to 1⊗̂1. Then b∗� is equal to the co-multiplication on lim←− b∗En.

Proof As in the proof of Lemma 3.8, it is enough to check this with CdR(Z) replaced
by the category of πdR

1 (Z , b)-representations. Hence part (1) is immediate. For part
(2), the co-multiplication is a morphism of (pro-)representations of πdR

1 (Z , b). Hence,
by universal properties, it is uniquely determined by the fact that it sends 1 to 1⊗̂1. ��

Let Z ′ be an affine open of b, and let Ẑ denote the formal completion of Z at b.
The bundle En is unipotent, and hence admits a trivialisation

τ : En|Z ′
�−→ OZ ′ ⊗ b∗En .

With respect to this trivialisation, the connection ∇n is given by d − , for some
 ∈ End(b∗EdR

n (b)) ⊗K �Z |K . The universal connection (En) carries a filtration by
sub-bundles (lim←− F•En) satisfying the Griffiths transversality condition

∇n(F
iEn) ⊂ Fi−1En ⊗ �1

Z |K
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(see [26, §3]). Replacing Z ′ by a smaller affine open neighbourhood if necessary,
we may choose a group-like section (Fn) ∈ lim←− H0(Z ′, F0En)—i.e. a section which
satisfies

�((Fn)n) = (Fn⊗̂Fn)n .

The connection En admits a trivialisation on Ẑ , i.e. an isomorphism of connections

G : (En|Ẑ ,∇) � (b∗EdR
n ⊗K O(Ẑ), d)

Via the trivialisationG, wemay view Fn as a function Ẑ → b∗En . Via the trivialisation
τ , we obtain an endomorphism (τ |Ẑ )◦G−1 in End(b∗En)⊗O(Ẑ).This endomorphism
sends 1 to something in 1+ I (recall that I denotes the augmentation ideal of lim←− b∗En),
hence we have a well-defined element

Jn,τ := log((τ |Ẑ ) ◦ G−1(1)) ∈ I b∗E(Z)⊗̂O(Ẑ),

In words, exp(Jn,τ ) is a horizontal section of (En,∇n) on a formal neighbourhood
of b, described with respect to the affine chart τ . In particular, by definition Jn,τ (G)

satisfies

d exp(Jn,τ (G)) = (exp Jn,τ (G)). (10)

Lemma 3.10 The section exp(Jτ ) := (exp(Jn,τ ))n is group-like, i.e. it satisfies

�(exp(Jτ )) = (exp(Jτ ))⊗̂(exp(Jτ )).

Proof Since they are both horizontal sections of ∇E⊗̂E , the left hand side and right
hand side are equal if and only if they are equal at one fibre, and at b they both equal
1⊗̂1. ��

We deduce that Jn,τ lies in LdR
n (Z)⊗̂O(Ẑ) (recall that LdR

n (Z) is defined to be the
Lie algebra of U dR

n (Z)). We also sometimes think of Jn,τ as a morphism

Jn,τ : Ẑ → LdR
n (Z)

Remark 3.1 At this point, there is no obvious reason for working with Jn,τ rather
than exp(Jn,τ ). The reason for working with Jn,τ is that, (as a consequence of (10)),
Jn,τ satisfies a particularly simple differential equation (see (21) and Lemma 4.6)
which is used in the proof of the unlikely intersection result needed for the proof of
Theorem 1.1.
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Lemma 3.11 Let X be a smooth geometrically irreducible curve over Qp, and b a Qp

point of X. Let τ be a trivialisation of lim←− En(b) as above. Then the unipotent Albanese
morphism

X(Qp) → U dR
n (XQp )/F

0

is given, on a formal neighbourhood of b, by exp(Jn,τ ) · F−1
n .

Proof This follows from Kim’s explicit description of the map jn in [36, §1]. The map
jn can be defined by sending z to the class of u inU dR

n /F0, where u ∈ U dR
n is defined as

follows: let pφ be the unique element of PdR
n (b, z)φ=1, and choose pH ∈ F0PdR

n (b, z),
then define u by pφ = u · pH . Although u depends on the choice of pH , its class in
U dR
n /F0 does not.
This is related to the parallel transport map as follows. The element pφ(b, z) is

an element of Hom(b∗En, z∗En). When b and z are on the same residue disk, this
homomorphism is given by (rigid analytic) parallel transport (see [36], above Lemma
4). Hence, in a formal neighbourhood of b, it is given by exp(Jn,τ ), and similarly pH
is given by Fn , hence u = exp(Jn,τ ) · F−1

n . ��

3.6 Higher Albanesemanifolds

Recall that, given a quasi-projective variety Z over C, we can define a higher
Albanese manifold as follows [27, 28]. Let U dR

n (Z) denote the n-unipotent de Rham
fundamental group of Z . Let UBe

n (Z) denote the Q-unipotent Betti fundamental
group of Z at b, i.e. the maximal n-unipotent quotient of the Q-unipotent comple-
tion of π1(Z(C), b). Abusing notation, we will denote by UBe

n (Z)(Z) the image of
π1(Z(C), b) in UBe

n (Z)(Q). By the Riemann–Hilbert correspondence, we have an
isomorphism of unipotent groups over C

UBe
n (Z)C � U dR

n (Z).

The nth higher Albanese manifold of Z is the double quotient

Hn := UBe
n (Z)(Z)\U dR

n (Z)(C)/F0U dR
n (Z)(C).

There is an nth higher Albanese map (see [28, §5])

jBen : Z(C) → Hn,

which is a map of complex manifolds. Roughly speaking the definition in loc. cit. is
as follows. For any b, z ∈ Z(C), we may naturally give the path space

(Zπ1(Z , b)/I n+1) ×π1(Z(C),b) π1(Z(C); b, z)

a mixed Hodge structure (where I is the augmentation ideal), in such a way that
the associated graded is independent of b and z. This defines a map from Z × Z to a
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variety of isomorphism classes of mixedHodge structure with fixed associated graded.
Fixing one component (i.e. restricting to {b} × Z ) one may then show that the image
is contained in a variety isomorphic to Hn .

The formal completion ofHn at the identity is isomorphic to the formal completion
of U dR

n (Z)(C)/F0U dR
n (Z)(C) at the identity, hence we have a morphism of formal

schemes

ĵBen : ẐC → Û dR
n /F0

C.

Lemma 3.12 The formal completion of jBen is given by is given by

ĵBen = exp(Jn,τ ) · F−1
n ,

where Jn,τ and Fn are as in Sect. 3.5. In particular, for any isomorphism Qp � C we
obtain an identification of the formal completions of jn,p at b (base changed to C and
the formal completion of jBen at b,

Proof This follows from the description of the unipotent Albanese morphism given in
[28, §5] and [27, Proposition 3.2, (3.3)]. ��
We deduce the following Lemma.

Lemma 3.13 Let i : Z ↪→ Res(X)Qp
be an irreducible subvariety, and b ∈ Z(Qp) ∩

Res(X)(Qp). Let Ẑ and R̂es(X)Qp
denote the formal completions at b. Then the

restriction of jn,p to Ẑ lands in the image of Û dR
n (Z)/F0 in Û dR

n (Res(X))/F0, and
the diagram

Ẑb Û dR
n (Z)/F0

R̂es(X)b Û dR
n (Res(X))/F0.

exp(Jn,τ ) · F−1
n

ĵn

commutes. In particular, the pre-image of the graph of jn in Ẑ × Û dR
n /F0 under the

map

Ẑ × LdR
n (Z) → R̂es(X) × Û dR

n /F0

(z, x) → (i(z), exp(x) · F−1
n (z))

is equal to the graph of Jn,τ .

Proof This follows from the previous lemma, together with the fact that Hain’s higher
Albanese morphism is functorial in complex manifolds [28, §3]. ��
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4 Unlikely intersections among zeroes of iterated integrals

The aim of this section is to prove the following proposition, which is the unlikely
intersection result needed to establish Theorem 1.1. Given a scheme V , and a formal
subscheme W of the formal completion of V at a point x , we say that W is Zariski
dense if there is no proper closed subscheme of V whose formal completion at x
contains W .

Proposition 4.1 Let Z be a smooth irreducible subvariety of Res(X)Qp
. Let V be an

irreducible subvariety of LdR
n (Z) × Z, containing (0, b) ∈ LdR

n (Z) × Z, such that
the projection of V to Z is dominant and (0, b) is a smooth point of V . Let V̂ and
L̂dR
n (Z) denote the formal completions of V and LdR

n (Z) at b and 0 respectively. Let
� ⊂ L̂dR

n (Z)× Ẑ denote the graph of Jn,τ . Let W = �∩ V̂ . Suppose W is irreducible
and

codim� W < codimLdR
n (Z)×Z V .

Then W is not Zariski dense in V .

For example, we can apply this result when V is the Zariski closure of �, and
W = �. Then W is Zariski dense in V by definition, and hence we deduce

0 = codim�(W ) = codimLdR
n (Z)×Z V . (11)

(i.e. the graph of Jn,τ is Zariski dense in LdR
n (Z)× Z ). This could also more elegantly

be proved following the topological argument in [21].
Proposition 4.1 can be informally thought of as saying that algebraic relations

between n-unipotent iterated integrals must have a geometric explanation. In the
1−unipotent (or abelian) case, this is due to Ax [2]. The idea of the general proof
is inspired by Ax’s approach: we inductively show that non-trivial algebraic relations
between n-unipotent iterated integrals come from geometry by differentiating them to
produce relations between (n− 1)-unipotent iterated integrals (the difficult part being
to show that these relations must also be non-trivial).

We also note that this Proposition translates into a criterion for finiteness of
Res(X )(Zp)n which will be used repeatedly in subsequent sections. To state the crite-
rion, we introduce the following notation: for (Z , z) → (Y , y) amorphism of varieties
over a field L sending z to y, we define Un(Z/Y ) ⊂ Un(Y ) = Un(Y )(y) to be the

image of π
ét,Qp
1 (ZL , z) in Un(Y ). For i ≤ n, we define

gri (Un(Z/Y )) := Ker(Ui (Z/Y ) → Ui−1(Z/Y )),

and similarly for U dR
i (Z/Y ). Note that, in general, gri (Ui (Z/Y )) is not the same as

Ci (Ui (Z/Y ))/Ci+1(Ui (Z/Y )). Since the homomorphism

π
ét,Qp
1 (ZL , z) → π

ét,Qp
1 (YL , y)
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respects the central series filtrations, we have an induced morphism

Un(Z , z) → Un(Y , y),

however this morphism need not be strict with respect to the central series filtration.
For example, this non-strictness occurs when Z = E−{x1, x2}, for E an elliptic curve
with points x1 and x2, Y = (E − {x1}) × (E − {x2}), and the map is the diagonal
embedding Z → Y . However if X is projective morphisms will be strict, since the
weight filtration on Un will agree with the central series filtration.

Proposition 4.2 Suppose that, for every irreducible subvariety Z ⊂ Res(X)Qp , we
have

codimUdR
n (Z/Res(X))/F0(locp(Sel(Un)) ∩U dR

n (Z/Res(X))/F0) ≥ dim Z . (12)

Then Res(X)(Zp)n is finite.

Proof Fix an Fp point b of Res(X). Let Z̃ ⊂ Res(X)Qp denote the Zariski closure
of Res(X )(Zp)n∩]b[. Let Z̃ = Z0 � Z1 � · · · � ZN be a stratification of Z̃ into
smooth irreducible subvarieties. Since Z̃ is the Zariski closure of a set of Qp-points of
Res(X)Qp , the irreducible components are geometrically irreducible. Let Z = Zi be a
component of the stratification. To prove finiteness of Res(X )(Zp)n , it will be enough
to prove that Z ∩Res(X )(Zp)n is zero dimensional. We do this using Proposition 4.1
applied to Z .

To apply Proposition 4.1, wemust define a subvariety V of Z×LdR
n (Z)where (b, 0)

is smooth.We do this in the next two paragraphs. If there is a point b′ of Res(X)(Zp)n∩
Z∩]b[ where jn(b′) is a smooth point of locp(Sel(Un)) ∩ U dR

n (Z/Y )/F0 (here and
below, we view this as a reduced subscheme ofU dR

n (Z/Y )/F0), then we define V0 :=
locp(Sel(Un)) ∩ U dR

n (Z/Y )/F0. If not, then jn(Res(X)(Zp)n ∩ Z∩]b[) lands in the
singular locus of locp(Sel(Un(b)))∩U dR

n (Z/Y , b)/F0, and hence stratifying as above
there is a proper closed subvariety V0 of loc(Sel(Un)∩U dR

n (Z/Y )/F0 which contains
jn(Res(X)(Zp)n ∩ Z∩]b[) and a point b′ of Res(X)(Zp)n ∩ Z∩]b[) such that jn(b′) is
a smooth point of V0. By Lemma 3.5, wemay assume b = b′. Since our condition on b
holds outside a closed analytic subset, we may also assume that the formal completion
of Res(X)(Zp)n ∩ Z at b is irreducible.

Let W0 denote the formal completion of Res(X )(Zp)n ∩ Z at b. Recall that, by
Lemma 3.13, the pre-image of the graph of jn in Ẑb × L̂dR

n (Z) is given by the graph
of Jn,τ . We apply Proposition 4.1 with V being the product of Z with the pre-image
of V0 in LdR

n (Z). By our choice of b, W := V ∩ � is an irreducible formal scheme
(recall � is the graph of Jn,τ ). We then apply Proposition 4.1 to deduce

codim�(W ) ≥ codimLdR
n (Z) V . (13)

On the other hand by definition of V we have

codimZ×LdR
n (Z)(V ) ≥ codimUdR

n (Z/Y )/F0(locp(Sel(Un)) ∩U dR
n (Z/Y )/F0). (14)
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Since j(W0) ⊂ locp(Sel(Un)), we have W0 ⊂ W , and (12), (14) and (13) together
imply the Lemma. ��

4.1 Universal connections and reduced form

In the proof of Proposition 4.1, it will be useful to have a fairly explicit description of
the map Jn,τ , and hence of the connection (En,∇n). For this, we introduce the notion
of the reduced form of a connection, which is inspired by Kim’s description of the
universal connection [36]. As above, Z is a smooth irreducible affine subvariety of
Res(X)Qp

. Let dn denote the rank of En , and let rn denote the dimension of U dR
n (Z).

Definition 4.1 (Reduced form) Let Q be a complement of dO(Z) in H0(Z ,�).
A n-nilpotent matrixM ∈ End(⊕n

i=0Vi )⊗H0(Z ,�) (for V0, . . . , Vn vector spaces
over K ) is in reduced form (relative to the complement Q) if it is block n-nilpotent
and all of its entries lie in Q.

An n-unipotent connection (V,∇) in reduced form is an isomorphism V �
⊕n

i=0OZ ⊗ Vi with respect to which ∇ = d + , where  ∈ End(⊕Vi ) ⊗ H0(Z ,�)

is an n-nilpotent matrix in reduced form.

Lemma 4.1 Let V be an n-unipotent connection on a smooth affine variety Z over a
field K of characteristic zero. Then V can be written in reduced form. All morphisms f
between connections (⊕Vi ⊗OZ ,∇), (⊕Wi ⊗OZ ,∇′) in reduced form are K -linear,
i.e. f ∈ Hom(⊕Vi ,⊕Wj ) ⊗ O(Z) actually has entries inMatn,m(K ).

Proof Thismay be proved in a similar fashion to [36, Lemma2].We argue by induction
on n, the case n = 0 being immediate. If V is an extension of an (n − 1)-unipotent
connection V ′ by a trivial connection V ′′ = (V ′′ ⊗ O, d), then we can assume V ′ can
be written in reduced form, say

V ′ � ⊕n−1
i=0 Vi � ⊕n−1

i=0 Vi ⊗ O

so that ∇V ′ = d +, where  = ∑
0≤i< j<n i j and i j ∈ Hom(Vi , Vj )⊗ Q. Since

Z is affine, we can choose a vector bundle splitting of the short exact sequence

0 → V ′′ → V → V ′ → 0, (15)

so that we can write V as V ′ ⊕ V ′′, with connection given by d +  + ′, where
′ ∈ Hom(V ′,V ′′) ⊗ H0(Z ,�). We want to show that, changing the basis by an
element of 1 + Hom(V ′,V ′′), we can make ′ of the form

∑
′

i , where

′
i ∈ Hom(Vi , V

′′) ⊗ Q. (16)

Write ′ as
∑

′
i , with ′

i in Hom(Vi , V ′′) ⊗ H0(Z ,�). If we change the splitting
of (15) by 1 + ∑

Mi , where Mi ∈ Hom(Vi ,V ′′), this will change ′ by

′
i → ′

i + dMi −
∑

j>i

M j ◦ i j . (17)
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We show that we can change our basis so that the ′
i satisfy (16) by descending

induction on i . When i = n − 1, (16) implies that there is an M ∈ Hom(Vn−1,V ′′)
such that

′
n−1 − dM ∈ Hom(Vn−1, V

′′) ⊗ Q.

Changing the splitting of (15) by M , we obtaining a splitting for which ′
n−1 satisfies

(16). Now suppose we have a splitting of (15) such that ′
n−1, . . . , 

′
n−i+1 satisfy

(16). Then (16) implies there is an M ∈ Hom(Vn−i ,V ′′) such that

′
n−i − dM ∈ Hom(Vn−i , V

′′) ⊗ Q.

If we change the splitting of (15) by M , then by (17), ′
n−1, . . . , n−i+1 will be

unchanged, and n−i will now lie in Hom(Vn−i , V ′′) ⊗ Q. Hence V is in reduced
form.

For the second part of the lemma, write the homomorphism f as
∑

fi j , where
fi j ∈ Hom(⊕Vi ,⊕Wj ) ⊗ O(Z). Write ∇ = d + ∑

i< j i j and ∇′ = d + ∑
i< j 

′
i j

with the notation as above. Then the identity

d fi j +
∑

k< j

′
k j fik =

∑

i<k

fk jik,

and the fact that Q∩dO(Z) = 0, shows d fi j = 0 for all i and j by a double induction
on i and j . ��
Definition 4.2 Wewrite En in reduced form as ⊕dn

i=0OZ · ei (i.e. we write it in reduced
form, and then pick a basis for each vector space Vi ), and ∇n = d + n . The matrix
n is n-nilpotent, and its upper left k-nilpotent submatrix is equal to Ek , for all k < n
(i.e. the quotient En → Ek is just given by projecting onto the first (k + 1)-blocks).
If τ is a trivialisation of En coming from its reduced form, we denote Jn,τ simply by
Jn .

4.2 An explicit description of the universal connection

The main result of this section is a differential equation satisfied by Jn , which is used
in the inductive step of the proof of Proposition 4.1. Let En � O⊕dn

Z be a bundle
trivialisation of En putting it in reduced form. Let n be the connection matrix for its
reduced form. Recall that by Lemma 3.8, lim←− b∗En is isomorphic via Tannaka duality

to the universal enveloping algebra of πdR
1 (Z , b), viewed as a pro-representation of

πdR
1 (Z , b). Recall that theLie algebra LdR∞ (Z) ⊂ lim←− b∗En is defined to be the subspace

satisfying ε(x) = 0 and �(x) = x⊗̂1 + 1⊗̂x , and LdR
n (Z) ⊂ b∗En is the image

of Lie(πdR
1 (Z , b)) in b∗En . By making a K -linear change of basis (preserving the

unipotent filtration) if necessary, we may (and do) henceforth assume that there is a
sub-basis eli of ei forming a basis of LdR

n (Z). Define bi jk ∈ K , 1 ≤ i, j, k ≤ rn , by

[eli , el j ] =
∑

bi jkelk . (18)
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Lemma 4.2 There is an element ω = ∑rn
i=1 eli ⊗ωi of LdR

n (Z)⊗ H0(Z ,�) such that
the connection ∇n on En is given by

v → ω · v + dv,

and ω = ∇(1n).

Proof First, we show that ω := ∇(1n) has the property that, for all v in b∗En , ∇(v ⊗
1) = ω · v. Let f be the unique morphism En → En such that b∗( f )(1n) = v. Then,
since f is K -linear with respect to the trivialisation, we have

∇(v ⊗ 1) = f (ω).

By Lemma 3.9, f (ω) = ω · v.
We now show that ω is in LdR

n (Z)⊗H0(Z ,�). It is convenient to instead show this
in the limit over n: i.e. that ω ∈ lim←− H0(Z , En ⊗�1) lies in lim←− H0(Z , LdR

n (Z)⊗�1).
Since, in E0, we have ∇(10) = 0, the first condition ω ∈ Ker(ε ⊗ 1) is satisfied. The
second condition is that �(ω) = ω⊗̂1n + 1n⊗̂ω. By Lemma 3.9, � is the unique
morphism of pro-connections

lim←− En → lim←−(En ⊗ En)

sending (1n) to (1n ⊗ 1n). Hence �(ω) = ∇(1n⊗̂1n) = ω⊗̂1n +1n⊗̂ω, by definition
of the tensor product of two connections. ��

We write J = ∑
Ji ⊗ eli ∈ O(Ẑ) ⊗ LdR

n (Z). Recall J(b) = 0 and

d exp(J) = ω · exp(J) (19)

in H0(Ẑ ,�). Let ti ∈ O(L̂dR
n (Z)) be the i th coordinate function with respect to the

basis (eli ). Define

t =
∑

ti ⊗ eli ∈ H0(LdR
n (Z),O) ⊗ LdR

n (Z).

Recall� ⊂ Ẑ× L̂dR
n (Z) denotes the graph of J . Then� is the zero set of the functions

ti − Ji (here we view ti and Ji as functions on Ẑ × L̂dR(Z) via pulling back; to ease
notation we suppress the pull-back from the notation).

To describe the derivative of J , we make use of Poincaré’s Lemma on the deriva-
tive of the exponential function. Given an N -nilpotent Lie algebra L , and a formal
power series F = ∑

i≥0 ai t
i , and x ∈ L , we write F(adx ) to mean the operator

∑N
i=0 ai (adx )

i on L . Finally, if F,G are nonzero power series in K [[t]] such that
H := F/G lies in K [[t]], we further abuse notation by writing F(adx )/G(adx ) to
mean the operator H(adx ).
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Lemma 4.3 Let exp : LdR
n (Z) → b∗En(Z) denote the exponential function. Then

d exp(x) = eadx − 1

adx
(dx) · ex .

Proof It will be enough to prove this identity in the universal enveloping algebra of
LdR
n (Z), as b∗En(Z) is a quotient of the universal enveloping algebra of LdR

n (Z),
compatible with the exponential and logarithm maps. Hence this follows from the
usual version of Poincaré’s formula (see e.g. [11, II.5.11]). ��

We define θ̃i ∈ H0(LdR
n (Z) × Z ,�) by

∑
θ̃i ⊗ eli = θ̃ := eadt − 1

adt
d t − ω.

We define θi to be the image of θ̃i in H0(V ,�) and θ i to be the image of θi in
H0(V ,�) ⊗ O(W ).

Remark 4.1 The θi have the following interpretation in terms of foliations on principal
bundles. The frame bundle on EdR

n descends to a U dR
n -bundle P . The choice of trivi-

alisation of EdR
n on Z defines a trivialisation of P , i.e. an isomorphism P � U dR

n × Z .
With respect to this isomorphism, the connection form � on P can be viewed as an
element of H0(Z ×U dR

n ,�) ⊗ LdR
n . As explained in [7, 2.7], the connection form is

given by t−1d t − t−1ωt . Via the exponential map, this may be viewed as an element
�′ of H0(Z × LdR

n ,�) ⊗ LdR
n . Then we see that

�′ = t−1θ̃ t.

Hence finding linear relations between the θi is equivalent to finding linear relations
between the coefficients of �, as in the proof of Theorem 3.6 of loc. cit.

Let V and W be as in Proposition 4.1. Let I ⊂ O(V̂ ) denote the ideal of functions
vanishing on W . We have an exact sequence [24, 20.7.20]

I/I 2 → �̂V̂ |Qp
⊗ O(W ) → �̂W |Qp

→ 0. (20)

Lemma 4.4 The image of I/I 2 in �̂V |K ⊗ O(W ) under

I/I 2 → �̂V̂ |K ⊗ O(W )

is spanned by θ1, . . . , θrn .

Proof The image of I/I 2 is spanned by the functions dt1 − d J1, . . . , dtrn − d Jrn , so
it will be enough to show that the submodule spanned by these differentials is equal
to the submodule spanned by θ1, . . . , θrn . By (10) and Lemma 4.2, exp(J) satisfies

d(exp(J)) = ω · exp(J).
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Hence, by Lemma 4.3, the function J satisfies the differential equation

d J = ad J

ead J − 1
(ω). (21)

Hence the image of I/I 2 is equal to the submodule spanned by

d t − adt
eadt − 1

(ω). (22)

since ti = Ji on W . Finally, the map

v → eadt − 1

adt
(v)

is an O(W )-linear automorphism of LdR
n (Z) ⊗ O(W ), hence the submodule spanned

by the coordinates of θ is equal to the submodule spanned by the coordinates of
adt

eadt −1
· θ , which equals (22). ��

4.3 Proof of Proposition 4.1

We suppose that the codimension of � in W is less than the codimension of V in
LdR
n (Z)× Z . Let Qp(V ) denote the function field of V , and Qp(W ) the function field

of W . By the exact sequence (20)

I/I 2 ⊗ Qp(W ) → �̂V̂
Qp

|Qp
⊗ Qp(W ) → �̂Qp(W )|Qp

→ 0

and the inequality dim(W ) ≤ rk �̂W |Qp
, we deduce that θ1, . . . , θrn are linearly

dependent in �̂V̂ |Qp
⊗Qp(W ).We henceforth assume thatW is Zariski dense in V , and

assume, as hypothesis for contradiction, that the θ i areQp(W )-linearly dependent. By
our assumption thatW is Zariski dense in V , this implies that the θi areQp(V )-linearly
dependent. In this subsection, we aim to show that such a dependence contradicts the
Zariski density of W . The following elementary Lemma gives a couple of ways to
prove that a formal sub-scheme is not Zariski dense.

Lemma 4.5 Let V be an integral variety over Qp and W an integral closed formal

subscheme of the formal completion of V at a Qp-point b at which V is smooth.

(1) Suppose there are h1, h2 in Qp(V ) such that h1dh2 is zero in �Qp(W )|Qp
, but

non-zero in �Qp(V )|Qp
. Then W is not Zariski dense in V .

(2) Let M be an OV -submodule of O⊕r
V . Suppose the Qp(W )-rank of the image of

M ⊗ Qp(W ) in Qp(W )⊕r is less than the Qp(V )-rank of M ⊗ Qp(V ). Then W
is not Zariski dense in V .
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Proof (1) If h1dh2 = 0 then either h1 = 0 or dh2 = 0. Write hi = fi/gi , with
fi , gi ∈ OV ,b. Then in the first case W is contained in the zero locus of f1. In the
second case h2 is constant on W , say equal to λ, and hence W is contained in the
zero locus of f2 − λg2.

(2) Suppose the generic rank of M is s, and m1, . . . ,ms are generically independent
elements of M , say mi = ∑

fi j e j . Then W is contained in the zero set of the
determinants of the (s, s)-minors of ( fi j ).

��
Combining this with Lemma 4.4, we deduce that to prove Proposition 4.1, it will be
enough to prove that, if θ1, . . . , θrn are not Qp(V )-linearly independent, then there
exists h1, h2 ∈ Qp(V ) such that h1dh2 
= 0, and h1dh2 is in the Qp(V )-span of
θ1, . . . , θrn . We prove this by induction on n.

The case n = 1 is elementary: in this case θi is of the form dti − ωi , where
ω1, . . . , ωr1 are closed 1-forms forming a basis of H1

dR(Z/Qp). Suppose

r1∑

i=1

aiθi = 0 (23)

in �Qp(V )|Qp
. Suppose (23) is minimal among all non-trivial relations, in the sense

that it has a minimal number of nonzero ai among all relations (23) for which the ai
are not identically zero. Without loss of generality a1 is non-zero, and re-scaling if
necessary, we may assume a1 = 1. Since ωi are closed for i ≤ r1, we have

dai ∧ θi = d(
∑

ai ∧ θi ) = 0

in �2
Qp(V )|Qp

. If all of the dai are zero in �Qp(V )|Qp
, then we have

d
(∑

ai ti
)

=
∑

aiωi ,

hence the map H1
dR(ZQp

/Qp) → H1
dR(V /Qp) has a non-trivial kernel. Dually, this

implies that the map on Albanese varieties is not dominant, and hence that V → Z is
not dominant, giving a contradiction.

If the dai are not all zero, but are in the Qp(V )-span of the θi , then the Proposition
is proved, by Lemma 4.5. Hence we reduce to the case that the dai are not all zero,
and not all in the Qp(V )-span of the θi (say da2 /∈ ∑

Qp(V ) · θi ). Then there is a
derivation

D : �Qp(V )|Qp
→ Qp(V )

for which D(θi ) = 0 for all i but D(da2) 
= 0. Then

∑
D(dai ) · θi = 0
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is a non-trivial relation, which has fewer non-zero terms than (23) since da1 = 0,
contradicting our assumption that (23) was minimal.

Now suppose n > 1, and let Mk denote the submodule of �Qp(V )|Qp
spanned by

θ1, . . . , θrk . We suppose that

{h1dh2 : h1, h2 ∈ Qp(V )} ∩ Mn = 0.

Hence, by induction rk Mn−1 = rn−1. Suppose as hypothesis for contradiction that
rk Mn < rn , and hence there are non-zero ai ∈ Qp(V ) such that

rn∑

i=1

aiθi = 0. (24)

To deduce the inductive step, we use the following differential equation satisfied
by the θi (in the notation of Remark 4.1, this identity could also be deduced from the
Cartan structure equation for the connection form �).

Lemma 4.6 θ̃ satisfies

d θ̃ = 1

2
[̃θ , θ̃ ] + [̃θ ,ω].

(here the Lie bracket may be thought of as the Lie bracket on the differential graded
Lie algebra LdR

n (Z) ⊗ H0(Ln × Z ,�•)). Equivalently, we have

d θ̃k =
∑

i, j

bi jk θ̃i ∧ (
1

2
θ̃ j + ω j ),

where bi jk are as in (18).

Proof We prove this in lim←− LdR
n (Z) ⊗ H0(Ln × Z ,�•). Then it is enough to prove

[t, d θ̃ ] = 1

2
[t, [̃θ , θ̃ ]] + [t, [̃θ ,ω]].

since adt is injective on lim←− LdR
n (Z) ⊗ H0(Un × Z ,�•). From Lemma 4.3 we derive

d(eadt · d t) = d(et · d t · e−t)

=
[
eadt − 1

adt
d t, eadtd t

]

.
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Since the connection ∇ is flat we have dω = 1
2 [ω,ω]. Hence

[t, d θ̃ ] = [t, d θ̃ + ω] − [t, dω]
= d[t, θ̃ + ω] − [d t, θ̃ + ω] − [t, dω]
= [̃θ + ω, eadtd t] − θ̃ + ω, d t] − 1

2
[t, [ω,ω]]

= [̃θ + ω, [t, θ̃ + ω]] − θ̃ + ω, d t] − 1

2
[t, [ω,ω]]

= 1

2
[t, [̃θ + ω, θ̃ + ω]] − 1

2
[t, [ω,ω]].

��
Note that, since θ1, . . . , θrn−1 are linearly independent, there is rn−1 < i ≤ rn

such that ai 
= 0. We choose the ai minimally in the sense that the size of the set
{i ∈ {rn−1 + 1, . . . , rn} : ai 
= 0} is minimal among all non-trivial relations (24)
(where non-trivial simply means the ai are not all zero).

By Lemma 4.6 we have

d
(∑

aiθi
)

=
∑

θi ∧
(

−dai +
∑

bi jkak

(
1

2
θ j + ω j

))

= 0. (25)

Suppose that for rn−1 < i ≤ rn , the ai are not all constant. Pick j0 between rn−1
and rn such that a j0 is non-zero. Rescaling if necessary, we may assume a j0 = 1.
We claim that, after this rescaling, the ai are all constant for i > rn−1. Suppose a j1
is non-constant. Since, by assumption, da j1 is not in the span of the θi , there is a
derivation

D : �Qp(V )|Qp
→ Qp(V )

such that D(θi ) = 0 for all i , and D(da j1) 
= 0.Write ci := D(−dai+∑
bi jkak(

1
2θ j+

ω j )). Then

D

(

d

( rn∑

i=1

aiθi

))

=
rn−1∑

i=1

ciθi = 0 (26)

Since bi jk = 0 whenever i or j are greater than rk−1, we have, for all i > rn−1,

ci = D(−dai ).

In particular c j1 
= 0 and c j0 = 0. Then (26) is a non-trivial relation with a smaller
number of non-zero terms between rn−1 and rn , contradicting our assumption of
minimality of (24).
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Hence we may assume that for rn−1 < i ≤ rn , the ai are in Qp. Define

αi = dai −
∑

bi jkakω j .

Then (25) can be rewritten

rn−1∑

i=1

θi ∧ αi = 1

2

∑

k

ak
∑

i, j≤rn−1

bi jkθi ∧ θ j .

Hence, by our assumption that θ1, . . . , θrn−1 are Qp(V )-linearly independent, each αi

is in the Qp(V )-span of θ1, . . . , θrn−1 , and in fact can be written as

αi =
∑

λi jθ j (27)

where

λi j − λ j i =
∑

k

bi jkak . (28)

A solution to (27) has the following interpretation. We can define a connection on
LdR
n (Z) ⊗ OZ by x → [ω, x], or with respect to our chosen basis by

el j →
∑

bi jkωli elk .

LetLdR
n (Z) denote the unipotent flat connection corresponding, by Tannaka duality,

to LdR
n (Z) with the adjoint action of πdR

1 (Z , b). By Lemmas 3.9 and 4.2, we have
LdR
n (Z) � LdR

n (Z) ⊗ OZ with connection given by

v ⊗ 1 → [ω, v].

The dual connection ∇LdR ∗
n

on LdR
n (Z)∗ is given by

e∗
l j →

∑
−bik jωi e

∗
lk .

Hence the αi can also be interpreted as the coefficients, with respect to the basis e∗
li
,

of ∇LdR ∗
n

(a), where a = ∑
ai e∗

li
. As the following lemma explains, the condition that

αi ∈ Mn−1 for all i is equivalent to the existence of a morphism En−1 → LdR
n (Z)∗.

Let π : V → Z denote the projection.

Lemma 4.7 (1) Mn is equal to the submodule spanned by the coefficients of
π∗∇n(exp(t)) with respect to the basis ei , where π∗∇n denotes the connection
EdR
n (Z) pulled back to V .
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(2) Suppose {0} = {h1dh2 : h1, h2 ∈ Qp(V )} ∩ Mn−1, and rk Mn−1 = rn−1. Let

V = (O⊕N
Z ,∇V ) be an (n − 1)-unipotent flat connection on Z in reduced form.

Let x ∈ V (Qp), and let OV ,x denote the local ring of V at x. Then, for each
v ∈ x∗π∗V , a lift of v to v ∈ π∗V(OV ,x ) such that ∇π∗V (v) lies in the subspace
O⊕N

V ⊗ Mn−1 is unique if it exists.
(3) Given any morphism of flat connections

P : En−1 → V

on Z, we have a solution to

∇π∗V (v) ∈ ≈∗V ⊗ Mn−1 (29)

given by v = P exp(t). In particular, by the universal property of Em, for all
m > 0, and any v in b∗V , there exists a unique lift of v to v ∈ π∗V(V ) satisfying
∇π∗V (v) ∈ Mm.

Proof (1) As in the proof of Lemma 4.6, this follows from Lemma 4.3, which gives

∇n(exp(t)) = d exp(t) − ω · exp(t)
= θ · exp(t).

(2) We prove this by induction on the minimal degree of unipotence of V . For 0-
unipotent connections, ∇(

∑
ai ⊗ ei ) = dai ⊗ ei , so the result is immediate.

Given the result for k-unipotent connections, let V be (k + 1)-unipotent, and let

0 → V ′ → V τ−→ V ′′ → 0

be a short exact sequence where V ′ is 0-unipotent and V ′′ is k-unipotent. Let
v and w be two lifts of v to sections in π∗V(OV ,x ) such that ∇π∗V (v) and
∇π∗V (w) are in π∗V ⊗ Mn−1. Then τ(v) and τ(w) are equal at x , and satisfy
∇π∗V ′′(τ (v)),∇π∗V ′′(τ (w)) ∈ π∗V ′′ ⊗ Mn−1. Since V ′′ is k-unipotent, we have
τ(v) = τ(w), hence v − w is a section of the trivial connection V ′ satisfying
∇π∗V ′(v − w) ∈ π∗V ′ ⊗ Mn−1, hence is zero.

(3) By Lemma 4.1, the morphism is K -linear, since both connections are in reduced
form. Hence it satisfies

P∇n−1 = ∇V P,

hence P exp(t) satisfies (29).
��

Now suppose we have a solution to

αi =
∑

λi jθ j (30)
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withλi j inQp(V ). Let x be a point at which none of theλi j have a pole, then byLemma
29, a solution to (30) with λi j ∈ O(Z)x is unique given their value at x , and for every
choice of (ci j )with ci j inQp, there is a unique lift to λi j ∈ O(Z)x satisfying λi j (x) =
ci j , and coming from a morphism of flat connections En−1 → Ln . In particular the λi j
are actually in O(Z). We claim that for all i ∈ {rn−2 + 1, . . . , rn−1}, j ∈ {1, . . . , r1},
if (28) holds then, for all i ≥ rn−2 + 1, λ j i = 0.

For i ∈ {rn−2 + 1, . . . rn−1}, we have

αi = dai −
rn∑

k=rn−1+1

bi jkakω j .

since bi jk = 0 if i > rn−2 and k ≤ rn−1. Since ak is constant for k > rn−1, we deduce

ai =
∑

bi jkakt j

is a solution, hence for i in {rn−1 + 1, . . . , rn}, we have

λi j =
rn∑

k=rn−1+1

bi jkak .

This completes the proof of the claim.
This means that the map

En−1 → L∗
n

factors through En−2, or equivalently that the action of b∗En−1 on
∑

ake∗
lk
factors

through b∗En−2. Since we assume ak is non-zero for some k ∈ {rn−1 + 1, . . . , rn},
the b∗En−1-module generated by

∑
ake∗

lk
is not (n − 2)-unipotent. Hence we obtain

a contradiction, completing the proof of Proposition 4.1.

5 The intersection of jn(Z)with the Selmer variety

In this section we prove certain techniques for proving finiteness of X (OK ⊗ Zp)S,n

and X (OKv )S,n . First, we prove a general result which allows to prove finiteness after
passing to a finite extension. The onlywrinkle this introduces is that, aswe have chosen
to work with a prime which splits completely in K , passing to a finite extension will
compel us to work with a prime splitting completely in the extension field.

Lemma 5.1 Let L|K be a finite extension of Q, and X a curve over K as in the
introduction. Let p be a rational prime which splits completely in L.

(1) If X (OL ⊗ Zp)S,n is finite, then X (OK ⊗ Zp)S,n is finite.
(2) Letw be a prime of K lying above p, and v a prime of L lying abovew. IfX (Ov)S,n

is finite, then X (Ow)S,n is finite.
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Proof We have diagonal embeddings of ResK |Q(X) into ResL|Q(XL) which, upon
base change to Qp, induce embeddings of XKw into

∏
v′|w XLv′ , where the product

is over primes of L lying above w. On the other hand, we also have inclusions of
H1

f ,S(GK ,S,Un(X)) into H1
f ,S(GL,S,Un(X)). We obtain a commutative diagram

ResK |Q(X)(Q) H1
f ,S(GQ,S, Ind

Q
K Un(X))

ResL|Q(XL)(Q) H1
f ,S(GQ,S, Ind

Q
L Un(X)),

and similarly for local fields, giving inclusions

X (OK ⊗ Zp)S,n ↪→ X (OL ⊗ Zp)S,n

and

X (OKw)S,n ↪→ X (OLv )S,n

��
Lemma 5.2 Let U be a Galois-stable finite-dimensional quotient of the Qp-unipotent
fundamental group of X. Suppose Hom(Jσ1,C, Jσ2,C) = 0 for all distinct embeddings
σi : K ↪→ C. Then, if

n∑

i=1

h1f (GK , gri (U )) ≤ [K : Q] +
n∑

i=1

∑

v|p
dim DdR(U )/F0,

then there is a prime v|p of K such that X(Kv)U is finite.

Proof By Proposition 3.2, dim Sel(U ) is bounded above by dim H1
f (GK ,Lie(Uc))

for all twists of U by cocycles c ∈ Sel(U ). Since gri (U ) � gri (U
c), for each such c,

we have

h1f (GK ,Lie(Uc)) ≤
n∑

i=1

h1f (GK , gri (U ))

On the other hand

∑

v|p
dimU dR(Xv)/F

0 = dim
n∑

i=1

∑

v|p
dim DdR(gri (U ))/F0.

Hence, if the inequality in the statement of the Lemma holds, then by Proposition 4.2
the Zariski closure of X(K ⊗ Qp)U is a proper subvariety, all of whose positive
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dimensional irreducible components Z satisfy

codimUdR(Z/Res(X))/F0(locp(Sel(U )) ∩U dR(X/Res(X))/F0) < dim Z . (31)

Since there are no nonzero homomorphisms between the different factors ofRes(J )Qp ,
the image of Alb(Z) in Res(J )Qp is the product of the images in the different factors.
Hence if Z dominates each factor of Res(X)Qp , then its geometric unipotent funda-
mental group surjects onto the geometric unipotent fundamental group of Res(X)Qp ,
contradicting (31). ��
This straightforwardly implies case (2) of Proposition 1.1.

Proof of 1.1, case (2) Let U be, as in [5, Proposition 2.2], the quotient of U2 which is
an extension of Vp J by Ker(NS(JK ) → NS(XK )) ⊗ Qp(1). By [5, Lemma 2.3], we
have

h1f (GK ,S, gr2U ) =
∑

v∈PR

(dimNS(JK )cv=1 − dimNS(J )).

Hence case (2) of Proposition 1.1 follows from Lemma 5.2. ��

5.1 Semi-simplicity properties of graded pieces of fundamental groups

Let n > 0, and let X be a smooth projective curve of genus g > 1 over K with n − 1
marked points xi ∈ X(K ). Let Y = X − {x1, . . . , xn−1}. Let Mg,n,K denote the
moduli stack of n-pointed curves of genus g over K . For xn ∈ Y (K ), we have a short
exact sequence

1 → π1(YK , x) → π1(Mg,n,K , [(X , (xi )
n
i=1)]) → π1(Mg,n−1,K , [(X , (xi )

n−1
i=1 )])→1,

(see e.g. Nakamura–Tsunogai [44]). This induces an outer action of π1(Mg,n−1,K ,

[(X , (xi ))]) on π ét
1 (YK , xn), which induces an outer action on the Malcev completion

of π ét
1 (YK , xn), and hence an action on the graded pieces gri (Ui (Y )(x). When n = 1

or 2, the action of π1(Mg,n−1,K , [(X , (xi ))]) on U1(Y ) = H ét
1 (XK , Qp) has Zariski

dense image in GSp(U1(X)) (see e.g. [29, §8]). The action of GK on gri (Ui (Y ))

factors through the action of π1(Mg,0,K , [X ]) via the morphism

Gal(K |K ) → π1(Mg,n−1,K , [(X , (xi ))]) (32)

induced by the morphism Spec(K ) → Mg,n−1,K induced by [(X , (xi ))].
Lemma 5.3 Let X/K be either projective or a projective curve minus a point.

(1) The commutator homomorphism

U1(X)⊗i → gri (Ui (X))

admits a GK -equivariant section.
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(2) Let Ui = Ui (Res(X)), and let W ⊂ V = U1 denote the image of the Qp-Tate
module of an abelian subvariety of Res(J )L , for some L|Q. Then the image of
W⊗i in gri (Ui ) is a GL,T -stable direct summand of gri (Ui ).

Proof Let n = 1 or 2 depending on whether X is projective or projective minus a
point x ∈ X(K ), and let S = Ø or {x}. By the homomorphism (32), to prove the
first claim it is enough to prove them with GK replaced by π1(Mg,n−1,K , [(X , S)]).
Since π1(Mg,n−1,K , [(X , S)]) has Zariski dense image in GSp(U1(X)), it is enough
to prove them with π1(Mg,n−1,K , [(X , S)]) replaced by GSp(U1(X)), which proves
the Lemma. The second claim follows from part (1), together with the fact that the
image of W⊗i in V⊗i is a direct summand, since W ⊂ V is a direct summand. ��

5.2 Further reductions

Given Proposition 4.2, to prove finiteness of X (OK ⊗ Zp)n , it is enough to prove
that, for any positive-dimensional, geometrically irreducible smooth quasi-projective
subvariety Z ⊂ Res(X)Qp , and any virtual basepoint b ∈ Z(Qp)∩Res(X)(Qp), there
is a Galois-stable quotient U of Un(Res(X)), such that

codimU (Z/Res(X))/F0(locp(Sel(U )α) ∩U (Z/Res(X))/F0) > dim(Z). (33)

First, we reduce proving (33) to proving an inequality involving abelian Galois
cohomology. Recall from Lemma 3.7 that, by changing b to a ‘virtual basepoint’
we may assume α is the trivial collection of local conditions, and hence Sel(U )α ⊂
H1

f ,S(GQ,T ,U ). Recall that, by Proposition 3.2, we have

dim H1
f ,S(GQ,T ,U ) ∩U dR(Z/Res(X))/F0

≤ max
c∈H1

f ,S(GQ,T ,U )

dim locp H
1
f ,S(GQ,T , Lc) ∩ LdR(Z/Res(X))c/F0,

where LdR(Z/Res(X))c/F0 is defined to be 0 if c is not in U dR(Z/Res(X))/F0.
Hencewe can estimate the dimension of H1

f ,S(GQ,T ,U )∩U dR(Z/Res(X))/F0 using
the following Lemma.

Lemma 5.4 Let U be a Galois stable quotient of UN , with Lie algebra L, and
c ∈ H1

f ,S(GQ,T ,Un). Let Z ⊂ Res(X)Qp be an irreducible subvariety, and let

LdR(Z/Res(X)) denote the image of lim←− LdR
i (Z) in DdR(L). We have

codimLdR(Z/Res(X))c/F0 locp H
1
f ,S(GQ,T , Lc) ∩ LdR(Z/Res(X))c/F0)

≥
N∑

i=1

codimgri (LdR(Z/Res(X)))/F0 H1
f ,S(GQ,T , gri (L)) ∩ (gri (L

dR(Z/Res(X)))/F0)

−
N−1∑

i=1

dim Ker(H1
f ,S(GQ,T , gri (L)) → H1

f (GQp , gri (L))).
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Proof We have

dim LdR(Z/Res(X))c/F0 =
N∑

i=1

dim gri (L
dR(Z/Res(X)))/F0.

Hence it is enough to prove that

dim locp(H
1
f ,S(GQ,T , Lc)) ∩ LdR(Z/Res(X))c/F0

≤
N∑

i=1

dim locp H
1
f ,S(GQ,T , gri (L)) ∩ (gri (L

dR(Z/Res(X)))/F0)

+
N−1∑

i=1

dim Ker(H1
f ,S(GQ,T , gri (L)) → H1

f (GQp , gri (L))).

Note that Un acts unipotent on L , hence we may replace gri (L) with gri (L
c) in the

above.
This is then just linear algebra: more generally suppose A = A•, B = B• are finite

dimensional vector space with separated exhaustive decreasing filtrations, such that A
is a strict filtered subspace of B, and Ci, j (i < j) are finite dimensional vector spaces
such that, for all i < j < k, we have a commutative diagram with exact rows

0 C j,k Ci,k Ci, j

0 Bj/Bk Bi/Bk Bi/Bj 0.

φ j,k φi,k φ j,k

Then

dimKer(φi, j (Ci, j ) ∩ (Ai/A j ) → φi,i+1(Ci,i+1) ∩ (Ai/Ai+1))

≤ dimKer(φi,i+1) + dim φi+1, j (Ci+1, j ) ∩ (Ai+1/A j ).

Hence, for all i < j ,

dim φi, j (Ci, j ) ∩ (Ai/A j ) ≤
∑

i≤k< j

dim φk,k+1(Ck,k+1) ∩ (Ak/Ak+1)

+
∑

i<k< j

dimKer(φk−1,k).

Applying this when Bi = Ci LdR, Ai = Ci LdR(Z/Res(X)) and Ci, j =
H1

f ,S(GQ,T ,Ci L/C j L) completes the proof of Lemma. ��
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One subtlety in estimating the dimension of the intersection of griU
dR(Z/Res(X))

/F0 with locp H1
f ,S(GQ,T , gri (U ))Qp

is that we do not assume that Z is defined over

Q, or even over a number field. However in spite of this, griU
dR(Z/Res(X))/F0

behaves as if it was defined over a number field, in the following sense.

Lemma 5.5 Let A = Alb(Res(X)), where X is either a projective curve or a projective
curveminus a point. Let f : Z ↪→ Res(X)Qp be a geometrically irreducible subvariety

of Res(X)Qp
. There exists a finite extension L|Q such that f∗H ét

1 (Alb(Z)Qp
, Qp) ⊂

H ét
1 (AQp

, Qp) is stable under the action of Gal(L|Q).

Proof First, note that since X is projective, or projective minus a point, its Albanese
variety is abelian. Hence it is enough to show that, for any injective morphism of
abelian varieties g : B → AQp

, defined over Qp, there is a finite extension L|Q such

that g∗H ét
1 (B, Qp) is GL -stable. There is an endomorphism φ ∈ End(AQp

) such that

g∗H ét
1 (B, Qp) = φ∗(H ét

1 (Alb(Res(X))Q, Qp)).

Indeed, we may take the endomorphism to be the composite

AQp
→ A∗

Qp
→ B∗ → B → AQp

,

for some choice of polarisation on B (since the map A∗
Qp

→ B∗ is surjective,

the image of H ét
1 (AQp

, Qp) under this endomorphism is exactly g∗H ét
1 (B, Qp)).

Hence it is enough to show that there exists a finite extension L|Q such that
End(AL) � End(AQp

), which follows from the classification of endomorphisms of
abelian varieties [43, Corollary IV.1]. ��
Lemma 5.6 Let K |Q be a finite extension, and n > 1. Let W be a subspace of V :=
IndQ

K Qp(n), stable under GQp . Then

dim locp H
1(GQ,T , V ) ∩ H1(GQp ,W ) ≤ dimWc=−1,

where c ∈ GQ is complex conjugation with respect to an inclusion Q ↪→ C.

Proof Let L|Q denote a totally imaginary Galois extension containing K |Q, with
Galois group G, and H := Gal(L|K ). Let M := IndQ

L Qp(n). We have an isomor-
phism M � Qp[G](n), and an inclusion

V ↪→ W .

Hence it is enough to prove that for any W ⊂ Qp[G], we have

dim locp H
1(GQ,T , M) ∩ H1(GQp ,W (n)) ≤ dimWc=(−1)n+1

.
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By Shapiro’s lemma, we have a commutative diagram whose vertical arrows are iso-
morphisms

H1(GQ,T , M) H1(GQp , M)

H1(GL,T , Qp(n)) ⊕w|pH1(GLw , Qp(n))

hence it is enough to prove the claim for the dimension of the image of the bottom hor-
izontal map. Both H1(GL,T , Qp(n)) and ⊕w|pH1(GLw , Qp(n)) have the structure
of Gal(L|Q)-modules, with respect to which the localisation map is Gal(L|Q)-
equivariant.

We claim that we have an isomorphism of Galois modules

H1(GL,T , Qp(n)) � IndGal(L|Q)

〈c〉 χn+1, (34)

where χ is the unique nontrivial character of 〈c〉, and c now denotes the image of c in
Gal(L|Q), and an isomorphism

H1(GQp , Qp[G](n)) � Qp[G]. (35)

induced by H1(GQp , Qp(n)) � Qp.
For the first claim, note that Borel’s theorem [9] proves a Gal(L|Q)-equivariant

isomorphism K2n+1(L)⊗R � IndGal(L|Q)

〈c〉 χn+1⊗R. This implies aGalois-equivariant

isomorphism K2n+1(L)⊗Q � IndGal(L|Q)

〈c〉 χn+1. Hence, by Soulé’s theorem [51], we
obtain the isomorphism (34).

For the isomorphism (35), we may use the fact that the Bloch–Kato logarithm
is Galois-equivariant by construction, and hence we have Gal(Lw|Qp)-equivariant
isomorphisms

H1(GLw , Qp(n)) � H1
f (GL f , Qp(n)) � L f .

Having proved these isomorphisms, we deduce that the image of H1(GQ,T , V ) in
H1(GQp , V ) must be contained in Ker(1 + (−1)nc). This implies the Lemma. ��

5.3 Metabelian quotients of fundamental groups

We say a groupG ismetabelian if [[G,G], [G,G]] is zero, and similarly a Lie algebra
L is metabelian if [[L, L], [L, L]] = 0. The free metabelian Lie algebra on a vector
space W is simply the quotient of the free pro-nilpotent Lie algebra L on W by the
double commutator [[L, L], [L, L]]. Given a vector spaceW , we denote by Ŝym

•
(W )

the completion of the symmetric algebra on W with respect to the ideal generated by
W . If L is a metabelian Lie algebra, the adjoint action of L on [L, L] factors through
Lab, and gives [L, L] the structure of a module over Ŝym

•
(Lab).
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In the proof of cases (3) and (4) of Theorem 1.1, we will use metabelian quotients
of the unipotent fundamental group. This follows the proof of these results overQ [13,
37]. To extend the arguments of loc. cit. to the number field situation, we will need
the following properties of metabelian Lie algebras.

Lemma 5.7 Let Lma be the free metabelian Qp-Lie algebra on generators x1, . . . , xn.

(1) Let M denote the Qp[x1, . . . , xn] module

M = {(v1, . . . , vn) ∈ Sym•(Lma,ab)⊕n :
∑

vi xi = 0}.

Then we have an isomorphism of Qp[[x1, . . . , xn]] modules

M̂ � [Lma, Lma].

via the identification Ŝym
•
(Lma,ab) � Qp[[x1, . . . , xn]].

(2) Let L
ma

be themaximalmetabelian quotient on the Lie algebra of theQp-unipotent
fundamental group of a smooth projective irreducible curve X over an alge-
braically closed field F of characteristic zero. Let x1, . . . x2g be a symplectic
basis of H := H ét

1 (X , Qp). Define

M = {(v1, . . . , vn) ∈ Sym•(H)⊕n :
∑

vi xi = 0},

and define m := (vg+1, . . . , v2g,−v1, . . . ,−vg) ∈ M. Then we have an isomor-

phism of Ŝym
•
(H)-modules.

[Lma
, L

ma] � M̂/Ŝym
•
(H) · m.

Given an element x of [Lma, Lma], we refer to the coefficients vi of the corresponding
element of M̂ as the Fox differentials of x (motivated by Ihara’s construction, used in
the proof of Lemma 5.7).

Proof (1) Let G be the free pro-p group on generators γ1, . . . , γn . Let G be the
maximal metabelian quotient

G := G/[[G,G], [G,G]].

Weclaim that Lma is isomorphic to theLie algebra of theQp-Malcev completion of
G. This follows from universal properties: Lma is the Lie algebra of themetabelian
quotient U of the free pro-unipotent Qp-group on generators xi , which we will
denote by Ũ . The category of continuous Qp-representations of G is equivalent
to the category of metabelian representations of Ũ , which is equivalent to the
category of representations of U .
Let Gi andUi denote the maximal i-unipotent quotients of G andU respectively.
We have an isomorphism of Ŝym

•
(V )-modules

[G,G] ⊗Zp Qp � [Ui ,Ui ].
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Hence it is enough to compute the action of the Lie algebra of G on [G,G]. Let
L denote the Zp-Lie algebra of G: this is the Zp-module lim←−⊕i≤ngri (G), with

Lie bracket induced by the commutator on G. Then, by [45, 2.3.2], we have an
isomorphism of Qp-Lie algebras

L⊗̂ZpQp � Lma. (36)

The conjugation action of Gab on [G,G] gives it the structure of a Zp[[Gab]]-
module. On the other hand, the Lie bracket on [L,L] gives it the structure of
a module over Zp[[Gab]]. From the definitions, we obtain an isomorphism of
Zp[[Gab]]-modules

[L,L] � gr•[G,G]. (37)

In particular, we obtain a non-canonical isomorphism of Qp[[x1, . . . , xn]]-
modules

[Lma, Lma] � [G,G]⊗̂Zp[[Gab]]Qp[[x1, . . . , xn]]

where xi acts on [G,G] by γi − 1. Hence it will be enough to prove that we have
an isomorphism of Zp[[x1, . . . , xn]]-modules

[G,G] � {(v1, . . . , vn) ∈ Zp[[Gab]] :
∑

vi xi = 0}.

This is a special case of a theorem of Ihara [32, Theorem 2.2].
(2) By [29], we know that gr•Lma

is isomorphic to a free pro-nilpotentQp-Lie algebra
on generators x1, . . . , x2 g , modulo the Lie ideal generated by

∑g
i=1[xi , xg+i ].

Hence part (2) follows from part (1).
��

6 Proof of Theorem 1.1

We first recall the following result, which is a corollary of Euler characteristic
formulae/Poitou–Tate duality for finite Galois representations, and roughly says that
for global Galois cohomology, showing that H1 is small, showing that H2 is small,
and showing that H1 of the Tate dual is small are equivalent problems.

Lemma 6.1 (1) [34, Lemma 2] For any finite dimensional Qp-representation W of
GK ,T , we have

h1(GK ,T ,W ) = h2(GK ,T ,W ) + h0(GK ,T ,W ) +
∑

v∈PR

dimWcv=−1

+(#PC) · dimW ,
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where PR and PC denote the set of real and complex places of K respectively, and
the decomposition group at v ∈ PR is generated by cv .

(2) [22, Remark 1.2.4] If K = Q, and H0(GQ,T ,W ), H0(GQ,T ,W ∗(1)) and
Dcris(W )φ=1 are all zero, then

h1f (GQp ,W ) − h1f (GQ,T ,W )

= h0(GR,W ) − dim H1
f (GQ,T ,W ∗(1)).

(3) [22, 1.2.2] For any number field K and Qp-Galois representation W,

dim(Ker(H1(GK ,T ,W ) → ⊕v∈T H1(GKv ,W )))

= dimKer(H2(GK ,T ,W ∗(1)) → ⊕v∈T H2(GKv ,W
∗(1))).

6.1 Theorem 1.1, case (1)

In this subsection we prove Theorem 1.1 in the case X = P1
K − D. First, we make use

of the following Lemma to reduce to the case where S is empty.

Lemma 6.2 For all i > 1, any Galois stable quotient W of gri (U ), and any v 
= p,
we have H1(GQv

,W ) = 0.

Proof Let Iv < GQv
denote the inertia subgroup, and φv a generator of GQv

/Iv . Tate
duality gives an exact sequence (see e.g. [22, 3.3.9])

0 → H1(GFv
,W Iv ) → H1(GQv

,W ) → H1(GQv
,W ∗(1))∗ → 0.

We have

H1(GFv
,W Iv ) � W Iv /(φ − 1)W Iv .

Since W and W ∗(1) have weight −2i and 2 − 2i respectively, we deduce
H1(GQv

,W ) = 0. ��
Using theEuler characteristic formula above,we can reduce the computation of dimen-
sions of Galois cohomology groups of Artin–Tate representations (i.e. Tate twists of
Artin representations) to a theorem of Soulé [51, Theorem 5].

Theorem 6.1 (Soulé) For any number field K , and any n > 1,

h2(GK ,T , Qp(n)) = 0,

We deduce case (1) of Theorem 1.1 as follows. Let Z be an irreducible Qp-subvariety
of Res(X)Qp , and let Un(Z/X) be as in Proposition 4.2. By Lemma 5.4, and The-
orem 6.1, it is enough to prove that for infinitely many n, grn(U

dR
n (Z/X))/F0 =

grn(U
dR
n (Z/X)) is not contained in locp H1

f (GQ, grn(Un)). By Lemma 5.6, it is

enough to prove that, for infinitely many n, grn(Un(Z/X)) is not contained inUc=−1
n .
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This follows from the fact that ⊕ngrn(Un(Z/X)) is a sub-Lie algebra of the graded
Lie algebra ⊕ngrnUn .

6.2 Theorem 1.1, case (2)

In this subsection we prove Theorem 1.1 in the case X is a smooth projective curve
of genus g > 0, and we assume either the Bloch–Kato conjectures or Jannsen’s
conjecture, which we now recall.

Conjecture 6.1 (Bloch–Kato, [8, Conjecture 5.3]) Let Z be a smooth projective variety
over Q. For any n > 0 and 2r − 1 
= n, the map

chn,r : K2r−1−n(Z) ⊗ Qp → H1
g (GQ, Hn(ZQ, Qp(r)))

is an isomorphism.

Conjecture 6.2 (Jannsen, [34, Conjecture 1]) Let Z be a smooth projective variety
over K with good reduction outside T . Then

H2(GK ,T , Hi (ZK , Qp(n))) = 0

whenever i + 1 < n or i > 2n.

In particular, when 2r−1−n < 0, since negative K -groups are zero, Conjecture 6.1
implies H1

f (GQ, Hn
ét(ZQ, Qp(r))) = 0.

6.2.1 Finiteness assuming Conjecture 6.1

Part (2) of Lemma 6.1 implies the following corollary of Conjecture 6.1.

Lemma 6.3 Let X be a smooth projective geometrically irreducible curve of genus
g > 1. Suppose Conjecture 6.1 holds for Hn

ét(X
n
Q
, Qp(n)). Then, for any Galois

stable direct summand W of Hn
ét(X

n
Q
, Qp(n)), we have

h1f (GQp ,W ) − h1f (GQ,T ,W ) = h0(GR,W )

when n > 2.

This means that, for all but finitely many i ,

Ker(H1
f (GQ,T , gri (Ui )) → H1

f (GQp , gri (Ui ))) = 0.

Similarly, by part (3) of Lemma 6.1, Jannsen’s conjecture implies that the localisa-
tion map

H1
f (GK ,T , Hi

ét(XK , Qp(i))) ↪→ ⊕v|pH1
f (GKv , H

i
ét(XK , Qp(i))) (38)
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is injective for i > 1. This implies that

n∑

i=1

dim Ker(locp : H1
f (GQ,T , gri (Ui )) → H1

f (GQp , gri (Ui )))

= dimKer(H1
f (GQ,T , V ) → H1

f (GQp , V )). (39)

To prove finiteness of X(K ⊗ Qp)n , we now show that Un(Z/Res(X)) contains a
large Artin–Tate part, and use this to apply Lemma 5.6. This is done by showing that
the unipotent fundamental group of a projective curve contains many Tate motives.

Lemma 6.4 (Hain) Let X be projective. Then

gr6(U6(X))Sp(U1(X)) 
= 0.

Proof This is proved in Hain [29, §9]. For the sake of completeness we briefly recall
the argument. Let p := lim−→ ⊕gri (Ui (X)), viewed as a graded Lie algebra, so that
U1(X) has weight −1, and let sp(U1(X)) := Lie(Sp(U1(X))). By computing the Lie
algebra cohomology of p, Hain shows that, for all i < −2, the complex

grWi (∧•p) : . . . → grWi (∧2p) → grWi p → 0

is exact. Hence given the irreducible representations arising in gr1(Ui (X)), . . .,
gri−1(Ui (X)), onemay compute gri (Ui (X)) as an sp(U1(X))-representation using the
complex grW−i (∧•p). We obtain a non-zero morphism of sp(U1(X))-representations
Qp → gr6(U6(X)). ��
Lemma 6.5 Let X be a smooth projective curve over a number field K . Let gr•(L) be
the associated graded of the Lie algebra of the Qp pro-unipotent completion of the
étale fundamental group of XK . Then gr•(L) contains a free Lie algebra generated
by Qp(3) and Qp(5).

Proof By the previous lemma, Qp(3) is a direct summand of gr6(L). This follows
from the fact that it is enough to prove this as a statement about representations of
GSp(V ), for V a 2g-dimensional vector space with a nondegenerate symplectic form.
Namely one wants to prove the corresponding statement for L(V ), which we define to
be the free Lie algebra on V modulo the Lie ideal generated by Qp(1) ⊂ ∧2V . Then
it is enough to replace GSp(V ) with Sp(V ) and prove that L(V ), as a representation
of Sp(V ), contains an invariant vector in gr6L(V ).

Similarly, to prove the Lemma it is enough to prove that L(V ) contains a free Lie
algebra with trivial Sp(V ) action, and generators lying in gr6(L(V )) and gr10(L(V )).
By a theorem of Labute [42, Theorem 1], if L is a free Lie algebra on a vector space V
of dimension > 2, modulo a Lie ideal generated by one element in ∧2V , then [L, L]
is a free Lie algebra (more precisely Labute’s theorem says it is a sub-Lie algebra of
a free Lie algebra, and thus is free by Shirsov’s theorem). Hence, to prove that L(V )

contains the free Lie algebra mentioned above, it is enough to prove that gr6(L(V ))

and gr10(L(V )) both contain copies of the trivial representation.
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Hain proves in loc. cit. that gr6(L(V )) contains a copy of the trivial representation.
Now let I be the Lie ideal in [L(V ), L(V )] generated by the copy of Qp(3) in the 6th
graded piece. By another theorem of Labute [41, Theorem 1], I/[I , I ] is a free rank
one U(L/I ) module, where U(L/I ) is the universal enveloping algebra of L/I . In
particular, for all i ≥ 6, gri−6(U(L/I )) is a direct summand of gri (L(V )) as an Sp(V )

representation. To show that gr10(L(V )) contains a copy of the trivial representation,
it is hence enough to show that gr4U(L/I ) contains a copy of the trivial representation.
By the Poincaré–Birkhoff–Witt theorem, U(L/I ) is isomorphic, as a representation
of Sp(V ), to the symmetric algebra on U(L/I ). In particular, we see that I/[I , I ]
contains a copy of Sym2 gr2(L), which contains a copy of the trivial representation.
This can be seen by direct computation, or from the fact that, since gr2(L) is self-dual
as a representation of Sp(V ), either Sym2 gr2(L) or ∧2gr2(L) must contain a copy of
the trivial representation, and the latter does not. ��

We now deduce case (2) of Theorem 1.1, assuming Jannsen’s conjecture, as
follows. Let Lt be the maximal Artin–Tate subspace of the graded Lie algebra
⊕gri (Lie(Ui (Res(X)))), i.e. the maximal subrepresentation each of whose summands
becomes a Tate twist after a finite extension. By Lemma 6.5, this is infinite dimen-
sional, and contains a free Lie algebra. Since gr•(Un(Z/Res(X))) is Galois stable
over a finite extension ofQ, andUn(Z/Res(X)) surjects onto a factor ofUn(Res(X)),
the intersection of gr•(Un(Z/Res(X)) with Lt is infinite-dimensional and contains
a free Lie algebra. Hence the dimension of the image of ⊕griUi (Z/Res(X)) ∩ Lt

in Lt/(Lt )c=−1 is infinite dimensional, and hence by Lemma 5.6, together with (39),
X(K ⊗ Qp)n is finite.

6.3 Proof of Theorem 1.1, case (3)

We follow the argument in [37]. Recall E/K is an elliptic curve with complex multi-
plication and X = E − O . LetUn denote the maximal metabelian quotient ofUn(X).
By Lemma 5.7, lim←−[Un,Un] is a free module of rank one over the completed symmet-
ric algebra of V := VpE . The Tate module has a decomposition TpE � Tπ E ⊕ Tπ E
over L where L|K is the field over which the CM is defined. Let a and b be generators
of Lie(Un) whose images in V generate Vπ E := Qp ⊗ Tπ E and Vπ E := Qp ⊗ Tπ E
respectively. ThenLie(Un)has aQp basisa, b and ad(a)iad(b) j [a, b] for i+ j ≤ n−2.
Let L≥i,≥ j denote the subspace generated by ad(a)kad(b)l [a, b] for k ≥ i, l ≥ j . Then
L≥i,≥ j is a Lie ideal, and L≥i,≥ j + L≥ j,≥i is a Gal(K |K )-stable Lie ideal. Let Ln

denote the quotient of Lie(Un) by L≥1,≥1. We have isomorphisms

gri Ln � (IndKL (Vπ (E)⊗(n−3)))(1)

for all 3 ≤ i ≤ n.
By Lemma 5.1 we may enlarge the field K and hence we may assume that K |Q

is Galois, and that all isogenies between Eσ,K for different embeddings σ are in fact
defined over K . Hence, if H < Gal(K |Q) is the subgroup generated by all σ such
that E is isogenous (over K or equivalently K ) to Eσ , then V descends to a Galois
representation V0 of K0 := K H .
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Let L(V ) be the associated graded Lie algebra of lim←− Ln . Equivalently, we may
define L(V ) to be the free metabelian Lie algebra on V modulo the ideal generated
by Qp(2). We may similarly define L(V0). Recall that we have an isomorphism of
representations of Gal(Qp|Qp)

ResQ
Qp

IndQ
K0

L(V0) � ⊕w|p ResK0
K0,w

L(V0).

and that in this way we think of H1
f (GK0,w , grnL(V0)) as a direct summand of

H1
f (GQp , Ind

Q
K0

grnL(V0)).

Lemma 6.6 For any infinite set S of positive integers, there is a prime w of K0 lying
above p with the following property. For a positive proportion of n inS, the intersection
of locp H1

f (GQ, IndQ
K0

grn(L(V0))) with H1
f (GK0,w, grn(L(V0))) has dimension at

most one.

Proof Since E has potentially good reduction at all primes, for all v in S there is a
finite Galois extension Lw|Kv such that the action of GLw on Vp(E) is unramified of
weight −1. Hence for all i > 2, and any GKv -stable quotient W of gri (U ), arguing
as in Lemma 6.2, we have H1(GLw ,W ) = 0. By the Hochschild–Serre spectral
sequence, and the fact that H1(Gal(Lw|Kv),W ′) = 0 for all representations W ′ (or
that H0(GLw ,W ) = 0), we deduce that H1(GK0,w ,W ) = 0 for all i > 2. Hence for
all i > 2, we have

H1
f (GK0,T , gri Li ) = H1

f ,S(GK0,T , gri Li ).

It will be enough to prove that for all but finitely many i , h1(GK0,T , gri L(V0)) =
[K0 : Q]. ByLemma 6.1, it will hence be enough to prove that h2(GK0,T , gri L(V0)) =
0, or equivalently that h1f (GK0,T , gri L(V0)∗(1)) = 0. It will hence be enough to prove
that

H1(GL,T , Vπ (E)⊗n) → ⊕v∈T H1(GLv , Vπ (E)⊗n)

is injective for all but finitely n (and similarly for Vπ (E).
Let X∞ denote the Galois group of the maximal unramified Zp-extension L∞ of

L , where  = Zp[[Gal(L∞|L)]]. From the Hochschild–Serre spectral sequence we
have an exact sequence

H1(Gal(L∞|L), Vπ (E)⊗i ) → H1(GL,T , Vπ (E)⊗i ) → Hom(X∞, Vπ (E)⊗i ),

using the isomorphism Hom(X∞, Vπ (E)⊗i ) � H0(Gal(L∞|L), H1(Gal(Q|L∞),

Vπ (E)⊗i )). Since H1(Gal(L∞|L), Vπ (E)⊗i ) = 0 for all i 
= 0, it is enough to bound
the dimension of Hom(X∞, Vπ (E)⊗i ). By Iwasawa’s theorem [33, Theorem 5], X∞
is a torsion -module, hence Hom(X∞, Vπ (E)⊗i ) = 0 for all but finitely many i ,
and similarly for Vπ (E). ��
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Now we take S to be 2 + e · Z>0, where e := #μ(F), F := End(EQ) ⊗ Q

and μ(F) is its group of roots of unity. Let w be a prime as in Lemma 6.6 for
the set S. Let Z ⊂ (ResK |Q E)Qp be an irreducible subvariety dominating a fac-

tor above w. We will henceforth identify IndQ
K L(V0) with the associated graded

Lie algebra of the corresponding quotient of lim←−Un(Res(X)). Let Li (Z/Res(X))

denote the image of the Qp-nilpotent Lie algebra of ZQp
in IndQ

K Li . To complete the
proof of case (3) of Theorem 1.1, we need to show that, for infinitely many i > 0,
H1

f (GQp , gri (Li (Z/Res(X)))) is not contained in locp H1
f (GQ,S, Ind

Q
K gri (Li )).

Since there are no isogenies between EK ,v1
and EK ,v2

if v1 lies above w and v2

does not, the image of Vp Alb(Z) in Vp(Res(J )) � IndQ
K VpE is a direct sum of the

image in ⊕v|wVpEv and the image in ⊕v�wVpEw. It follows that Un(Z/Res(X)) is

a direct product of its image in
∏

v|w Un(Xv) and its image in
∏

v�w Un(Xv). Hence,

to show that for infinitely many i , H1
f (GQp , gri (Ui (Z/Res(X)))) is not contained

in locp H1
f ,S(GQ,S, Ind

Q
K gri (Ui (X))), it will be enough to show that for infinitely

many i , the image of H1
f (GQp , gri (Ui (Z/Res(X)))) in ⊕v|wH1

f (GKv , gri (Ui )) is

not contained in Mi := locp H1
f (GQ,S, Ind

Q
K gri (Ui )) ∩ ⊕v|wH1

f (GKv , gri (Ui )).

Via the isomorphismV � ResK0
K V0,wehave anH -actiononH1

f (GQ, IndQ
K gri (Ui )),

compatible with the H -action on ⊕v|wH1
f (GKv , gri (Ui )). In particular, Mi is an

H -submodule of ⊕v|wH1
f (GKv , gri (Ui )). Hence we deduce that it is enough to

show that for infinitely many i , the H -module Ni generated by the image of
H1

f (GQp , gri (Ui (Z/Res(X)))) in ⊕v|wH1
f (GKv , gri (Ui )) is not contained in Mi . In

fact, we show that NH
i is not contained MH

i . Note that MH
i is equal to the intersection

of locp H1
f (GQ, gri (L(V0))) with H1(GK0,w , gri (L(V0))).

Note that, via the isomorphism ⊕v|wH1
f (GKv , gri (Li )) � Qp[H ] ⊗

H1
f (GK0,w , gri (Li )), the subspace MH

i can be identified with the image of

H1
f (GQp , gri (Li (Z/

∏
v|w Xv))) in H1

f (GK0,w , gri (Li ))with respect to the normmap

Nm : Qp[H ] ⊗ H1
f (GK0,w , gri (Li )) → H1

f (GK0,w , gri (Li ))

induced by the co-unit map Qp[H ] → Qp.

Proposition 6.1 Let Z ⊂ (ResK |Q E)Qp be an irreducible subvariety. Suppose Z

dominates a factor above w. Let W ⊂ IndK0
K V0 denote the image of Vp Alb(Z).

Let L(W ) ⊂ IndK0
K L(V0) denote the sub-Lie algebra of L(V ) generated by W.

Then for infinitely many i > 0, the norm map, restricted to gri (L(W )), surjects
onto gri (L(V0))w.

Proof In fact we will show this for a positive proportion of i > 0. By embedding Qp

into C, we can descend W to a sub-Q-vector space WQ of H1(ResK |Q(E)C, Q). It
follows that WQ is an F := End(EQ) ⊗ Q-subspace, hence we may assume it is of
the form (λ1, . . . , λm) · H1(EC, Q) for some λi ∈ F not all zero. Fix an embedding
of F into Qp. Then, choosing a basis e, e of V0 such F acts on e by the embedding
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and on e by its conjugate, it follows that the i th graded piece of L(W ) is spanned by
elements of the form

(λi−1
j λ j · ei−2[e, e])mj=1.

We see that it will be enough to prove that for a positive proportion of i ≥ 0,

∑

j

λei+1
j λ j 
= 0 (40)

(technically, this just shows that the norm is nonzero, but conjugating (40) shows that
the map is surjective).

Without loss of generality, we may assume all the λi are nonzero. Re-ordering, we
may assume that λe1, . . . , λ

e
k are pairwise distinct and λei ∈ {λe1, . . . , λek} for all i . If

k = 1, then it is enough to prove that

∑
λ jλ j 
= 0,

which follows from the fact that λ jλ j > 0. If k = 2, then by the same argument as
for k = 1, (40) can be rewritten as

2∑

j=1

a jλ
ei
j 
= 0.

for some rational constants ai > 0. Since λe1 
= λe2, we have that λie1 
= λie2 for all
i > 0, since distinct eth powers in F× cannot differ by a root of unity. Hence (40)
holds for all but at most one i .

Now suppose k ≥ 3. By Szemerédi’s theorem [53], it will be enough to prove that
the set of i such that (40) does not hold does not contain an arithmetic progression of
length k. Let i1, . . . , ik be an arithmetic progression in eZ>0. Let d = i2 − i1. Then
to prove that (40) holds for at least one of the i j , it is enough to prove that for any
positive constants ai in Q, we have

k∑

j=1

a jλ
i1
j v j 
= 0

where v j ∈ Fk is the vector (1, λdej , . . . , λ
de(k−1)
j ). Taking determinants, this follows

from the fact that λedi 
= λedj for i 
= j between 1 and k. ��
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6.4 Proof of Theorem 1.1, case (4)

As in [13] and [19], the key estimate in the proof of case (4) of Theorem 1.1 is the
following theorem of Coates and Kim, coming from Greenberg’s generalisation of
Iwasawa’s theorem to the case of Zd

p extensions ([23, Theorem 1]).

Theorem 6.2 (Coates, Kim [13, Theorem 0.1]) Let Y/L be a curve of genus g whose
Jacobian has complex multiplication. Let Un(Y ) be the maximal metabelian quotient
of Un(Y ). Then, for any finite extension L ′|L, we have

n∑

j=1

h2(GL ′,T , gri (Un(Y ))) ≤ Bn2g−1,

for some constant B depending on L ′ and Y .

As in case (3), by Lemma 5.1 we may enlarge K if necessary to assume that K |Q
is Galois and that all isogenies between Jσ,C for different embeddings σ are in fact
defined over K . Hence, if V := Vp J and H < Gal(K |Q) is the subgroup generated
by all σ such that Jac(X) is isogenous (over K or equivalently K ) to Jac(Xσ ), then V
descends to a Galois representation V0 of K0 := K H .

Let F := End(JK ) ⊗ Q be the CM field by which J has complex multiplication.
Let e := #μ(F ′), where F ′ is the Galois closure of F . Over a finite extension of Q,
V0 decomposes as a direct sum of characters χi for 1 ≤ i ≤ 2 g. Over K0, the Galois
action permutes the χi . In particular, if S ⊂ {1, . . . , 2g}n is stable under the action of
S2g , then the subspace

⊕(i j )∈S ⊗ χi j

of V⊗n
0 is stable under the action of GK . Let L denote the free metabelian Lie algebra

generated byV0. Forn divisible by e, letV0[n] ⊂ grn(L)denote the subspace generated
by the image of

∏2 g
i=1 Sym

ai (χi ) ⊗ χ j ⊗ χk in L under the nested commutator map,
where ai are such that ai is in e · Z≥0 if i 
= j, k, and ai + 1 ∈ e · Z>0 otherwise.

Lemma 6.7 There is a positive constant c0 < 1 with the following property: there is
a prime w of K0 lying above p such that, for a positive proportion of n dividing e, the
intersection of locp H1

f (GQ, IndQ
K0

V0[n]) with H1
f (GK0,w , V0[n]) is at most c0 times

the dimension of H1
f (GK0,w , V0[n]).

Proof It will be enough to show that the dimension of locp H1
f (GQ, IndQ

K0
V0[n]) is

at most c0 < 1 times that of

H1
f (GQp , Ind

Q
K0

V0[n]) = ⊕w|pH1
f (GK0,w , V0[n]).

ByLemma6.1 andTheorem6.2 is enough to show that
dim(IndQ

K0
V0[n])c=1

dim(IndQ
K0

V0[n]) is bounded

below by a constant > 0 for n sufficiently large. If K0 contains one complex place,
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then it follows that the dimension is at least [K0 : Q]−1 · dim V0[n]. Hence suppose
K0 is totally real. Complex conjugation defines an involution of V0 which nontrivially
permutes the vector subspaces χi . Hence V1 := ⊕iχ

⊗e
i ⊂ Syme V0 is stable under

conjugation and the minus eigenspace of V1 is nontrivial. Via the action of Sym• V0
on [L, L], the module ⊕e|nV0[n] is a module under Sym• V1, and by Lemma 5.7, for
any nonzero element x of Sym• V1, the kernel of the action of x on ⊕e|nV0[n] is zero.
Choosing a nonzero element of V1 in the minus eigenspace with respect to complex
conjugation, we get an injection

V0[n]c=−1 ↪→ V0[n + e]c=1.

Since dim V0[n]/V0[n + e] is bounded by a nonzero constant, we see that V0[n]c=1 is
a positive proportion of V0[n]. ��

For a prime v of K , let Lv denote the free metabelian Lie algebra generated by
Vv := Vp Jac(Xv), and Lv the associated graded of the Lie algebra of the metabelian
quotient of the Qp-unipotent fundamental group of Xv,Qp

. Then, by Lemma 5.7, we
have an isomorphism of GQp -representations

Lv � Lv/Sym
•(Vv)(1). (41)

Let w be a prime of K0. The action of GK0 on ⊕v|wVv induces an action on ⊕v|wLv ,
giving an isomorphism

IndK0
K L � ⊕v|wLv. (42)

For each v, we have a decomposition of Vv as⊕2 g
i=1χi,v , such that the isomorphisms

Vv � Res V0 restrict to isomorphisms between Resχi,v and Resχi (where the latter
restrictions are to a suitably large finite extension of K0). In the same way as for V0,
we can define subspaces Vv[n] of grn(Lv) for n divisible by e.

Note that we do not assume that the isogenies between Jac(Xv) for different v

above w respect polarisations, and hence we cannot automatically use (41) and (42)
to identify ⊕Lv with the induction of a quotient Lie algebra of L . However, since
we restrict attention to the spaces Vv[n] and V0[n], we can ignore this subtlety by the
following lemma.

Lemma 6.8 The surjection Lv → Lv restricts to an injection on ⊕e|nVv[n].
Proof Let x be an element of Vv[n] ∩ Ker(Lv → Lv). Then there is an element f of
Symn−2(Vv) such that x = f · t , where t ∈ ∧2Vv is a generator of Ker(Lv → Lv).
Lemma 5.7 implies that x is uniquely determined by its Fox differentials. Let zi be
a generator of χi,v . We may order the characters χi,v so that t is a one-dimensional
subspace of ⊕g

i=1χi,v ⊗ χg+i,v surjecting onto χi,v ⊗ χg+i,v for all i , hence the Fox
differential of x with respect to zi is given by αi · f · zg+i (when i ≤ g) or αi · x · zi−g

(when i > g) for some nonzero αi ∈ Qp. Since the Fox differential with respect to zi
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of an element of Vv[n] must necessarily be in

⊕
(ai )∈e·Z2g

≥0
Symai−1(χi ) ⊗ (⊗ j 
=i Sym

a j (χ j )),

we see that the congruence conditions force x to be an element of

⊕
(ai )∈e·Z2g

≥0
Symai−1(χi ) ⊗ Symai+g−1(χi )(⊗ j 
=i,g+i Sym

a j (χ j ))

for all 1 ≤ i ≤ g. It follows that x must equal zero. ��
Let Z ⊂ Res(X)Qp be an irreducible subvariety which dominates a factor of Res(X)

at a prime lying above w. Let W ⊂ IndK0
K (V ) denote the image of Vp Alb(Z) in

Vp Res J . Let L(W ) denote the sub-Lie algebra of L generated by W . For n divisible
by e, let W [n] denote the intersection of grn(L(W )) with ⊕v|pVv[n].

By Lemma 6.8 and Theorem 6.2, to complete the proof of case (4) of Theorem 1.1,
it will be enough to show that

∑

i≤n:e|i
dim(H1

f (GQp ,W [i])/ locp H1
f (GQ, IndQ

K V [i]) ∩ H1
f (GQp ,W [i])) � n2g

(i.e. that it is bounded below by a nonzero constant times n2g). Since

lim
n→∞ dim V0[n]/ dim grnL(V0) > 0,

it is enough to show that this sum of dimensions makes up a positive proportion of∑
i≤n:e|i dim V0[i].
As in the proof of case (3), we reduce to estimating the size of the image of

H1
f (GQp ,W [i]) in ⊕v|wH1

f (GKv ,W [i]) modulo Mi , where

Mi := locp H
1
f (GQ, IndQ

K V [i]) ∩ ⊕v|wH1
f (GKv ,W [i]).

The dimension of this image is at least 1
#H dim Ni/Mi , where Ni is the H -module

generated by the image of H1
f (GQp ,W [i]) in ⊕v|wH1

f (GKv , V0[i]).
We use this to reduce to comparing the subspaces MH

i and NH
i of IndQ

K0
V0[i] �∏

v|w Vv[i]. As in case (3), we have an isomorphism

MH
i � locp H

1
f (GQ,S, Ind

Q
K0

V0[n]) ∩ H1
f (GK0,w , V0[n]) ⊂ H1(GQp , Ind

Q
K0

V0[n]).

Hence, byLemma6.7,weknow that for i sufficiently large, dim MH
i /h1f (GK0,w , V0[i])

is bounded above by a constant strictly less than 1. Hence it will be enough to prove
that dim NH

i /h1f (GK0,w , V0[i]) tends to 1. Since dim F0(gri (Ui )) = O(i g), we have

that dim F0W [i] and dim V0[i] are both O(i g). Hence, by the p-adic comparison
theorem, it is enough to prove that dim Ñ H

i / dim V0[i] tends to 1, where Ñi is the
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H -module generated by the image of W [i] in V0[i] with respect to the composite of
the projection to ⊕v|wVv[i] with the norm map

Nm : ⊕v|wVv[i] � Qp[H ] ⊗ V0[i] → V0[i].

Hence to complete the proof of case (4) of Theorem 1.1, it is enough to prove the
following lemma regarding the image of W [n] under the composite of the projection
to ⊕v|wVv[n] and the norm map above.

Lemma 6.9 Let NmW [n] ⊂ V0[n] denote the image of W [n] with respect to the norm
map. Then

dimNmW [n]/ dim V0[n] → 1

as n ∈ e · Z>0 tends to infinity.

Our proof of Lemma 6.9 is rather elaborate. We first need the following result.

Lemma 6.10 Let x1, . . . , xn be nonzero elements of a field F such that for all m > 0
and all i 
= j , xmi 
= xmj . Let y1, . . . , yn be nonzero elements of F. Then, as m tends

to infinity, the proportion of i in {0, . . . ,m} such that
∑

j y j x
i
j 
= 0 tends to one

uniformly in m. More precisely, for any ε > 0, there is an mε independent of xi and
yi such that, for all m > mε ,

∑n
j=1 y j x

i
j 
= 0 for at least (1 − ε)m elements of

{1, . . . ,m}.
Proof If n ≤ 2 the result is clear, so assume n > 2. Let Sm ⊂ {0, . . . ,m} be the
set of i such that

∑
j y j x

i
j = 0. By Szemerédi’s theorem, it will be enough to show

that Sm does not contain any arithmetic progression of length n. Let {i1, . . . , in} ⊂
{1, . . . ,m} be an arithmetic progression in {1, . . . ,m}. Let d := i2 − i1. Let S0 ⊂ S
Then, since the xdi are pairwise distinct by hypothesis, the Vandermonde determinant

det(xd·( j−1)
i )1≤i, j≤n is nonzero.Hence the vectors (x

i1
j , . . . , xinj ) ∈ Fn , for 1 ≤ j ≤ n,

are linearly independent. It follows that there is a k such that

∑

j

y j x
ik
j 
= 0.

��
Now let F := End0(Jac(X)K )⊗Q be theCMfield associated to X , and let σ1, . . . , σ2g
be the embeddings of F into Q.

Lemma 6.11 Let λ1, . . . , λm be m elements of F which are not all zero, and are all
eth powers. Let S(n) := {(a1, . . . , a2 g) ∈ e · Z

2 g
≥0 : ∑

a j = n}. Then, as n ∈ e · Z>0
tends to infinity, the proportion of (ai ) in S(n) such that

F(a1, . . . , a2g) :=
m∑

i=1

2g∏

j=1

σ j (λi )
a j

is nonzero tends to 1.

123



Unlikely intersections and the Chabauty–Kimmethod... 59

Proof Firstly, clearly we can remove all λi equal to zero, hence we may assume that
all λi are nonzero. We may also rescale so that λ1 = 1.

We filter the set {1, . . . ,m} by subsets as follows. For 1 ≤ i ≤ 2g, define Ti to be
the set of j in {1, . . . ,m} such that σk(λ j ) = σ1(λ j ) for all 1 ≤ k ≤ i . We prove, by
descending induction on i , that for all i ≤ m, as N tends to infinity the proportion of
(a j ) in S(n) such that

Fi (a1, . . . , a2g) :=
∑

k∈Ti

2g∏

j=1

σ j (λk)
a j

is nonzero tends to 1. In the case where i = 2g, we see that all the λk for k in T2 g are
in fact in Q. Since all the ai are even and all λi are nonzero, each summand is strictly
positive (also, since λ1 = 1, T2 g is nonempty).

Now fix a k between 2 and 2 g, and suppose that the proportion of (ai ) such that
Fk(a1, . . . , a2 g) is nonzero tends to 1 for (ai ) all divisible by e. If Tk = Tk−1 there
is nothing to prove in the next inductive step, so assume that there is a j in Tk−1
such that σ1(λ j ) 
= σk(λ j ). Let (b1, . . . , b2 g) be a tuple such that Fk(b1, . . . , b2g)

is nonzero. Let R(b1, . . . , b2 g) be the set of tuples (ai ) ∈ e · Z
2 g
≥0 such that ai = bi

for i /∈ 1, k − 1, and a1 + ak−1 = b1 + bk−1. Let μ1, . . . , μ� be the set of (distinct)
possible values of σk(λ

e
j )/σ1(λ

e
j ) for j in Tk−1, such that μ1 = 1. Then there are

constants c1, . . . , c� such that, for any (ai ) in R(b1, . . . , b2g), we can write

Fk−1(a1, . . . , a2g) =
�∑

i=1

ci · μ
(a1−b1)/e
i .

In particular, c1 = Fk(b1, . . . , b2g) 
= 0, and hence the constants ci are not all zero.
Since the μi are all eth powers, for all i > 0 and j1 
= j2, μi

j1

= μi

j2
. Hence the

proportion of (ai ) in R(b1, . . . , b2 g) such that Fk−1(a1, . . . , a2 g) is nonzero tends to
1 uniformly in b1 + bk−1, by Lemma 6.10. Since, for any n0, the proportion of (bi ) in
S(n) such that b1 + bk−1 ≤ n0 tends to zero, we deduce that the proportion of (ai ) in
S(n) such that Fk−1(a1, . . . , a2 g) is nonzero tends to 1 as required. ��
Proof of Lemma 6.9 By embedding Qp into C and viewing Z as a complex subvariety,
we can descend the subspace W of ⊕v|wVv to a subspace WQ of

∏
H1(Xv,C, Q).

Then we may assume W is a subspace of Vm
0 of the form (λ1, . . . , λm) · V0, for some

λi in F ⊂ End(V0). The action of λ ∈ F on χi is given by σi (λ) (after re-ordering the
σi if necessary). Hence NmW [n] consists of elements of the form

m∑

i=1

σk(λi )σ�(λi )

⎛

⎝
2g∏

j=1

σ j (λi )
a j

⎞

⎠

⎛

⎝
2g∏

j=1

e
a j
j

⎞

⎠ [ek, e�] (43)

for ai ∈ S(n), where ei is a generator of χi . Hence, to show that the kernel of the
inducedmap V0[n] → V0[n] has dimension o(dim V0[n]), it is enough to show that the
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proportion of ai in S(n) such that (43) is zero is o(1), which follows fromLemma 6.11.
��
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