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Abstract
Let H and F be two Hénon maps with biholomorphically equivalent escaping sets,
then there exist affine automorphisms A1 and A2 in C2 such that

F = A1 ◦ H ◦ A2

in C2.

Mathematics Subject Classification Primary 32H02; Secondary 32H50

1 Introduction

In the complex plane the simplest examples of holomorphic dynamical systems with
non-trivial dynamical behaviour are the polynomial maps of degree greater than or
equal to 2. The linear polynomials, in other words, the automorphisms of the complex
plane, generate trivial dynamics. In contrast, the class of polynomial automorphisms
of C2 is large and possesses rich dynamical features. A dynamical classification of
these maps was given by Friedland–Milnor [7]. They showed that any polynomial
automorphism of C2 is conjugate to one of the following maps:

• an affine map;
• an elementary map, i.e., the maps of the form (x, y) �→ (ax +b, sy+ p(x)) with

as �= 0, where p is a polynomial in single variable of degree strictly greater than one;
• a finite composition of Hénon maps, where Hénon maps are the maps of the form

(x, y) �→ (y, p(y) − δx) (1.1)
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with δ �= 0 and p a polynomial in single variable of degree d ≥ 2.
The degree of a single Hénon map H of the form (1.1) is defined to be the degree of

the polynomial p. The degree of composition of Hénon maps Hn ◦ · · · ◦ H1 is defined
to be dn · · · d1 where di = deg(Hi ), for 1 ≤ i ≤ n.

Hénon maps are generalization of classical real quadratic Hénon maps introduced
by astronomer Michel Hénon. The relevance of these maps in complex dynamics
became apparent in the above-mentioned classification theorem of Friedland–Milnor.
Moreover it turned out that the composition of Hénon maps are the only dynamically
non-trivial polynomial automorphisms in C2, which naturally drew attention of many
foremost researchers towards these maps. The pioneering work on Hénon maps was
done by Bedford–Smillie [1–3], Fornæss–Sibony [8] and Hubbard–Oberste–Vorth [9,
10].

As in the case of polynomials in the complex plane, the orbit of any point in C
2

under the iterations of a Hénonmap H (or more generally, finite composition of Hénon
maps) either diverges to infinity or always remains bounded. The collection of points
I+
H ⊆ C

2 which escape to infinity are called the escaping set of H and the collection
of points K+

H ⊆ C
2 whose orbits remain bounded are called the non-escaping set of

H . The union of escaping set I+
H and the interior of non-escaping set K+

H is the largest
set of normality of the sequence of maps {Hn}n≥1, that is, I

+
H ∪ intK+

H is the Fatou set
of H . The escaping sets and the interiors of non-escaping sets of Hénon maps can be
thought of as analogues of the unbounded components and the bounded components
of Fatou sets of polynomials in the complex plane. However, the non-escaping sets of
Hénon maps are not bounded in C

2. The common boundary set J+
H of the escaping

set I+
H and the non-escaping set K+

H is the Julia set of H .
The present article addresses a rigidity property of Hénon maps of the form (1.1).

To what extent do the escaping sets of Hénon maps determine the Hénon maps? In
other words, if the escaping sets of a pair of Hénon maps H and F of degree d are
biholomorphically equivalent, then are these two Hénon maps closely related?

This question is first studied in a recent work of Bonnot–Radu–Tanase [4], where
they prove that H and F coincide, for d = 2. Further, they produce examples to show
that for d ≥ 3, H and F might not be even conjugate to each other. In this article we
establish a precise relation between H and F of any degree d ≥ 2 with biholomorphic
escaping sets (Theorem 1.2).

The rigidity question raised here is conceived based on an explicit description of
analytic structure of the escaping sets given by Hubbard–Oberste–Vorth in [9]. A
convenient description of the escaping set I+

H of a given Hénon map H is given in
terms of logarithmic rate of escape function, the so-called Green’s function G+

H of the
Hénonmap H . One can show that I+

H is precisely where the Green’s function is strictly
positive. Further,G+

H : I+
H → R+ is a pluri-harmonic submersion and the level sets of

G+
H are three dimensional manifolds, which are naturally foliated by copies ofC. The

Green’s function G+
H is inextricably related to the Böttcher function φ+

H of H , which
is one of the key ingredients in describing the analytic structure of I+

H . The Böttcher
functions of Hénon maps can be considered as analogues of Böttcher functions of
polynomials in C near infinity and they are defined in appropriate neighbourhoods of
a point at infinity [0 : 1 : 0] in P

2. To be a bit more precise, for R > 0 sufficiently
large, φ+

H is defined on the open set V+
R = {

(x, y) ∈ C
2 : |y| > max {|x |, R}} ⊆ I+

H
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bymeans of approaching the point [0 : 1 : 0] by the n-fold iteration Hn , then returning
back by appropriate dn-th root of the mapping y �→ yd

n
and finally taking the limit

as n → ∞. Consequently, the range of φ+
H lies inside C\D̄, where D is the unit disc

in C and G+
H ≡ log

∣∣φ+
H

∣∣ in V+
R . Although the Böttcher function φ+

H does not extend
analytically to I+

H , it extends along curves in I+
H starting in V+

R and defines a multi-
valued analytic map in I+

H . Let Ĩ
+
H be the covering of I+

H obtained as the Riemann
domain of φ+

H and let φ+
H lifts as a single-valued holomorphic function φ̃+

H : Ĩ+
H →

C\D̄. Further, Ĩ+
H is biholomorphically equivalent to the domain {(z, ζ ) : z ∈ C, |ζ | >

1}. By construction ζ = φ̃+
H and thus in this new coordinate the level sets of φ̃+

H simply
straightens out. The Hénon map H lifts as a map H̃ : C× (C\D̄) → C× (C\D̄) and
one can write down H̃ explicitly (see 2.6).

The following result relies on two main ingredients, also used by Bonnot–Radu–
Tanase in [4]: The above-mentioned explicit description of the covering Ĩ+

H of I+
H and

a method given by Bousch in [5].

Theorem 1.1 Let H(x, y) = (y, pH (y)−δH x) and F(x, y) = (y, pF (y)−δF x) be a
pair ofHénonmaps,where pH (y) = yd+∑d−2

i=0 aH
i yi and pF (y) = yd+∑d−2

i=0 aF
i yi .

Let I+
H and I+

F be escaping sets of H and F, respectively and let I+
H and I+

F be
biholomorphically equivalent. Then β pH (y) = α pF (αy), for some α, β ∈ C with
αd+1 = β and βd−1 = 1. Further, we have δH = γ δF , with γ d−1 = 1. Therefore,

F ≡ L ◦ B ◦ H ◦ B, (1.2)

where B(x, y) = (γ αβ−1x, α−1y) and L(x, y) = (γ −1βx, β y), for all (x, y) ∈ C
2.

Now note that pH and pF in Theorem 1.1 are monic and centered (next to highest
coefficients vanish), whereas for an arbitrary Hénon map the associated polynomial
in one variable is not necessarily monic and centered. However, it is not hard to see
that up to conjugation any arbitrary Hénon map is of the form as in Theorem 1.1.
Here goes a brief justification. Up to conjugation by an affine automorphism ofC, any
polynomial in one variable is a monic and centered polynomial of the same degree. In
particular, there exists an affine automorphism σH ofC such that σ−1

H ◦ pH ◦σH = p̂H
in C, where p̂H is monic and centered. Thus if we consider the affine automorphism
AH (x, y) = (σH (x), σH (y)), for (x, y) ∈ C

2, then A−1
H ◦ H ◦ AH = Ĥ , where

Ĥ(x, y) = (y, p̂H (y)− δH x), for all (x, y) ∈ C
2 with deg( p̂H ) = deg(pH ). Clearly,

AH (I+
H ) = I+

Ĥ
. Similarly, there exist an affine map AF and a Hénon map F̂ such that

A−1
F ◦ F ◦ AF = F̂ and AF (I+

F ) = I+
F̂
, where F̂(x, y) = (y, p̂F (y) − δF x), for all

(x, y) ∈ C
2 with p̂F monic and centered. Therefore, once we prove Theorem 1.1, the

following result is obtained immediately.

Theorem 1.2 Let H and F be two Hénon maps with biholomorphically equivalent
escaping sets, then there exist affine automorphisms A1 and A2 in C2 such that

F = A1 ◦ H ◦ A2

in C2.
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2 Preliminaries

Let

H(x, y) = (y, p(y) − δx) (2.1)

be a Hénon map, where p is a monic and centered polynomial in single variable of
degree d ≥ 2 and δ �= 0. In this section, we see a few fundamental definitions and a
couple of known results on Hénon maps pertaining to the theme of the present article.
Filtration: For R > 0, let

V+
R = {(x, y) ∈ C

2 : |x | < |y|, |y| > R},
V−
R = {(x, y) ∈ C

2 : |y| < |x |, |x | > R},
VR = {(x, y) ∈ C

2 : |x |, |y| ≤ R}.

This is called a filtration. For a given Hénon map H , there exists R > 0 sufficiently
large such that

H(V+
R ) ⊂ V+

R , H(V+
R ∪ VR) ⊂ V+

R ∪ VR

and

H−1(V−
R ) ⊂ V−

R , H−1(V−
R ∪ VR) ⊂ V−

R ∪ VR .

Escaping and non-escaping sets: The set

I+
H =

{
(x, y) ∈ C

2 : ‖Hn(x, y)‖ → ∞ as n → ∞
}

is called the escaping set of H and the set

K+
H =

{
(x, y) ∈ C

2 : the sequence
{
Hn(x, y)

}
n≥1 is bounded

}

is called the non-escaping set of H . One can prove that K+
H ⊂ VR ∪ V−

R and

I+
H = C

2\K+
H =

∞⋃

n=0

H−n(V+
R ). (2.2)

Any Hénon map H can be extended meromorphically to P
2 with an isolated indeter-

minacy point [0 : 1 : 0]. In fact, one can prove that the points in I+
H under iteration of

H converges to the point [0 : 1 : 0] uniformly (on compacts).
Green’s function: The Green’s function of H is defined to be

G+
H (x, y) := lim

n→∞
1

dn
log+ ∥∥Hn(x, y)

∥∥ ,
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for all (x, y) ∈ C
2, where log+(t) = max{log t, 0}. It turns out that G+

H is non-
negative everywhere in C

2, plurisubharmonic in C
2, pluriharmonic on C

2\K+
H and

vanishes precisely on K+
H . Further,

G+
H ◦ H = dG+

H

in C2. The Green’s function G+
H has logarithmic growth near infinity, i.e., there exist

R > 0 and L > 0 such that

log+|y| − L ≤ G+
H (x, y) ≤ log+|y| + L,

for (x, y) ∈ V+
R ∪ VR .

Böttcher function: Let Hn(x, y) = ((Hn)1(x, y), (H
n)2(x, y)), for (x, y) ∈ C

2. Note
that yn = (Hn)2(x, y) is a polynomial in x and y of degree dn . The function

φ+
H (x, y) := lim

n→∞ y
1
dn
n = y.

y1
1
d

y
. · · · .

y
1

dn+1

n+1

y
1
dn
n

· · · ,

for (x, y) ∈ V+
R , defines an analytic function from V+

R to C\D̄ and is called the
Böttcher function of the Hénon map H . Further,

φ+
H ◦ H(x, y) = (

φ+
H (x, y)

)d
,

for all (x, y) ∈ V+
R and

φ+
H (x, y) ∼ y as ‖(x, y)‖ → ∞

in V+
R . Comparing the definitions of Green’s function andBöttcher functions it follows

instantly that

G+
H = log|φ+

H |

in V+
R .

For a detailed treatment of the above discussion, the inquisitive readers can see
[1–3, 9, 11].
Now we present one of the technical ingredients required for the proof of Theorem
1.1. A series of change of coordinates we see here is a part of the standard theory of
Hénon maps. However, most of the results presented here are paraphrasing of a couple
of lemmas appearing in the beginning of the appendix of [4]. However the genesis of
these results goes back to [6, 9].

For M > 0 sufficiently large, let

U+
R = {

(x, y) ∈ V+
R : |φ+

H (x, y)| > M max{R, |x |}} .

One can easily check that U+
R ⊆ V+

R and H(U+
R ) ⊆ U+

R .
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Lemma 2.1 [11, Lemma 7.3.7],[6, Prop. 2.2] There exists a holomorphic functionψH

on U+
R such that

• ψH ◦ H(x, y) = (δ/d)ψH (x, y) + Q
(
φ+
H (x, y)

)
, for all (x, y) ∈ U+

R , where Q
is a monic polynomial of degree d + 1;

• the map 
H = (ψH , φ+
H ) : U+

R → C
2 is an injective holomorphic map.

The map (x, y) �→ (x, ζ ) = (x, φ+
H (x, y)) maps U+

R biholomorphically to{
(x, y) ∈ C

2 : |y| > M max{R, |x |}} . Let (x, ζ ) �→ (x, y(x, ζ )) be the inverse map.
It turns out that

ψH (x, y) = ζ

∫ x

0

∂ y

∂ζ
(u, ζ )du,

for (x, y) ∈ U+
R and Q(ζ ) is the polynomial part of the power series expansion of

ζ d
∫ y(0,ζ )

0

∂ y

∂ζ
(u, ζ d)du (2.3)

(see proof of [11, Lemma 7.3.7] for details).
Next we consider the following change of coordinate near p = [0 : 1 : 0]:

T : (x, y(x, ζ )) = (x, y) �→
(
x

y
,
1

y

)
= (t, w).

Note that T 2 = Id and H takes the following form in (t, w)-coordinate:

(t, w) �→ (x, y) �→ (y, p(y) − δx) �→
(

y

p(y) − δx
,

1

p(y) − δx

)

=
(

wd−1

wd p(1/w) − δtwd−1 ,
wd

wd p(1/w) − δtwd−1

)
.

Lemma 2.2 With the above notations, near p = [0 : 1 : 0] we have

1/ζ = w(1 + wα(t, w)), (2.4)

where α(t, w) is a power series in t, w.

Proof Note that

1

ζ
= 1

φ+
H (x, y)

= lim
n→∞

[
1

(Hn(x, y))2

] 1
dn = lim

n→∞
[
(T HnT−1(t, w))2

] 1
dn

.
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Equivalently,

1

ζ
= w.

[(
wd

wd p( 1
w

) − δtwd−1

)

/wd

] 1
d

.

[(
wd
1

wd
1 p(

1
w1

) − δt1w
d−1
1

)

/wd
1

] 1
d2

· · ·

= w.

[
1

wd p( 1
w

) − δtwd−1

] 1
d

.

[
1

wd
1 p(

1
w1

) − δt1w
d−1
1

] 1
d2

· · · = wX(t, w)

(here the dn-th roots, for n ≥ 1, are taken to be the principal branches of roots). One
can check that the above series converges. Further, since

∣∣φ+
H (x, y)/y

∣∣ is bounded in
V+
R , it follows that X(t, w) is also bounded in its domain of definition, which is a

subset of {|t | < 1} × {0 < |w| < 1/R}. Thus X(t, w) has a power series expansion.
Also note that X(t, 0) = 1, for all t . So X(t, w) = 1 + wα(t, w), where α(t, w) is a
power series in t and w. Therefore, finally we obtain (2.4). ��

Next we consider the following change of variables: (t, w) �→ (r , s) = (x/ζ, 1/ζ ),
which is a biholomorphism and is tangent to the identity (see [4, Lemma 4.4]). There-
fore,

t = r + T2(r , s) and w = s + S2(r , s),

where T2 and S2 both are power series with monomials of degree at least 2.

Lemma 2.3 With the above notations, we have

y = ζ (1 + C/ζ +U (x/ζ, 1/ζ )) ,

where C ∈ C and U is a power series in two variables with monomials of degree at
least 2.

Proof By Lemma 2.2, we have 1/ζ = w(1+wα(t, w)). Thus y/ζ = (1+wα(t, w)).
Therefore, by replacing t = r + T2(r , s) and w = s + S2(r , s), we get

y = ζ (1 + (s + S2(r , s))(α(r + T2(r , s), s + S2(r , s))))

= ζ (1 + sβ(r , s) + S2(r , s)β(r , s)) ,

where β(r , s) = α(r + T2(r , s), s + S2(r , s)). Now since (r , s) = (x/ζ, 1/ζ ), we
have

y = ζ (1 + C/ζ +U (x/ζ, 1/ζ )) ,

where C ∈ C is the constant term of the power series expansion of β andU is a power
series in two variables without constant term. ��
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4362 R. Pal

Therefore,

y(x, ζ ) =
(

ζ + C + A0−1

ζ
+ · · ·

)

+ x

(
A1−1

ζm1
+ · · ·

)

+x2
(
A2−1

ζm2
+ · · ·

)

+ · · · + xn
(
An−1

ζmn
+ · · ·

)
+ · · · ,

where m1 = 1, mn = n − 1, for n ≥ 2 and A0−1, A
1−1, A

2−1 and so on are in C.
The following lemma is one of the main takeaways from this section.

Lemma 2.4 With the above notations, we have

y(0, ζ ) = ζ + D1

ζ
+ D2

ζ 2 · · · ,

and

ζ(0, y) = y + L1

y
+ L2

y2
· · · ,

where Di ’s and Li ’s are constants. Further, Q(ζ ) is given by the polynomial part of
ζ d y(0, ζ ) and therefore, Q is centered and monic.

Proof Since p is monic and centered in (2.1), it follows from [9, Prop. 5.2] that

ζ(0, y) = y + L1

y
+ L2

y2
· · · .

Now since y = y(0, ζ(0, y)),

y = y(0, ζ(0, y)) = ζ(0, y) + D0 + D1

ζ(0, y)
+ · · · =

(
y + L1

y
+ L2

y2
+ · · ·

)
+ D0

+D1

(
y + L1

y
+ L2

y2
+ · · ·

)−1

+ · · · .

Thus D0 = 0 and consequently, we have

y(0, ζ ) = ζ + D1

ζ
+ D2

ζ 2 + · · · .

The last assertion follows immediately from (2.3). ��
As we shall see in Section 3 and in Section 4, the particular forms of the power series
representations of y(0, ζ ) and ζ(0, y) as obtained in Lemma 2.4 and the knowledge of
analytic structure of the escaping sets of Hénonmaps are the key players in unravelling
the relation between any pair of Hénon maps with biholomorphic escaping sets.
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Here we give a brief description of analytic structure of Hénon maps. For a detailed
account of analytic structure of escaping sets of Hénon maps the inquisitive readers
can look at [6, 9, 11]. For any Hénon map H , it turns out that the Riemann surface of
the Böttcher functionφ+

H is a covering space of the escaping set I+
H and it is isomorphic

to C × (C\D̄). For a Hénon map H of degree d, the fundamental group of I+
H is

Z [1/d] = {
k/dn : k, n ∈ Z

}

and the coveringC× (C\D̄) of I+
H arises corresponding to the subgroup Z ⊆ Z [1/d].

Therefore, I+
H is a quotient of C× (C\D̄) by some discrete subgroup of the automor-

phisms ofC×(C\D̄) isomorphic toZ [1/d]/Z. For each element
[
k/dn

] ∈ Z[1/d]/Z,
there exists a unique deck transformation γk/dn from C × (C\D̄) to C × (C\D̄) such
that

γk/dn

[
z
ζ

]
=
⎡

⎣z + d
δ

∑n−1
l=0

( d
δ

)l
(
Q(ζ dl ) − Q

((
e
2kπ i
dn ζ )

)dl))

e
2kπ i
dn ζ

⎤

⎦ , (2.5)

for n ≥ 0 and k ≥ 1. Further, H lifts as a holomorphic map

H̃(z, ζ ) =
(
(δ/d)z + Q(ζ ), ζ d

)
(2.6)

from C × (C\D̄) to C × (C\D̄).

3 A brief idea of the proof of themain theorem

In this section we sketch the main idea of the proof of Theorem 1.1.
Let H(x, y) = (y, pH (y)−δH x) and F(x, y) = (y, pF (y)−δF x) be a pair of Hénon
maps of degree d. Thus the fundamental groups of both I+

H and I+
F are Z[1/d]. Let a

be a biholomorphism between I+
H and I+

F . Any biholomorphism between I+
H and I+

F ,
which induces identity as an isomorphism between the fundamental groups of I+

H and
I+
F , can be lifted as a biholomorphism fromC× (C\D̄) toC× (C\D̄). Now since any
group isomorphism ofZ[1/d] is of the form x �→ ±dsx , for some s ∈ Z, the map a up
to pre-composition with some n-fold iterates of F (or F−1), i.e., the map F±n ◦ a, for
some n ∈ N, induces identity map between the fundamental groups of the escaping
sets I+

H and I+
F . Thus, it is harmless to assume that a lifts as a biholomorphism A from

C × (C\D̄) to C × (C\D̄). Therefore, π ◦ A = a ◦ π and consequently, the fiber of
any point p ∈ I+

H of the natural projection map πH : C × (C\D̄) → I+
H maps into

the fiber of the point a(p) ∈ I+
F of the projection map πF : C× (C\D̄) → I+

F by the
biholomorphism A. Fiber of any point of the projection maps πH and πF are captured
by the group of deck transformation ofC× (C\D̄), which is isomorphic to Z[1/d]/Z.
Thus, it turns out that if (z, ζ ) ∈ C×(C\D̄) is in the fiber of any point p ∈ I+

H (or I+
F ),

then any other point in the same fiber will be of the form γk/dn (z, ζ ), for k ≥ 1 and
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n ≥ 0, where γk/dn is the deck transformation corresponding to [k/dn] ∈ Z[1/d]/Z.
An explicit description of this fibers can be written down (see (2.5)). Now adapting an
idea of Bousch ( [5]), one can narrow down the possible forms of A by comparing the
fibers of p anda(p). In fact, in our case, A has a very simple form (u, v) �→ (u+γ, αv),
with |α| = 1 and γ ∈ C. Thus we obtain an explicit expression for the image of the
foliation φ̃+

H = ζ0 under the map A. These foliations come down to the corresponding
escaping sets and induce rigidity on escaping sets. As a consequence, one expects a
close relation between H and F , which is validated in our main theorem.

The above-mentioned idea was employed by Bonnot–Radu–Tanase in [4] in estab-
lishing the relation between H and F with biholomorphic escaping sets when
deg(H) = deg(F) = 2. They attempts to extract the relation between the coeffi-
cients of pH and pF by directly comparing the fibers of p and a(p). Although their
approach works for lower degrees (for d = 2, 3), since precise computations can be
carried out in these cases but as degree increases, to extract the relation between the
coefficients of pH and pF seems very difficult by performing such direct calculations.

We take a different approach towards this problem. For two Hénon maps H and F
with biholomorphic escaping sets,wefirst establish the relation between coefficients of
QH and QF (see Section 3). The explicit relation between QH and QF is used to obtain
a neat relation between the polynomials pH and pF , namely, β pH (y) = α pF (αy),
for all y ∈ C with αd+1 = β and βd−1 = 1 (see Section 4). To establish the relation
between H and F , we are yet to investigate the relation between the Jacobians δH and
δF . It turns out that δH = γ δF , with γ d−1 = 1, thanks to [4]. It is noteworthy that
all our calculations in Section 3 and in Section 4 are performed under the assumption
that δH = δF . In Section 5, we outline how to handle the case when δH and δF are
different.

4 Relation betweenQH andQF

Let H and F be two Hénon maps as in Theorem 1.1 with bihholomorphic escaping
sets I+

H and I+
F , respectively. As indicated in the Introduction, for now we assume

δH = δF = δ. Later (in Section 6), we handle the case when δH �= δF .
Lifting biholomorphisms between escaping sets: Recall from Section 2 that the funda-
mental group of escaping set of any Hénon map of degree d is Z[1/d] andC× (C\D̄)

is the covering of the escaping set corresponding to the subgroup Z ⊆ Z[1/d]. Let
πH : C × (C\D̄) → I+

H and πF : C × (C\D̄) → I+
F be the covering maps. Now

note that a biholomorphism a from I+
H to I+

F can be lifted as an automorphism A of
C × (C\D̄) if and only if the induced group isomorphism

π1(a) : Z [1/d] → Z [1/d]

is±Id (identity maps). It is easy to see that any group isomorphism of Z[1/d] is of the
form x �→ ±dsx , for some s ∈ Z. Thus, there exists n ∈ N such that F±n ◦ a induces
identity onZ[1/d] and thus lifts as an automorphism ofC×(C\D̄). Therefore, without
loss of generality, we assume that a lifts as an automorphism A of C × (

C\D̄).
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C × (
C\D̄) C × (

C\D̄)

I+
H I+

F

A

πH πF

a

It follows from (2.5) that for H there exists a polynomial QH of degree d + 1 such
that for each element

[
k/dn

] ∈ Z[1/d]/Z, with n ≥ 0 and k ≥ 1, there exists a unique
deck transformation γk/dn from C × (C\D̄) to C × (C\D̄) of the form

γk/dn

[
z
ζ

]
=
⎡

⎣z + d
δ

∑n−1
l=0

( d
δ

)l
(
QH (ζ dl ) − QH

((
e
2kπ i
dn ζ )

)dl))

e
2kπ i
dn ζ

⎤

⎦ . (4.1)

The same holds for the Hénon map F . Thus if p̃ = (z, ζ ) ∈ C × (
C\D̄) lies in the

π−1
H (p) for some p ∈ I+

H , then

π−1
H (p) = {γk/dn (z, ζ ) : n ≥ 0, k ≥ 1}.

Form of lifts: First note that any automorphism A of C × (C\D̄) is of the form:

A(z, ζ ) = (A1(z, ζ ), A2(z, ζ )) = (β(ζ )z + γ (ζ ), αζ ), (4.2)

where |α| = 1 and β, γ are holomorphic maps from C\D̄ to C
∗ and C, respectively

(see [5, Section 3]).
Note that since a ◦ πH = πF ◦ A, if (z, ζ ), (z′, ζ ′) ∈ π−1

H (p), for some p ∈ I+
H ,

then A(z, ζ ), A(z′, ζ ′) ∈ π−1
F (a(p)). Now let (z, ζ ) and (z′, ζ ′) be in the same fiber

of πH , then using (4.1), we have

(ζ ′/ζ )
dn = 1

and

z′ = z + d

δ

n−1∑

l=0

(
d

δ

)l (
QH (ζ dl ) − QH

((
e
2kπ i
dn ζ )

)dl))
,

for some n ∈ N. Therefore the difference between the first coordinates of A, i.e.,

A1(z
′, ζ ′) − A1(z, ζ ) = (

β(ζ ′) − β(ζ )
)
u

+ β(ζ ′)d
δ

n−1∑

l=0

(
d

δ

)l (
QH (ζ dl ) − QH

((
e
2kπ i
dn ζ )

)dl))

+ (
γ (ζ ′) − γ (ζ )

)
. (4.3)
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Now since A(z, ζ ) and A(z′, ζ ′) are in the same fiber of πF , the difference A1(z, ζ )−
A1(z′, ζ ′) is a function of αζ and αζ ′. Thus it follows from (4.3) that β(ζ ) = β(ζ ′),
i.e.,

β(ζ ) = β
(
ζ.e

2π ik
dn
)

,

for all k ≥ 1 and for all n ≥ 0. Therefore, β(ζ ) ≡ β in C. Thus it follows form (4.3)
that

A1(z
′, ζ ′) − A1(z, ζ ) = H (ζ, ζ ′) + γ (ζ ′) − γ (ζ ), (4.4)

where

H (ζ, ζ ′) = β
d

δ

n−1∑

l=0

(
d

δ

)l (
QH (ζ dl ) − QH

((
e2kπ i/d

n
ζ )
)dl))

.

On the other hand since A(z, ζ ) and A(z′, ζ ′) are in the same fiber of πF ,

A1(z
′, ζ ′) − A1(z, ζ ) = F (αζ, αζ ′)

= d

δ

n−1∑

l=0

(
d

δ

)l (
QF (αdl ζ dl ) − QF

((
e
2kπ i
dn αζ)

)dl))
.

(4.5)

Sinceγ is a holomorphic function onC\D̄, comparing (4.4) and (4.5), it follows that for
a fixed ζ ∈ C\D̄, the modulus of the difference between H (ζ, ζ ′) and F (αζ, αζ ′)
is uniformly bounded for all v′ = e2kπ i/d

n
ζ with n ≥ 0 and k ≥ 1. Note that for

ζ ′ = e2kπ i/d
n
ζ , the difference H (ζ, ζ ′) − F (αζ, αζ ′) is a polynomial of degree

(d + 1)dn−1 and it can be written as

β

n−1∑

l=0

(
d

δ

)l (
QH

(
ζ dl
)

− QH

((
e
2kπ i
dn ζ

)dl))

−
n−1∑

l=0

(
d

δ

)l (
QF

(
αdl ζ dl

)
− QF

((
e
2kπ i
dn αζ

)dl))

=
n−1∑

l=0

(
d

δ

)l [
βQH

(
ζ dl
)

− QF

(
αdl ζ dl

)]

−
n−1∑

l=0

(
d

δ

)l [
βQH

((
e
2kπ i
dn ζ

)dl)− QF

((
e
2kπ i
dn αζ

)dl)]

= dn−1

δn−1

[
βζ dn−1(d+1) − (αζ )d

n−1(d+1) − β
(
e
2π i
dn ζ

)dn−1(d+1) +
(
αζe

2π i
dn
)dn−1(d+1)

]

+ R(ζ ) =
(
d

δ

)n−1 (
β − αdn−1(d+1)

) (
1 − e

2π i
d

)
ζ dn−1(d+1)

[
1 + R̃(ζ )

]
,
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where R(ζ ) = O
(
ζ dn
)
and

R̃(ζ ) = R(ζ )(d/δ)−n+1
(
β − αdn−1(d+1)

)−1(
1 − e

2π i
d

)−1
ζ−dn−1(d+1).

We claim that αdn−1(d+1) → β, as n → ∞. If not, then there exists a subsequence
{nl}l≥1 such that

∣∣∣αdnl−1(d+1) − β

∣∣∣ > c > 0, (4.6)

for all l ≥ 1. Thus, if |d/δ| ≥ 1, then (note that R is a polynomial of degree at most
dn)

|R̃(ζ )| ≤ 4nK1

|ζ |dn−1 ,

for some K1 > 1. On the other hand, if |d/δ| < 1, then

|R̃(ζ )| ≤ 4nK2

|ζ |dn−1

(
δ

d

)n−1

,

for some K2 > 1. Therefore, since themodulus ofH

(
ζ, e

2π i
dn ζ

)
−F

(
αζ, αe

2π i
dn ζ

)

is uniformly bounded, for all n ≥ 1, we get a contradiction if (4.6) holds. Thus

αdn(d+1) → β, (4.7)

as n → ∞. Also,

αdn+1(d+1) → β (4.8)

as n → ∞ and thus dividing (4.8) by (4.7) and taking the limit, we get

α(d+1)(d−1)dn → 1, (4.9)

as n → ∞. Therefore, we get

βd−1 = 1.

On the other hand, it follows from (4.7) that
(
αd+1

)dn → β and also note that β is a
repelling fixed point for the map z �→ zd . Therefore, (4.7) holds if and only if

αd+1 = β.
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Thus
(
αdn(d+1) − β

) = 0, for all n ≥ 1, which in turn gives γ (ζ ) = γ
(
e
2kπ i
dn ζ

)
, for

all k ≥ 1 and n ≥ 0. Thus γ ≡ γ0, for some γ0 ∈ C.
Relation between QH and QF : Note that it follows from Lemma 2.4 that next to the
highest degree coefficients of QH and QF vanish. Let

QH (ζ ) = ζ d+1 + AH
d−1ζ

d−1 + AH
d−2ζ

d−2 + · · · + AH
1 ζ + AH

0 (4.10)

and

QF (ζ ) = ζ d+1 + AF
d−1ζ

d−1 + AF
d−2ζ

d−2 + · · · + AF
1 ζ + AF

0 . (4.11)

Since γ is identically constant in the complex plane, taking k, n = 1, it follows from
(4.4) and (4.5) that

β
d

δ

[
QH (ζ ) − QH

(
e
2π i
d ζ
)]

= H (ζ, ζ ′) = F (αζ, αζ ′)

= d

δ

[
QF (αζ ) − QF

(
e
2π i
d αζ

)]
. (4.12)

Comparing coefficients of both sides of (4.12), we get

βAH
d−k = αd−k AF

d−k,

for 1 ≤ k ≤ (d − 1) and since β = αd+1, equivalently we get

AH
d−k = α−(k+1)AF

d−k, (4.13)

for 1 ≤ k ≤ (d − 1). Note that the relation between the constant terms of QH and
QF , i.e., the relation between AH

0 and AF
0 cannot be extracted from (4.12). However,

as we are going to see in the next section that the explicit relation between AH
d−i and

AF
d−i , for 1 ≤ i ≤ (d − 1), obtained in (4.13) is sufficient to track down the relation

between pH and pF .

5 Relation between pH and pF

It follows from Lemma 2.4 that there exist

yH (ζ ) ≡ yH (0, ζ ) = ζ + DH
1

ζ
+ DH

2

ζ 2 + · · · + DH
d−1

ζ d−1 + O

(
1

ζ d

)
(5.1)

and

yF (ζ ) ≡ yF (0, ζ ) = ζ + DF
1

ζ
+ DF

2

ζ 2 + · · · + DF
d−1

ζ d−1 + O

(
1

ζ d

)
, (5.2)
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with DH
i , DF

i ∈ C for i ≥ 1, such that QH (ζ ) and QF (ζ ) are polynomial parts of
ζ d yH (0, ζ ) and ζ d yF (0, ζ ), respectively. Therefore, the precise relation obtained in
(4.13) determines a similar relation between the first few corresponding coefficients
of the power series expansion of yH (ζ ) and yF (ζ ), namely

DH
k = α−(k+1)DF

k , (5.3)

for 1 ≤ k ≤ (d − 1).
Since we assume that the Jacobian determinants of H and F are the same, that

is, δH = δF = δ, understanding the relation between the polynomials pH and pF
is sufficient to capture the relation between H and F . We show in this section that
the relation between the coefficients of pH and pF can be extracted via the Böttcher
coordinates of H and F , namely via the functions ζH and ζF , respectively. Let

ζH (y) ≡ ζH (0, y) = y + LH
1

y
+ LH

2

y2
+ · · · + LH

d−1

yd−1 + O

(
1

yd

)
(5.4)

and

ζF (y) ≡ ζF (0, y) = y + LF
1

y
+ LF

2

y2
+ · · · + LF

d−1

yd−1 + O

(
1

yd

)
. (5.5)

Recall from Section 2 that ζH ◦ yH (0, ζ ) = ζ and ζF ◦ yF (0, ζ ) = ζ , for all ζ ∈ C

with |ζ | > R, where R > 0 is sufficiently large. Thus implementing (5.1), (5.2), (5.4)
and (5.5) together, we get

[
DH
1

ζ
+ DH

2

ζ 2 + · · · + DH
d−1

ζ d−1 + O

(
1

ζ d

)]

+ LH
1

ζ

[

1 + DH
1

ζ 2 + DH
2

ζ 3 + · · · + DH
d−1

ζ d−1

+O

(
1

ζ d

)]−1

+ LH
2

ζ 2

[

1 + DH
1

ζ 2 + DH
2

ζ 3

+ · · · + DH
d−1

ζ d−1 + O

(
1

ζ d

)]−2

+ · · · = 0 (5.6)

and

[
DF
1

ζ
+ DF

2

ζ 2 + · · · + DF
d

ζ d
+ O

(
1

ζ d

)]

+ LF
1

ζ

[

1 + DF
1

ζ 2 + DF
2

ζ 3 + · · · + DF
d−1

ζ d−1
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+O

(
1

ζ d

)]−1

+ LF
2

ζ 2

[

1 + DF
1

ζ 2 + DF
2

ζ 3

+ · · · + DF
d−1

ζ d−1 + O

(
1

ζ d

)]−2

+ · · · = 0. (5.7)

Note that expanding (5.6) and (5.7), one can express LH
k and LF

k , for any k ≥ 1,
in terms of DH

1 , DH
2 , . . . and DF

1 , DF
2 , . . ., respectively. In fact, using the relation

between DH
k and DF

k , for 1 ≤ k ≤ (d − 1), obtained in (5.3), one can establish an
explicit relation between LH

k and LF
k for 1 ≤ k ≤ (d − 1).

Claim L: For 1 ≤ k ≤ d − 1, LH
k = α−(k+1)LF

k .
Note that implementing claim L to (5.4) and (5.5), we obtain

αζH (y) − ζF (αy) = O
(
1/yd

)
. (5.8)

As we shall see shortly that the above relation between ζH and ζF plays the key role
in establishing the relation between pH and pF . For now assuming claim L is true
and thus assuming (5.8) holds, let us first determine the relation between pH and pF .
We see a proof of the claim L in the end of the present section.
Relation between pH and pF : Recall from Section 2 that for |y| > R, with R large
enough, one can write

ζH (y) ≡ ζH (0, y) = y.

(
pH (y)

yd

) 1
d
(
pH (y1,H )

yd1,H

) 1
d2

· · · (5.9)

and

ζF (y) ≡ ζF (0, y) = y.

(
pF (y)

yd

) 1
d
(
pF (y1,F )

yd1,F

) 1
d2

· · · , (5.10)

where y1,H = (H(x, y))2 = pH (y) − δx and y1,F = (F(x, y))2 = pF (y) − δx .
Thus ζH (y) − O(1/yd) and ζF (y) − O(1/yd) are determined by

y.

(
pH (y)

yd

) 1
d

and y.

(
pF (y)

yd

) 1
d

,

respectively. The power series expansion of the holomorphic function (1 + z)1/d (prin-
cipal branch) is

1 + (1/d)z + ((1/d − 1)/2d) z2 + · · · ,
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for z ∈ D = {z ∈ C : |z| < 1}. Now note that

y.

(
pH (y)

yd

) 1
d = y.

(
yd + aH

d−2y
d−2 + · · · + aH

1 y + aH
0

yd

) 1
d

= y

[

1 + 1

d

(
aH
d−2

y2
+ · · · + aH

0

yd

)

+ 1

2d

(
1

d
− 1

)(
aH
d−2

y2
+ · · · + aH

0

yd

)2

+ · · ·
⎤

⎦ (5.11)

and

αy.

(
pF (αy)

(αy)d

) 1
d = αy.

(
(αy)d + aF

d−2(αy)
d−2 + · · · + aF

1 (αy) + aF
0

(αy)d

) 1
d

= αy

[

1 + 1

d

(
aF
d−2

α2y2
+ · · · + aF

0

αd yd

)

+ 1

2d

(
1

d
− 1

)(
aF
d−2

α2y2
+ · · · + aF

0

αd yd

)2

+ · · ·
⎤

⎦ , (5.12)

for all y ∈ C with |y| large enough. Since (5.8) holds, comparing (5.11) and (5.12),
we get

aF
d−2 = α2aH

d−2.

Let us assume that

aF
d−k = αkaH

d−k,

up to some k, where 2 ≤ k ≤ (d − 1). Now it follows from (5.11) that the coefficient
of 1/yk in the expansion of αζH (y) is

cHk+1 = α
[(

aH
d−(k+1)/d

)
+ G

(
aH
d−2, · · · , aH

d−k

)]
, (5.13)

where G is defined as follows. The function G is the polynomial in (k − 1) complex
variables determined by the coefficient of 1/yk+1 of the power series expansion of

(
pH (y)

yd

) 1
d − 1

d

(
aH
d−2

y2
+ · · · + aH

0

yd

)

− 1

= 1

2d

(
1

d
− 1

)(
aH
d−2

y2
+ · · · + aH

0

yd

)2

+ · · · (5.14)
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(see 5.11). In other words, if the coefficient of 1/yk+1 in (5.14) is
∑n

i=1 gi
(
�k

j=2(a
H
d− j )

i( j)
)
with gi ∈ C, then

G(x1, x2, . . . , xk−1) =
n∑

i=1

gi
(
�k

j=2x j
i( j)
)

.

Similarly, it follows from (5.12) that the coefficient of 1/yk in the expansion of ζF (αy)
is

cFk+1 = aF
d−(k+1)

αkd
+ αG

(
aF
d−2

α2 , · · · ,
aF
d−k

αk

)

= aF
d−(k+1)

αkd
+ αG(aH

d−2, · · · , aH
d−k).

(5.15)

Since cHk+1 = cFk+1, comparing (5.13) and (5.15), we have

aF
d−(k+1) = αk+1aH

d−(k+1).

Therefore, the following relation between the corresponding coefficients of pH and
pF holds:

aF
d−k = αkaH

d−k, (5.16)

for 2 ≤ k ≤ d.
Now since β = αd+1 and (5.16) holds, we have

pF (y) = yd + aFd−2y
d−2 + · · · + aF1 y + aF0

= yd + α2aHd−2y
d−2 + α3aHd−3y

d−3 + · · · + αd−1aH1 y + αdaH0

= yd + βα−(d−1)aHd−2y
d−2 + βα−(d−2)aHd−3y

d−3 + · · · + βα−2aH1 y + βα−1aH0

= βα−1
(
(α−1y)

d + aHd−2(α
−1y)

d−2 + aHd−3(α
−1y)

d−3 + · · · + aH1 (α−1y) + aH0

)

= (βα−1)pH (α−1y).

In other words, we obtain

α pF (αy) = β pH (y), (5.17)

for all y ∈ C, with αd+1 = β and βd−1 = 1.
Before giving a formal proof of the claim L, let us establish the relation between LH

k
and LF

k with bare hands when the common degree d of the Hénon maps H and F is
small. To start with, first note that the coefficients of 1/ζ k vanish in both (5.6) and
(5.7), for all k ≥ 1.
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• Let d = 2. Thus by (5.3), we have DH
1 = α−2DF

1 . The coefficients of 1/ζ in (5.6)
and (5.7) are DH

1 + LH
1 and DF

1 + LF
1 , respectively and both vanish. Thus

LH
1 = −DH

1 = −α−2DF
1 = α−2LF

1 .

• Let d = 3. By (5.3), we have DH
i = α−(i+1)DF

i , for i = 1, 2. Since the coefficients
of 1/ζ vanish in (5.6) and (5.7), as before we can show that LH

1 = α−2LF
1 . Using the

fact that coefficients of 1/ζ 2, which are

DH
2 + LH

1 .0 + LH
2 and DF

2 + LF
1 .0 + LF

2 ,

vanish, we have

LH
2 = −DH

2 = −α−3DF
2 = α−3LF

2 .

• Let d = 4. By (5.3), we have DH
i = α−(i+1)DF

i , for 1 ≤ i ≤ 3. Now since
the coefficients 1/ζ i vanish in (5.6) and (5.7), as before we can show that LH

i =
α−(i+1)LF

i , for 1 ≤ i ≤ 2. Now the coefficients of 1/ζ 3 in (5.6) and (5.7) are

DH
3 + LH

1 .
(
C1D

H
1

)
+ LH

2 .0 + LH
3 and DF

3 + LF
1 .
(
C1D

F
1

)
+ LF

2 .0 + LF
3 ,

respectively for some C1 ∈ C and they vanish. Therefore,

LH
3 = −DH

3 − LH
1 .
(
C1D

H
1

)
,

which implies

LH
3 = −α−4DF

3 − α−4LF
1 .
(
C1D

F
1

)
= α−4LF

3 .

• Let d = 5. Thus we have DH
i = α−(i+1)DF

i , for 1 ≤ i ≤ 4. Using the same
arguments as before we can show LH

i = α−(i+1)LF
i , for 1 ≤ i ≤ 3. Now the

coefficients of 1/ζ 4 in (5.6) and (5.7) are

DH
4 + LH

1 .
(
C2D

H
2

)
+ LH

2 .
(
C3D

H
1

)
+ LH

3 .0 + LH
4

and

DF
4 + LF

1 .
(
C2D

F
2

)
+ LF

2 .
(
C3D

F
1

)
+ LF

3 .0 + LF
4 ,

for some C2,C3 ∈ C and since they vanish, a simple calculation as above gives that

LH
4 = α−5LF

4 .
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• Let d = 6. Thus we have DH
i = α−(i+1)DF

i , for 1 ≤ i ≤ 5. As before we can show
LH
i = α−(i+1)LF

i , for 1 ≤ i ≤ 4. The coefficients of 1/ζ 5 in (5.6) and (5.7) are MX
5 .

Here for X = H , F ,

MX
5 = DX

5 + LX
1 .
(
C4D

X
3 + C5(D

X
1 )

2)+ LX
2 .
(
C6D

X
2

)
+ LX

3 .(C7D
X
1 ) + LX

4 .0 + LX
5 ,

where C4,C5 and so on are from C. Since MH
5 and MF

5 vanish, calculations as above
give us

LH
5 = α−6LF

5 .

• Let d = 7. Thus DH
i = α−(i+1)DF

i , for 1 ≤ i ≤ 6. Hence we can show LH
i =

α−(i+1)LF
i , for 1 ≤ i ≤ 5 as before. The coefficients of 1/ζ 6 in (5.6) and (5.7) are

MX
6 . Here for X = H , F ,

MX
6 = DX

6 + LX
1 .
(
C8D

X
4 + C9D

X
1 DX

2

)

+ LX
2 .
(
C10D

X
3 + C11(D

X
1 )

2
)

+ LX
3 .(C12D

X
2 )

+ LX
4 .(C13D

X
1 ) + LX

5 .0 + LX
6 ,

where C8,C9 and so on are from C. Since MH
6 and MF

6 vanish, we get

LH
6 = α−7LF

6 .

• Let d = 8. So DH
i = α−(i+1)DF

i , for 1 ≤ i ≤ 7. Hence we can show LH
i =

α−(i+1)LF
i , for 1 ≤ i ≤ 6 just as before. Now the the coefficients of 1/ζ 7 in (5.6) and

(5.7) are MX
7 . Here for X = H , F ,

MX
7 = DX

7 + LX
1 .
(
C14D

X
5 + C15D

X
1 DX

3 + C16(D
X
2 )

2 + C17(D
X
1 )

3
)

+LX
2 .
(
C18D

X
4 + C19D

X
1 DX

2

)

+LX
3 .
(
C20D

X
3 + C21(D

X
1 )

2
)

+LX
4 .(C22D

X
2 ) + LX

5 .(C23D
X
1 ) + LX

6 .0 + LX
7 ,

where C14,C15 and so on are from C. A simple calculation as above gives us

LH
7 = α−8LF

7 .

As promised earlier, now we see a proof of the claim L.
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Proof of ClaimL

First wemake a few observations, which follow immediately by chasing the expression
of the coefficients of 1/ζ s in (5.6) and (5.7), for s ≥ 1 and then using the fact that all
of them vanish.
(O1) For any s ≥ 1, the coefficients of 1/ζ s in (5.6) and (5.7) vanish. Further, they
are of the form DH

s + RH
s + LH

s and DF
s + RF

s + LF
s , respectively, where RH

s and
RF
s are linear combinations of products of powers of DH

i ’s, LH
j ’s and DF

i ’s, L
F
j ’s,

respectively, with 1 ≤ i, j < s.
(O2) For s ≥ 1, one can write

RH
s =

s−1∑

i=1

LH
i RH

i,s and RF
s =

s−1∑

i=1

LF
i RF

i,s .

Let 2 ≤ i ≤ s − 1. It follows from (5.6) that RH
i,s is the coefficient of 1/ζ

s−i of the
power series expansion of

(

1 + DH
1

ζ 2 + DH
2

ζ 3 + · · · + DH
d−1

ζ d−1 + O

(
1

ζ d

))−i

,

and similarly, RH
i−1,s−1 is the coefficient of 1/ζ

s−i of the power series expansion of

(

1 + DH
1

ζ 2 + DH
2

ζ 3 + · · · + DH
d−1

ζ d−1 + O

(
1

ζ d

))−(i−1)

.

Therefore, for 2 ≤ i ≤ s − 1, if

RH
i,s = C(i, s, 1)DH (i, s, 1) + C(i, s, 2)DH (i, s, 2) + · · · + C(i, s, is)D

H (i, s, is)

(5.18)

and

RF
i,s = C(i, s, 1)DF (i, s, 1) + C(i, s, 2)DF (i, s, 2) + · · · + C(i, s, is)D

F (i, s, is),

(5.19)

where for 1 ≤ j ≤ is , DH (i, s, j) and DF (i, s, j) are products of powers of DH
l ’s

and DF
l ’s (1 ≤ l < s), respectively, with C(i, s, j) ∈ C, then

RH
i−1,s−1 = C̃(i, s, 1)DH (i, s, 1) + C̃(i, s, 2)DH (i, s, 2)

+ · · · + C̃(i, s, is)D
H (i, s, is) (5.20)
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and

RF
i−1,s−1 = C̃(i, s, 1)DF (i, s, 1) + C̃(i, s, 2)DF (i, s, 2)

+ · · · + C̃(i, s, is)D
F (i, s, is), (5.21)

with C̃(i, s, j) ∈ C, for 1 ≤ j ≤ is .
(O3) Let s ≥ 1 and i = 1. Then

RH
1,s = C(1, s, 1)DH (i, s, 1) + C(1, s, 2)DH (i, s, 2)

+ · · · + C(1, s, 1s)D
H (1, s, 1s), (5.22)

where for 1 ≤ j ≤ 1s ,

DH (1, s, j) = DH
s j 1

DH
s j 2

· · · DH
s jm(s j )

,

with s j 1, s j 2, . . . , s jm(s j )
∈ {1, 2, . . . , s−1} (s j 1, s j 2, . . . , s jm(s j )

are not possibly all

distinct), i.e., DH
s j 1

, DH
s j 2

, . . . , DH
s jm(s j )

∈ {DH
1 , . . . , DH

s−1

}
. Now RH

1,s is the coefficient

of 1/ζ s−1 of the power series expansion of

(

1 + DH
1

ζ 2 + DH
2

ζ 3 + · · · + DH
d−1

ζ d−1 + O

(
1

ζ d

))−1

.

Similarly, RH
1,s+1 is the coefficient of 1/ζ

s of the power series expansion of

(

1 + DH
1

ζ 2 + DH
2

ζ 3 + · · · + DH
d−1

ζ d−1 + O

(
1

ζ d

))−1

.

Therefore, if

RH
1,s =

1s∑

j=1

C(1, s, j)DH
s j 1

DH
s j 2

· · · DH
s jm(s j )

, (5.23)

then

RH
1,s+1 =

1s∑

j=1

[
C (1)(1, s, j)DH

s j 1+1Dsj 2
· · · DH

s j m(s j )
+ C (2)(1, s, j)DH

s j 1
DH
s j 2+1 · · · DH

s j m(s j )

+ · · · + C (m(s j ))(1, s, j)DH
s j 1

.Dsj 2
· · · DH

s j m(s j )
+1

]
+ Cs(D

H
1 )

s
2 , (5.24)

with Cs,C (k)(1, s, j) ∈ C, for 1 ≤ j ≤ 1s and 1 ≤ k ≤ m(s j ). Further, Cs = 0,
if s is not divisible by 2 and Cs �= 0, if s is divisible by 2. The same relation holds
between RF

1,s and RF
1,s+1.
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Let d ≥ 4. Note that we have already established claim L for d = 2, 3 just before
starting the present proof. Let 1 ≤ k ≤ d − 2. Then we prove that if for 1 ≤ s ≤ k,

(•) LH
s = α−(s+1)LF

s , and
(••) for each fixed pair (i, s) satisfying 2 ≤ i ≤ s − 1, DH (i, s, j) =
α−(s−i)DF (i, s, j), for 1 ≤ j ≤ is and RH

1,s = α−(s−1)RF
1,s (which in turn

gives RH
i,s = α−(s−i)RF

i,s , for 1 ≤ i ≤ s − 1),

then LH
k+1 = α−(k+2)LF

k+1.
Now observe that performing the same calculations, which we did immediately

before starting this proof, (•) and (••) hold for a first few k’s with 1 ≤ k ≤ d −2. The
coefficients of 1/ζ k+1 in (5.6) and (5.7) are

DH
k+1 + LH

1 RH
1,k+1 + LH

2 RH
2,k+1 + · · · + LH

k RH
k,k+1 + LH

k+1, (5.25)

and

DF
k+1 + LF

1 R
F
1,k+1 + LF

2 R
F
2,k+1 + · · · + LF

k R
F
k,k+1 + LF

k+1, (5.26)

respectively (note that both vanish). Let 2 ≤ i ≤ k. Then by (5.18), it follows that

RH
i,k+1 = C(i, k + 1, 1)DH (i, k + 1, 1) + · · ·

+C(i, k + 1, ik+1)D
H (i, k + 1, ik+1), (5.27)

and thus by (5.20)

RH
i−1,k = C̃(i, k + 1, 1)DH (i, k + 1, 1)

+ · · · + C̃(i, k + 1, ik+1)D
H (i, k + 1, ik+1). (5.28)

Therefore, clearly for 1 ≤ j ≤ ik+1, DH (i, k + 1, j) = DH (i − 1, k, r j ), for some
1 ≤ r j ≤ (i − 1)k . Similar conclusion holds for DF (i, k+1, j), i.e., for 1 ≤ j ≤ ik+1,
DF (i, k + 1, j) = DF (i − 1, k, r j ). Therefore, using (••) for s = k, we have

DH (i, k + 1, j) = DH (i − 1, k, r j ) = α−(k−i+1)DF (i − 1, k, r j )

= α−(k−i+1)DF (i, k + 1, j),

for 2 ≤ i ≤ k and for 1 ≤ j ≤ ik+1.
Therefore,

RH
i,k+1 = α−(k+1−i)RF

i,k+1, (5.29)

for 2 ≤ i ≤ k. By (••), we have RH
1,k = α−(k−1)RF

1,k . Thus comparing (5.23) and

(5.24) along with using the fact that DH
k = α−(k+1)DF

k , for 1 ≤ k ≤ d−1 (see (5.3)),
we obtain

RH
1,k+1 = α−k RF

1,k+1. (5.30)
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Now as mentioned before (5.25) and (5.26) both are equal to zero. Therefore using
(5.29), (5.30) and (5.3), we get

LH
k+1 = −

(
DH
k+1 + LH

1 RH
1,k+1 + LH

2 RH
2,k+1 + · · · + LH

k RH
k,k+1

)

= −α−(k+2)
(
DF
k+1 + LF

1 R
F
1,k+1 + LF

2 R
F
2,k+1 + · · · + LF

k R
F
k,k+1

)

= α−(k+2)LF
k+1.

Thus the claim follows.

6 Hénonmaps with different Jacobians

Let H(x, y) = (y, pH (y) − δH x) and F(x, y) = (y, pF (y) − δF x) be such that
δH �= δF . As before, we assume that deg H = deg F = d ≥ 2. It follows from [4,
Thm. 2.7] that if I+

H and I+
F are biholomorphic, then

δd−1
H = δd−1

F = δ. (6.1)

Now instead ofworkingwith H and F , weworkwith H̃ = Hd−1 and F̃ = Fd−1. Note
that since (6.1) holds the Jacobians of H̃ and F̃ are the same. Further, I+

Hd−1 = I+
Fd−1 .

If H̃ : C × (C\D̄) → C × (C\D̄) is the lift of H : I+
H → I+

H , then clearly
H̃d−1 : C × (C\D̄) → C × (C\D̄) is the lift of Hd−1 : I+

H → I+
H . It follows from

(2.6) that

H̃(z, ζ ) =
(
(δH/d)z + QH (ζ ), ζ d

)
.

A simple calculation gives

H̃d−1(z, ζ ) =
(
(δH/d)d−1z + Q̃H (ζ ), ζ dd−1

)
,

where

Q̃H (ζ ) = (δH/d)d−2QH (ζ ) + (δH/d)d−3QH (ζ d) + · · · + QH

(
ζ dd−2

)
.

Note that deg H̃ = deg F̃ = d̃ = dd−1 and det JH = det JH = δ, where JH and
JF are the Jacobian matrices of H and F , respectively. Also it is easy to see that
Z[1/dn] = Z[1/d] for all n ≥ 1, and in particular, Z[1/d̃] = Z[1/dd−1] = Z[1/d].
As in (4.1), one can show that for each element

[
k/d̃n

]
∈ Z[1/d̃]/Z, there exists a
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unique deck transformation γk/d̃n of C × (C\D̄) such that

γk/d̃n

[
z
ζ

]
=

⎡

⎢⎢
⎣
z + d̃

δ

∑n−1
l=0

(
d̃
δ

)l
(

Q̃H (ζ d̃l ) − Q̃H

((
e
2kπ i
d̃n ζ )

)d̃l
))

e
2kπ i
d̃n ζ

⎤

⎥⎥
⎦ , (6.2)

for each n ≥ 0, k ≥ 1 and for all (z, ζ ) ∈ C×(C\D̄). Thus, if p̃ = (z, ζ ) ∈ C×(C\D̄)
is a point in the fiber of p ∈ I+

H = I+
H̃
, then the other points in the fiber are precisely

γk/d̃n (z, ζ ) with n ≥ 0 and k ≥ 1.
Note that the main hindrance to run a similar set of calculations as in Section 3 for

any arbitrary pair of Hénon maps H and F of the same degree is that the Jacobians of
H and F are possibly different. But if we work with Hd−1 and Fd−1, there is no such
issues. Since (6.2) holds, a moment’s thought assures that exactly similar calculations
as in Section 3 run smoothly for the maps Hd−1 and Fd−1. Therefore, if a : I+

H̃
→ I+

H̃
is a biholomorphism and if A : C × (C\D̄) → C × (C\D̄) is a lift, i.e, A is of the
form (z, ζ ) �→ (β(z)ζ + γ (ζ ), αζ ), then as in Section 3, we can show

• β(ζ ) ≡ β in C;

•
(
αdd−2

)(d+1)dn−1

→ β asn → ∞ and consequently,αdd−2(d+1) = β withβd−1 =
1.

Thus as in (4.12) we obtain

β
d̃

δ

[
Q̃H (ζ ) − Q̃H

(
e
2π i
d̃ ζ

)]
= d̃

δ

[
Q̃F (αζ ) − Q̃F

(
e
2π i
d̃ αζ

)]
, (6.3)

for all ζ ∈ C\D̄, with αdd−2(d+1) = β and βd−1 = 1. Expanding (6.3), we get

β
δd−2
H

dd−2

[
QH (ζ ) − QH

(
e
2π i
d̃ ζ

)]
+ β

δd−3
H

dd−3

[

QH (ζ d ) − QH

((
e
2π i
d̃ ζ

)d)]

+

· · · + β

[

QH

(
ζ d

d−2
)

− QH

((
e
2π i
d̃ ζ

)dd−2)]

= δd−2
F

dd−2

[
QF (αζ ) − QF

(
e
2π i
d̃ αζ

)]
+ δd−3

F

dd−3

[

QF

(
(αζ )d

)
− QF

((
e
2π i
d̃ αζ

)d)]

+

· · · +
[

QF

(
(αζ )d

d−2
)

− QF

((
e
2π i
d̃ αζ

)dd−2)]

.

(6.4)

While comparing the coefficients of the polynomials appearing in the right hand side
and in the left hand side of (6.4), note that if ζ dr l = ζ dsm for 0 ≤ r , s ≤ d − 2 and
1 ≤ l,m ≤ d + 1 with r �= s (without loss of generality r > s, say), then m = dr−sl.
Since d ≥ 2 and 0 ≤ r , s ≤ d − 2 and 1 ≤ l,m ≤ d + 1, clearly r = s + 1 and l = 1.

123



4380 R. Pal

Thus since next to the highest coefficients of both QH and QF vanish (QH and QF

are of the form (4.10) and (4.11), respectively), we obtain

β

[

QH

(
ζ dd−2

)
− QH

((
e
2π i
d̃ ζ

)dd−2)]

= QF

(
(αζ )d

d−2
)

− QF

((
e
2π i
d̃ αζ

)dd−2)

. (6.5)

Comparing both sides of (6.5), we get

βAH
d−k = α̃d−k AF

d−k,

for 1 ≤ k ≤ (d − 1), where α̃ = αdd−2
. Equivalently, we get

AH
d−k = α̃−(k+1)AF

d−k (6.6)

for 1 ≤ k ≤ (d − 1), with α̃d+1 = 1. Note that (6.6) is an analogue of (4.13) and
therefore, using the same set of arguments as in Section 4, we get

β pH (y) = α̃ pF (α̃y), (6.7)

for all y ∈ C, with α̃d+1 = β and βd−1 = 1.

7 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1: It follows from (5.17), (6.7) and (6.1) that

α pF (αy) = β pH (y),

with αd+1 = 1 and

δF = γ δH ,

with αd2−1 = 1 and βd−1 = γ d−1 = 1. Thus if

A(x, y) = (αx, βα−1y) and B(x, y) = (γ αβ−1x, α−1y), (7.1)

then a simple calculation gives

F ≡ A ◦ H ◦ B

in C2. Now note that if we write A = (A1, A2) and B = (B1, B2), then

(A1(x, y))
d−1 = (B1(x, y))

d−1 and (A2(x, y))
d−1 = (B2(x, y))

d−1.
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Thus,

A1(x, y) = μ1B1(x, y) and A2(x, y) = μ2B2(x, y), (7.2)

for some μ1, μ2 ∈ C, with μd−1
1 = μd−1

2 = 1. Now comparing (7.1) and (7.2), we
obtain μ1 = γ −1β and μ2 = β. Therefore,

A(x, y) = Lμ ◦ B(x, y),

for all (x, y) ∈ C
2, where Lμ(x, y) = (μ1x, μ2y). Thus,

F ≡ Lμ ◦ B ◦ H ◦ B.

Proof of Theorem 1.2: Implementing the idea discussed just after stating the Theorem
1.1 in the Introduction, proof of Theorem 1.2 follows immediately once we prove
Theorem 1.1.
It would be interesting to investigate the converse of Theorem 1.2.
Question: If H and F are two Hénon maps such that

F = A1 ◦ H ◦ A2

in C
2, where A1 and A2 are affine automorphisms in C

2, then how are the escaping
sets of H and F related?

Acknowledgements The author would like to thank the referees for making helpful comments.

References

1. Bedford, E., Smillie, J.: Polynomial diffeomorphisms ofC2: currents, equilibriummeasure and hyper-
bolicity. Invent. Math. 103, 69–99 (1991)

2. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of C2 - II: Stable manifolds and recurrence. J.
Am. Math. Soc. 4, 657–679 (1991)

3. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of C2 - III: Ergodicity, exponents and entropy
of the equilibrium measure. Math. Ann. 294, 395–420 (1992)

4. Bonnot, S.; Radu, R.; Tanase, R.: Hénon maps with biholomorphic escaping sets, Complex Anal.
Synerg. 3(1), 18 (2017) (Paper No. 3)

5. Bousch, T.: Automorphismes des applications de Hénon (1994) (unpublished manuscript)
6. Favre, C.: Classification of 2-dimensional contracting rigid germs and Kato surfaces. I. J. Math. Pures

Appl. 9, 475–514 (2000)
7. Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theory

Dyn. Syst. 9(1), 67–99 (1989)
8. Fornaess, J.E., Sibony, N.: Complex Hénon mappings in C

2 and Fatou–Bieberbach domains. Duke
Math. J. 65, 345–380 (1992)

9. Hubbard, J. H., Oberste-Vorth, R. W.: Hénon mappings in the complex domain. I. The global topology
of dynamical space. Inst. Hautes Études Sci. Publ. Math. No. 79 (1994), 5–46

10. Hubbard J. H., Oberste-Vorth R. W.: Hénon mappings in the complex domain. II. Projective and
inductive limits of polynomials. Real and complex dynamical systems (Hillerød: 89–132, p. 464.
NATO Adv, Sci. Inst. Ser. C Math. Phys. Sci. (1993)

123



4382 R. Pal

11. Morosawa, S., Nishimura, Y., Taniguchi, M., Ueda, T.: Holomorphic dynamics, Translated from the
1995 Japanese original and revised by the authors. Cambridge Studies in Advanced Mathematics, 66,
Cambridge University Press, Cambridge (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Relation between Hénon maps with biholomorphic escaping sets
	Abstract
	1 Introduction
	2 Preliminaries
	3 A brief idea of the proof of the main theorem
	4 Relation between QH and QF
	5 Relation between pH and pF
	Proof of Claim mathcalL

	6 Hénon maps with different Jacobians
	7 Proofs of Theorem 1.1 and Theorem 1.2
	Acknowledgements
	References




