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Abstract

We consider a two-dimensional determinantal point process arising in the random
normal matrix model and which is a two-parameter generalization of the complex
Ginibre point process. In this paper, we prove that the probability that no points lie on
any number of annuli centered at O satisfies large n asymptotics of the form

exp <C1n2 + Canlogn + C3n + C4a/n + Cslogn + Ce + Fp, + O(nllz)>,

where 7 is the number of points of the process. We determine the constants C, . .., Cg
explicitly, as well as the oscillatory term F;, which is of order 1. We also allow one
annulus to be a disk, and one annulus to be unbounded. For the complex Ginibre point
process, we improve on the best known results: (i) when the hole region is a disk,
only Cy, ..., C4 were previously known, (ii) when the hole region is an unbounded
annulus, only C1, Cp, C3 were previously known, and (iii) when the hole region is
a regular annulus in the bulk, only C; was previously known. For general values of
our parameters, even C is new. A main discovery of this work is that F;, is given in
terms of the Jacobi theta function. As far as we know this is the first time this function
appears in a large gap problem of a two-dimensional point process.
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1 Introduction and statement of results

Consider the probability density function

1 " 2b
— [T tw—alP[]liP ™5™, b>0.a>-1. (1D

1<j<k<n j=1

where 71, ...,z, € C and Z, is the normalization constant. We are interested in the
gap probability

P = IP(‘#{Z]‘ dzjl € lr, rlUlrs, rg]U--- U [r2g717r2g]} = 0>, (1.2)

where 0 <7y <71y <--- < rpg < +00. Thus P, is the probability that no points lie
on g annuli centered at 0 and whose radii are given by rq, ..., r2¢. One annulus is a
disk if r1 = 0, and one annulus is unbounded if 2, = +00. In this paper we obtain
the large n asymptotics of P,, up to and including the term of order 1.

The particular case » = 1 and « = 0 of (1.1) is known as the complex Ginibre
point process [40] (or simply Ginibre process, for short) and is the most well-studied
two-dimensional determinantal point process of the theory of random matrices. It
describes the distribution of the eigenvalues of an n x n random matrix whose entries
are independent complex centered Gaussian random variables with variance % For
general values of b > 0 and o« > —1, (1.1) is the joint eigenvalue density of a normal
matrix M taken with respect to the probability measure [58]

1 \
= det(M)| 22w (M) g (1.3)
n

Here d M denotes the measure induced by the flat Euclidian metric of C"*” on the set
of normal n x n matrices (see e.g. [20, 32] for details), M* is the conjugate transpose
of M, “tr" denotes the trace, and Z,, is the normalization constant.

The limiting mean density (with respectto d?z) asn — +oc of the points z1, .. . , z,
is given by [17, 67]

b2
— 71?72, (1.4)
T

and is supported on the disk centered at 0 and of radius b~ %.1n particular, forb = 1,
the limiting density is uniform over the unit disk; this is a well-known result of Ginibre
[40]. Since the points accumulate on a compact set as n — +00, this means that for
large n, P, is the probability of a rare event, namely that there are g “large gaps/holes”
in the form of annuli.
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The probability to observe a hole on a disk centered at 0 and of radius » < 1 in the
Ginibre process was first studied by Forrester, who obtained [37, eq. (27)]

P, = exp <C1n2 + Conlogn + C3n + Ca/n + 0(ﬁ)>, asn — +oo, (1.5)

where
LA C3 = r2(1 = log(rv/27)
]__49 2__27 3_r( _Ogr jT)’
0 1
Cy = ﬁr{ / log (—erfc(y))dy
NS 2

+00 1
+ / [log <§erfc(y)) +y? +1logy + log(Zﬁ)}dy},
0

and erfc is the complementary error function defined by

erfe(z) = % foo e dr. (1.6)

The constant C| was also given independently by Jancovici, Lebowitz and Manificat in
[48,Eq. (2.7)]. Asnoticed in [37, Eq. (13)], C1 and C3 also follow from the asymptotic
expansion obtained in an equivalent problem considered in the earlier work [44].
The constants Cp, C2, C3 have also been obtained in the more recent work [4] using
a different method; see also [52, Eq. (49)] for another derivation of C;. Although
Forrester’s result (1.5) is 30 years old, as far as we know it is the most precise result
available in the literature prior to this work.

When the hole region is an unbounded annulus centered at 0 and of inner radius r <
1, the following third order asymptotics for P, were obtained by Cunden, Mezzadri
and Vivo in [23, Eq. (51)] for the Ginibre process:

P = exp (sz + Conlogn + C3n + o(n)>, asn — +00o, (1.7)

where Cj = — 2+ 3 +logr, ;= 251, Cy = (1 = ) (1 — log Y2U=2),

Hole probabilities of more general domains have been considered in [2] for the
Ginibre process. In particular, for a large class of open sets U lying in the unit disk,
Adhikari and Reddy in [1] proved that

]P’(#{Zj 17 € U} = O) = exp (C1n2 + o(nz)), asn — o090,

where the constant C; = C(U) is given in terms of a certain equilibrium measure
related to a problem of potential theory. When U is either a disk, an annulus, an ellipse,
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3532 C. Charlier

a cardioid, an equilateral triangle or a half-disk, C; has been computed explicitly.
Some of these results have then been generalized for a wide class of point processes
by Adhikari in [1]. For the point process (1.1) (with arbitrary b > 0 but « = 0), he

obtained
bréb
]P’(#{ zjl €0, r] = > (— —n +0(n2)>

P(#{ Izl € [l = 0>

b (l"2b _ r2b)2
= exp ( — <Z(r;“’ . LTC%))”Z + 0(n2)>, (1.8)

asn — +oowith0 <r; <rp < b*%b and r € (0, b*%b) fixed, see [1, Theorem 1.2
and eqs (3.5)—(3.6)].

These are the only works which we are aware of and which fall exactly in our
setting. There are however several other works that fall just outside. In [69], Shirai
considered the infinite Ginibre process, which, as its name suggests, is the limiting
point process arising in the bulk of the (finite) Ginibre process. He proved, among
other things, that the probability of the hole event #{z.,- Dzl = r} = 0 behaves

as exp (%4 + 0(r4)) as r — oo (see also [47, Proposition 7.2.1] for a different

proof). This result can be seen as a less precise analogue of (1.5) for the infinite Gini-
bre process, and was later generalized for more general shapes of holes in [2] and
then for more general point processes in [1]. Hole probabilities for product random
matrices have been investigated in [3, 5]. The existing literature on large gap problems
in dimension > 2 goes beyond random matrix theory. The random zeros of the hyper-
bolic analytic function Z:ﬁg £,z — here the & ’s are independent standard complex
Gaussians — form a determinantal point process [63], and the associated large gap
problem on a centered disk has been solved in [63, Corollary 3 (i)]. Another well
studied two-dimensional point process is the random zeros of the standard Gaussian
entire function. This function is given by Z k=0 &= J/? where the &;’s are independent
standard complex Gaussians. In [70], the probability for this function to have no zeros
in a centered disk of radius » was shown to be, for all sufficiently large r, bounded
from below by exp(—Cr*) and bounded from above by exp(—cr*) for some positive
constants ¢ and C. This result was later improved by Nishry in [59], who proved that
this probability is e:xp(—%r4 + o(r*)) as r — +oo. A similar result as in [70] was
obtained in [46] for a different kind of random functions with diffusing coefficients.
Also, for a d-dimensional process of noninteracting fermions, it is shown in [43] that
the hole probability on a spherical domain of radius » behaves as exp(—crdJrl +o(r3))
as r — 400, and an explicit expression for ¢ > 0 is also given.

In its full generality, the random normal matrix model is associated with a given
confining potential Q : C — R U {400} and is defined by a probability measure
proportional to e M) g a1 where dM is as in (1.3). The random normal matrix
model has been extensively studied over the years, see e.g. [20, 32] for early works,
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[7, 38, 53, 66] for smooth linear statistics, [9, 17, 30, 36, 65, 74] for non-smooth
linear statistics, and [6, 11, 45, 54, 55] for recent investigations on planar orthogonal
polynomials. Despite such progress, the problem of determining large gap asymptotics
in this model has remained an outstanding problem. In this work we focus on Q(z) =
1z|2 + 27"‘ log |z|, which is a generalization of the Gaussian potential Iz|2 known as
the Mittag—Leffler potential [8].

Let us now explain our results in more detail. We obtain the large n asymptotics of
‘P, for general values of b > 0 and @ > —1 in four different cases:

1
1. Thecase 0 < r; < --- <712 < b~ 2 is stated in Theorem 1.1,
| . .
2. Thecase 0 <7y < --- <ryg| <b 2% <rys =+00is stated in Theorem 1.4,
L, .
3. Thecase 0 =r; <ry <--- <rpg < b2 is stated in Theorem 1.7,
4.

1 . .
Thecase 0 =71 <12 < -+ < r2e1 < b™% < rpg = +00 is stated in
Theorem 1.9.

In other words, we cover the situations where the hole region consists of

1. g annuli inside the disk of radius b*ZLb (“the bulk"),

2. g — 1 annuli in the bulk and one unbounded annulus (g > 1),

3. g — 1 annuli in the bulk and one disk (g > 1),

4. g — 2 annuli in the bulk, one unbounded annulus, and one disk (g > 2).

For each of these four cases, we prove that

P, = exp <C1n2 + Conlogn + C3n 4+ Caa/n + Cslogn + Ce + F, + (’)(n_ll2>>,
(1.9)

as n — +o00, and we give explicit expressions for the constants Cy, ..., Ce.
The quantity F,, fluctuates around O as n increases, is of order 1, and is given in
terms of the Jacobi theta function (see e.g. [61, Chapter 20])

+o00
0y = Y T s e, T e, +00). (1.10)

{=—00

Note that 6(z|t) = 6(z + 1|t) for all z € C and t € i(0, +00); in particular R >
x = 0(x|7) is periodic of period 1. To our knowledge, this is the first time the Jacobi
theta function appears in a large gap problem of a two-dimensional point process.
The presence of oscillations in these asymptotics can be explained by the following
heuristics. It is easy to see (using Bayes’ formula) that P, is also equal to the partition
function (= normalization constant) of the point process (1.1) conditioned on the event
that #{z; : |z;] € [r1, r2] U [r3, r4] U ... U [r24-1, 1251} = 0. As is typically the case
in the asymptotic analysis of partition functions, an important role is played by the
n-tuples (z1, ..., z,) which maximize the density of this conditional process. One
is then left to understand the configurations of such n-tuples when # is large. To be

L.
more concrete, suppose for example that g = 1 and 0 < r; < r» < b~ 2. Since
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3534 C. Charlier

the support of (1.4) is the centered disk of radius b’zib, it is natural to expect that
the points in the conditional process will accumulate as n — +00 on two separated
components (namely the centered disk of radius r1, and an annulus whose small radius
is ). The n-tuples (z1, ..., z;) maximizing the conditional density may differ from
each other by the number of z;’s lying on a given component. This, in turn, produces
some oscillations in the behavior of P,. More generally, if the points in the conditional
process accumulate on several components (“‘the multi-component regime"), then one
expects some oscillations in the asymptotics of P,. (There exist several interesting
studies on conditional processes in dimension two, see e.g. [42, 60, 68].) In the setting
of this paper, there are three cases for which there is no oscillation (i.e. 7, = 0): when
the hole region consists of only one disk (the case g = 1 of Theorem 1.4), only one
unbounded annulus (the case g = 1 of Theorem 1.7), or one disk and one unbounded
annulus (the case g = 2 of Theorem 1.9). This is consistent with our above discussion
since in each of these three cases the points of the conditional process will accumulate
on a single connected component.

It has already been observed that the Jacobi theta function (and more generally, the
Riemann theta function) typically describes the oscillations in the large gap asymp-
totics of one-dimensional point processes in “the multi-cut regime”. Indeed, Widom
in [76] discovered that the large gap asymptotics of the one-dimensional sine pro-
cess, when the gaps consist of several intervals, contain oscillations of order 1 given
in terms of the solution to a Jacobi inversion problem. These oscillations were then
substantially simplified by Deift, Its and Zhou in [26], who expressed them in terms
of the Riemann theta function. Since then, there has been other works of this vein,
see [16] for B-ensembles, [21] for partition functions of random matrix models, [35]
for the sine process, [12, 13, 51] for the Airy process, and [14] for the Bessel pro-
cess. In all these works, the Riemann theta function describes the fluctuations in the
asymptotics, thereby suggesting that this function is a universal object related to the
multi-cut regime of one-dimensional point processes. Our results show that, perhaps
surprisingly, the universality of the Jacobi theta function goes beyond dimension 1.

Another function that plays a predominant role in the description of the large n
asymptotics of P, is the complementary error function (defined in (1.6)). This function
already emerges in the constant Cy4|(»=1,o=0) of Forrester, see (1.5). Interestingly, the
constant C4 of Theorem 1.1 involves the same integrals (which are independent of b
and «), namely

0 1
f log <—erfc(y))dy,
PSS 2

+00
/ |:10g (%erfo(y)) +y2 +1logy + 10g(2ﬁ)i|dy, (1.11)
0

and the constants Cg of Theorems 1.4 and 1.7 involve
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Fig. 1 This situation is covered
by Theorem 1.1 with g =3

0 1 eV (1 - 5y%)

/oo {2)7 log (Eerfc(y)) + m}d}l, (112)
+o0 1 e (1= 5y%)

/0 {2y o2 (Eerfc(y )) T3 rerke(y)
+ 13—1y3 +2ylogy + G + 2log(2ﬁ)>y}dy. (1.13)

Using the well-known large y asymptotics of erfc(y) [61, 7.12.1]

e 1 315 S
erfc(y)zﬁ ;—$+$—W+O(y )}, asy— 4oo, (1.14)

and erfc(—y) = 2 — erfc(y), it is easy to check that the integrals in (1.11), (1.12) and
(1.13) are finite, as it must.

1
We expect that the estimate O(n_ﬁ> for the error term in (1.9) is not optimal and

could be reduced to O(n_%). However, proving this is a very technical task, and we

will not pursue that here. We now state our main results, and discuss our method of
proof afterwards.

Theorem 1.1 (g annuli in the bulk) Le?

gef{l,2,...}, o> —1, b >0,

1
O<ri<---<ryg<b™2
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3536 C. Charlier

be fixed parameters. As n — +00, we have

P, = exp <C1n2 + Conlogn + C3n 4+ Caa/n + Cslogn + Ce + F, + O(nll2>>,

(1.15)
where
(3 =130 b
Ci= Z{ e — 7 =Dt
k=1 410g(r2k 1) 4
§ b(r r2k 1)
Cy=— _—
1=-y 5
k=1
z b 2( 2b 2b
Csy = {b(r 2 )( +1lo >+b (r log(rax) — 22 lo (rzk,]))
]; 2k 2k 1 gm 2k 108 2k—1 108
— (o — bryg_) log(ta — brig_y) — (b3, — tx) log(bry — m)},
1
C4—«/_b{/ log< erfc(y))dy
+o00 1 ) 28 b
+/0 [log <§erfc(y)> +y“+logy +10g(2ﬁ)]dy} Zrk,
k=1
Cs =0,
8 2 2
8 1-2b ( Mk ) b r2k
Ce = = log(m) + lo +
) g(m) 2{ 12 S\ bri? — ty
b2r2b 1
+—2k 1 ——10g10g< Tk )
Iy — erk—l 2 72k—1
erb—IZk 2
o (22 ) .
+[ S\, ] Zlog( (rzk 1) ]>}
4log< Lok ) 2k
erk —h )
§ 1 10g<t2k erk 1 Tl
=Zlog9 bn + - —o + o
k=1 2 210g( 2 ) IOg(er 1)
0 is given by (1.10), and for k € {1, ..., g}
1r —r2h
to = =221 e pr2b b3, (1.16)

2 log (72+)
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Fig.2 This situation is covered
by Theorem 1.4 with g =3

12b)2

(rzzb—r
2 1L
4log()

Remark 1.2 By setting« = 0 and g = 1 in Theorem 1.1, we obtain C| =
5(r3? — r?), which agrees with (1.8).

Remark 1.3 The constant Cs5 = 0 has been included in (1.15) to ease the comparison
with Theorems 1.4, 1.7 and 1.9 below.

Theorem 1.4 (g — 1 annuli in the bulk and one unbounded annulus) Let
gef{l,2,...}, o> —1, b >0,

_ 1
O<ri < <1 <b 2% <ry=+00

be fixed parameters. As n — +00, we have

Pn = exp (sz + Canlogn + Czn + Cy/n + Cs logn + Ce¢ + F, + O(n_IIZ))

(1.17)
where
g—1 2 4b
(r oy 1) b br2 1 2b
G :Z{—nk —(rg — 3t 1)} - Gy
k=1 41 g(rzk 1) 4 4
1 b 3
+ % log (erg—l) + e
g—1 2b
bry —ry ) | brag_ 1
== k; 2 Ty

g—1
b
Cz = Z {b(r r2k 1)( + log «/_) + b? (r%,i’ log(rak) — rzz,f_l 10g(r2k_1)>
k=1
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3538 C. Charlier

— (tox — br3p_)og(tax — bryv_ ) — (briy — tar) log(brap — tzk)}

b+1 br} 1>>
2b 8
—r o+ ——+D>blo
2g— 1< ) g( A
14+ 2«
_(1—br2g 1)10g< brzg 1)—|— b (brzg 1)

Lbt2atl 1 (b
2b 2 %\ )

0
Cy =\/§b{/ log <%erfc(y)>dy

+00 1 .
+/ [log <§erfc(y)> +y* +1logy + log(Zﬁ)]dY} Z s
0 k=1

I + 2«
s=-
—1 S f1—2p? - b2
log(m) + Z { log ( ) +
P 12 rak—1 br3t — ty

br3b 1
+ —2k L _ —loglog< T2k )
bk — br2k—1 2 72k—1

br2b—12k 2 .
. [log (ty(i];?rzzf 1)] B f]og (1 B ("2/6—1)2])}

4log ( o ) j=1 "2k
20+ 1 I+2 bPran
- log(2m) — og(l —br3% )+ —=2 "
4 U 1 =brg)
b* + 6ba + 60% + 60 + 3b + 1
+ b+ log(b)
12b
b% + 60% + 60 + 1
6 log(ng—l)

+2b/° {21 <1rf())+e—>’2<l_—5y2>}d
U0 et U et 3 merte(y) | &

+2b/+°°{2 | (1 ol ))+ e’ (1 = 5y2)
og | —erfc _
0 yios 2 Y 3. /merfec(y)

11 1
+ —y3 +2ylogy + (5 + 210g(2ﬁ)>y}dy,

3
br, t
. log (—2" 2k>
t—bry, |

1
Fn = log6| ¢ - —
I T

i )
2k
k=1 log( 2k—1
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Fig.3 This situation is covered
by Theorem 1.7 with g =3

0 is given by (1.10), and tyi is given by (1.16) fork € {1, ..., g — 1}.

Remark 1.5 1t is easy to check that the constants Cy, Cp, C3 of Theorem 1.4, when
specialized to b = 1, « = 0 and g = 1, are the same as the constants of Cunden,
Mezzadri and Vivo in (1.7).

The constants Cg appearing in Theorems 1.7 and 1.9 below are notably different
than in the previous two theorems, because they involve a new quantity G (b, o) which
is defined by

k N2 3+42logb 14+2a—b
+a>—{—logN— +2og N? + e Nlog N

N
boa)= i logT
g6, ) N—1>Too|:j; o8 ( b 2b 4b 2b

+(10g(2n)+b—2a— 1 —3b + b? + 6a — 6ba + 60>

12b

1
1+1logh) |N
) 2 <+og)>+

logN}], (1.18)

where I'(z) = fooo t*~le~"dt is the Gamma function. Interestingly, this same object
G(b, ) also appears in the large gap asymptotics at the hard edge of the Muttalib-
Borodin ensemble, see [18, Theorem 1.1] (G (b, @) here corresponds to d (%, % -1
in [18]). It was also shown in [18] that if b is a rational, then G (b, o) can be expressed
in terms of the Riemann ¢-function and Barnes” G function, two well-known special
functions (see e.g. [61, Chapters 5 and 25]). More precisely, we have the following.

Proposition 1.6 (Taken from [18, Proposition 1.4]) Ifb = Z—; for some positive integers
ni, ny, then G(b, «) is explicitly given by
b(ny —nyp) +2n«

G(b,a) =nina¢'(=1) + —, log@m)

1 —3b + b* + 6a — 6ba + 6o A <j+%—1 k)
- logny — log G| —L2— + — ).
12b g /X:;kX:; g ny ni

We now state our next theorem.
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3540 C. Charlier

Theorem 1.7 (g — 1 annuli in the bulk and one disk)
Let

gef{l,2,...}, o> —1, b >0, O=r1<r2<~--<r2g<b*ﬁ

be fixed parameters. As n — +00, we have

P = exp <C1n2 + Conlogn + C3n + Cq4/n + Cslogn + Cg + Fp + O(n_%)> (1.19)

where

Xg: 2k_r2k D2 l_7(r T brﬁtb
Tdlog(2—) 4 21 4

2k—1

§ b(r —r2 ) br2b
C, = _Z i 2

P 2 2
g
b
C; = Z {b(r - 1)( + log ) +b? (rzzf log(rax) — 30 10g(”2k71))
= 21

— (tok — br3t_)Nog(tay — briv_)) — (br3? — t) log(bray — m)}

)]

0
Cy = «/Eb{/ log< erfc(y))dy

+00 1
+ /0 [log <Eerfc(y)> +y* +logy + log(Zﬁ)]dy} Z rp,
k=2
o L=6b+ b7+ 60 +6a” — 12ab
T 12b ’

-1 &(1—2p2 b2r?
Ce = g log(m) + Z { log< T2k ) + er

2 — 12 k—1 br2k — bk

b*r3b 1
+— =L 2117 — = loglog ( e )
g —bry;_, 2 rok—1

br2k—t2k ) 2
[log <t2k br2k 1 ]
"2k
4log (m 1)

Shs(1-(21)")
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Fig.4 This situation is covered
by Theorem 1.9 with g =3

2 1
+ ot ]og(27r)+(b—i—Zotb—oe—ot2

log(b)

1+ b2 o b? — 6ba + 60 + 6a — 3b + 1
.y
£n 126

0 1 e (1= 5y?)
—Gb,a) —2b /_oo {Ey log <§erfc(y)> + W}dy

+o0 1 e (1 —5y2)
— Zb/(; {Zy log (Eerfc(y)) + —3ﬁerfc(y)

11 1
+ =y} +2ylogy + (E + 210g(2ﬁ))y}dy,

3
log (_brgg — )

tk—bry;

8
1
Fn = E IOgQ(Ian—I-——O(—I-
- 2 2log (2
k=2 0g rak—1

i )
log(%) )

0 is given by (1.10), 1oy, is given by (1.16) fork € {2, ..., g}, and G(b, ) is given by
(1.18).

Remark 1.8 Itis easy to check that the constants Cy, Ca, C3, C4 of Theorem 1.7, when
specializedtob = 1, « = 0 and g = 1, are the same as Forrester’s constants in (1.5).

Theorem 1.9 (g — 2 annuli in the bulk, one unbounded annulus, and one disk) Let

ge€{2,3,...}, a>—1, b >0,

1
O=ri<r <. <rg1<b 2% <r,=+00
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3542 C. Charlier

be fixed parameters. As n — +00, we have

1
Pn—exp(Cln +C2nlogn+C3n+C4f+C510gn+C6+.7-'n+O( *7)), (1.20)

where
g—1 2 4b
(37 =30y brzgfl 2b
Ci = {—_‘(r V2k 1)} Tog—1
L aez) 8 e
L (r2_)) + 3 _ b
JE— O ___’
2b E\Pe-1) T T

b3 ) b 1 b

P 2 2 2 2

g—1
b 2(.2b 2h
Cz = g {b(l’ Vzk 1)( + log TT[) +b (r2k log(rak) — 31— 10g(”2k—1))

— (1o — br3?_ ) log(tax — br3? ) — (br3? — top) log(bri? — m)}

b
b+1 bry,_
—r3t_ 1<a + +b10g( 2;;))

_(1—brzg ])1og< brzg 1)+ 1—|2—b2a1 g(b Sy ])

b+2a+1 1 b 1 b —
+T+510g (g) +r22b(05+§+§(1 —2log (rg 2”)))’

0
Cy = \/Eb{ / log (%erfc(y))dy

2g—1

+00
+/ [log < erfC(y)> +y2 +logy + 1og(2f)]dy} >
0 k=2
Co— L7364+ 60+ 60— 6ab
= 126 ’
g—1 2
g—2 1—-2b 2k
= 1 1
og(m) + Z { B og o
b*r2 bzr 1
2hr2k 2t Ly log < rak )
bVZk ) x — br2k I 2 k-1

erh—tzk 2

[10g<2k—2b)] 2j

tx—b T

e (2 Z“’g( (%))l
oe ()
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Fye—1
log(1 = br3 ) + —gzb
br 2g 1

142 b + 60 + 60 + 1 Fg_
+b+ 5 log(br3’) + log< 2f 1)—g(b,w),
2

6
i )
o2

1 4 2«

erb —k
-1 1 2k
I o8 (5258

1
Fn = logo| ¢ —— =
n Z 0g (2k7’l+ 2 @+ 210g( 2k )

k=2

0 is given by (1.10), tox is given by (1.16) fork € {2, ..., g — 1}, and G(b, @) is given
by (1.18).

Method of proof. The problem of determining large gap asymptotics is a notoriously
difficult problem in random matrix theory with a long history [39, 41, 50]. There
have been several methods that have proven successful to solve large gap problems of
one-dimensional point processes, among which: the Deift—Zhou [25] steepest descent
method for Riemann—Hilbert problems [10, 18, 19, 22, 24, 27-29, 49], operator theo-
retical methods [33, 34, 75], the “loop equations" [15, 16, 56, 57], and the Brownian
carousel [31, 64, 72, 73].

Our method of proof shows similarities with the method of Forrester in [37]. It
relies on the fact that (1.1) is determinantal, rotation-invariant, and combines the
uniform asymptotics of the incomplete gamma function with some precise Riemann
sum approximations. Our method is less robust with respect to the shape of the hole
region than the one of Adhikari and Reddy [1, 2], but allows to give precise asymptotics.
We also recently used this method of Riemann sum approximations in [17] to obtain
precise asymptotics for the moment generating function of the disk counting statistics
of (1.1). However, the problem considered here is more challenging and of a completely
different nature than the one considered in [17]; most of the difficulties that we have
to overcome here are not present in [17]. These differences will be discussed in more
detail in Sect. 3.

2 Preliminaries

By definition of Z, and P, (see (1.1) and (1.2)), we have

Zn=— / / [T lw—zl ]_[|z Pl g2z @2.1)
C

1<j<k=<n

P":nvzf /(C l_[ |2k — 2 Hw(z/)d Zj, (2.2)

1<j<k<n
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where the weight w is defined by

_nz22 |0, if |z € [r1, 2] U [r3, 4] U - - U [r2g—1, 72g ],
w(Z) — |Z|2Dte nlz\ | | ) 8 8
1, otherwise.

We will use the following well-known formula to rewrite Z,, and P, in terms of
one-fold integrals.

Lemma 2.1 Ifw : C— [0, +00) is rotation invariant (i.e. w(z) =w(|z])) and satisfies
/ ww@)du < +oo,  forall j >0,
C

then

n—1 .1 .
f / l_[ |2k — 217 l_[ w(zj)d*z; = 2n)" H/ u? M w(u)du.
C =070

1<j<k=<n

The proof of Lemma 2.1 is standard and we omit it, see e.g. [74], [17, Lemma 1.9]
and the references therein. The argument relies on the fact that the point process
onzi,...,z; € Cwith density proportional to [T;; -, |zx — z;1* [Tj=; w(z;) is
determinantal and rotation-invariant.

. . . 2b
Using twice Lemma 2.1, with w(z) = |z|*%e™"!

and w(x) = w(x), we obtain

Zy=n B H r), 23)

n-1 g e "

Z, Py = (27_[);1 l_[ Z/ u2]+1+2aefnu du
j=0¢=0""2¢
1420 TT" " i
=n_ % nb_” Z( (]Z“,nruﬂ) y (% nrzzé’)), 2.4)
j=1£=0

where rg := 0, r2441 1= +00, we recall that I'(a) = fooo 1% le~'dt is the Gamma

function, and y (a, z) is the incomplete gamma function

z
y(a, z) =/ e ds.
0

By combining (2.3) with (2.4), we obtain

- EN z+13’( b “ nrg”)
logP, = 1 1 — ) 2.5
o2 zg(z< o ) 3)
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This exact formula is the starting point of the proofs of our four theorems. To analyze
the large n behavior of log P,, we will use the asymptotics of y(a, z) in various
regimes of the parameters a and z. These asymptotics are available in the literature
and are summarized in the following lemmas.

Lemma 2.2 [61, formula 8.11.2]. Let a > 0 be fixed. As z — +0o0,
y(a,z) =T(a)+ O 2).
Lemma 2.3 [71, Section 11.2.4]. The following hold:

|
e_fauzg(u)du,

(2.6)

1 2
y(a’z) - | . e_faﬂ o0
f = Serfe(=ny/a/2) = Ra(m),  Ra(n) = 2 /_oo

1
u+in’

oz a-1-mpy o 20-1-In1)
A= =00 [Ty =i D [ )

and the principal branch is used for the roots. In particular, n € R for . > 0, while
te Ll = {#619 i —m < 6 < m}foru € R. Moreover, as a — 400, uniformly for
z € [0, 00),

where erfc is given by (1.6), g(u) := j—;ﬁ +

YU () (2.8)

All coefficients c j(n) are bounded functions of n € R (i.e. bounded for A € (0, 00)),
and

1 1 1 1 1 1

2.9)

By combining Lemma 2.3 with the large z asymptotics of erfc(z) given in (1.14), we
get the following.

Lemma 2.4 (i) Let§ > 0 be fixed. As a — +o00, uniformly for A > 1 + 6,

anz
y(a, ra) e~ (=1 1 1+100+2A% 1 sh
B — - O / ,
T'(a) v <A— 17 T ooy an TP
aTIZ a
where 1 is as in (2.7) (in particular e™ 2" = ™ %),
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(i) As a — +oo, uniformly for A in compact subsets of (0, 1),

2
_an” 2
y(a,ra) e 2 ( —1 1  1410a+2% 1 +O(a_5/2))’

= -
I'(a) 2 \A—1.4/a 12(0 — 1)3 a3/
. . . . _a® a—zz"
where 1 is as in (2.7) (in particular e™ 2 = e*"*27).

3 Proof of Theorem 1.1: the caser; > 0andry4 < b‘z1T:

In this paper, log always denotes the principal branch of the logarithm. Recall from
(2.5) that

n 2g+1 Jjto 2b
Y ( p Ny )
lo Pn:§ lo § (it 7)) (3.1
.~ g(zzl F(5%)

To analyze asymptotically as n — +oo the sum on the right-hand side, we will split
it into several smaller sums, which need to be handled in different ways.
Forj=1,...,nand¢ =1,...,2g, we define

. 2b
jt+o bnr; 20 je—1—Inkjye)
aj = , Aig = — , o= Aje—1 : .
J J-t i ta nje = Gje—=1 (o —1)?

(3.2)

Let M’ be a large integer independent of n, and let € > 0 be a small constant indepen-
dent of n. Define

2b 2b
bnrj bnrj

Joo =1L 6, jea = 12 el e=1,.,2,
jo.— =1, Jjo+ 1= M, Jogil,— i=n+1, 3.3)

where [x] denotes the smallest integer > x, and | x| denotes the largest integer < x.
We take € sufficiently small such that

br2b br2b br2?
—t Yl forallee{l,...,2g—1}, and 2 1. (34)
l1—e 1+4e€ 1 —¢
A natural quantity that will appear in our analysis is
120 — 26 br2b — pr2b
tok : 2k 21 _ 2k okl p =1, . (3.5)

= 21og (%)  log(r3b) —log(r3l )
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It is easy to check that for each k € {1, ..., g}, f2 lies in the interval (br2k 1 brzz,l(’ ).
For reasons that will be apparent below, we also choose € > 0 sufficiently small such
that

2b
bry_y
< hr <

1—¢ 1+4+¢€

. k=1,...,g (3.6)

Using (2.4) and (3.4), we split the j-sum in (3.1) into 4g + 2 sums

28
log Py = So+ ) (Sok—1 + ) + Sag1, 3.7)
k=1
with
2g+1 jta .2
So—Zlog< M e ) T )>, (3:8)
Je——1 2g+1 2b
_ P ) _
Sok—1 = Zlog(Z( D r(ﬂ) . k=1,...,2g+1, (3.9
J=jk—1,++1
Jk+ 2g+1 2b
,nr
Su= Y log< Z( 1)“‘M), k=1,....2¢.  (3.10)
I3
J=Jk~
We first show that the sums Sy and Si, S5, So, ..., S4g41 are exponentially small as
n — 400.

Lemma 3.1 There exists ¢ > 0 such that So = O(e™"") as n — +o00.
Proof Since M’ is fixed, by (3.8) and Lemma 2.2, as n — +00 we have

M’ 2g+1

So = 210g< Z (_1)€+1[1 + O(e%’zzb")]) _ O(eiérlzb”).

j=1 =1

Lemma3.2 Let k € {1,3,5,...,2¢ + 1}. There exists ¢ > 0 such that Sy,—1 =
O(e ™ asn — +oo.

Proof The proof is similar to [17, Lemma 2.2]. Let us consider first the case k €
{3,5,...,2¢g + 1}. By 3.2) and (3.3), for j € {jk—1.+ +1,..., jk,— —1}and £ €
{1,...,2 g} we have

2b 2b

r r
Tk +ﬁ T T
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For k = 2g + 1, the left-hand side in (3.11) must be replaced by %. Since
€ > 0is fixed, A; ¢ remains in a compact subset of (0, 1) as n — +o0 v}z/ith j €
{jk=1,+ +1,..., jx,— —1}and £ € {1, ...,k — 1}, while X ¢ remains in a compact
subsetof (1, co)asn — +oowithj € {jr—1 ++1,..., jx——1}and? e {k,...,2 g}.
Thus we can use Lemma 2.4 (i)—(ii) with a and A replaced by a; and A ; ¢ respectively,
where j € {jk—1++1,..., jx— —1}and £ € {1, ..., 2 g}. This yields

Ji,——1 ,,2.

So1 = zlog(zc Detoe 2B 1 3 D (14 0 ) 1),

J=jk—1,++1 =1 t=k
(3.12)

as n — +o00. By (3.2) and (3.11), there exist constants {c,, c }3 | such that cjn <
aj < c n,0<c,0<c<|hje—1]1= czandO <c3 < 77 e = c3holdforalllarge
enoughn all j € {jk—1.++1,..., jk— —1}andall € € {1,...,2g}. Thus Sy—1 =
(’)(e_%”) as n — 400, which finishes the proof for k = 3, 5, ...,2¢ + 1. Letus
now consider the case k = 1, which requires a slightly different argument. We infer
from Lemma 2.4 (i) that for any €’ > 0 there exist A = A(¢’), C = C(¢’) > 0 such
that |y(“ 2a) )< Ce’# foralla > Aandall A € [1+ ¢, +00], where 7 is given

by (2.7). Let us choose €’ = § and M’ sufficiently large such that a; = # > A(5)
holds forall j € {M’ + 1, ..., ji,.— — 1}. In a similar way as in (3.12), we obtain

J1.——1
= ) log <Z( i (1 + O(e L )) ) as n — 400.

j=M'+1

For each ¢ € {1,2,...,2¢}, ajn% ; is decreasing as j increases from M’ + 1 to

Jji1.— — 1, and therefore '

2 2
ajn; aj _—1n5,  _
sz.é > Ji. 2/1,, 1,¢ >cn, forallje{M' +1,...,5._—1}, Le{l,...,2¢g},

for a small enough constant ¢ > 0. It follows that S| = O(e™“"") as n — +o00, which
finishes the proof for k = 1. O

Now, we analyze S3, 7, ..., S4g—1. As it turns out, these are the sums responsible for
the oscillations in the large n asymptotics of log P,. There is no such sums in [17], so
the analysis done here for S3, §7, ..., S4g_1 is new.

The next lemma makes apparent the terms that are not exponentially small.

Lemma3.3 Letk € {2,4,...,2g}. There exists ¢ > 0 such that

Sok—1 =S |+ 85+ 0™ ™), asn — +oo, (3.13)
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where
Lik.x ite .2 Jjta nr2b
Sé}{ll = Z log (1 n v (= : ]+ak D J/(F ks k )>’
J=Jk—1,++1 (% b ) (
Jk——1 j+ot nr jta nr2b
S R (== Lo =)
J=Llikxl+1 % -) Fe%- ®)
and
Jkx =Nl — @, (3.14)

where ty is defined in (3.5).
Proof Note that (3.11) also holds for k € {2,4, ..., 2g}, which implies in particular

thatforeach € € {1, ..., 2g}, |A; (—1| remains bounded away from 0 asn — +oc and
simultaneously j € {jk—1,+ + 1, ..., jx.— — 1}. Thus we can use Lemma 2.4 (i)—(ii)
witha and A replaced by a; and A ; , respectively, where j € {jx—1,++1, ..., jr,——1}

and £ € {1,...,2g}, and this gives

o
L 2 — 1 1
y(GE ) e +Oom?), Cell, .. k-1,
F(] %) V2r \1=2%j¢./a;
ain?
y (L nr2b) el

1 —3/2) etk 2,
) +m<1_)\]“/_+0(n ) ef g)

asn — +oo uniformly for j € {jx—1,++1, ..., jx.— —1}. In asimilar way as (3.11),
we derive

2b _ 2b /26 _ 2b

U+e Tl <h 4 1<(r—a———4ﬂl
26 Ixe =T ¢ Jt= ,2b T—¢’
Ty n k—1 bn

forall j € {jx—1.++1,..., jk— —1}and £ € {2, ..., 2 g}, which implies by (3.2)
that

min {77]',2 — 015053 = N 2s s Nj k=1 — 1 k=25
O0—=njk—1mjk =0, Mj k1 = Njks oo Nj2g — 77j,2g71}

is positive and remains bounded away from 0 for all n sufficiently large and for all
Jj € lk-1.++1, ..., jk,— — 1}. In particular,

) . 4 .
~ e er>_<1 vty y ()

— (1+0@™M")
INEE=Y) I )
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as n — 4oo uniformly for j € {jx—1.+ +1,..., jx.— — 1}, which implies
Jk——1 jto o 2b jta . 2b
Y2y y (. nr?) _
Su—1= ), log <1+ e T e ) T O,
J=Je-1,4++1 rZ- - = =)
asn — +o00, (3.15)
and the claim follows after splitting the above sum into two parts. O

The reason why we have split the sum in (3.15) into two parts (denoted S2k , and

Sék_l) around the value j = | ji .] is the following. As can be seen from the proof of
Lemma 3.3, we have

2
4 k-1
(G2 ) e 1 1
4 20 _ e ( +0<n—3/2)>, (3.16)
F(] ) V2 I —Xjk-1./a;
ain?
L 20 s 1 1
Y G i) e < ~|—(’)(n_3/2)), 3.17)
r(5e) Vor \Ajk—1/a;
asn — +oo uniformly for j € {jx—1,++1, ..., ji,— — 1}. The two above right-hand

sides are exponentially small. To analyze their sum, it is relevant to know whether
n? 1 = n? & OF n? el < n? ¢ holds. It is easy to check that the function j —
r]] k 773 «_1» When viewed as an analytic function of j € [jk—1,+ + 1, jk,— — 1], has
a simple zero at j = ji .. In fact, we have

2 2
aj(nj =15 1) . . T
S = 20k — ) log  —— ), (3.18)
2 Tk—1
which implies 1npart1cularthatn & —n? k- ispositivefor j € {jr—1,++1, ..., Ljkx]}
and negative for j € {|jk«] + 1 ..» Jk,— — 1}. Note that ji , lies well W1th1n the

interval [ jx—1 ++1, jk,— —1] for all sufficiently large n by (3.3), (3.5) and (3.6), which

implies that the number of terms in each of the sums S;,&l and Sé,zcll is of order n.
When j is close to | jk ], the two terms (3.16) and (3.17) are of the same order, and

this will produce the oscillations in the asymptotics of log P,. We will evaluate S2k 1

and Sékll separately using some precise Riemann sum approximations. We first state
a general lemma.

Lemma 3.4 Let A, ag, B, b be bounded function of n € {1, 2, ...}, such that
a, .= An + agp and b, .= Bn+ by

are integers. Assume also that B — A is positive and remains bounded away from 0.
Let f be a function independent of n, and which is C4([min{“7”, A}, max{l%, B}]) for
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alln € {1,2,...}. Then as n — 400, we have

-2 A 1 4+ 2bo) f(B
qu_n/ Food 4+ a0>f<>+2r(+ 0)f(B)

L 1+ 6a0— 6ad) f'(A) + (1 + 6by + 6b3) f'(B)
12n
N (—ap + 3ak — 2ad) f"(A) + (bo + 3b3 + 2b3) f(B)
12n2
by,—1
mA,n(fm) + mB,n(fW) S mj,n(f/m)
+ O( +) =

n3

, (3.19)

Jj=an
where, for a given function g continuous on [min{“n—”, A}, max{%, B}],

man(@) = max - |g(x)], mpn(g) = max 1g (),
x€[min{Zt, A}, max{7+, A}] xe[min{%,B},max{b’—:’,B}]

and for j € {an, ..., by — 1}, mj,(g) :=max _.; j+1y[g(x)].

n

Remark 3.5 To analyze the sums S(l) , and Szk 1» we will use Lemma 3.4 onl
with A and B fixed. However, we w111 also deal with other sums (denoted Szk
and S2k in Lemma 3.19 below) that require the use of Lemma 3.4 with vary-
ing A and B. So it is worth to emphasize already here that the condition “f €
C4([min{”7”, A}, max{%", B}]) for all n € {1,2,...}" allows to handle the situa-

tion where, for example, A \( 0 asn — 400 and f € C4((O, max{%, B}]) but
f & C*([0, max{2, B}]).

Proof By Taylor’s theorem,

by—1

f(x)dx = Z f(x)dx
N I

n n

b1 , ,
[ fD .f%;) LGOI A C)
N Z { w2 e T 2ant

_un

JH ( 1)4
+ /; fm/(é:j n(x))dx} (3.20)
for some &; ,(x) € [%, x]. Clearly,
j+1
" j,n(f/m)
‘/ G e e ’_ e
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Therefore, by isolating the sum Zb" ) ( ) in (3.20), we get

by, —1 b,—1 j j j
/(ﬁ) //(ﬁ) ///(ﬁ)

Z f( ) - n[ fodx Z {f2n + f6n2 + fZ4n3 }
Jj=an n Jj=an

b, —

()

+ O( Z fn—4> (3.21)
J=an

as n — —+oo. In the same way as (3.21), by replacing f successively by f/, f” and
1", we also obtain

bn b,—1 by—1
S D S m ()
é:f()—n/: fmdx_,;{ T }+O(}§ ’n3 )
(3.22)
b,—1 bn—1 2 bp—1 "
Z e )—n/ F()dx — Z f ( ) (9( Z %) (3.23)
Jj=an n Jj=an Jj=an
bp—1 1
Z OE n/ [ (x)dx +0< > %) (3.24)
Jj=an n j=an
as n — —+oo. After substituting (3.22)—(3.24) in (3.21), we get
0 f1@ | @ " mya ()
bn Jn
;aj iy =fib >+/ {nf(x SRR }d +0<J§ — )
(3.25)

as n — +oo. The integral on the right-hand side of (3.21) can be expanded using
again Taylor’s theorem; this gives

b,

" B Caof(A)  agf'(A)  agf"(A)
fx)dx = / f(x)dx .

a 2n2 6n3
bof(B) b3f'(B) b f"(B
+of()+of(2)+of§)+€m
n 2n 6n

1 " hirl
for some &, satisfying |£,| < WA/ )’;mg'"(f ) The quantities f(%”),f% f(x)dx,

bn
Ja f”(x)dx can be expanded in a similar way using Taylor’s Theorem. After substi-

tuting these expressions in (3.25) and using some elementary primitives, we find the
claim. O
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We introduce here anumber of quantities that will appear in the large n asymptotics
of S§) , and S5 | Fork =2,4,...,2g, define

2b 2b
bri2, brk

, B = , 3.26
k 1+e ( )

Gk = jk,* - ij,*J» Ak =
1—e€

andfork =1,2,...,2g, define

br2b
fiex) = <1 + log —) b,

1
fox(x) = (———>logx+—logb log vV2m +—10g(brkb)—log|br,fb—x|,

b
(3.27)
b* — 6ba + 6a® bx bh—a
xX)=— + + : 3.8
F3ax) ( 12bx (x — br2b)2 br,f”—x) (5:28)
bnr bnr
(n,€) _ k k
L _(l—e —a)—\\l_e —on,
bnr2b bnr2b
(n,€) _ k k
0 Tk _ — . 3.29
b= [He “W <1+e “) (329
Lemma3.6 Letk € {2,4,...,2g}. Asn — 400, we have
tk ik — A n
S3-1 =n2fA fra—1dx — - "nlogn+n((a—1+e( ) fraet (Ag)
k
() + ~1(A Tk
— (@400 fia1 (1) + Sfre—1(t) 2fl,k 1(Ag) +/A fz,k—l(X)dX>
k
10 n,e
SO, — o
1 — 6(a + 6;) + 6(x + 6;)? ,
p eI RO @)
L+ 60— 1+ 07 ) +6( — 1+6"7,)? /
- S (fix-1)'(A0)
n Jh—1(T) + _1(A
—(Ol+9k)f2,k71(lk)+(a—l+9,£;f?+)f2,k,1(Ak)+ S2k=1(tr) 2f2,k 1(Ag)
+o00 2(j+6k) 2b 2
k-1 e = briZ, (logn)
+/ S3.h— 1(X)dX+X(:)log{1+( . ) o +o(— ’

where ty is givenin (3.5)and f1 k-1, f2.k—1, f3.k—1, Ak, 6k, Glgrile)Jr are givenin (3.26)—
(3.29).

Proof Recall from (3.11) that A ; _1 remains in acompact subset of (0, 1) asn — +o0

uniformly for j € {jx—1,+ + 1,..., jx,— — 1}, and that A; ; remains in a compact
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subset of (1, 4-00) asn — +oo uniformly for j € {jx—1,++1, ..., jkx.— —1}. Hence,
by Lemma 2.4 (i)—(ii), as n — 400 we have

2
k) M
. e 2 1 1
SOi= Y log (
it V2 1 —Xjk—1./dj

1+ 10X i k—1 +)L2. 1

! Sl S rom™)
20— — D3 G

J

2
_ Yk

e 3 ( 1 1 110k, +43, 1
Var \hjx—lya 20— D0 o

+ + O(n5/2)>}.

Since the number of terms in Sé,l()_l, namely #{jx—1,+ + 1, ..., Ljk.+]}, is of order n
as n — +o00, the above asymptotics can be rewritten as

2
Likx _ 4kt . 2
s i log ( ! L + L 10%) +Aj’k_l L)
2U—1 e Nz 1= Ajr—t /@] 12(j k-1 — 1)3 a;/z
ain?
o~ LAt ( L1 L+ 10A+a5, 1 )} om™
+& - (- 7Tk - VLo
Vor \djx—lya 20— o3P
1 ~
=50+ 5Plogn + 50 + 501 13, + 0w, (3.30)
n
where
Ljie) . 2% Ljk.s
W il briZi\ @__1
Sn = . Z { b (1 +10g ]/n rk*] , Sn = B . Z 15
J=k=1,47+1 J=der4 1
3 ik 1 « ) 1
=Y 3~ 3 J1og(i/m) + S logh
J=Jk—1,++1
[07
— log v/27 + - log(br” ) — log (j/n - brifl)},
Lk, +] 2 2 :
RO {b — Obar 7+ 6 bifn @b }
’ =it 12bj/n G/n—=br? ) j/n—br, )
 _ “’f log{1+e_w%k2m-v<j/n—br£él+g>}
n o br2b _ ]/I’l n
J=Jk—1,++1 k
~ “f e (14 E_M Jj/n— br;?ﬁ)
= —r
J=Jk—1,++1 brk —J/m

@ Springer



Large gap asymptotics. . . 3555

L. aj o g =n% )
+ Z log (1+e_2€n>7

J=Jk—1,++1

where gn =Om YHand & = O™ ") as n — 400 uniformly for j € {Jk—1,+ +
, Ljk.«1}. The large n asymptotics of Sf,l), S,(f), S,(f) and 55,4) can be obtained using
Lemma 3.4 with

2b
bri?,

1—c¢

ap = jk—l,+ +1, b, = ij,*Jg A=

ay=1-a—6"" ., B=t, by=—a—b,

3

and with f replaced by fi x—1, 2, f2k 1 and f3x—1 respectively. Thus it only
remains to obtain the asymptotics of S,, We can estimate the &,-part of S using
(3.18) as follows:

Ljk] a0 Ty
Z log|{1+e 2 &n
J=k=1,47+1

Lik.«]—LM"logn]

ﬂj(nik—ﬂikfl)
= Z log <l +e” 2 5n>

J=jk—1,++1

Ljk.] a0 )
+ Z log (1 +e T 2 Sn>

J=Likx]—LM"logn]+1

] 1
—O(n—10)+0( Og”)zo( Og"), as 1 — 00, (3.31)
n

n

where we recall that M’ is a large but fixed constant (independent of ). Thus we have
Sp = So+ O(k’%) as n — +o0, where

ij.*J .(,,2 _,72 ) 3 2b
GO T k=1 n—br;?
Jk J/ & 1} (3.32)

SQ: Z 10g{1+€ 2 m .
0 =

J=jk—1,++1
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By changing the index of summation in (3.32), and using again (3.18), we get

Lk ] = Jie=1,+—1

Fi—
Sy = Z log{l—f—(%)

= G+ B bty }

. [ ke,
br]fb—i-j/n—i-l—f—jL

j=0 "
Likad=jk—1,4—1 2(j+6k)
_ 1
= Z log{l—i-(rk—l) fo(j/n)}—i-(?(ﬂ), as n — 400,
= T n
(3.33)

where the error term has been estimated in a similar way as in (3.31), and fy(x) =

—Xx+1y 7br,ff 1
br,fb—l-x—tk

follows

. To estimate the remaining sum in (3.33), we split it into two parts as

Lkes )= Jie—1,4+—1 . 2(j+6k)
> eefie () fm)

Jj=0
M logn]

Feei 2(j+6k) .
= Z 10g{1+<7> fO(]/”)}

j=0

Likad = Jk—1.4+—1 o 2(j+6k)
I 1 - j .
+ Z og{ +< ” > fo(J/n)}

j=IM'"logn|+1

For the second part, we have
Lk = J—1,4—1 , 2(j+0k)
Z log {1 + <Q> fo(j/n)} =0n™19, asn — +00,
j=I[M"logn|+1 Tk

provided M’ is chosen large enough. For the first part, since fj is analytic in a neigh-
borhood of 0, as n — 400 we have

M logn] , 2(j+6k)
k—1 .
Z log{l-l—(T) fO(]/”)}
=0
M’ logn] . 2(j+6k)
= % eefie () o+ 0G|
=0
LM logn] 23460 >
= > log {1 + (rkr—_1> fo(O)} + O(m)ng)
j=0 ¢
oo 2j+60) >
=woe{i (U2) o)+ o 2,
j=0 * "
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Hence, we have just shown that

o re \ 200 (log n)?
Sn=210g{1+(—_> fo(O)}+O( ), asn — +oo.
=0 Ik n

(3.34)

By substituting (3.34) and the large n asymptotics of Sf,l), 55,2), 523) and S,(14) in (3.30),

we obtain the claim. O
The asymptotic analysis of the sums Sﬁ)_l, k =2,4,...,2g is similar to that of
the sums S;,lc)_l, k=2,4,...,2g, so we omit the proof of the following lemma.

Lemma3.7 Letk € {2,4,...,2g}. Asn — 400, we have

B B — 1k
SE = [ fatody = 2 Entogn + n((a — 1460 fix(@)
Tk

—(x+1- 91?L€))f1,k(3k) + CD) ; Jite) + ” fz,k(x)dx)
Ix

- 1"%(9}575) — 1460
G e,ff“)l); 6(c + 1 - 6")? e B
146(@—1+ 9k1)2+ 6(c — 1+ 6p)> i) @)
et T 00N (B (o — 10 fos () + 2B L
. /Bk a4 i’ilog {1 . (’7(_—1)2(j+1—0k)br1§b—_22k}

" = Ik ty —bri2,

2
+0((10gn) >
n

where ty is given in (3.5) and f1 k, fa.k. f3.k» Bk, Ok, 9,57’_6) are given in (3.26)—(3.29).

Substituting the asymptotics of Lemmas 3.6 and 3.7 in (3.13), and using the defi-
nitions (3.26)—(3.29), after a long computation we get the following result.

Lemma3.8 Letk € {2,4,...,2g}. Asn — +00, we have

Sok_1 = F](fk)n2 + Fz(ék)n logn + Fé?,{’e)n + Fs(’nk’é) logn + Fé)"k’é) + @k’n

2
+O<<logn> )
n

@ Springer



3558 C. Charlier

where

© _ (r,%b — 531)2 br,ffl 1 —4e —2log(l —¢)
Lk — 4log(2k (1 —¢)? 4

Tk—1

bri? 1 +4e —2log(1 +¢€)
(1+¢)? 4
br]%b br]gi]
2(l4+¢€)  2(1—¢)’
r2 {2a—1+29,f”*f?+ b+ 2

El

(€) _
Fz,k =

R = 5 (€ +log(l —€)) —

1 —e€
b 2
—blogh + 3 log(27) — b~ log(rk—1)

2b

2o — b ebr;2,
-3 log(1 — €) + be log

1—¢

25 {2014-1—29,5”’6) b+2a+b1 b
0g

,
k =

— log(1
T4e 7 (e —log(l +¢€)) +

b 20 — b ebr??
— —log(2m) + b* log(rg) + a log(1 +€) + be log "k
2 2 1+e€

+ 2at; log Tt
Tk

— (e = i, ) og(ax = bri ) = br — 1) log(br” — 1),

(n,€) (n,€)
F(n,e) _ - Qk’il,+ B Qkfz—
5.k 2 ’
1=3b+ b2+ 6(b — DO +6(6)?
12b

2b
~ 24 (1-00, 00 ) oge

FO = log(1 +¢)

143b+ 6% = 6(1 +b)6"7, + 667>
_ 0 J d log(1 —¢)

1
+ (5 —o— ngrif)+) log (r,f_I\/Zn)

1 1 +b%+6b _
+ (— ta— e,ﬁ"f)> log (r,lg«/Zn) + (—+ 0% g+ 9,3) log =1
2 , 6 Tk
1 tr — brzﬁ p2r2b bzrzf
+<9k_§>log< 2 kl)+ e
brk — Iy brk — 1 ty — brk—l
+00 2(j+60) 2b
~ rk—1 e —briZ, }
Ok = log{l+ | — —
k.n Z & { ( Fk ) b}”]gb — Iy

j=0
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+o00 2(j+1-6k) 2b
Tk—1 brk — I
+ logi1+ < ) —},
2l { n h—bri?,

Jj=0
and where ti is given in (3.5) and 6, 9,5"_:), 9(" ) are given in (3.26)—(3.29).
We now turn our attention to the sums Sox, k = 1, ..., 2 g. Their analysis is very

different from the analysis of S);_;. We first make apparent the terms that are not
exponentially small.

Lemma3.9 Letk € {1,3,...,2g — 1}. There exists ¢ > 0 such that
o+ 2b
a;,nr? .
Su= Y lo <y(r’( )" )> + 0™ ™), asn— +oo. (3.35)
aj
J= ik~

Letk € {2,4,...,2g}. There exists ¢ > 0 such that

Ay y(a;, nrzb)
Sox = Z log (1 - P—") +0@™ ™), asn— +oo. (3.36)

I‘ .
J=k.- (@)
Proof By definitionof ji —, ji,+and A ¢ (see(3.2)and (3.3)),for j € {jk,—, ..., ji.+}
we have
2b 2b
(1—¢) 2b<kjg<(l+e) and
T k
p2b _ 20 p2b _ 2b
I—e)t—F <hje— e < (Q+eo—F5% (3.37)
Tk Tk

Since € > 0 is fixed, the second part of (3.37) implies that for each £ # k, L; ¢ — Ag ¢

remains bounded away from 0 as n — +oo uniformly for j € {jk —, ..., jk.+}. and
the first part of (3.37) combined with (3.4) implies that for all j € {jk -, ..., jk.+}
we have

Aje€ll—e 1+¢€], ifl =k,

2b
xj,gg(wre):;W <l—¢, ift<k-—1,

b
x,-,ez(l—e):fj>1+e, if€>k+1.

Thus by (3.10) and Lemma 2.4 (i)—(ii), we have

Sok = log( =D O(e )+—’
i =1 K55
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2g+1 “j”z'g
+ Z (_1)€+1<1+0(e—2j'))>

f=k+1
Jie+ jto 2b 2g+1
y(_v nr ) _
— Z log ((_1)k+1 bj+a k 4 Z (_])l+1> +O(€ cn),
=k F'=>) Parad
as n — +oo for some constant ¢ > 0, and the claim follows. |

LetM =n %. We now split the sums on the right-hand sides of (3.35) and (3.36) into

three parts Sé,lc), Sﬁ), Sg), which are defined as follows

X 2b
> 10g<w>, ifke{l,3,...,2¢— 1},

£ [(aj)
Séz) — j-)t_/./fEIv (a. nr2b) v = 1’ 2, 3’
3 log <1 — yrf—k) itk e(2,4,...,2g),
Jihjrely @)
(3.38)
where

h=[-el-20), h=[0-201+71 hL=0+71+€l
(3.39)

With this notation, the asymptotics (3.35) and (3.36) can be rewritten as

S =S+ S+ 8V 4O,  asn—+oo, k=1,2,...,2.

(3.40)
Define also
bnr,fb bnr,%b
8k.— = i —a |, 8k.+ = | Al k=1,2,...,2g,
U ~
so that (formally) we can write
8k——1 8k, + Jk+
SIS SRED ST SRRD DD SENECH)
Jhjkels  j=jk- Jihjk€lr =gk - Jihjkelh  j=gk++1

The individual sums Sé,lc) R Sﬁ) and Séi) depend on this new parameter M, but their sum

S;llc) + Séi) + Séi) does not. Note also that S;i) is independent of the other parameter €,
while Sé,lc) and Séi) do depend on €. The analysis of Séi) is very different from the one
needed for Sé,lc) and Séi). For Sé,lc) and Séi), we will approximate several sums of the
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form ) j f(j/n) for some functions f, while for Séi), we will approximate several
sums of the form Z.,‘ h(M; i) for some functions h, where M; ; = \/ﬁ()»j,k —1).

As can be seen from (3.38) and (3.39), the sum Sﬁ) involves the j’s for which

Areh=I[1- % 1+ %], ie. M; e [—M, M]. (3.42)

Let us briefly comment on our choice of M. An essential difficulty in analyzing SSC),

S (2), Séi) is that all the functions f and & will blow up near certain points. To analyze
S2k), it would be simpler to define M as being, for example, of order log , but in this
case the sums ) _ j f(j/n) involve some j/n’s that are too close to the poles of f. On

the other hand, if M would be of order /n, then SS() and Séz) could be analyzed in

essentially the same way as the sums Sé,lc)_l and Séi)_l of Lemmas 3.6 and 3.7 above

(and if M = €./n, then the sums Sé,lc) and Sgc) are even empty sums), but in this case
the sums }_; 1(M k) involve some M; ;’s that are too close to the poles of 4. Thus
we are tight up from both sides: M of order log n is not large enough, and M of order
/1 is too large. The reason why we choose exactly M = n12 is very technical and
will be discussed later.

We also mention that sums of the form ) j h(Mj ;) were already approximated in
[17], so we will be able to recycle some results from there. However, even for these
sums, our situation presents an important extra difficulty compared with [17], namely
that in [17] the functions & are bounded, while in our case they blow up near either
+00 or —oQ.

We now introduce some new quantities that will appear in the large n asymptotics

of S5, 852 and S5’ Fork € {1,2, ..., g}, define

2b 2b 2b
gM) 3 bnry o) = bnry ol bnry w
k= T 8k 7 = M M :
1+ ~ 1+ ~ 1+ ~

NG NG NG
bnr2b bnr2? bnr2b
(n,M) ,_ k _ k k
Gk)"Jr .—< i —ot)—gkﬂr—<1_ﬂ —oz)—{l_ﬁ —aJ.
NG NG NG
(n,M) ,(n,M) .. i
Clearly, 91(,— ,ka+ € [0, 1). For what follows, it is useful to note that M j is

8+ 1is of order XL asn — +o00.

J=8k,— Jn
We start with a general lemma needed for the analysis of Séi).

decreasing as j increases, and that

Lemma 3.10 (Adapted from [17, Lemma 2.7]) Let h € C3’(R)and k € {1,...,2g).
As n — 400, we have

8k, + M M
> h(Mj ) = bri / h(t)dt /n — 2br? / th(t)dt
L —-M -M
J=8k,—
1 1
+ (5 - 9,57;’”))/1(1\4) + <§ - e,fj“;m)h(—M)
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3562 C. Charlier

(n M) n(n,M)

I M 1 @ = D\ n ()

— 3b2b/ 2h(t)ydt + | —
+ﬁ[ "k -M (O)dr + 12+ 2 br}gb
AN S AV )

12 2 br2?

8k, +
+(9< 372 Z ((1+|M,-|3)ﬁu,-,n(h)+(1+M})ﬁa,-,n(h/)
J=8k,—+1

+ (1 + M) ,(h") + @, (h/”)>>, (3.43)

where, for h e CR) and j € {gk.— + 1,...,8k+), we define tﬁj,n(ft) =
maXXE[ijk,Mj_Lk] |h()€)|

Remark 3.11 Note thatm; ,, depends on k, although this is not indicated in the notation.

Remark 3.12 1f |h|, |I’|, |h”| and |h"’| are bounded, then the error term simplifies to
O(M4n_1), which agrees with [17, Lemma 2.7].

Proof This lemma was proved in [17, Lemma 2.7] in the case where |k|, |A'|, |h”| and
|h"| are bounded. The more general case considered here only requires more careful
estimates on the various error terms. O

Lemma3.13 Letk € {1,2,...,2g}. Asn — 400, we have

1
S5 =GV + G+ GYY — 7t oM°n™h), (3.44)
where
M M
G =brf [ ho.(x)dx, (3.45)
-M

M 1
G = —2br f_ | Fhos(odx + (5 - 9,57*’”));;0,,((1‘4)

M
+ (2 - ek” ””)ho,k(—M) + br,f”/ hy(x)dx, (3.46)
—-M
M 1 e(nvM)(e(”aM) _ 1) h' (M)
(M) 2 k,— k,— 0.k
= 3b h d
G /_M Ok(x)x—|—<12+ > ) br,f”

br]gh

M
2br2b/ xhyr(x)dx
12 2 oy

1 1 M
+ <§ - 927,M>>h1,k(M) + (5 - 9157*+M)>h1,k(—M) + br,gb/ ho i (x)dx,
(3.47)
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and
b
. log(%erfc(—%> . ifke{1,3,5...,2¢— 1),
X) =
o log (1= terfe( = *£)), ifk € (2.4.6,....2
g serfe 5)). ifkef2.4.6,...,2¢},
2,25
_;2k* 1 5x2rb .
e—,,(3—b— 6k), ifk e (1,3,5,....2¢ — 1},
2n%erfc<—x%> "k
hik(x) = erzzb
—e” zk 1 szrf .
s <37—7> ifk € (2,4,6,...,28),
«/2n<1—7erfc(—ﬁ)> k
w2t 2,2b 2
e 2 <—25 5.3 , 73 .3.b X ek 1 5x2r/f
36 e T 56X ’k+7)—7x,b (7—7 ,
\/ﬂerfc(fﬁ or nemz(,f;) 3
‘XTZ’%[) 25 53b . 73.3,.b
hak(x) = = (‘—x 0+ 2x3r + L)
2«/?(17%6&0 7%)) 36 k 36 k 6r]f
e*"z"lgb ( 1 5x2r}(’)2
- h\N\2\3P T T 6
4n(1—%erfc —%)) 31

In the above equation for hy y, the first line reads for k € {1,3,5,...,2g — 1} and
the second line reads fork € {2,4,6,...,2g}.

Remark 3.14 Note that the error term O (M 9n’l) above is indeed small as n — +o0,
1
because M =n12.

Proof We only do the proof for k£ odd (the case of k even is similar). For convenience,
in this proof we will use A, n; and M; in place of A; x, ; x and M; ;. From (2.6),
(3.38) and (3.41), we see that

. 2h 8k.+ 1
=Y log (M) = Y log <§erfc< - n,-\/m> — Ry, (m))-

Jjta
Jihjk€l =) J=8k.—~
(3.48)

Recall from (3.42) that for all j € {j : A; € I>}, we have

M bnr,gb

Jn

Hence, using (3.2) we obtain

M
+—=, —M<M;<M.

- <1 ,
Jta Jn

A 7
mz@ﬁnO—f +%m_m+mw—wﬂ

3
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RN e
Mrb  SMirp S3Mirp

ar=T"g N 72fn

as n — +oo uniformly for j € {j : A; € Ir}. By Taylor’s theorem, for each
J €1{j:Aj € I} we have

’f)

(3.50)

2 3
M; M} TM: . (%4)
2
n

+OM*n?), (3.49)

1 1 Mirby 1 Mir}
7f(— -,/Az)sz(_ ”‘) 7f’<— PN~y /a2
2erc njvaj/ 2erc NG +zerc ﬁ) njvaj/
2
1, M Mjr} 1,
+Zerfc (— ﬁ) —njva;/2+ NG +Eerfc ( ) njvaj/2+

2

Mrk

—1;y/a;/2]. Using (1.6), erfc” (x) = Z=(1 = 2x%)e ™

and (3.49), we infer that there exists a constant C > 0 such that

1 M.'rb 3
ﬁerfc/”@j)(—nj a;/2+ \b")
1 _ Mj’f)

2erfc( NG

holds for all sufficiently large n and all j € {j : A; € I}. Similarly, by Taylor’s
theorem, for each j € {j : A; € I} we have

for a certain §; € [——7%~

‘ <C(+MHn3 (3.51)

Ra; (1) = Ray (Th) + Ri, (T (nj = Thy + SRy Epny = T47, (35D)

for some § i € [nj, %]. Furthermore, R,(n) is analytic with respect to A (see [71,
p. 285]), in particular near A = 1 (or n = 0), and the expansion (2.8) holds in
fact uniformly for |argz| < 2w — €’ for any €' > 0 (see e.g. [62, p. 325]). It then
follows from Cauchy’s formula that (2.8) can be differentiated with respect to  without
increasing the error term. Thus, differentiating twice (2.8) we conclude that there exists
C > 0 such that

SR Epny — b2
jerfc< - Mj%f)

holds for all sufficiently large n and all j € {j : A; € I>}. Combining (3.48), (3.49),
(3.50), (3.51), (3.52) and (3.53) with (2.8) and (2.9), we obtain after a computation
that

< C(1+MOn3 (3.53)

Jk+ b b 2
1 M;r 1 M)y SMjrk
) ik / iTk J
Sy = E log {—erfc( — ) + —erfc (— )
2 2
Pl V2 V2 J6v2yn

@ Springer



Large gap asymptotics. . . 3565

3

M Mirt Mirb
25M; e ( — —L5 ) — 53/ 2rberfc’ ( — —LK
288( ik erc( \/5) \/_rkerc< \/5)

m2,2b

e 1 M; | SMIrT & 8 32
M <3rkf [12r,’;+ 18 }Z)}Jr j:zjgo(Mf” )
Jk+ 1 Jk+ 1 Jk+

=y hox (M) + —= D M)+~ Y7 ha(M)) +OM 7Y,
J=Jk.— J=Jk.— J=Jk.—

(3.54)

as n — —oo. Each of these three sums can be expanded using Lemma 3.10. The

errors in these expansions can be estimated as follows. First, note that the function
2 2b h _

1
—== erfc( 7 ) is exponentially small as x — +00, and is bounded by a poly-

nomial of degree 1 as x — —oo. Hence, the functions /g i (x), i1 x(x) and hy i (x)
also tend to 0 exponentially fast as x — +o00, while as x — —oo they are bounded by
polynomials of degree 2, 3 and 6, respectively. The derivatives of h¢ x(x), h1 x(x) and
hy k(x) can be estimated similarly. Using Lemma 3.10, we then find that the fourth

term in the large n asymptotics of Zj";jk _ho (M) is

8k, +
1 - -
0(”37 > ((1 + 1M P (hok) + (1 + MDY@ (ho )
J=8k,—+1

+ (4 1M D@ (hg ) + ﬁlj,n(hg’k)>

M6
:O(—), asn — +o0.

n

Similarly, the third term in the asymptotics of ﬁ Zj:}k hix(Mj) is (9( ) and

the second term in the asymptotics of % Zj";]k ho k(M) is O(T)' All these errors
are, in particular, O(M 9n_1). Hence, by substituting the asymptotics of these three
sums in (3.54), we find the claim. O

The quantities G k) G(M) and G(M) appearing in (3.44) depend quite complicat-
edly on M. The goal of the followmg lemma is to find more explicit asymptotics for
S%). We can do that at the cost of introducing a new type of error terms. Indeed, the
error O(M°n~") of (3.44) is an error that only restrict M to be “not too large”. In
Lemma 3.15 below, there is another kind of error term that restrict M to be “not too
small".

Lemma3.15 Letk € {1,3,...,2¢ — 1}. Asn — +00, we have

S = G(M)\/_—FG(M)—FO(\;)—%O(\/_)

M7
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where
~(M brib
Gl = — == M* — b Mlog M + bri (1= log(rfv2m) ) M
0 1
+ ﬁbr,i’ / log (Eerfc(y)>dy
—00

+o0 1
+V2br? / [log (Eerfc(y)) +y* 4 logy + log(Zﬁ):|dy
0

N b 5b N 37b
M er?M? 15K M5
~ 1 b M
G(élfz) = —ﬂbr,fbM4 — br,sz2 log M + r,gb<1 — blog(r,f«/Zn) + 7k’+4 )Mz
26" 1
+ k’%log (Mr,l(’\/2ﬂ>

+2b/0 2y 1og (Lerfe(y) ) + S d
(0] —eric _—
1Y) T ertey) 3

+00 1 e’ 152
2b 2y 1 —erf _
= { ’ °g<ze v )) T Urerte(n) 3

11 1
+ ?y3 +2ylogy + (E + 2log(2ﬁ))y}dy,

Letk € {2,4,...,2g}. Asn — +00, we have
~ ~ M3 n

SO = G 4 GO0 | 0(T> " o(i),

, ) T

where

~ brb
Gf&l) = ——61‘ M3 — br,fleogM +brk2b<1 — log(r,f«/ﬂ))M

0 1
+ ﬁbr,f/ log (Eerfc(y))dy
—00

+o00 1
0 +2br? / [log (Eerfc(y)) +y*41logy + log(2ﬁ)]dy
0

b b 3b
M 6rfPM? 15 M5

(n,M)
~ 11 b =1
G({m = —br;c”’M4 + br,?sz log M + r,gb( -2 + blog(rf«/27r) + S ) )M2

200"* 1
2

2b/0 2yiog (Lot ) + - 1=971,
— 0, —eric _—
R T ey 3 |
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2b/+0021 o)) + A= 1L
— og | —erfc _ —
0 y'og 2 Y Jmerfe(y) 3 3y

1
+2ylogy + (5 + 210g(2ﬁ))y}dy

L

Remark 3.16 With our choice M = n12, both errors O(MT) and (’)(M£> are of the
same order:

M n Y

N

1, . .
So M = n12 is the choice that produces the best control of the total error. However this
. . €L . .
still does not really explain why we chose M = n12. Indeed, in the above asymptotics

f

one could have easily computed the next term of order 2= if this was needed. The real

reason why we chose M = n T2 is because the sums Sé,lc) and Séi), which are analyzed

NG

below, also contain a term of order 37

compute explicitly.

in their asymptotics, and this term is hard to

Proof We only do the proof for k odd. As already mentioned in the proof of
Lemma 3.13, hg r(x), 1 r(x) and hy i (x) are exponentially small as x — o0,

1
and since M = n 12, this implies that there exists ¢ > 0 such that

M +00 .
/ x g (x)dx :/ x'hjp(x)dx + O@e™),

—1 -1

asn — +oo, j=0,1,2, £=0,1,2.

On the other hand, as x — —o0, we have

r2b ,=2b  5.—4b
k k
hok(x) = _TX — log(—x) — log (r,[: 271) -2 20
_ + 0K, (3.55)
3x6
25 3 2Vk_2b -3
hix(x) = grk + 5 T + Ox7), (3.56)
ha ik (x) = O(xh. (3.57)

Using (3.55)~(3.57) and the definitions (3.45)-(3.47) of G, G{", G3'}’. we obtain
that

(M)
~ n G M3
Gﬂ&/ﬁ_—c%)ﬁjuo(—*/;), Gng)_G‘M)Jro( ) Tk —_o<_>,

as n — +00, and the claim follows. O
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o E
. f O(ﬁ>asn—>+oo and
therefore G~ will not contrlbute at all in our final answer. It was however very
important to compute G7 i exphcltly Indeed, as can be seen from the statement of
Lemma 3.13, hy x consists of two parts, and it is easy to check that each of these two
parts is of order x6 as x — —oo. Thus the fact that actually we have £ (x) = O(x%
(see (3.57)) means that there are great cancellations in the asymptotic behavior of
these two parts, and this i 1s not something one could have detected in advance without

computing explicitly G(7 « and ho k.

Now we turn our attention to the sums Séi) and Sé,lc). The analogue of these sums
in [17] were relatively simple to analyze, see [17, Lemmas 2.5 and 2.6]. In this paper,
the sums {Sé,i)}k odd and {S;}()}k even are straightforward to analyze (and even simpler

than in [17, Lemmas 2.5 and 2.6]). However, the sums {Sé,lc)}k odd and {Séi)}keven are
challenging (their large n asymptotics depend on both € and M in a complicated way).
We start with the sums {Sg)}k odd and {Sé,lc)}k even-

Lemma3.18 Letk € {1,3,...,2g — 1}. Asn — +00, we have Sék) O(n=19).
Letk € {2,4,...,2g}. Asn — 400, we have szk =019,

Proof Letk € {1,3,...,2¢g — 1}. Recall from (3.38) that

2b
3) _ V(aj,””k)
Sy = Y log(—1—£=),
% Og( I(a)) )

Jihjk€l3

and from (3.39) that I3 = (1 + ﬂn, 1 4 €]. We then infer, by (3.2), that there exists a

constant ¢ > O such that . /a;n; x > c¢M holds for all large n and j € {j : A x € I3}.
By (2.6), (2.8), (1.14) and erfc(—y) = 2 — erfc(y), this implies

2b
B 1 2
%:Eerﬁ:( — nj,k‘/aj/2> — Raj(ﬁj,k)=1+0(677M2), asn — +o0o
aj

uniformly for j € {j : A; x € I3}. Since M = niz the claim is proved for k odd. The

proof for k even is similar and we omit it. O

We now focus on {Sé,lc)}k odd and {Séi) e even-

Lemma3.19 Letk € {1,3,...,2g — 1}. We have

o Je+ 1 r]} X Jk+ Ra(ﬂj k)
Sy = Z log{ erfc< [./ )} Z log{l—#
J=8k++1 j=8k4++1 Eerfc( ﬁ)
(3.58)
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where
2b 2b
njk brj; ( brj; ) f
-t =K 1 —log| —5— ), Ja;= /n+—, (3.59)
V2 \/J/n+% jin+2 VA
2
ain; k
eXp(_ 2 ) beci(njk)
Ra;(mji) = {CO(nj,k) + O(n_z)},
’ A2 [+ & n(j/n+3)

(3.60)
and the last expansion holds as n — 400 uniformly for j € {gk.+ + 1, ..., jk.+}. We
recall that the functions co and c1 are defined in (2.9).

Letk € {2,4,...,2g}. We have
8k,——1 | 7
Sé?: Z log{l—zerfc( \j/_k,/ )}

J=Jk,—
8k,——1

+ > log {1 + @, 01 } (3.61)
i l—lerfc< n’k /a )
J=ik,- 2

where

2b 2b
nj.k bry; < bry > «/_
——==— 7 1-log| —— ) Jaj = /"—l——
V2 \/J/n+% jm+5 N/

o (- 4))

b ci(njx) )
Ra;(nj k) = {CO(n i)+ ——— 5=+ 0 ),
4t \/_W\//n——i- . n(j/n+ %)
and the last expansion holds as n — 400 uniformly for j € {jk—, ..., gk.— — 1}.
Proof This follows from a direct application of Lemma 2.3. O

The asymptotic analysis of {Sé,lc) }k odd and {Sﬁ) }e even 18 challenging partly because,
as can be seen from the statement of Lemma 3.19, there are four types of n-dependent
parameters which vary at different speeds. Indeed, as n — +oo and j € {gi.+ +
L, ..., jk.+}, the quantities ,/aj, n; , j/n and a/n are of orders Jn, j/n— br2b 1
and L - respectively. In particular, for j close to gx + + 1, nj & is of order AL v while
for j close to jk +. it is of order 1. In the next lemma, we obtain asymptotics for the
right-hand sides of (3.58) and (3.61). These asymptotics will then be evaluated more
explicitly using Lemma 3.4.
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Lemma3.20 Letk € {1,3,...,2g — 1}. Asn — +00, we have

Jk+ Jk+

1 a; .
| > log{zerfc(— nj.ky/ 7’)} =n > waG/n
J=8k++1 J=gk++1
Jk+ Jk+
+logn Y maG/m+ Y eali/m
J=8k++1 J=8k++1
1 Jk+ 1 Jk+
+ > mali/m) + ) > wsGi/n)
J=8k++1 J=8k++1
Jk+
1 ‘ , Jn
+— D ekeli/m+ O(W) (3.62)
J=gk++1
Jho+ Jho+
Ra;(njk) ,
> log{l - } = Y besGi/m)
J=8k++1 ierfc( — Nj.ky/ Tj) J=8k++1
Jk+
Y brali/m) +OM™?), (3.63)
J=8k++1
where
br2b —x — xlog(brk ) 1
g1 () = ——* ; s =5, (3.64)
1 b 1 2 brit o bri’
gk3(x) = > log <4rr> > log (brk X xlog( . + b log )
(3.65)
br2b
b 1 alog (Tk> o?
Oka(x) = -3 e pTall v (3.66)
bri? —x —xlog(Z=)  “brt —x — xlog(7k) o
5b? ba log(brx’zb )
gk,5(x) = P P
8(brft —x —x log(—"))z 2(br2b —x — xlog(Zk))2
_b 2b 1 1 k 3
fo2 e T op(}- )+bx e ) | - (3.67)
4x(brit — x —xlog(’T"))2 6bx
br2b
—37p° 5h%a log(—E-)
Ok6(x) =

+
2b 2b
24(br2b — x — x 1og(—b’k N AbrEt — x — xlog(Z))3

baz(br,fb —Xx—x log( ) — 2x log? (& ”‘ ))

_|_
4x(br —X—x log( ))3
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brzh brzh b 2b
ol (x = br2t)? + 5x(x — br?) log(Zh-) + 4x? log?(“k-) + 2x2 log3 (Zk-)

12x2(br2b — x — xlog(”’k )3

4
o
~ b (3.68)
2b
b2t —x —xlo bry”
br.3(x) = log (\/ﬂ\/ k 5 LS )), (3.69)
|x — bri”|
be o) —b(B?r? +106rx + x?) brita 1 xb+(x—bria
ka(x) = 5 .
D e N I N NN
(3.70)
Letk € {2,4,...,2g}. Asn — +00, we have
8k, ——1 1 8k,——1
aj .
P IOg{l—EerfC<—rlj,k\/7j>} =n 32 oali/m
J=Jk,— J=Jk,~
8k,——1 gk ——1
+logn Y gk2li/m)+ Y gkai/n)
J=Jk.~ J=k~
gk— 1 8k, ——1 1 gk ——1 \/_
+— > 9k4(]/”)+_ > ges(i/m+ - > 9k6(]/”)+0<_7>
J=Jk.~ J=Jk.~ J=Jk.—

8k,——1 gr.——1
' Ra;(nj.10) ' ,
> log{1+ : A — }= > bs(i/n)
J=ik- 1- §erf0( - nj,k\/jj) J=ik-

8k,——1
1 &
- ' OM™?),
oD ral/m +OM )
J=k.~
where the functions gk 1, . . ., k.6, Yk,3 and by 4 are as in (3.64)—(3.70).

Remark 3.21 Using that g4 x, g5k, g6k and by 4 each have a pole at x = br2b_ of order
2,4, 6 and 1 respectively, we can easily show that the sums

Jie+ Jie+

% > arali/n). % > aesi/m),
J=8k++1 J=8k++1

1 Jk+ Jk+

3 > eeG/m, = Y bra(i/n)
J=gk++1 "= =gk.++1

are, as n — —+o00, of order ‘Ag %, A‘{; and log n, respectively. Since M = n% each

of these sums is thus of order greater than 1.
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Proof Letk € {1,3,...,2g — 1}, and define Fy(a) = Fi(@; x) by

Jita (o b
—_— — — 1 —log .
Jb \Vx+a x

Fr(@) =

+

By (3.59) we have ]-"k(n, n) nj/i://j forall j € {gk,++ 1,..., jk,+). For each

X € [brkb , brk 711, using Taylor’s theorem, we obtain

4 (€) (5) ~
F O %),  F 3X); %)
Z k ( X)Ol£~|- k &(a; x) X)Ols,

Fu(@ x) = i 5

=0

for some &(@; x) € (0,a) if @ > 0 and &(@; x) € (@,0) if @ < 0. The functions
F, ,El), o F 155) are explicitly computable, but since their expressions are rather long
we do not write them down (we simply mention that x +— F;(0; x) has a simple
Zero as x \ br2b , while the functions x — .7-',56) (0; x) for £ > 1 remain bounded as

x N\ br,gb ). The function ]—",55) satisfies the following: there exist C > O and § > 0
such that

|FO (€@ x);x)| <€, forall |&] < §andall x € [bri?, brik, .

We thus have

)
VN ka GDL 4 06

asn — +oo

uniformly for j € {gx.+ + 1, ..., jk.+}. These asymptotics can be rewritten as

RN T >+Z Pt

V2 1 (VFr(0; L))
()
_9 FOO; ) P
+ 0072, oy = (0 (3.71)
as n — +oo uniformly for j € {gk.+ + 1,..., jk.+}. Since x +— F;(0; x) has a

simple zero at x = br,?b , there exist constants cy, ¢z, ¢}, ¢, > 0 such that

M < erva(f—br) = ViR h < eva(f-bift) sV (372

for all large enoughn and all j € {gx ++1, ..., jk,+}. On the other hand, using (1.14)
we obtain

log(%erf(:( +ﬁ+é+&+&+ﬁ9)>
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S+ B+ BE+2p3

= —2* —log(2) — log2V/m) — 2p1 — 3

Z

2
S+ G — B 2818 — 285
+ o

32 3
T B3+ B —2B5) — B Bl gy B2 g5 — 28

+ 6

Z
+ 07, (3.73)

as z — oo uniformly for 81, B3, ..., Bo in compact subsets of R. Combining (3.71),
(3.72) and (3.73) (with z = /nFi(0; ﬁ)), and using that

Jk+
1
E —.:O(@), asn — 400,
e RO:D M

we find (3.62) after a long but straightforward computation. To prove (3.63), we first
use (3.60) to find

J— n
%erfc( _ n,,k‘/%) JAF(0; %)%erfe( _ nm@) ar [im+ 2
beci(mji)
n(j/n+7%)

“.i’72',k .
Ra, (17 0) exp (- ) BF(; L

x {Co(ﬂj,k) + + O(n—2>} (3.74)

as n — 4oo uniformly for j € {gk.+ + 1, ..., jk.+}. Using again (1.14), we obtain

2
exp(—<z+%+%+%+f—§+ﬂ—3>>

4

%erfc(z+%+%+f—§+f—;+f—§)

2 U o b 09

uniformly for 81, B3, ..., B9 in compact subsets of R. The first ratio on the right-hand
side of (3.74) can then be expanded by combining (3.75) (with z = /nF%(0; ﬁ)) and
(3.71). For the second part in (3.74), since the coefficients co(n) and ¢ () are analytic
for n € R (the singularity at n = 0 in (2.9) is removable), we have

VBF(0; 1)

Var [j/n+¢

bci(mji)

—F0: H(Go() + 161 (1) + O~
n(j/H%)}—fk(o,n)(go<,,)+ngl<n>+0<n ))

{Co(?lj,k)+

(3.76)
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for some explicit Go, G; (which we do not write down) such that go(g) and Qo(ﬁ)
remain of order 1 as n — 4-oo uniformly for j € {gx+ + 1,..., jk +}. After a
computation using (3.74), (3.75) and (3.76), we find

Jk+

> log {1 - Ra; (1) }
J=gk++1 %erfc( — Uj,k@)
Jk+ 1 |
= ) (hk,s(j/n) + —bralj/n) + o(ﬁ»
J=gk4+1 " n?F(0; £)

asn — +o0. Since x — F(0; x) has a simple zero at x = br,gb, we have

Jkt 1 C
Z _ for a certain C > 0 and for all sufficiently large n,

<
2 I3 T MY
j=gk4+1 " Fe(0; n)

and (3.63) follows. The proof for k € {2,4, ..., 2g} is similar and we omit it. ]

By applying Lemma 3.4 with f replaced by gk 1, ..., gk.6, hk.3 and b4 x, we can
obtain the large n asymptotics of the various sums appearing in the above Lemma 3.20.
Note that, as already mentioned in Remark 3.21, the functions g4 x, g5k, g6 x and by 4
have poles at x = br,fb . Nevertheless, we can still apply Lemma 3.4 to obtain precise
large n asymptotics for

Jk+ 1 e+

D wal/m, Y oesGi/n),
J=8k.++1 J=8k.++1

1 Jh+ 1 Jk+
= 2 Gel/m, — D0 biali/m),
J=8k++1 J=8k++1

see in particular Remark 3.5. Substituting these asymptotics in Lemma 3.20 and then
in Lemma 3.19, and simplifying, we obtain (after a long computation) the follow-
ing explicit large n asymptotics of {Sé,lc)}k odd and {Sﬁ)}k even (see the arXiv version
arXiv:2110.06908 for more details).

Lemma3.22 Letk € {1,3,...,2¢ — 1}. Asn — +00, we have

o _ br,fb(Ze +e2+ 2log(l —¢€)) , 3 br,?be

= 1
2k 4(1—6)2 n 2(1_6)71 ogn
e (n,€) b /o
+m 1_29/(,+ +b—2b10g Vk 27T €

+ (1 b 29,575)) log(1 — €) — 2be log (ﬁ) }n
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b 4b
+ {r—gM3 + br,fb(log(M) +log(rPN/2m) — 1)M
b b 37b
M erPM3 15k M
2009 _ 1 11
+ k+T logn + ﬁbr,i”’M4 + br,?sz log M

1—b—20"M
+ {—4 kt 4 blog(rfm)}rfsz

1200 M k b
— -t JogM + (9,5’"45) — QIE"JF )) log(rP/2m) + —’+2 loge + -

1+3b+ b2 — 6(1 +0)6" + 6(6)? ol — o+ 0( ™ LoV
e M vy
126 & Jn M7

v

209

+

Letk € {2,4,...,2g}. Asn — +o00, we have

e briP(2e —€? —2log(1 +¢€)) ,  brie
= n —
2k 4(1 +¢)? 2(1 +¢)

+ %{(29&9 —1+b—2blog (rfm))e

€
+ (1 th— 29,57;6)) log(1 + €) — 2be log (ﬁ) }n

nlogn

b 4b
+ {r—gM3 + br,fb(log(M) +log(rN/2m) — 1)M

b _Sb 37b
M erfPmd 15rP M5
209 — 1
4
(n. M)
1+b— 26"
+{—4 k. —blog(r,?JE)}r,fbM2

(n,M) (n,€)
1— 20" 26" — 1 b
= log M + (6" — 6" ) log(r{/2m) + = loge + -
, , ;

Jvi

11
logn — ﬁbr,i”’M4 — br,fsz log M

—143b = b +6(1 — b)a" — 6(6")
125

+o<”§)+o(§).

log(1 + €)

@ Springer



3576 C. Charlier

Recall from (3.40) that
Sk =85 + S+ S + 0™ "), asn — +oo.

By combining Lemmas 3.15, 3.18 and 3.22 and simplifying, we finally obtain (after
another long computation) the large n asymptotics of Sog.

Lemma3.23 Letk € {1,2,...,2g}. Asn — 400, we have

Sok = Eﬁlnz + Eéfznlogn + Eé’j,f)n + E4’k\/ﬁ + Eé’f,f) logn + Eé’ff)

M3 n
+ O —— + £7 )
JnooM
_ . (€) (€) (n,€) (n,€)
where, for k € {1,3,...,2g — 1}, the coefficients El,k’ E2,k, E3,k , Ear, Es,k ,
E™ are given b
6.k given by

O _ br]fb(2e + €2 +2log(l —€)) © _ _ br,fbe
b 41 —e)? CT2T T =)
pney_ (LD 2be - 26"y log(1 — ) + (1 + b — 26" — 2blog (erfv/27)) .
S 2(1—e) ko

0 1
Eqp = \/Ebr,f/ log (Eerfc(y))dy
—00

+00 1
+ ﬁbr,f / [10g <§erfc(y)> +y2 +logy + 10g(2ﬁ)j|dy,
0

(n.€)
EM) _ 20k,+ -1
5k — 4 ’
2 (n.€) (n,€)y2
g _ 1+43b+b* — 6(1+b)6,"" +6(6,") og(l — o)
6,k 126
(n,€)
b 2007 —1 )
+ < + — log (erkv2n)
0 1 e (1 — 5y2)
2b 2y log [ =erf - W
* /,oo{ g °g<2e <o )>+ 3/merte(y) } g
+o0 1 e (1 —5y2)
+2b 2y log [ =erf +
./0 { ' °g<2°r v )> 3 /merie(y)
11 1
+ 5y +2ylogy + <5 + 2log<2ﬁ>)y}dy,

while fork € {2,4, ..., 2g}, the coefficients EF,Z, Eéelz, E;",f), Eé",f), E(()",f) are given
by

brit(2e — €% —2log(1 + €))
4(1+€)? '

br,%be
21+ e’

€

(e) _
Eyp =

(€)
El,k =
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(1+b +2be — 26" ) log(1 + €) + e( —14b+26" — 2blog (er,f\/Zn)) N

(n,€)
E™O = ,
3,k 2(1+€) Tk

0
1
Esp = «/Ebr,f/ log <§erfc(y))dy
—00

+00 1
+ ﬁbrf/ [log (Ef:rfc(y)) +y> +logy + log(Zﬁ)]dy,
0

n.e)
EO _ 291:’—6 -1
5,k 4 ’
~1+3b — % +6(1 — b)5"" — 66"
(n.€) k,— k,—
gy = 5 log(1 + €)
(n,€)
b 200 —1 .
+ 4 g log (ert )

0 1 e (1-5y%)

+o0 1 e (1 —5y%)
— Zb/o =2y log (Eerfc(y)> + 73\/;“&(”

11 1
+ ?y3 +2ylogy + <§ + 210g(2ﬁ))y}dy.
Remark 3.24 Recall that although Séllc), Sﬁ) and Sg) depend on M, the sum Sy is
independent of M. As can be seen from the above, all the coefficients E fei, Eﬁ,
E;",f), E ;"If), Eé",f) are independent of M, as it must.

Forx € R, p € (0, 1) and a > 0, define

+00
Ox; p,a) = x(x — 1) log(p) + x log(a) + Zlog (1 +a p2<f'+")>
j=0

“+o00
+ Zlog (1 + a_lpz(j“_x)). (3.77)
j=0

By shifting the indices of summation, it can be checked that x — ©(x; p,a) is
periodic of period 1. To complete the proof of Theorem 1.1 we will need the following
lemma.

Lemma 3.25 We have

1
1 wap”? (loga)2
@ 5 P ==1
(5.0, @) =5 log (log(p‘l)) * 4log(p~h

= , log(ap)
—Zlog(l—p2f)+1og9(x+ gap
2log(p)

i )
log(p=") )’

j=1

where 0 is the Jacobi theta function given by (1.10).
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Proof The statement follows from two remarkable identities of the Jacobi theta func-
tion. First, using the Jacobi triple product formula (see e.g. [61, Eq 20.5.3])

+o0
0(z|7) = ]—[(1 — HTTE (1 4 267D o5 (27 7) + T2 (3.78)
we obtain

+00
O(x, p.a) = x(x — ) log(p) +x log(a) — ) " log(l — p*/)
j=1
+logh ( x —1) log(;?) + log(a)
2mi

—1
log(p )i>. (3.79)

T

The claim then follows from a computation using the following Jacobi imaginary

transformation (seee.g. [61, Eq(20.7.32)]): (—it)'/20(z|7) = eim,zze(zt’h’), where

- |
T

We now finish the proof of Theorem 1.1.
Proof of Theorem 1.1 Combining (3.7) with Lemmas 3.1, 3.2, 3.8 and 3.23, we obtain

2g+1 2g 2g 2g+1
log Py = So + Z S14 D S+ Su=0E "+ Y O
k=1,3,. k=2.4,... k=1 k=1,3,...

> {Ffi? Fintogn + Fii
k=2.,4,.

~ 1 2
+ Fy 9 logn + Fy + O + (’)(( Ogn") )}

2¢g
+ Z {E(e)n2 + E(e)n logn + Eyf,f)n + Eqp/n+ ng',f) logn

M  /n

(n €)

Eg o —=+ —

+e+o( 5+ ip )

asn — 400, for a certain constant ¢ > (0. Recall that M = n™ 12 , SO that 4 T = % =
1

n~12. Let Cy, ..., Cg, F, be the quantities defined in the statement of Theorem 1.1.

Using the formulas of Lemmas 3.8 and 3.23, we obtain after a long computation that

28 28 28 28
ORI D M RN R
k=2,4,... = k=2.4,... =

2g 28
RS T ol S
k=2.4,... k=2.4,...
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It is also readily checked that Zii | E4.x = C4. From (3.79) and Lemma 3.8, we infer
that

2 2b
LAY Zg rag—1 Tk —bryg
§ ®k,n = @ 92](7 ’ b 2b
k=2.4,... o — Tk

3
k=1 2k

brzzlf — D
+ O Ok — 1)10g< ) + Oy log | —2——— | L.
Dk — br2k 1

Furthermore, by Lemma 3.25, 6y = ji » — Ljk.«]), and ji » = nty — a,

otk —br3} 1 1 brit —t 1
o) 92k’r2k L 2k 2%-1) _ logm — “log Tk — ok + - log 2k
rk T obr3t—t 22 o — br2? 4 r
2k 2k 2k T5k—1 2k—1

br. tok 2
lo (”‘7) + 2j
n [ g e —br2t_| ] B flog (1 B (”Zk—l) j)
_ j=1

2k
erA —Dk )
IOg (f2k erk 1 i
+logb| tn + - —a + o
2 2 10g ( 2k ) IOg(

I2k—1

where we have also used the fact that 6 (x 4+ 1|7) = 0(x|t). Combining the above two
equations yields

8
1
Z ®kn—~7:n+ log(n)+2{< +92k GZk)log( r2kl)7§10glog<r:2k >
/ _ —

k=2,4,.

=
erk—lak 2i
—br2 g 1 b t
+ (fzk o 1) Zlog< <r2k 1> >+<92k_7>10g< r3y — ik )}
4log( T2 ) 2 tok — brig_,

(3.80)

On the other hand, using Lemmas 3.8 and 3.23, we obtain (after a lot of cancellations)

2g 2g g 2 2
i i 1+b ok b2r?
> FRO+Y ENO =) {(@k — 03 — ; >log< + i

k=2.4,... k=1 k=1 F2k—1 bry} —
b2r3b 1 br2l — 1o
+ # + <— - 92k) log (2"—21))}
ok = brig_ 2 i — bry
(3.81)
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By combining (3.80) and (3.81), we finally obtain

2g 2g
Y FRD+ 8k + Y EQY = Co+ Fa.
k=2,4,... k=1

This finishes the proof of Theorem 1.1. O

4 Proof of Theorem 1.4: the case ryg = +00

As in Sect. 3, we start with (2.5), but now we split log PP, into 4g parts

2g—1
log Py = So+ »_ (Sak—1 + Sa) + Sag—1., (4.1)
k=1

with Sp, ..., S4g_2 as in (3.8)—(3.10), and

n 2g+1 j+a
y (5%, nrg?)
Sag-1= ) log(Z( TN )

J+
J=jag—1.++1 F( “)

The sums So, S1, ..., S4g2 can be analyzed exactly as in Sect.3. For the large n
asymptotics of these sums, see Lemma 3.1 for Sy, Lemma 3.2 for Sy;_; with k €
{1,3,...,2¢g—1},Lemma 3.8 for So;_; withk € {2,4,...,2 g—2},and Lemma 3.23
for Sy, with k € {1,2,...,2g — 1}. Thus it only remains to determine the large n
asymptotics of Sy 1 in this section. These asymptotics are stated in the following
lemma.

Lemma4.1 Letk =2g. Asn — 400, we have
logn
Su—1 = F\Qn* + F\{nlogn + F{n + F{y" logn + F + (9( f )

where

bri? 1 —4de —2log(1 — ¢) 1

(€) k—1 g €

13{ = (1—e)2 2 + 4_b + —log(brk D — rk 15
2b

© _ briZy 1

2k T 21 —e) 27
{2a—1+29,§"f>+
2

r2b
po _ il
3k 1—¢
b+ 2«

(e +log(l —€))

b
—blogh + - log(27) — b*log(rk—1)
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20— b Gbr]gﬁ]
— log(1l — €) + belog
2 1—¢€

b+2a+1 1, 1 b 1+ 2a
+ — K 1—i——log(—)~|— log(brlzfl>

2b 2 2%\ 2 2b
— (= b og (1= b)),
(n,€)
e _ _9k11,+ +a
5.k 2 ’
e b2 —6(1+b)o", + 6067, ol — &
6E = 12b g
b 1 ( s )
e + <§ - Gknf’+> loge

1 1 b
+ (5 —a— Hlf'if)+> log (r,f_lx/2n> +a log (E)
1 + 2a 217 bzrlgfl
(1=br2)) + —5
1—br2,
b? + 6ba + 60* + 6a + 1
" + 6L +12(Z + 6o + log (1771331)

+b

Proof In the same way as in Lemma 3.3, as n — 400 we find

(1 1 - V(mv nrl?bl)
Su1 =Sy +0@ ™™, where Sp' = > log ( r(j+a)_ )
5

J=ik—1,++1

The large n asymptotics of Sé,]{)_l can be obtained in a similar (and simpler, because
there is no theta functions) way than in Lemma 3.6 using Lemma 3.4. We omit further
details. O

By substituting the asymptotics of Lemmas 3.1, 3.2, 3.8, 3.23 and 4.1 in (4.1), and
then simplifying, we obtain the statement of Theorem 1.4.

5 Proof of Theorem 1.7:thecaser; =0

We use again (2.5), but now we split log P, into 4g — 1 parts as follows

2g
log Py = S3+ Sa+ > _(Sak—1 + Soi) + Sagy1 (5.1)
k=3
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with Sy, ..., S4¢41 asin (3.8)—(3.10), and

2g+1

J2.——1 jta 2b
y (5, nry?)
Sy= ) 1og<§ (—ptHt—b )
=1

= r4)

The sums Sy, Ss, ..., S4g+1 can be analyzed exactly as in Sect. 3. Their large n asymp-
totics is given by Lemma 3.2 for Sy, with k € {3,5,...,2 ¢ + 1}, Lemma 3.8 for
Sox—1 withk € {4,6,...,2¢g},and Lemma 3.23 for Sy withk € {2, 3, ..., 2g}. Thus
it only remains to analyze S3 in this section. This analysis is different than in the
previous Sects. 3 and 4 and requires the asymptotics of y (a, z) as z — 400 uniformly
for % e [0, ﬁ]. These asymptotics are not covered by Lemma 2.3, but are also
known in the literature, see e.g. [62].

Lemma 5.1 (Taken from [62, Sect. 4]) As z — 400 and simultaneously % — 400,

we have

Ca) '(a)

y(a, z) _q z“e‘z< o z +(9(z_3)>.

z—a (z—a)’
We are now in a position to obtain the large n asymptotics of S3.

Lemmab5.2 Letk =2. Asn — +00, we have

lo
Sp—1 = F{n® + Fyginlogn + Fyin + F™ logn + F® + O($>’

where

FO_ _ bri? 14 4e —2log(l +€) 5O _ _ br2b
Lk (1+¢)? 4 ’ 2.k 20 +0

2b
me) _ Tk (n.€) 2 !
Fy :1+E{(l+a—9kfl_ )e—b log(rk)—f-a—kz

b b
+3 +belog (L) ~ 2 log(2)

1+e€
(n,€)
20,7 —1=b
+——p——loed +e)},
pne _ L+ 60 +60% =363 +4a) 6
e 12b 5
1—3b+b2+6(0b— 1)915”;6) i 6(91511,_6))2
i’ = 26 ——log(1 +¢€)
b 1-20"9
— =+ ——F—loge
€ 2
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14 3b+ b2
6

10g(271) — 0(" 9 log (r,f«/271)

1—3b+b2+6a—6ba+6a2
12b

+ <2b(1+a) —a—a’— )log(rk)

o+
+

log(b) — G(b, ),

where G(b, ) is defined in (1.18).
Proof In a similar way as in Lemma 3.3, as n — +o00 we find

Jk,——1

y (52 nrt )
Su—1 =S5 + 0@, where S5 | = Z 1°g<1_ r(e) )

Using Lemma 5.1, we conclude that as n — +o0,

Jie——1

Sopoq = Z 10g1"(%) i {Lnlogwr(zlog(rk),/n—r >n+a_

j=1
—j/n) 1 —aj/n—bb—ayr?
b n (j/n— br}%b)2

b
logn

b
+ 2 log —log( rk }—l—(’)(n*l). 5.2)

The second sum on the right-hand side of (5.2) can be expanded explicitly using
Lemma 3.4. For the first sum, usinglog I'(z) = zlogz—z— logz+log2” + 1224—(9(z_3)
as 7 — +00, we obtain

Ji,——1 4b 2b
brib br r
logM(44%) = —k _»210gn — —K (3 —2log [ —*—) |n?
jX—:I oer(45%) = 2+ BT a1 12 #\1+e))"
(n,€)
20" —1-b

) 2b
K- 1
+ 2010 ri nlogn

2b
. blog2m) + (26" — 1 — b)(log({kz) — 1) 2

k n
2(1 +¢)
143b+ 5% = 6(1 + b8 + 6(6-)? o (i
125 ° <1+6)

—+

o) — o — 1 1= 3b+ b2 + 60 — 6bar + 60
+ flog(Zn) + 2b logb

+g(b,(x)+(9(n_1), asn — +o00.

This finishes the proof. O

By combining the asymptotics of Lemmas 3.2, 3.8, 3.23 and 4.1 with (5.1), and
then simplifying, we obtain the statement of Theorem 1.7.
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6 Proof of Theorem 1.9: the caser;g = +ocoandry =0
We split log P, into 4g — 3 parts
2g—1
logPn = S3+ Sa+ Y (Sak—1 + Sau) + Sag1 (6.1)

k=3

with Sy, ..., S4¢-2 asin (3.8)—(3.10), and

J2,——1 2g+1 jta 2b
v ( 1y )
Si= )y 10g< P G e el B
+
j=1 (=1 F(/ba)
n 2g+1 jta 2b
= nr
Sig—1 = Z log < Z (_1)’4+1%>_
P S R FeZ)
The sums Sy, Ss, ..., S4g—2 can be analyzed exactly as in Sect. 3, S44_1 can be ana-

lyzed as in Sect.4, and S3 as in Sect.5. More precisely, their large n asymptotics are
given by Lemma 3.2 for Spx—1 withk € {3,5,...,2g — 1}, Lemma 3.8 for Sp;_; with
kel4,6,...,2¢g —2}, Lemma 3.23 for Sp; withk € {2,3,...,2¢g— 1}, Lemma4.1
for S4¢—1, and Lemma 5.2 for S3. Substituting all these asymptotics in (6.1) and
simplifying, we obtain the asymptotic formula of Theorem 1.9.
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