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Abstract
In this work, we study the solvability of a boundary value problem for the magneto-
hydrostatic equations originally proposed by Grad and Rubin (Proceedings of the 2nd
UN conference on the peaceful uses of atomic energy. IAEA, Geneva, 1958). The
proof relies on a fixed point argument which combines the so-called current transport
method together with Hölder estimates for a class of non-convolution singular integral
operators. The same method allows to solve an analogous boundary value problem for
the steady incompressible Euler equations.

1 Introduction and prior results

In this paper we consider some boundary value problem for the two dimensional
magneto-hydrostatic equation (MHS) given by

⎧
⎨

⎩

j × B = ∇ p, in �

∇ × B = j, in �

∇ · B = 0, in �

(1)

where B denotes the magnetic field, j = ∇ × B the current density and p the fluid
pressure on a suitable twodimensionalmanifold�. TheMHSequations are a particular
case of the ideal steady magneto-hydrodynamics equations with trivial fluid flow
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v = 0. Magneto-hydrostatics is relevant in a wide variety of problems in astrophysical
plasmas describing coronal field structures and stellar winds as well as in the study
of plasma confinement fusion, (cf. [11, 12, 20]). Using the vector identity j × B =
(∇ × B) × B = B · ∇B − 1

2∇(|B|2) and defining the magnetic pressure or total
pressure pm = p + 1

2 |B|2, equations (1) recast into
{
B · ∇B = ∇ pm, in �

∇ · B = 0, in �.
(2)

Using the appropriate identification of variables, equations (2) are equivalent to the
well-known equations of steady incompressible Euler equations, namely,

{
v · ∇v = −∇ p, in �

∇ · v = 0, in �
(3)

where v : � → R
2 is the velocity fluid vector field and p : � → R denotes the

fluid pressure. Indeed, a quick inspections shows that (2) is equivalent to (3) using the
transformations of variables v ↔ B and −p ↔ pm .

In this paper we are interested in studying some specific boundary value problems
for (1) where information about the magnetic field B is given in different parts of the
boundaries. Hereafter we will describe in detail the boundary value conditions into
consideration for the case of theMHSequations (1). Since from themathematical point
of view systems (2) and (3) are identical, a similar analysis and results can be shown
for the steady Euler equations (3). Nevertheless a specific boundary value problem for
one of the equations might not be physically relevant for the other and vice-versa.

Let� be a two dimensional orientable manifold with smooth boundary ∂�.Wewill
denote by n the outer normal to the boundary and assume that the normal component of
the magnetic field B ·n is given. We now decompose the boundary ∂� = ∂�+ ∪∂�−
where

∂�+ = {x ∈ ∂� : (n · B)(x) ≥ 0} and ∂�− = {x ∈ ∂� : (n · B)(x) ≤ 0}.

The boundary problem which we treat in this paper consists in prescribing in addi-
tion to the normal component B ·n on ∂�, the tangential component B ·τ in one part of
the boundary, namely on ∂�−. Here and in the following we denote by τ a unit vector
tangent to the boundary. This boundary value problem was introduced in the seminal
paper of Grad and Rubin [13]. To the best of our knowledge, the well-posedness of
this boundary value problem remains open even in the two-dimensional case. Further-
more, in [13] the authors also suggested different boundary value problems for the
MHS equations in two dimensional and three dimensional cases. A relevant feature of
the solutions constructed in this article is that the current j is different from zero for
generic choices of the boundary values. For the construction of zero current density
solutions, i.e. j = 0, it is well-known that system (1) reduces to the study of the
Laplace equation where the theory of harmonic functions can be applied to study the
existence of solutions.
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In this work, wewill restrict ourselves to a very particular geometric setting, namely
we will assume that

� = S
1 × [0, L], (4)

with L > 0. The reason to choose this manifold is the following: for � as in (4) we
can choose the values of B · n in such a way that ∂�+ ∩ ∂�− = ∅ and in particular
we can guarantee that B · n �= 0 at all points x ∈ ∂�. As it has been discussed in [2]
at the points of the set ∂�+ ∩ ∂�− some singular behaviour for B arise for generic
domains �. In order to avoid the technical difficulties that should be considered in
that situation, we will just work on the particular manifold (4).

It is worth to notice that several boundary value problems for the steady Euler or
MHS equations have been considered in the literature [1, 2, 4, 5, 17, 23, 24]. We
refer the interested reader to [2] for a thorough description of the currently available
results considering the well-posedness of the different boundary value problems for
the steady Euler or MHS equations.

In order to solve boundary value problems for both equations, two main methods
have been considered in the literature: the Grad–Shafranov method [14, 22] and the
vorticity transport method introduced by Alber [1]. The former is restricted to two
dimensional settings or to problems with particular symmetries, for instance axisym-
metric or toroidal symmetries. The main idea behind the Grad–Shafranov method
relies on reducing the steady Euler or the MHS equations to an elliptic equation where
large number of techniques are available. See for instance, [6–8, 15] for ideas closely
related to the Grad–Shafranov approach that have been recently applied to derive
properties solutions of the steady Euler equation and MHS equation. The question
of controllability for the full magneto hydrodynamics equations (MHD) in the two
dimensional setting has been recently addressed in [16].

A different approach to obtain solutions with non-vanishing vorticity (since it was
originally applied for the steady Euler equation) was introduced byAlber [1]. Roughly
speaking, he constructed solutions where the velocity field v can be split into v =
v0 + V where v0 is an irrotational solution to (3) and V a small perturbation. The
boundary value problem for the Euler equations is reduced to a fixed point problem
for a function V combining the fact that the vorticity satisfies a suitable transport
equation and that the velocity can be recovered from the vorticity using the Biot-
Savart law. This idea will be discussed later in more detail. In particular, we will
explain why Alber’s method cannot be directly applied to solve the boundary value
problem we are interested in and more importantly what are the new key tools we
implement to address the problem.

1.1 Notation

We will use the following notation throughout the manuscript.

• We recall that we are working on a manifold with boundary � = S
1 ×[0, L] with

L > 0. The boundary of the manifold �, will be denoted by ∂� = ∂�+ ∪ ∂�−
where ∂�+ = S

1 × {L} and ∂�− = S
1 × {0}. We will use several operators that
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will be defined in ∂�−. In those cases it will be convenient to identify ∂�− with
S
1 and then to consider that the operators are acting of spaces of functions with

domain S
1 instead of ∂�−. Notice that these spaces of functions are isomorphic.

Let us denote by n the outer normal to ∂� in the points of ∂�+, the inner normal
to ∂� in the points of ∂�− and by τ the tangential vector, see Fig. 1 below.

• In order to simplify the exposition, we will also use the bold notation x ∈ � to
denote a pair x = (x, y) ∈ �.

• Let Cb(�) be the set of bounded continuous functions on �. For any bounded
continuous function and 0 < α < 1 we call f uniformly Hölder continuous with
exponent α in � if the quantity

[ f ]α,� := sup
x �= y;x, y∈�

| f (x) − f ( y)|
|x − y|α

is finite. However, this is just a semi-norm and hence in order to work with Banach
spaces we define the space of Hölder continuous functions as

Cα(�) = { f ∈ Cb(�) : ‖ f ‖Cα(�) < ∞},

equipped with the norm

‖ f ‖Cα(�) := sup
x∈�

| f (x)| + [ f ]α,� .

Similarly, for any non-negative integer k we define the Hölder spaces Ck,α(�) as

Cα(�) = { f ∈ Ck
b (�) : ‖ f ‖Ck,α(�) < ∞},

equipped with the norm

‖ f ‖Ck,α(�) = max|β|≤k
sup
x∈�

|∂β f (x)| +
∑

|β|=k

[
∂β f

]

α,�
.

where β = (β1, β2) ∈ N
2
0 and N0 = {0, 1, 2, . . .}. Notice that in the definitions

above the Hölder regularity holds up to the boundary, i.e in �. We omit in the
functional spaces whether we are working with scalars or vectors fields, this is
Ck,α(�, R) or Ck,α(�, R

2) and instead just write Ck,α(�). The specific type of
functional space (scalar or vector) will be clear from the context. Moreover, we
will denote Hölder spaces on the boundary of the manifold, namely on ∂�, ∂�+
and ∂�+ by Ck,α(∂�), Ck,α(∂�+) and Ck,α(∂�−) respectively.

• Let M > 0 and let X be Banach space. Then we define by BM (X) the closed ball
in X(�) with radius M , i.e.

BM (X) = { f ∈ X : ‖ f ‖X ≤ M}.
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On the Grad–Rubin boundary value problem... 2391

Fig. 1 Geometrical setting of the
problem

• Weidentify the functions f ∈ Ck,α(S1),k = 0, 1, 2...,α ∈ (0, 1)with the subspace
of Ck,α(R) such that f (x + 2π) = f (x). Moreover, we will also identify S

1 with
any interval [a, b] where b − a = 2π .

• For a sufficiently smooth 2π -periodic function in the x variable f , we define the
Fourier coefficients of f in the first variable by

f̂ (n, y) = 1

2π

∫ 2π

0
f (x, y)e−inx dx .

Then we have the Fourier series representation, f (x, y) = ∑n=∞
n=−∞ f̂ (n, y)einx .

• Throughout the manuscript we will denote with C a positive generic constant that
depends only on fixed parameters. More precisely, they will depend on the the
parameter L and the Hölder exponent α. Note also that this constant might differ
from line to line.

• Wewill also use the brackets
[ · ], in order to denote the dependence of an operator

on the bracketed function, namely T
[
f
]
denotes that the operator T depends in a

certain way on the function f .
• Let E and F be Banach spaces. We say that T is a bounded operator from E to F
if there exists a constant c ≥ 0 such that ‖Tu‖F ≤ c ‖u‖E , ∀u ∈ E . The norm of
the bounded operator T is defined and denoted as

‖T ‖L(E,F) = sup
u �=0

‖Tu‖F
‖u‖E .

Moreover, if E = F , we just write L(E) instead of L(E, E).

1.2 Main result

The main result in this article deals with the well-posedness of a boundary value
problem for the MHS equations suggested by Grad–Rubin in [13]. Specifically we
prescribe the normal component B · n on ∂� and the tangential component B · τ in
one part of the boundary, namely on ∂�−. In particular, our result reads as follows
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2392 D. Alonso-Orán, J. J. L. Velázquez

Theorem 1.1 Let� = {(x, y) ∈ S
1 ×[0, L]}, with L > 0 and α ∈ (0, 1). There exists

M = M(α, L) > 0 sufficiently small such that for f ∈ C2,α(∂�) and g ∈ C2,α(∂�−)

satisfying

‖g‖C2,α(∂�−) + ‖ f ‖C2,α(∂�) ≤ M, (5)

and

∫

∂�−
f dx =

∫

∂�+
f dx, (6)

there exists a unique (B, p) ∈ C2,α(�) × C2,α(�) with B = (B1, B2) to (1) with

‖B − (0, 1)‖C2,α(�) ≤ M

such that

B · n = 1 + f on ∂� and B · τ = g on ∂�−. (7)

Remark 1 Notice that the solutions (B, p) are obtained as small perturbations around
the particular vertical constant magnetic field B0 = (0, 1). The constant magnetic
fields of the form B0 = (0, a) for a > 0 can be reduced by a re-scaling argument to
the unitary magnetic field B0 = (0, 1). On the other hand, it is not a priori clear if it
is possible to perturb around more general non-constant magnetic fields.

Remark 2 Aquestion that could be interesting to explore is whether one can generalize
Theorem 1.1 to more general domains � = {(x1, x2) : γ1(x1) < x2 < γ2(x1)} where
γ j are smooth functions satisfying the periodicity condition γ j (x1 + 2π) = γ j (x1)
for j = 1, 2. In the proof of Theorem 1.1, several computations which can be made
in a explicit manner in the case of the domain � = S

1 × [0, L], will become more
involved for more general domains.

Remark 3 In the three dimensional setting � = S
1 × S

1 × [0, L], we believe that
the same ideas developed in this paper can be carried out, although the computations
are more involved. In particular, we will need to derive Hölder estimates for non-
convolution singular integral operators that in the three dimensional case are more
delicate.

Notice that using the change of variables B ↔ v and pm ↔ −p the following result
can be obtained for the steady Euler equations

Theorem 1.2 Let� = {(x, y) ∈ S
1 ×[0, L]}, with L > 0 and α ∈ (0, 1). There exists

M = M(α, L) > 0 sufficiently small such that for f ∈ C2,α(∂�) and g ∈ C2,α(∂�−)

satisfying

‖g‖C2,α(∂�−) + ‖ f ‖C2,α(∂�) ≤ M,
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and
∫

∂�−
f dx =

∫

∂�+
f dx,

there exists a unique (v, p) ∈ C2,α(�) × C2,α(�) with v = (v1, v2) to (3) with

‖v − (0, 1)‖C2,α(�) ≤ M

such that

v · n = 1 + f on ∂� and v · τ = g on ∂�−.

1.3 Strategy behind the proof and novelties

The strategy of the proof is based on two ingredients, namely the transport equation
for the current and the div-curl problem that recovers the magnetic field in terms of the
current. Suppose that we have a magnetic field with the form (B1, B2) = (0, 1) + b
where b is a small perturbation of the vertical base magnetic field.

For magnetic fields for which the magnetic vector is contained always in a given
plane, the current j is a vector in the direction of the normal to the plane. However,
in these two dimensional settings it is more convenient to assume that the current is a
scalar quantity and therefore we will use the notation j = ∇ × B = −∂y B1 + ∂x B2.

It is well-known that if B solves (1), the current density j solves the following
transport equation

B · ∇ j = ((0, 1) + b) · ∇ j = 0, in �. (8)

On the other hand, assuming that we have a current j we can recover the corresponding
magnetic field B solving the following system of equations

{∇ × B = ∇ × b = j, in �

div B = div b = 0, in �
(9)

The Eqs. (8) and (9) must be solved under suitable boundary value conditions. It turns
out that given the function j we can obtain a unique solution B to (9) if we prescribe
the normal component of the magnetic field on the two connected components of the
boundary of �

B · n = f , on ∂� (10)

as well as the horizontal flux for the magnetic field

∫ L

0
B1(0, y) dy = J . (11)
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We will see later, that the value of J has to be chosen in a very specific way to obtain
a uni-valued pressure p on �.

On the other hand, if we assume that b is sufficiently small (in a sense to be precise
later), the current j is uniquely determined in � if we prescribe it in any of the two
connected components of ∂�. For instance, if

j(x, 0) = j0(x), on ∂�− (12)

is given, we can obtain j in � just by using the method of characteristics. Notice
however that the boundary conditions for the problem (1)–(7) do not allow to compute
the value of j0 in (12).

On the other hand, we have an additional boundary condition that yields the tan-
gential component of the magnetic field

B · τ = g on ∂�−. (13)

The structure of the problem suggests to use a fixed point argument in order to
construct the solution. More precisely, given a vector field B defined in � as a well as
a function j0 on ∂�− we can solve (8) with the boundary condition (12) to construct
a current field j[B; j0](·) defined in �. Using this current function we can solve (9)
with boundary conditions (10) and (11) to find a new vector field B̃[B; j0](·) in �.
Notice that the new vector field B̃ does not satisfy in general the boundary condition
(13). However, this equation can be reformulated as

B̃[B; j0] · τ = g on ∂�−, (14)

that turns out to be an integral equation for the function j0 on ∂�−. We can prove that
this integral equation can be solved by means a fixed point argument using regularity
estimates for non-convolution singular integral operators in Hölder spaces. The solu-
tion of this equation yields an operator B → j0[B]. Notice that this operator depends
also on the boundary value conditions f , g, but we will not write this dependence
explicitly. We can now define an operator B → 	[B] = B̃[B, j0[B]]. A fixed point
argument for the operator 	(·) solves the problem (8), (9), (10), (11) and (13). Using
now the fact that ∇ × ( j × B) = B · ∇ j = 0 one can show, arguing as in [2], that
there exists a pressure function p such that (B, p) satisfies (1) and (7).

It is worth to notice that there are several important differences regarding the prob-
lem treated here and previousworks [1, 2, 5, 17, 23, 24]. For amore detailed description
of the different boundary value problems mentioned previously, we refer the reader
to [2]. In the case treated by Alber [1] for the steady incompressible Euler equation,
the vorticity ω0 (or current j0 in our case) on ∂�− can be readily obtained from the
boundary values given in the problem, so roughly speaking ω0 (or j0) on ∂�− is
already prescribed. On the other hand, this is not the case for the boundary value type
problems solved in [2] where the vorticity ω0 (or current j0 in our case) is not fully
prescribed by the boundary values. Instead in those cases, ω0 (or j0) is part of the
solution. Nevertheless, it can be obtained by means of the fixed point argument. More
precisely, the value of ω0 (or j0) can be computed using the Euler equation (3) and
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is given in terms of v (or B), its derivative and the boundary value conditions. Using
the characteristics one can solve the transport equation (8) to construct ω[v;ω0](·) (or
j[B; j0](·)) and then equation (9) to construct the new velocity field ṽ[v;ω0](·) or
magnetic field B̃[B; j0](·). The crucial point is that the new velocity field or magnetic
field already satisfies the required boundary value conditions, since ω0 or j0 has been
chosen in terms of the boundary conditions and v or B in a precise way.

To deal with the boundary value conditions imposed in (7), we have to use a more
sophisticated argument to compute the value of j0 on ∂�−. As we have explained
above, this reduces to study an integral equation containing singular integral operators.
To show the existence and uniqueness of the integral equation, we derive some general
results providing Hölder estimates for a class of non-convolution singular integral
operators which are of independent interest (cf. Sect. 4). The use of Hölder spaces
instead of Sobolev spaces (as in [1] for instance) is an important detail. Indeed, the
value j0 at the boundary ∂�− depends on the value of B (and the boundary data) and
therefore, if the estimates for B are given in terms of Sobolev spaces, we obtain less
regularity for j0 due to the classical regularity trace theorem. Once j0 is obtained we
can compute j along � using the transport equation (8) which does not improve the
regularity due its hyperbolic character. Therefore, the new function B computed via
the div-curl problem (9) has a loss of regularity which prevents to close a fixed point
argument. This obstructions can be avoided by making use of Hölder spaces.

The time dependent boundary value problem for the incompressible forced Euler
equation (2D and 3D) has been studied in the literature. Indeed, in the monograph
[3, Chapter 4], the well-posedness theory is established in Hölder spaces under the
same boundary conditions treated in this article, i.e. v · n in ∂� and v · τ in part of
the boundary, for instance in ∂�−. The problem in [3] has been considered in simply
connected domains and extensions of these results to construct solutions with higher
Hölder regularity onmultiply connected domains has been recently obtained in [9, 10].
We also refer to the work in [19] where the author studies the same time-dependent
boundary value problem extending the work in [3] to deal with three-dimensional
infinite (or periodic) channel.

The problem treated in all those papers studies the well-posedness boundary value
problem for small times (even in the two dimensional setting). The strategy employed
by the authors has certain similarities with our approach. Nevertheless, there are rele-
vant differences between the time dependent case and the stationary case treated here
which we stress out hereafter.

In the analysis of the time dependent problem considered in [3, 9, 10] one of the
main issues is to compute the value of the vorticityω0 on the entering part of the domain
∂�−. This is also a crucial point for the problem that we consider in this paper. In [3,
9, 10], the computation of ω0 in ∂�− is achieved by writing an elliptic equation for
the pressure p for which the boundary values are determined by means of the values
of the velocity v on ∂�. After computing this pressure, the value of the vorticity ω0
can be obtained in ∂�− integrating in time the Euler equation. This procedure gives
the vorticity ω0 in ∂�− for times t ∈ [0, T ) assuming that the velocity v is already
known for this range of times. This allows to formulate a fixed point problem for the
velocity for small times.
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However, in the stationary case considered in this paper the way ω0 (or j0 in our
case for (MHS)) is chosen is much more rigid. In particular, the vorticity of ω0 in
∂�− depends in a sensitive manner on the values of v · n on the remaining part of
the boundary ∂�+. Specifically, to compute ω0 we need to solve an integral equation
containing singular integral operatorswhich has source terms that depend on the values
of v · n in ∂� as well as the tangential component v · τ in ∂�−.

Actually, the rigidity in the determination of ω0 in ∂�− in our case is the reason
why we need to consider velocities fields (magnetic fields) which are small perturba-
tions of trivial constant solutions. Moreover, this choice also restricts significantly the
geometrical setting where we can show our main theorems due to existence of tan-
gency points where the velocity can developed singularities. On the other hand, in the
time-dependent case [3, 9, 10], the time variable can be used as a small parameter to
use a fixed point argument to construct the solution and avoid perturbative techniques.
This is also the reason why the results in [3, 9, 10] can be shown in a more general
geometrical setting.

1.4 Plan of the paper

In Sect. 2 we illustrate the main formal idea used to construct the solution of (1), (7) by
means of the study of a suitable linearized problem which can be explicitly solved by
using Fourier series. In Sect. 3 it is seen how to reformulate the full non-linear bound-
ary value problem (1), (7) as a fix point problem for a suitable operator. The precise
definitions of the operators needed to reformulate the problem are postponed until
Sect. 7 since the proof that the operators are well-defined required several estimates
showed in Sects. 4–6. In Sect. 3 (more precisely in Sect. 3.3) we derive an integral
equation for the current j0 which is a consequence of the Eq. (1) and the boundary
values (7). This integral equation plays a crucial role in the proof of the result proved
in this paper. In Sect. 4 we derive some general lemmas showing C1,α and Cα Hölder
estimates for non-convolution singular integral operators. These operators are a suit-
able class of perturbations of convolution operators. In Sect. 5 we will provide the Cα

and C1,α Hölder estimates for the operators contained in the integral integral equation
for j0. In Sect. 6 we show the existence and uniqueness of solutions to the integral
equation for j0 by using the previous derived estimates. In Sect. 7, as indicated above,
we provide the precise definitions of the operators required to reformulate the origi-
nal boundary value problem (1), (7) as a fixed point problem for a suitable operator.
Moreover, we also show that the operator has a fixed point on a suitable functional
space. To conclude the article, in Sect. 8 we prove Theorem 1.1 as a direct application
of the fixed point theorem showed in the previous section.

2 The linearized problem

In this section, we will describe the formal idea behind the method to construct solu-
tions (B, p) to (1) satisfying the boundary value conditions (7). As we havementioned
in the introduction, the proof is based on defining an adequate operator	 on a subspace
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of C2,α(�) which has a fixed point b such that B = (0, 1) + b is a solution to (1) and
(7). We define the operator 	 : BM (C2,α(�)) → C2,α(�) in two steps. First, given
b ∈ BM (C2,α(�)) we define j ∈ C1,α(�) solving the following the transport type
problem

{
((0, 1) + b) · ∇ j = 0, in �

j = j0, on ∂�−
(15)

where j0 is a priori an unknown quantity. As a second step, we define W ∈ C2,α(�)

as the unique solution to the div-curl problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ × W = j, in �

div W = 0, in �

W · n = f , on ∂�

W · τ = g, on ∂�−∫ L
0 W1(0, y) dy = J .

(16)

Thus we define	(b, J ) = W . We remark that J is a degree of freedom of the problem,
since there exists non trivial solutions (W , J ) of the homogeneous problem (16) with
f = g = 0 given by

W =
(
2J y

L2 , 0

)

and j = −2J

L2 . (17)

This degree of freedom will be used later to obtain a uni-valued function pressure p
in �.

We are interested in obtaining solutions of the form B = (0, 1) + b where b =
(b1, b2) is a small perturbation, i.e. ‖b‖C2,α(�) ≤ M withM ≤ M0 andM0 sufficiently
small. Therefore, in the lowest order (dropping the small nonlinear terms of orderM2),
the transport equation (15) reduces to

∂y j(x, y) = 0, in � (18)

and hence j(x, y) = j0(x). Then, with this approximation, the div-curl problem (16)
becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ × W = j0(x), in �

div W = 0, in �

W · n = f , on ∂�

W · τ = g, on ∂�−∫ L
0 W1(0, y) dy = J .

(19)
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Notice that (19) is a non-homogeneous linear problem for W . To solve (19), we
examine the following auxiliary problem (cf. [2, Section 3.1.1]), namely

⎧
⎪⎪⎨

⎪⎪⎩

�ψ = j0(x), in �

ψ(x, L) = −J + h+(x), x ∈ R

ψ(x, 0) = h−(x), x ∈ R

∂yψ(x, 0) = −g, x ∈ R

(20)

where

h+(x) =
∫ x

0
( f (ξ, L) − A) dξ, h−(x) =

∫ x

0
( f (ξ, 0) − A) dξ (21)

and

A =
∫

∂�+
f dS =

∫

∂�−
f dS. (22)

For a sufficiently smooth stream function ψ , the functionW = (0, A)+∇⊥ψ , where
∇⊥ψ = (− ∂ψ

∂ y ,
∂ψ
∂x ), solves (19). However, for any fixed j0(x) the problem (20) is

over-determined. This fact will be used in order to obtain the a priori unknown function
j0(x).
In order to obtain a complete linearized version of the problem (1) satisfying bound-

ary conditions (7), it remains to add a condition that guarantees that the pressure is
a uni-valued function on �. Indeed, a linearized version of (1) with B = (0, 1) + b
(with b small) is given by

− j(x, y) = ∂x p, 0 = ∂y p. (23)

A necessary condition for the solvability of this problem is that ∂y j(x, y) = 0 and
hence j(x, y) = j0(x), similar as the condition derived in (18). Therefore, (23) reduces
to

− j0(x) = ∂x p, 0 = ∂y p. (24)

Then, we can obtain a solution to (24) given by

p(x, y) =
∫ x

0
j0(x) dx (25)

where the integral on the right hand side is the line integration computed along any
contour connecting 0 = (0, 0) and x ∈ �. Notice that a necessary and sufficient
condition to ensure that p(x, y) is a uni-valued function in � is that

∫ 2π

0
j0(x) dx = 0. (26)
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To this end, we apply the Fourier transform in the x variable to Eq. (20). This
transforms the PDE (20) into the following second-order non-homogeneous ODEs
with constant coefficients

⎧
⎪⎪⎨

⎪⎪⎩

−n2ψ̂(n, y) + ∂yyψ̂(n, y) = ĵ0(n), (n, y) ∈ Z × (0, L)

ψ̂(n, L) = −Jδ0,n + ĥ+(n), n ∈ Z

ψ̂(n, 0) = ĥ−(n), n ∈ Z

∂yψ̂(n, 0) = −ĝ(n), n ∈ Z.

(27)

Above, ĥ+(n), ĥ−(n) are the Fourier coefficients associated with the function h+, h−
respectively, and ĝ(n) the Fourier coefficients of the function g.

After a straightforward calculation using variation of parameters method we find
that

ψ̂(n, y) = −J
y

L
δ0,n + ĥ+(n)

sinh(|n|y)
sinh(|n|L)

+ ĥ−(n)
sinh(|n|(L − y))

sinh(|n|L)

+ ĵ0(n)
sinh(|n|(L − y)) − sinh(|n|L) + sinh(|n|y)

|n|2 sinh(|n|L)
, (28)

for n ∈ N. In the case n = 0, the functions multiplying ĥ+(n), ĥ−(n) and ĵ0(n) must
be understood as the limit when n tends to zero. More precisely, for n = 0, we use the
replacements

sinh(|n|y)
sinh(|n|L)

�−→ y

L
,

sinh(|n|(L − y))

sinh(|n|L)
�−→ L − y

2
,

and

sinh(|n|(L − y)) − sinh(|n|L) + sinh(|n|y)
|n|2 sinh(|n|L)

�−→ L2y

2

( y

L
− 1

)
.

This convention of understanding several combinations of trigonometric hyperbolic
functions when n = 0 as the limit when n tends to zero will be used throughout the
paper. Imposing the last boundary condition ∂yψ̂(n, 0) = −ĝ(n) in (27), we find that

∂yψ̂(n, 0) = − J

L
δ0,n + ĥ+(n)

sinh(|n|y)
sinh(|n|L)

+ ĥ−(n)
sinh(|n|(L − y))

sinh(|n|L)

+ ĵ0(n)
1 − cosh(|n|L)

|n| sinh(|n|L)

= −ĝ(n).

Taking the inverse Fourier transform in the first variable we obtain
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∂yψ(x, 0) = − J

L
+ Z(x) + 1

2π

∫

S1

n=∞∑

n=−∞

1 − cosh(|n|L)

|n| sinh(|n|L)
ein(x−η) j0(η) dη

= −g(x) (29)

with

Z(x) = 1

2π

n=∞∑

n=−∞

(

ĥ+(n)
|n|

sinh(|n|L)
− ĥ−(n)

|n|
tanh(|n|L)

)

einx . (30)

Using the symmetry in n and denoting the kernel

GL(x) =
n=∞∑

n=−∞

cosh(nL) − 1

n sinh(nL)
einx (31)

and

g̃(x) = −g(x) − Z(x), (32)

we have that (29) can be expressed as the following convolution equation for j0,

T L j0(x) = − 1

2π

∫

S1
GL(x − η) j0(η)dη = g̃(x) + J

L
. (33)

Notice that the function g̃ depends only on the boundary values g and f . Using the
fact that the Fourier coefficients in (31) are different than zero, we can use standard
Fourier techniques to invert the operator yielding

j0(x) = (T L)−1g̃(x) = − 1

2π

∫

S1
G̃L(x − η)g̃(η) dη + 2J

L2 (34)

where the kernel function G̃L(x) can be explicitly computed as

G̃L(x) =
n=∞∑

n=−∞

n sinh(nL)

cosh(nL) − 1
einx .

The value of J that until now is undetermined is obtained by means of the previous
derived formula (26). Using (34) we find that

J = L

2π

∫ 2π

0
g̃(η)dη = −Lĝ(0) − (̂h+(0) − ĥ−(0)). (35)

Once we have obtained the value of j0 and J , we can use formula (28) which
combined with Fourier inverse formula yields ψ(x, y) and hence W since W =
(0, A) + ∇⊥ψ .

123



On the Grad–Rubin boundary value problem... 2401

In the following sections we will show how to solve the full non-linear problem
(15), (16) and (7) by using a perturbative argument with respect to the linear problem.

3 The non-linear problem: an integral equation for the current

In this section we will derive an integral equation for the current j on ∂�−, namely
j0 = j(x, 0), x ∈ S

1. As expected, this integral equation will be a perturbation
of Eq. (34) that we have obtained for the linearized problem. The solution of this
equation will give j0(x) in terms of the perturbation magnetic field b and the boundary
values f and g. In the following subsection, using a formal argument that assumes
the convergence of some Fourier series, we show how to arrive to an integral equation
for j0(x). We will not consider in detail the convergence of the Fourier series and the
precise definitions of the operators that appeared in this section will be given later (cf.
Sect. 3.3).

3.1 The formal argument using Fourier series

Proceeding as in the Sect. 2, we define the operator 	 : BM (C2,α(�)) → C2,α(�)

using two building blocks: a transport type problem and a div-curl problem. Given
b ∈ BM (C2,α(�))wedefine j ∈ C1,α(�) as the solution to the transport type problem

{
((0, 1) + b) · ∇ j = 0, in �

j = j0, on ∂�−
(36)

where j0 is a priori an unknown quantity. As a second step, we define W ∈ C2,α(�)

as the unique solution to the following div-curl problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ × W = j, in �

div W = 0, in �

W · n = f , on ∂�

W · τ = g, on ∂�−∫ L
0 W1(0, y) dy = J .

(37)

Then, we define 	(b) = W . By the theory of transport equations (cf. [2, Proposition
3.8]), it is well-known that system (36) can be solved by using the integral curves of
the vector field B = (0, 1) + b. More precisely, the explicit solution to (36) is given

j(x, y) = j0(X
−1(x, y)) (38)

where X−1 is the inverse of themapping ξ → X(ξ, y) solving the ordinary differential
equation

{
∂y X(ξ, y) = b1(X(ξ,y),y)

1+b2(X(ξ,y),y)
X(ξ, 0) = ξ.

(39)
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Arguing as in (20) in Sect. 2 using the stream function ψ , the div-curl problem (37)
becomes

⎧
⎪⎪⎨

⎪⎪⎩

�ψ = j0(X−1(x, y)), in �

ψ(x, L) = −J + h+(x), x ∈ R

ψ(x, 0) = h−(x), x ∈ R

∂yψ(x, 0) = −g(x), x ∈ R

(40)

where we recall that h+(x), h−(x) and A are given in (21) and (22) respectively. To
solve (40) we do not use variation of parameters but compute directly the fundamental
solution �(x, y, y0) solving the problem

{
��(x, y, y0) = δ(x)δ(y − y0), in �

� = 0, on ∂�.
(41)

Using Fourier transform and imposing the continuity jump conditions we infer that

�(x, y, y0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1

2π

n=∞∑

n=−∞

sinh(n(L − y0)) sinh(ny)

n sinh(nL)
einx , for y < y0,

− 1

2π

n=∞∑

n=−∞

sinh(n(L − y)) sinh(ny0)

n sinh(nL)
einx , for y > y0.

(42)

Moreover, the normal derivative at y = 0 is given by

∂y�(x, 0, y0) = − 1

2π

n=∞∑

n=−∞

sinh(n(L − y0))

sinh(nL)
einx .

Computing an homogeneous solution and imposing the boundary value conditions

ψ(x, L) = −J + h+(x), ψ(x, 0) = h−(x) and ∂yψ(x, 0) = −g(x),

we conclude (similarly as in Sect. 2) that

∂yψ(x, 0) = − J

L
+ Z(x)

− 1

2π

∫ L

0
dy0

∫

S1

n=∞∑

n=−∞

sinh(n(L − y0))

sinh(nL)
ein(x−ξ) j0(X

−1(ξ, y0)) dξ

(43)

where Z(x) is defined in (30). Therefore we have that for g̃ as in (32) we can write
(43) as the following integral equation for j0
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T NL j0(x) = − 1

2π

∫ L

0
dy0

∫

S1

n=∞∑

n=−∞

sinh(n(L − y0))

sinh(nL)
ein(x−ξ) j0(X

−1(ξ, y0)) dξ

= g̃(x) + J

L
. (44)

Notice that the operator in (44) reduces to (33) in the particular case where
X−1(ξ, y0) = ξ , which corresponds to the linearized case considered in Sect. 2. From
now on, in integral expressions like (44) which results in functions depending only on
x we replace the integration variable y0 for y for the sake of simplicity. We rewrite
the operator equation (44) into a more convenient form. To that purpose, we define

�(ξ, y) = X−1(ξ, y) − ξ (45)

and plugging (45) in (44) we infer that the operator T NL can be expressed as

T NL j0(x) = − 1

2π

∫ L

0
dy

∫

S1

n=∞∑

n=−∞

sinh(n(L − y))

sinh(nL)
ein(x−ξ) j0(ξ + �(ξ, y)) dξ.

(46)

Using the following changes of variables

X−1(ξ, y) = ξ + �(ξ, y) = η, dξ = dη

(1 + ∂ξ�(X(η, y), y))
, (47)

we obtain

T NL j0(x) = − 1

2π

∫ L

0
dy

∫

S1

n=∞∑

n=−∞

sinh(n(L − y))

sinh(nL)
ein(x−X(η,y)) j0(η)

× 1

(1 + ∂ξ�(X(η, y), y))
dη. (48)

Defining, �(η, y) = X(η, y) − η we notice that the operator (48) can be written as

T NL j0(x) = − 1

2π

∫

S1
GNL(x − η, η) j0(η) dη. (49)

where

GNL(x, η) =
n=∞∑

n=−∞
an(η)einx (50)

with

an(η) =
∫ L

0

sinh(n(L − y))

sinh(nL)

e−in�(η,y)

(1 + ∂ξ�(X(η, y), y))
dy. (51)
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Thus the integral equation (44) for j0 becomes

T NL j0(x) = − 1

2π

∫

S1
GNL(x − η, η) j0(η) dη = g̃(x) + J

L
(52)

3.2 Decomposing the operatorT NL

In this subsection, we will decompose the operator T NL defined in (49)-(51) into
several operators which are more tractable and easier to estimate. In particular, we
will split the operator into one main term which is a convolution operator and several
remainder terms which are perturbations of convolution operators.

To that purpose we first notice that the coefficients in (51) can be written as

an(η) =
∫ L

0

sinh(n(L − y))

sinh(nL)
dy

+
∫ L

0

sinh(n(L − y))

sinh(nL)

[
e−in�(η,y)

1 + ∂ξ�(X(η, y), y))
− 1

]

dy

= a0n + a1n(η).

The first term can be easily integrated since it does not depend on η, giving

a0n = 1

n

[
cosh(nL) − 1

sinh(nL)

]

(53)

and the second term is split as

a1n(η) =
∫ L

0

sinh(n(L − y))

sinh(nL)

[
e−in�(η,y) − 1

1 + ∂ξ�(X(η, y), y))

]

dy

−
∫ L

0

sinh(n(L − y))

sinh(nL)

[
∂ξ�(X(η, y), y))

1 + ∂ξ�(X(η, y), y))

]

dy = a2n(η) + a3n(η).

Moreover, we have that

sinh(n(L − y))

sinh(nL)
= e−|n|y − M(n, y) (54)

where

M(n, y) = e−2|n|L(e|n|y − e−|n|y)
(1 − e−2|n|L)

. (55)
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By means of this computation, we find that

a2n(η) =
∫ L

0
e−|n|y

[
e−in�(η,y) − 1

1 + ∂ξ�(X(η, y), y))

]

dy + R2
n(η) (56)

where

R2
n(η) =

∫ L

0
M(n, y)

[
e−in�(η,y) − 1

1 + ∂ξ�(X(η, y), y))

]

dy. (57)

Similarly, we have that

a3n(η) =
∫ L

0
e−|n|y

[
∂ξ�(X(η, y), y))

1 + ∂ξ�(X(η, y), y))

]

dy + R3
n(η) (58)

where

R3
n(η) =

∫ L

0
M(n, y)

[
∂ξ�(X(η, y), y))

1 + ∂ξ�(X(η, y), y))

]

dy. (59)

Therefore, collecting the expressions (53)-(59)

an(η) = a0n + a2n(η) + a3n(η) + R2
n(η) + R3

n(η)

and using the definition of GNL(x, η) given in (50) we can rewrite GNL(x, η) as

GNL(x, η) =
n=∞∑

n=−∞

(
a0n + a1n(η)

)
einx

=
n=∞∑

n=−∞

(
a0n + a2n(η) + a3n(η) + R2

n(η) + R3
n(η)

)
einx

= GNL
0 (x) +

4∑

i=1

GNL
i (x, η)

where the main term is given by

GNL
0 (x) =

n=∞∑

n=−∞

1

n

[
cosh(nL) − 1

sinh(nL)

]

einx , (60)

and the remainder terms

GNL
1 (x, η) =

n=∞∑

n=−∞
einx

∫ L

0
e−|n|y

[
e−in�(η,y) − 1

1 + ∂ξ�(X(η, y), y))

]

dy,
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GNL
2 (x, η) =

n=∞∑

n=−∞
einx

∫ L

0
e−|n|y

[
∂ξ�(X(η, y), y))

1 + ∂ξ�(X(η, y), y))

]

dy,

GNL
3 (x, η) =

n=∞∑

n=−∞
einx

∫ L

0
M(n, y)

[
e−in�(η,y) − 1

1 + ∂ξ�(X(η, y), y))

]

dy,

GNL
4 (x, η) =

n=∞∑

n=−∞
einx

∫ L

0
M(n, y)

[
∂ξ�(X(η, y), y))

1 + ∂ξ�(X(η, y), y))

]

dy.

Using this decomposition we write the operator T NL in (49) as

T NL j0(x) = T NL
0 j0(x) +

4∑

i=1

T NL
i j0(x) (61)

where

T NL
0 j0(x) = − 1

2π

∫

S1
GNL
0 (x − η) j0(η) dη, (62)

T NL
i j0(x) = − 1

2π

∫

S1
GNL
i (x − η, η) j0(η)dη, for i = 1, . . . , 4. (63)

Remark 4 Notice that the main term GNL
0 (x) does not depend on η and coincides with

the linearized kernel GL(x) in (31). Therefore, T NL
0 is a convolution operator that can

be inverted using Fourier series.

We can formally rewrite the integral equation (52) for j0 in the form a second order
Fredholm integral equation. Indeed, using the fact that the operator T NL

0 is a convo-
lution that can be inverted using Fourier series, we can write Eq. (52) as

j0(x) +
4∑

i=1

Ti j0(x) = G(x) + 2J

L2 (64)

where

Ti = [
T NL
0

]−1T NL
i , for i = 1, . . . , 4 and G = [

T NL
0

]−1
g̃, (65)

with g̃ defined in (32). We now argue as in the case of the linearized problem and
explain how to choose J in order to obtain a uni-valued pressure function p on �.
To this end, we use Eq. (36) to construct the pressure p by means of the following
identity

p(x) =
∫ x

0

[
j × B

]
( y) · d y (66)
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where the integral on the right hand side is the line integration computed along any
curve connecting 0 = (0, 0) and x ∈ �. The function p given by (66) is uni-valued
in � if and only if

∫ 2π

0
[ j × B]1(x, 0) dx = 0, (67)

where ( j × B)1 denotes the first component of the vector j × B. Moreover, we
notice that ( j × B)1(x, 0) = − j0(x)(1 + b2(x, 0)) = − j0(x)(1 + f −(x)) where
f − = f |∂�− . Then, (67) is equivalent to

∫ 2π

0
j0(x)(1 + f −(x)) dx = 0. (68)

Using (64) we find that

1

2π

∫ 2π

0
j0(x)dx = 2J

L2 + 1

2π

∫ 2π

0
G(x)dx − 1

2π

4∑

i=1

∫ 2π

0
Ti j0(x) dx . (69)

Combining (68) and (69) we obtain that

2J

L2 = − 1

2π

∫ 2π

0
G(x)dx + 1

2π

4∑

i=1

∫ 2π

0
Ti j0(x) dx dx − 1

2π

∫ 2π

0
j0(x) f

−(x) dx

(70)

Plugging (70) into (64) and denoting by 〈h〉 = 1
2π

∫ 2π
0 h(x) dx we have that

j0(x) = −
4∑

i=1

(Ti j0(x) − 〈Ti j0〉) + G(x) − 〈G〉 − 〈 j0 f −〉. (71)

The problem (71) is a fixed point type of equationwhichwill be shown to be equivalent
to the solution (B, p). Indeed, after solving Eq. (71), we can obtain the value of j(x, y)
in� using the transport type problem (36) and recover the newmagnetic fieldW using
the div-curl system (37).

3.3 A rigorous formulation of the problem

The previous computations in Sects. 3.1 and 3.2 are purely formal, since we did not
consider in a rigorous manner the convergence of the Fourier series. In this subsection,
we will give a precise meaning of the integral equation (71) for j0. To this end, we first
give a detailed definition of the operators T1, . . . , T4 in (65). We defined the operators
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T1 and T2 as

T1 j0(x) = − 1

2π
lim

ε→0+

∫

S1
G1,ε(x − η, η) j0(η) dη, (72)

T2 j0(x) = − 1

2π
lim

ε→0+

∫

S1
G2,ε(x − η, η) j0(η) dη, (73)

where

G1,ε(x, η) =
n=∞∑

n=−∞

n sinh(nL)

(cosh(nL) − 1)
einx

∫ L

ε

e−|n|y
[

e−in�(η,y) − 1

1 + ∂ξ�(X(η, y), y))

]

dy,

(74)

G2,ε(x, η) =
n=∞∑

n=−∞

n sinh(nL)

(cosh(nL) − 1)
einx

∫ L

ε

e−|n|y
[

∂ξ�(X(η, y), y))

1 + ∂ξ�(X(η, y), y))

]

dy.

(75)

On the other hand, the operators T3, T4 are given by

T3 j0(x) = − 1

2π

∫

S1
G3(x − η, η) j0(η) dη, (76)

T4 j0(x) = − 1

2π

∫

S1
G4(x − η, η) j0(η) dη, (77)

where

G3(x, η) =
n=∞∑

n=−∞

n sinh(nL)

(cosh(nL) − 1)
einx

∫ L

0
M(n, y)

[
e−in�(η,y) − 1

1 + ∂ξ�(X(η, y), y))

]

dy,

(78)

G4(x, η) =
n=∞∑

n=−∞

n sinh(nL)

(cosh(nL) − 1)
einx

∫ L

0
M(n, y)

[
∂ξ�(X(η, y), y))

1 + ∂ξ�(X(η, y), y))

]

dy,

(79)

with M(n, y) as in (55). The operators Ti for i = 1, . . . , 4 will act on functions j0 on
some suitable Hölder spaces. The fact that the operators Ti for i = 1, . . . , 4 in this
spaces are well-defined operators will be shown in Sect. 4. For instance the reason why
operators T3, T4 are well defined acting on Hölder functions j0 readily follows from
the fact that G3(x, η),G4(x, η) are C∞ in x due with the exponential decay of the
function M(n, y) as |n| → ∞. To deal with operators T1, T2 some refined estimates
for perturbations of non-convolution singular integral operators will be required.

We now define in a precise manner the operator T NL
0 in (62). On the one hand

notice that

1

|n|
cosh(nL) − 1

sinh(nL)
= 1

|n| + Qn for n �= 0, and
1

|n|
cosh(nL) − 1

sinh(nL)
= Q0 (80)
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where

Qn = 1

n

(
cosh(nL) − 1

sinh(nL)
− sgn(n)

)

, for n �= 0, and Q0 = L

2
.

We recall that the periodic Hilbert transform denoted byH is given in Fourier side as

Ĥ f (n) = −isgn(n) f̂ (n), n ∈ N (81)

and define the linear operator ∂−1
x : L2(S1) → H1(S1) by means of

∂−1
x ψ(x) =

⎧
⎨

⎩

∫ x

0
ψ(ξ) dξ − 1

2π

∫ 2π

0
ψ(ξ)ξ dξ, if

∫ 2π

0
ψ(x) dx = 0,

0, if ψ(x) = 1.
(82)

Then it is natural to define T NL
0 in (62) as

T NL
0 ψ(x) = −H∂−1

x ψ(x) +
∫

S1
Q(x − η)ψ(η) dη, (83)

where

Q(x) = 1

2π

n=∞∑

n=−∞
Qne

inx .

On the other hand, notice that the derivative operator ∂x is the inverse of ∂−1
x , i.e.

∂x ◦ ∂−1
x = I, where I denotes the identity operator. Hence, we find that the inverse

operator (T NL
0 )−1 is given by

(T NL
0 )−1ψ(x) = H∂xψ(x) −

∫

S1
Q̃(x − η)ψ(η) dη, (84)

where

Q̃(x) = 1

2π

n=∞∑

n=−∞
Q̃ne

inx

and

Q̃n =
(

n
sinh(nL)

cosh(nL) − 1
− |n|

)

, for n �= 0, Q̃0 = 2

L
for n = 0.

Thus, we have that (T NL
0 )−1 ◦ (T NL

0 ) = (T NL
0 ) ◦ (T NL

0 )−1 = I. The easiest way to
check this identity is to use the Fourier expression for T NL

0 on the left hand side in
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(80). With these definitions at hand we have that the function G(x) in (65) is given by

G(x) = (T NL
0 )−1g̃(x) = H∂x g̃(x) −

∫

S1
Q̃(x − η)g̃(η) dη (85)

where

g̃(x) = −g(x) − Z(x)

where Z is defined in (30). Roughly, speaking the function g̃ and hence G take into
account the given boundary value conditions f on ∂�, g on ∂�− satisfied by the
magnetic fields.

To conclude, we will define the operators given in (63) for i = 1, . . . , 4 as

T NL
i ψ(x) = T NL

0 Tiψ(x) (86)

where T NL
0 is given by (83) and Ti are given as (72), (73), (76) and (77).

Remark 5 The fact that the operators T NL
i for i = 1, . . . , 4 can be written as in (63)

acting on spaces ofHölder functionswill be proved at the end of the paper, cf. Corollary
1 in Sect. 8.1.

4 Hölder estimates for non-convolution singular integral operators

In order to show the existence and uniqueness of solutions of Eq. (71), we will need
to derive bounds for the operators T1, . . . , T4 in the functional spaces C1,α and Cα .
To that purpose, we will first derive in this section some general lemmas showing
C1,α and Cα Hölder estimates for non-convolution singular integral operators. These
operators differ from convolutions because they contain a function � : � → S

1.
Estimates for these operators in Hölder norms will be shown assuming a suitable
smallness condition on � which will be used repeatedly in the rest of the paper. More
precisely, the assumptions reads

Assumption 1 Let us assume that the function � : � → S
1 has C2,α(�) regularity

and satisfies that �(η, 0) = 0. Moreover, there exists δ0 ∈ (0, 1
2 ) such that

‖�‖C2,α(�) ≤ δ0.

Let us start with the following calculus lemma that will be used throughout this
section.

Lemma 1 Then there exists a numerical constant c0 > 0 such that for any� satisfying
Assumption 1 the following inequality holds

|1 − ei(x−η)−y−i�(η,y)| ≥ min

{
1

2
√
2

√

(x − η)2 + y2, c0

}

(87)
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for x ∈ [−π, π ], η ∈ [x − π, x + π ] and y ∈ [0, L].
Proof Denoting by z = i(x − η) − y − i�(η, y), we have that for |z| ≤ 1

2

|ez − 1| ≥ 1

2
|z|, for z ∈ C. (88)

Indeed, a straightforward calculation shows that

|ez − z − 1| = |
∫ z

0
(eξ − 1) dξ | ≤

√
e

2
|z|2, for |z| ≤ 1

2

and hence

|ez − 1| ≥ |z| −
∫ z

0
(eξ − 1)dξ ≥

(

1 −
√
e

4

)

|z|, for |z| ≤ 1

2
. (89)

Therefore, (88) follows. Furthermore,

|i(x − η) − y − i�(η, y)| =
√

(x − η)2 − 2�(x − η) + y2 + �2. (90)

Since by assumption �(η, 0) = 0 and ‖�‖C1(�) ≤ 1
2 we find that

|�(η, y)| ≤ 1

2
y, for 0 ≤ y ≤ L. (91)

Applying Young’s inequality in (90) yields

|i(x − η) − y − i�(η, y)| ≥
√

(x − η)2 − 1

2
(x − η)2 − 1

2
y2 + y2, (92)

and hence

|i(x − η) − y − i�(η, y)| ≥ 1√
2

√

(x − η)2 + y2 (93)

for x ∈ [−π, π ], η ∈ [x − π, x + π ] and y ∈ [0, L]. On the other hand for |z| ≥ 1
2

one can readily check that for ‖�‖C1(�) ≤ δ0 we have that

min
A

|1 − ez | ≡ c0, for A =
{

z ∈ C : |z| ≥ 1

2
, |Im(z)| ≤ π

}

(94)

where the constant c0 is independent of�. Combining (89), (93) and (94) we conclude
that estimate (87) follows. ��
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Remark 6 Notice that in Assumption 1 we imposed that � ∈ C2,α(�), however the
proof of Lemma 1 can be shown only assuming � ∈ C1(�). However, later in the
application we will use this stronger regularity assumption and therefore we prefer to
already state the calculus lemma for � ∈ C2,α(�).

4.1 C˛ Hölder estimates

In this subsection, we provide a Cα Hölder estimates for a type of non-convolution
singular integral operators.

Proposition 1 [Cα estimate] Let H(η, y) ∈ Cα(�) and let Assumption 1 hold. Then
for any x ∈ S

1 the following limit exists

lim
ε→0+ �ε(x) = �(x), (95)

where

�ε(x) =
∫ L

ε

dy
∫

S1
dη ∂xA(x, y, η)H(η, y), ε > 0 (96)

with

A(x, y, η) =
(

ei(x−η)−y y

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))

)

. (97)

Moreover, we have that

‖�‖Cα(S1) ≤ C ‖H‖Cα(�) (98)

with C > 0.

Proof of Proposition 1 In order to check that the left hand side in (95) exists, we first
notice that

∂xA(x, y, η) = −∂ηA(x, y, η) − R(x, y, η) (99)

where

R(x, y, η) = iy
ei(x−η)−y∂η�(η, y)ei(x−η)−y−i�(η,y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2
. (100)

Therefore, using the fact that
∫

S1
dη ∂η(. . .) = 0 we can rewrite (95) as

�ε(x) = �1,ε(x) + �2,ε(x),
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where

�1,ε(x) = −
∫ L

ε

dy
∫

S1
dη ∂ηA(x, y, η) (H(η, y) − H(x, 0)) , (101)

�2,ε(x) = −
∫ L

ε

dy
∫

S1
dη R(x, y, η)H(η, y). (102)

Expanding the derivative in (101) and manipulating the corresponding expression, we
have that

�1,ε(x) =
4∑

j=1

I j,ε (103)

where

I j,ε =
∫ L

ε

dy
∫

S1
dη i j,ε(x, η, y), for j = 1, . . . , 4 (104)

where

i1,ε(x, η, y) = iyei(x−η)−y

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))
(H(η, y) − H(x, 0)) ,

i2,ε(x, η, y) = iy(ei(x−η)−y)2

(1 − ei(x−η)−y)2(1 − ei(x−η)−y−i�(η,y))
(H(η, y) − H(x, 0)) ,

i3,ε(x, η, y) = iyei(x−η)−yei(x−η)−y−i�(η,y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2
(H(η, y) − H(x, 0)) ,

i4,ε(x, η, y) = iyei(x−η)−yei(x−η)−y−i�(η,y)∂η�(η, y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2
(H(η, y) − H(x, 0)) .

Identifying S
1 with Ix = [x − π, x + π ] for x ∈ [−π, π ] and using the bound (87) as

well as the Hölder regularity for H we obtain

|i1,ε | ≤ C ‖H‖Cα(�)

y(|x − η|α + yα)

(x − η)2 + y2
, (105)

|i2,ε | + |i3,ε | ≤ C ‖H‖Cα(�)

y(|x − η|α + yα)
(
(x − η)2 + y2

)3/2 (106)

where C > 0 is independent on ε. Therefore, using the dominated convergence it
follows lim

ε→0+ I j,ε exists, for j = 1, . . . , 3. On the other hand, we can combine I4,ε

and �2,ε as

I4,ε + �2,ε =
∫ L

ε

dy
∫

S1
dη i4,ε(x, η, y), (107)
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where

i4,ε(x, η, y) = −H(x, 0)
iyei(x−η)−yei(x−η)−y−i�(η,y)∂η�(η, y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2
. (108)

Hence using again (87) and Assumption 1, we have that

|i4,ε | ≤ C ‖H‖L∞(�)

y2

((x − η)2 + y2)3/2
. (109)

Similarly using dominated convergence it follows that the limit limε→0+
(
I4,ε + �2,ε

)

exists. Therefore, the limit on the left hand side of (95) exists and the function �(x)
is well-defined. Moreover, we have the pointwise bounds

|�ε(x)| ≤ C ‖H‖Cα(�) , for x ∈ S
1, ε > 0, (110)

|�(x)| ≤ C ‖H‖Cα(�) , for x ∈ S
1. (111)

We now proceed with the α-Hölder semi-norm. More precisely, we will show that

|�(x1) − �(x2)| ≤ C |x1 − x2|α ‖H‖Cα(�) , for x1, x2 ∈ S
1.

Due to the translation invariance of the estimate it suffices to check, without loss of
generality, that the bound holds for x2 = 0 and x1 = x , namely

|�(x) − �(0)| ≤ C |x |α ‖H‖Cα(�) , for x ∈ S
1. (112)

To that purpose, by means of Eqs. (101) and (102), we compute the difference

�ε(x) − �ε(0) =
[

�1,ε(x) − �1,ε(0)

]

+
[

�2,ε(x) − �2,ε(0)

]

= J1,ε + J2,ε

(113)

where

J1,ε = −
∫ L

ε

dy
∫

S1
dη

[

∂η

(
ei(x−η)−y y

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))

)

(H(η, y) − H(x, 0))

− ∂η

(
e−iη−y y

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))

)

(H(η, y) − H(0, 0))

]

J2,ε = −
∫ L

ε

dy
∫

S1
dη

[
ei(x−η)−y y∂η�(η, y)ei(x−η)−y−i�(η,y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2
H(η, y)

− e−iη−y y∂η�(η, y)e−iη−y−i�(η,y)

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))2
H(η, y)

]

.
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Notice that the functions J1,ε and J2,ε depend on x , but do not write it explicitly for
the sake of simplicity. Moreover, recall that using the arguments above we have that
the limits limε→0+ J1,ε and limε→0+ J2,ε exist. Expanding the derivative we can split
the integral in the following manner

J1,ε + J2,ε = J11,ε + J12,ε + J13,ε + J14,ε

where

J11,ε =
∫ L

ε

dy
∫

S1
dη

[
iyei(x−η)−y

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))
(H(η, y) − H(x, 0))

− iye−iη−y

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))
(H(η, y) − H(0, 0))

]

J12,ε =
∫ L

ε

dy
∫

S1
dη

[
iy(ei(x−η)−y)2

(1−ei(x−η)−y)2(1 − ei(x−η)−y−i�(η,y))
(H(η, y)−H(x, 0))

− iy(e−iη−y)2

(1 − e−iη−y)2(1 − e−iη−y−i�(η,y))
(H(η, y) − H(0, 0))

]

J13,ε =
∫ L

ε

dy
∫

S1
dη

[
iyei(x−η)−yei(x−η)−y−i�(η,y)

(1−ei(x−η)−y)(1−ei(x−η)−y−i�(η,y))2
(H(η, y)−H(x, 0))

− iye−iη−ye−iη)−y−i�(η,y)

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))2
(H(η, y) − H(0, 0))

]

J14,ε = −
∫ L

ε

dy
∫

S1
dη

[
iyei(x−η)−yei(x−η)−y−i�(η,y)∂η�(η, y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2
H(x, 0)

− iye−iη−ye−iη−y−i�(η,y)∂η�(η, y)

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))2
H(0, 0)

]

.

Notice that in J14,ε we have combined one of the terms resulting in J1,ε with J2,ε in
the same way that we combined the term I4,ε + �2,ε in (107).

We divide the region of integration {(η, y)) ∈ S
1 × [ε, L]} into sets of the form

Rε
�,≤ = {(η, y) ∈ � : max{|y|, |η|} ≤ 2|x | and ε ≤ y ≤ L},

Rε
�,> = {(η, y) ∈ � : max{|y|, |η|} > 2|x | and ε ≤ y ≤ L},

for ε ≥ 0 and estimate each integral in the different sets. For the sake of simplicity
we will write R0

�,≤ = R�,≤ and R0
�,> = R�,>. Therefore, we have

J1k,ε =
∫

Rε
�,≤

dydη
[
. . .

] +
∫

Rε
�,>

dydη
[
. . .

] = J1k1,ε + J1k2,ε
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for k = 1, . . . , 4. Using Lemma 1 to estimate the denominators in the integrals we
obtain

|J111,ε | ≤ C ‖H‖Cα(�)

∫

R�,≤
dy dη

[
y(|x − η|α + yα)

(x − η)2 + y2
+ y(|η|α + yα)

η2 + y2

]

≤ C ‖H‖Cα(�) |x |α, (114)

|J121,ε | + |J131,ε | ≤ C ‖H‖Cα(�)

∫

R�,≤
dy dη

[
y(|x − η|α + yα)

(
(x − η)2 + y2

)3/2 + y(|η|α + yα)
(
η2 + y2

)3/2

]

≤ C ‖H‖Cα(�) |x |α, (115)

|J141,ε | ≤ C ‖�‖C2(�) ‖H‖L∞(�)
∫

R�,≤
dy dη

[
y2

(
(x − η)2 + y2

)3/2 + y2
(
η2 + y2

)3/2

]

≤ C ‖H‖L∞(�) |x | ≤ C ‖H‖L∞(�) |x |α. (116)

In the region Rε
�,> = {max{|y|, |η|} > 2|x | and ε ≤ y ≤ L}, we rewrite the term

J1k2,ε for k = 1, . . . , 4 in the following way

J112,ε =
∫

Rε
�,>

dy dη

[
iyei(x−η)−y

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))

− iye−iη−y

(1 − e−iη−y)(1 − ei(−η)−y−i�(η,y))

]

× (H(η, y) − H(x, 0))

−
∫

Rε
�,>

dy dη
iye−iη−y

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))

(H(x, 0) − H(0, 0)) = K1,ε + K2,ε,

J122,ε =
∫

Rε
�,>

dy dη

[
iy(ei(x−η)−y)2

(1 − ei(x−η)−y)2(1 − ei(x−η)−y−i�(η,y))

− iy(e−iη−y)2

(1 − e−iη−y)2(1 − e−iη−y−i�(η,y))

]

× (H(η, y) − H(x, 0))

−
∫

Rε
�,>

dy dη
iy(e−iη−y)2

(1 − e−iη−y)2(1 − e−iη−y−i�(η,y))

(H(x, 0) − H(0, 0)) = K3,ε + K4,ε,

J132,ε =
∫

Rε
�,>

dy dη

[
iyei(x−η)−yei(x−η)−y−i�(η,y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2

− iye−iη−ye−iη−y−i�(η,y)

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))2

]

× (H(η, y) − H(x, 0))

−
∫

Rε
�,>

dy dη
iye−iη−yei(−η)−y−i�(η,y)

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))2
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(H(x, 0) − H(0, 0)) = K5,ε + K6,ε,

J142,ε = −
∫

Rε
�,>

dy dη

[
iyei(x−η)−yei(x−η)−y−i�(η,y)∂η�(η, y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2

− iye−iη−ye−iη−y−i�(η,y)∂η�(η, y)

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))2

]

× H(x, 0)

−
∫

Rε
�,>

dy dη
iye−iη−ye−iη−y−i�(η,y)∂η�(η, y)

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))2

(H(x, 0) − H(0, 0)) = K7,ε + K8,ε .

The integrands of the terms K1,ε, K3,ε, K5,ε and K7,ε can be bounded in the region
Rε

�,> using the mean value theorem as well as Lemma 1 and the Hölder regularity of
H . Thus

|K1,ε | ≤ C ‖H‖Cα(�)

∫

R�,>

dy dη|x | y(|x − η|α + yα)
(
(x − η)2 + y2

)3/2 ≤ ‖H‖Cα(�) |x |α

(117)

|K3,ε | + |K5,ε | ≤ C ‖H‖Cα(�)

∫

R�,>

dy dη|x | y(|x − η|α + yα)
(
(x − η)2 + y2

)2 ≤ ‖H‖Cα(�) |x |α

(118)

|K7,ε | ≤ C ‖�‖C2(�) ‖H‖L∞(�)

∫

R�,>

dy dη|x | y2
(
(x − η)2 + y2

)2

≤ C ‖H‖L∞(�) |x |α. (119)

Furthermore, a direct computation using Lemma 1 shows that

|K2,ε | ≤ C ‖H‖Cα(�) |x |α
∫

R�,>

dy dη
y

(η2 + y2)
≤ C ‖H‖Cα(�) |x |α. (120)

Similarly, using the fact that ∂η�(η, 0) = 0 (cf. Assumption 1) we have that

|∂η�(η, y)| ≤ y ‖�‖C2(�) ,

and hence

|K8,ε | ≤ C |x |α ‖�‖C2(�) ‖H‖Cα(�)

∫

R�,>

dy dη
y2

(η2 + y2)3/2
≤ C |x |α ‖H‖Cα(�) .

(121)

To conclude the proof of the Cα bound (98), it only remains to estimate the more
singular terms, namely K4,ε and K6,ε . In these terms we can not just estimate the inte-
grands by the absolute value because this will result on the onset of a logarithmically
divergent term. To that purpose, we further simplify the integrand until arriving to an
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expression in which the integral of the most singular term in the y variable can be
explicitly computed. First, we decompose

�(η, y) = yA(η) + [�(η, y) − A(η)y] (122)

where A(η) = ∂y�(η, 0). Notice that

|�(η, y) − A(η)y| ≤ Cy2. (123)

Using this decomposition, K4,ε can be written as

K4,ε = − (H(x, 0) − H(0, 0))
∫

Rε
�,>

dy dη
iy(e−iη−y)2

(1 − e−iη−y)2(1 − e−iη−y−i�(η,y))

= − (H(x, 0) − H(0, 0))
∫

Rε
�,>

dy dη
iy(e−iη−y)2

(1 − e−iη−y)2(1 − e−iη−y−i A(η)y (1 + r1(η, y)))

(124)

where the remainder term r1(η, y) can be bounded using (123) by |r1(η, y)| ≤ Cy2.
Using Taylor expansion we obtain that

K4,ε = − (H(x, 0) − H(0, 0))
∫

Rε
�,>

dy dη
iy(e−iη−y)2

(1 − e−iη−y)2(1 − e−iη−y−i A(η)y)
(1 + r2(η, y))

= − (H(x, 0) − H(0, 0))

(∫

Rε
�,>

dy dη
[
. . .

] +
∫

Rε
�,>

dy dη
[
. . .

]
r2(η, y)

)

= K41,ε + K42,ε ,

where the new remainder r2(η, y) is bounded by |r2(η, y)| ≤ C |y|. The integrand in
K42,ε is integrable and can be bounded by using Lemma 1 for �(η, y) = yA(η) as

|K42,ε | ≤ C |x |α ‖H‖Cα(�)

∫

R�,>

dy dη
y2

(
η2 + y2

)3/2 ≤ C |x |α ‖H‖Cα(�) .

(125)

To most delicate term is K41,ε . Using again Taylor expansion we find that

K41,ε = − (H(x, 0) − H(0, 0))
∫

Rε
�,>

dy dη
iy

(−iη − y)2(−iη − y − i A(η)y)
(1 + r3(η, y))

= K411,ε + K412,ε (126)

with |r3(η, y)| ≤ C(η − y)2. Then

|K412,ε | ≤ C |x |α ‖H‖Cα(�) . (127)

To estimate the remaining term K411,ε , we recall that A(η) = ∂y�(η, 0) and that by
Assumption 1, it follows that ‖�‖C2,α(�) ≤ δ0 for δ0 ∈ (0, 1

2 ). Hence we can write
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A(η) = A(0) + [A(η) − A(0)] where

|A(η) − A(0)| ≤ δ0|η|α. (128)

Therefore,

K411,ε = − (H(x, 0) − H(0, 0))
∫

Rε
�,>

dy dη
iy

(−iη − y)2(−iη − y − i A(0)y)
+ K4112,ε

with |K4112,ε | ≤ C |x |α ‖H‖Cα(�). Doing the rescaling variables η = yζ and recalling
that

Rε
�,> = {(η, y) ∈ � : max{y, |η|} > 2|x | and ε ≤ y ≤ L},

we infer that the above integral can be expressed as

∫

Rε
�,>

dy dη
iy

(−iη − y)2(−iη − y − i A(0)y)

=
∫ L

ε

dy

y

∫

�(x,y)

dζ

(iζ + 1)2(iζ + 1 + i A(0))

with

�(x, y) =
{

ζ ∈ R : max{1, |ζ |} >
2|x |
y

, |ζ | ≤ π

y

}

. (129)

In order to estimate this integral, we consider two different cases, the case for L ≥
y ≥ 2|x | and ε ≤ y < 2|x |, namely

∫ L

ε

dy

y

∫

max{1,|ζ |}> 2|x |
y

dζ

(iζ + 1)2(iζ + 1 + i A(0))

=
∫ L

2|x |
dy

y

∫

�(x,y)
· · · +

∫ 2|x |

ε

dy

y

∫

�(x,y)
· · ·

= L1 + L2. (130)

In the case of the integral L1, this is for L ≥ y ≥ 2|x |, the domain of integration
� reduces to �(x, y) = {ζ ∈ R : |ζ | ≤ π

y }. Therefore we can extend the domain
of integration of ζ to the whole space R just adding a remainder term that can be
estimated by C |y|2 for small y. This follows from the fact that the integrand in ζ can
be estimated by C

|ζ |3 for |ζ | ≥ 1. Thus, we have that

L1 =
∫ L

2|x |
dy

y

∫

R

dζ

(iζ + 1)2(iζ + 1 + i A(0))
+ L12 (131)
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with |L12| ≤ C . To deal with the first integral in (131) we use contour integrating
using residues yields

L11 =
∫ L

2|x |
dy

y

∫

R

dζ

(iζ + 1)2(iζ + 1 + i A(0))
= 0 (132)

using the fact that the only poles are in ζ = −i, ζ = −i + A(0) and A(0) ∈ R. We
now estimate L2. Since ε ≤ y < 2|x |, we have that 2|x |

y > 1 and therefore

{
max{1, |ζ |} >

2|x |
y

}
⊂

{
|ζ | >

2|x |
y

}
.

Hence applying Fubini’s theorem we obtain

|L2| ≤
∫ 2|x |

0

dy

y

∫

|ζ |> 2|x |
y

| 1

(iζ + 1)2(iζ + 1 + i A(0))
|dζ

≤ C
∫

|ζ |≥1

dζ

(1 + |ζ |3)
∫ 2|x |

2|x |
|ζ |

dy

y

= C
∫

|ζ |≥1

dζ

(1 + |ζ |3) log(|ζ |)
≤ C . (133)

Combining (131)-(133) we have shown that

|K411,ε | ≤ C |x |α ‖H‖Cα(�) (134)

as desired. Collecting (125), (127) and (134) we find that

|K4,ε | ≤ C |x |α ‖H‖Cα(�) . (135)

We can estimate the term K6,ε in a similar manner. We recall that

K6,ε = − (H(x, 0) − H(0, 0))
∫

R�,>

dy dη
iye−iη−ye−iη−y−i�(η,y)

(1 − eiη−y)(1 − e−iη−y−i�(η,y))2
.

Indeed, using again the decomposition (122) and the estimate (123) we find that

K6,ε = − (H(x, 0) − H(0, 0))
∫

Rε
�,>

dy dη
iy

(1 − eiη−y)(1 − e−iη−y−i A(η)y)2
(1 + r5(η, y))

= − (H(x, 0) − H(0, 0))

(∫

Rε
�,>

dy dη
[
. . .

] +
∫

Rε
�,>

dy dη
[
. . .

]
r5(η, y)

)

= K61,ε + K62,ε
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with |r5(η, y)| ≤ C |y|. Therefore, K62,ε can be easily bounded using Lemma 1 for
�(η, y) = yA(η) by

|K62,ε | ≤ C |x |α ‖H‖Cα(�)

∫

R�,>

dy dη
y2

(
η2 + y2

)3/2 ≤ C |x |α ‖H‖Cα (136)

To deal with K61,ε , we argue as in the estimate of K411,ε . Then

K61,ε = − (H(x, 0) − H(0, 0))
∫

Rε
�,>

dy dη
iy

(−iη − y)(−iη − y − i A(0)y)2

+ K612,ε (137)

where |K612,ε | ≤ C |x |α ‖H‖Cα(�). To estimate the remaining term, we perform the
change of variables η = yζ and readily check that the resulting integral

K611,ε = − (H(x, 0) − H(0, 0))
∫

R�,>

dy dη
iy

(−iη − y)(−iη − y − i A(0)y)2

= − (H(x, 0) − H(0, 0))
∫ L

ε

dy

y

∫

�(x,y)

dζ

(iζ + 1)(iζ + 1 + i A(0))2

where �(x, y) is defined in (129) can be bounded similarly as we estimated integral
(130), namely,

|K611,ε | ≤ C |x |α ‖H‖Cα(�) . (138)

Hence, combining (136), (137) and (138) we conclude

|K6,ε | ≤ C |x |α ‖H‖Cα(�) . (139)

Therefore, bymeans of (95) and (113) and collecting estimates (114)–(116), (117)–
(119), (120), (121) and bounds (135), (139) we have shown that

|�(x) − �(0)| ≤ lim
ε→0+|�1,ε(x) − �1,ε(0)| + lim

ε→0+|�2,ε(x) − �2,ε(0)|
≤ C |x |α ‖H‖Cα(�) (140)

which shows the desired α-Hölder semi-norm estimate. The later estimate combined
with the pointwise bound (111) yields the estimate for theCα(S1)norm.This concludes
the proof of the proposition. ��

4.2 C1,˛ Hölder estimate

We now derived the following Hölder estimates for the derivative of �.
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Proposition 2 (C1,α estimate) Let H(η, y) ∈ C1,α(�) and suppose that Assumption
1 holds. For every x ∈ S

1, define the function �(x) as in (95). Then we have that

‖�‖C1,α(S1) ≤ C ‖H‖C1,α(�) (141)

with C > 0.

Proof (Proof of Proposition 2) By Proposition 1, it is clear that the function �(x)
defined in (95) exists and it is well defined. Moreover, we also showed in the previous
lemma that the pointwise bound

|�(x)| ≤ C ‖H‖Cα(�) , for x ∈ S
1 (142)

holds. We will see at the end of the proof that estimate (141) would be a consequence
of (142) and the following bound

|∂x�ε(x1) − ∂x�ε(x2)| ≤ C |x1 − x2|α ‖H‖C1,α(�) , for x1, x2 ∈ S
1, ε > 0

where�ε is defined in (96). As before, due to the translation invariance of the estimate
it suffices to check without loss of generality that the bound holds for x2 = 0 and
x1 = x , namely

|∂x�ε(x) − ∂x�ε(0)| ≤ C |x |α ‖H‖C1,α(�) . (143)

To that purpose, using the definition of A(x, y, η) in (97) we have that

∂2xA(x, y, η) = −∂x∂ηA(x, y, η) − ∂xR(x, y, η) (144)

where R(x, y, η) is given in (100). Therefore, recalling the definitions (96), (101),
(102), using (144) and integrating by parts we obtain

∂x�ε(x) = ∂x�1,ε(x) + ∂x�2,ε(x)

where

∂x�1,ε(x) =
∫ L

ε

dy
∫

S1
dη ∂xA(x, y, η)∂ηH(η, y) (145)

∂x�2,ε(x) = −
∫ L

ε

dy
∫

S1
dη ∂xR(x, y, η) H(η, y). (146)

Notice that the term (145) has exactly the same form as (96) with ∂ηH(η, y) replaced
by H(η, y). As a consequence, mimicking the estimate (110) in Lemma 1 we have
that

|∂x�1,ε(x)| ≤ C ‖H‖C1,α(�) , for x ∈ S
1 and ε > 0. (147)
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Moreover, arguing as in the proof of the previous lemma using dominated convergence
it follows that

lim
ε→0

∂x�1,ε := Q1(x) (148)

exists. A direct application of estimate (98)with H(η, y) replaced by ∂ηH(η, y) yields

|Q1(x) − Q1(0)| ≤ C |x |α ‖H‖C1,α(�) , for x ∈ S
1. (149)

We next show that limit in (146) as ε tends to zero exists. To that purpose we write

∂xR(x, y, η) = −∂ηR0 + R1 + R2 + R3 (150)

where

R0 = ∂η�(η, y)
iyei(x−η)−yei(x−η)−y−i�(η,y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2
, (151)

R1 = ∂2η�(η, y)
iyei(x−η)−yei(x−η)−y−i�(η,y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2
, (152)

R2 = (∂η�(η, y))2
iyei(x−η)−yei(x−η)−y−i�(η,y)

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))2
, (153)

R3 = ∂η�(η, y)
yei(x−η)−y(ei(x−η)−y−i�(η,y))2

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))3
. (154)

Plugging (150) in (146), we infer that

∂x�2,ε(x) = ∂x�20,ε(x) + ∂x�21,ε(x) + ∂x�22,ε(x) + ∂x�23,ε(x) (155)

with

∂x�20,ε(x) =
∫ L

ε

dy
∫

S1
dη R0(x, y, η)

(
∂ηH(η, y) − ∂ηH(x, 0)

)

∂x�2 j,ε(x) = −
∫ L

ε

dy
∫

S1
dη R j (x, y, η)H(η, y), for j = 1, 2, 3,

where in the first term we have applied integration by parts. Identifying S
1 with the

symmetric interval Ix = [x − π, x + π ] for x ∈ [−π, π ], using bound (87) and the
Hölder regularity for H we obtain

|∂x�20,ε(x)| ≤ C ‖�‖C2(�) ‖H‖C1,α(�)

∫ L

ε

dy
∫

Ix
dη

y2(|x − η|α + yα)

((x − η)2 + y2)3/2

≤ C ‖H‖C1,α(�) ,

123



2424 D. Alonso-Orán, J. J. L. Velázquez

|∂x�21,ε(x)| ≤ C ‖�‖C2,α(�) ‖H‖L∞(�)

∫ L

ε

dy
∫

Ix
dη

y1+α

((x − η)2 + y2)3/2

≤ C ‖H‖L∞(�) ,

|∂x�22,ε(x)| ≤ C ‖�‖2C2(�)
‖H‖L∞(�)

∫ L

ε

dy
∫

Ix
dη

y3

((x − η)2 + y2)3/2

≤ C ‖H‖L∞(�) ,

for x ∈ S
1. Similarly arguing as in the proof of Lemma 1, by dominated convergence

we have that the limits

lim
ε→0+ ∂x�2 j,ε(x) := Q2 j (x), for j = 0, 1, 2 (156)

exist. The most singular term in (155) is ∂x�23,ε . This term can be written as

∂x�23,ε(x) = −
∫ L

ε

dy
∫

S1
dηR3(x, y, η) (H(η, y) − H(x, 0))

− H(x, 0)
∫ L

ε

dy
∫

S1
dη R3(x, y, η)

= ∂x�231,ε(x) + ∂x�232,ε(x). (157)

Identifying again S
1 with the interval Ix = [x − π, x + π ] for x ∈ [−π, π ], using the

bound (87) and the Hölder regularity for H we obtain

|∂x�231,ε(x)| ≤ C ‖�‖C2(�) ‖H‖Cα(�)

∫ L

ε

dy
∫

Ix
dη

y2(|x − η|α + yα)

((x − η)2 + y2)2

≤ C ‖H‖Cα(�) , (158)

for x ∈ S
1. Using the decomposition

∂η�(η, y) = y∂2yη�(η, 0) + [
∂η�(η, y) − y∂2yη�(η, 0)

]
(159)

we infer that

∂x�232,ε (x) = H(x, 0)
∫ L

ε

dy
∫

S1
dη ∂2yη�(η, 0)

y2ei(x−η)−y(ei(x−η)−y−i�(η,y))2

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))3

+ H(x, 0)
∫ L

ε

dy
∫

S1
dη y

[
∂η�(η, y) − y∂2yη�(η, 0)

] ei(x−η)−y(ei(x−η)−y−i�(η,y))2

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i�(η,y))3

= N1,ε + N2,ε

Using that

|[∂η�(η, y) − y∂2yη�(η, 0)
]| ≤ C |y|1+α ‖�‖C2,α(�) ≤ C |y|1+α, (160)
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identifying once again S
1 with Ix = [x − π, x + π ] for x ∈ [−π, π ] and invoking

Lemma 1 we find that

|N2,ε | ≤ C ‖H‖L∞
∫ L

ε

dy
∫

Ix
dη

y2+α

((x − η)2 + y2)2
≤ C ‖H‖L∞ . (161)

On the other hand, using Taylor’s expansion and decomposition (122), we have that

N1,ε(x)=H(x, 0)
∫ L

ε

dy
∫

Ix
dη

y2∂ηA(η)

(i(x−η)−y)(i(x−η)−y − iy A(η))3
+ N12,ε(x)

(162)

with A(η) = ∂y�(η, 0). The remainder N12,ε has an integrable singularity and can be
easily estimated using (123), namely

|N12,ε(x)| ≤ C ‖H‖L∞ , for x ∈ S
1. (163)

To estimate the first term on the right hand side of (162) we further use the decom-
position

∂ηA(η) = ∂ηA(x) + [∂ηA(η) − ∂ηA(x)], where |∂ηA(η) − ∂ηA(x)| ≤ δ0|x − η|α,

(164)

to write

N11,ε(x) = H(x, 0)∂ηA(x)
∫ L

ε

dy
∫

Ix
dη

y2

(i(x − η) − y)(i(x − η) − y − iy A(x))3

+ N112,ε(x) (165)

where |N112,ε | ≤ C ‖H‖L∞ . After the change of variables (x − η) = −yζ we find
that the first term on the right hand side in (165) is given by

N11,ε(x) = H(x, 0)∂ηA(x)
∫ L

ε

dy

y

∫ π
y

− π
y

dζ

(iζ + 1)(iζ + 1 + i A(x))3
. (166)

Extending the value ζ to the whole space R we have that

N11,ε = H(x, 0)∂ηA(x)
∫ L

ε

dy

y

∫

R

dζ

(iζ + 1)(iζ + 1 + i A(x))3
+ N111,ε (167)

where the remaining term |N111,ε | ≤ C . Since the only poles are in ζ = −i, ζ =
−i + A(x) and A(x) ∈ R, computing the integral using residues yields

∫ L

ε

dy

y

∫

R

dζ

(iζ + 1)(iζ + 1 + i A(x))3
= 0. (168)
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Hence, we have that bounds (161), (163), (165) and (168) yield

|∂x�232,ε(x)| ≤ |N1,ε + N2,ε | ≤ C ‖H‖L∞(�) , for x ∈ S
1. (169)

Therefore, collecting the previous estimates (158) and (169) we have shown that

|∂x�23,ε(x)| = |∂x�231,ε(x) + ∂x�232,ε(x)| ≤ C ‖H‖C1,α(�) , for x ∈ S
1.

Application of dominated convergence as well as the fact that in the previous estimates
the integrands where estimated by an integrable function independent of ε shows that
the

lim
ε→0

∂x�23,ε(x) := Q23(x) (170)

exists. Therefore, recalling that

∂x�ε(x) = ∂x�1,ε(x) + ∂x�2,ε(x) = ∂x�1,ε(x) +
3∑

j=0

∂x�2 j,ε(x)

and definitions (148), (156) and (170) we infer that

lim
ε→0

∂x�ε(x) := Q1(x) +
3∑

j=0

Q2 j (x) := Q(x). (171)

By the fundamental theorem of calculus, one can readily see that

�ε(x) − �ε(0) =
∫ x

0
∂x�ε(ξ) dξ, for ε > 0. (172)

We remark that in Lemma 1we already showed that limε→0 �ε(x) = �(x) for x ∈ S
1

we have by uniqueness that

lim
ε→0

∂x�ε(x) := Q(x) = ∂x�(x). (173)

Noticing that we proved in (149) the Hölder semi-norm bound

|∂x�1,ε(x) − ∂x�1,ε(0)| ≤ C |x |α ‖H‖C1,α(�) , for x ∈ S
1,

and recalling that ∂x�ε = ∂x�1,ε + ∂x�2,ε it remains to prove that

|∂x�2,ε(x) − ∂x�2,ε(0)| ≤ C |x |α ‖H‖C1,α(�) , for x ∈ S
1. (174)
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Indeed, combining the last two estimates we conclude the C1,α semi-norm estimate
(143). To that purpose, recalling (150)–(154) and the decomposition (155)we compute
the difference

∂x�2,ε(x) − ∂x�2,ε(0) =
3∑

j=0

(
∂x�2 j,ε(x) − ∂x�2 j,ε(0)

)

= M0,ε + M1,ε + M2,ε + M3,ε,

where

M0,ε = −
∫ L

ε

dy
∫

S1
dη

[
R0(x, y, η)

(
∂ηH(η, y) − ∂ηH(x, 0)

)

− R0(0, y, η)
(
∂ηH(η, y) − ∂ηH(0, 0)

) ]
,

M1,ε = −
∫ L

ε

dy
∫

S1
dη

[
R1(x, y, η) − R1(0, y, η)

]
H(η, y),

M2,ε = −
∫ L

ε

dy
∫

S1
dη

[
R2(x, y, η) − R1(0, y, η)

]
H(η, y),

M3,ε = −
∫ L

ε

dy
∫

S1
dη

[
R3(x, y, η) − R3(0, y, η)

]
H(η, y).

withR j for j = 0, . . . , 3 defined as in (151)–(154).
We divide as in the previous proposition, the region of integration {(η, y) ∈ S

1 ×
[ε, L]} into sets of the form

Rε
�,≤ = {(η, y) ∈ � : max{|y|, |η|} ≤ 2|x | and ε ≤ y ≤ L},

Rε
�,> = {(η, y) ∈ � : max{|y|, |η|} > 2|x | and ε ≤ y ≤ L}, (175)

for ε ≥ 0 and estimate each integral in the different sets. For the sake of simplicity
we will write R0

�,≤ = R�,≤ and R0
�,> = R�,>. Therefore, we have

Mk,ε =
∫

Rε
�,≤

dydη
[
. . .

]+
∫

Rε
�,>

dydη
[
. . .

]=Mk1,ε + Mk2,ε, for k = 0, . . . , 2.

(176)

Notice that we did not include above the most singular term, namely M3,ε . We will
prove the required estimates for that quantity later on. Let us now show how to bound
the other integral quantities M0,ε to M2,ε in the different regions of integration Rε

�,≤
and Rε

�,>.
In the inner region Rε

�,≤, using the Hölder regularity for H we readily see that
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|M01,ε | ≤ C ‖�‖C2(�) ‖H‖C1,α(�)

∫

R�,≤
dy dη

[
y2(|x − η|α + yα)
(
(x − η)2 + y2

)3/2 + y2(|η|α + yα)
(
η2 + y2

)3/2

]

≤ C ‖H‖C1,α(�) |x |α, (177)

|M11,ε | ≤ C ‖�‖C2,α(�) ‖H‖L∞(�)

∫

R�,≤
dy dη

[
y1+α

(
(x − η)2 + y2

)3/2 + y1+α

(
η2 + y2

)3/2

]

≤ C ‖H‖L∞(�) |x |α, (178)

|M21,ε | ≤ C ‖�‖2C2(�)
‖H‖L∞(�)

∫

R�,≤
dy dη

[
y3

(
(x − η)2 + y2

)3/2 + y3
(
η2 + y2

)3/2

]

≤ C ‖H‖L∞(�) |x |α. (179)

In the outer region Rε
�,> = {max{|y|, |η|} > 2|x | and ε ≤ y ≤ L}, we can estimate

M12,ε, M22,ε by applying the mean value theorem and using Lemma 1 as

|M12,ε | + |M22,ε | ≤ C |x | ‖�‖C2,α(�) ‖H‖L∞(�)

×
∫

R�,>

dy dη

[
y1+α

(
(x − η)2 + y2

)2 + y3
(
(x − η)2 + y2

)2

]

≤ C |x |α ‖H‖L∞(�) , (180)

To estimate the term M02,ε , we rewrite it by adding and subtracting as

M02,ε = −
∫

Rε
�,>

dydη (R0(x, y, η) − R0(0, y, η))
(
∂ηH(η, y) − ∂ηH(x, 0)

)

− (
∂ηH(x, 0) − ∂ηH(0, 0)

)
∫

Rε
�,>

dydη R0(0, y, η) = M021,ε + M022,ε .

Recalling the definition ofR0 in (151), using Lemma 1 and applying the mean value
theorem we find that

|M021,ε | ≤ C |x | ‖�‖C2(�) ‖H‖C1,α(�)

∫

R�,>

dy dη
y2 ((x − η)α + yα)
(
(x − η)2 + y2

)2

≤ C |x |α ‖�‖C2(�) ‖H‖C1,α(�) .

Moreover, similarly we obtain

|M022,ε | ≤ C |x |α ‖�‖C2(�) ‖H‖C1,α(�)

∫

R�,>

dy dη
y2

(
η2 + y2

)3/2

≤ C |x |α ‖�‖C2(�) ‖H‖C1,α(�) .

Hence, we have that

|M02,ε | ≤ C |x |α ‖H‖C1,α(�) . (181)
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Collecting estimates (177)–(181) we obtain that

|M0,ε + M1,ε + M2,ε | ≤ C |x |α ‖H‖C1,α(�) . (182)

Let us deal with the most singular term M3,ε , given by

M3,ε = −
∫ L

ε

dy
∫

S1
dη

[
R3(x, y, η) − R3(0, y, η)

]
H(η, y), (183)

withR3 as in (154). We claim that the following estimate holds

|M3,ε | ≤ C |x |α ‖H‖C1,α(�) . (184)

Defining the auxiliary function

H̃(η, y) := ∂η

(
�(η, y)

y

)

H(η, y) and R̃3(x, y, η)∂η�(η, y) = R3(x, y, η)

(185)

we have that

M3,ε = −
∫ L

ε

dy
∫

S1
dη y

[
R̃3(x, y, η) − R̃3(0, y, η)

]
(H̃(η, y) − H̃(0, 0))

+ H̃(0, 0)
∫ L

ε

dy
∫

S1
dη y

[
R̃3(x, y, η) − R̃3(0, y, η)

] = M4,ε + M5,ε .

(186)

We first bound M4,ε . Rewriting the term we obtain

M4,ε = −
∫ L

ε

dy
∫

S1
dη yR̃3(x, y, η)(H̃(η, y) − H̃(x, 0))

+
∫ L

ε

dy
∫

S1
dη yR̃3(x, y, η)

(
H̃(x, 0) − H̃(0, 0)

)

−
∫ L

ε

dy
∫

S1
dη yR̃3(0, y, η)

(
H̃(η, y) − H̃(0, 0)

)=M41,ε +M42,ε +M43,ε .

(187)

Using the decomposition of the regions of integration in (175) we find that

M41,ε = −
∫

Rε
�,≤

dydη
[
. . .

] −
∫

Rε
�,>

dydη
[
. . .

] = M411,ε + M412,ε,

M43,ε = −
∫

Rε
�,≤

dydη
[
. . .

] −
∫

Rε
�,>

dydη
[
. . .

] = M431,ε + M432,ε .
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Similarly as before, using the bound (87) we have that

|M411,ε | ≤ C
∥
∥H̃

∥
∥
Cα(�)

∫

R�,≤
dy dη

y2(|x − η|α + yα)
(
(x − η)2 + y2

)2 ≤ C
∥
∥H̃

∥
∥
Cα(�)

|x |α,

(188)

|M431,ε | ≤ C
∥
∥H̃

∥
∥
Cα(�)

∫

R�,≤
dy dη

y2(|η|α + yα)
(|η|2 + y2

)2 ≤ C
∥
∥H̃

∥
∥
Cα(�)

|x |α. (189)

On the exterior region Rε
�,> given in (175), we obtain after rearranging terms by

adding and subtracting H̃(0, 0) that

M412,ε + M432,ε =
∫

Rε
�,>

dydη yR̃3(x, y, η)(H̃(x, 0) − H̃(0, 0))

−
∫

Rε
�,>

dydη y
(
R̃3(x, y, η)−R̃3(0, y, η)

)
(H̃(η, y)− H̃(0, 0))

= M6,ε + M7,ε . (190)

The later integral can be estimated using Lemma 1 and the mean value theorem as

|M7,ε | ≤ C ‖�‖C2(�)

∥
∥H̃

∥
∥
Cα(�)

∫

R�,>

dy dη|x | y2 (|η|α + yα)
(
(x − η)2 + y2

)3/2

≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

. (191)

On the other hand, to bound M6,ε , we follow the same ideas as we did to estimate
the term K4,ε or K6,ε in Lemma 1. Using the decomposition (122) and bound (123),
we can write

M6,ε = (H̃(x, 0) − H̃(0, 0))
∫

Rε
�,>

dydη

[

y2ei(x−η)−y(ei(x−η)−y−i�(η,y))2

× 1

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i A(η)y (1 + r1(η, y))))3

]

= (H̃(x, 0) − H̃(0, 0))
∫

Rε
�,>

dydη y2
ei(x−η)−y(ei(x−η)−y−i�(η,y))2

(1 − ei(x−η)−y)(1 − ei(x−η)−y−i A(η)y)3
(1 + r2(η, y))

= (H̃(x, 0) − H̃(0, 0))

(∫

Rε
�,>

dy dη
[
. . .

] +
∫

Rε
�,>

dy dη
[
. . .

]
r2(η, y)

)

= M61,ε + M62,ε,

where the remainder term r1(η, y) can be bounded |r1(η, y)| ≤ Cy2 and remainder
r2(η, y) is bounded by |r2(η, y)| ≤ C |y|. The integrand in M62,ε is integrable and can
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be bounded by means of Lemma 1 as

|M62,ε | ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

∫

R�,>

dy dη
y3

(
(x − η)2 + y2

)2 ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

.

(192)

The most involved term is M61,ε . To deal with it, we argue as in the estimate of K41,ε
in (126) or K61,ε in (137). Using Taylor expansion, recalling decomposition and the
bound (128) we infer that

M61,ε = (H̃(x, 0) − H̃(0, 0))
∫

Rε
�,>

dy dη
y2

(i(x − η) − y)(−i(x − η) − y − i A(0)y)3

+M612,ε (193)

with |M612,ε | ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

. Performing the change of variables x − η = yζ
we have that

M611,ε = (H̃(x, 0)− H̃(0, 0))
∫

Rε
�,>

dy dη
y2

(i(x − η)−y)(−i(x−η)−y− i A(0)y)3

(194)

= −(H̃(x, 0) − H̃(0, 0))
∫ L

ε

dy

y

∫

�̃(x,y)

dζ

(iζ + 1)(iζ + 1 + i A(0))3

(195)

where the domain integration �̃ is given by

�̃(x, y) =
{

ζ ∈ R : max

{

1, |ζ − x

y
|
}

>
2|x |
y

, |ζ | ≤ π

y

}

.

We recall that the integration domain �̃ is just a shifted version of the integration
domain � defined in (129). Therefore, similarly as we estimated integral (130), we
have that

|M611,ε | ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

. (196)

and hence, collecting estimates (192), (193), (196) we find that

|M6,ε | ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

. (197)

To end the bound for M4,ε we are left to estimate M42,ε in (187). Identifying S
1 with

Ix = [x−π, x+π ] for x ∈ [−π, π ] and using Taylor’s expansion and decomposition
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(122) we obtain that

M42,ε = (
H̃(x, 0)− H̃(0, 0)

)
∫ L

ε

dy
∫

Ix
dη

y2

(i(x−η)−y)(i(x−η)−y−iy A(η))3

+ M422,ε (198)

where the term M422,ε has an integrable singularity and can be estimated using (123),
namely

|M422,ε | ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

. (199)

We further decompose the function A(η) by

A(η) = A(x) + [A(η) − A(x)], where |A(η) − A(x)| ≤ δ0|x − η|α,

to write

M422,ε = (
H̃(x, 0)− H̃(0, 0)

)
∫ L

ε

dy
∫

Ix
dη

y2

(i(x−η)−y)(i(x−η)−y−iy A(x))3

+ M4222,ε

with |M4222,ε | ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

. After a change of variable (x − η) = yζ we find
that

(
H̃(x, 0) − H̃(0, 0)

)
∫ L

ε

dy
∫

Ix
dη

y2

(i(x − η) − y)(i(x − η) − y − iy A(x))3

= (
H̃(x, 0)− H̃(0, 0)

)
∫ L

ε

dy
∫ π

y

− π
y

dζ

(iζ +1)(iζ +1+i A(x))3
.

Estimating the integral as in (166) by extending the value ζ to the whole space R and
contour integrating via residues yields that

|M422,ε | ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

(200)

and hence estimates (198), (199) and (200) shows that

|M42,ε | ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

. (201)

Thus, combining bounds (187), (188), (191), (197) and (201) we conclude that

|M4,ε | ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

. (202)
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Weprovide now the estimate forM5,ε in (186). Using the change of variables η̃ = η−x
and recalling the definition of R3 in (154) we find that

M5,ε = H̃(0, 0)
∫ L

ε

dy
∫

S1
dη

y2(e−iη−y)3

(1 − e−iη−y)

[ (e−i�(η+x,y))2

(1 − e−iη−y−i�(η+x,y))3

− (e−i�(η,y))2

(1 − e−iη−y−i�(η,y))3

]

= H̃(0, 0)
∫ L

ε

dy
∫

S1
dη

y2(e−iη−y)3

(1 − e−iη−y)

[ (e−i�(η+x,y))2 − (e−i�(η,y))2

(1 − e−iη−y−i�(η+x,y))3

]

+ H̃(0, 0)
∫ L

ε

dy
∫

S1
dη

y2(e−iη−y)3

(1 − e−iη−y)
(e−i�(η,y))2

×
[

1

(1 − e−iη−y−i�(η+x,y))3
− 1

(1 − e−iη−y−i�(η,y))3

]

= M51,ε + M52,ε

where by abusing of notation we wrote η instead of η̃. Identifying S
1 with Ix =

[x − π, x + π ] for x ∈ [−π, π ], using bound (87) and Taylor expansion we have that

|M51,ε | ≤ C
∥
∥H̃

∥
∥
L∞(�)

∫ L

ε

dy
∫

Ix

y3

(|η|2 + y2)4
|�(η + x, y) − �(η, y)|

y

≤ C ‖�‖C2,α(�)

∥
∥H̃

∥
∥
L∞(�)

∫ L

ε

dy
∫

Ix
|x | y3

(|η|2 + y2)2
≤ C |x |α ∥

∥H̃
∥
∥
L∞(�)

,

(203)

where in the second inequality we used Assumption 1 to bound

|�(η + x, y) − �(η, y)|
y

≤ C |x | ‖�‖C2,α(�) . (204)

To get the desired bound for M52,ε let us first rewrite the term in brackets inside
the integral. To that purpose, denoting by D = e−iη−y−i�(η,y) we have that

1

(1 − e−iη−y−i�(η+x,y))3
− 1

(1 − D)3
= 1

(1 − De−i(�(η+x,y)−�(η,y))3
− 1

(1 − D)3

= 1

(1 − D)3

[
1

(
1 − D(e−i(�(η+x,y)−�(η,y))−1)

(1−D)

)3 − 1

]

.

(205)

Therefore, plugging (205) into M52,ε and recalling thatD = e−iη−y−i�(η,y) we have
that
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M52,ε = H̃(0, 0)
∫ L

ε

dy
∫

S1
dη

y2(e−iη−y)3(e−i�(η,y))2

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))3
Jx (η, y)

(206)

where

Jx (η, y) = 1
(
1 − e−iη−y−i�(η,y)(e−i(�(η+x,y)−�(η,y))−1)

(1−e−iη−y−i�(η,y))

)3 − 1.

Next, we claim that the function Jx (η, y) is Cα Hölder is the variables (η, y) ∈ �,
this is

‖Jx (η, y)‖Cα(�) ≤ C |x |α. (207)

Indeed, to show the pointwise L∞(�) bound we readily check by applying Taylor’s
expansion, Assumption 1 and bound (204) that

‖Jx (η, y)‖L∞(�) ≤ C |x | ‖�‖C2,α(�) ≤ C |x |. (208)

To show the α-Hölder semi-norm bound, we have prove that

|Jx (η1, y1) − Jx (η2, y2)| ≤ C |x |α (|y1 − y2| + |η1 − η2|)α , for

η1, η2 ∈ S
1, y1, y2 ∈ [ε, L]. (209)

By computing the difference and using the notation

Nx (η1, y1) = e−iη1−y1−i�(η1,y1)(e−i(�(η1+x,y1)−�(η1,y1)) − 1)

(1 − e−iη1−y1−i�(η1,y1))
,

Nx (η2, y2) = e−iη2−y2−i�(η2,y2)(e−i(�(η2+x,y2)−�(η2,y2)) − 1)

(1 − e−iη2−y2−i�(η2,y2))

we have that

|Jx (η1, y1) − Jx (η2, y2)| =
∣
∣
∣
∣

1

(1 − Nx (η1, y1))3
− 1

(1 − Nx (η2, y2))3

∣
∣
∣
∣ (210)

=
∣
∣
∣
∣

∫ Nx (η1,y1)

Nx (η2,y2)

3

(1 − ζ )4
dζ

∣
∣
∣
∣ ≤ C |Nx (η1, y1) − Nx (η2, y2)|.

(211)

Moreover, further manipulations show that

|Nx (η1, y1) − Nx (η2, y2)| = I1 + I2 (212)
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where

I1 = |e−iη1−y1−i�(η1,y1) (e
−i(�(η1+x,y1)−�(η1,y1)) − 1)

y1

×
[

y1
(1 − e−iη1−y1−i�(η1,y1))

− y2
(1 − e−iη2−y2−i�(η2,y2))

]

|

and

I2 =
∣
∣
∣
∣

[

e−iη1−y1−i�(η1,y1) (e
−i(�(η1+x,y1)−�(η1,y1)) − 1)

y1

− e−iη2−y2−i�(η2,y2) (e
−i(�(η2+x,y2)−�(η2,y2)) − 1)

y2

]∣
∣
∣
∣

×
∣
∣
∣
∣

y2
(1 − e−iη2−y2−i�(η2,y2))

∣
∣
∣
∣.

Let us first bound I1. Using Taylor’s expansion, (204) and Assumption 1 we have that

I1 ≤ C |x | ‖�‖C2,α(�)

∣
∣
∣
∣

y1
(1 − e−iη1−y1−i�(η1,y1))

− y2
(1 − e−iη2−y2−i�(η2,y2))

∣
∣
∣
∣

≤ C |x | (|y1 − y2| + |η1 − η2|) . (213)

To bound I2, we further split it as I2 = I21 + I22 where

I21 =
∣
∣
∣
∣

(
e−iη1−y1−i�(η1,y1) − e−iη2−y2−i�(η2,y2)

)

× (e−i(�(η1+x,y1)−�(η1,y1)) − 1)

y1

(
y2

1 − e−iη2−y2−i�(η2,y2)

) ∣
∣
∣
∣,

I22 =
∣
∣
∣
∣

(
(e−i(�(η1+x,y1)−�(η1,y1)) − 1)

y1
− (e−i(�(η2+x,y2)−�(η2,y2)) − 1)

y2

)

× e−iη2−y2−i�(η2,y2)y2
1 − e−iη2−y2−i�(η2,y2)

∣
∣
∣
∣.

Similarly as before, Taylor’s expansion, (204) and Assumption 1 yields

I21 ≤ C |x ||e−iη1−y1−i�(η1,y1) − e−iη2−y2−i�(η2,y2)| ≤ C |x | (|y1 − y2| + |η1 − η2|) .

(214)
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To bound I22 we first notice that by Lemma 1 we have that

I22 ≤ C

∣
∣
∣
∣

(
(e−i(�(η1+x,y1)−�(η1,y1)) − 1)

y1
− (e−i(�(η2+x,y2)−�(η2,y2)) − 1)

y2

) ∣
∣
∣
∣

(215)

On the other hand, denoting by

Lx (η, y) = �(η + x, y) − �(η, y)

y
and H(ξ, y) = e−iyξ − 1

y

we have that

(e−i(�(η1+x,y1)−�(η1,y1)) − 1)

y1
− (e−i(�(η2+x,y2)−�(η2,y2)) − 1)

y2

=
∫ (ξ2,y2)

(ξ1,y1)

[
∂H

∂ξ
(ξ, y) dξ + ∂H

∂ y
(ξ, y) dy

]

,

where the right hand side is the line integral connecting the point (ξ1, y1)with (ξ2, y2)
where ξ1 = Lx (η1, y1) and ξ2 = Lx (η2, y2). The contour of integration consists in a
horizontal segment connecting (ξ1, y1)with (ξ2, y1)plus a vertical segment connecting
this point with (ξ2, y2). After a direct computation using Taylor’s expansion, we can
check that

∣
∣
∣
∣
∂H

∂ξ

∣
∣
∣
∣ ≤ C,

∣
∣
∣
∣
∂H

∂ y

∣
∣
∣
∣ ≤ C |ξ |,

and hence

∣
∣
∣
∣

∫ (ξ2,y2)

(ξ1,y1)

[
∂H

∂ξ
(ξ, y) dξ + ∂H

∂ y
(ξ, y) dy

]∣
∣
∣
∣ ≤ C

(
|Lx (η2, y1) − Lx (η1, y1)|

+ |Lx (η2, y2)||y1 − y2|
)

= I221 + I222. (216)

Using estimate (204) and Assumption 1 we can readily check that

I222 ≤ C |x ||y1 − y2|. (217)

To bound I221 we proceed as follows. First, notice that forW (η, y) = �(η,y)
y we have

that

Lx (η1, y1) − Lx (η2, y1) = [
W (η1 + x, y1) − W (η1, y1)

]

− [
W (η2 + x, y1) − W (η2, y1)

]
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= [
W (η1 + x, y1) − W (η1, y1)

]

− [
W (η2 + x, y1) − W (η2, y1)

]

=
∫ η1+x

η1

∂W

∂η
(ξ, y1) dξ −

∫ η2+x

η2

∂W

∂η
(ξ, y1) dξ

After changing variables in the second integral, we infer that

Lx (η1, y1) − Lx (η2, y2) =
[ ∫ η1+x

η1

∂W

∂η
(ξ, y1) dξ

−
∫ η1+x

η1

∂W

∂η
((η2 − η1) + ξ, y1) dξ

]

= M1

Recalling thatW (η, y) = �(η,y)
y and using Assumption 1, we have thatW ∈ C1,α(�).

Therefore, we find that

|M1| ≤ C
∫ η1+x

η1

|η2 − η1|α dξ ≤ C |x ||η2 − η1|α

and hence

|Lx (η1, y1) − Lx (η2, y1)| ≤ C |x ||η2 − η1|α. (218)

Collecting the estimates (217), (218) we obtain that

∣
∣
∣
∣
(e−i(�(η1+x,y1)−�(η1,y1)) − 1)

y1
− (e−i(�(η2+x,y2)−�(η2,y2)) − 1)

y2

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ (ξ2,y2)

(ξ1,y1)

[
∂H

∂ξ
(ξ, y) dξ + ∂H

∂ y
(ξ, y) dy

]∣
∣
∣
∣

≤ C |x ||η2 − η1|α,

which combined with (215) yields the desired estimate for I22, namely,

I22 ≤ C |x ||η2 − η1|α (219)

Therefore, recalling that I2 = I21 + I22 and bounds (214), (219) we find that

I2 ≤ C |x | (|y1 − y2| + |η2 − η1|α
)
. (220)

The later estimate and (213) provide the α-Hölder semi-norm bound (209) since

|Jx (η1, y1) − Jx (η2, y2)|
≤ C |Nx (η1, y1) − Nx (η2, y2)| = I1 + I2

≤ C |x | (|y1 − y2| + |η2 − η1|α
)
,
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proving bound (207) and concluding the claim.
Hence using the fact that the function Jx (η, y) is Cα Hölder and satisfies bound

(207) we can bound the term M52,ε as follows. Adding and subtracting Jx (0, 0) we
have that

M52,ε = H̃(0, 0)
∫ L

ε
dy

∫

S1
dη

y2(e−iη−y)3(e−i�(η,y))2

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))3
(Jx (η, y) − Jx (0, 0))

+ H̃(0, 0)Jx (0, 0)
∫ L

ε
dy

∫

S1
dη

y2(e−iη−y)3(e−i�(η,y))2

(1 − e−iη−y)(1 − e−iη−y−i�(η,y))3

= M521,ε + M522,ε .

Identifying S
1 with the symmetric interval Ix = [x − π, x + π ] for x ∈ [−π, π ],

using bound (87) and the α-Hölder bound (207) for Jx (η, y) we obtain

|M521,ε | ≤ C |x |α ∥
∥H̃

∥
∥
L∞(�)

∫ L

ε

dy
∫

Ix
dη

y2(|η|α + yα)

(η2 + y2)2
≤ C |x |α ∥

∥H̃
∥
∥
L∞(�)

.

(221)

To deal with the second integralM522,ε , we notice that we canmimick the ideas that we
used to bound the singular term K4,ε in (124) which relies on using the decomposition
�(η, y) = yA(η) + [�(η, y) − A(η)y] and bound (123). The main difference is
that, for M522,ε , the |x |α power is obtained using the fact that |Jx (0, 0)| ≤ C |x |α.

Combining those elements, and closely following the arguments to estimate K4,ε one
can find that

|M522,ε | ≤ C |x |α ∥
∥H̃

∥
∥
L∞(�)

. (222)

Therefore, since M52,ε = M521,ε + M522,ε we conclude that

|M52,ε | ≤ C |x |α ∥
∥H̃

∥
∥
L∞(�)

. (223)

Estimate (203) and (223) shows that

|M5,ε | ≤ |M51,ε + M52,ε | ≤ C |x |α ∥
∥H̃

∥
∥
L∞(�)

. (224)

Collecting the previous estimates (202) and (224), and recalling thatM3,ε = M4,ε+
M5,ε we infer that

|M3,ε | ≤ C |x |α ∥
∥H̃

∥
∥
Cα(�)

. (225)

Moreover, using the definition of H̃ in (185) and Assumption 1 we infer that

∥
∥H̃

∥
∥
Cα(�)

≤ ‖�‖C2(�) ‖H‖Cα(�) ≤ C ‖H‖Cα(�) , (226)

and hence (225) and (226) yield

|M3,ε | ≤ C |x |α ‖H‖Cα(�) ,
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proving claim (184).
Hence, by means of estimates (182) and (184) we conclude that

|∂x�2,ε(x) − ∂x�2,ε(0)| = |M0,ε + M1,ε + M2,ε + M3,ε | ≤ C |x |α ‖H‖C1,α(�) ,

for x ∈ S
1. (227)

Recalling that

∂x�ε(x) = ∂x�1,ε(x) + ∂x�2,ε(x)

and bounds (149), (227) we find that

|∂x�ε(x) − ∂x�ε(0)| ≤ C |x |α ‖H‖C1,α(�) , for x ∈ S
1 (228)

which shows the desired C1,α semi-norm bound in (143).
To conclude the proof of the proposition, we claim that the C1,α semi-norm bound

(228) and the L∞ pointwise bound (142) implies the C1,α Hölder norm (141). This
is, we have to show that we can control the L∞ norm of ∂x�ε . Indeed, by means of
the identity

�ε(x1) = �ε(x2) + ∂x�ε(x2)(x1 − x2)

−
∫ x2

x1
(∂x�ε(x) − ∂x�ε(x2)) dx, for x1, x2 ∈ S

1 (229)

and using the C1,α semi-norm bound (228) and the L∞ pointwise bound (142)

|∂x�ε(x2)| ≤ 1

2π
2 ‖�‖L∞ + |∂x�ε(x) − ∂x�ε(x2)|

≤ C

π
‖H‖Cα(�) + C(2π)α ‖H‖C1,α(�) (230)

since |x1 − x2| ≤ 2π . Therefore, estimate (230) and the previous C1,α semi-norm
bound (228) implies the desired C1,α Hölder norm estimate (141). ��

4.3 C˛ and C1,˛ estimates for simplified singular integral operators

We provide a similar type of estimate for a simplified operator that do not have the
dependence on the function � (and hence is of convolution type) which reads

Proposition 3 Let H(η, y) ∈ C1,α(�) and let Assumption 1 hold. Then for any x ∈ S
1

the following limit exists

lim
ε→0+ �̃ε(x) = �̃(x), (231)
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where

�̃ε(x) =
∫ L

ε

dy
∫

S1
dη ∂x

(
ei(x−η)−y

1 − ei(x−η)−y

)

H(η, y), ε > 0. (232)

Moreover, we have that

∥
∥�̃

∥
∥
Cα(S1)

≤ C ‖H‖Cα(�) , (233)
∥
∥�̃

∥
∥
C1,α(S1)

≤ C ‖H‖C1,α(�) . (234)

with C > 0.

Proof of Proposition 3 The proof follows closely the ideas of Propositions 1 and 2
and the estimates can be shown mimicking the arguments used there. For the sake
of completeness, we include the computations to derive bound (233), being the C1,α

bound (234) analogous. To show that the left hand side of (231) exists, we first notice
that

∂x

(
eix−y

1 − ei(x−η)−y

)

= −∂η

(
eix−y

1 − ei(x−η)−y

)

. (235)

Using the fact that
∫

S1
dη ∂η(. . .) = 0, we rewrite (232) as

�̃ε(x) = −
∫ L

ε

dy
∫

S1
dη ∂η

(
eix−y

1 − ei(x−η)−y

)

(H(η, y) − H(x, 0)) . (236)

Expanding the derivative and using Lemma 1 (for the trivial case of � ≡ 0), where
for x ∈ [−π, π ] we identify η ∈ S

1 with the symmetric interval Ix = [x − π, x + π ]
we find that

|�̃ε(x)| ≤ C ‖H‖Cα(�) lim
ε→0+

∫ L

ε

dy
∫

Ix
dη

(|x − η|α + yα)

(x − η)2 + y2
≤ C ‖H‖Cα(�) .

(237)

Since we are estimating the integrands of (236) by integrable functions that are
independent on ε it follows from Lebesgue Dominated Convergence Theorem that
limε→0+ �̃ε(x) exists. Therefore, the limit on the left hand side of (231) exists and
the function �̃ is well-defined.

To obtain the Hölder estimate, we compute the difference �̃ε(x)−�̃ε(0) and divide
the region of integration in the integrals

∫ L
ε
dy

∫

S1
dη(. . .) into sets of the form

Rε
�,≤ = {(η, y) ∈ � : max{|y|, |η|} ≤ 2|x | and ε ≤ y ≤ L},

Rε
�,> = {(η, y) ∈ � : max{|y|, |η|} > 2|x | and ε ≤ y ≤ L},
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as

�̃ε(x) − �̃ε(0) =
∫

Rε
�,≤

dy dη

[(
iei(x−η)−y

(1 − ei(x−η)−y)2

)

(H(η, y) − H(x, 0))

−
(

ie−iη−y

(1 − e−iη−y)2

)

(H(η, y) − H(0, 0))

]

+
∫

Rε
�,≤

dy dη

[(
iei(x−η)−y

(1 − ei(x−η)−y)2

)

(H(η, y) − H(x, 0))

−
(

ie−iη−y

(1 − e−iη−y)2

)

(H(η, y) − H(0, 0)) = D1,ε + D2,ε .

In the inner region, we have that using Lemma 1 (again in the trivial case of � ≡ 0),

|D1,ε | ≤ C ‖H‖Cα(�)

∫

R�,≤
dy dη

[
(|x − η|α + yα)

(x − η)2 + y2
+ (|η|α + yα)

η2 + y2

]

≤ C ‖H‖Cα(�) |x |α. (238)

In the outer region we rewrite the term D2,ε as follows

D2,ε =
∫

Rε
�,>

dy dη

[(
iei(x−η)−y

(1 − ei(x−η)−y)2

)

−
(

ie−iη−y

(1 − e−iη−y)2

)]

(H(η, y) − H(0, 0))

− (H(x, 0) − H(0, 0))
∫

Rε�,>

dy dη

(
iei(x−η)−y

(1 − ei(x−η)−y)2

)

= D21,ε + D22,ε .

The first integral D21,ε can be bounded using the mean value theorem as

|D21,ε | ≤ C |x | ‖H‖Cα(�)

∫

R�,>

dy dη

[
(|η|α + |y|α)

(
(x − η)2 + y2

)3/2

]

≤ C |x |α ‖H‖Cα(�) .

(239)

To deal with D22,ε , we make the following change of variables η̃ = x − η to find that

D22,ε = −i (H(x, 0) − H(0, 0)) lim
ε→0+

[ ∫ 1
2

− 1
2

dη̃

∫ L

2|x |
dy

ei η̃−y

(1 − ei η̃−y)2

+
∫ −2|x |

− 1
2

dη̃

∫ L

ε

dy
ei η̃−y

(1 − ei η̃−y)2
+

∫ 1
2

2|x |
dη̃

∫ L

ε

dy
ei η̃−y

(1 − ei η̃−y)2

]

= −i (H(x, 0) − H(0, 0)) lim
ε→0+

[ ∫ 1
2

− 1
2

dη̃

(
ei η̃

ei η̃ − eL
− ei η̃

ei η̃ − e2|x |

)

+
∫ −2|x |

− 1
2

dη̃

(
ei η̃

ei η̃ − eL
− ei η̃

ei η̃ − eε

)

+
∫ 1

2

2|x |
dη̃

(
ei η̃

ei η̃ − eL
− ei η̃

ei η̃ − eε

)]
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= (H(x, 0) − H(0, 0)) lim
ε→0+

[[

log

(
e2|x | − ei η̃

eL − ei η̃

)]η̃= 1
2

η̃=− 1
2

+
[

log

(
eε − ei η̃

eL − ei η̃

)]η̃=−2|x |

η̃=− 1
2

+
[

log

(
eε − ei η̃

eL − ei η̃

)]η̃=2|x |

η̃= 1
2

]

.

Therefore we have that

|D22,ε | ≤ C |x |α ‖H‖Cα(�) (240)

which together with (239) yields

|D2,ε | ≤ C |x |α ‖H‖Cα(�) (241)

Combining estimates (238)–(241) we infer that

|�̃(x) − �̃(0)| ≤ lim
ε→0+|D1,ε + D2,ε | ≤ C |x |α ‖H‖Cα(�) (242)

which shows the desired Cα semi-norm bound (233). ��
To conclude this subsection, let us state the following result which will be needed

later to show the contracting estimates in Sect. 5.1.

Proposition 4 (Difference Cα estimate) Let H(η, y) ∈ Cα(�) and let �1,�2 satisfy
Assumption 1. Then for any x ∈ S

1 the following limit exists

lim
ε→0+ �d

ε (x) = �d(x), (243)

where

�d
ε (x) = lim

ε→0+

∫ L

ε

dy
∫

S1
dη ∂x

(
ei(x−η)−y y

(1−ei(x−η)−y−i�1(η,y))(1 − ei(x−η)−y−i�2(η,y))

)

H(η, y),

(244)

with ε > 0. Moreover, we have that

∥
∥
∥�d

∥
∥
∥
Cα(S1)

≤ C ‖H‖Cα(�) (245)

with C > 0.

Proof of Proposition 4 This result can be proved by a means an elementary adaption of
the Proposition 1. Notice that the only difference between this result and Proposition
1 is that instead of a single function � appearing as a perturbation in the denominator
we have two different functions �1,�2 affecting the denominator in (244). Actually,
Proposition 1 is a particular case in which we take �1 = 0 and �2 = �. The proof of
this Proposition 4 can be showed around similar lines of Proposition 1 just estimating
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the corrective terms due to �1,�2 as it was made in the proof of Proposition 1. We
will not provide the details here. ��

5 The a priori estimates for the operators T1, . . . , T4

In this section, we will provide the Cα and C1,α Hölder estimates for the operators
T1, . . . , T4 and the function G. The key point towards the estimates relies on the Cα

and C1,α Hölder bounds showed in the previous Sect. 4.
In order to do so, let us introduce the following new assumption:

Assumption 2 We assume that the function ϑ : � → S
1 belongs to C1,α(�) and also

that there exists δ1 ∈ (0, 1
2 ) such that

‖ϑ‖C1,α(�) ≤ δ1.

Remark 7 Thenew functionϑ(η, y)will play the role of the function ∂ξ�(X(η, y), y))
in the operators T1, . . . , T4. However, using this notation reduces the length of the
formulas.

Remark 8 In the following we will define the operators T1, . . . , T4 by means of certain
integral expressions which represent operators from Cα to Cα and from C1,α to C1,α .
For the sake of simplicity, we will use the same symbol to denote these operators, in
spite of the fact that they act in different spaces. The space on which they act will be
clear in each particular case from the context.

Proposition 5 (Estimates T1) Let Assumptions 1 and 2 hold. Then for j0 ∈ C1,α(S1)

we define the operator T1 as follows

T1[�,ϑ] j0(x) = − 1

2π
lim

ε→0+

∫

S1
G1,ε(x − η, η) j0(η) dη, for x ∈ S

1, (246)

where

G1,ε(x, η) =
n=∞∑

n=−∞

n sinh(nL)

(cosh(nL) − 1)
einx

∫ L

ε

e−|n|y
[
e−in�(η,y) − 1

1 + ϑ(η, y)

]

dy. (247)

The limit in (246) exists, moreover we have that

‖T1[�,ϑ]‖L(Cα(S1)) ≤ Cδ0, (248)

‖T1[�,ϑ]‖L(C1,α(S1)) ≤ Cδ0. (249)

Proof Toshow that the right hand sideof (246) exists, let us split the functionG1,ε (x, η)

for n > 0 and n < 0. We will use the notation G+
1,ε for n > 0 and G−

1,ε otherwise.
Therefore, for n > 0 we have that

G+
1,ε(x, η) =

n=∞∑

n=1

neinx
∫ L

ε

e−ny

[
e−in�(η,y) − 1

1 + ϑ(η, y)

]

dy + G+
12,ε(x, η) (250)
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where

G+
12,ε(x, η) =

n=∞∑

n=1

(
n sinh(nL)

(cosh(nL) − 1)
− n

)

einx
∫ L

ε

e−ny

[
e−in�(η,y) − 1

1 + ϑ(η, y)

]

dy.

(251)

On the one hand, calculating explicitly the summation via geometric series, we have
that the first term in (250) denoted by G+

11,ε is given by

G+
11,ε(x, η) = 1

i

∫ L

ε

∂x

(
eix−y−i�(η,y)

1 − eix−y−i�(η,y)
− eix−y

1 − eix−y

)
1

1 + ϑ(η, y)
dy

= 1

i

∫ L

ε

(e−i�(η,y) − 1)

y
∂x

(
eix−y y

(1 − eix−y)(1 − eix−y−i�(η,y))

)

1

1 + ϑ(η, y)
dy

= 1

i

∫ L

ε

F(x, η, y)
(e−i�(η,y) − 1)

y

1

1 + ϑ(η, y)
dy (252)

with

F(x, η, y) = ∂x

(
eix−y y

(1 − eix−y)(1 − eix−y−i�(η,y))

)

.

Therefore, by means of (252), we have that the operator T1 for n > 0 given in (246)
can be written after changing the order of integration as

T+
1 [�, ϑ] j0(x) = − 1

2π i
lim
ε→0

∫ L

ε
dy

∫

S1
dη F(x − η, η, y)

(e−i�(η,y) − 1)

y

1

1 + ϑ(η, y)
j0(η)

− 1

2π
lim
ε→0

∫

S1
G+
12,ε (x − η, η) j0(η) dη = T+

11[�, ϑ] j0(x) + T+
12[�,ϑ] j0(x) (253)

assuming that the limits exist. To show that the limit of the second integral T+
12 j0(x)

exists, we notice that the function G+
12(x, η) given in (251) is a smooth function in x

and decays exponentially in n. Therefore, using the bound

|e−in�(η,y) − 1| ≤ C |n| ‖�‖L∞(�) ,

we find that

|G+
12,ε(x, η)| ≤ C

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
L∞(�)

‖�‖L∞(�) ≤ C, for x ∈ S
1, η ∈ S

1.

Since the estimate is independent of ε using the Lebesgue Dominated Convergence
Theorem, we can ensure that the limit exists and that the operator T+

12[�,ϑ] j0(x) is
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well defined. Moreover, we also have the pointwise bound

|T+
12[�,ϑ] j0(x)| ≤ C

∥
∥
∥ 1
1+ϑ

∥
∥
∥
L∞(�)

‖�‖L∞(�) ‖ j0‖L∞(S1) ≤ Cδ0 ‖ j0‖L∞(S1) ,

for x ∈ S
1. (254)

On the other hand, to ensure that T+
11 j0(x) in (253) is well defined we make use of

Proposition 1 where

H(η, y) = (e−i�(η,y) − 1)

y

1

1 + ϑ(η, y)
j0(η). (255)

It is straightforward to check that choosing H(η, y) as in (255), we have that H(η, y) ∈
Cα(�) since

‖H‖Cα(�) ≤ C

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
Cα(�)

‖�‖C1,α(�) ‖ j0‖Cα(S1) ≤ Cδ0 ‖ j0‖Cα(S1)

where in the last inequality we have used Assumption 1. To show the Cα and C1,α

semi-norm estimate (248) and (249), we check that using estimate

|einx1 − einx2 | ≤ C |n|α|x1 − x2|α, for α ∈ (0, 1) and x1, x2 ∈ S
1 (256)

we find that

|G+
12,ε(x1, η) − G+

12,ε(x2, η)| ≤ C

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
L∞(�)

‖�‖L∞(�) |x1 − x2|α

|∂xG+
12,ε(x1, η) − ∂xG

+
12,ε(x2, η)| ≤ C

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
L∞(�)

‖�‖L∞(�) |x1 − x2|α.

Thus

∥
∥T+

12[�,ϑ]∥∥L(L∞(S1),Cα(S1))
≤ C

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
L∞(�)

‖�‖L∞(�) ≤ Cδ0, (257)

∥
∥T+

12[�,ϑ]∥∥L(L∞(S1),C1,α(S1))
≤ C

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
L∞(�)

‖�‖L∞(�) ≤ Cδ0. (258)

Similarly, as before a direct application of Proposition 1 and Proposition 2 with
H(η, y) as in (255) yields

∥
∥T+

11[�,ϑ] j0
∥
∥L(Cα(S1))

≤ C

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
Cα(�)

‖�‖C1,α(�) ≤ Cδ0, (259)

∥
∥T+

11[�,ϑ] j0
∥
∥L(C1,α(S1))

≤ C

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
C1,α(�)

‖�‖C2,α(�) ≤ Cδ0, (260)
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since

‖H‖Cα(�) ≤ C

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
Cα(�)

‖�‖C1,α(�) ‖ j0‖Cα(S1) ≤ Cδ0 ‖ j0‖Cα(S1) ,

‖H‖C1,α(�) ≤ C

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
C1,α(�)

‖�‖C2,α(�) ‖ j0‖C1,α(S1) ≤ Cδ0 ‖ j0‖C1,α(S1) .

Since the estimates for n < 0 follow identically, we omit a detailed proof here. ��
Proposition 6 (Estimates T2) Let Assumption 2 hold. Then for j0 ∈ C1,α(S1)we define
the operator T2 as follows

T2[ϑ] j0(x) = − 1

2π
lim

ε→0+

∫

S1
G2,ε(x − η, η) j0(η) dη, (261)

where

G2,ε(x, η) =
n=∞∑

n=−∞

n sinh(nL)

(cosh(nL) − 1)
einx

∫ L

ε

e−|n|y
[

ϑ(η, y)

1 + ϑ(η, y)

]

dy. (262)

The limit (261) exists and in addition the following estimates hold

‖T2[ϑ]‖L(Cα(S1)) ≤ Cδ1, (263)

‖T2[ϑ]‖L(C1,α(S1)) ≤ Cδ1. (264)

Proof The proof follows the same lines of Proposition 5. We first, show that the right
hand side of (261) exists, and afterwards we provide the Hölder bounds (263) and
(264). To that purpose, we split G2,ε(x, η) for n > 0 and n < 0 and just show the
estimates for n > 0, being the case for n < 0 identical. Therefore, for n > 0 we have
that

G+
2,ε(x, η) =

n=∞∑

n=1

neinx
∫ L

ε

e−ny
[

ϑ(η, y)

1 + ϑ(η, y)

]

dy + G+
22,ε(x, η) (265)

where

G+
22,ε(x, η) =

n=∞∑

n=1

(
n sinh(nL)

(cosh(nL) − 1)
− n

)

einx
∫ L

ε

e−ny
[

ϑ(η, y)

1 + ϑ(η, y)

]

dy.

(266)

Computing the sum in the first term in (265) we obtain

G+
21,ε(x, η) = 1

i

∫ L

ε

∂x

(
1

1 − eix−y

)[
ϑ(η, y)

1 + ϑ(η, y)

]

dy, (267)
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and changing the order of integration the operator T2[ϑ] j0 in (261) can be written for
n > 0 as

T+
2 [ϑ] j0(x) = − 1

2π i
lim
ε→0

∫ L

ε

dy
∫

S1
dη ∂x

(
ei(x−η)−y

1 − ei(x−η)−y

)[
ϑ(η, y)

1 + ϑ(η, y)

]

j0(η)

− 1

2π
lim
ε→0

∫

S1
G+

22,ε(x − η, η) j0(η) dη := T+
21[ϑ] j0 + T+

22[ϑ] j0.

As before, the remainder smoothing term G+
22(x, η) (266) is a smooth function in x

and in particular

|G+
22,ε(x, η)| ≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
L∞(�)

≤ Cδ1, for x ∈ S
1, η ∈ S

1. (268)

Hence, since estimate (268) is independent of ε, Lebesgue Dominated Convergence
Theorem shows that the limit exists and that the associated operator T+

22[ϑ] j0 is well-
defined. Choosing

H(η, y) = ϑ(η, y)

1 + ϑ(η, y)
j0(η), (269)

and noticing that

‖H‖Cα(�) ≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
Cα(�)

‖ j0‖Cα(S1) ≤ Cδ1 ‖ j0‖Cα(S1) . (270)

we can apply Lemma 3 to obtain that T+
21[ϑ] j0 is well defined. We are left to show the

Cα and C1,α semi-norm estimates (263)–(264). Making use of the bound

|einx1 − einx2 | ≤ C |n|α|x1 − x2|α, for α ∈ (0, 1) and x1, x2 ∈ S
1.

we infer that for G+
22 defined in (266)

|G+
22,ε(x1, η) − G+

22,ε(x2, η)| ≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
L∞(�)

|x1 − x2|α,

|∂xG+
22,ε(x1, η) − ∂xG

+
22,ε(x2, η)| ≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
L∞(�)

|x1 − x2|α

holds. Thus, due to Assumption 2 we obtain

∥
∥T+

22[ϑ]∥∥L(L∞(S1),Cα(S1))
≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
L∞(�)

≤ Cδ1, (271)

∥
∥T+

22[ϑ]∥∥L(L∞(S1),C1,α(S1))
≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
L∞(�)

≤ Cδ1. (272)
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To deal with the most singular operator T+
21[ϑ] we make use of Proposition 3. Indeed,

applying estimates (233) and (234) to the function H(η, y) as in (269) we find that

∥
∥T+

21[ϑ]∥∥L(Cα(S1))
≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
Cα(�)

≤ Cδ1, (273)

∥
∥T+

21[ϑ]∥∥L(C1,α(S1))
≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
C1,α(�)

≤ Cδ1, (274)

since

‖H‖Cα(�) ≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
Cα(�)

‖ j0‖Cα(S1) ≤ Cδ1 ‖ j0‖Cα(S1) , ‖H‖C1,α(�)

≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
C1,α(�)

‖ j0‖C1,α(S1)

≤ Cδ1 ‖ j0‖C1,α(S1) .

Therefore, using (271) and (273) we conclude that

∥
∥T+

2 [ϑ∥
∥L(Cα(S1))

≤ Cδ1, (275)

and similarly invoking (272) and (274) we find that

∥
∥T+

2 [ϑ]∥∥L(C1,α(S1))
≤ Cδ1. (276)

��
Proposition 7 (Estimates T3 and T4) Let Assumptions 1 and 2 hold. Then for j0 ∈
C1,α(S1) we define the operators T3 and T4 as follows

T3[�,ϑ] j0(x) = − 1

2π

∫

S1
G3(x − η, η) j0(η) dη, (277)

T4[�,ϑ] j0(x) = − 1

2π

∫

S1
G4(x − η, η) j0(η) dη. (278)

with

G3(x, η) =
n=∞∑

n=−∞

n sinh(nL)

(cosh(nL) − 1)
einx

∫ L

0
M(n, y)

(e−in�(η,y) − 1)

1 + ϑ(η, y)
dy, (279)

G4(x, η) =
n=∞∑

n=−∞

n sinh(nL)

(cosh(nL) − 1)
einx

∫ L

0
M(n, y)

ϑ(η, y)

1 + ϑ(η, y)
dy, (280)

and

M(n, y) = e−2nL
(
eny − e−ny

)

(1 − e−2nL)
. (281)
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Then we have that

‖T3[�,ϑ]‖L(Cα(S1),L∞(S1)) ≤ Cδ0, (282)

‖T4[�,ϑ]‖L(Cα(S1),L∞(S1)) ≤ Cδ1, (283)

and

‖T3[�,ϑ]‖L(C1,α(S1),L∞(S1)) ≤ C, (284)

‖T4[�,ϑ]‖L(C1,α(S1),L∞(S1)) ≤ C, (285)

Remark 9 As we can see from the estimates the operators, T3 and T4 are smoothing
operators that transform functions from L∞(S1) to functions in C1,α(S1). Moreover,
the series in G3 and G4 are uniformly convergent and therefore we do not need to
define the operators T3 and T4 in (277), (278) as a limit since the integrals are well
defined.

Proof Notice that M(n, y) defined in (281) is a smooth function in y and decays
exponential in n. Therefore, the simple bounds

|M(n, y)| ≤ Ce−nL , |e−in�(η,y) − 1| ≤ C |n| ‖�‖L∞(�) ,

yield

|G3(x, η)| ≤ C ‖�‖L∞(�)

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
L∞(�)

and |G4(x, η)| ≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
L∞

,

for x ∈ S
1, η ∈ S

1.

Moreover using that |einx1 − einx2 | ≤ C |n|α|x1 − x2|α for α ∈ (0, 1) and x1, x2 ∈ S
1

we have that for η ∈ S
1

|G3(x1, η) − G3(x2, η)| ≤ C ‖�‖L∞(�)

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
L∞(�)

|x1 − x2|α ≤ Cδ0|x1 − x2|α,

|G4(x1, η) − G4(x2, η)| ≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
L∞(�)

|x1 − x2|α ≤ Cδ1|x1 − x2|α,

|∂xG3(x1, η) − ∂xG3(x2, η)| ≤ C ‖�‖L∞(�)

∥
∥
∥
∥

1

1 + ϑ

∥
∥
∥
∥
L∞(�)

|x1 − x2|α ≤ Cδ0|x1 − x2|α,

|∂xG4(x1, η) − ∂xG4(x2, η)| ≤ C

∥
∥
∥
∥

ϑ

1 + ϑ

∥
∥
∥
∥
L∞(�)

|x1 − x2|α ≤ Cδ1|x1 − x2|α.

Therefore using the above pointwise estimates we conclude that the Hölder semi-norm
of T3, T4 defined in (277)–(278) is bounded as

‖T3[�,ϑ]‖L(L∞(S1),Cα(S1)) ≤ Cδ0,

‖T4[�,ϑ]‖L(L∞(S1),Cα(S1)) ≤ Cδ1,
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‖T3[�,ϑ]‖L(L∞(S1),C1,α(S1)) ≤ Cδ0,

‖T4[�,ϑ]‖L(L∞(S1),C1,α(S1)) ≤ Cδ1,

concluding the proof. ��

5.1 Estimates for the differences of Tj

In this subsection, we will derive estimates for the difference operators. This will be
needed in order to show the contraction estimate in the general fixed point argument
(see Sect. 7) in the lower order Hölder space Cα . The proof follows the same lines as
in the previous subsection but some extra computations are needed in order to get the
desired contraction type estimate. More precisely, our first result reads

Proposition 8 Let �1,�2 satisfy Assumption 1 and ϑ1, ϑ2 satisfy Assumption 2. Let
j0 ∈ Cα(S1) and define

Td1 j0(x) =
(
T1[�1, ϑ1] − T1[�2, ϑ2]

)
j0(x), (286)

where T1[·, ·] is given in (246). Then we have that

∥
∥
∥Td1

∥
∥
∥L(Cα(S1))

≤ C

(∥
∥
∥�1 − �2

∥
∥
∥
C1,α(�)

+
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

)

. (287)

Proof Let us first introduce some notation. We define by Gd
1,ε the difference function

Gd
1,ε(x, η) = G1,ε[�1, ϑ1](x, η) − G1,ε[�2, ϑ2](x, η) (288)

where G1,ε[·, ·] is given in (247). Following the lines of Proposition 5, we split the
function (247) for n > 0 and n < 0. Similarly as in the previous propositions, we will
use the notation Gd,+

1,ε for n > 0 and Gd,−
1,ε otherwise.Then, for n > 0 we find that

Gd,+
1,ε (x, η) =

n=∞∑

n=1

neinx
∫ L

ε

e−nyLn(η, y)dy

+
n=∞∑

n=1

(
n sinh(nL)

(cosh(nL) − 1)
− n

)

einx
∫ L

ε

e−nyLn(η, y)dy

= Gd,+
11,ε(x, η) + Gd,+

12,ε(x, η) (289)

with

Ln(η, y) =
[
e−in�1(η,y) − 1

1 + ϑ1(η, y)
− e−in�2(η,y) − 1

1 + ϑ2(η, y)

]

. (290)
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It will be convenient to decompose Ln(η, y) as follows

Ln(η, y) = 1

1 + ϑ1(η, y)

(
e−in�1(η,y) − e−in�2(η,y)

)

+
(
e−in�2(η,y) − 1

)(
1

1 + ϑ1(η, y)
− 1

1 + ϑ2(η, y)

)

= Ln1 + Ln2 .

(291)

Plugging the decomposition Ln = Ln1 + Ln2 into (289) and calculating the sum in n for
the first term Gd

11,ε(x, η) we obtain

Gd,+
11,ε(x, η) = 1

i

∫ L

ε

∂x

(
eix−y−i�1(η,y)

1−eix−y−i�1(η,y)
− eix−y−i�2(η,y)

1 − eix−y−i�2(η,y)

)
1

1 + ϑ1(η, y)
dy

+ 1

i

∫ L

ε

∂x

(
eix−y−i�2(η,y)

1 − eix−y−i�2(η,y)
− eix−y

1 − eix−y

)

×
(

1

1 + ϑ1(η, y)
− 1

1 + ϑ2(η, y)

)

dy

= Gd,+
111,ε(x, η) + Gd,+

112,ε(x, η).

Denoting by

F1(x, η, y) = ∂x

(
yeix−y

(
1 − eix−y−i�1(η,y)

) (
1 − eix−y−i�2(η,y)

)

)

,

F2(x, η, y) = ∂x

(
yeix−y

(
1 − eix−y−i�2(η,y)

) (
1 − eix−y

)

)

,

we obtain that

Gd,+
111,ε(x, η) = 1

i

∫ L

ε

L11(η, y)

y
F1(x, η, y)dy and Gd

112,ε(x, η)

= 1

i

∫ L

ε

L12(η, y)

y
F2(x, η, y)dy.

Therefore, recalling the definition of the operator Td1 in (286) and the previous com-
putations we find, after changing the order of integration that

Td,+
1 j0(x) = Td,+

11 j0(x) + Td,+
12 j0(x) + Td,+

13 j0(x)

where

Td,+
11 j0(x) = − 1

2π i
lim
ε→0

∫ L

ε

dy
∫

S1
dη

L11(η, y)

y
F1(x − η, η, y) j0(η), (292)
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Td,+
12 j0(x) = − 1

2π i
lim
ε→0

∫ L

ε

dy
∫

S1
dη

L12(η, y)

y
F2(x − η, η, y) j0(η), (293)

Td,+
13 j0(x) = − 1

2π
lim
ε→0

∫

S1
Gd,+

12,ε(x − η, η) j0(η) dη. (294)

We start estimating the third term Td13 j0(x). Notice that the function G
d
12,ε in (289) is

a smooth function in x due to the exponential decay in n of the terms that define the
function (289). Furthermore, we also have that the functions Ln1(η, y), Ln2(η, y) defined
in (291) are bounded by

|Ln1(η, y)| ≤ C

∥
∥
∥
∥

1

1 + ϑ1

∥
∥
∥
∥
L∞(�)

|n|
∥
∥
∥�1 − �2

∥
∥
∥
L∞(�)

, for (η, y) ∈ �, (295)

|Ln2(η, y)| ≤ C

∥
∥
∥
∥

ϑ2 − ϑ1

(1 + ϑ2)(1 + ϑ1)

∥
∥
∥
∥
L∞(�)

|n|
∥
∥
∥�2

∥
∥
∥
L∞(�)

, for (η, y) ∈ �. (296)

and thus

|Gd,+
12,ε(x, η)| ≤ C

( ∥
∥
∥
∥

1

1 + ϑ1

∥
∥
∥
∥
L∞(�)

∥
∥
∥�1 − �2

∥
∥
∥
L∞(�)

+
∥
∥
∥
∥

ϑ2 − ϑ1

(1 + ϑ2)(1 + ϑ1)

∥
∥
∥
∥
L∞(�)

∥
∥
∥�2

∥
∥
∥
L∞(�)

)

≤ C
∥
∥
∥�1 − �2

∥
∥
∥
L∞(�)

+
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
L∞(�)

, for x ∈ S
1, η ∈ S

1.

(297)

Since the estimate (297) is independent of ε, Lebesgue Dominated Convergence The-
orem shows that the limit exists and that the associated operator Td13 j0 in (294) is
well-defined. Moreover, we have the pointwise estimate

|Td,+
13 j0(x)| ≤ C

(∥
∥
∥�1 − �2

∥
∥
∥
L∞(�)

+
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
L∞(�)

)

‖ j0‖L∞(�) , x ∈ S
1.

(298)

TheCα semi-norm estimate for Td,+
13 j0 follows directly by using estimate (256) which

combined with (298) shows

∥
∥
∥Td,+

13

∥
∥
∥L(L∞(S1),Cα(S1))

≤ C

(∥
∥
∥�1 − �2

∥
∥
∥
L∞(�)

+
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
L∞(�)

)

. (299)

To deal with Td,+
11 j0 in (292) and Td,+

12 j0 in (293), we can invoke Proposition 4 and
Proposition 1, respectively. Notice that a consequence of the beforementioned lemmas
is that the limits of the integrals (292) and (293) are well-defined.
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To that purpose, we first notice using the expression (291) that

L11(η, y)

y
= e−i�1(η,y)

1 + ϑ1(η, y)

(
1 − e−(i�2(η,y)−i�1(η,y))

)

y

= e−i�1(η,y)

1 + ϑ1(η, y)
i
∫ 1

0
B(η, y)eiysB(η,y)ds (300)

since by Assumption 1 we can write �2(η, y) − �1(η, y) = yB(η, y) for B(η, y) ∈
C1,α(�). Thus, choosing

H(η, y) = L11(η, y)

y
j0(η) ∈ Cα(�)

we apply estimate (245) in Proposition 4 combined with (300) to obtain that

∥
∥
∥Td,+

11

∥
∥
∥L(Cα(S1))

≤ C
∥
∥
∥�1 − �2

∥
∥
∥
C1,α(�)

. (301)

On the other hand, proceeding in a similar way and choosing

H(η, y) = L12(η, y)

y
j0(η) ∈ Cα(�)

we use Lemma 1 to show that
∥
∥
∥Td,+

12

∥
∥
∥L(Cα(S1))

≤ C
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

. (302)

Collecting bounds (299)–(302) we deduce estimate (287) for n > 0. Repeating the
same arguments for n < 0 concludes the proof. ��
Proposition 9 Let ϑ1, ϑ2 satisfy Assumption 2. Let j0 ∈ Cα(S1) and define

Td2 j0(x) =
(
T2[ϑ1] − T2[ϑ2]

)
j0(x), (303)

where T2[·] is given in (261). Then we have that

∥
∥
∥Td2

∥
∥
∥L(Cα(S1))

≤ C
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

. (304)

Proof Following the same notation as in the last proposition and the arguments of the
proof of Proposition 6, we introduce the difference function Gd

2,ε

Gd
2,ε(x, η) = G2,ε[ϑ1](x, η) − G2,ε[ϑ2](x, η). (305)
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where G2,ε[·] is given in (262). The using the same notation by means of the super-
scripts ± as before, we find that for n > 0 we have that

Gd,+
2,ε (x, η) =

n=∞∑

n=1

neinx
∫ L

ε

e−nyL3(η, y)dy

+
n=∞∑

n=1

(
n sinh(nL)

(cosh(nL) − 1)
− n

)

einx
∫ L

ε

e−nyL3(η, y)dy

= Gd,+
21,ε(x, η) + Gd,+

22,ε(x, η) (306)

with

L3(η, y) = 1

1 + ϑ1(η, y)
(ϑ1(η, y) − ϑ2(η, y)) + ϑ2(η, y)
(

1

1 + ϑ1(η, y)
− 1

1 + ϑ2(η, y)

)

.

Therefore, calculating the sum in n in Gd
21,ε(x, η) we find that

Gd,+
21,ε(x, η) = 1

i

∫ L

ε

∂x

(
eix−y

1 − eix−y

)

L3(η, y)dy

and thus

Td,+
2 j0(x) = Td,+

21 j0(x) + Td,+
22 j0(x)

where

Td,+
21 j0(x) = − 1

2π
lim

ε→0+

∫ L

ε

dy
∫

S1
dη∂x

(
eix−y

1 − ei(x−η)−y

)

L3(η, y) j0(η), (307)

Td,+
22 j0(x) = − 1

2π
lim

ε→0+

∫

S1
Gd,+

22 (x − η, η) j0(η) dη. (308)

Since the function Gd,+
22 is smooth in x since the series that defines it decays expo-

nentially in n, we infer using the expression on L3(η, y) that

|Gd,+
22,ε(x, η)| ≤ C ‖L3‖L∞(�) ≤ C

∥
∥
∥ϑ1 − ϑ2

∥
∥
∥
L∞(�)

, for x ∈ S
1, η ∈ S

1. (309)

Since estimate is independent of ε, LebesgueDominatedConvergence Theorem shows
that the limit exists and that the associated operator Td,+

22 j0 in (308) is well-defined.
Moreover, we have the pointwise estimate

|Td,+
22 j0(x)| ≤ C

∥
∥
∥ϑ1 − ϑ2

∥
∥
∥
L∞(�)

‖ j0‖L∞(�) , x ∈ S
1. (310)
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The Hölder semi-norm estimate follows in a similar way as in (256). Therefore,

∥
∥
∥Td,+

22

∥
∥
∥L(L∞(S1),Cα(S1))

≤ C
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

. (311)

To estimate the remainder operator Td21 j0 we apply Proposition 3 with H(η, y) =
L3 j0(η) ∈ Cα(�) and hence

∥
∥
∥Td,+

21

∥
∥
∥L(Cα(S1))

≤ C
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

. (312)

By means of (311)–(312) we deduce that (304) concluding the proof. ��

Proposition 10 Let �1,�2 satisfy Assumption 1 and let ϑ1, ϑ2 satisfy Assumption 2.
Let j0 ∈ Cα(S1) and define

Td3 j0(x) =
(
T3[�1, ϑ1] − T2[�2, ϑ2]

)
j0(x), (313)

Td4 j0(x) =
(
T4[ϑ1] − T4[ϑ2]

)
j0(x), (314)

where T3[·, ·] and T4[·] are given in (277)–(278). Then we have that

∥
∥
∥Td3

∥
∥
∥L(L∞(�),Cα(S1))

≤ C

(∥
∥
∥�1 − �2

∥
∥
∥
C1,α(�)

+
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

)

, (315)
∥
∥
∥Td4

∥
∥
∥L(L∞(�),Cα(S1))

≤ C
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

(316)

Proof The proof follows simply by combining the bounds derived in Proposition 8,
Proposition 9 and Proposition 7. ��

5.2 Estimates forG

In this subsection, we provide the C1,α Hölder estimate for the term G defined in (85).
To that purpose, let us start with the following lemma:

Lemma 2 Let f ∈ C2,α(∂�) and define the functions

h+(x) = −J +
∫ x

0
( f (ξ, L) − A) dξ, h−(x) =

∫ x

0
( f (ξ, 0) − A) dξ, for x ∈ S

1.

Denote by ĥ+(n), ĥ−(n) the Fourier coefficients of h+, h− respectively. We define

Z(x) = 1

2π

n=∞∑

n=−∞

(

ĥ+(n)
|n|

sinh(|n|L)
− ĥ−(n)

|n|
tanh(|n|L)

)

einx . (317)
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Then the function Z ∈ C2,α(S1). Moreover, we have that

‖Z‖C2,α(S1) ≤ C ‖ f ‖C2,α(S1) . (318)

Proof Adding and subtracting |n|ĥ−(n)einx in (317) we obtain that

Z(x) = 1

2π

n=∞∑

n=−∞

(
|n|ĥ−(n)einx + W1(n)ĥ+(n)einx + W2(n)ĥ−(n)einx

)

(319)

where |Wi (n)| ≤ Ce−Ln for i = 1, 2. Therefore, recalling that

∂xHh−(x) = H∂xh
−(x) = 1

2π

n=∞∑

n=−∞
|n|ĥ−(n)einx

where H is the periodic Hilbert transform we arrive at

‖Z‖C2,α(S1) ≤ C
(∥
∥H∂xh

−∥
∥
C2,α(S1)

+ ∥
∥h−∥

∥
L∞(S1)

+ ∥
∥h+∥

∥
L∞(S1)

)

≤ C
(∥
∥Hh−∥

∥
C3,α(S1)

+ ∥
∥h+∥

∥
L∞(S1)

)
.

Moreover, using the fact that the Hilbert transform is a bounded operator in the class
of Hölder spaces (cf. [18]) namely

‖H‖L(C3,α(S1)) ≤ C,

and that ∂xh−(x) = ( f (x, L) − A) ∈ C2,α(S1) we obtain

‖Z‖C2,α(S1) ≤ C
(∥
∥Hh−∥

∥
C3,α(S1)

+ ∥
∥h+∥

∥
L∞(S1)

)
≤ C ‖ f ‖C2,α(S1) .

��
Lemma 3 Let g ∈ C2,α(∂�−) and define g̃(x) = g(x) − Z(x) where Z(x) is given
in (317). Then for x ∈ S

1 we define

G(x) = − 1

2π

∫

S1

n=∞∑

n=−∞

[
n sinh(nL)

cosh(nL) − 1

]

ein(x−η)g̃(η)dη. (320)

Moreover, we have that

‖G‖C1,α(S1) ≤ C
(‖ f ‖C2,α(S1) + ‖g‖C2,α(S1)

)
. (321)

Proof Recalling (85), we have that
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G(x) = H∂x g̃(x) −
∫

S1
Q̃(x − η)g̃(η) dη,

where

Q̃(x) = 1

2π

n=∞∑

n=−∞
Q̃ne

inx

and

Q̃n = 1

n

(

n
sinh(nL)

cosh(nL) − 1
− |n|

)

, for n �= 0, Q̃0 = 2

L
for n = 0.

Therefore, using the fact

‖H‖L(C1,α(S1)) ≤ C, |Q̃n| ≤ e−nL

and (256) we infer that

‖G‖C1,α(S1) ≤ C
(‖H∂x g̃‖C1,α(S1) + ‖g̃‖L∞(S1)

) ≤ C ‖g̃‖C2,α(S1) . (322)

To conclude, we recall that g̃(x) = g(x) − Z(x) and thus by means of Lemma 2 we
obtain that

‖G‖C1,α(S1) ≤ C ‖g̃‖C2,α(S1) ≤ C
(‖ f ‖C2,α(S1) + ‖g‖C2,α(S1)

)
. (323)

��

6 Existence of solutions to the integral equation for j0

In this sectionwe are interested in studying the existence of a solution j0 ∈ C1,α(∂�−)

to the integral equation (71) given by

j0(x) = −
4∑

i=1

(Ti j0(x) − 〈Ti j0〉) − 〈 j0 f −〉 + G(x) − 〈G〉 (324)

To that purpose, let us first introduce the following notation. Given j0 ∈ C1,α(∂�−)

we define the operator

ϒ : Bδ0(C
2,α(�)) × Bδ1(C

1,α(�)) → L
(
C1,α(∂�−)

)
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such that for (�, ϑ) ∈ Bδ0(C
2,α(�)) × Bδ1(C

1,α(�)) we have that

ϒ[�,ϑ]( j0) = −
4∑

i=1

(Ti [�,ϑ] j0 − 〈Ti [�,ϑ] j0〉) − 〈 f − j0〉 (325)

where Ti are defined in (72), (73), (76) and (77).

Remark 10 More precisely, the operators Ti [�,ϑ] as stated in (72), (73), (76) and
(77) are written for the particular case where ϑ(η, y) = ∂ξ�(X(η, y), y)). How-
ever, we will show the existence of solutions for a more general class of integral
equations, namely for general functions � and ϑ which satisfied certain regularity
and smallness assumptions. We will later check that for the particular case where
ϑ(η, y) = ∂ξ�(X(η, y), y)) the required assumptions are satisfied (cf. Sect. 7).

Remark 11 In a similar manner as we did for the operators T1, . . . , T4, we now define
an operator ϒ acting either in Cα or in C1,α . We will not use different symbols for
operators acting in different spaces for the sake of simplicity, (cf. Remark 8).

In the first place, we have the following two lemmas

Lemma 4 Let M0 ≤ min{δ0, δ1} where δ0, δ1 are defined in Assumptions 1 and 2,
respectively. Let M̃ ≤ M0 and

‖�‖C2,α(�) + ‖ϑ‖C1,α(�) + ∥
∥ f −∥

∥
C2,α(∂�−)

≤ M̃ . (326)

Then we have that

‖ϒ[�,ϑ]‖L(C1,α(∂�−)) ≤ CM̃ . (327)

Furthermore, the operator ϒ[�,ϑ] is Lipschitz in Cα(∂�−), i.e. for any �1,�2 and
ϑ1, ϑ2 satisfying (326) we have that

∥
∥
∥ϒ[�1, ϑ1] − ϒ[�2, ϑ2]

∥
∥
∥L(Cα(∂�−))

≤C

(∥
∥
∥�1 − �2

∥
∥
∥
C1,α(�)

+
∥
∥
∥ϑ2−ϑ1

∥
∥
∥
Cα(�)

)

.

(328)

Proof The proof of (327) is a consequence of the estimates (249), (264), (284) and
(285), as well as the fact that those estimates are preserved for the averaging operators
〈·〉. Notice that the derivatives of the averaging operators are zero since they are just
constant functions.

Indeed, applying those bounds we readily check that

‖ϒ[�,ϑ]‖L(C1,α(∂�−)) ≤ CM̃ (329)
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for M̃ ≤ M0. To show estimate (328), we invoke bounds (287), (304), (315) and (316)
to obtain

∥
∥
∥ϒ[�1, ϑ1] − ϒ[�2, ϑ2]

∥
∥
∥L(Cα(∂�−))

≤
4∑

i=1

∥
∥
∥Ti [�1, ϑ1] − Ti [�2, ϑ2]

∥
∥
∥L(Cα(∂�−))

+
4∑

i=1

‖(〈Ti [�1, ϑ1](·)〉 − Ti [�2, ϑ2](·))‖L(Cα(∂�−))

≤ C

(∥
∥
∥�1 − �2

∥
∥
∥
C1,α(�)

+
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

)

where the action of the operators 〈Ti [��, ϑ�](·)〉 for i = 1, . . . , 4 and � = 1, 2 acting
on the function j0 is given by 〈Ti [��, ϑ�] j0〉.We also use the fact that the terms 〈 f − j0〉
cancel out. ��
Lemma 5 There exists M0 ≤ min{δ0, δ1} such that for any M̃ ≤ M0 and �,ϑ, f −
satisfying (326) the operator (I − ϒ) is invertible in C1,α(∂�−). More precisely, there
exists an operator �[�,ϑ] = (I − ϒ[�,ϑ])−1 such that

� : BM̃ (C2,α(�)) × BM̃ (C1,α(�)) → L
(
C1,α(∂�−)

)
.

Moreover, the operator �[�,ϑ] is Lipschitz in Cα(∂�−), i.e. for any �1,�2 and
ϑ1, ϑ2 satisfying (326) we have that

∥
∥
∥�[�1, ϑ1]−�[�2,ϑ2]

∥
∥
∥L(Cα(∂�−))

≤C

(∥
∥
∥�1−�2

∥
∥
∥
C1,α(�)

+
∥
∥
∥ϑ2−ϑ1

∥
∥
∥
Cα(�)

)

.

(330)

Proof Under the hypothesis of Lemma 4 we have shown that ‖ϒ[�,ϑ]‖L(C1,α(∂�−))

≤ CM̃ for some M̃ sufficiently small. Therefore, the existence of (I − ϒ)−1 follows
from the classical Neumann series (cf. [21]). Indeed, we have that

�[�,ϑ] = (I − ϒ[�,ϑ])−1 =
∞∑

n=0

(−1)nϒn[�,ϑ] (331)

where n = 0, ϒ0[�,ϑ] = I is the identity operator. Moreover, for ϒ[�,ϑ] ∈
L

(
C1,α(∂�−)

)
and using estimate (327) we find that

‖�[�,ϑ]‖L(C1,α(∂�−)) =
∥
∥
∥
∥
∥

∞∑

n=0

(−1)nϒn[�,ϑ]
∥
∥
∥
∥
∥
L(C1,α(∂�−))

≤ 1

1 − CM̃
. (332)

Denoting by An
1 = ϒn[�1, ϑ1], An

2 = ϒn[�2, ϑ2] we can find that

An
1 − An

2 = An−1
1 (A1 − A2) + An−2

1 (A1 − A2) A2 + . . . + A (A1 − A2) A
n
2 .

(333)
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Thus, combining (331) and (333) we find that

�[�1, ϑ1] − �[�2, ϑ2] =
∞∑

n=0

(−1)n An
1 −

∞∑

n=0

(−1)n An
2

=
∞∑

n=0

(−1)n
[

An−1
1 (A1 − A2) + An−2

1 (A1 − A2) A2

+ . . . + A (A1 − A2) A
n
2

]

and hence by means of bounds (327) and (328)we infer that if M0 is sufficiently small
that

∥
∥
∥�[�1, ϑ1] − �[�2, ϑ2]

∥
∥
∥L(Cα(∂�−))

≤ ‖A1 − A2‖L(Cα(∂�−))

∞∑

n=0

n(CM̃)n−1

≤ C
∥
∥
∥ϒn[�1, ϑ1] − ϒn[�2, ϑ2]

∥
∥
∥L(Cα(∂�−))

≤ C

(∥
∥
∥�1 − �2

∥
∥
∥
C1,α(�)

+
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

)

.

��
Combining both lemmas we can provide the existence of solutions to the integral

equation (324) which reads

Proposition 11 Let the hypothesis of Lemma 4 hold. Let also f ∈ C2,α(�), g ∈
C2,α(∂�−) and G given as in (85). Then there exists a solution j0 ∈ C1,α(∂�−) to
(324) given by

j0 = �[�,ϑ] (G − 〈G〉) . (334)

Furthermore,

‖ j0‖C1,α(∂�−) ≤ C
(‖ f ‖C2,α(�) + ‖g‖C2,α(∂�−)

)
. (335)

Proof The fact that j0 as given in (334) solves (324) is a consequence of the definition
of the operator�[�,ϑ] in Lemma 5. On the other hand, we notice bymeans of Lemma
3 and estimate (321) yields

‖G − 〈G〉‖C1,α(S1) ≤ C
(‖ f ‖C2,α(S1) + ‖g‖C2,α(S1)

)
(336)

where G is as in (85). This estimate as well as the fact that � : BM̃ (C2,α(�)) ×
BM̃ (C1,α(�)) → L

(
C1,α(∂�−)

)

‖ j0‖C1,α(∂�−) ≤ C
(‖ f ‖C2,α(�) + ‖g‖C2,α(∂�−)

)
. (337)

��
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7 The fixed point argument

In this section we will provide the fixed point argument, this is, we will define an
adequate operator 	 on a subspace of C2,α(�) which has a fixed point b such that
B = (0, 1) + b is a solution to (1) and (7).

We define the operator 	 : BM (C2,α(�)) → C2,α(�) using several intermediate
building blocks. Given b ∈ BM (C2,α(�)) we define the flow map associated with the
vector field B = (0, 1) + b as the mapping X [b] : BM (C2,α(�)) → C2,α(�) which
satisfies the ordinary differential equation

{
∂y X [b](ξ, y) = b1(X(ξ,y),y)

1+b2(X(ξ,y),y)
X [b](ξ, 0) = ξ.

(338)

Moreover, we denote by X [b]−1(ξ, y) the inverse function of X [b] in the first variable,
namely X [b](X [b]−1(ξ, y), y) = ξ . Then we define � : BM (C2,α(�)) → C2,α(�)

as

�[b](η, y) = X [b](η, y) − η (339)

Actually, in Lemma 6 we will show the stronger result Im(�) ⊂ BCM (C2,α(�)) for
C > 0. We define also the function � : BM (C2,α(�)) → C2,α(�) as

�[b](ξ, y) = X [b]−1(ξ, y) − ξ. (340)

Finally ϑ[b] : BM (C2,α(�)) → C1,α(�) is given by

ϑ[b](η, y) = ∂ξ�[b](X [b](η, y), y). (341)

Notice that combining (340) and (341) we can write

ϑ[b](η, y) = ∂ξ X
−1[b] (X [b](η, y), y)) − 1. (342)

Moreover, arguing as in Lemma 6 we prove that Im(ϑ) ⊂ BCM (C1,α(�)).
Therefore, we now introduce the following operator

�[b] : BM (C2,α(�)) → BCM (C2,α(�)) × BCM (C1,α(�))

defined by �[b] = (�[b], ϑ[b]) and choose M̃ = CM ≤ M0. Next, notice that the
function j0 ∈ C1,α(∂�−) given by (334) solving the integral equation (325) can be
expressed as the following composition of operators

j0 = �[�[b]](G − 〈G〉). (343)

The condition M̃ = CM ≤ M0 must be satisfied so that Proposition 11 can be
applied. To conclude the construction, we use two additional building blocks. First,
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for b ∈ BM (C2,α(�)) and j0 = �[�[b]](G − 〈G〉), we define

j = T [b, j0] : BM (C2,α(�)) × C1,α(�−) → C1,α(�)

where j is the unique solution to the transport type problem

T [b, j0] :
{

((0, 1) + b) · ∇ j = 0, in �

j = j0, on ∂�−.
(344)

To conclude, the new velocity fieldW ∈ C2,α(�) is recovered bymeans of the div-curl
problem (also known as Biot-Savart operator) given by

W = Bs[ j, f , J ] : C1,α(�) × C2,α(∂�) × R → C2,α(�)

where W is the unique solution to

Bs[ j, f , J ] :

⎧
⎪⎪⎨

⎪⎪⎩

∇ × W = j, in �

div W = 0, in �

W · n = f , on ∂�
∫ L
0 W1(0, y) dy = J .

(345)

where J = J [ f , g, b] is given by

2J

L2 =− 1

2π

∫ 2π

0
G(x)dx+ 1

2π

4∑

i=1

∫ 2π

0
Ti j0(x)dx dx− 1

2π

∫ 2π

0
j0(x) f

−(x) dx

(346)

(cf. (70)) with j0 = �[�[b]](G− 〈G〉). Then, we define 	(b) = W . In particular, the
full operator can be expressed as the following composition of operators

W = 	(b) = Bs[T [b,�[�[b]](G − 〈G〉)], f , J [ f , g, b]]. (347)

The precise statement of the theorem reads as follows:

Theorem 7.1 Let f ∈ C2,α(�) satisfying (6) and g ∈ C2,α(∂�−). There exist ε0 >

0, M0 = M0(L, α) sufficiently small such that if

‖ f ‖C2,α(�) + ‖g‖C2,α(∂�−) ≤ ε0M, for M ≤ M0, (348)

then 	(BM (C2,α(�))) ⊂ BM (C2,α(�)). Furthermore, the operator 	 has a unique
fixed point in BM (C2,α(�)).
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7.1 Preliminary estimates: ODE, transport problem and div-curl problem

Before showing the proof of Theorem 7.1, let us first show several Lemmas that will
be needed to provide the proof of Theorem 7.1. The first result summarizes general
Hölder estimates for �[b] and ϑ[b].

Lemma 6 Let M0 be sufficiently small and let b ∈ BM (C2,α(�))with M ≤ M0. Then,
for�[b], ϑ[b] given in (339) and (342), we have that�[b] ∈ C2,α(�)ϑ[b] ∈ C1,α(�)

and

‖�[b]‖C2,α(�) ≤ CM, (349)

‖ϑ[b]‖C1,α(�) ≤ CM . (350)

Moreover, the operator �[b] and ϑ[b] are Lipschitz in C1,α(�) and Cα(�) respec-
tively. This is for any b1, b2 ∈ BM (C2,α(�))

∥
∥
∥�[b1] − �[b2]

∥
∥
∥
C1,α(�)

≤ C
∥
∥
∥b1 − b2

∥
∥
∥
C1,α(�)

, (351)
∥
∥
∥ϑ[b1] − ϑ[b2]

∥
∥
∥
Cα(�)

≤ C
∥
∥
∥b1 − b2

∥
∥
∥
Cα(�)

. (352)

Proof The proof of Lemma 6 is the standard argument used to compute the dependence
of the solutions for an ODE in their parameters. More precisely, the main idea of the
proof is to control incremental quotients of the form f (x+h)− f (x)

h for h > 0, as well

as terms quotients of the form | f (x)− f (y)|
|x−y|α using Grönwall type arguments. A bound

similar to (349), (350) in Lemma 6 but estimating only theC1,α Hölder normhave been
shown in [2, Lemma 3.7]. Moreover, the proof of (351), (352) is obtained computing
the differences of the solutions of the differential equations which define �, ϑ (cf.
(339), (342) and (338)) with b = b1 and b = b2. ��

The next results dealswithHölder estimates for solutions to the hyperbolic transport
type problem (344). For a proof of this result we refer the reader to [2, Proposition
3.8], where a more general result is shown.

Proposition 12 Let M0 be sufficiently small. Then for every M ≤ M0, b ∈
BM (C2,α(�)) and j0 ∈ C1,α(∂�−), there exists a unique j ∈ C1,α(�) solving

T [b, j0] :
{

(B0 + b) · ∇ j = 0 in �,

j = j0 on ∂�−.
(353)

Moreover, there exists a constant C = C(α, L) > 0 such that the following estimate
holds

‖ j‖C1,α(�) ≤ C ‖ j0‖C1,α(∂�−) . (354)
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Furthermore, let j1, j2 ∈ Cα(�) be two different solutions to (353) with b given by
b1, b2 ∈ BM (C2,α(�)) respectively. Then

∥
∥
∥ j1 − j2

∥
∥
∥
Cα(�)

≤ C

(∥
∥
∥ j10 − j20

∥
∥
∥
Cα(∂�−)

+
∥
∥
∥ j10

∥
∥
∥
C1,α(∂�−)

∥
∥
∥V 1 − V 2

∥
∥
∥
Cα(�)

)

(355)

where C = C(α, L) > 0.

To conclude let us also recall the following result regarding Hölder estimate for the
div-curl problem, cf. [2, Proposition 3.11] for a detailed proof.

Proposition 13 For every J ∈ R, j ∈ C1,α(�) and f ∈ C2,α(∂�) satisfying (6),
there exists a unique solution W ∈ C2,α(�) solving

Bs[ j, f , J ] :

⎧
⎪⎪⎨

⎪⎪⎩

∇ × W = j, in �

div W = 0, in �

W · n = f , on ∂�∫

C W · n dS = J .

(356)

where the curve C = {(0, y), y ∈ [0, L]}. Moreover, the solution satisfies the inequal-
ity

‖W‖C2,α(�) ≤ C
(‖ j‖C1,α(�) + ‖ f ‖C2,α(∂�) + |J |) , (357)

where C = C(L, α) > 0.

7.2 Proof of Theorem 7.1

First, we show that the operator 	 maps b ∈ BM (C2,α(�)) into itself and second,
that the operator 	 is a contraction mapping in the lower order norm C1,α(�). By
combining both ingredients, we can invoke Banach fixed point theorem to infer that
the operator 	 has a unique fixed point in BM (C2,α(�)). Let us start with the former
assertion. By means of (347) we find that for b ∈ BM (C2,α(�))

‖	(b)‖C2,α(�) = ‖Bs[T [b,�[�[b]](G − 〈G〉)], f , J ]‖C2,α(�)

≤ C
(‖T [b,�[�[b]](G − 〈G〉)]‖C1,α(�) + ‖ f ‖C2,α(∂�) + |J |)

≤ C
(‖�[�[b]](G − 〈G〉)]‖C1,α(�) + ‖ f ‖C2,α(∂�) + |J |) .

where in the first inequality we have used (357) in Proposition 13 and in the latter we
invoked (355) in Proposition 12. On the other hand, recall that by definition �[b] =
(�[b], ϑ[b]). Hence, combining inequalities (349) and (350) in Lemma 6 and estimate
(335) in Proposition 11 we have that

‖�[�[b]](G − 〈G〉)]‖C1,α(�) ≤ C
(‖ f ‖C2,α(�) + ‖g‖C2,α(∂�−)

)
.
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Moreover, we can show using the expression of J given in (346) and the previous
estimates (249), (264), (284), (285) and (335) that

|J | ≤ C
(‖ f ‖C2,α(�) + ‖g‖C2,α(∂�−)

)
. (358)

Thus, we readily check that

‖	(b)‖C2,α(�) ≤ C
(‖ f ‖C2,α(�) + ‖g‖C2,α(∂�−)

) ≤ Cε0M (359)

where in the second inequalitywe have used the smallness assumption (348). Choosing
ε0 = 1

4C , we obtain that 	(BM (C2,α(�))) ⊂ BM (C2,α(�)).
We now claim that the BM (C2,α(�)) endowedwith the topologyC1,α is a complete

metric space which we will denote by (BM (C2,α(�)), ‖·‖C1,α ). In order to show this
it is sufficient to check that BM (C2,α(�)) is a closed subset of C1,α(�), (cf. [2, Proof
of Lemma 3.12]).

Moreover, we also claim that

	 : (BM (C2,α(�)), ‖·‖C1,α ) → (BM (C2,α(�)), ‖·‖C1,α )

is a contractionmapping. To this end, we have to show that for b1, b2 ∈ BM (C2,α(�)),
we need to estimate the difference

∥
∥	(b1) − 	(b2)

∥
∥
C1,α(�)

. To that purpose, using the
expression of the full operator given in (347) and noticing that the Biot-Savart operator
defined in (345) is a linear operator, we obtain by means of Proposition 13 that

∥
∥
∥	(b1) − 	(b2)

∥
∥
∥
C1,α(�)

=
∥
∥
∥Bs [T [b1,�[�[b1]](G − 〈G〉)], f , J1] − Bs [T [b2, �[�[b2]](G − 〈G〉)], f , J2]

∥
∥
∥
C1,α(�)

≤ C

(∥
∥
∥T [b1,�[�[b1]](G − 〈G〉) − T [b2, �[�[b2]](G − 〈G〉)

∥
∥
∥
C1,α(�)

)

+ |J1 − J2| (360)

where J � is given by (346) with j0 = �[�[b�]](G − 〈G〉) for � = 1, 2. To deal with
the transport type operator T given in (344), we invoke inequality (355) in Proposition
12 to find that

∥
∥
∥T [b1,�[�[b1]](G − 〈G〉) − T [b2,�[�[b2]](G − 〈G〉)

∥
∥
∥
C1,α(�)

≤ C

[ ∥
∥
∥�[�[b1]](G − 〈G〉) − �[�[b2]](G − 〈G〉)

∥
∥
∥
Cα(∂�−)

+
∥
∥
∥�[�[b1]](G − 〈G〉

∥
∥
∥
C1,α(∂�−)

‖b1 − b2‖C1,α(�)

]

.

On other hand by means of (330) in Lemma 5 and recalling that �[b1] =
(�[b1], ϑ[b1]) we arrive at
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∥
∥
∥�[�[b1]](G − 〈G〉) − �[�[b2]](G − 〈G〉)

∥
∥
∥
Cα(∂�−)

≤ C

(∥
∥
∥�1 − �2

∥
∥
∥
C1,α(�)

+
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

)

‖G − 〈G〉)‖Cα(∂�−) (361)

and

∥
∥
∥�[�[b1]]

∥
∥
∥L(C1,α(∂�−))

≤ C .

Hence, combining both estimates with the fact that

‖G‖C1,α(S1) + ‖〈G〉‖C1,α(S1) ≤ C
(‖ f ‖C2,α(S1) + ‖g‖C2,α(S1)

) ≤ Cε0M

and using (348) we find that

∥
∥
∥T [b1,�[�[b1]](G − 〈G〉) − T [b2,�[�[b2]](G − 〈G〉)

∥
∥
∥
C1,α(�)

≤ Cε0M

[ ∥
∥
∥�1 − �2

∥
∥
∥
C1,α(�)

+
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

+ ‖b1 − b2‖C1,α(�)

]

. (362)

On the other hand using Eq. (346) and noticing that the first term on the right hand
side of (346) cancels out we infer that

|J 1 − J 2| ≤ 1

2π

4∑

i=1

∫ 2π

0
|Ti [�[b1]] j10 (x) − Ti [�[b2]] j20 (x)| dx

+ 1

2π

∫ 2π

0
|
(
j10 (x) − j20 (x)

)
f −(x)| dx

≤ Cε0M

[ ∥
∥
∥�1 − �2

∥
∥
∥
C1,α(�)

+
∥
∥
∥ϑ2 − ϑ1

∥
∥
∥
Cα(�)

+ ‖b1 − b2‖C1,α(�)

]

where we have argued as in the derivation of (362) and using that j�0 = �[�[b�]](G−
〈G〉) with � = 1, 2.

Combining the later estimate with (360), (362) and making use of the estimates
(351)-(352) in Lemma 6 we conclude

∥
∥
∥	(b1) − 	(b2)

∥
∥
∥
C1,α(�)

≤ Cε0M ‖b1 − b2‖C1,α(�) ≤ β ‖b1 − b2‖C1,α(�)

(363)

where β is strictly less than one for ε0 = 1
2CM . Therefore,

	 : (BM (C2,α(�)), ‖·‖C1,α ) → (BM (C2,α(�)), ‖·‖C1,α )
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is a contraction mapping for M ≤ M0. Invoking Banach fixed point theorem we find
that 	 admits a unique fixed point b ∈ BM (C2,α(�)) and thus 	(b) = b, which
concludes the proof.

8 Proof of Theorem 1.1

Take ε0 > 0 and M0 = M0(L, α) be the constants defined in Theorem 7.1. Let
also M ≤ M0. Then, Theorem 7.1 implies that 	 has a unique fixed point b ∈
BM (C2,α(�)). We claim that if b ∈ BM (C2,α(�)) is a fixed point operator of 	 then
B = (0, 1) + b is the velocity field which is a solution (B, p) ∈ C2,α(�) × C2,α(�)

to (1) satisfying the boundary conditions

B · n = 1 + f on ∂�, B · τ = g on ∂�−.

On the one hand, assuming that b ∈ BM (C2,α(�)) is a fixed point operator of 	 it is
straightforward to check by construction (see that b solves (345)) that

∇ · B = ∇ · b = 0, in �, B · n = 1 + b · n = 1 + f , on ∂�.

On the other hand, since b is a fixed point of of 	 we find that

∇ × B = ∇ × b = ∇ × 	(b) = j

where in the last equality we have use the first equation in (345) where j solves the
transport system (344). Thus,

0 = (B · ∇) j = ∇ × [
j × B], in �

and j0 as in (343). Then we can define a uni-valued function p in � given by means
of

p(x) =
∫ x

0

[
j × B

]
( y) d y (364)

where the integral on the right hand side is the line integration computed along any
curve connecting 0 = (0, 0) and x ∈ �. In order to check that p is a uni-valued
function on �, we only need to show that (67) holds or equivalently that (68) is
satisfied. However, this follows because J has been chosen as in (346) (cf. (70)).

Finally, since B ∈ C2,α(�) and j ∈ C1,α(�) it follows from (364) that p ∈
C2,α(�) and

j × B = ∇ p, in �

holds. Therefore, (B, p) ∈ C2,α(�) × C2,α(�) solves (1).
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8.1 Checking the tangential boundary value condition

To conclude the proof of Theorem 1.1, it is only left to show that B · τ = g, on ∂�−.

To that purpose, let us first show some consequences of the a priori estimates in Sect. 4.

Corollary 1 Let j0 ∈ C1,α(∂�−). Then, for i = 1, . . . , 4 the operators

T NL
i j0(x) = T NL

0 Ti j0(x) : C1,α(∂�−) → C2,α(∂�−) (365)

are well defined operators. Furthermore, they can be expressed as the perturbation of
convolution operators given in (63).

Proof By means of Proposition 5, Proposition 6 and Proposition 7 we have that for
j0 ∈ C1,α(∂�−) the operators Ti j0 are well defined and Ti j0 ∈ C1,α(∂�−), i =
1, . . . , 4.On the other hand, for j0 ∈ C1,α(∂�−), the operator T NL

0 j0 given as in (83)
is well defined and T NL

0 j0 ∈ C2,α(∂�−). Thus combining both facts yields that

T NL
i = T NL

0 Ti : C1,α(∂�−) → C2,α(∂�−), i = 1, . . . , 4.

We now show that we can express T NL
i j0(x) as the convolution operators given

in (63), for i = 1, . . . , 4. We will just provide the proof for i = 1, since the cases
i = 2, 3, 4 are very similar. Recalling that the T1 is understood as the limit operator
(72)

T1 j0(x) = − 1

2π
lim

ε→0+

∫

S1
G1,ε(x − η, η) j0(η) dη := lim

ε→0+ T1,ε j0(x) (366)

we have that

T NL
0 T1 j0 = T NL

0 lim
ε→0+ T1,ε j0(x).

By means of Proposition 5, we have shown the uniform estimate

∥
∥T1,ε j0

∥
∥
C1,α(∂�−)

≤ C, and lim
ε→0+ T1,ε j0(x) = T1 j0(x) (367)

Therefore, by the Lebesgue Dominated Convergence Theorem and the fact that T NL
0

has an integrable kernel, we conclude that

T NL
0 lim

ε→0+ T1,ε j0(x) = lim
ε→0+(T NL

0 T1,ε j0)(x) (368)

Using the formal Fourier computations in Sect. 3.2, we have that for ε > 0

T NL
0 T1,ε j0(x) =

∫

S1
GNL
1,ε (x − η, η)ω0(η)dη
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where

GNL
1,ε (x, η) =

n=∞∑

n=−∞
einx

∫ L

ε

e−|n|y
[

e−in�(η,y) − 1

1 + ∂ξ�(X(η, y), y)

]

dy. (369)

Computing the summation in n, in a similar fashion in (252) we find that

|GNL
1,ε (x, η)| ≤ C log(|x | + ε) ≤ C log(|x |)

and hence by Lebesgue Dominated Convergence Theorem we conclude that

lim
ε→0+

∫

S1
GNL
1,ε (x − η, η)ω0(η)dη =

∫

S1
lim

ε→0+ GNL
1,ε (x − η, η)ω0(η)dη. (370)

Moreover limε→0+ GNL
1,ε (x, η) → GNL

1 (x, η),∀x �= 0. Therefore, combining the
previous computations we obtain that

T NL
1 ω0(x) = T NL

0 T1ω0(x) =
∫

S1
GNL
1 (x − η, η) j0(η) dη (371)

which shows the desired asserted expression as in (63). ��
The following lemma gives the tangential velocity in terms of the Biot–Savart system
(356).

Lemma 7 Let b ∈ C2,α(�), X−1 ∈ C2,α(�), f ∈ C2,α(∂�) and j0 ∈ C1,α(∂�−)

satisfy the following system

⎧
⎪⎪⎨

⎪⎪⎩

∇ × b = j0(X−1(x, y)), in �

div b = 0, in �

b · n = f , on ∂�
∫ L
0 b1(0, y) dy = J .

(372)

with J as in (346) (cf. (70)).
Then, we have that

(b · τ)(x, 0) = − J

L
+ Z(x) + 1

2π
T NL
0 j0(x) + 1

2π

4∑

i=1

T NL
i j0(x)

with

Z(x) = 1

2π

n=∞∑

n=−∞

(

ĥ+(n)
|n|

sinh(|n|L)
− ĥ−(n)

|n|
tanh(|n|L)

)

einx .
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Proof Arguing as in Sect. 3.1, we have that since b solves (372) there exists a stream
function ψ such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�ψ = j0(X−1(x, y)), in �

ψ(x, L) = −J +
∫ x

0
( f (ξ, L) − A) dξ, x ∈ R

ψ(x, 0) =
∫ x

0
( f (ξ, 0) − A) dξ, x ∈ R

(373)

for A = ∫

∂�+ f dS = ∫

∂�− f dS. Moreover, using the fundamental solution �(x, y)
solving the problem

{
��(x, y) = δ(x)δ(y − y0), in �,

� = 0, on ∂�.
(374)

we can readily check (cf. Sect. 3.1) that the normal derivative at y = 0 is given by

∂y�(x, 0, y0) = − 1

2π

n=∞∑

n=−∞

sinh(n(L − y0))

sinh(nL)
einx .

Computing an homogeneous solution and imposing the boundary value conditions
using Fourier techniques as in (28) in Sect. 2 we conclude that

∂yψ(x, 0) = − J

L
+ Z(x)

− 1

2π

∫ L

0
dy0

∫

S1

n=∞∑

n=−∞

sinh(n(L − y0))

sinh(nL)
ein(x−ξ) j0(X

−1(ξ, y0)) dξ

(375)

where Z(x) as in (30). Since f ∈ C2,α(∂�), it is straightforward to check that
boundary condition term Z(x) is well defined. On the other hand, invoking Corollary
1 we have that for j0 ∈ C1,α(∂�−) the operators

T NL
i j0(x) = T NL

0 Ti j0(x) : C1,α(∂�−) → C2,α(∂�−)

are well defined operators and can be expressed as the convolution operators given in
(63). Hence, by recalling the definition (61) we infer that

T NL j0(x) = T NL
0 j0(x) +

4∑

i=1

T NL
i j0(x)

it admit the representation formula

T NL j0(x) = − 1

2π

∫

S1
GNL(x − η, η) j0(η) dη,
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where

GNL(x, η) =
n=∞∑

n=−∞
an(η)einx , an(η)

=
∫ L

0

sinh(n(L − y))

sinh(nL)

e−in�(η,y)

(1 + ∂ξ�(X(η, y), y))
dy.

where �(η, y) = X(η, y) − η ∈ C2,α(�) and X−1(ξ, y) = ξ + �(ξ, y) = η.
Unraveling notation (cf. computations (43)–(52)), it is easy to check that

T NL j0(x) = − 1

2π

∫ L

0
dy0

∫

S1

n=∞∑

n=−∞

sinh(n(L − y0))

sinh(nL)
ein(x−ξ) j0(X

−1(ξ, y0)) dξ

(376)

is a well defined operator. Therefore, combining (375) and (376) and noticing that

−∂ψ

∂ y
= b · τ on ∂�− provides our claim. ��

Corollary 2 We have that B · τ = g on ∂�−.

Proof Applying Lemma 7 and noticing that by construction j0(x) solves

T NL j0(x) = − 1

2π

∫

S1
GNL(x − η, η) j0(η) dη = g̃ + J

L
(377)

where g̃(x) = −g(x) − Z(x) we conclude that B · τ = b · τ = g on ∂�−. ��
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