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Abstract
In this paper we consider the question of what abelian groups can arise as the K -theory
of C∗-algebras arising from minimal dynamical systems. We completely characterize
the K -theory of the crossed product of a space X with finitely generated K -theory by an
action of the integers and show that crossed products by a minimal homeomorphisms
exhaust the range of these possible K -theories. Moreover, we may arrange that the
minimal systems involved are uniquely ergodic, so that their C∗-algebras are classified
by their Elliott invariants. We also investigate the K -theory and the Elliott invariants
of orbit-breaking algebras. We show that given arbitrary countable abelian groups G0
and G1 and any Choquet simplex � with finitely many extreme points, we can find
a minimal orbit-breaking relation such that the associated C∗-algebra has K -theory
given by this pair of groups and tracial state space affinely homeomorphic to �.
We also improve on the second author’s previous results by using our orbit-breaking
construction to C∗-algebras of minimal amenable equivalence relations with real rank
zero that allow torsion in both K0 and K1. These results have important applications
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to the Elliott classification program for C∗-algebras. In particular, we make a step
towards determining the range of the Elliott invariant of the C∗-algebras associated to
étale equivalence relations.

Mathematics Subject Classification 37B05 · 46L35 · 46L85 · 19K99

1 Introduction

From its verybeginnings, the studyof operator algebras has had close ties to the studyof
dynamical systems.Already in thefirst papers ofMurray andvonNeumannwehave the
group-measure space construction, which constructs a crossed product von Neumann
algebra from a group acting by probability measure-preserving transformations on
a standard probability space [41]. This construction was in turn imported into the
noncommutative topological setting of C∗-algebras via topological groups acting on
locally compact Hausdorff spaces, see for example [15, 49, 52, 60].

The symbiotic relationship between these two areas has allowed for powerful appli-
cations from dynamics to operator algebras, and vice versa. For example, operator
algebraic versions of the Rokhlin lemma were crucial for the type classification of von
Neumann algebra factors, while von Neumann classification allows one to conclude
strong results about the orbit equivalence classes of ergodic group actions. Similarly,
on the C∗-algebraic side, Elliott’s classification of approximately finite (AF) alge-
bras by so-called dimension groups inspired work by Krieger on the classification,
up to eventual conjugacy, of shifts of finite types [36]. Bratteli diagrams were a cru-
cial ingredient in the Giordano–Putnam–Skau classification of minimal actions on a
Cantor set [23]. More generally, such constructions were used to study topological
equivalence relations called AF-equivalence relations [22]. Noncommutative versions
of the Rokhlin lemma continue to provide important ways to study the structure of
C∗-algebras and their group actions (for example, [31, 32, 35] and many others).

As eluded to above, the links between operator algebras and dynamics have been
particularly strong with respect to classification. In the von Neumann setting, a sin-
gle probability measure-preserving ergodic transformation on a standard Borel space
gives rise to the unique hyperfinite II1 factorR. More remarkably, Connes, Feldmann
and Weiss showed that every countable Borel equivalence relation is orbit-equivalent
to a single transformation, and thus the corresponding von Neumann algebraic con-
structions all once again yieldR [11].

Classification for the analogous C∗-algebras proved, unsurprisingly, more involved.
Rather than a unique such algebra, we are faced with a whole class of nonisomorphic
C∗-algebras. Inspired by vonNeumann classification, Elliott initiated the classification
programme for nuclear C∗-algebraswith his classification ofAF algebras [16]. He later
conjectured that many more simple separable C∗-algebras might be classified by an
invariant—now called the Elliott invariant—consisting of K -theory and tracial data.

The recent spectacular achievement of the Elliott program is the classification of all
simple, nuclear, separable, unital, infinite-dimensional C∗-algebras with finite nuclear
dimension which satisfy the universal coefficient theorem (UCT). The nuclear dimen-
sion is a C∗-algebraic version of topological covering dimension and C∗-algebras
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with finite nuclear dimension are much better behaved than those without this prop-
erty. The UCT is a tool which, loosely speaking, allows one to transfer information
between KK -theory and K -theory. While it is a crucial assumption, it holds for all
known examples of nuclear C∗-algebras, in particular for those which arise from min-
imal dynamical systems by [56]. Let us call a C∗-algebra classifiable if it is simple,
separable, unital, infinite-dimensional, has finite nuclear dimension, and satisfies the
UCT.

Every minimal dynamical action of the integers (X , ϕ), where X is an infinite
compact Hausdorff space X and the Z-action is induced by a homeomorphism ϕ,
gives rise to a minimal equivalence relation on X where the equivalence classes are
theϕ-orbits.While in ergodic theory the analogous notions turn out to be essentially the
same [11], in topological dynamics, minimal equivalence relations are more general
than the class of orbit equivalence relations associated to minimal homeomorphisms.
In this paper, we are interested in equivalence relations with a strong topological
dynamical flavour: the so-called orbit-breaking relations. These also arise from a
minimal dynamical system (X , ϕ) with the additional input of a non-empty closed
subsetY ⊂ X . IfY meets everyϕ-orbit atmost once, thenwe can break the equivalence
class corresponding to any orbit that passes through Y into two distinct equivalence
classes corresponding to the forward and backward orbits from Y . Since Y meets every
ϕ-orbit at most once, these equivalence classes are still dense in X , and, taken together
with the equivalence classes corresponding to orbits that do not pass through Y , we
obtain a new minimal equivalence relation on X . Note that orbit-breaking relations
are specific to minimal integer actions. In the case of minimal actions by more general
groups (even free abelian groups), it is not obvious how to break orbits in such a way
that the resulting subequivalence relation will be an open subset. This is one reason
why we focus here on integer actions.

There are many such orbit-breaking relations for which the associated C∗-algebras
cannot be isomorphic to the C∗-algebra of anyminimal dynamical system. Breaking at
a single point in a Cantor minimal system, for example, results in anAF algebra, which
has trivial K1-group. The C∗-algebra of any minimal dynamical system, on the other
hand, always has non-trivial K1-group. In particular, if we restrict ourselves to single
transformations, we do not get an analogue to the von Neumann algebra relationship,
however, it is still possible that minimal equivalence relations might exhaust, up to
isomorphism, all stably finite classifiable C∗-algebras.

Constructions of Giol and Kerr show that there are examples of crossed products
associated to minimal homeomorphisms of infinite compact metric spaces which have
infinite nuclear dimension [21]. Thus not all such crossed product C∗-algebras—
or their orbit-breaking subalgebras—will fall within the scope of the classification
theorem. However, Elliott and Niu provided a sufficient condition for finite nuclear
dimension when they showed that whenever (X , ϕ) has mean dimension zero, the
crossed product will be isomorphic to itself tensored with the Jiang–Su algebra, Z
[18]. The Jiang–Su algebra is a simple, separable, unital, nuclear, infinite-dimensional
C∗-algebrawhoseElliott invariant is the sameas theElliott invariant ofC.AC∗-algebra
A is called Z-stable if it absorbs the Jiang–Su algebra Z tensorially, A ∼= A ⊗ Z .
Finite nuclear dimension of a C∗-algebra A turns out to be equivalent to Z-stability
of A, see [9] (which was based on earlier work in [40, 51]). When combined with
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the theorem of Elliott and Niu, results of Archey, Buck and Phillips imply that mean
dimension zero ensures that any orbit-breaking algebra is alsoZ-stable and hence has
finite nuclear dimension [2].

It follows from this that a classification theorem for the C∗-algebras associated
to minimal dynamical systems is close at hand. One fundamental remaining piece
is determining the range of the Elliott invariant for such C∗-algebras. This in turn
is key to understanding the relationship between minimal dynamical systems, mini-
mal equivalence relations, and stably finite classifiable C∗-algebras, in analogy to the
relationship between ergodic measure-preserving transformations, countable Borel
equivalence relations and the hyperfinite II1 factor. Is every classifiable C∗-algebras
isomorphic to the C∗-algebra of a minimal equivalence relation?

A natural starting point to addressing this problem is to understand the possible
range of K -theory for crossed products by minimal homeomorphisms and their orbit-
breaking C∗-algebras.

In [14, Theorem 2.2], which can be seen as the dynamical companion to this paper,
the authors showed that given any pairG0 andG1 of finitely generated abelian groups,
there exists a compact metric space X admitting a minimal homeomorphism and sat-
isfying K 0(X) ∼= Z ⊕ G0 and K 1(X) ∼= G1. In particular, there are no K -theoretical
obstructions preventing a space from admitting a minimal homeomorphism in the
finitely-generated case. The proof of the statement uses a skew-product construction
of Glasner and Weiss [25] as well as the authors’ construction of minimal homeo-
morphisms on “point-like” spaces—spaces whose K -theory and cohomology are the
same as a point [12]. In the same paper, a variation on the construction allows us more
control over the map induced by the homeomorphism on K -theory, and allows us
to completely exhaust possible K -theory for crossed products arising from minimal
homeomorphisms on spaces X with finitely generated K -theory, see Theorem 4.1 and
Theorem 4.5:

Suppose that X has finitely generated K -theory and ϕ : X → X is a (minimal)
homeomorphism. Then there are d ∈ N and finite abelian groups F0 and F1 such that
K j (C(X) �ϕ Z) ∼= Z

d ⊕ Fj , for j=0,1. Moreover, for any d ∈ N and finite abelian
groups F0 and F1, there exists an infinite connected compact metric space X admitting
a minimal homeomorphism ϕ : X → X such that K j (C(X) �ϕ Z) ∼= Z

d ⊕ Fj , for
j = 0, 1.
We are able to arrange that A := C(X) �ϕ Z above has a unique tracial state and

that the order structure of K0(A) is given by

(K0(A), K0(A)+, [1]) ∼= (Zd ⊕ F0, Z>0 ⊕ Z
d−1 ⊕ F0 ∪ (0Zd , 0F0), (1, 0Zd−1 , 0F0))

while the pairing map in the Elliott invariant r : T (A) → SK0(A) satisfies
r(τ )((n1, . . . , nd , g)) = n1.

Next, we investigate the range of the Elliot invariant of C∗-algebras obtained from
orbit-breaking relations associated to a minimal dynamical system. Here again, the
existence of minimal homeomorphisms of “point-like” spaces given in [12] play a key
role. We can arrange that such a system is uniquely ergodic. After breaking the orbit
at a single point, we are left with a minimal equivalence relation whose C∗-algebra
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is ∗-isomorphic to the Jiang–Su algebra. Building on this, we construct projectionless
C∗-algebras from orbit-breaking equivalence relations, see Corollary 6.4:

Let G0 and G1 be arbitrary countable abelian groups and � a Choquet simplex
with finitely many extreme points. There exists an orbit-breaking equivalence relation
R of an infinite compact metric space such that

K0(C
∗(R)) ∼= Z ⊕ G0, K1(C

∗(R)) ∼= G1, T (C∗(R)) ∼= �.

Moreover, the positive cone of K0(C∗(R)) is given by

K0(C
∗(R))+ ∼= {(n, z) | n = 0, z = 0, or n > 0}.

Finally, we also apply our orbit-breaking technique to minimal homeomorphisms on
non-homogeneous spaces constructed by the authors in [13], which are generalisations
of systems constructed by Floyd [20] and Gjerde and Johansen [24]. In this case,
thanks to the existence of a factor map onto a Cantor minimal system, the associated
C∗-algebras will always have real rank zero. This allows for an extensive strengthening
of the second author’s constructions in [48], see Theorem 7.3. Note in particular that
the group T below can have torsion:

Let T be a countable abelian group,G0 a simple acyclic dimension group and G1 a
countable abelian group. Then there exists an amenable equivalence relationR such
that C∗(R) has real rank zero and

(K0(C
∗(R)), K0(C

∗(R))+, [1]) ∼= (T ⊕ G0, (G0)+, 1G0), K1(C
∗(R)) ∼= G1.

Our results fit within the general question of determining which stably finite clas-
sifiable C∗-algebras can be realized as the C∗-algebra of a principal étale groupoid.
Spectacular recent work on this question has been obtained by Li [37] (also see [4–6]).
Themain result in [37] is that every stably finite classifiable C∗-algebra can be realized
as the C∗-algebra of a twisted principal étale groupoid. There, rather than focusing on
constructions coming from dynamics, Li mimics known inductive limit constructions
for the C∗-algebras at the level of the groupoids. Another difference is that the twist on
the groupoid is only non-trivial when the K0-group of the corresponding C∗-algebra
is torsion free. Here we are able to have torsion in K -theory without requiring any
twists.

The paper is organized as follows. In Sect. 2, we recall some facts about minimal
dynamical systems, crossed products, étale groupoids, and the associated C∗-algebras.
In particular we recall the orbit-breaking equivalence relation that gives rise to orbit-
breaking algebras. In Sect. 3, we discuss the classification program for C∗-algebras,
necessary conditions for crossed products by minimal homeomorphisms and their
orbit-breaking subalgebras to be classifiable, and recall the tools required for calculat-
ing their Elliott invariants. Section 4 focusses on computations for crossed products
arising from the skew product systems constructed in [14]. We prove the existence
of minimal homeomorphisms exhausting the possible K -theoretical range of crossed
products of C(X) when X has finitely generated K -theory. In the final three sections,

123



708 R. J. Deeley et al.

we turn our attention to minimal orbit-breaking relations and their C∗-algebras. Tech-
nical results on the K-theory of orbit-breaking subalgebras are then proved in Sect. 5.
Section 6 dealswith projectionlessC∗-algebras arising from skew-product systems and
systems on point-like spaces. In Sect. 7 we look at real rank zero C∗-algebras obtained
from the non-homogeneous minimal systems constructed in [13]. We expand on the
results of the second author in [48] to obtain examples with torsion in K0 and arbitrary
K1.

2 Dynamical systems and étale groupoids

By a dynamical system, wemean a compact Hausdorff space X , which for the purposes
of this paper is always assumed to be metrizable, equipped with a homeomorphism
ϕ : X → X . The ϕ-orbit of a point x in X is the set {ϕn(x) | n ∈ Z}.

In the sequel, ϕ will always induce a free action of the integers on X , which is to
say that if there exists x ∈ X with ϕn(x) = x , then n = 0. The homeomorphism ϕ is
minimal, or (X , ϕ) is a minimal dynamical system, if the only closed subsets Y ⊆ X
with ϕ(Y ) = Y are X and the empty set. This is equivalent to the condition that every
ϕ-orbit is dense in X . If X is infinite, then any minimal dynamical system induces a
free action.

Given two dynamical systems (X , ϕ) and (Y , ψ) a map π : X → Y is called a
factor map if π is a continuous surjection satisfying π ◦ ϕ = ψ ◦ π . In this case,
(Y , ψ) is called a factor of (X , ϕ) and (X , ϕ) is a called an extension of (Y , ψ). If
π : (X , ϕ) → (Y , ψ) is a factor map then π : (X , ϕn) → (Y , ψn) is also a factor map
for any integer n. A factor map π : X → Y is almost one-to-one if it is one-to-one on
a residual subset of X .

To minimal dynamical system (X , ϕ) one may associate a topological groupoid,
called the transformation groupoid X �ϕ Z, see for example [49]. Here, since our
systems will always be free, it will be more convenient to reformulate the transforma-
tion groupoid as the orbit equivalence relation on X . Given a free dynamical system
(X , ϕ), define the orbit equivalence relation

Rϕ := {(x, ϕn(x)) | x ∈ X , n ∈ Z},

which is an equivalence relation whose equivalence classes are simply the ϕ-orbits.
As the dynamical system is free, the map

X �ϕ Z → Rϕ, (x, n) �→ (x, ϕn(x))

is a bijection. We endow X �ϕ Z with the product topology and equip Rϕ with a
topology via this map, that is,Rϕ is given the unique topology which makes this map
a homeomorphism. This endows the equivalence relation Rϕ with an étale topology:
the topology on an equivalence relation R ⊂ X × X is étale if the maps R → X
given by (x, y) �→ x and (x, y) �→ y are local homeomorphisms. (Note that in the
topological groupoid literature the term equivalence relation is sometimes reserved for
an equivalence relationR ⊂ X×X with topology inherited from the product topology
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on X × X , whereas an equivalence relation equipped with any another topology is
called a principal groupoid.)

An equivalence relation on a compactmetric space X isminimal if, for every x ∈ X ,
the equivalence class of x is dense in X . Observe that if (X , ϕ) is a free dynamical
system, then Rϕ is minimal if and only if (X , ϕ) is minimal.

Suppose (X , ϕ) is a minimal dynamical system and Y ⊆ X is a closed non-empty
subset of X . We say that Y meets every orbit at most once if ϕn(Y ) ∩ Y = ∅ for
each n �= 0. Given a minimal dynamical system (X , ϕ) and closed non-empty subset
Y ⊂ X meeting every orbit at most once, we construct another equivalence relation
using the groupoid construction of [47, Example 2.6], which was originally used in
the C∗-algebraic setting in [45]. Define RY ⊆ Rϕ to be the subequivalence relation
obtained from splitting every orbit that passes through Y into two equivalence classes.
Specifically,

RY = Rϕ \ {(ϕk(y), ϕl(y)) | y ∈ Y , l < 1 ≤ k or k < 1 ≤ l}.

It is a simple matter to check that this is an open subequivalence relation ofRϕ and
hence is also étale. If some ϕ-orbit does not meet Y , then it is an equivalence class in
bothRϕ andRY . If the orbit does meet Y , say at the point y, then its ϕ-orbit becomes
two distinct equivalence classes inRY , namely {ϕn(y) | n ≥ 1} and {ϕn(y) | n ≤ 0}.
In this sense, the orbit is “broken” in two at the point y.

Since X is compact, for any point x ∈ X both its forward orbit and backward orbit
are dense in X . Thus we make the following observation.

Proposition 2.1 If (X , ϕ) is a minimal system, X is infinite, and Y is a closed non-
empty subset of X that meets each orbit at most once, thenRY is minimal.

LetR ⊂ X×X be an equivalence relation equipped with an étale topology, such as
Rϕ orRY . Using the method of Renault in [49, Chapter II] we construct the reduced
groupoid C∗-algebra C∗

r (R) as follows. Equip the linear space Cc(R) of compactly
supported continuous functions R → C with a product and involution given by

( f g)(x, x ′) =
∑

y∈X
(x,y),(y,x ′)∈R

f (x, y)g(y, x ′), (1)

( f ∗)(x, x ′) = f (x ′, x), (2)

for f , g ∈ Cc(R) and (x, x ′) ∈ R. This makes Cc(R) into a ∗-algebra. Let �2(R)

denote the Hilbert space of square summable functions on R. Then we define the
regular representation λ : Cc(R) → B(�2(R)) by

(λ( f )ξ)(x, x ′) =
∑

y∈X
(x,y),(y,x ′)∈R

f (x, y)ξ(y, x ′),

for f ∈ Cc(R), ξ ∈ �2(R) and (x, x ′) ∈ R. The reduced groupoid C∗-algebra C∗
r (R)

is then the closure of λ(Cc(R)) with respect to the norm on B(�2(R)). There is also
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a full groupoid C∗-algebra, however if the groupoid is amenable its full and reduced
C∗-algebras coincide. In this case, we will simply denote the groupoid C∗-algebra
as C∗(R). For any dynamical system (X , ϕ), the equivalence relation Rϕ is always
amenable [49, Example II.3.10]. It follows that if Y is a closed non-empty subset
meeting every ϕ-orbit at most once, then RY is also amenable, since it is an open
subequivalence relation of Rϕ [1, Proposition 5.1.1].

Let (X , ϕ)be aminimal dynamical systemand anon-empty closed subsetY meeting
every ϕ-orbit at most once. The C∗-algebra associated with Rϕ is isomorphic to
the crossed product C∗-algebra C(X) �ϕ Z. Since RY is an open subequivalence
relation of Rϕ , there is an inclusion Cc(RY ) ⊆ Cc(Rϕ) by simply setting a function
f ∈ Cc(RY ) to zero on Rϕ \ RY . This extends to a unital inclusion of C∗-algebras.
If A := C∗(Rϕ) ∼= C(X) �ϕ Z, we will usually denote C∗(RY ) by AY . Observe
that both A and AY contain copies of C(X), so, taken together with the inclusion
ι : AY ↪→ A, we have a commutative diagram

C(X)

i1 i2

AY ι
A.

Another description of the C∗-subalgebra AY often encountered in the literature is
given by the C∗-subalgebra of A generated by subsets C(X) and uC0(X \ Y ),

AY = C∗(C(X), uC0(X \ Y )) ⊆ C(X) �ϕ Z,

where C(X) ⊂ A is the standard inclusion and u is the unitary inducing ϕ, that is, the
unitary u ∈ A satisfying u f u∗ = f ◦ ϕ−1 whenever f ∈ C(X).

3 The classification program

Let A be a simple, separable, unital, nuclear C∗-algebra. The Elliott invariant of A,
denoted Ell(A), is the 6-tuple

Ell(A) := (K0(A), K0(A)+, [1A], K1(A), T (A), rA : T (A) → S(K0(A))),

where rA : T (A) → S(K0(A)) maps a tracial state τ to the state on the ordered
abelian group (K0(A), K0(A)+, [1A]), defined by (τ )([p] − [q]) = τ(p) − τ(q),
for projections p, q ∈ M∞(A). (Here, by abuse of notation, τ denotes τ ⊗ trMn for
appropriate n ∈ N).

The classification theorem stated below is the culmination of many years of work.

Theorem 3.1 (See [8, 9, 17, 27, 28, 53]) Let A and B be separable, unital, simple,
infinite-dimensional C∗-algebras with finite nuclear dimension and which satisfy the
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UCT. Suppose there is an isomorphism

γ : Ell(A) → Ell(B).

Then there is a ∗-isomorphism  : A → B, which is unique up to approximate unitary
equivalence and satisfies Ell() = γ .

For a precise definition of the Universal Coefficient Theorem (UCT), see [50]. It
is satisfied for all known nuclear C∗-algebras, in particular for any of the C∗-algebras
in the sequel. Nuclear dimension is a type of topological dimension for C∗-algebras
which, in the case of a commutativeC∗-algebra, coincideswith the covering dimension
of its spectrum. Nuclear dimension was introduced by Winter and Zacharias in [59]
as a generalization of previous work in [34] and [57]. Restricting to finite nuclear
dimension in the classification theorem given below is thus akin to restricting to finite
covering dimension. This avoids any pathologies that can occur. In particular, any
simple infinite-dimensional C∗-algebra A with weakly unperforated K0-group will
satisfy Ell(A) ∼= Ell(A ⊗ Z), where Z is the Jiang–Su algebra [26, Theorem 1].
The Jiang–Su algebra was constructed in [33]. It is a simple, unital, nuclear, infinite-
dimensional C∗-algebra whose Elliott invariant is the same as the Elliott invariant of
C. We say a C∗-algebra A is Z-stable if A ∼= A ⊗ Z . It is now known that finite
nuclear dimension is equivalent to Z-stability for separable, unital, nuclear, simple
and infinite-dimensional C∗-algebras [8, 9, 40, 51, 58].

We denote the class of all unital, simple, infinite-dimensional C∗-algebras with
finite nuclear dimension and which satisfy the UCT by C, that is,

C := {A | A a classifiable C∗-algebra}.

Theorem 3.2 Let (X , ϕ) be a minimal dynamical system with X an infinite compact
metric space. Suppose that A := C(X) �ϕ Z ∈ C. If Y ⊂ X is a non-empty closed
subset meeting every orbit at most once, then AY ∈ C. In particular, this is the case if
(X , ϕ) has at most countably many ergodic measures or dim(X) < ∞.

Proof Assume that C(X) �ϕ Z is classifiable. That AY is separable and unital is
clear. Since RY is amenable, AY is nuclear (see for example [1, Corollary 6.2.14])
and satisfies the UCT [56]. Moreover, since Y meets every ϕ-orbit at most once,
Proposition 2.1 implies that AY is a simple C∗-algebra. Finally, since AY is a centrally
large subalgebra of the nuclear C∗-algebra A (see [3, Section 4]) it follows that AY is
also Z-stable [2, Theorem 2.4]. That C(X) �ϕ Z is when (X , ϕ) is uniquely ergodic
is the main result of Toms and Winter in [54, 55], while classification in the case for
dim(X) < ∞ is due to Lin in [38]. Both results also follow from the results of Elliott
and Niu in [18], as both these conditions imply (X , ϕ) has mean dimension zero (see
[29, 39] for more on mean dimension). ��

Determining the Elliott invariant for a given C∗-algebra requires computing its K -
theory. For crossed products by Z, the principal tool for the computing K -theory is
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the Pimsner–Voiculescu exact sequence [44], which, for C(X) �ϕ Z, is given by

K 0(X)
id−ϕ∗

K 0(X) K0(C(X) �ϕ Z)

∂PV

K1(C(X) �ϕ Z)

∂PV

K 1(X) K 1(X).
id−ϕ∗

For orbit-breaking subalgebrasC∗(RY ), we use the following exact sequencewhich
relates the K -theory of C∗(RY ) to the K -theory of C(Y ) and C(X) ×ϕ Z.

Theorem 3.3 (Theorem 2.4 and Example 2.6 of [47]) Let (X , ϕ) be a minimal dynam-
ical system and Y ⊆ X a closed non-empty subset of X which meets every orbit at
most once. Let A := C(X) �ϕ Z and let ι : AY ↪→ A be the inclusion map. Then
there exists a six-term exact sequence

K 0(Y ) K0(AY )
ι∗

K0(C(X) �ϕ Z)

∂OB

K1(C(X) �ϕ Z)

∂OB

K1(AY )
ι∗

K 1(Y ).

The details for the remaining maps in this six-term exact sequence are given in [47]
and also discussed further in Sect. 5.

In addition to the six-term exact sequence which allows us to relate the K -theory of
an orbit-breaking subalgebra AY to the containing crossed product A = C(X) �ϕ Z,
we can also compare their tracial state spaces. In fact, by [43, Theorem 6.2, Theorem
7.10], the restriction map

T (A) → T (AY ), τ �→ τ |AY

is bijective.

4 Projectionless crossed products byminimal homeomorphisms

In this section, we consider projectionless crossed products arising from the minimal
skew product systems constructed in [14]. These constructions are based on work of
Glasner and Weiss in [25] and Fathi and Herman in [19].

To begin, let us consider the possible abstract K -theory groups of crossed products
C(X)�ϕ Z obtained from a (minimal) homeomorphism ϕ when the underlying space
X has finitely generated topological K -theory.

Theorem 4.1 Suppose that X is a compact metric space with finitely generated K -
theory and ϕ is a homeomorphism of X. Then there exists d ≥ 1 and finite abelian
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groups F0 and F1 such that

K0(C(X) �ϕ Z) ∼= Z
d ⊕ F0 and K1(C(X) �ϕ Z) ∼= Z

d ⊕ F1.

Proof The Pimsner–Voiculescu exact sequence and the fact that K j (X) is finitely
generated imply that K j (C(X) �ψ Z) is also finitely generated, j = 0, 1. That the
free part of the degree zero group is the same as the free part of the degree one group
follows from the rank–nullity theorem. Finally, d ≥ 1 because the class of the unitary
giving the actions generates a copy of Z in K1(C(X) �ψ Z). ��

We will show that for every such pair of groups given by Theorem 4.1, there exists
a minimal dynamical system (X , ϕ) such that the K -theory C(X) �ϕ Z is precisely
these two groups. To do so, we use results from [14]. Here K̃ 0(X) denotes the reduced
K0-group of X .

Theorem 4.2 [14, Theorem 5.9] Let G0 and G1 be finitely generated abelian groups
and σ0 : G0 → G0, σ1 : G1 → G1 finite order automorphisms. Suppose there exists
a pointed connected finite CW-complex W such that

K̃ 0(W ) ∼= G0, and K 1(W ) ∼= G1,

and basepoint-preserving finite order homeomorphism

βW : W → W such that β∗
W = σ∗.

Then there exists a a compact metric space X such that K 0(X) ∼= Z ⊕ G0, K 1(X) ∼=
G1, and a minimal homeomorphism ϕ : X → X such that ϕ∗ = σ∗. Moreover, we
can arrange that H1(X) = {0} and that ϕ is uniquely ergodic.

Lemma 4.3 Given n ∈ N there exists a connected finite CW-complexW with vanishing
K 1-group and β : W → W a finite order homeomorphism such that the induced map
on K̃ 0(W ) satisfies

ker(id−β∗) ∼= {0} and coker(id−β∗) ∼= Z/nZ.

Proof LetW0 = S1 ∨ S1 ∨· · ·∨ S1 be the wedge of n−1 copies of S1 with basepoint
the wedge point, and denote by (x, i) ∈ S1 × {1, . . . , n} the point x in the i th copy
of S1. Define f : W0 → S1 to be the map (x, i) �→ x . The connected CW-complex
W is given by C f , the reduced mapping cone of the map f . Observe that C f is a
pointed space such that K̃ 0(W ) ∼= Z

n−1 and K̃ 1(W ) = 0 and there exists a basepoint
preserving homeomorphism β : W → W which induces the map on K -theory given
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by multiplication of an element in Z
n−1 by the matrix

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 −1
1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
0 0 1 · · · 0 −1
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

For further details, see [14, Example 5.6, Lemma 5.7]. It follows that the map id−β∗
on K̃ 0(W ) is given by

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 1
−1 1 0 · · · 0 1
0 −1 1 · · · 0 1
...

...
...

. . .
...

...

0 0 0 · · · 1 1
0 0 0 · · · −1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

which has Smith normal form given by

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · 0 n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus ker(id−β∗) ∼= ker(I − B) = {0} and coker(id−β∗) ∼= coker(I − B) ∼= Z/nZ,
so W and β satisfy the requirements of the lemma. ��
Lemma 4.4 Suppose d ∈ N\{0}, and F0, F1 are finite abelian groups. Then there exist
a connected finite CW-complex, W and β : W → W a finite order homeomorphism
such that the induced map on K 0(W ) satisfies

ker(id−β∗) ∼= Z
d and coker(id−β∗) ∼= Z

d ⊕ F0,

and the induced map on K 1(W ) satisfies

ker(id−β∗) ∼= {0} and coker(id−β∗) ∼= F1.

Proof Let V to be the wedge of (d − 1)-spheres with the homeomorphism, β0 = id.
Then K 0(V ) ∼= Z

d , K 1(V ) ∼= {0} and id−β∗
0 is the zero map on both groups. Hence

the induced map on K 0(W0) satisfies

ker(id−β∗
0 ) ∼= Z

d and coker(id−β∗
0 ) ∼= Z

d ,
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and the induced map on K 1(W0) satisfies

ker(id−β∗
0 ) ∼= {0} and coker(id−β∗

0 ) ∼= {0}.

Since F0 is finite, there exist m ∈ N and cyclic groups C1, . . . ,Cm such that F0 =⊕m
j=1 C j . For each j = 1, . . . ,m, apply Lemma 4.3 to get a pointed, connected, finite

CW-complex X j with K1(X j ) = 0, and a finite order homeomorphismα j : X j → X j

such that the induced map on K̃ 0(X j ) satisfies

ker(id−α∗
j ) = {0} and coker(id−α∗

j )
∼= C j .

By [14, Theorem 5.5], there exist a pointed, connected, finite CW-complex X with
K1(X) = {0} and β1 : X → X a finite order basepoint-preserving homeomorphism
with β∗

1 = α∗
1 ⊕ · · · ⊕ α∗

m . In particular,

ker(id−β∗
1 ) = {0} and coker(id−β∗

1 ) ∼= F0.

Repeating the above for the finite abelian group F1, we obtain a pointed, connected,
finite CW-complex Ỹ with K 1(Ỹ ) = {0} and a finite order basepoint-preserving home-
omorphism β̃2 : Ỹ → Ỹ such that ker(id−β̃∗

1 ) = {0} and coker(id−β̃∗
1 ) ∼= F0. Let

Y := SỸ , the suspension of Ỹ . Let β2 : Y → Y be the finite order homeomorphism
induced by β. Then K 0(Y ) = 0 and the map induced β2 on K 1(Y ) satisfies

ker(id−β∗
2 ) = {0} and coker(id−β∗

2 ) ∼= F1.

Let W := V ∨ X ∨ Y and β := β0 ∨ β1 ∨ β2. Using a similar argument to that of
[14, Theorem 5.5], it now follows thatW and β satisfy the requirements of the lemma.

��
Theorem 4.5 Suppose d ∈ N \ {0} and F0, F1 are finite abelian groups. Then there
exists an infinite connected compact metric space X with finitely generated K -theory
and β̃ : X → X a minimal homeomorphism such that

K0(C(X) �β̃ Z) ∼= Z
d ⊕ F0 and K1(C(X) �β̃ Z) ∼= Z

d ⊕ F1.

Proof By the previous lemma, there exists a connected finite CW-complex W and
a finite order homeomorphism β : W → W such that the induced map on K 0(W )

satisfies

ker(id−β∗) ∼= Z
d and coker(id−β∗) ∼= Z

d ⊕ F0

while the induced map on K 1(W ) satisfies

ker(id−β∗) ∼= {0} and coker(id−β∗) ∼= F1.
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Now apply Theorem 4.2 to the finite order homeomorphism β : W → W to obtain
an infinite compact metric space X with K j (X) ∼= K j (W ), j = 0, 1, and a minimal
homeomorphism ϕ : X → X such that ϕ∗ = β∗. It is straightforward to check, using
the Pimsner–Voiculescu exact sequence, that C(X) �ϕ Z has the required K -theory
groups. ��

Recall that C denotes the class of simple, separable, unital, infinite-dimensional
C∗-algebras with finite nuclear dimension and which satisfy the UCT. In other words,
C consists of those C∗-algebras which are classifiable.

Corollary 4.6 For any d ∈ N \ {0} and any pair of finite abelian groups F0, F1,
there exists a minimal dynamical system (X , ϕ) such for the crossed product A :=
C(X) �ϕ Z, we have

(1) A ∈ C,
(2) the pointed ordered K0-group (K0(A), K0(A)+, [1]) is isomorphic to (Zd ⊕

F0, Z>0 ⊕ Z
d−1 ⊕ F0 ∪ (0Zd , 0F0), (1, 0Zd−1 , 0F0)),

(3) K1(A) ∼= Z
d ⊕ F1,

(4) A has a unique tracial state,
(5) r : T (A) → SK0(A) satisfies r(τ )((n1, . . . , nd), g)) = n1,
(6) A has no non-trivial projections.

Proof By the previous theorem, there exists a minimal dynamical system (X , ϕ) with
K0(A) ∼= Z

d ⊕ F0 and K1(A) ∼= Z
d ⊕ F1. By Theorem 4.2 we may moreover

choose X such that H1(X) = 0 and (X , ϕ) is uniquely ergodic. As observed in the
proof of Proposition 3.2, unique ergodicity implies that A ∈ C . It also implies that
A = C(X) �ϕ Z has a unique tracial state. That A has no non-trivial projections
follows from the fact that H1(X) = 0, together with a theorem of Connes in [10]
(see also [7, Corollary 10.10.6]). In this case we can also compute the order structure
on K0 and pairing map since the range of the trace on K0(A) is Z (see [7, Corollary
10.10.6]). ��

5 Technical results on the K-theory of orbit-breaking subalgebras

In this section we proved a number of technical results related to the K -theory of orbit-
breaking subalgebras. Let C∗(RY ) denoted the orbit-breaking subalgebras associated
to C(X) ×ϕ Z and Y ⊆ X a closed, non-empty subset. Recall from Theorem 3.3 that
we have the following exact sequence relating the K -theory of AY = C∗(RY ) to the
K -theory of C(Y ) and A = C(X) ×ϕ Z:

K 0(Y ) K0(AY )
ι∗

K0(C(X) �ϕ Z)

∂OB

K1(C(X) �ϕ Z)

∂OB

K1(AY )
ι∗

K 1(Y ).

Below, we establish some further results on the K -theory of the orbit-breaking
subalgebras which will be needed. The first lemma and its corollary follow from an
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inspection of the maps the above six-term exact sequence, details of which are given
in [47].

Lemma 5.1 Let (X , ϕ) be a minimal dynamical system and let Y1 and Y2 be non-
empty closed subsets meeting every ϕ-orbit at most once. Suppose that Y1 ⊂ Y2 and
let j : Y1 → Y2 denote the inclusion. Let A := C(X) �ϕ Z. Then ιi : AYi ↪→ A,
i = 1, 2 and the two exact sequences of Theorem 3.3 are compatible. That is,

· · · K1(A) K 0(Y2)

j∗

K0(AY2)
(ι2)∗

K0(A) · · ·

· · · K1(A) K 0(Y1) K0(AY1)
(ι1)∗

K0(A) · · · .

In the next corollary, (1) was also observed by Phillips in [42, Theorem 4.1(3)].

Corollary 5.2 Applying the previous lemma to the case Y1 = {y} for some y ∈ X, Y2
connected and K1(A) ∼= Z, we have

· · · Z Z ⊕ K̃ 0(Y2)

j∗

K0(AY2)
(ι2)∗

K0(A) · · ·

· · · Z K 0({y}) ∼= Z K0(A{y})
(ι1)∗

K0(A) · · · .

Moreover,

(1) the map K0(A{y}) → K0(A) is an isomorphism;
(2) the map Z → K 0(Y1) = K 0({y}) ∼= Z is an isomorphism;
(3) the map K 0(Y2) ∼= Z ⊕ K̃ 0(Y2) → K 0({y}) ∼= Z is given by

(n, y) ∈ Z ⊕ K̃ 0(Y2) �→ n ∈ Z.

For the next lemma, recall from Sect. 2 that the boundary maps in the Pimsner–
Voiculescu exact sequence are denoted ∂PV, and the boundary maps in the exact
sequence of Theorem 3.3 are denoted ∂OB.

Lemma 5.3 Let (X , ϕ) be a minimal dynamical system with X an infinite compact
metric space. Suppose Y ⊆ X is a closed subset of X such that ϕn(Y ) ∩ Y = ∅ for
every n �= 0. Let j : Y ↪→ X denote the inclusion of Y in X. Then the following
diagram commutes:

K∗(A)

∂OB

∂PV
K ∗+1(X)

j∗

K ∗+1(Y ).
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Before beginning the proof of Lemma5.3,we need amore explicit description of the
boundary maps. The boundary maps ∂PV of the Pimsner–Voiculescu exact sequence
are discussed first.

Regard the crossed product as being generated by functions inC(X) and a unitary u
such that u f u∗ = f ◦ ϕ−1, for f in C(X). Let b ∈ B(�2(Z)) denote the bilateral shift
and let E ⊂ (C(X) ×ϕ Z) ⊗B(�2(Z)) be the C∗-subalgebra generated C(X) ⊗ 1 and
u⊗b. Denote by p+ ∈ B(�2(Z)) the projection onto �(Z>0) and put p := 1C(X)⊗ p+.
There is a short exact sequence

0 → C(X) ⊗ K(�2(Z>0)) → pE p → C(X) ×ϕ Z → 0,

and the maps ∂PV are the index maps of the associated sequence in K -theory.
To describe the second boundary map ∂OB we elaborate a little on the K -theory of

the orbit-breaking subalgebras. Let A := C∗(Rϕ) and let AY := C∗(RY ).
LetZ act on Y ×Z via the trivial action on Y and translation onZ, and let Sϕ denote

its associated groupoid. We view Sϕ as the equivalence relation

Sϕ = {((y,m), (y, n)) | y ∈ Y ,m, n ∈ Z}.

Define

SY = S \ {((y,m), (y, n)) | y ∈ Y ;m < 1 ≤ n or n < 1 ≤ m},

and let C := C∗(Sϕ) and CY := C∗(SY ) be the associated C∗-algebras. Observe that
by defining

S+
Y := {((y,m), (y, n)) | y ∈ Y ,m, n ≥ 1},

C+
Y = C∗ (S+

Y

)
,

S−
Y := {((y,m), (y, n)) | y ∈ Y ,m, n < 1},

C−
Y := C∗ (S−

Y

)
,

we have SY = S+
Y ∪ S−

Y and CY = C+
Y ⊕C−

Y . It is straightforward to check (see also
[47, Example 2.6]) that for the associated C∗-algebras we have

C ∼= C(Y ) ⊗ K
(
�2(Z)

)
,

C+
Y

∼= C(Y ) ⊗ K
(
�2(Z>0)

)
,

C−
Y

∼= C(Y ) ⊗ K
(
�2(Z≤0)

)
.

Note that the inclusion CY ⊂ C is considerably more elementary than that of AY ⊂
A. We want to establish a relation between these two pairs of inclusions. The map
j : Y × Z → X defined by j(y, n) = ϕn(y) is continuous and equivariant. By abuse
of notation, we also use j to denote j × j , which is a groupoid morphism from Sϕ to
Rϕ . Observe that j(SY ) is precisely j(Sϕ) ∩ RY .
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If g ∈ Cc(Rϕ), then g ◦ j : Sϕ → C is continuous and although it does not
have compact support, we nevertheless have that for any f ∈ Cc(Sϕ) the convolution
products f (g ◦ j), (g ◦ j) f are both defined and contained in Cc(Sϕ). Thus elements
of A act as multipliers on C . Similarly, elements of AY acts as multipliers on CY .

The main result of [46] is that there is an isomorphism between relative K -groups,
K∗(AY ; A) ∼= K∗(CY ;C). Thus we can reduce the computation of K∗(AY ; A) to the
computation of K∗(CY ;C). Now, given any C∗-algebra B with C∗-subalgebra B ′,
by [46, Section 2], the relative K0-group, K0(B ′, B) is shown to consist of elements
represented by partial isometries in matrices over B̃, the unitization of B, whose initial
and final projections lie in matrices over B̃ ′. There is an exact sequence

K1(B) K0(B ′; B) K0(B ′)

K1(B ′) K1(B ′; B) K0(B),

given as follows. The map K1(B) → K0(B ′; B) is defined by considering any unitary
in matrices over the unitization B̃ as a partial isometry with initial and final projections
in matrices over B̃ ′, and the map K0(B ′; B) → K0(B ′) is defined by sending a partial
isometry v to [v∗v]0−[vv∗]0 ∈ K0(B ′). The verticalmaps are induced by the inclusion
B ′ ⊂ B.

With the concrete description of the C∗-algebras CY ⊂ C , it is a simple matter to
check that this yields a short exact sequence

0 → K0(CY ;C) → K0(C
+
Y ) ⊕ K0(C

−
Y ) → K0(C) → 0,

and that the inclusions C+
Y ,C−

Y ⊂ C both induce isomorphisms on K -theory. Conse-
quently, if q := 1⊕0 in the multiplier algebra of C+

Y ⊕C−
Y , the map from K0(CY ;C)

to K0(C) taking the class of a partial isometry v in C with initial and final projections
in C+

Y ⊕ C−
Y to [v∗vq]0 − [vv∗q]0, is an isomorphism.

We now complete our description of the map ∂OB. For each m ≥ 1, let em be the
characteristic function of the compact open set

{(y, i, i) | |i | ≤ m} ⊂ Sα.

These elements form an approximate unit for C which lies in CY . We use the same em
to denote em ⊗ 1n in Mn(C).

Let v ∈ Mn(A) be a unitary, which we regard as a partial isometry with initial and
final projections in Mn(A′). Define

vm :=
[

vem 0
1n − em 0

]
,

which is a partial isometry in M2n(C̃) satisfying

v∗
mvm = 1 ⊕ 0, vmv∗

m = vemv∗ ⊕ (1 − em).
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For sufficiently large values of m, vmv∗
m will lie (at least approximately) in M2n(C̃Y ).

The isomorphism from [46] carries the class of v to that of vm , for any sufficiently
large m. Thus for the map ∂OB we have

[v]1 �→ [q(1 ⊕ 0)]0 − [q(vemv∗ ⊕ (1 − em))]0 ∈ K0(C).

Proof of Lemma 5.3 It will be convenient to let e+
m denote the characteristic function of

the set {(y, i, i) | 1 ≤ i ≤ m}. In otherwords, e+
m = pem , where, as above, p = 1⊗ p+

where p+ is the projection onto �(Z<0). First, we show that j∗◦∂PV([u]1) = ∂OB([u]1)
where u is the canonical unitary in the crossed product. We compute the Pimsner–
Voiculescu map as follows. Lift u to p(u ⊗ b)p = u ⊗ s in pE p, where s is the
unilateral shift. Then

∂PV([u]1) = [1 ⊗ ss∗]0 − [1 ⊗ s∗s]0 = −[1 ⊗ (I − ss∗)]0.

Under the isomorphism of K0(C(X) ⊗ K) with K0(C(X)), this is identified with
−[1]0. On the other hand,

∂OB[u]1 = [q(1 ⊕ 0)]0 − [q(uemu
∗ ⊕ (1 − em))]0

= [q]0 − [e+
m+1 ⊕ (q − e+

m ))]0
= −[e+

1 ]0.

Under the isomorphism between K0(C) and K0(C(Y )), [e+
1 ]0 is identified with [1]0.

As the restriction map from C(X) to C(Y ) is unital, we have j∗ ◦ ∂PV([u]1)) =
∂OB([u]1), as required.

Now we show that j∗ ◦ ∂PV = ∂OB when applied to an arbitrary unitary in Mn( Ã).
For simplicity, assume n = 1. We may approximate this unitary by an invertible v =∑N

−N fnun , where N ∈ N and fn ∈ C(X),−N ≤ n ≤ N . As we know the conclusion

holds for u, multiplying by uN , it suffices to prove it holds for uNv = ∑2N
0 fn−Nun .

For m > 2N , the initial and final projections of (uNv)m are in C̃Y , and we have

∂OB[uNv] = [quNvemv∗uN ]0 − [e+
m ]0.

On the other hand, we may lift the element uNv = ∑2N
n=0 fn−Nun to the element

w = ∑2N
n=0 fnun ⊗ Bn in E . From the fact that p(u ⊗ b)p = (u ⊗ b)p, it follows

that pwp = wp and is a partial isometry (approximately) with (wp)∗(wp) ≈ p and
(wp)(wp)∗ = wpw∗ = pwpw∗ p, which is a subprojection of p. It follows that

∂PV[uNv]1 = −[p − wpw∗]0.

We also know that

p(u ⊗ b)∗ p = p(u ⊗ b)∗
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and hence, provided m > 1,

pw(u ⊗ b)∗m p = pw(u ⊗ b)∗m .

If we let dm = 1 ⊗ p�2{−m,...,m} where p�2{−m,...,m} is the projection onto
�2{−m, . . . ,m}, we have

(1 − p)dm = (1 − p)(u ⊗ b)∗(m+1) p(u ⊗ b)m+1.

It is clear that wp(1 − dm)w∗ is a subprojection of wpw∗ and hence also of p. It
follows that

[p − wpw∗]0 = [p − wp(1 − dm)w∗]0 − [wpw∗ − wp(1 − dm)w∗]0
For the second term, we have

[wpw∗ − wp(1 − dm)w∗]0 = [wpdmw∗]0 = [pdm]0.

and for the first, we have

p − wp(1 − dm)w∗ = p − wpw∗ + wpdmw∗

= p − pwpw∗ p + wpdmw∗

= pw(1 − p)w∗ p + wpdmw∗

= pw(u ⊗ b)∗(m+1)(u ⊗ b)m+1(1 − p)w∗ p + wpdmw∗

= pvw(u ⊗ b)∗(m+1) p(u ⊗ b)m+1(1 − p)w∗ p + wpdmw∗

= pwdm(1 − p)w∗ p + wpdmw∗

= pwemw∗ p.

Applying the restriction map from C(X) to C(Y ) takes p to q and dm to em , and
we are done. ��

6 Projectionless orbit-breaking algebras

With the technical results of the previous section proved, we can explore the range of
the Elliott invariant for orbit-breaking subalgebras. The starting point is results from
[12], which we summarize in the theorem below.

Theorem 6.1 Let Sd be a sphere with odd dimension d ≥ 3, and let ϕ : Sd → Sd be
a minimal diffeomorphism. Then there exist an infinite compact metric space Z with
finite covering dimension and a minimal homeomorphism ζ : Z → Z satisfying the
following:

(1) Z is compact, connected, and homeomorphic to an inverse limit of contractible
metric spaces (Zn, dn)n∈N.
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(2) For any continuous generalized cohomology theory we have an isomorphism
H∗(Z) ∼= H∗({pt}). In particular this holds for Čech cohomology and K-theory.

(3) There is an almost one-to-one factor map q : Z → Sd which induces a bijec-
tion between ζ -invariant Borel probability measures on Z and ϕ-invariant Borel
probability measures on Sd .

Let G0 and G1 be arbitrary countable abelian groups. Standard results imply that
we can take a compact connected metric space Y with finite dimension and

K 0(Y ) ∼= Z ⊕ G0, K 1(Y ) ∼= G1.

We now consider Y fixed for the rest of our discussion in this section. Let d be an
odd number large enough such that there exists embedding Y ↪→ Sd−2. Let (Z , ζ ) be a
minimal dynamical system constructed from a minimal diffeomorphism ϕ : Sd → Sd

as given by Theorem 6.1.

Lemma 6.2 There exists an embedding ι : Y → Z such that ϕn(ι(Y )) ∩ ι(Y ) = ∅ for
every n ∈ N \ {0}.
Proof In the proof Lemma 1.13 in [12] there is an embedding of Sd−2 → Z whose
image lies in the closed setπ−1{x}, for some x in X . Compose this with the embedding
of Y into the sphere Sd−2 to get an embedding of Y into Z . If n �= 0, we have
π(ζ n(Y )) = ϕn(x) �= x = π(Y ), which implies that ζ n(Y ) ∩ Y is empty. ��

Let A := C(Z) ×ζ Z and AY denote the orbit-breaking subalgebra of A.

Theorem 6.3 The C∗-algebra AY satisfies the following

K0(AY ) ∼= K 0(Y ) ∼= Z ⊕ G0, K1(AY ) ∼= K 1(Y ) ∼= G1,

and the positive cone of K0(AY ) is given by

K0(AY )+ ∼= {(n, z) | n = 0, z = 0, or n > 0}.

Proof It follows from [12] that K0(A) ∼= Z and K1(A) ∼= Z. We have an exact
sequence

C(Z)

i1 i2

AY ι
A

where the map i2 induces a map Z ∼= K0(C(Z)) → K0(A) ∼= Z. By the Pimsner–
Voiculescu exact sequence, as calculated in the proof of [12, Proposition 2.8], the
above map is an isomorphism. Consequently, the map ι∗ : K0(AY ) → K0(A), as

123



Classifiable C∗-algebras fromminimal… 723

given in the six-term exact sequence of Theorem 3.3, is onto. Thus the sequence of
Theorem 3.3 becomes

Z ⊕ G0 K0(AY )
ι∗

Z

0

Z

L

K1(AY ) G1.

Furthermore, the map K0(AY ) → Z splits. To see this, note that i2 induces an iso-
morphism on K0. Thus, using the commutativity of the first diagram in the proof, the
splitting map is given by (i1)∗ ◦ (i2)−1∗ .

To complete the proof,we need to show that L : Z → Z⊕G0 is themap n �→ (n, 0).
This follows from Corollary 5.2. ��
Corollary 6.4 Let G0 and G1 be countable abelian groups, k ∈ Z>0, and let � be a
finite-dimensional Choquet simplex. Then (Z ⊕ G0, Z≥0 ⊕ G0, [1] = (k, 0)) is an
ordered abelian group, and if there is a map

r : � → S(Z ⊕ G0), τ �→
(
(n, g) �→ n

k

)
,

then there exists an amenable minimal equivalence relation R such that

Ell(C∗(R)) ∼= (Z ⊕ G0, Z≥0 ⊕ G0, [1] = (k, 0),G1,�, r).

In particular if A ∈ C and Ell(A) = (Z ⊕ G0, Z≥0 ⊕ G0, [1] = (k, 0),G1,�, r),
then A and C∗(R) are ∗-isomorphic.

Proof By [12] there exists a minimal dynamical system (Z , ζ ) with Z a point-like
space and simplex of ζ -invariant measures given by �. By Theorem 6.3, there is
a non-empty closed subset Y ⊂ Z meeting every ζ -orbit at most once such that
the associated minimal equivalence relation RY ⊂ Z × Z has K -theory given by
(K0(C∗(RY )), K0(C∗(RY )) = (Z ⊕ G0, Z+) and K1(C∗(RY )) = G1. We have
[1] = (1, 0). To arrange that [1] = (k, 0), we replaceRY ⊂ Z×Z with the equivalence
relation on R ⊂ (Z × {1, . . . , k}) × (Z × {1, . . . , k}) which gives us C∗(R) ∼=
C∗(RY )⊗Mk . Since ι : C∗(RY ) ↪→ C(Z)�ζ Z induces a homeomorphism of tracial
state spaces,

T (C∗(R)) ∼= T (C∗(RY )) ∼= T (C(Z) �ζ Z) ∼= �,

and since

rC∗(RY ) : T (C∗(RY )) → S(K0(C
∗(RY )), (n, g) �→ n ∈ Z,

we have

rC∗(R) : T (C∗(RY )) → S(K0(C
∗(RY ))), (n, g) �→ n

k
.
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Thus

Ell(C∗(R)) ∼= (Z ⊕ G0, Z
+, [1] = k,G1,�, r),

and since C∗(R) is a simple, separable, nuclear, unital, Z-stable C∗-algebra, Theo-
rem 3.1 implies that for any A ∈ C we have A ∼= C∗(R). ��
Remark 6.5 In the previous corollary, we observe that by taking the class of the unit
to be (1,0) the resulting C∗-algebras contain only the trivial projections 0 and 1.

7 Orbit-breaking algebras with real rank zero

In this section,we consider the crossed products and orbit-breaking subalgebras arising
from the construction of minimal homeomorphisms on non-homogeneous spaces. In
contrast to the C∗-algebras of the previous subsection, these C∗-algebras will always
have a plentiful supply of projections: they all have real rank zero (and this can be
read directly from the K -theory).

Let I = [0, 1]. Building on results of Floyd [20] and Gjerde and Johansen [24], the
authors proved the following in [13]:

Theorem 7.1 Let (K , ϕ) be a minimal system with K the Cantor set and let n ≥ 1
be a natural number. Then there exists minimal system, (K̃ , ϕ̃) with a factor map
π : (K̃ , ϕ̃) → (K , ϕ) such that, for each point x in K , π−1{x} ∼= I n or a single point.
Moreover, both of these possibilities occur and the map π induces an isomorphism
π∗ : K ∗(K ) → K ∗(K̃ ).

We require a lemma about the pointed ordered K -theory of the crossed product
C∗-algebra associated to the extension of the Cantor minimal system in the previous
theorem.

Lemma 7.2 Using the notation above, let A := C(K ) �ϕ Z and B := C(K̃ ) �ϕ̃ Z.
Then the factor map π : (K̃ , ϕ̃) → (K , ϕ) induces isomorphisms

(K0(A), K0(A)+, [1A]) ∼= (K0(B), K0(B)+, [1B]), K1(A) ∼= K1(B),

and an affine homeomorphism T (B) ∼= T (A).

Proof The proof for the case that π−1(x), x ∈ K̃ , is either a single point or I is
given in [24, Theorem 4]. The proof there generalizes with only minor changes to the
case when π−1(x) is either a single point or I n for n > 2. We note that in [24] the
notation K (K , ϕ) is used to denote the 5-tuple (K0(A), K0(A)+, [1A], K1(A), T (A))

for A = C(K ) �ϕ Z. ��
Let G0 be a simple dimension group, T a countable abelian group and G1 a count-

able abelian group. There exists a compact finite-dimensional connected metric space
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Y such that K 0(Y ) ∼= Z ⊕ T and K 1(Y ) ∼= G1. By [30, Corollary 6.3], there exists
Cantor minimal system (K , ψ) such that

K0(C(K ) �ψ Z) ∼= G0, K1(C(K ) �ψ Z) ∼= Z.

Let n ∈ N be large enough so that there exists an embedding Y ↪→ I n and (K̃ , ψ̃)

be the extension of (K , ψ) with π−1(x) a point or π−1(x) = I n for each x ∈ K ,
which is obtained using Theorem 7.1. By Lemma 7.2, there is an explicit isomorphism
between the K -theory of the crossed product C∗-algebras, induced from the factor
map π : K̃ → K , which preserves both the order and the class of the unit. Let
B := C(K̃ ) �ψ Z and form BY , the orbit-breaking subalgebra associated to Y , where
Y is considered as a closed subspace of K̃ via Y ↪→ I n ↪→ K̃ . Since I n ∩ψk(I n) = ∅
for k �= 0, we have that Y ∩ ψk(Y ) = ∅ for k �= 0 and hence BY is simple.

Theorem 7.3 The K -theory of the orbit-breaking subalgebra BY is

(K0(BY ), K0(BY )+, [1]) ∼= (T ⊕ G0,G
+
0 , 1G0), K1(BY ) ∼= G1.

Proof The proof is similar to the proof of Theorem 4.1 in [45]. Using the commutative
diagram

C(K̃ )

i1 i2

BY ι
B,

and Theorem 3.3, we obtain

Z ⊕ T K0(BY )
ι∗

G0

0

Z

L

K1(BY ) G1.

Using Corollary 5.2, it follows that

0 → Z → Z ⊕ T → K0(BY ) → G0 → 0,

and K1(BY ) ∼= G1. Moreover, the map Z → Z ⊕ T is given by l �→ (l, 0), so we
have the short exact sequence

0 → T → K0(BY ) → G0 → 0.

To complete the first part of the proof, we show that this sequence splits. To do so,
consider the maps Y → I n and associated orbit-breaking subalgebras. Lemma 5.1
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implies that we have

Z K0(BIn ) K0(C(K̃ ) � Z)

Z ⊕ T K0(BY ) K0(C(K̃ ) � Z) .

Moreover, the map K0(BIn ) → K0(C(K̃ )�Z) ∼= G0 is an isomorphism, which gives
us the required splitting.

Next we show that the positive cone of K0(BY ) is (G0)+. We follow the proof of
Theorem 4.1 in [45]. The result will follow by showing that given a ∈ (G0)+ there
exists b ∈ K0(BY )+ such that ι∗(b) = a. As such, let a ∈ (G0)+. Observe that for
the diagram

C(K̃ )

i1 i2

BY ι
B

there exists c ∈ K 0(K̃ )+ such that (i2)∗(c) = a. Then the element b = (i1)∗(c) has
the required property. Finally, the class of the unit is respected by the map ι∗ because
ι is unital. ��

Corollary 7.4 Let A bea simple, separable, unitalC∗-algebrawith finite decomposition
rank, real rank zero and which satisfies the UCT. Suppose that

K0(A) ∼= T ⊕ G0, K1(A) ∼= G1,

where T ⊂ Inf(K0(A)) is a countable abelian group, G0 is a simple dimension
group, G1 is a countable abelian group and the order structure and class of the unit of
K0(A) are the same as the simple dimension group G0. Then there exists an amenable
equivalence relation, R, with C∗(R) ∼= A.

Proof Since A has real rank zero, the tracial state space and pairing map in the Elliott
invariant of A are redundant. Thus the isomorphism class of A consists of C∗-algebras
with real rank zero and isomorphic K -theory. ��
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