Mathematische Annalen (2023) 387:541-613

https://doi.org/10.1007/500208-022-02460-2 Mathematische Annalen
)]

Check for
updates

On the shape of Meissner solutions to the 2-dimensional
Ginzburg-Landau system

Xing-Bin Pan'2 . Xingfei Xiang3

Received: 12 April 2021 / Revised: 4 August 2022 / Accepted: 7 August 2022 /
Published online: 11 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

This paper concerns the asymptotic behavior of the stable solution (fy, Q) of the full
Meissner state equation for a two-dimensional superconductor with penetration depth
A and Ginzburg-Landau parameter «, and subjected to an applied magnetic field H¢. It
is known that the solution is stable if the minimum value of | f; (x) |2 —1Qx(x) |2 is larger
than 1/3, and the solution loses its stability when the minimum value reached 1/3. It
has been conjectured that the location of the minimum points of | f3 (x) 12— 1Q;.(x)|?
has connection with the location of vortex nucleation of the superconductor. In this
paper, we prove that if the penetration depth A is small, the solution ( f3, Q,) exhibits
boundary layer behavior, and (1 — f; , Q; ) exponentially decays in the normal direction
away from the boundary. Moreover, the minimum points of | f3 (x) |2 —1Qun(x) |2 locate
near the set S(H¢), which is determined by the applied magnetic field H¢ and the
geometry of the domain. In the special case where the applied magnetic field H is
constant, the minimum points of | f5 (x)|?> — |Qx (x)|? locate near the maximum points
of the curvature of the domain boundary.
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1 Introduction
1.1 The equation

This paper concerns the asymptotic behavior, as A — 0, of the solutions of the fol-
lowing equation:

2 .
—SAf=-1fF-1QPf inQ,
AeurPQ+ | fPQ =0 in Q, (1.1)
n-Vf=0, AicurlQ =H° on €2,

where Q is a bounded domain in R2, n is the unit outward normal to 32, and H¢ is a
given function. f and Q are unknown, where f is a scalar function and Q = (Q1, 0»)
is a vector field. For a vector field Q in two dimensions,

curlQ = 9,01 — 01 Q», curl2Q = (02 (curlQ), —9; (curlQ)).

Equation (1.1) is called the Meissner equation, as it describes the Meissner states of
atype Il superconductor occupying a cylinder of infinite hight with its axis along the x3-
axis and a cross section €2 in the xx,-plane, and subjected to an axial applied magnetic
field H = (0, 0, H¢). k and X are positive constants, among them, A is the penetration
depth of the superconductor (generally 0 < A « 1), and « is the Ginzburg-Landau
parameter given by the ratio of the penetration depth and the coherence length.
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1.2 Motivation from phase transformation of Meissner states

In the classical theory of superconductivity, the electromagnetic behavior of a
superconductor is described by a global minimizer of the Ginzburg-Landau energy
functional. A superconductor of type II is subjected to an increasing magnetic field
will undergo phase transitions, and there exist three critical values for the strength of the
applied field, denoted by Hc,, Hc, and Hc, respectively, with Hc, < Hc, < Hc,. If
the applied field is below Hc,, it will be excluded from the bulk of the superconductor
and the sample is in a superconducting state, which is also called a Meissner state. This
phenomenon is the well-known Meissner effect. If its strength of the applied magnetic
field is raised to above Hc, but still below Hc,, the applied field will penetrate the
sample through some vortices, and the sample is in a mixed state so that both super-
conducting and normal regions coexist. If the applied field increases to exceed Hc,,
but remains below Hc,, the superconductor will be in a surface superconducting state.
In this state superconductivity persists only within some thin sheathes near the surface
of the sample. If the applied magnetic field is raised above Hc,, superconductivity
will be totally destroyed and the entire sample will be in a normal state.

These phenomena have been extensively studied by many mathematicians, see for
instance [28-31] for the mathematical theory of the mixed states when the applied
magnetic field is between Hc¢, and Hc,, and see [12, 13, 16, 20, 23, 24] and references
therein for the analysis of surface superconductivity when the applied field is between
Hc, and Hc,.

Physicists have discovered that, superconductivity can be described by a critical
point of the Ginzburg-Landau functional, which is not necessary to be a global mini-
mizer. For type II superconductors, the Meissner state is metastable and persists up to
the so-called superheating field Hy;, which is higher than Hc,, see [18, 21, 32]. As the
applied field increases further and reaches Hg, it begins to penetrate the sample and
vortices start to nucleate. See [6, 7] and the references therein for the mathematical
discussions on the critical field Hy;, and nucleation of vortices.

We believe that one more critical field is needed in order to understand the phase
transitions of the Meissner states. This critical field, denoted by Hy, lies in between
Hc, and Hgy,, and it is a critical value of the strength of the applied magnetic field for
a Meissner state to lose local stability. That is, if the applied field is below Hg, the
Meissner states are locally stable; while if the applied field reaches Hg, some Meissner
states will be locally instable. For comparison, the first critical field Hc, is the critical
value of the strength of the increasing applied magnetic field at which some Meissner
solutions start to lose global stability.

To explain this critical field Hg, let us recall that in the Ginzburg-Landau theory
[15], superconducting behaviors of a sample are described by a critical point (¥, A) of
the Ginzburg-Landau functional. Let us consider a type II superconductor occupying
a cylinder in R with its axis along the x3-axis, subjected to an axial applied magnetic
field (0, 0, H¢), where H¢(x1, x2) > 0 is a smooth function. For simplicity, we may
also call the function H¢ the applied field. Then the Ginzburg-Landau energy is reduced
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to the two-dimensional functional of the following form

2
e[V, Al = (&V —iA)V| + 1(1 — W) tdx + |rcurlA — H|dx,
2
ok 2
(1.2)

where €2 is the cross section of the cylinder, W is a complex-valued function called
order parameter with | W |? representing the density of superconducting electron pairs,
A is the magnetic potential and curlA is the induced magnetic field. The Euler-
Lagrange equation of the functional £ is called the Ginzburg-Landau equation:

—(AV -2V =1 - [P in Q,

Acurl’A + WA = 2 (UVP* — U*VD) in Q,

reurl?A = curlH¢ in Q°, (1.3)
n-(2v—iA)¥ =0, [nxA]=0, [curlA]=0 ondQ,

AcurlA — H¢ — 0 as |x| — oo,

where [-] represents the jump in the enclosed quantity across 9€2, and
curl H* = (32(H?), —31 (H?)).

For convenience we call a cylindrical superconductor that can be described by the
equation (1.3) as a two-dimensional superconductor, and call a superconductor occu-
pying a bounded domain in R? and can be described by the Ginzburg-Landau equation
on the three-dimensional domain as a three-dimensional superconductor.

A Meissner state is represented by a solution (W, A) of (1.3) such that the order
parameter W does not have zero points over €2, and such a solution is called Meissner
solution. If a solution (i, A) is such that W has zero points, then the zero points are
called vortices and (¥, A) is called a vortex solution. Existence of Meissner solutions
and vortex solutions of (1.3) have been extensively studied, and very rich results have
been established, see for instance [19, 29, 31] and the references therein.!

If the applied field is below Hc,, then the global minimizers of the Ginzburg-
Landau energy have no zero points, hence they are Meissner states. In other words,
those Meissner solutions are globally stable with respect to the Ginzburg-landau energy
[28-30]. If the applied field increases to exceed Hc, butis still below Hg, the solutions
are no longer global minimizers, but they are still locally stable with respect to some
energy functional which may be called Meissner energy and will be defined later. If
the applied field increases further to exceed Hg but is still below Hgj,, some Meissner
solutions continuous to exist but become instable with respect to the Meissner energy.
When the applied field reaches Hgy,, then some Meissner solutions will change to vortex
solutions, namely the order parameters will have zeroes. So the phase transitions of
Meissner states with the applied magnetic filed increasing along Hc,, Hs and Hy,
have different nature, comparing with the phase transitions of the global minimizers

I See also [31, Chapter 11] and [9] for the corresponding results of type I superconductors.
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with the applied field increasing along Hc,, Hc, and Hc,. Therefore it will be useful
to study the whole process how a stable Meissner state loses its local stability and
then produces vortices and changes into a mixed state, and find the location where the
vortices begin to nucleate.

To study these problems, we start with the Meissner equation derived by Chapman
[6, 7]. Let (¥, A) be a Meissner solution and suppose that W can be written as

U= felX,
where f is a positive function and x is a smooth real function. Then we let
A

Plugging this (¥, A) into (1.3), we see that (f, Q) satisfies the following equation:

~EAf =1 |fP-IQP)f inQ,

Aeur’Q + | fPQ =0 in Q,

reurl2Q = curlH¢ in Q°, (1.4)
n-Vf=0, (nxQ]=0, [curlQ]=0 onad<2,

rcurlQ — H¢ as |x| - oo.

In the two dimensional case, we can write the third and last equalities in (1.4) as
follows:

9 (rcurlQ — H®) =0, 9(AcurlQ —H®) =0 in Q°,
rcurlQ — H — 0 as |x| — oo.

This gives that
ArcurlQ = H® in Q€.
Therefore, (1.4) is reduced to (1.1) if the condition [n x Q] = 0 is ignored.2

On the other hand, if (f, Q) is a solution of (1.4) with 0 < f(x) < 1, then for any
smooth real-valued function yx,

: A
(¥, A) = (fe'*,Q+ ~Vx)

is a solution of the Ginzburg-Landau equation (1.3).
Equation (1.1) can be further simplified by taking large « limit. From the first
equality in (1.1) one formally gets (1 — | f 12 — |QI|?) f = 0. For a Meissner state, one

2 See also [5, 25, 26] for the derivation of (1.4) and (1.1).
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expects that f > 0, which implies that | f|> = 1 — |Q|?. Plugging this into the second
equation in (1.1), we get the limiting equation for Q:

—2Zcurl?Q = (1-1Q»)Q inQ, s)
arcurlQ = H¢ on 092. '
For our convenience we may say (1.5) is the special case of (1.1) with k = oo.

Equation (1.5) with H¢ equalling to a positive constant has been studied in [4, 6,
7, 27]. Chapman [6] showed that the solution Q of (1.5) is stable with respect to the
energy associated with (1.5) if max .6 |Q(x)| < 1/ /3, and as the applied field H¢
increases, the solution begins to loss such stability when the maximum value of |Q(x)|
reaches 1/+/3. Berestycki, Bonnet and Chapman [4] showed that the maximum points
of |Q(x)]| locate on the domain boundary. Chapman [7] used the asymptotic analysis
to derive that the maximum points of |Q(x)| locate on the most negative points of the
boundary curvature, which has been rigorously proved for small A by Pan and Kwek
[27].

The analysis in [6, 7] suggests that the loss of certain stability of Meissner states
will lead to generation of vortices, and Chapman conjectured that the location of the
maximum points of |Q(x)]| is the location where the first vortices will appear. This
conjecture motivates our study on the change of stability of the Meissner solutions of
(1.1).

Forreader’s convenience, we now state the definition of stability of a solution ( f, Q)
of (1.1). We define the Meissner energy functional associated with the equation (1.1)
by

A2 1
Ealf,Ql =/ {—2|Vf|2+ IFPIQP + (1 — |f|2)2}dx
QK 2

+f |curlQ — He*dx.
Q

Then the second order differential of the functional £ is given by the following:

(€511, QL 1. BY =2 [ {g VP +1/B +2¢QP+3¢%( /2 — QP - %)} dx
+2 / [AcurlB|?dx.
Q
Set
W) = [HY(Q) N L®(Q)] x [HY(Q,R*) N L>®(Q,RY)].

Definition 1 Let (f, Q) be a solution of (1.1) and assume (f, Q) € W().
(a) Wessay (f, Q) is a Meissner solution of (1.1) if f(x) > 0 over Q.
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(b) We say (f, Q) is stable (with respect to the Meissner equation (1.1)) if £ is
non-negative on WW(£2), namely if

(Eolf.Ql.1g.B]) = 0 forall (g, B) € W(Q).

Existence and uniqueness of a stable Meissner solution of (1.1) have been discussed
in [5]13 If (£, Q) € W(Q) and if

FOR — Q)P > % 0< /() <1 forallx € Q,

then (f, Q) is stable, and it is the case if « is sufficiently large. The solution loses its
stability when the minimum value of | f (x) |2 —1Qxx) |2 reaches 1/3.

Although the physical meaning of the critical fields Hg and the superheating field
Hygj, are clear, mathematically we need a careful definition of these fields. Since one
can describe a Meissner state by using either the Ginzburg-Landau model (1.3), or
the full Meissner model (1.4), or the reduced Meissner system (1.1), there are many
options to define these critical fields. As in this paper we use the reduced system (1.1)
to describe the Meissner states, we shall give a definition of stability based on (1.1).

Let us consider the applied magnetic field of the form

H¢ =oH,

where H is a continuous and positive-valued function defined over 2, and o > 0.
Then we define the critical fields Hg and Hg, as follows.

Definition 2

Hg(H) = sup{H > 0 : all Meissner solutions of (1.1) with H® = o'H
are stable if 0 < o < H},

Hy, (H) = inf{H > 0 : Equation (1.1) with H®* = o'H
has no Meissner solutions if ¢ > H}.

(1.6)

Then we let
Hs = Hg(1),  Hg, = Hyp(1).

The above discussions suggest the following problems:

Problem (A). Find the value of the critical field Hg. Examine how a stable Meissner
solution (f, Q) of (1.1) starts to lose its stability as the strength of the applied magnetic
field H¢ increases and reaches this critical value. In particular, find the location of the
minimum points of | f (x)]? = |Q(x)|? (with minimum value 1/3).

3 Uniqueness of the stable Meissner solution of the system in a three dimensional domain can be directly
derived from Lemma 3.1 in [26].
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Problem (B). Find the value of the critical value Hg;,. Examine how an instable
Meissner solution (f, Q) of (1.1) starts to nucleate vortices and find the location of
the first vortices.

Problem (C). Verify that if « is large then

Hc, < Hs < Hg,.
In this paper we investigate Problem (A).

1.3 Main results

Atmoment we do not know the precise value of Hg, so we start with Meissner solutions
in a weak magnetic field, that is, maxg |H®(x)| is sufficiently small. Under a weak
magnetic field, a Meissner solution ( f, Q) of (1.1) is stable, hence

1
d )
f.Q > 3
here we denote

dyq = inf {If(X)I2 - |Q(x)|2} : (1.7)
xe

We let H¢ increase and look for a Meissner solution ( fy, Qo) which first loses its
stability, hence d s, @, first achieves the value %, and find the position of the minimum
points of | fo(x)|*> — |Qo(x)|?. Due to some technical reason, instead of analyze the
solution ( fo, Qo) with d s @, = %, we consider first an approximation problem as
follows. We fix ¥k > 0 and take a small number § > 0. Let (f, Q) be a solution of
(1.1) satisfying the following inequality

F P = Q)P = % L8t 0<f)<1. xed (18)

We show that the minimum points of | f (x) |2 — |Q(x)|? locate near the domain bound-
ary, and (1 — f(x), Q(x)) decays exponentially in the normal direction away from the
boundary if the penetration depth A is small. Denote

d(x,9) = min |x — y|.
yeo2

Let #2* be the number defined in Definition 2.3 in Sect. 2.

Theorem 1.1 (Decay estimate) Let 2 be a bounded domain in R? with a C3 boundary
9%, and let H® be a C3 function on Q satisfying IHlcoaqy < h*. There exists a
positive constant Ag such that, if & € (0, Xo) and if (f5., Q) is a solution of system
(1.1) satisfying (1.8), then for any 0 < a < min{~/2«, 2} and any 0 < B < 1, we
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have

I — fo(x)] < Cre 4™ 1Qu(x)] < Cre PICIDA Ty ¢ Q)

where the constants C1 and Cy depend only on 2, H¢, k, §, a and B.

Remark 1 (a) Theorem 1.1 says that if a superconductor is in a stable Meissner state

(b)

and is subjected to a weak magnetic field, then in the interior of the sample we
have (f5, Q,) ~ (1, 0), which shows that the induced magnetic field vanishes away
from a thin layer around the surface of the sample, hence the applied magnetic
field does not penetrate the bulk and will not destroy the superconductivity in the
interior, and the material is almost in a perfectly superconducting state except a
boundary sheath. This is the mathematical description of the Meissner effect.
Intuitively, the decay behavior of |1 — f; (x)| and |Q; (x)| can be explained in the
following way. If the boundary conditions in (1.1) were ignored, formally we can
derive from the equations that, f; (x) ~ 1 and |Q; (x)| ~ O in the interior of the
domain as A — 0. Then the linearization of the second equality of (1.1) around
(f,Q) = (1, 0) gives the London equation

AeurPH+H=0, divH=0 in <.

By the Agmon’s estimate [2] we can show that the non-zero solutions of the above
equation are exponentially decay

[H(x)| < Ce @ID/A 0y e Q,

from which we can derive the decay behavior of |Q; (x)|. The linearization of the
first equality of (1.1) around (f, Q) = (1, 0) gives

22 )
—;Aw +2w =|q|° in L,

where q is a variation of Q. Using the Agmon’s estimate again we can show that

— min{~/2,2}d (x,0K2) /%

lw(x)| < Ce x e,

from which we can obtain the decay behavior of the function 1 — f (x).

To determine precise location of the minimum points of | f; (x) |2 — Qs (x)|2, we

need carefully analyze the behavior of the solution ( f;, Q,) in a thin layer around the
domain boundary. We shall derive an asymptotic expansion of ( f;, Q,) around any
given point X € 92 for small A:

<0M%» (1.9

| .0 = A o = 1A w/m| oot )
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and

<003, (1.10)

[Q.(0) = Qv @/ = 2 @)

co (M(),;L N Q)

where

e Up,, is an open neighbourhood of the point X with diameter A;

e x = Y (y) is a diffeomorphism straightening a boundary portion of d€2 around
Xo;

e the scalar function fo( -) and the vector field Qo(-) are determined by the strength
of the magnetic ﬁeld (see (5.18) in section 5);

e the scalar function f1 (-) and the vector field Q1 () are defined by equations involv-
ing the strength of the magnetic field and the curvature k of the domain boundary
(see (5.19) in section 5).

Moreover we shall show that f] (+) and the first component of Ql (-) are monotonic
with respect to the curvature k of 9€2, see for the more precise description in Theo-
rem 5.2. This monotonicity property together with the estimates (1.9) and (1.10) will
lead to the determination of the location of the minimum points of | f; (x) 12—1Q;.(x)]?
as described in the following Theorem 1.2. To state the result of Theorem 1.2 we need
the concept of sub-convergence.

Definition 3 Let { P, } be a family of points indexed by the parameter 1. We say that the
points { P, } sub-converge to the set S as A tends to zero, if for any sequence A, — 0
there exists a subsequence {1, } and a point P € S which depends on the subsequence,
such that lim; _, Pknj =P.

For the given function H¢ we set

IQH) = {x €9Q : H(x) = H llcopgy } - (1.11)
and
S(H®) = {x € 0Q(H) : k(x) = max k(y)} (1.12)
yedQ (He)

where k(x) is the curvature function of 9<2.

Theorem 1.2 Assume 2 is a bounded domain in R? with a C3 boundary 92, and
let H¢ be a C? function on Q satisfying IH N coaqy < B*. Suppose (fi, Qu) is the
solution of system (1.1) satisfying (1.8). Then, as A tends to zero, the minimum points
of | fr.(x)|> — |Qy.(x)|? sub-converge to the set S(H®) defined by (1.12).

If H® = h is a positive constant, then

0Q2(h) = 0Q2, Sh)y={xe€dQ: k(x) = mgék(y)},
ye
that is, S(h) is the set of the maximum points of the curvature function of 9€2.
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Corollary 1.3 Assume 2 is a bounded domain in R* with a C3 boundary 32, and H¢ =
h is a positive constant. Suppose (f5., Q,) is the solution of system (1.1) satisfying
(1.8). Then, as ) tends to zero, the minimum points of | f5.(x) |2 — Qi (x) |2 sub-converge
to the set of the maximum points of the curvature of the domain boundary.

Remark 2 1t is interesting to compare the result on (1.1) in Corollary 1.3 with those
on (1.5) in [7, 27].% In the limiting process as k — 00, the solution (f3, Q,) of
(1.1) corresponds to the solution Q of (1.5) by the relation |12 = 1 — |QJ?, hence
the minimum points of | f;|*> — |Q;.|> correspond to the maximum points of |Q(x)]|.
However, if H® = h is a positive constant, as A tends to zero, the minimum points of
| £1.1> — Q5. |% sub-converge to the maximum points of the curvature (see Corollary 1.3),
while the maximum points of |Q| sub-converge to the minimum points of the curvature
(see [7,27]). This difference reflects the multi-scale nature of (1.1). In fact the behavior
of the Meissner states depends on two parameters, the Ginzburg—Landau parameter «
and the penetration depth A, among other physical parameters. Then:

e If we fix k¥ and send A to zero as in this paper, then we have the situation of
Corollary 1.3. The minimum points of | f|> — |Q|? sub-converge to the maximum
points of the boundary curvature.

e If we first send « to infinity (and we get (1.5)) and then send A to zero, then
we have the situation of [7, 27]. In this case | f|*> — |Q|*> ~ 1 — 2|QJ?, and the
minimum points of | f|? — |Q|? correspond to the maximum points of |Q|?, which
sub-converge to the minimum points of the boundary curvature.

We expect that if we let k — 0o and A — 0, the minimum points of | f|> — |Q|?
will sub-converge to points on the boundary, and the location of the limiting positions
depends on the relative scale of ¥ and A. We will study the multiple-scales phenomena
of the Meissner solutions in the later future.

In order to establish the uniform convergence estimates (1.9) and (1.10), we need a
CY estimate of the solution to a semilinear Maxwell system (or called semilinear curl-
curl system) for the vector field Q,, which is a degenerately elliptic system without
comparison principle and maximum principle, hence the C? estimate does not follow
from the standard theory of elliptic systems. Our strategy to prove (1.9) and (1.10) is
as follows:

— We first prove the global H I estimate for the remainder terms in (1.9) and (1.10)
by the method of matched asymptotic expansions;

— Then we deduce an H? estimate of the remainder terms near the domain boundary
by the difference quotient technique, which yields the C© regularity of the remainder
terms by the Sobolev imbedding theorem.

Let us mention that the method of the proof of (1.9) and (1.10) in this paper is
different from that used by Pan and Kwek in [27], where the estimates for the solutions
were proved by applying the maximum principle to a divergence-type elliptic equation
for the scalar function H, = A curlQ);.

4 See also [3] for the three dimensional system.
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1.3.1 Organization of this paper

The formal expansion for ( f;, Q,) with respect to A is derived in section 2. Then we
establish the uniform estimation for the asymptotic expansion of the solution ( f, Q;)
in section 3. In section 4, we prove the exponential decay estimate (Theorem 1.1)
of 1 — f, and |Q,]. Finally in section 5, by applying (1.9) and (1.10) we give the
proof of Theorem 1.2. Further remarks will be given in section 6. The proofs of the
theorems involve lengthy computations and technical details, which will be given in
appendices. Among them, in appendix A we prove the uniqueness of the solution to
a limiting system in the half space (see (2.11)), which is associated with the leading
order term of the expansions of (f;, Q,); in appendix B we prove the exponential
decay estimate for the solutions to some ODEs; in appendix C and appendix D we
give the details of the calculations for the formal expansion for (f;, Qy).

Throughout the paper, the bold typeface is used to indicate vector quantities; normal
typeface will be used for scalars and the components of vectors. We shall use the letter
C to denote a positive constant which is independent of A, but the numerical value
may be vary line to line.

2 Formal asymptotic solution to system (1.1)

As stated in the introduction, we shall find the location of the minimum points of
[ 12 — |Qx|?* for small A, and we need first prove the uniform convergence of the
approximation solutions as A tends to zero. The proof is based on the method of
matched asymptotic expansions of the solution ( f3, Q;) in term of A. The construction
of the inner expansions in a thin tubular neighborhood of the domain boundary of scale
A requires detailed analysis on the behavior of the solutions near the domain boundary,
which will be carried out in this section.

To start with, let us first introduce a new local coordinate system near a boundary
point X € 9L2. Let I/ denote a neighborhood of X¢. The portion of the boundary 92
located inside U can be represented as u = u(s) with u(0) = X, where s is the arc
length variable of dS2. Then 7 (s) = u/(s) is the unit tangent vector. Let n(s) = (ny, n3)
be the unit outer normal at x € 9<2. We introduce new variables y; and y,, with y; = s,
such that for any x € Q NU we have a diffeomorphism map v given by

x =Y(y1, y2) = u(yr) — y2n(y1). 2.1

Let

gy1, y2) = |det DY| =1 — k(y1)y2, (2.2)

@ Springer



On the shape of Meissner solutions to the 2-dimensional... 553

where k(y1) is the curvature of 92 at the point x = ¥ (y1, 0) € 92. Then we have a
new orthogonal coordinate framework {E1, E;} as follows:

oy
[31]

Now we introduce the following notations. For any function f (x) defined onf we
define a function of y and write it by f(y), such that

Ei(y) = =1(y1), Ex(y) = —n(y1).

fo) = f@wo).

For a vector field Q(x) depending on the variable x, we define a vector field Q(y)
with variable y by

Q) == Q¥ ().

We shall call f (y) and Q(y) the representations of f (x) and Q(x) in the coordinates
y respectively. .
Using the framework {E, E»} we can write Q(y) as

Q) = Q1(ME; + 02(3)Ea,

where Ql(y) and Qg(y) are scalar functions. Then curlQ(x) and curle(x) can be
represented by

1 R .
curlQ(x) = — [31 0> — 32(8Q1)]
8
and

cur’Q(x) = Mi(E1(y) + Ma(»)E2(y),

where

Ir. )

Mi(y) = b (— 0102 - az(ng]) ,
: § : 2.3)

Ma(y) = ——0a (— [31Q2 - 32(8@1)]) .
g \g

In the above, 9; denotes % for j =1, 2. Also, we have
J

Acf =Ayf,

where A is defined by

~ 1 1 o R
Ayf=— (31 (—31f) + 02 (gazf)> . 2.4
8 8
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For simplicity, we introduce the operators

Gurl, Q= —[0102 —02(g0n |, Full Q= M), M2y, 25)

0Q | =

Let (f5.(x), Qx(x)) be a solution of (1.1), and let f;L (y) and (A),\ (y) be the represen-
tations of f; (x) and Q; (x) in the coordinates y respectively. We introduce re-scaled
variables

y = AzZ.

In the neighborhood of X, we then define the rescaled vector fields (which will be
called the z-coordinates):

/i@ = i) = fi(») and Qu(z) = Qu(rz) = Qu(y). (2.6)

In the following, for convenience of notation, we may drop the subscript A and denote
fr.(z) by f(z), and Q; (z) by Q(z). Then system (1.1) can be rewritten by

—HAf=0-1/P-1Q)f inQ.,

curl2Q + | f1’Q=0 inQ,, 2.7)

g—(l =0, %url,Q= He on T,
where the operators @ url, and A, are defined by
Curl, := L Curly, A;:= A2Ay, y = Az, (2.8)

and . and TZ represent the images of the domain €2 N/ and of the boundary 92 N/
under the z—coordinate system respectively.

Now we begin to derive the formal asymptotic solution in the (y;, z2) coordinates,
where zo = y»/A. Let us assume that the inner expansion of the solution in the
neighborhood of X has the form

AO) = fonz2) + A filvn. z2) + 2201, z2) + O3,

R ~ R A 5 2.9)
Q,.(y) = Qo(y1, 22) +AQ1(y1, 22) + A°Q2(y1, 22) + O(A7).

We emphasize that f,\(yl, zp) and QA (y1, z2) have multi-scales with yj in the scale
O(1) and z, in the scale O (%) for small A.
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2.1 The leading order term

We first derive the leading order term ( fo(yl 22)), Qo(yl z2)). We shall prove a
uniform C2%¢ estlmate for ( fA (2), QA (z)) on any bounded z-domain, which yields
estimates of ( f Q) inside any boundary layer.

Lemma 2.1 Assume Q2 is a bounc_ied domain in R? with a C** boundary, 0 < o < 1
and H*(x) isa C> function on Q. Let ( fr, Qy) be a solution of (1.1) satisfying (1.8),
and ( f5., Qy) be the rescaled pair. Then for small )., we have

”f)L”CZ.a(QZmB;(())) + ”QA”C“‘(QZQB;(O)) <C,

where C depends only on 2, H¢, «, § and a, but is independent of R and A.
Proof The proof is quite similar to that of Lemma 9.2 in [26], we here omit it. O

Next we show that
(fA, QA) converges in Clgc(R )as A — 0. (2.10)

Proofof (2.10) From Lemma 2.1 and by Arzela-Ascoli’s theorem (see the compactness
result [14, Lemma 6.36]), for any sequence A, — 0, there exists a subsequence
{An;} such that, as j — oo, ( f,\ ) Q,\ ) converges in CIOC(R ) to the solution

(fo(Z1, 2)). Qo(z1. 22)) of the following system
—LA_—I—_Z—_Z_ in R2

5Afo =1 —=1fol" = 1Qol") fo nR3,

K

curl?Qo + 1 fo?Qo = 0 inR?%, @2.11)

Jf _

a—fo =0, curlQg=H(Xp) on BR?F
n

Moreover, because ( f;., Q;,) satisfies the condition (1.8), so (f, Q) = (fo, Qo) satis-
fies the following

lf @ = 1Q@))* = % +6% and 0< f(z) <1, VzeRiL (2.12)

From Lemma A.1, the solution of (2.11) satisfying (2.12) is unique. Hence ( fo. Qo)

is the unique solution of (2.11) satisfying (2.12). It follows that the whole sequence

(f;m,Q;\n) actually converges to (fo(zl Zz) Qo(zl z2)). Therefore (fl, Qk) con-

verges to (fo(z1, 22), Qo(z1, z2)) in ClOC(RJr) as A — 0. Hence (2.10) is proved.

O

In the following we show that if ¢ (X¢) is small, then the unique solution of (2.11)
satisfying (2.12) has the form

fo(z1, 22) = fo(z2), Qo(z1,22) = (Q}(z2), 0). (2.13)
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To prove this conclusion, we only need to show that, if H¢(Xg) is small, (2.11) has a
solution of this form and it satisfies (2.12). Then the uniqueness result of Lemma A.1
implies that this solution is the only solution of (2.11) satisfying (2.12).

Plugging (2.13) into (2.11) we see that (fo(z2), Q(l)(Zz)) satisfies the following
ODE:s:

—Lfy = =1l =10l fo inRy,
—(Q))" + 1 fol*0) =0 inR.,
f50) =0, (Q)(0) = —ho,
fo(eo) =1, (Qf)(o0) =0,

(2.14)

where fj = Z—Q, and hg = H®(Xp) > 0. We look for the solution of (2.14) satisfying
(2.12).

Proposition 2.2 If (2.14) has a solution (fy, Q}) € C3(Ry) x C3(Ry.), then it is the

unique solution of (2.14) satisfying (2.12), and for any 0 < a; < min{2, v/2«} and
any 0 < B1 < 1 we have

fi(z2) > 0, |1 = fo(z)] < Ce ™22,
(00 (22) <0, 0< Qb(za) < Ce P12

forall zp > 0, where C = C(HC, k, a1, B1)-

Proof Step 1. Assume (2.14) has a solution ( fp, Q(l)) satisfying (2.12). Then ( fj, Q(l)) €
C3(R,) x C3(R,). By the maximum principle, it is easy to see that

04(z2) >0, (0)(z2) <0 forall0 < z5 < oco. (2.15)

Since fp(oco) = 1, by the comparison principle (or see Proposition B.2 in appendix
B), we easily obtain that: for any 0 < f; < 1, there exists a constant C > 0 depending
on B and H° such that

100(z2)| < Ce P12 forall zp > 0.

Next we show that fé(Zz) > 0 for all zo > 0. Suppose not, then there exist two
numbers ¢, and ¢3 with 0 < ¢ < ¢3 such that

fo(€2) =0, fe3) =0, folca) > folca). (2.16)

From the first equation in (2.14), we have

(=1l =100 m=e =0, (A= 1fol* = 10)D]spme; <0.  (2.17)
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From (2.15) we have Q}(c2) > Q/(c3), and by (2.16) we have fy(c2) > fo(c3).
Then

(1= 1fol? =10 =y < (1 = 1 fol> = 100D zr=cs-

This is a contradiction with (2.17).
Now we show that

fo(z2) > 0 forall zo > 0.

Otherwise, suppose there exists ¢4 € (0, 00) such that fj(c4) = 0, then f"(c4) > 0.
This is a contradiction with

Fea) = = = 1 fol> = 100D £ + Qfo f§ + 2080 folz=es < 0.

Therefore the strict inequality holds.
Let w(z2) = 1 — fo(z2). Then w satisfies

—Lw' +w@+ Q) - 3w+ w?) = Q> inRy,
w’(0) = 0 and w(oco) = 0.

Note that 2 + IQ(I)I2 — 3w + w? — 2as zo — 4oc. Then from Proposition B.2 in
appendix B, for any 0 < or; < min{2, +/2«} there exists a constant C > 0 such that

w(z2) < C(H, k,ay, Br)e *1%2 forall zp > 0.

Step 2. We show that (2.14) has at most one solution satisfying (2.12). Define the
space

v={e i 1—u v ve PRy, W©) =0, v(©0) =0},
which is a reflexive Banach space equipped with the norm
@, I =11 =ull 2w,y + 14 2@, ) + V2R, + 1V 2R,)-

Set

1 1
U = {(fo,P(be% 0<fo<l, |fo|2—<P&+hoe*m)zz§+§s }

and define a functional £ in % by
T LR 2, pl —22\2
ELfo Pi1= [ {1l + Lo (P + hoe™)
1
+ 3 (1= 1ol + I(PY)'12 = 2hoe ™™ Py [dza.
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It is easy to see that 7 is a closed and convex subset of ¥/, and & is strictly convex,
coercive and weakly lower semi-continuous on %/ with respect to the norm inherited
from 7. Therefore, £ has a unique minimizer ( fp, Pol) EU.

Let (fo, Q(l)) be a solution of (2.14) satisfying (2.12). From step 1, we see that
fo’(zg) > 0 for all zp > 0. It follows that 0 < fy(z2) < 1 for all zo > 0. Let
PO1 = Q(l) — hpe~*2. Then from (2.12), we see that (fop, P(}) lies in the interior of
% , and it is a critical point of the strictly convex functional £. Hence ( fo, Pol) is the
unique minimizer of £ in %/ . This shows that if (2.14) has a solution satisfying (2.12)
then it is unique. O

Another proof of uniqueness of the solution of (2.14) satisfying (2.12) will be given
in Lemma A.1 in Appendix A.

Definition 2.3 We define

1
h* = sup {h : (2.14) has a solution (fo, Q) satisfying | fol* — |Q¢|* > 3
and 0 < fo < 1 forall kg € (0, h)}.

Proposition 2.4 We have

ol
ol %

<h*< (2.18)

The proof of Proposition 2.4 will be given in section 5 after Theorem 5.1.
From Propositions 2.2 and 2.4, for any 0 < hg < h*, (2.14) has a unigue solution
(fo, Q(l)) satisfying (2.12) for some positive constant §. Then we define f(0, z2) and

Qo(0, z2) by letting
f0(0,22) = fo(z2), Qo(0,22) = (04(22),0).

Moreover, for each y; # 0, we can define fo(yl, z») and Qo(y1,12) by using the
equations (5.18) in section 5. We will see later that (fo 1, z22), Qo (y1, 22)) gives the
leading order term of the asymptotic expansions at X, which provides the information
how the minimum points of £ — |Q|? depend on the intensity of the applied magnetic
filed.

Based on Proposition 2.2, we have the exponential decay in the z,—direction for
1-— fo (»1, z2) and Qo (y1, z2) which will be used later.

Proposition 2.5 Let H¢ be a C* function on Q satisfying He ooy < h*. Then for
any 0 < a; < min{2, v/2«} and any 0 < Bi < 1, we have

2 itj 2 _
1= foyi, z2)| + 10" fo(yr, 22)| < Ce™ 122,
y J
0<i<3 0<j<2 12
24720

Z |a{z-Jr){QO(y1, 22)| < Ce P12,

, ; 122
0<i<3,0<j<2
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where the constants C depend only on H, k, a| and B;.

The proof will be given in appendix B.
2.2 The first order term
Next we derive the first order term (fl 1, z22), Ql (y1, z2)) of the expansions, which
will be useful to determine how the geometry of the domain influences the distribution

of the minimum points of £ — |Q|?.
We first consider the values of this term for y; = 0. Set, for z, > 0,

fiz2) = fi0.22),  Qi(z2) = (Q1(z2). 07(22)) := Q1 (0, 22).
For convenience, we write 9y, Qo (0, zp) as follows:
3y, Q0(0. 22) = (¢(22). 0). (2.19)
Substituting (2.9) into system (1.1) under the z—coordinates, equating the coeffi-
cients of X, and then considering the problem at (0, z2), we obtain a system for

(f1(22). (Q](z2), Q%(22))) in the variable z; € R:

~ LA+ GLAPHIQN - D fi=-2/050] -7 R,

—(OD + /170 = 20 fi — kd20} inRy, 220
q' + /1?01 =0 inR,,
£10)=0, (OD(0) =koQ}(0) onzy =0,

where kg = k(Xo) is the value of the curvature of <2 at the point X¢, and « is
the Ginzburg-Landau parameter. The detailed derivation of (2.20) will be given in
appendix C.

From the third equation of (2.20), we immediately obtain that

0}(z2) = =4/ (22 fol *(z2). 2.21)
From Proposition 2.5 we see that
103(22)] < C(HE, ke, a1, Br)e P12 forall zo > 0,

where 0 < B < 1.
Applying Proposition B.2 in appendix B to (2.20), we get the following

Proposition 2.6 There exists a solution (f1(z2), (Q1(z2), 03(22))) to system (2.20)
such that, for any 0 < oy < min{2, ~/2«} and any 0 < B> < 1, we have

1fi(z2)] < Ce™®2, |0l (za)| < Ce™2  forall zo > 0,
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where the constants C depend only on 2, H, k, ay and f.

Proof Using the estimate in Proposition 2.5, we have
[fol < Ce™2, [3,08] < Ce P2 forall 25 > 0,

where C = C(x, a1, B1, H®). Then by noting that

((3|fo|2+|Q5|2—1> 2foQ5> (2 0
%

as zp — +00,
2f00) | fol? 0 1>

and from Proposition B.2 in appendix B, we have the solution ( f1(z2), (Q{ (z2), Q%(Zz)))
to system (2.20), and | f1(z2)] < C(x, H®) for all z > 0. Now applying Proposi-
tion B.2 in appendix B again, from the second equation in (2.20), forany 0 < > < 1,
we have |Q%(zg)| < C(k, ,82,7-[6)e’/32Z2 for all z; > 0, where we have taken
B1 = (B2 + 1)/2. At last, using the estimate on Q%(Zz), and by the first equation
in (2.20) we can obtain the estimate for f;. O

Similarly, for each y; # 0, we can also define fl (y1, z2) and Ql(yl, z2) (see the
equations (5.19) in section 5), and we also have

Proposition 2.7 Let H¢ be a C3 function on Q satisfying H lcoaqy < h*. Then for
any 0 < ay < min{2, v/2«} and any 0 < B> < 1, we have

Yo Y Ao )l < e,

0<i<3,0<j<2 122
itj A B
Z 19, ;Ql(YI,Zz)| < Ce P2
0<i<3,0<j<2 ~!72

for all zo > 0, where the constants C depend only on 2, H®, k, ay and f3>.
The proof is similar to that of Proposition 2.5, we here omit it.

2.3 The second order term

Next we look for the second order term ( fz 1, z22), Qz (y1, z2)) in the expansion at Xy,
which will be needed to derive the uniform estimation for the approximation solution.
We first derive the values of this term at y; = 0. Let, for zo > 0,

Hz2) = £0,22),  Qa(z2) = Q2(0, 22) = (Q1(z2), 03(z2)).
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Substituting (2.9) into (1.1) under the z—coordinates, equating the coefficients
of A2, and then considering this problem at (0, z3), we obtain the equations of
(f2(z2), (Q3(22), Q3(z2))) for 25 € Ry

—L 5+ GLP+I0) = D =-2/00408 - in R+,

—(0) +1/0l20) = —2f004fr— 1 inR,,

o3+ (o2, OF |~ koa — Ky Qf +kozad) +270/10F =0 inF,

£0) =0, (0)(0) = dy, Q%)ylzo +ko Q] onzy =0,
(2.22)

where kg = k(0) is the curvature of <2 at the point X, k(’) = %(O), q = q(z2) is the

s
function defined in (2.19), and

1 A
N1 = =G fof|_ ko) = O ()

+ fQOOL+ AP +IQIP +101%) + iR fi +2050D),
ra(22) = oy, Qﬂylzo +ko(Q1)' + ko Qg +k522(Qo) + 11117 Q0 + 2f0.f1 01

The detailed calculations will be given in appendix D. It is easy to see that

03(22) = =1 fol 2820y, O} Ly~ ko = kb O + kozag' + 2 fo f103). (2.23)

From Proposition 2.5 and Proposition 2.7, we have
103(z2)| < Ce 2 forall z5 > 0,

where 0 < 8, < land C = C(x, 2, B2, H°).

Proposition 2.8 There exists a solution (f2(z2), (Qé(zg), Q%(Zz))) to system (2.22)
such that, for any 0 < a3 < min{2, ﬁ/{} and any 0 < B3 < 1, there exist constants

C such that
|f(z2)] < Ce™™2, Q) (z2)| < Ce ™2 forall zo > 0,

where C = C(H, k, a3, B3).

Proof Using the estimate in Proposition 2.5 and in Proposition 2.7, it is easy to see
that, for any 0 < op < min{2, ﬁk} and any 0 < B> < 1, there exist constants C
such that

IF(z2)| < Ce %2, || < Ce P22 forall z; > 0,
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where we have taken a1 = (a2 + 1)/2, 1 = (B2 + 1)/2, and we have used the same
letter C to denote constants depending on «, a3, 2, B2 and H°. Note that the matrix

<3|f0|2 —1Q* =1 2f0Q(1)> - (2 O) as 23 — 400
2100} | fol2 01 '

Then by taking oy = (a3 4+ 1)/2, f2 = (B3 + 1)/2, the conclusion of this proposition
can be obtained by Proposition B.2 in appendix B. O

For each y; # 0 we can also define fz(yl, z») and Qz(yl, z2), and we have
Proposition 2.9 Let H¢ be a C3 function on Q satisfying H lcoaqy < h*. Then for
any 0 < a3 < min{2, 2k} and any 0 < B3 < 1, we have

Z |af'+{f2(YI,Zz)| < Ce 0322

e
0si<3,0sj<2 '
i+jA _
Do 18 Qe(n. 2l = CehE
0si<3,0sj<2 '

for all zo > 0, where the constants C depend only on 2, H®, k, a3z and 3.

The proof is similar to that of Proposition 2.5, and we omit it.

3 Uniform estimation for the approximation solution

In this section we shall construct an approximation solution to system (1.1), then we
shall apply the method of matched asymptotic expansions (for the detail see [17]) to
derive estimates of this solution with respect to the parameter A, from which we can
derive that the approximation solution we constructed is a global one.

To construct the approximation solution we need an inner asymptotic expansion
valid inside the boundary layer, and an outer asymptotic expansion valid outside the
boundary layer.

The outer expansion is (1, 0). In fact, we write the outer expansion in the form

o0
Upe. ) =1+ Ml @),  1—o,
k=1

o
Ug(x.2) = Y an2(x). 1 —0.
k=1

The right sides of these equalities should be understood as formal expansions in the
powers of A. Substituting these expressions of Uy and Ug into system (1.1) and
equating the coefficients of the powers A for each k > 1, we find that

hl(x)=0, h2x) =0, xeQ, k>l
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The inner expansion of the form (2.9) can be construct as in section 2. In fact, for
each Vi # 0, we can find the leading order term (fo(yl, 22), Qo(yl, Zz)) the first order
term (f1(y1, 22), Q1 (y1. 22)), and the second order terms ( f2(y1, z2), Q2(y1, 22)) by
the processes similar to that for the solutions of (2.11), of system (2.20) and of system
(2.22). For more details see (5.18) and (5.19) below.

To construct the global approximation solution ( fap, Qap(x)), we fix a neighbor-
hood N of the boundary 9€2 such that, for each point X € 9%, there is a ball B, (X()
anda C-¢ diffeomorphism that straightens the portion of 32 that lies in N (1) Be (Xo).-
Set

do :=dist (3Q, Q\Np), 0, := {x € Q : dist(x, 0Q) < do/n} . 3.1)

Then we define a smooth function x (x) by

1, X € 04;
x(x) = {smooth, x € or\ou;
0, x € Q\o2.

Note that x (x) is independent of A.
Then we define the approximation solution by

Fap@) = x ) (for1, 22) + A filn, 22) + A2 (1, 22)) + 1 — x (),

R . R (3.2)
Qup(¥) = x () (Qor1, 22) + 2Q1 (1, 22) + 2*Qa(y1, 22)),

where 7o = y2/A, x = ¥ (y1, y2) and ¥ is defined by (2.1). Since x (x) = 0 outside
of a neighborhood of X, we can extend the approximation solution by zero outside
of the support of x, such that the approximation solution (fap, Qap(x)) is defined
everywhere in Q.

Now we define an operator .Z), as follows. For a scalar function f and a vector field

Q,

2

A
L(f, Q) = (—K—zAf — (1= f2= QN f, r*curl’Q+ f2Q> . (33)
Lemma 3.1 Let

b(x,A) = (b1(x, A), b2(x, 1)) := L (fap(x), Qap(x)). 34
Then there exists a constant Ay such that for any A € (0, Ag) we have

111l cogy + b2l coy + 1AVball oy + 112V divba|l oy < € (. 6, HE) A2,
(3.5)
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The proof of Lemma 3.1 will be given in appendix D.
Now we introduce the remainder terms Ry and Rq by letting

Ry=f—fap, RQ=Q—Qup. (3.6)

Then (R, Rq) satisfies the equations

2
_,){L_zARf = (1 - |f|2 - ffap - |fap|2 - |Q|2)Rf

+fap(Q + Qap) - R + by inQ, (3.7)
A2curl’Rg + | fI°Rq + (f + fap)RfQap = b in Q,

and boundary conditions

IRy
20, acurlRg = Bs,
on (3.8)

n-Ro = fupl 2 [AFI2ASP = fup Ve + Bs] - on 022,

where b; and b; are defined by (3.4), B3 and By are given by (E.2) and (E.4) in
Appendix E respectively. The derivation of (3.8) is lengthy and will be given in
Appendix E.

In the following, we derive the H 1 H? and CY estimates of (R 7> Rq) in terms of
b1, by, B3 and B4. We need the following space

H(S2, curl) = {u € L>(2,R?) : curlu € L*(Q)).

Lemma 3.2 (H' estimate) Let (f, Q) be the solution of (1.1) satisfying (1.8), and let
(Ry,RqQ) be defined by (3.6) with Ry € HY(Q) and Rq € H(2, curl). Then there
exists a constant Ao > 0 such that, for any 0 < . < Ay we have

IR N2 +IAVR £llL2(0) + [RQliL2 (@) + 12 VRQllL2 ()

<C (”bl ||L2(Q) + ||b2||L2(Q) + 12 diVb2||L2(Q) + ||B3||Hl/2(agz) + ||B4||H1/2(39)> s
3.9

where the constant C depends only on 2, H®, k and 8, but not on .

Proof Step 1. Note that (R, Rq) can be viewed as a weak solution of (3.7) in the
sense of

)\'2
/ {_2VRf VB + ((Ifl2 + ffap + 1 fapl? +1QI* — DRy
@ (3.10)

_fap(Q+Qap)'RQ)B}dx:/blex,
Q
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and

/ »2curl Rq - curl D + (|f|2RQ F(f A+ fap)Ranp) - Ddx
Q
(3.11)
= / b, - Ddx + / A2curlRq - (n x D)dS
Q Q2
forall B € H'(Q) and D € H(L, curl). Taking B = Ry and D = Rq in (3.10) and
(3.11) respectively, and then adding the two equalities together we get
)"2
/Q (5 IVRs P + 22 lecurlRol + (1f17 + ffap + | fupl® +1QI* = DIRsI?
+1/ PRl + R (fQup — fapQ) - Ro)dx (3.12)

= / (b1Ry + by - Ro)dx —l—f (An x RQ)BsdS.

Q Q2
Using (3.6) we can derive

R (fQap — fapQ) - R = |RfI*Qap - RQ — fapRfIRoI%,
and

FPIRQ = fupRsIRa = (I = fupf + | fupl?) IRl
Then

If*IRQI> + Ry (fQap — fapQ) - Rq

1 3
= [R7*Qap - Ro + [(f - Efap)2 + Z|fa,,|2] IRo|>.

Step 2. We claim that, for any given € > 0, there exists A; > 0 such that for any
A € (0, A1) we have

IR;1%1Qap(x)| < € forallx € Q.

Indeed, from Proposition 2.5, Proposition 2.7 and Proposition 2.9, there exists
0 < B3 < 1 such that

|QO| + |Ql| + |Qz| < C(2, HS, /33)6_’3322,
which shows that

dist(x,09)
—x

1Qap(X)| < Moe P
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for some My depending on €2, H¢ and B3. Now we choose Ry sufficiently large such
that

M()e_ﬂ3Ro < €.
This implies that
IRf11Qap @) < 1f = fap*1Qap(0)] < [Qap(x)| < € if dist(x, dQ) > ARq.

On the other hand, from lemma 2.1 and the uniqueness of the solution to (2.11)
satisfying (2.12), we conclude that,

”f)» - fO()\Zl» ZZ)”CO(QzﬂB;{O(O)) — 0,

as A — 0. Here we keep the notation used in section 2. Therefore, there exists A} > 0
such that for any A € (0, A1) and any xp € 02 we have

€ .
If — fapl> = IRp(x)* < o if x € 2N Bjg,(x0),

where we have used the boundedness of fl and fz Then
€
IR 1%1Qap(x)| < Mo < € ifdist(x, 9Q) < ARo.
0

Now the claim is proved.
Step 3. By the trace theorem on H (€2, curl), we have

‘/89()»11 x RQ)B3dS| < )~||BS||H1/2(39)||11 X RQ||H—1/2(aQ)
< MBsllgi2@gg) lcurlRoll 250) + IRQI 2(50))-
Note that, there exists A, > 0 such that for any A € (0, X2) we have
2 2

1 )
| fapl® > 3t

1
2 —_—
[flI7 > =+ )

37027
Then taking € in the claim sufficiently small, and using the Cauchy’s inequality, we

obtain from (3.12) that

IRflz2() + IAVR N 2(0) + IIRQIlL2(q) + IAcurlRQll 12(q)

(3.13)
< C(Ib1llz2¢0) + b2l 22 + 1Bl g12aq)) -

where C = C(2, H¢, «, 8).
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Denote by
fap = for1, 22) + A fi(1, 22) + A2 (o1, 22).
From Proposition 2.5, Proposition 2.7 and Proposition 2.9, it follows that
| fapl + 1Yy, fapl + 1AV, fapl < C(Q, HE, k). (3.14)
Then by (3.2) we have
IAV fap(x)| < C(Q,H, k) forallx € Q.
From the second equation of (3.7), we have
div (| fI*RQ + (f + fap)RQap —b2) = 0. (3.15)
From this and (3.13), and using the fact AV f = AVR + AV f,,, we find
2 divRQll 2 = C (I1by 22 + Ib2ll22(q) + 1A divba|l2q) + ||B3||H1/2(9Q)) ,

where C = C(R2, H¢, «, §).
We now consider the estimate for n - Rg. From (E.6) in appendix E, we have

In-RQllg12pe)
< Ifatlcram (1Ballmree + C@ HONALIT2ASE = 1 fapl ag )
<C (||B4||Hl/2(a§z) + IR sl 2 + ”)"VRf”Lz(Q)) )

where C = C(R2, H¢, k, 8). In the last inequality we have used the trace theorem on
HY(Q), and the inequalities:

I fapllct oy < C(R, H, «,8) since (3.14),

1 1
3 < If1> <1, 3 < lfapl> < 1, AV fapl < C(Q,H, K, 8).

We apply the following div-curl-gradient inequality (see [11, P.212, Corollary 1])

IVRQll12(0) < C()(IRQll 120 + I divRQll12(q)

(3.16)
+ llcurlRq |l 12y + 0 - Roll 1250 )-

Then using (3.13) and the estimate on div Rg and v - R obtained above, we get (3.9).
O
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Therefore, by applying the estimate of b in € (see Lemma 3.1), the estimate of 33
(see (E.3)) and the estimate of B4 on 92 (see (E.5)) in appendix E, for small A we
have

IRf 220 + 1NV R 12() + IRQll 20 + IAVRQl 12 < CAY, (3.17)

where C = C(2, H¢, k., 8).
Next, we establish the H? estimate for (R 7> RQ).

Lemma3.3 Let (f, Q) be the solution of (1.1) satisfying (1.8), and let (Ry, Rq) be
the solution of (3.7) with Ry € HYQ) and Rq € H(2, curl). Then there exists a
constant Ly > 0 such that, for any 0 < A < Ag we have

IA2VZR ¢l 12 + 127V Rall 2y < CA°, (3.18)

where the constant C depends only on 2, H¢, k and 8, but not on A.

Proof Step 1. By the usual difference quotient method >, from the first equation of
(3.7) and the boundary condition for Ry in (3.8) we immediately obtain that

12V2R Nl 120 < € (IRfll 2@ + IRl 2@) + 1611120) »
where the constant C depends on 2. From (3.5) and (3.17), we have
I2V2R 120y < C(Q.HE K, 8)2°. (3.19)
Step 2. Let H = AcurlRq. From the second equation of (3.7), we can deduce that

H satisfies

—MAH + f2H=F inQ,
H = 83 on BQ,
where

Rq = (R}, RY)
F = eurl(by — (Rf + 2 fap) R Qup) — 101 (fP)RG — 02(fPIR).

Then by the Cauchy’s inequality, and using f > 1/3 we have

”)‘VH”LZ(Q) + ||H||L2(gz) < C(2) (||F||L2(Q) + ||B3||H1/2(352)) s

5 We refer to [14, Theorem 8.8] for the interior H 2 estimates, [14, Theorem 8.12] for the boundary H 2
estimates.
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where we have used the inequality

oH JoH
/ M pas
a0 on

22 —
an

2
= MIH 1200

H-12(3Q)

2

< C@IBs e (HAQVH I N

L2(9>) '

From the expressions of f,, and Q,, (see (3.2)), then by Proposition 2.5, Proposi-
tion 2.7 and Proposition 2.9 we have

L2(Q)

| fap O]+ 1Qap ()] + 1AV fap (D] + 1AV Qap(x)| < C(2, H, k,8) forallx € Q.
(3.20)

This gives that
”F”LZ(Q) < C(Q2,H «,98) (||)»Vb2||L2(Q) + ||Rf||L2(£2) + ”)‘VRf”LZ(Q)) .
Therefore, we have

IAVH 120 + 1 Hl 2@ < C (1AVb2ll 1200y + 1 Rfl12¢0) + IAVR 1l 120
+Bsllgi2p0) »

where C = C(2, H¢, k, §). From (3.5), (3.7) and the estimate on ;3 (see (E.3)), we
can conclude that

[V (curlRQ) [l 120y < C(R, H*, k, §)A. (3.21)
By (3.15), we have
divRq = [div(by — (f + fap)RfQap) —2fVf -Ro] f 2.
Then using Holder’s inequality and f = Ry + f,,, we have

122V divRqll 12(q
< C(IRflIp2@) + 1INV Rl 2() + IRVR 1174 + 117V Rl 2
+ ||)\. le b2||L2(Q) + ||)\.2V lebz”LZ(Q)) + 6)\'2||VRf||L4(S-Z)||VRQ||L4(Q)7

where we have used the estimates in (3.5), (3.20) and 1/3 < f < I, C =
C(R2,'H¢, k, 8). Note that

IVRllzs@) < €@ (IV?Ryll2@ + IVR 2@ ) < O HE K, 6)2
(3.22)
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by the Sobolev imbedding theorem. Then by (3.5) and (3.17), it follows that
[V(divRQ)ll12q) < C(Q, H, k, )A(1 + [[VRqll L4(q))- (3.23)
We now give the estimate of v - Rg. From (3.8), it follows that

My Rallmrae < €@ H. 8 (1Billmeas + 272 = fpPlaren)

= €1k, (IBallnag + 121200 = Pl )

where we have used the boundedness of || fapllc2(5q) and [|VianH [l c2(5)- Using
(3.22) and (3.20), we have

IRZLFI2AF 1P = L fap D 2y < C(QHE Kk, OIS,
Then by the estimate on By (see (E.5)), we now obtain that
v Rollg3rpa) < C2,HE K, 8§12 (3.24)
By applying the div-curl-gradient inequality (see [3, section 2])
Il 20 < C() (Il 1) + ldivanl 1 gy + lleurhu 1 (q) + 1V ull g32g0)) -
we at last obtain that
IV2Rall 120y < C(Q,HE, k&, )AL + VRl 40

where we have used (3.21), (3.23), (3.17) and (3.24). By the Sobolev imbedding
theorem, then choosing A sufficiently small, we have

”VZRQ”LZ(Q) < C(Q, HE, K, 6))\,(1 + ”VRQ”LZ(Q)) < C(Q, He, K, (S))\

We end our proof. O

We use the notations introduced in section 2. Let Xy € 02 be fixed and U/ be a
neighborhood of X(y. We assume that ¢ defined by (2.1) is a diffeomorphism from
B ; (0) onto U () 2. Here B; (0) denotes an open half ball with the center at the origin

and the radius R. Let R and Rq be the representations of Ry and Rg under the
z-coordinate system respectively. Then we have the estimate

> 5 2
||Rf||H2(Bl+(0)) + ||RQ||H2(BI+(O)) <C\,
where the constant C depends on H¢, 2, k and §, but not on A.
Applying the Sobolev imbedding theorem ( [1, Lemma 5.17]), we can derive the
C? estimate for Ry and Rq on a half ball Bj".
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Theorgm 34 Let (f,Q) be the solution of system (1.1) satisfying (1.8), and let
(Ry,RqQ) be the solution of system (3.7) under the z-coordinate system. Then there
exists a constant Ao > 0 such that, for any 0 < . < Ay we have

R _ », _ 2
1Rl oz, + IRl o 5, = €22,

where the constant C depends only on 2, H¢, k and 8, but not on A.

Proof of (1.9) and (1.10) The inequalities (1.9) and (1.10) follow from Theorem 3.4
immediately. O

4 Decay estimate for Meissner solutions

In this section we prove Theorem 1. 1 We shall follow the notations in section 3. We
also introduce the new variable ¢ = 3, and set

ka{ter:tzi, xesz}.

Let (f, Q) be the solution of (1.1), and let (fap, Qa p) be the approx1mat10n solution

constructed in section 3 in the x-coordinates. Let f R £ fap, Q RQ Qa P 13’3 and b
be the representations of f, Rz, fap, Q, R, Qap, B3 and b in the ¢-coordinate system

respectively. Then (R 1 lle) satisfies

LARy = (f1P+ Ffap +1fap? +1QP = DRy — fap(Q+Qup) R — by in 2.,
curl’Rq + | /R + (f + fap) Ry Qup = b2 in Q,

dﬂ =0, curlﬁQ = 1’5’3 on 0$2.

.1

Lemma 4.1 (Schauder estimate) Let (f, Q) be the solution of (1.1) satisfying (1.8).
Then there exists a constant C depending on S, |[H® || ¢33, k and 8, but independent
of A, such that

|1

Proof The proof is similar to that of Lemma 9.2 in [26], and we give only the outline
of the proof here. For any number m > 0, let B, (xo) denote a ball with radius m and
center xo € 2, and

<C. 4.2)

C3(Qy) * HQ‘ c3 Q)

O := By (x0) N Q5.
Step 1. The scaled function f satisfies the following equation in €2;:

I < Sy af
S SAf= AP -RNF e oo mie. @3
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From (1.8) we see that

W N

<fm<1, 1Q0*<

, teQ.

W | =

By the L” estimate of elliptic equations we see that f € W2P(O)) forany 1 < p <
oo, and hence f € Cche(Oy) forany 0 < o < 1.
Step 2. Q satisfies the following equation on £2;:

curl2Q + [ F2Q =0 in Q;,

. . . . . (4.4)
curlQ=He, v-Q=—f"2ViH¢ onay.

From (4.4) we can derive the integral estimate of curlQ. From the first equality we see
that
divQ=27f"'VF- Qe L*O). 4.5)

Then we use the cut-off argument and use the div-curl-gradient inequality for vector
fields vanishing on 3O /> to get an estimate on the norm || Q|| ;1 (©12)" It follows that

divQ =2f"1'Vf . Qe H'(O1)).

We further use the difference quotient method to derive an estimate for ||Q|| H2(O4 3)-

By this and the Sobolev imbedding theorem we find that Q e whr (o, /3) for any
1 < p < oo, hence

Q¢ C“(51/3, R?) for any 0 <o < 1. (4.6)
From this and (4.5) we see that
divQ € C*(Oy/3) forany 0 < a < 1. 4.7
Step 3. Now we denote
QD) = (0'(®). 0* (1), H(1) = curlQ().
H is a solution of the following Dirichlet problem

AH+0,(f20N — 01 (201 =0 ing,

. . 4.8)
H ="H° on 0L2;,.

Applying the interior L” estimates of elliptic equations and using the result obtained
in step 2, we see that H € W2'1’(01/4) for any 1 < p < oo. This and the Sobolev
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imbedding theorem imply that curlQ =HeC @ /4). From this, (4.6) and (4.7),
and applying the div-curl-gradient inequality

||“||Ck+1,a(5) < C(D,k, a){”“”ck,a(ﬁ) + ||divu||ck.a(b) + ||Cur]u||ck,or(5)
+||U . ll||ck+l.a(3D)}, (49)

with k =0 to ;Q, where ¢ is a suitable cut-off function, we obtain Q e clyo, /5)-

Step 4. Using equation (4.3) again we can show that f e e (O1/6). From this
and (4.7) we get divQ e ¢l (0, /6). Applying Schauder estimates to (4.8) we get
curlQ = H € C>%(Oy7). Then using (4.9) with k = 1 we get Q € C>*(Oyg).
From this and (4.5) we see that din € Cz’a(O]/g). So using (4.9) with k = 2 we
find Q € C>%(Oy ). O

Combining (3.5) and Lemma 4.1 we have
1Bl c2q,) < CA2,

where C is independent of A. Then by the scaling argument and using Lemma 3.2 and
Lemma 4.1, we find

IRf Il g1, + IRQl 1o, < CAZ (4.10)

where C depends on €, «, § and H¢, but is indepegdenvt of A.
We now establish the interior C* estimate for (R ¢, Rq). Denote

d(t) = dist(r, 9Q3),  wn:={t € Q. :d(t) > n}. A.11)

Lemma4.2 Let (f, Q) be the solution of (1.1) satisfying (1.8). Then there exists a
constant C depending on 2, H®, k and §, but not on A, such that

IR flcoqwy) + IRQIIcow,) < CAZ, (4.12)

where w1 is defined in (4.11) forn = 1.

Proof Using (4.10) and applying Sobolev imbedding theorem (see [1, Chapter 6]), we
can show that, for any 1 < p < oo and any ball B (xg) C 2; we have

IRQlLr s ceon + IR oo < €Y (IR s e,y + IRallia,) ) < €A%

where the constant C in the right side depends on 2, H®, «, § and p, but is independent
of A. Then we apply the interior W7 elliptic estimates to (4.1) (see Theorem 2.2 in
[8, Chapter 10]) and find that

IVRfllLrB, (xo)) + IVRQIILP (B, (xo)) < C(p) (”RQ”LP(Bl(xo)) + ||Rf||LP(Bl(x0)))
2 2
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< CA2.

Taking p > 2 in this inequality and applying the Sobolev imbedding theorem again,
we obtain (4.12). O

Proof of Theorem 1.1 The proof is based on the Agmon’s estimate [2].
First, from the expressions of f;, and Q,, given in (3.2), and using Lemma 4.2,

we see that, for any positive constants 84 < 1 and oq4 < min{2, ﬁ/(}, there exists Ny
depending on o4 and B4, such that for any x satisfying d(x, 9€2) > NoA we have
f@) = fap@) + Rp(x) > Ba, K*(f2+ f+1QP) > of. (4.13)

Step 1. We prove the exponential decay of Q.
Multiplying the second equation of (1.1) by n(z)Q with ng € H(} (£2), and integrating
over £2, we obtain

[ (Rlewton@? + QP ) dx =32 [ [9m0x QPdr. 14
Take

d(x) =d(x, 9Q), no(x) = Lo(x)eP+dW/x

where 0 < B4 < 1,and ¢y € CSO(Q, [0, 1]) is a cutoff function satisfying

1, ifd(x) > (No+ DA,

So(x) = { _
0, if d(x) < NoA,

and |V¢o(x)| < 2/A for all x. Plugging this 7 into (4.14), and using (4.13) and the
estimate |Q| < 1, we derive

/ 2P0 QRdx < C. (4.15)
Q

where the constant C depends on €2, B4, «, § and H®, but not on A.
Next, we let

A(x) = P4 d(X)/kQ(x).

Then from (4.14), (4.2) and (4.15), we have
/ |ArcurlA|?dx < C, (4.16)
Q
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where C = C (2, B4, k, 8, H¢). From (1.1), we have div(f2Q) = 0 in . Then we
obtain that

AfdivA+2AVf-A— fei(x)-A=0 in L, 4.17)
where
c1(x) = B4Vd(x). (4.18)

Using [AV f| < C (see (4.2)) and (4.15), we have
f IAdivA|2dx < C(,HE, k, 8, Ba). (4.19)
Q

Note thatn - A = n- Q = —Af 2V H¢ on 9S2. Then there exists a constant C
depending on 2, H¢, k and &, such that

In-Allgizee < IH lczoolhf 2 lmroo
< CEOIH 2 X f i@ < C.

where in this inequality we have used the trace theorem on H 1(Q) and IV £ 12(Q) =

C. Applying (4.15), (4.16), (4.19) and then by the div-curl-gradient inequality (3.16),
we have

/ AWVA[%dx < C, (4.20)
Q

where C = C(R2, H¢, «, 8, B4).
From (1.1), we can derive that A is a weak solution of the following system:

A2curleurlA — A curlE — F(x) =0 in Q, 4.21)
where A = (A1, A»),

E(x) = B4(31d(x) A2 — d2d(x) A1), €2(x) = Bgcurld(x) = B4(d2d(x), —01d(x)),
curlE = (3,E, = E), F(x) = (reurlA)er(x) — E(x)ea(x) — f2A.

Denote by
G) =T QA A= fei(x)-A),
and let
A(t) =AGr), F@)=FOr), E@) =EM), G@)=Gr).
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From (4.21) and (4.17), for any ® € HO1 (B2(t9)) with B (t9) C €2 being a disc of
the center 7 and radius 2, we have

/ VA - V&dt = f curlA - curl®dt + / div A - div ®dt
By (o) By (1) B> (1)

= / Ecurl®dr + / F.®dr+ / G div ®d1.
Bs(t0) By (t9) Bs(t0)

Since divF = 0in 32 (to) we can find H € L (B (to)) (see Lemma 3 in [11, Chapter
IX]) such thatcurl H = Fand ||H||Lp(32(,0)) < C(p)||F||Lz(Bz(,O)) forany2 < p < oo.

Now we can apply the interior W7 elliptic estimates to A (see Theorem 2.2 in [8,
Chapter 10]) and find that

”VA”LI’(Bl(IO))
<C(p) (||E||LP(Bz(to)) F1GllLr By + IH I LrBya0)) + ”A”H'(Bz(tg))) .

Taking p = 3 in the last inequality and applying the Sobolev imbedding theorem, we
obtain

IVAIL3 @60 < CIAIE By < CA
where C = C(R2, H¢, k, 8, B4).
Since W13 is continuously embedded into C 0 and then using the arbitrariness of

the ball B;(tp) C €2;, we have

1Al oy < CA7Y, (4.22)

(w2) =

where C = C(L2, B4, k, 6, H®), and w; is defined by (4.11). Since 92 € C3, then
there exists a positive constant i depending on 2 such that the distance function
d(x) € C3(T',) (see [14, Lemma 14.16]), where

M,={xeQ:dx) <pu}. (4.23)

Using the equations (4.17) and (4.21), then by the Schauder’s estimate [14, Theorem
6.2]onI';, ; we have

1Al ety ry ) < €A
4,
where C = C(, B4, x,8, H®),and Ty, = {t =x/A € Q; : x € I',}. Then

[AcurlQ(x)| < C(2, Ba, k, 8, HOL e P+d0/A for x € T \9Q.
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For any 0 < B < B, there exists A1 > 0 such that, for any A € (0, 11) we have
IrcurlQ(x)| < Cre P9/ forx € ol \9Q2 (4.24)
and by (4.22)
|Q(x)| < Cre PIO/* forx Q\le, (4.25)

where the constants C| and C, depending on €2, 8, k, § and H¢ can be taken the same
number. Let

H = )curlQ, B(x) =PI/ g
Then from the second equation of (1.1), we see that B(x) satisfies
A2div(f2VB) — 208 f72Vd - VB + (f B> —ABf >Ad — 1)B =0 forx € Iy

There exists positive constants ¢ (depending on 2, 8, «, §, H¢) and A, (depending on
e, R, B, «,8, H®) such that for any A € (0, A2) we have

F2B*—ABf?Ad—1 < —¢ forx e oo,

where we have used the first inequality in (4.13). By the maximum principle [14,
Theorem 3.7], we have

N,
IBlico yring = 1Bllco@my vrng) = max(e”™, Cy),

where C is given in (4.24). By the Schauder’s estimate [14, Theorem 6.2] again, we
have

AVB ”CO(F% \Dawgen) = €82, HO B ||c0(r% \[ing)

Then we have

[Feur?Q(x)| < 2[AVH@)| < Ce P49 forx € Tu\Thwg+1),
where C = C(£2, B, k, 8, H¢). Using the second equation in (1.1), we have

Q)| = A% f 2curleurlQ(x)| < Ce PIW/A for x € e,

where we have used |Q(x)| < 1forx € I'yny+1), C = C(R, B, k, §, H®). Combining
this inequality with the estimate in (4.25), we obtain the exponential decay estimate
for Q.

Step 2. We prove the exponential decay of f.
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Let g = 1 — f. Multiplying the first equation of (1.1) by nfg with n; € H(} (£2),
and integrating over €2, we obtain

)\'2
/ <§IV(mg)|2 +Q2—-3g+ g+ |Q|2)<mg>2) dx
@ (4.26)

)\'2
= [ mPiQPedx+ % [ 1gvm P
Take
N1 (x) = g1 (x)e 1O,

where 0 < a4 < min{\/ifc, 2B}, and ¢ € CSO(Q, [0, 1]) is a cutoff function satisfy-
ing

I, ifd(x) > (No+ DA,
Si(x) = _
0, ifd(x) < NoA,

and |V¢i(x)| < 2/A for all x. Plugging this 7; into (4.26), using (4.13) and the fact
lg] < 1, we get

/ 62a4d()()/)x|g|2dx S C,
Q

where C = C(L2, H®, k, §, a4, B), but C does not depend on A.
Now we set

h(x) = e 9026 (x).
Using (4.26) again, we have
IRl L2) + IAVRI 2@y < C(Q,H &, 8, a4, B).
Then £ is a weak solution of

e Ao .
_2Ah - = div(hv) = r(x) in Q,
K K

where

v(x) = asVd(x),
A%
r() =3 (Vh—hv)+ @2 =3+ lg1? + 1QI*)h — |Q|2e™ 4/,
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Let
h(t) = h(At), d@) =d(t), F(t) = F(Ar)

Then for any ¢ € H(} (B7) with By(f9) C €2; being a ball with the center ¢y and radius
2, we have

|
/ —Vh Vodt = / —zhd -Vodt — / F - odt
B (1) K2 B (tg) ¥ Ba (o)

We look for ¢ € Hy (Ba(to)) () H*(2) such that

/ Feodt = f V¢ - Vedt forany ¢ € HOl (B2)
B> (1)) B (o)

and ¢ satisfies | V@Il Lr(By)) = C(p)||r||Lz(Bz(,0)) with 2 < p < 0o. Now we can

apply the interior W17 elliptic estimates to h (see Theorem 2.2 in [8, Chapter 10])
and find that

VRl Lr By 1)) < C(p. &) (II/VZIILn(Bz(zO)) +IVelLr B + ||il||H1(32(zo))) :

Taking p = 3 in the last inequality and applying the Sobolev imbedding theorem, we
obtain

A l
VAN L3 By < CURN 1By + 1) < CA™

\yhere C =C(R,H «, 8, asa, B). By the Sobolev imbedding theorem again, we have
h € C%wy), where w; is defined by (4.11). Then

lg()] < C(Q,H, k8, aq, B)2 e IO forx € Q.
For any 0 < o < o4, there exists A3 > O such that, for any A € (0, A3) we have
lg(0)| < C(Q, H, k, 8, o, Be @4/ forx e Q\Ty, (4.27)

where I 4 is defined in (4.23). Let

u(x) = g(x)e* 4/,
Then u(x) satisfies
e 20 _
ﬁAu — FVd -Vu =s(x) in £,
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where
o A 2 2 2 ad(x)/r
s(x) = —K—2+K—2Ad+2—3g+|g| +1QI7 ) u — 1Ql%e )

Since0 < o < min{«/i/c, 2}, thereexiste; > 0 (dependingon 2, H¢, k, &, §), A4 > 0
(depending on €1, 2, H®, k, «r, §) and N; (depending on 2, H°, «, &, §) such that, for
any A € (0, A4) and any x € F%\FAN] we have

2
o ¥
——2+—2Ad+2—3g+|g|2+|Q|2>81 > 0.
K K

Using the maximum principle [14, Corollary 3.2], we then can deduce that

1
||M||c0(r%\rwl) =< ||u||co(a(r%\rml)) +é sup Qe ™t < ¢,

XGF% \FANI

where C = C(R2, B, a, k, §, H?). Combining this inequality with the estimate in
(4.27), and then using the boundedness of [g(x)| < 1 for x € I';y,, we obtain the
exponential decay estimate for 1 — f. O

5 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. We shall first establish two results
for some ordinary differential systems. The first result is Theorem 5.1, which will be
used to show how the minimum points of | f|> — |Q|? depend on the applied field ¢,
and the second is Theorem 5.2 which is needed to prove how the minimum points of
[f1? —|QI? depend on the curvature of 9€2.

We first establish the mixed monotonicity on hy, of the solution of (2.14) satisfying
(2.12). Existence of such solution has been proved in Proposition 2.2. For simplicity
of notation, we take positive constants 21 > h>, and denote the solution ( fy, Q(l)) of
(2.14) with hg = h; by (fi, gi),i = 1,2. So (fi, gi) is the solution of the following
problem:

—L() =AU - 1fiP =g fi inRy,
(&) +1fil*¢i =0 inR,,
(£f)(0) =0, fi(o0)=1,
(8)'(0) = —h;, gi(00) =0.

5.1

Theorem 5.1 Let (f;, gi) be the solution of (5.1) satisfying
inf(Lfi? — lgi) = & +8°
R, =3
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fori =1,2.If h1 > hy > 0, then

f1(z2) < fa(z2), g1(z2) > g2(z2) forallzp > 0.

Proof We prove the monotonicity property by an iterative method. As the process is
very technical, we describe the main idea of the proof first.

We first let fl.(o) = 1, and solve the second equation of (5.1) with f; = fl.(o),
0)

together with the boundary conditions given on the last line of (5.1), and get g; ™.
Next we solve the first equation of (5.1) with g; = gl.(o), together with the boundary
conditions given on the third line, and obtain the solution fi(l).

Then we solve the second equation of (5.1) again but with f; = fi(l), together with
(1

the boundary conditions on the last line, and obtain the solution g; ™.
Then we solve the first equation of (5.1) again but with g; = gi(l), together with

the boundary conditions on the third line, and obtain the solution fi(z).
We iterate this process and obtain two sequences

k k .
(0, ene,, i=1,2.

We claim that these two sequences have the following mixed monotonicity property:

(i) Foreachi =1, 2,

3 6
lzfl.(k)>fl.(k+1)>§, 0<g}")<g§"“)<§, forallk =1,2,--- .

(i)
< g0 g0 s e forallk=1,2,.--.

The monotonicity properties (i) and (ii) will be proved later, see step 2 and step 3 in
the detailed proof.
From the monotonicity property (i), and by the elliptic estimates, the sequence

(fl.(k), gl.(k)) converges in Clzog (R4) to a solution (f;, g;) of (5.1).

From the monotonicity property (ii), we can show that f1(z2) < f>(z2) and
g1(z2) > g2(z2) for all zo > 0. Then by the maximum principle we can show that the
strict inequalities hold for z» > 0.

Now we give the detailed proof of the theorem.

Step 1. Set f©@ = 1. Let g}o) and géo) be the solutions of the following equations

@)+ 1 OPg” =0 inR,,
"0 = —h1, (g”)(c0) =0,
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and
—(& ) +1FOPg” =0 inRy,
@Y (0) = —hy,  ()(00) =0,

respectively. It is easy to see that
2V =hie ™2 > ¢ (22) = hpe™® forall zp > 0.

Step 2. Let g, € L2(R+) and gp, € L2(R+) be two given smooth functions and

assume that @ > gn,(22) > gn,(22) > Oforall zo > 0. Let p1(z2) and p2(z2) be
the solutions of the following two problems

—Lpl = —=1p1? = lgn,Pp1 inRy,
pi(co) =1, pj(0) =0,
and

—Lpl = —1p2? = lgn,P)p2 inRy,
p2(c0) =1, py(0) =0,

respectively. The existence and the uniqueness of the solution p; follows from the
minimization problem of the functional

o0

Ly 1
min | {15 @F + 17 @Plen @) + 50 = 1f@)PY [z,

where

W = {u cu', 1—uel*Ry), uc LOO(R+)}.

It is easy to see that p; > 0. By the standard elliptic estimates, the solution pj is
smooth, and hence p; > 0. Similarly, we have p, > 0.

Claim1 pi(z2) < pa(zp) forall z; > 0.
Suppose otherwise Claim 1 were false. Then there exist zg € [0, oo) and zé €
(29, 0o] such that

P1ED) = ;Y. piEd) = ;). pi(z2) > pa(za) forall zp € (29, z3).
(5.2)

This gives that
7 ¢.0 /0 re 1 /el
P2(z3) = pi(z3), pr(z) = pi(z)). (5.3)
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Indeed, if z0 = 0, then p}(z9) = p}(z9) = 0; if 0 < 2§ < oo, then p2(z9) = p1(zY),
and p5(z9) < p}(29) because of the last inequality in (5.2). So the first inequality in
(5.3) is true. If z2 = oo, then ph(z}) = pi(z)) = 0;if 0 < z} < oo, then pa(z)) =
pl(zi), and p/z(zé) > p/1 (zé) because of the last inequality in (5.2). Therefore the
second inequality in (5.3) is true.

From the equations for p; and p; we have

1
—=p1py = p2pi) = pip2 (11 = 12 = lgml” + Ign, )

Integrating the above equality from zg to z%, we then find that the left side of the
resulted equality is

1 / / 0 1 / / 1
K—2(p1p2 = p2p(z3) — p(plpz — p2p1)(z) <0.

However the right side of the resulted equality is

)
[, 12 (191 = 192 = lgna + 11 ) dz2 > 0
Z

2
so we get a contradiction. Therefore Claim 1 is true.
Claim2 pi(z2) < p2(zp) forall zp > 0.

To prove this, let w(z2) = p1(z2) — p2(z2). From the equations of p; and p, we
have

1
= =wl = |pP = 1p2* = pip2 = lgm ) + (g = lgw D1 54
Suppose there exists zg € [0, co) such that w(zg) = (. Then we have
w'(z3) =0,  w'(z3) <0 ifz3 >0, lim_ w'(z) <0 ifz3=0. (5.5)
z—0

In fact, w(zp) is non-positive for any z» > 0, and w(zg) =0, so z% 1S a maximum

point of w. If z3 > 0, then we have obviously w’(z3) = 0 and w”(z3) < 0.1f z3 = 0,
then w’(0) = p}(0) — p5(0) = 0, which together with the fact that zg is a maximum
point implies the last inequality in (5.5).

Note that

(Ign, 1*(z2) — |gn, I*(22)) p1(z2) <O forall zo > 0.

Then by (5.4) and by noting that w(z%) = 0, we have that
w’(z3) > 0 ifz3 > 0, lim w”(z) > 0 ifz3 =0.
z—0t
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This is a contradiction to (5.5). Therefore Claim 2 is true.

Step 3. Let fr,(z2) and fr,(z2) be given functions and assume that 0 < f5, (z2) <
Jfno(z2) < 1forall zp > 0. Let g1 and ¢> be the solutions of the following problems

—q{ + fia1 =0 inRy,
q1(0) = —h1, q1(00) =0,

and

—q) + frq2 =0 inR,,
q5(0) = —h2, q2(00) =0,

respectively. We show that
q1(z2) > q2(z2) forall zp > 0. (5.6)

To prove (5.6), we introduce a function g3z which is a solution of the following
equation:

—q5 + fh2243 =0 inR,,
g5(0) = —h1, gq3(o0) =0.
By the maximum principle, it is easy to see that, for any z» > 0,
ql(z2) <0, gqi(z2) >0 fori=1,2,3.
Claim3 gi(z2) > ¢3(z2) for all z > 0, and q1(z2) > g3(z2) for all zp > O if
0 < fn(z2) < fhy(22) < 1.

Suppose Claim 3 were false. Then there exists zg € [0, o0) and zg € (z‘z‘, oo] such
that

q1(z2) < q3(z2) forzy € (25, 23) (5.7
and

01(23) < q3(23),  4}(23) < ¢4(z3) <0,

(5.8)
712 =32, 453 <4123 <0.
From the equations for ¢; and ¢3 we find
@195 — 430 = @13 (1fisl® = 1fin ) (5.9
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Integrating (5.9) from zé to zg we get

5
2
Osf 0105 (1 = 1 i) d22
3
_ / / 5 / / 4
= (@193 — 934D(@) — (@195 — 4391 (&3) < 0. (5.10)

Then, since fi,(z2) > fi,(z2) > 0 for all zo > 0, g1(z2) and g3(z2) are positive
functions, we must have

T (22) = fuy(z2) forall 25 € (23, 23).

Moreover, we have g (zg) =q3 (zg) and ¢ (zg) =q; (zg) by (5.10), which gives that
q1(z2) = q3(z2) for 2o € (zg, zg) by the uniqueness of the solutions for the initial
value problem. This is a contradiction to (5.7). By a similar proof, using (5.10) again
we have q1(z2) > q3(z2) forall zo > 0if 0 < fj,,(z2) < fu,(22) < 1. Therefore
Claim 3 is true.

Claim4 g3(z2) > g2(z2) forall z; > 0.
Suppose Claim 4 were false. Then there exists zg € [0, o0) and ZZ € (zg, o0] such
that

(25 < @), &5 <4E) <o,

33} = @), &) < 4¢5@E) <0.

From the equations for ¢> and g3 we have
(9295 — q3q5)' =0 forall z; > 0.

Integrating this equality from zg to z% we get

(4205 — 4302)(23) = (4245 — 4343)(23). (5.11)
For the left side term in (5.11) we have

02(2)45(23) — 432D a5 () = 42(21)(¢5(2]) — q3(23)) = 0.
If z§ = 0, then the right side term in (5.11) is
72(0)g5(0) — g3(0)g5(0) = —q2(0)h1 + q3(0)h2 < q2(0)(ha — h1) < 0,

which is a contradiction.
If zg > 0, then from (5.11) we have

0 < 02(25)g5 ) — 32D g5 (25)
= [92(25) — 315D + g3 ()95 (25) — g5 D1
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Each term in the right side of the above equality is non-positive. So we must have
qz(zg) = q3 (zg’) and qé(zg) = ¢} (zg’). Then we apply the existence and uniqueness
theorem for the initial value problems of ordinary differential equations on the interval
[0, z81, and find that ¢2(z2) = g3(z2) for all z, € [0, z$]. In particular

—hy = q5(0) = q5(0) = —hy,
which is a contradiction to the assumption that 41 > hy. Now Claim 4 is proved.
Combining Claims 3 and 4 we conclude that
q1(z2) = q3(z2) > q2(z2) forall zo > 0.
Now (5.6) has been proved.
Step 4. Leti = 1,2 and k > 0. Assume ffk) and fi(kﬂ) are two given functions
satisfying

0< @) < P <1 forallzy >0,

and h; is a given constant. Let gl.(k) and gi(kH) be the solutions of the following two
problems

OGN ®)2 k) -
—(g" )" +1f: =0 inRy,
{ 8 L 17g; + 5.12)

"y (©0) = —hi, ¢ (c0) =0,
and

k+1 k+1 k+1 .
[_(gi(+))//+|fi(+)|2gi(+)=0 11’1R+,
k k
@ Y0 = —hi;, g5 (00) =0,

respectively. From Claim 3 in step 3 we see that

gl-(k) (22) < gi(kﬂ)(m) forall z; > 0.

Leti = 1,2 and k > 0. Assume gi(k) and gl.(kH) are two given functions satisfying
0< ¢ () < g* " (z2) forallz, > 0.
Let fl.(kH) and fl.(k+2) be the solution of the following problems

k+1 k+1 k k+1 .
_K]_z(f‘l(Jr))//:(l_'fl(+)|2_|gl( )|2)fl(+) IHR+,

(5.13)
(fl(k"r]))/(o) — O, (fl(k+l))(oo) — 1’
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and

k+2 k+1 k+1 k+2 .
:_Kiz(fl( ))//:(l_|fl(+)|2_|gl(+)|2)fl(+) IHR+,

SO =0, (£ =1,
respectively. From step 2 we see that

0< fi(k+2) (z2) < fi(kﬂ)(zz) <1 forallzp > 0.

Step 5. Leti = 1, 2. Given constants /41 and A3, let (f;, g;) be the unique solution
of (5.1) satisfying

0< fi(z2) <1, gi(z2) >0 forallz; > 0.

We construct two sequences { fi(k)},fio and { gl.(k)}]‘zoz0 as follows. First, we let
fi(o) (z2) = 1 fori = 1, 2. Then we obtain the sequences by induction as follows:
if we know fi(k)(m), then we solve the equation of (5.12) to obtain gl.(k) (z2); if we
know gi(k) (z2), then we solve the equation of (5.13) to obtain fl.(kH) (z2).

From Claim 3 in step 3, we have gi(o) (z2) < gi(zp) for all zo > 0, since f;(z2) <
£2(z2). Next using ¢ (z2) < gi(z2), we have f;(z2) < £V (z2) forall zp > 0
by Claim 2 in step 2. Then using f;(z2) < fl.(l)(m), we have gl-(l)(ZQ) < gi(z0) for

all z > 0. By induction and from step 4, we finally obtain a sequence ( fl.(k), gi(k))

satisfying, for all z; > 0,

1= 1% > e > P> > fPe)> P> > fikz)
and

0<g() <82 <8P @) < <) <g ) < < g

Then, noting that ( fi(k) (z2), g,-(k) (z2)) satisfies the equations for f¥ and g¥, using which
we can derive the following estimate

k k
£ Ny + 180 e,y < Cis
where the norm || f{|c3 (g, is defined by
3 .
1l =D sup 1fV()l,

j=0 22 €R+

and the constant C; depends only on f; and g;, and hence depends only on %; for each
i. So we can apply the Arzela’s theorem and using the uniqueness of the solution to
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(5.1), to derive
: (k) _ -z : (k) . ©__
lim f;"'(z2) = fi(z2), lim g '(z2) = gi(z2) foreachz; >0,i =1,2.
k— 00 k— 00
From step 2 and step 3, we have

P < 1Pc), eP@) > e @), forza=0, k=1,2,--.

Therefore, f1(z2) < f2(z2) and g1(z2) > g2(z2) for all z; > 0. From step 3, we
actually have g1(z2) > g2(z2) for all z > 0. Then applying the result of step 2, we
ﬁnally obtain that f] (z22) < f2(22) and g1 (z2) > g2(Z2) for all z» > 0. O

Proof of Proposition 2.4 Step 1. We prove that (2.14) has a solution ( fp, Q(l)) satisfying

(2.12) when hy = Q We construct sequences { f;} and {g; } which solve the following
problems

—(g)" )28 =0 in Ry,
(&) +(fi)°g in Ry (5.14)
(8)'(0) = —ho, gi(c0) =0,
and
— & (fir)" = A = 1fis1 P = gD firr  inRy,
« (5.15)
(fi+1)'(0) =0, (fi+1)(00) = 1.
In this step we always let hg = JTZ
V3 ,—622/3

Let fo = \/Tg. Solving the equation (5.14) for i = 0, we get that go = 5>

Then we look for f; which solves (5.15) fori = 0 and gg = «/756—\/&2/3. In fact, fi
can be obtained by minimization:

. Crl 1

min / {1 @R+ 1f @Rl + 50 = f @) dz.
Viel2(Ry), o lk 2

1-feL?(Ry),0<f<l

Using the fact that: 12|go|? + %(l — 1%)? is monotonically decreasing with respect to

tifgcz) < %andO <t < 4.Thenwehave

2 2
1 6 1 6
FEPlgo)P + 51 = 1 @P? 2 (%) 0@+ [ 1- (%)

if f(z2) < 4. Therefore, the solution f; satisfies fi(z2) > é for all zo > O.

Actually, by the maximum principle, we have fi(z2) > \/TE forall z, > 0.
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Repeating this process we can solve equation (5.14) and equation (5.15) in turn
to find the sequences {f;} and {g;}. In particular, from step 3 in Theorem 5.1 (see
Claim 3) we have go(z2) > gi1(z2) for all zo > 0, since fy(z2) < f1(z2); then from
step 2 in Theorem 5.1 we have f1(z2) < f2(z2) for all z; > 0. Repeating using step
2 and step 3 in Theorem 5.1, we obtain that, for all zo > 0,

6
\/_ = fo(z2) < f1(z2) < fo(22) < f3(z2) < --- < 1,

(5.16)

> g0(z2) > g1(z2) > g2(22) > g3(z2) > - > 0.

w| & vl
w

From the proof of step 5 in Theorem 5.1, the limit
(lim fiz2), lim gi(2)) == (/Y7 2). 877 2)

is the solution of (2.14) satisfying (2.12) when hy = Q

Step 2. We prove that (2.14) has a solution ( fo, Qé) satisfying (2.12) when 0 <
hy < ‘/TE Let (f*/i/3 (z2), gﬁﬁ(zg)) be the solution obtained in step 1 when hg =
V/2/3. For any given 0 < h; < ~/2/3, similar to the construction of the sequences
(fi, g in (5.16), we firstlet fo'' (z2) = FV2/3(z2,), and solve the equation (5.14) with

ho = hy and fy(z2) = f(f” (z2), then we can obtain the solution ggl (z2) < gﬁ/?’ (z2)
for all zp > 0 by step 3 in Theorem 5.1; next we solve the equation (5.15) with
g0(z2) = gé’ (z2) to obtain the solution flhl (z2), and flh' (z2) > fé“ (z2) forallz; > 0
by step 2 in Theorem 5.1. Repeating solving (5.14) and (5.15), we obtain a sequence

( fl.h1 , gf” ) satisfying

FPP@) = £ @) < 7M@) < @) < f@) << 1

gV () > gl (22) > 21" (22) > M (z) > M @) > > 0

for all zp > 0. Using the proof of step 5 in Theorem 5.1 again, the limit
ol .y
(lim £ (z2), lim g (22))
1—> 00 11— 00

is the solution of (2.14) satisfying (2.12) when hg = h| < V2

3
Step 3. We prove that (2.14) has no solutions satisfying (2.12) when hg = “(Tg.
Solving the equation (5.14) when hy = é and fo(z2) = 1, we obtain that go(z2) =
V6

5>e~“2. If there exists a solution (f*(z2), g*(z2)) to equation (2.14) satisfying (2.12)
when hg = ‘/Té, then from step 2 and step 3 in Theorem 5.1, it follows that 0 <
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f*(z2) <1, g*(z2) > go(z2) > 0. Therefore,

1
min ((f*(@)? - (8"(22)?) = min (1- @) =5

22€R4

This is a contradiction with (2.12). This shows that there does not exist solutions of
(2.14) satisfying (2.12) when kg = é. We now have the bound of i*. O

Next we establish the mixed monotonicity of the solution of (2.20) on the parameter
ko in the equations. For this purpose, we take two real constants k; < kp, and compare
the solutions ( f1,;, Q%’i), i =1, 2, of (2.20) with k¢ equal to k;. For the convenience

of our discussion we write the equations for (fi ;, Q% ;) as follows:

L1l +hif) =0 =31/1> = 10§ fri —2£0401, inRy,
(=1 ) + k(@) +1folP0}; +2f004 f1i =0 inRy, (5.17)
f1i0)=0, (Q],)(0) =k Qy(0) onzy =0.

In (5.17) the functions fp and Q(l) are the solutions to equations (2.14).

Theorem 5.2 Leti = 1,2, and let (f1.i, Q1 ;) € H'(Ry) x H'(Ry) be the solution
of (5.17). If k1 < ky, then we have

fr1(z2) > fia(za), Q1,(z2) < Q1,(z2) forallzy > 0.
Proof Note that (5.17) is a linear equation of (f ;, Q},i), and when fy and Q(]) are
fixed, the equation is linear in k;. Hence in order to prove the conclusion, it suffices
to prove that if k; > 0, then

fi1(z2) <0, Q1 (z2) >0 forallzo > 0.

Note that the solution (1,1, Q% 1) is the unique minimizer of the following minimiza-
tion problem

min / JIf11, Q}yl]dzz,
Ry

(/11,01 DeH R xH (R+)
where
JLf11. 0141 = Kizm’,nz +101 D'+ Glfol? + 10017 = DIfi1 P + 400 f110)
FUPIe] P+ kb 0] + Sk o
From Proposition 2.2, we have

0< fo) <1, fo(z2) >0, Qhz2) >0, (0 (z2) <0 forallzy > 0.
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It follows that
JI=1f1al 101411 < T fia. OF 1)

This shows that the unique solution (fi 1, Q},l) of (5.17) satisfies

f11(z2) <0, Q] (z2) =0 forallz; > 0.

Suppose there exists a point zg > O such that f1 (zg) = 0. Then z(z) is a maximum
point of fj . If zg > (0, then we obviously have f{/l(zg) < 0. However, this is a
contradiction, because from this and by the first equation of (5.17) we have

1 14 ’
0 < ——(fl1 =k )G = [ =3£3 = (@D fi1 =205 01 1| D) =<0.

If 2 = 0, since f{ (0) =0 and

1 / .
2f00001, + —kifo) =0 ifz >0,

then there exists o > 0 such that for zo € (0, o) we have

1 " 1 !
S = Glfol* + 100 = D fin +2£0001 | + —5kifo) = 0 (£0).

Therefore, f1.1(z2) > 0 (# 0) for zo € (0, o). This is a contradiction with fj 1(z2) <
0. Thus we have f1 1(z2) < 0 for any zo > O We finish the proof of this theorem. O

Proof of Theorem 1.2 From Theorem 1.1 we know that 1 — f; and Q,, decay exponen-
tially in the normal direction away from the boundary 9€2. Therefore, in order to prove
Theorem 1.2 we only need to analyze the asymptotic expansion of ( f3, Q) near the
boundary 9€2.

Let N be a neighbourhood of a point on 9€2 in the x-coordinates, and let ( f , Q) be
the representations of (f3, Q) under the y-coordinates (see section 2). Then, in the
coordinates (y1, z2) with z2 = y2 /A, fk and QA have the following representations:

L) = fovi,22) + A fin, 22) + Ry (y1, 22, ),
Q. (») = Qo1, 22) + 1Q1 (1, 22) + Ro(y1, 22, A).
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The leading order terms fo(yl, z2) and Qo(yl, 22) = (Q(l)(yl, 22), 0) satisfy, for
each fixed yp, the following problem in the variable z;:

2 o o A o .
—K‘—za%fo =~ 1fol> =10} fo inR,,
2 A A A .
—387%Q})+|foI2Qé=0 inRy,
3z 01,00 =0, 9,0 (y1,0) = —H(y1),
foyi.00) =1, Ql(y1,00) =0,

(5.18)

where ﬂe(yl) is the value of H¢ at the point x = ¥ (y1, 0) € 92 and ¥ (-, -) is defined
by (2.1).

The first order terms f1 (y1, 22) and Q1 (y1, 22) = (@} (1, 22), O} (31, 22)) satisfy,
for any fixed yj, the following problem in the variable z5:

a2 A N n R R R .
S fi A kO fo) = A =3102 — 10§ /i = 2/p050) iRy,
>0 2 £ A £ A ~ .
(=37 01 + k()3 09) + Lol OF + 2/ Q) f1 = 0 inR,.

3y f1(31,0) =0, 3,0](1,0) =0,

fii,00) =1, Ol(y,00 =0,
(5.19)

where k(y1) is the curvature of d€2 at the point x = ¥ (y1, 0).
The error terms Ry and R defined in (3.6) satisfy the following inequality

IRr(y1, 22, M| + IRQ(y1, 22, A)| < CA%,  forany x = ¥ (y1, A22) € Np,

where the constant C depends only on 2, H¢, « and 4, but not on A and x, see
Theorem 3.4. .
Using the fact that Q%(yl, z2) = 0, we have

1.ty 22 = 1Qi. (1, 22) 12
= (I foy1, 22 = 101, 221 (5.20)
+ A2 fotn, 22) fiyns 22) — 2001, 22) 0 (y1, 22)) + O (A2).

We first check the leading order term | fo(y1, 22)|2 — | Q(l)(yl , z2)|? in the right side
of (5.20). From Proposition 2.2 we know that, for any fixed y; we have

for1, z2) > 0, Q(l)(yl, 22) >0,
0z, foy1,z2) > 0, (0z, Q(l))(y1, 72) <0 forall zo > 0.
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Hence | fo(y1, z0)|> — |Q(l)(y1, 22)|? has a strict minimum at some point (yy, 0), which
implies that | f5,(x)|*> — |Q;.(x)|? has a strict minimum on the domain boundary 3<2.
Next we examine the location of the minimum points of | f;, (x)|2 — Qs (x)|2 on
boundary 9€2. It follows from Theorem 5.1 that the function fo(yl,O) is strictly
decreasing with respect to the value of He (y1), and Qo(yl 0) is strictly increasing
with respect to the value of He (y1). Therefore, the minimum points of | fo(y1, 2> -
|Q0(y1 Zz)|2 are located at the maximum points of H"(yl) Since the function

2 foly1, 22) AL, 22) — 2Q0(y1, Zz)Ql(yl, 72) is uniformly bounded, from (5.20)
we see that the minimum points of |fk(y)|2 — |Q;L (y)|? approach the set 92 (H¢)
defined by (1.11) for small X.

Note that the set 92 (H°) may be large. To get more precise information about the
location in 92 (H¢) of the minimum points of | f;, (x)]? — |Qu(x)|?, we need to check
the values of the first order term

W) = 2fo(1, 0) £ (y1,0) — 204 (v1,0) 01} (y1, 0)
among all y; € C, where
={y1: x=v¢(1,0) € IQH)}.

Note that both functions fl (y1,0) and Q} (y1,0) depend on the curvature k(y;) of
€2, see (5.19). From Theorem 5.2, we see that f] (y1, 0) is strictly decreasing with
respect to k(y;), and Q% (y1, 0) is increasing with respect to k(y;). Therefore, W (y;)
is strictly decreasing with respect to k(y;), and hence the minimum points of W (y)
are located at the maximum points of k(y;) on C.

Note that

¥ (C) = S(H),

where S(H¢) is the set defined in (1.12). Then the minimum points of | f3(x)|> —
|Q,.(x)|? must sub-converge to the set S(H¢) as A — 0 (see Definition 3 in section
1). Now Theorem 1.2 is proved. O

6 Further remarks

6.1 Chapman’s conjecture on vortex nucleation

Consider an applied magnetic field H® = o H, where H is a continuous and positive-
valued function on Q and ¢ > 0. Let (£, Q°) be a Meissner solution of (1.1).
Theorem 1.2 suggests that, if the penetration depth X is sufficiently small, then, as
the applied magnetic field increases to a critical value o9 = Hg(H), the minimum
value d o o will approach the value 1/3 from above, and the minimum points of
| £91? — Q7 |> will sub-converge to the maximum points of  over the set 92 (). In
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particular, if H® = h is a positive constant and increases to Hg, the minimum points
of | f7|> — |Q° |? will sub-converge to the maximum points of the curvature of domain
boundary. Therefore it is natural to generalize Chapman’s conjecture in [7] to the case
where the Ginzburg-Landau parameter is finite and the applied field is non-constant.

We first note that, under the assumption that the minimum of | /| is continuous
with respect to the parameter o, and by the definition of o9 = Hy, (H), f°° has zero
points which are called the vortices, while for all 0 < o < 09, f? has no zero points,
Then we say that the first vortices nucleate when o = o9, and we look for the location
of these vortices.

Conjecture 6.1 As o increases to Hg, (H), the first vortices will nucleate at points in
the set S(H) which is defined in (1.12) with H¢ replaced by 'H.

6.2 Meissner states of three dimensional superconductors

The Meissner states of a three dimensional superconductor can be described by
the three-dimensional version of equation (1.4) and approximately by the three-
dimensional version of (1.1), and the limiting system obtained by letting « tend to
infinity is the three-dimensional version of (1.5).

The stable solutions Q of (1.5) in three dimensions have been studied by several
authors, see [3, 22, 33] and the references therein. Monneau [22] proved that the
maximum points of |Q(x)| occur on the boundary. Bates and Pan [3] proved that, as A
tends zero, the maximum points of |Q(x)| sub-converge to the maximum points of the
module of the tangential component of the applied magnetic field. In the special case
when the applied magnetic field is given by H¢ = o h where h is a constant unit vector,
the maximum points of |Q(x)| sub-converge to the subset of the boundary <2 where h
is tangential to 0<2. Xiang [33] further obtained the geometric characterization of the
limiting position of the maximum points of | Q (x)|. The Meissner states of anisotropic
superconductors have been studied by Pan.

For the three-dimensional version of the system (1.4), existence, regularity and
uniqueness of the stable solutions and the asymptotic behavior as k tends to infinity
have been studied in [26].

6.3 Comparison of Meissner effects and surface superconductivity

It would be interesting to compare the boundary layer behaviors of the solutions
(f, Q) of (1.1) which describe the Meissner effect of a superconductor in a weak
magnetic field, with the boundary layer behaviors of the solutions (W, A) of the
Ginzburg-Landau system (1.3) which describe the surface superconductivity of a type
II superconductor subjected to an applied magnetic field lying in between the second
critical field Hc, and the third critical field Hc,. In particular, for the cylindrical super-
conductors in an applied magnetic field H® = o we have the following conclusions:
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— For the solutions (W, A) of (1.3), as « tends to infinity while A is fixed, if H¢ is
strong and lies below but very close to the critical field Hc,, the maximum points of
|W (x)| sub-converge to the maximum points of the curvature of the domain boundary.
|W| exponentially decays in the normal direction away from the boundary, and it also
exponentially decays on 92 along the tangential direction away from the maximum
points of the curvature of d€2. See for instance [10, 12, 13, 16, 23] and the references
therein, from which we will see that the analysis of the concentration behavior of W
is more challenging due to the non-uniqueness of the solutions of (1.3).

— For the solutions (f;, Q;) of (1.1), as A tends to zero while « is fixed, if H*
is weak and below the critical field Hg, the minimum points of ff (x) — |Qa(x0)?
sub-converge to the maximum points of the curvature of the domain boundary. More-
over, (1 — f,.(x), Q,(x)) exponentially decays in the normal direction away from the
boundary, see Theorems 1.1 and 1.2 in this paper. However, for any applied magnetic
field H¢(x), (1 — f;.(x), Q,(x)) does not decay on 9€2 along the tangential direction
away from the set S (He) In fact, in the coordinates (y1, z2) with z2 = y2/A, the
Meissner solution ( fx, Q;L) has the following expansions:

L) = fol,22) + A filn, 22) + 002,
Q.0 = Q1. 22) + Q1 (1, 22) + 0(A2).

For each fixed y; # 0, the leading order terms fo(yl, -) and Qo(yl, )= (Q(l)(yl, 9, 0)
is a solution of equatlon (5.18) and satisfies the condmon (2.12), hence is uniquely
determined by He(yl) and the profile of the solutlon ( fo(yl, ), Qo(yl, -)) is similar
to that of ( fo(O 4, QO(O -)). Thus the solution ( fA, QA) does not decay along the
tangential direction.

— For the solutions Q of (1.5), as A tends to zero (while k = 00), if H® = o is weak
and below the critical field Hg, the maximum points of |Q(x)| sub-converge to the
minimum points of the curvature of the domain boundary, see [3, 27, 33]. Moreover,
Q,.(x) exponentially decays in the normal direction away from the boundary, but does
not decay on 92 along the tangential direction away from the minimum points of the
curvature.

6.4 Meissner states in various setting

Remark 6.2 Let us emphasize that the stability of a Meissner solution stated in Def-
inition 1 is with respect to the Meissner equation (1.1). (f, Q) is a stable Meissner
solution of (1.1) does not mean that it is also stable with respect to the full Ginzburg-
Landau system on €.

Proof Recall that, if we restrict ourself in €2, the Ginzburg-Landau functional on €2
has the following form

A 2 1
EV,A] = / ”(_v — iA)\If‘ +50 - [W|%)? + [rcurlA — Helzldx.
Q K
The Euler-Lagrange equation of this functional is the Ginzburg-Landau system on €2.
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Let (f, Q) be a solution of (1.1). For any smooth pair (g, B) we have
y A _ A . P
&7, QLI BY = [ (Re[(CV7 ~iQr) B+ |2 Vg - iBf - i0g]
Q K K
| R _
+ 57 + 8 = (1= 1FP)lgl? + 2’jeurlB|? ) dx.
Take g = 2if and B = Ak~ =1V f. Then we have

A , o A2 5
Re [(—Vf - le) (ng)} =2|VfI%,
K K

A A
curl B = ;curl(f’lVf) = ;[81(f’132f) —h(f ' HI=0,
2 )Lz

= SIVFIP+41QPIf1%,

K

PVg—iBf—ng
K
(¢f + £3)’ =0,

Therefore, we have

" A A2
S, QL [2if, ;f”VfD = /Q (3p|Vf|2 +4(1QP + I f1* - 1)|f|2> dx.

Using system (1.1), we obtain that

)\'2
/Q(IQIZ + 2= Dfidx = — /Q prFdx,

which implies that

" A A2
€. QLIIS 2TV ) = —K—Z/QIVflzdx <0

This shows that (f, Q) is an unstable solution with respect to the full Ginzburg-Landau
system in 2. O

It has been proved in [28-30] that Hc, ~ C lof'( , and if the applied magnetic field
is below Hc,, then the global minimizers of the Ginzburg-Landau functional on €
have no vortices hence they are Meissner solutions, and they are stable with respect
to the full Ginzburg-Landau system in €2. On the other hand, the study in [5-7] imply
that Hg ~ C for large «. Proposition 2.4 and Remark 6.2 above show that, if the
applied magnetic field ¢ is such that system (1.1) has a solution satisfying (1.8) for

any small A and

Ho < H® < h*,

@ Springer



On the shape of Meissner solutions to the 2-dimensional... 597

where Hy is any positive number, hence Hc, <« H® < Hg, the Meissner solutions
(f, Q) are stable with respect to the equation (1.1), but not with respect to the Ginzburg-
Landau system in €2.

It is interesting that for the applied magnetic field H® much larger than H¢,, more
precisely He, < H® < Ck® ' with0 < « < %, stable Meissner solutions of (1.3)
can still be obtained for large Ginzburg-Landau parameter x >> 1 with A fixed, see
[29, Theorem 1] and [31, Theorem 11.1]. In this paper we consider the situation with
fixed ¥ and with small A, and the solutions we found exhibit boundary layer. It will
be interesting to know if the Meissner solutions obtained in [29, 31] have boundary
layer behavior when the applied magnetic field H° > Hc,, ¥ > 1 and A is small.

An interesting problem related to the critical fields Hg and Hgj, for Meissner states
is the supercooling field Hy. for vortex solutions, and the hysteretic behavior of the
superconductors, which have been investigated by F.H. Lin and Q. Du in [19].

We would like to mention that the Meissner states of type I superconductors have
also been investigated, and surprising phenomena have been explored in [9].
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Appendix A: Uniqueness of the solution to system (2.11)

LemmaA.1 If (2.11) has a solution (fo, Qo) € C2(R2, R3) satisfying (2.12), then it
is unique.

Proof The uniqueness has been proved in Proposition 2.2, where we used the fact that

the functional & is strictly convex. Here we give a direct proof. The idea of the proof

goes back to Lemma 4.2 in [26] where the case of the bounded domains was treated.
Let (f1, Q1) and (f2, Q2) be two solutions, both satisfying

1
[fol = 1Qol* > 3 + 8%
Let h € H'(R?) and B € H!(curl, R?), both with compact support. We have
L -~ _ _ 2 2Npe 1 2 2
- sz(fl f2)-Vh— 1A =1A17 = 1QI) fi —A =12 = Q2 f2 | h
i

+ (1 A117Q1 = 1 /21°Q2) - B+ curl(Q; — Q) - curlB}dz =0.
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Take h = n%(fi — f») and B = n2(Q; — Q), where 7 is a smooth function with
compact support in R?. Then we have
1
/R NS IVOU = )P + leurd(n(Q1 — Q) dx
2
1
[ [ 0AQ =@+ 20 = 1@ + G = 3IQP = Dfy = P ez
2

1
= [ 151 = £)VaP + 1@ = @) x VP, (A1)
where f; = f1 +1(f1 — f2) and Q, = Q1 + 1(Q; — Q). Note that

82
|ﬂm—Qﬂ+xﬁ—ﬁmM+6ﬁ—a@F—mﬁ—ﬁﬁz3mr4m%
32 -31Q> -1 =8

Then

1£(Q1 — Q2) +2(f1 — Q> + BfF = 31Q: 1> — DIfi — fol?
82 82
zﬁmr0ﬁ+7m—ﬁﬁ

Taking n = ¢~ ?"&(r), where £(r) is a smooth cut-off function such that £(r) = 1 for
r<R,EF)=0forr > R+ 1, and &'(r) < 2. Then we have

52 82 -
/. (18|Q1 ~ QP+ T - f2|2) e
BR

2
o _ —

== / 1fi = fale 2"rd1+02/ Q1 — Qa?e 2" dz
K B+ +

R+1 BR-H

- 4
+de 2”’*/+ L 1Q1 - QoPdz + e 2"Rf+ L1 = pPdz.
BR+1\BR K BR+1\BR

Letting R — oo first and then letting 0 — 0 in the above inequality , we obtain that

fi=frand Q; = Qs. o
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Appendix B: Exponential decay for some ODEs

Consider the following system

u” =an(z)u +an(z2)v+bi1(z2)  inRy,
V' = axi(zo)u + an(z)v+ba(zo)  inRy,

u'(0) = up, v'(0) = vo,

(B.1)

u(00) =0, wv(oco)=0.

Definition B.1 We say that the coefficient matrix A(z2) = (a;;(22))2x2 is elliptic if
there exist positive constants A and M such that

2
MEP < ) aijz)Ek; < MIE. (B.2)
i,j=1
for all & € R? and almost every z, € R,

Proposition B.2 Assume that the matrix A(z2) = (a;j(z2))2x2 is elliptic, and suppose
there exist positive constants os, B5, M1 and My such that

1b1(22)| < Mie™ %2, |by(22)| < Mae P52, 25 > 0. (B.3)

Then system (B.1) has a unique solution (u,v) € C>(Ry) N H'(R,). Moreover, for
any real number w satisfying 0 < 1 < min{~/A, a5, Bs} we have

lu(z2)| < Ce™2, |u(z2)| < Ce ™2, 25 >0, (B.4)

where the constant C depends on the constants in (B.2) and (B.3).

Proof Replacing u by u — uge™% and v by v — vpe %2, we see that there is no
loss of generality in assuming uo = vo = 0. Let us fix a constant u with 0 < u <
min{~/%, a5, Bs}, and take a function € C 2(R,) satisfying

n(z2) =1 forzp €[0,1], e M n(za) <2 and |n'(z2)| < un(zp) forallzp > 0.
(B.5)

Define a space
¥ ={wv: o e H'®s). () € H'®y), w/(0) =0, v'©0) =0}
Equipped with the norm
2 2 l
||(l/l, U)”{)y = <||UM||H1(R+) + ||TIU||H1(R+)>
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and the inner product

((u1,v1), (U2, 12)) = / (i (uiuz 4 viv2) + (qun) (qua) + (qu1)’ (nv2)Ydza,

Ry

% is a Hilbert space.
Define a bilinear form B[(, -), (-, -)] on & by

Bl(u, v), (u*, v)]
72

72
- / { om0y + Gy o = 25 oy oy = L Gy o)
R+ n n
- %[(nu*)’(nu) — () ()] — %[(nv*)’(nv) — (") ()]
+ (ar1(z2)nu + a2 (z2)nv)(nu™) + (az1 (z2)nu + azz(Zz)nv)(nv*)}d22~

Using the condition (B.2) on the coefficient matrix A and the assumption (B.5) on the
function 7, and by the Cauchy’s inequality, there exists a constant K depending only
on the constants in (B.2) and w, such that for all (u, v) and (1*, v*) in %" we have

Bl(u, v), (u*, v*)] < K|[(u, v) || | (", v) |2,
Bl(u, v), (u, v)] = min{1, 2 — £} (u, v)[|5, -
Therefore, B is bounded and coercive on /. Then the existence and uniqueness of the

solution to (B.1) in & follows from the Lax-Milgram lemma.
Set 2 = nu and ¥ = nv. Then (i, V) satisfies

i = 27"12’ + %ﬁ UL i+ a(z2)i + ap(z)v +nbi(z2)  inRy,
o /. ", 2, .
V= LY G 2y gy (20)i 4 a2a(22)T 4 nba(z2)  inRy,

(B.6)

Also, we have
min(1, 5 = 12} (il g, + 1303, ) < BlGw ), (e, 0)]
= f (nb1(z2)ii + nba(22)V) dzo.
R+
Then by the Cauchy’s inequality we get

il g,y + 10l g @,y < C.
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Since H'(R.) is continuously embedded into CO%(R_), then we have
litll o,y + 19l co,, < C-

This proves (B.4). O

Perof of Proposition 2.5 From Proposition 2.2, we obtain the decay estimate for
| fo(y1, z2)| and [Qo(y1, z2)| at y; = 0. Next we derive the estimates for dy, fo(y1, 22)
and 9y, Qo(yl, z2) at y; = 0. Recall that

p(2) i= dy, f0(0,22),  (g(22),0) := 8y, Q0 (0, 22).

Then from the equation (5.18) in section 5, we see that (p(z2), ¢(z2)) satisfies

Lp"(22) =Gl +1Q)7 = Dp+20ifog  inRy,
q"(z2) =2f0p + f3q inR,,

X (B.7)
p'(0) =0, ¢'(0)=—H; (0),

p(o0) =0, g(o0) =0.

Let A(z2) be the minimum eigenvalue of the matrix

31 fol>+ 1007 -1 2£0)
2f00) 1fol? )

Then A(z2) — 1 as z2 — o0o. Now we can apply Proposition B.2 to conclude that, for
any real number g satisfying 0 < 1 < 1 we have

Ip(z22)| + 1g(z2)| < Clk, B1, 2, HO)e P22,

Applying Proposition B.2 again for the first equation in (B.7) and noting that |Q(1)| <
Ce P22 for any real number o/ satisfying 0 < o1 < min{2, \/EK}, we have

|p(z2)] < Clk, a1, B, Q, H e 172,

We derive the higher derivative estimates of fo (»1, z2) and Qo(yl, z2) at y; = 0.
From the equation (3.5), we see that

u(z2) =8}, fo(0.22). v(z2) 1= 8, 05(0.22) fori =2.3
1 1
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satisfy
Lu"(z2) = Bl fol> + 101> — Du 420} fov + Fi(za)  inRy,
v(z2) = 2foQ(1)u + fozv + Gi(z2) inR,, ®8)
W) =0, v(0) = _ﬂ;i ), '
u(00) =0, v(00) =0,

where

|Fi(z2)| < Clk, a1, B, 2, HE)e™ mint3ar.2Bilz2
IGi(z2)| < C(k, a1, B1, Q, H e~ @1+

for i = 2,3. As the proof of the estimates of p(z2) and g(z2), by applying Propo-
sition B.2 we can obtain the decay estimates of B’V,- f0(0, z2) and 8’yi Q(l)(O, zp) for
N 1
i=2,3. o A
Applying the above argument to the equations of 8;,- f0(0, z2) and 8;,- Q(l)(O, 22)
1 1
respectively, we immediately obtain the decay estimates of IB;ELZZ% foy1,z2)| and
1973 Qo(y1. 22)| fori =0, 3.
1«2
Integrating from z» to oo on both sides of the equations of 8;, f0(0, z2) and
1

S;i Q(l)(O, z2) respectively, we can obtain the decay estimates of |8i,-+z1 fo(yl, z2)| and
1 yi<2
107 Qo(y1. 22) fori = 0. 3.

Y1

Now we have proved Proposition 2.5 for y; = 0. Replacing He(0) by He(y1) in
(B.7) and in (B.8), then noting that 7{¢ € C3(9%2), we see that Proposition 2.5 also
holds for y; # 0. Now we have completed the proof. O

Appendix C: Derivation of system (2.20)

To derive equation (2.20) we need the local coordinate expansions introduced in [24,

section 3]. Here we keep the notations in section 2. We use 9‘{,-(|y13|), i=1,2,---,

to denote a function of y; and z which is of order (| y13|) uniformly for z», and use

Ri (Ak), k>0,i=1,2,---,todenote a function of y; and z, which is of order (Ak).
For the function g defined in (2.2) we have, for A > 0 small,

g(z) =1 —21k(0)z2 — 22K/ (0)z122 + O (Y,

C.1
b =1+ 2k(0)z2 + A2 (kz(O)z% + k/(O)lez) + 003, D
g()

where k' (0) = %(0) = %(0). For any fixed zo > 0, we have the formal asymptotic

expansions for fo(yl ,z2) and Qo (v1, z2) with respect to the variable y; at the point
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(0, z2):

~ ~ 1 ~
fon.22) = fo+y18y, f0(0, 22) + 53792 fo(0, z2) + R1 (y3)),
2 Y1

(C.2)
~ ~ 1 ~
Qo(r1, 22) = Qo + 31, Qo(0, 22) + 5319,2Q0 (0, 22) + Ra (I3},
where
(f0. Qo) = (f0(0. 22). Qo(0. 22)) = (fo(0. 22). (Q§(0. 22). 05(0. 22)))
is the solution of (2.14), (fo(yl, 22), Qo(yl, z2)) is the solution of (5.18).
Write
p(z2) == 0y, f0(0,22), (q(22),0) := Oy, Q0(0, 22). (C.3)
Then we take the expansions for f and Q in (2.6) with respect to A, and have
F=fo+xr(pzi+ /) + R0, Q=Qo+1((gz1.0) + Q1) + Re (W),
(C.4)
where f1 = f] 0,z2)and Q = Q] 0, z0) = (Q%, Q%) are to be determined.
Firstly, we have
heurlQ(x) = - 0402 = 0:,(s01)]
8 (C.5)
= —(Qp) + Mk(0)Q) — (O] — 214’ (22)) + Rs(37).
Then,
1 1 ~ -
- 311 _az1 az az
g( (g f>+ z(g 2f)> (C.6)
= (o) + 1 (D) = kO (f0) + p"(z2)z1) + Re(1?)
and

=117 =1QDf = A = 1fol* = 1Qo*) fo + A((1 = [ fol* — 1QoI*) (pz1 + f1)

—2fo(fo(pz1 + f1) + Qo - ((gz1,0) + Q1)) + R7(A%),
(C.7)

where p = p(z2) and ¢ = g(z2) are defined in (C.2). Using (C.5), for M;(1z) and
M3 (Az) defined by (2.3) we have

Mi(hz) = —(0))" = A[(QD" + " (z2)z1 — k(0)(QY)'] + Rs (1),

, 5 (C.8)
Mao(hz) = Aq'(22) + Ro(1).
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Also, we have

FPQ = 1/ol*Qo + 2 [2o(pz1 + f)Qo + fol2((g21,0) + Q1) | + Rio (0.
(C9

We now consider the equations at the point (0, z2). We have

1 1 F & " " 2
. (a( azlf) + 0, (gazzf)> = ()" + 2 ()" = k(O fo) + R11 (32)

g
(C.10)

and

A=1fP=1QDf =a—1fol?=10)Pf i
+ (L= 1ol = 100P) f1 = 2fo(fofi + QL 0D) + R (WD), '
For M (rz) we have
Mi(hz) = —(Q))" +A[ = (OD" + k(0)(Q)] + Rz (D). (C.12)

Also, we have

FPQ = 1/o0PQo + 2 [2/0./1Q0 + [ /olPQu | + Ria32). (C.13)

Comparing with the coefficients of A, we obtain the equations (2.20) for the first order
terms.

Appendix D: Derivation of system (2.22) and proof of (3.5)
We follow the notations used in section 2 and in appendix C. Let ®R; (12) be the terms
appear in appendix C, and it has been proved in section 3 that these terms have the

order O (A?) uniformly for y; and z;. In this section we shall expand these terms in
the form

R (W) = A2R; +R;(W°)  fori=3,---, 14,

where R; denotes a functions of y; and z» which is independent of A, and *R; (A3)
denotes a function of y; and z, which is of the order 0()»3).

From the inner expansion (2.9) and the expansion (C.2), we have the expansions
for the function fR3 and the vector field R4 in (C.4):

1 A N
R3(1?) =42 <§Z%3y12 f0(0, 22) + 218y, f1(0. 22) + fz) +Ri6(1D), (D)
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and
1 . .
Ra(1) = 22(5230,2 040, 22) + 213, 010, 22) + 030, 22),
2 n (D.2)
210,010, 22) + 03(0. 22)) + %1 6,
where
(f0(0,22), Q0 (0, 22)) = (fo, (QF, 0))
is the solution of (2.14),
(f1(0,22), Q1 (0, 22)) = (f1. (0}, 0})
is the solution of (2.20), and
(/2(0,22), Q2(0, 22)) = (o, (03, 03))
is to be determined now.
From (C.5), we have
2562 =32( 8, 01 +K ()21 0h + K ©2122(0) +k(0) (219, 03, + ©1)
/ A / 1 2 A
— (Y + KOz [ 219y, b, + (@] = 5730,2., 081, 03

= 218y 01|, o +kO22 [k Q) = (@] = 2182, 0, |

— (0 [ +K 0)z122] ) + R ().

Then we have the expansions for R¢ in (C.6) and for 237 in (C.7):
. 1 . R

R (0.2) =)\2(3y12 folyy—o + 5210252 ol + 2192, A1

5 — k) [p'z1 + ()]

+ ()" = kOz2 [p"z1 4+ (f)"] = (fo) K ©0)z1 — (f0)"k' (0)z122
+kO)z2 [(fD)" + p"z1 — k) (f0) — k(0)z2(f0)"]

+ () [ + K 0)z122] ) + Rig (1),

y1=0
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and

1 A N
R7(1%) = 2%( [Ez%aylzfdy]_o + 210y fi] o+ fz] (1= /3 = 1Q")
+ (pz1 + fOI=2fo(pz1 + fi) — 2Q¢(qz1 + O]) — 207071
+ fo [—(Pm + )% =2fo < 10 2fo| —0 +z13y1f1|y1:0 + fz)
- a1+ 0* 20} (570,08, + 219, 01, + 0
—(0D? = 203219, O}, _o + 0D ]) + P (3.

From (D.1), (D.2) and (C.8), we see that

~ 1 ’
Rs(1?) :)‘2<3zzyl Qﬂyl:o 11 2 ,2Q2|yl -0 ZlaLg\lQHHZO+k/(0)2112(Q(1))/
—(Q3)" + 2k(0) [q 214+ (0D ]+ k022 [¢"z1 + (QD"] + K (0)z1(Qh)

(D4)
—k(0) [¢'z1 + QD' = k) Q] — (2)" [K*(0)23 + K (0)z122]
— k()22 "1 + (@] = KOO ~k©)z2(0))"] ) + Rt ()
and
Ro(12) =32(210,,,2 04, g + 8o 01,y — K(O)g — K00}
(D.5)

+K0)229") + FRo2(Y).

From (D.1), (D.2) and (C.9), we have

Ri0(%) =)\2([(pz1+f1) +2fo< 2192 fol , 0+Z13y1f1’y|=0+f2>]Q0

+f5 < 21 me0| o“‘ZlaleHylzo‘*‘Qéﬁzlayl Qﬂyl_o‘*‘Q%)
+2fo(pz1 + 1) [(g21,0) + Q] ) + Pz (A2).

(D.6)

We now consider the equations at the point (0, z2). From the expression of Re(13),
it follows that,

%1162 =22 (9,2 ol o + 2 = KO = O©2(/0)) + T (D). DD

)10
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From the expression of M7 (13), we have

R1202) =2 L0 =38 = 1D + fo [~ 17 = @)% = (D]

—2/00b0) + fi | -2fofi =205 01] ) + P54,
(D.8)

From the expressions of ‘Rg (X3) and R (13), we have

R1302) =32 (801, 03, _o — (0D +K(O)(Q]) + k() 0}

+2(0)22(08)) + P (1)
and
140D = 22 (0203, 01, _y — K(O)g — K ()0} + k()224') + Rr (0.
From R (13), it follows that

Ris(A2) = A2((fE+ 20 2)Q0 + 20 £1Q1 + fFQ2) + Mas(12).

Comparing with the coefficients of A%, we obtain the equations (2.22) for the second
order terms.

Proof of Lemma 3.1 Step 1. From (3.2), we can see that
b(x,A) = (0,0) forall x € Q\oo,

where o, is defined by (3.1). Then (3.5) holds for x € Q\o».

Step 2. We show the estimate (3.5) when x € o4. We consider this problem in
a neighborhood U of Xg € 9. We follow the notation used in section 2 and in
appendix C.

To obtain b, we replace the expressions of f and Q by

fo,22) + A fivn, 22) + 22 fa(yi, z2) and Qo(y1, 22) +2Q1 (v, 22) + 12Qa(y1, 22)

under the z— coordinate system in (C.4) respectively.
We first estimate by (z1, z2, 1), where b (z1, 22, A) is the representation of by (x, 1)
under the z-coordinate system. At the point (0, z2), from (D.7) and (D.8) we have
Ros(A?) =A3K72<g073k/(0)12 [3)’1 J?O}yl:o + 20y, /i |y1:0 + 270y, f2|y1:0]
+ 862 [(1 + go)k(O)Zzt?ylz J?o|y]:0 + Bylz fl |y1:0 + )Lay12 ‘f2|y1:0:|
— 8y [kO)(f0) = AP O)Z3(f1) = M (0)22(f2)']
~ B OB(0) ROz~ kO)(12))
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and

Ros() = = 23 ((f1 + /2 [20508 +2fof2 + 2+ (0D +(0D?]
+21(fofi + Q40D + (fo+1fi +32 P20} 03 +2f1
+20103+4 (2 + @)+ @h?) ).

where kg = k(0) is the curvature of 92 at the point Xy, ko = dk 0) = d}l (0)
g0 = g(0, Az2) = 1 — Ak(0)z.

We see that $Ro4 (A3) and Rys (A3) are the polynomials of fo, fl, fz, Qo, Q], Qg and
their derivatives up to the order 2 at (0, z2). From Proposition 2.5, Proposition 2.7 and
Proposition 2.9, it follows that

1904 (03)] + [Ras(A)] < C(Q, HE, k)13,

Forany x € oy4,lety be defined by (2.1), x = ¥/ (y1, ¥2),21 = y1/A, 22 = y2/A. Then
b1(0, 22, 1) = Roa(A3) + Ras(A3). Note that fo, f1, f>, Qo, Q1, Q2 and their deriva-
tives up to the order 2 are continuously differentiable with respect to the parameter y;
(by applying the continuous differentiability of solutions with respect to parameters
in the theory of ODEs). Therefore, for each z; 7# 0, we also have

b1(z1, 22, )| < C(, HE, k)23,

We now estimate b, = (15;, I;g). At the point (y1, z2) with y; = Az2, from (D.4)
we have

Ry (13) =23 [s3 F Ak(y1)z2(52 + As3) + KO3 (1 + Asy + A2s3)
+ 3 (zde T (=030 + hsi + 42 + Asa) |
+ 23 [k(yl)SS + 202K (y1)22(s4 + As5)

+ 33 ()3 7228 + (=, 0 + hss + %s3) |
where

s1= k(1) Qg +k(yNz2330p + k(y)d, O — 92 01,
52 = By, 07 + k() O] +k(y1)220301 — 8203 + k(v 01
53 = 12, 03 + k(1) 03 + k(y1)2283 03 + k(313,03
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and

54 = k(yD)220:, 05 + k(y1) Qg — 3:, 0],
55 = 03,03 + KON O + k()220 OF = 02, 032 (3, O3 + k(1) O} + k(1) 220z, 03

From (D.5) we have

Fia () = = 227 4+ 2K (32256 + 1) + K (01)238 72 2 + 1)y, 0 + A3 +1%57)]

= 23 [KOnzass + kODK (1)Bg 7 (1 + g + 820, 0 + 2s9) |
where g is defined by (2.2),

56 =k(y1)3y] Q(l) + k/()’l)Q(l) + 8y|zz Q(l) - aymz Qi + k/(.VI)ZZazz Q(l)y
57 =02 07 + 39,2 03 + k(y1)dy, O] + Ak(yD)dy, 03 +K () O] + 4k (1) 03
+ k(31)228y,2 O — B30, O + Ak (¥1) 220y, 0% + K (v1)22(8,, O + 13, O)),

and

s =k(y1)220:, Qg + k(y1) Qp — 8, 0}
+ (3, 0F + ko) 0} + k)220, 01 — 0, 03)

+32(0,, 03 + k(1) 0} + k(31220 03)-
From (D.6) we have
B35 00) = 2 (0h + 101 + 420 @fi fo+ 1D + (O} + 20D (F? + 20 f) + 201 03]
F505) = K[0.0F +22 0D i o+ 4 fD) + (01 +2.0D(F +2f0f) +2/0 /1 03 ].
Then
Bl = Gty — R, B = sy, — 5.

We see that 155 and I;g are the polynomials of fo, fl, fg, Q(), Ql, Qg and their deriva-
tives up to the order 2. Using Proposition 2.5, Proposition 2.7 and Proposition 2.9
again, we have

”BZHCO(I//_I((M)) + ” diVZ ancl(w—l((m)) < C(Q, He, K))\.S.

where o4 is defined in (3.1), v is defined by (2.1). Thus, we have (3.5) for x € o4 by
the scaling argument.
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Step 3. From Proposition 2.5, Proposition 2.7 and Proposition 2.9, we see that, each
component of b(z, 1) is a linear combinations of exponentially decaying terms with
respect to z2. Therefore, for x € o2\o4 we also have (3.5) for small A.

We now finish the proof of (3.5). O

Appendix E: Derivation of the boundary condition (3.8)

To derive the boundary condition of R ¢, we use the boundary condition of fo in (5.18),
that of £} in (5.19), and that of f» (see (2.22) when y; = 0), and find

IR, of 0
an  9n o

2=

0 /A A R
+ . (fo(yl, 2) + A fi01, 22) + A2 Hr(y1, zz))
22

To derive the boundary condition for Rq, we first consider the value of A curlRq at
Xo € 092. We keep the notation used in section 2. We use equality (C.5) in appendix C
with Q(x) replaced by Q. (x), and use equality (D.3) in appendix D. Then we have

eurl Qup(Xo) = (= 9200 + (ko0 — 9201) + 220y, O3, _y + ko Q] — 9:0})

+33 ko 0} +9103))

3

2=

where kg is the curvature of 92 at Xo. Then we use the boundary condition of Q(]) in
(2.14), the boundary condition of (Q1, Q%) in (2.20), and that of (Q}, 03) in (2.22)
to get

acurlQqp (Xo) = HE(Xo) + A2 (ko Q) + 81 03))

2=

Similarly, for any x € 0€2, we also have
AeurlQ,, (x) = Hé(x) — Ba(x) onde, (E.1)
where

Bs() = =2 (k) 030, 22) + 01030 )|, (E2)

2=

k(x) is the curvature of 92 at x, zo = y2/A, x = ¥ (y1, y2) and ¥ is defined by (2.1).
From Proposition 2.9, we have

I1B3llc2ae < C (Q.H) A% (E.3)

Combining (E.1) with the boundary condition AcurlQ = H° on 92, we immediately
obtain that

AcurlRg = B3 on Q.
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Now we compute the value of n - Rg on 9€2. We first calculate the value of fazpn .
Q.p(x) at Xo € 9€2. From (2.21) and (2.23), we have

ol Q1l.,—0 = 3112206, —g.2,0 = H5, (0,
and
212 2 _ Al Al
(1 fol* Q3 +2f0f1ODI,,g = =@y Q1 = I kOo)], .., -0
= =0y, (9,01 = kO, _g .,—o = O-
Then
| fapl®n - Qup(Xo) = —(fo + A f1 + 22 £)? (107 + 27 0))
= —AHE (0) + AR (y1, 2 ,
HS, (0) + 2R (y1, 22) 0.0
where

Fo(yi, 22) =2 +2f0 20} +2/0 /103 + 1 (21 201+ (F2 +2f0.2) 03)
+32(f20t +2£1£03) + 2103
Similarly, for any x € 92, we also have
fan - Qup(x) = —AVian(H) (x) — Ba(x),
where

Ba(x) = XRo(y1, 22)

0 (E-4)

2=

72 = y2/A, x = ¥ (y1, y2), and ¢ is defined by (2.1). From Proposition 2.5, Proposi-
tion 2.7 and Proposition 2.9, we have

IBsllc2ag) < € (2,1) 4%, (E.5)
From the second and the third equations in (1.1), it follows that
- Q= —21’n-curl’Q = —AVi,(AcurlQ) = —A Vi (HS).
This gives that
VR = £} B4 MU P~ fapPVen (MO = Bs. (©:6)
Summarizing, we obtain the boundary conditions (3.8) for system (3.7).
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