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Abstract
This paper concerns the asymptotic behavior of the stable solution ( fλ,Qλ) of the full
Meissner state equation for a two-dimensional superconductor with penetration depth
λ and Ginzburg–Landau parameter κ , and subjected to an appliedmagnetic fieldHe. It
is known that the solution is stable if theminimumvalue of | fλ(x)|2−|Qλ(x)|2 is larger
than 1/3, and the solution loses its stability when the minimum value reached 1/3. It
has been conjectured that the location of the minimum points of | fλ(x)|2 − |Qλ(x)|2
has connection with the location of vortex nucleation of the superconductor. In this
paper, we prove that if the penetration depth λ is small, the solution ( fλ,Qλ) exhibits
boundary layer behavior, and (1− fλ,Qλ) exponentially decays in the normal direction
away from the boundary. Moreover, the minimum points of | fλ(x)|2−|Qλ(x)|2 locate
near the set S(He), which is determined by the applied magnetic field He and the
geometry of the domain. In the special case where the applied magnetic field He is
constant, the minimum points of | fλ(x)|2 −|Qλ(x)|2 locate near the maximum points
of the curvature of the domain boundary.
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1 Introduction

1.1 The equation

This paper concerns the asymptotic behavior, as λ → 0, of the solutions of the fol-
lowing equation:

⎧
⎪⎪⎨

⎪⎪⎩

− λ2

κ2
� f = (1 − | f |2 − |Q|2) f in �,

λ2curl2Q + | f |2Q = 0 in �,

n · ∇ f = 0, λcurlQ = He on ∂�,

(1.1)

where � is a bounded domain in R2, n is the unit outward normal to ∂�, andHe is a
given function. f andQ are unknown, where f is a scalar function andQ = (Q1, Q2)

is a vector field. For a vector field Q in two dimensions,

curlQ = ∂2Q1 − ∂1Q2, curl2Q = (∂2(curlQ),−∂1(curlQ)).

Equation (1.1) is called theMeissner equation, as it describes theMeissner states of
a type II superconductor occupying a cylinder of infinite hightwith its axis along the x3-
axis and a cross section� in the x1x2-plane, and subjected to an axial appliedmagnetic
fieldH = (0, 0,He). κ and λ are positive constants, among them, λ is the penetration
depth of the superconductor (generally 0 < λ � 1), and κ is the Ginzburg-Landau
parameter given by the ratio of the penetration depth and the coherence length.
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1.2 Motivation from phase transformation of Meissner states

In the classical theory of superconductivity, the electromagnetic behavior of a
superconductor is described by a global minimizer of the Ginzburg-Landau energy
functional. A superconductor of type II is subjected to an increasing magnetic field
will undergo phase transitions, and there exist three critical values for the strength of the
applied field, denoted by HC1 , HC2 and HC3 respectively, with HC1 < HC2 < HC3 . If
the applied field is below HC1 , it will be excluded from the bulk of the superconductor
and the sample is in a superconducting state, which is also called aMeissner state. This
phenomenon is the well-knownMeissner effect. If its strength of the applied magnetic
field is raised to above HC1 but still below HC2 , the applied field will penetrate the
sample through some vortices, and the sample is in a mixed state so that both super-
conducting and normal regions coexist. If the applied field increases to exceed HC2 ,
but remains below HC3 , the superconductor will be in a surface superconducting state.
In this state superconductivity persists only within some thin sheathes near the surface
of the sample. If the applied magnetic field is raised above HC3 , superconductivity
will be totally destroyed and the entire sample will be in a normal state.

These phenomena have been extensively studied by many mathematicians, see for
instance [28–31] for the mathematical theory of the mixed states when the applied
magnetic field is between HC1 and HC2 , and see [12, 13, 16, 20, 23, 24] and references
therein for the analysis of surface superconductivity when the applied field is between
HC2 and HC3 .

Physicists have discovered that, superconductivity can be described by a critical
point of the Ginzburg-Landau functional, which is not necessary to be a global mini-
mizer. For type II superconductors, the Meissner state is metastable and persists up to
the so-called superheating field Hsh which is higher than HC1 , see [18, 21, 32]. As the
applied field increases further and reaches Hsh , it begins to penetrate the sample and
vortices start to nucleate. See [6, 7] and the references therein for the mathematical
discussions on the critical field Hsh and nucleation of vortices.

We believe that one more critical field is needed in order to understand the phase
transitions of the Meissner states. This critical field, denoted by HS , lies in between
HC1 and Hsh , and it is a critical value of the strength of the applied magnetic field for
a Meissner state to lose local stability. That is, if the applied field is below HS , the
Meissner states are locally stable; while if the applied field reaches HS , someMeissner
states will be locally instable. For comparison, the first critical field HC1 is the critical
value of the strength of the increasing applied magnetic field at which some Meissner
solutions start to lose global stability.

To explain this critical field HS , let us recall that in the Ginzburg-Landau theory
[15], superconducting behaviors of a sample are described by a critical point (ψ,A) of
the Ginzburg-Landau functional. Let us consider a type II superconductor occupying
a cylinder in R3 with its axis along the x3-axis, subjected to an axial applied magnetic
field (0, 0,He), where He(x1, x2) > 0 is a smooth function. For simplicity, we may
also call the functionHe theapplied field. Then theGinzburg-Landau energy is reduced
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to the two-dimensional functional of the following form

E[�,A] =
∫

�

{∣
∣
∣
(λ

κ
∇ − iA

)
�

∣
∣
∣
2 + 1

2
(1 − |�|2)2

}
dx +

∫

R2
|λcurlA − He|2dx,

(1.2)

where � is the cross section of the cylinder, � is a complex-valued function called
order parameterwith |�|2 representing the density of superconducting electron pairs,
A is the magnetic potential and curlA is the induced magnetic field. The Euler-
Lagrange equation of the functional E is called the Ginzburg-Landau equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−( λ
κ
∇ − iA)2� = (1 − |�|2)� in �,

λ2curl2A + �2A = iλ
2κ (�∇�∗ − �∗∇�) in �,

λcurl2A = curlHe in �c,

n · ( λ
κ
∇ − iA

)
� = 0, [n × A] = 0, [curlA] = 0 on ∂�,

λcurlA − He → 0 as |x | → ∞,

(1.3)

where [·] represents the jump in the enclosed quantity across ∂�, and

curlHe = (∂2(He),−∂1(He)).

For convenience we call a cylindrical superconductor that can be described by the
equation (1.3) as a two-dimensional superconductor, and call a superconductor occu-
pying a bounded domain inR3 and can be described by the Ginzburg-Landau equation
on the three-dimensional domain as a three-dimensional superconductor.

A Meissner state is represented by a solution (�,A) of (1.3) such that the order
parameter � does not have zero points over �̄, and such a solution is calledMeissner
solution. If a solution (ψ,A) is such that � has zero points, then the zero points are
called vortices and (ψ,A) is called a vortex solution. Existence of Meissner solutions
and vortex solutions of (1.3) have been extensively studied, and very rich results have
been established, see for instance [19, 29, 31] and the references therein.1

If the applied field is below HC1 , then the global minimizers of the Ginzburg-
Landau energy have no zero points, hence they are Meissner states. In other words,
thoseMeissner solutions are globally stablewith respect to theGinzburg-landau energy
[28–30]. If the applied field increases to exceed HC1 but is still below HS, the solutions
are no longer global minimizers, but they are still locally stable with respect to some
energy functional which may be called Meissner energy and will be defined later. If
the applied field increases further to exceed HS but is still below Hsh, some Meissner
solutions continuous to exist but become instable with respect to the Meissner energy.
When the appliedfield reaches Hsh , then someMeissner solutionswill change to vortex
solutions, namely the order parameters will have zeroes. So the phase transitions of
Meissner states with the applied magnetic filed increasing along HC1 , HS and Hsh
have different nature, comparing with the phase transitions of the global minimizers

1 See also [31, Chapter 11] and [9] for the corresponding results of type I superconductors.
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with the applied field increasing along HC1 , HC2 and HC3 . Therefore it will be useful
to study the whole process how a stable Meissner state loses its local stability and
then produces vortices and changes into a mixed state, and find the location where the
vortices begin to nucleate.

To study these problems, we start with the Meissner equation derived by Chapman
[6, 7]. Let (�,A) be a Meissner solution and suppose that � can be written as

� = f eiχ ,

where f is a positive function and χ is a smooth real function. Then we let

A = Q + λ

κ
∇χ.

Plugging this (�,A) into (1.3), we see that ( f ,Q) satisfies the following equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− λ2

κ2
� f = (1 − | f |2 − |Q|2) f in �,

λ2curl2Q + | f |2Q = 0 in �,

λcurl2Q = curlHe in �c,

n · ∇ f = 0, [n × Q] = 0, [curlQ] = 0 on ∂�,

λcurlQ → He as |x | → ∞.

(1.4)

In the two dimensional case, we can write the third and last equalities in (1.4) as
follows:

{
∂2(λcurlQ − He) = 0, ∂1(λ curlQ − He) = 0 in �c,

λ curlQ − He → 0 as |x | → ∞.

This gives that

λcurlQ = He in �c.

Therefore, (1.4) is reduced to (1.1) if the condition [n × Q] = 0 is ignored.2

On the other hand, if ( f ,Q) is a solution of (1.4) with 0 < f (x) ≤ 1, then for any
smooth real-valued function χ ,

(�,A) = ( f eiχ ,Q + λ

κ
∇χ)

is a solution of the Ginzburg-Landau equation (1.3).
Equation (1.1) can be further simplified by taking large κ limit. From the first

equality in (1.1) one formally gets (1− | f |2 − |Q|2) f = 0. For a Meissner state, one

2 See also [5, 25, 26] for the derivation of (1.4) and (1.1).
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expects that f > 0, which implies that | f |2 = 1−|Q|2. Plugging this into the second
equation in (1.1), we get the limiting equation for Q:

{−λ2curl2Q = (1 − |Q|2)Q in �,

λcurlQ = He on ∂�.
(1.5)

For our convenience we may say (1.5) is the special case of (1.1) with κ = ∞.
Equation (1.5) with He equalling to a positive constant has been studied in [4, 6,

7, 27]. Chapman [6] showed that the solution Q of (1.5) is stable with respect to the
energy associated with (1.5) if maxx∈�̄ |Q(x)| < 1/

√
3, and as the applied field He

increases, the solution begins to loss such stability when the maximum value of |Q(x)|
reaches 1/

√
3. Berestycki, Bonnet and Chapman [4] showed that the maximum points

of |Q(x)| locate on the domain boundary. Chapman [7] used the asymptotic analysis
to derive that the maximum points of |Q(x)| locate on the most negative points of the
boundary curvature, which has been rigorously proved for small λ by Pan and Kwek
[27].

The analysis in [6, 7] suggests that the loss of certain stability of Meissner states
will lead to generation of vortices, and Chapman conjectured that the location of the
maximum points of |Q(x)| is the location where the first vortices will appear. This
conjecture motivates our study on the change of stability of the Meissner solutions of
(1.1).

For reader’s convenience,we nowstate the definition of stability of a solution ( f ,Q)

of (1.1). We define theMeissner energy functional associated with the equation (1.1)
by

E�[ f ,Q] =
∫

�

{
λ2

κ2
|∇ f |2 + | f |2|Q|2 + 1

2
(1 − | f |2)2

}

dx

+
∫

�

|λcurlQ − He|2dx .

Then the second order differential of the functional E� is given by the following:

〈E ′′
�[ f ,Q], [g,B]〉 = 2

∫

�

{
λ2

κ2
|∇g|2+| f B + 2gQ|2+3g2(| f |2 − |Q|2 − 1

3
)

}

dx

+ 2
∫

�

|λcurlB|2dx .

Set

W(�) = [H1(�) ∩ L∞(�)] × [H1(�,R3) ∩ L∞(�,R3)].

Definition 1 Let ( f ,Q) be a solution of (1.1) and assume ( f ,Q) ∈ W(�).

(a) We say ( f ,Q) is a Meissner solution of (1.1) if f (x) > 0 over �̄.
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(b) We say ( f ,Q) is stable (with respect to the Meissner equation (1.1)) if E ′′
� is

non-negative on W(�), namely if

〈E ′′
�[ f ,Q], [g,B]〉 ≥ 0 for all (g,B) ∈ W(�).

Existence and uniqueness of a stableMeissner solution of (1.1) have been discussed
in [5].3 If ( f ,Q) ∈ W(�) and if

| f (x)|2 − |Q(x)|2 >
1

3
, 0 < f (x) ≤ 1 for all x ∈ �,

then ( f ,Q) is stable, and it is the case if κ is sufficiently large. The solution loses its
stability when the minimum value of | f (x)|2 − |Q(x)|2 reaches 1/3.

Although the physical meaning of the critical fields HS and the superheating field
Hsh are clear, mathematically we need a careful definition of these fields. Since one
can describe a Meissner state by using either the Ginzburg-Landau model (1.3), or
the full Meissner model (1.4), or the reduced Meissner system (1.1), there are many
options to define these critical fields. As in this paper we use the reduced system (1.1)
to describe the Meissner states, we shall give a definition of stability based on (1.1).

Let us consider the applied magnetic field of the form

He = σH,

where H is a continuous and positive-valued function defined over �̄, and σ > 0.
Then we define the critical fields HS and Hsh as follows.

Definition 2

HS(H) = sup{H > 0 : all Meissner solutions of (1.1) with He = σH
are stable if 0 ≤ σ < H},

Hsh(H) = inf{H > 0 : Equation (1.1) withHe = σH
has no Meissner solutions if σ > H}.

(1.6)

Then we let

HS = HS(1), Hsh = Hsh(1).

The above discussions suggest the following problems:
Problem (A). Find the value of the critical field HS . Examine how a stableMeissner

solution ( f ,Q) of (1.1) starts to lose its stability as the strength of the appliedmagnetic
fieldHe increases and reaches this critical value. In particular, find the location of the
minimum points of | f (x)|2 − |Q(x)|2 (with minimum value 1/3).

3 Uniqueness of the stable Meissner solution of the system in a three dimensional domain can be directly
derived from Lemma 3.1 in [26].
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Problem (B). Find the value of the critical value Hsh . Examine how an instable
Meissner solution ( f ,Q) of (1.1) starts to nucleate vortices and find the location of
the first vortices.

Problem (C). Verify that if κ is large then

HC1 < HS < Hsh .

In this paper we investigate Problem (A).

1.3 Main results

Atmomentwe do not know the precise value of HS , sowe start withMeissner solutions
in a weak magnetic field, that is, max�̄ |He(x)| is sufficiently small. Under a weak
magnetic field, a Meissner solution ( f ,Q) of (1.1) is stable, hence

d f ,Q >
1

3
,

here we denote

d f ,Q := inf
x∈�̄

{
| f (x)|2 − |Q(x)|2

}
. (1.7)

We let He increase and look for a Meissner solution ( f0,Q0) which first loses its
stability, hence d f0,Q0 first achieves the value

1
3 , and find the position of the minimum

points of | f0(x)|2 − |Q0(x)|2. Due to some technical reason, instead of analyze the
solution ( f0,Q0) with d f0,Q0 = 1

3 , we consider first an approximation problem as
follows. We fix κ > 0 and take a small number δ > 0. Let ( f ,Q) be a solution of
(1.1) satisfying the following inequality

| f (x)|2 − |Q(x)|2 ≥ 1

3
+ δ2, 0 < f (x) ≤ 1, x ∈ �̄. (1.8)

We show that the minimum points of | f (x)|2−|Q(x)|2 locate near the domain bound-
ary, and (1− f (x),Q(x)) decays exponentially in the normal direction away from the
boundary if the penetration depth λ is small. Denote

d(x, ∂�) = min
y∈∂�

|x − y|.

Let h∗ be the number defined in Definition 2.3 in Sect. 2.

Theorem 1.1 (Decay estimate) Let� be a bounded domain inR2 with a C3 boundary
∂�, and let He be a C3 function on �̄ satisfying ‖He‖C0(∂�) < h∗. There exists a
positive constant λ0 such that, if λ ∈ (0, λ0) and if ( fλ,Qλ) is a solution of system
(1.1) satisfying (1.8), then for any 0 < α < min{√2κ, 2} and any 0 < β < 1, we
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have

|1 − fλ(x)| ≤ C1e
−αd(x,∂�)/λ, |Qλ(x)| ≤ C2e

−βd(x,∂�)/λ, x ∈ �̄,

where the constants C1 and C2 depend only on �, He, κ , δ, α and β.

Remark 1 (a) Theorem 1.1 says that if a superconductor is in a stable Meissner state
and is subjected to a weak magnetic field, then in the interior of the sample we
have ( fλ,Qλ) ∼ (1, 0),which shows that the inducedmagnetic field vanishes away
from a thin layer around the surface of the sample, hence the applied magnetic
field does not penetrate the bulk and will not destroy the superconductivity in the
interior, and the material is almost in a perfectly superconducting state except a
boundary sheath. This is the mathematical description of the Meissner effect.

(b) Intuitively, the decay behavior of |1− fλ(x)| and |Qλ(x)| can be explained in the
following way. If the boundary conditions in (1.1) were ignored, formally we can
derive from the equations that, fλ(x) ∼ 1 and |Qλ(x)| ∼ 0 in the interior of the
domain as λ → 0. Then the linearization of the second equality of (1.1) around
( f ,Q) = (1, 0) gives the London equation

λ2curl2H + H = 0, divH = 0 in �.

By the Agmon’s estimate [2] we can show that the non-zero solutions of the above
equation are exponentially decay

|H(x)| ≤ Ce−d(x,∂�)/λ, x ∈ �,

from which we can derive the decay behavior of |Qλ(x)|. The linearization of the
first equality of (1.1) around ( f ,Q) = (1, 0) gives

−λ2

κ2�w + 2w = |q|2 in �,

where q is a variation of Q. Using the Agmon’s estimate again we can show that

|w(x)| ≤ Ce−min{√2κ,2}d(x,∂�)/λ, x ∈ �,

from which we can obtain the decay behavior of the function 1 − fλ(x).

To determine precise location of the minimum points of | fλ(x)|2 − |Qλ(x)|2, we
need carefully analyze the behavior of the solution ( fλ,Qλ) in a thin layer around the
domain boundary. We shall derive an asymptotic expansion of ( fλ,Qλ) around any
given point X0 ∈ ∂� for small λ:

∥
∥
∥ fλ(x) − f̂0(ψ

−1(x)/λ) − λ f̂1(ψ
−1(x)/λ)

∥
∥
∥
C0
(
U0,λ

⋂
�
) ≤ O(λ2) (1.9)
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and
∥
∥
∥Qλ(x) − Q̂0(ψ

−1(x)/λ) − λQ̂1(ψ
−1(x)/λ)

∥
∥
∥
C0
(
U0,λ

⋂
�
) ≤ O(λ2), (1.10)

where

• U0,λ is an open neighbourhood of the point X0 with diameter λ;
• x = ψ(y) is a diffeomorphism straightening a boundary portion of ∂� around

X0;
• the scalar function f̂0(·) and the vector field Q̂0(·) are determined by the strength
of the magnetic field (see (5.18) in section 5);

• the scalar function f̂1(·) and the vector field Q̂1(·) are defined by equations involv-
ing the strength of the magnetic field and the curvature k of the domain boundary
(see (5.19) in section 5).

Moreover we shall show that f̂1(·) and the first component of Q̂1(·) are monotonic
with respect to the curvature k of ∂�, see for the more precise description in Theo-
rem 5.2. This monotonicity property together with the estimates (1.9) and (1.10) will
lead to the determination of the location of the minimum points of | fλ(x)|2−|Qλ(x)|2
as described in the following Theorem 1.2. To state the result of Theorem 1.2 we need
the concept of sub-convergence.

Definition 3 Let {Pλ} be a family of points indexed by the parameter λ.We say that the
points {Pλ} sub-converge to the set S as λ tends to zero, if for any sequence λn → 0
there exists a subsequence {λn j } and a point P ∈ Swhich depends on the subsequence,
such that lim j→∞ Pλn j

= P .

For the given function He we set

∂�(He) = {x ∈ ∂� : He(x) = ‖He‖C0(∂�)

}
, (1.11)

and

S(He) =
{

x ∈ ∂�(He) : k(x) = max
y∈∂�(He)

k(y)

}

, (1.12)

where k(x) is the curvature function of ∂�.

Theorem 1.2 Assume � is a bounded domain in R
2 with a C3 boundary ∂�, and

let He be a C3 function on �̄ satisfying ‖He‖C0(∂�) < h∗. Suppose ( fλ,Qλ) is the
solution of system (1.1) satisfying (1.8). Then, as λ tends to zero, the minimum points
of | fλ(x)|2 − |Qλ(x)|2 sub-converge to the set S(He) defined by (1.12).

IfHe = h is a positive constant, then

∂�(h) = ∂�, S(h) = {x ∈ ∂� : k(x) = max
y∈∂�

k(y)},

that is, S(h) is the set of the maximum points of the curvature function of ∂�.
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Corollary 1.3 Assume� is a bounded domain inR2 with aC3 boundary ∂�, andHe =
h is a positive constant. Suppose ( fλ,Qλ) is the solution of system (1.1) satisfying
(1.8). Then, as λ tends to zero, theminimumpoints of | fλ(x)|2−|Qλ(x)|2 sub-converge
to the set of the maximum points of the curvature of the domain boundary.

Remark 2 It is interesting to compare the result on (1.1) in Corollary 1.3 with those
on (1.5) in [7, 27].4 In the limiting process as κ → ∞, the solution ( fλ,Qλ) of
(1.1) corresponds to the solution Q of (1.5) by the relation | f |2 = 1 − |Q|2, hence
the minimum points of | fλ|2 − |Qλ|2 correspond to the maximum points of |Q(x)|.
However, if He = h is a positive constant, as λ tends to zero, the minimum points of
| fλ|2−|Qλ|2 sub-converge to themaximum points of the curvature (see Corollary 1.3),
while the maximum points of |Q| sub-converge to theminimum points of the curvature
(see [7, 27]). This difference reflects themulti-scale nature of (1.1). In fact the behavior
of the Meissner states depends on two parameters, the Ginzburg–Landau parameter κ

and the penetration depth λ, among other physical parameters. Then:

• If we fix κ and send λ to zero as in this paper, then we have the situation of
Corollary 1.3. The minimum points of | f |2 − |Q|2 sub-converge to the maximum
points of the boundary curvature.

• If we first send κ to infinity (and we get (1.5)) and then send λ to zero, then
we have the situation of [7, 27]. In this case | f |2 − |Q|2 ∼ 1 − 2|Q|2, and the
minimum points of | f |2 −|Q|2 correspond to the maximum points of |Q|2, which
sub-converge to the minimum points of the boundary curvature.

We expect that if we let κ → ∞ and λ → 0, the minimum points of | f |2 − |Q|2
will sub-converge to points on the boundary, and the location of the limiting positions
depends on the relative scale of κ and λ. We will study the multiple-scales phenomena
of the Meissner solutions in the later future.

In order to establish the uniform convergence estimates (1.9) and (1.10), we need a
C0 estimate of the solution to a semilinear Maxwell system (or called semilinear curl-
curl system) for the vector field Qλ, which is a degenerately elliptic system without
comparison principle and maximum principle, hence the C0 estimate does not follow
from the standard theory of elliptic systems. Our strategy to prove (1.9) and (1.10) is
as follows:

—We first prove the global H1 estimate for the remainder terms in (1.9) and (1.10)
by the method of matched asymptotic expansions;

—Thenwededuce an H2 estimate of the remainder termsnear the domainboundary
by the difference quotient technique, which yields the C0 regularity of the remainder
terms by the Sobolev imbedding theorem.

Let us mention that the method of the proof of (1.9) and (1.10) in this paper is
different from that used by Pan and Kwek in [27], where the estimates for the solutions
were proved by applying the maximum principle to a divergence-type elliptic equation
for the scalar function Hλ = λ curlQλ.

4 See also [3] for the three dimensional system.
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1.3.1 Organization of this paper

The formal expansion for ( fλ,Qλ)with respect to λ is derived in section 2. Thenwe
establish the uniform estimation for the asymptotic expansion of the solution ( fλ,Qλ)

in section 3. In section 4, we prove the exponential decay estimate (Theorem 1.1)
of 1 − fλ and |Qλ|. Finally in section 5, by applying (1.9) and (1.10) we give the
proof of Theorem 1.2. Further remarks will be given in section 6. The proofs of the
theorems involve lengthy computations and technical details, which will be given in
appendices. Among them, in appendix A we prove the uniqueness of the solution to
a limiting system in the half space (see (2.11)), which is associated with the leading
order term of the expansions of ( fλ,Qλ); in appendix B we prove the exponential
decay estimate for the solutions to some ODEs; in appendix C and appendix D we
give the details of the calculations for the formal expansion for ( fλ,Qλ).

Throughout the paper, the bold typeface is used to indicate vector quantities; normal
typeface will be used for scalars and the components of vectors. We shall use the letter
C to denote a positive constant which is independent of λ, but the numerical value
may be vary line to line.

2 Formal asymptotic solution to system (1.1)

As stated in the introduction, we shall find the location of the minimum points of
| fλ|2 − |Qλ|2 for small λ, and we need first prove the uniform convergence of the
approximation solutions as λ tends to zero. The proof is based on the method of
matched asymptotic expansions of the solution ( fλ,Qλ) in term of λ. The construction
of the inner expansions in a thin tubular neighborhood of the domain boundary of scale
λ requires detailed analysis on the behavior of the solutions near the domain boundary,
which will be carried out in this section.

To start with, let us first introduce a new local coordinate system near a boundary
point X0 ∈ ∂�. Let U denote a neighborhood of X0. The portion of the boundary ∂�

located inside U can be represented as u = u(s) with u(0) = X0, where s is the arc
length variable of ∂�. Then τ(s) = u′(s) is the unit tangent vector. Letn(s) = (n1, n2)
be the unit outer normal at x ∈ ∂�.We introduce new variables y1 and y2, with y1 = s,
such that for any x ∈ �̄ ∩ U we have a diffeomorphism map ψ given by

x = ψ(y1, y2) = u(y1) − y2n(y1). (2.1)

Let

g(y1, y2) = | det Dψ | = 1 − k(y1)y2, (2.2)
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where k(y1) is the curvature of ∂� at the point x = ψ(y1, 0) ∈ ∂�. Then we have a
new orthogonal coordinate framework {E1,E2} as follows:

E1(y) = ∂1ψ

|∂1ψ | = τ(y1), E2(y) = −n(y1).

Now we introduce the following notations. For any function f (x) defined on U we
define a function of y and write it by f̂ (y), such that

f̂ (y) := f (ψ(y)).

For a vector field Q(x) depending on the variable x , we define a vector field Q̂(y)
with variable y by

Q̂(y) := Q(ψ(y)).

We shall call f̂ (y) and Q̂(y) the representations of f (x) and Q(x) in the coordinates
y respectively.

Using the framework {E1,E2} we can write Q̂(y) as

Q̂(y) = Q̂1(y)E1 + Q̂2(y)E2,

where Q̂1(y) and Q̂2(y) are scalar functions. Then curlQ(x) and curl2Q(x) can be
represented by

curlQ(x) = 1

g

[
∂1 Q̂2 − ∂2(gQ̂1)

]

and

curl2Q(x) = M1(y)E1(y) + M2(y)E2(y),

where

M1(y) ≡ ∂2

(
1

g

[
∂1 Q̂2 − ∂2(gQ̂1)

])

,

M2(y) ≡ −1

g
∂1

(
1

g

[
∂1 Q̂2 − ∂2(gQ̂1)

])

.

(2.3)

In the above, ∂ j denotes ∂
∂ y j

for j = 1, 2. Also, we have

�x f = �y f̂ ,

where �y is defined by

�y f̂ = 1

g

(

∂1

(
1

g
∂1 f̂

)

+ ∂2

(
g∂2 f̂

))

. (2.4)
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For simplicity, we introduce the operators

C urly Q̂ = 1

g

[
∂1 Q̂2 − ∂2(gQ̂1)

]
, C url2y Q̂ = (M1(y),M2(y)). (2.5)

Let ( fλ(x),Qλ(x)) be a solution of (1.1), and let f̂λ(y) and Q̂λ(y) be the represen-
tations of fλ(x) and Qλ(x) in the coordinates y respectively. We introduce re-scaled
variables

y = λz.

In the neighborhood of X0, we then define the rescaled vector fields (which will be
called the z-coordinates):

f̃λ(z) = f̂λ(λz) = f̂λ(y) and Q̃λ(z) = Q̂λ(λz) = Q̂λ(y). (2.6)

In the following, for convenience of notation, we may drop the subscript λ and denote
f̃λ(z) by f̃ (z), and Q̃λ(z) by Q̃(z). Then system (1.1) can be rewritten by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− 1
κ2

�z f̃ = (1 − | f̃ |2 − |Q̃|2) f̃ in Q̃z,

C url2z Q̃ + | f̃ |2Q̃ = 0 in Q̃z,

∂ f̃
∂n = 0, C urlz Q̃ = H̃e on T̃z,

(2.7)

where the operators C urlz and �z are defined by

C urlz := λC urly, �z := λ2�y, y = λz, (2.8)

and �̃z and T̃z represent the images of the domain �∩U and of the boundary ∂�∩U
under the z−coordinate system respectively.

Now we begin to derive the formal asymptotic solution in the (y1, z2) coordinates,
where z2 = y2/λ. Let us assume that the inner expansion of the solution in the
neighborhood of X0 has the form

f̂λ(y) = f̂0(y1, z2) + λ f̂1(y1, z2) + λ2 f̂2(y1, z2) + O(λ3),

Q̂λ(y) = Q̂0(y1, z2) + λQ̂1(y1, z2) + λ2Q̂2(y1, z2) + O(λ3).
(2.9)

We emphasize that f̂λ(y1, z2) and Q̂λ(y1, z2) have multi-scales with y1 in the scale
O(1) and z2 in the scale O( 1

λ
) for small λ.

123



On the shape of Meissner solutions to the 2-dimensional… 555

2.1 The leading order term

We first derive the leading order term ( f̂0(y1, z2)), Q̂0(y1, z2)). We shall prove a
uniform C2,α estimate for ( f̃λ(z), Q̃λ(z)) on any bounded z-domain, which yields
estimates of ( f̂ , Q̂) inside any boundary layer.

Lemma 2.1 Assume � is a bounded domain in R
2 with a C2,α boundary, 0 < α < 1

andHe(x) is a C2,α function on �̄. Let ( fλ,Qλ) be a solution of (1.1) satisfying (1.8),
and ( f̃λ, Q̃λ) be the rescaled pair. Then for small λ, we have

‖ f̃λ‖C2,α(�̃z∩B+
R (0)) + ‖Q̃λ‖C2,α(�̃z∩B+

R (0)) ≤ C,

where C depends only on �, He, κ , δ and α, but is independent of R and λ.

Proof The proof is quite similar to that of Lemma 9.2 in [26], we here omit it. ��
Next we show that

( f̃λ, Q̃λ) converges in C2
loc(R

2+) as λ → 0. (2.10)

Proof of (2.10) FromLemma2.1 and byArzela-Ascoli’s theorem (see the compactness
result [14, Lemma 6.36]), for any sequence λn → 0, there exists a subsequence
{λn j } such that, as j → ∞, ( f̃λn j , Q̃λn j

) converges in C2
loc(R

2+) to the solution

( f̄0(z1, z2)), Q̄0(z1, z2)) of the following system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− 1

κ2� f̄0 = (1 − | f̄0|2 − |Q̄0|2) f̄0 in R2+,

curl2Q̄0 + | f̄0|2Q̄0 = 0 in R2+,

∂ f̄0
∂n

= 0, curlQ̄0 = He(X0) on ∂R2+.

(2.11)

Moreover, because ( fλ,Qλ) satisfies the condition (1.8), so ( f ,Q) = ( f̄0, Q̄0) satis-
fies the following

| f (z)|2 − |Q(z)|2 ≥ 1

3
+ δ2 and 0 < f (z) ≤ 1, ∀z ∈ R

2+. (2.12)

From Lemma A.1, the solution of (2.11) satisfying (2.12) is unique. Hence ( f̄0, Q̄0)

is the unique solution of (2.11) satisfying (2.12). It follows that the whole sequence
( f̃λn , Q̃λn ) actually converges to ( f̄0(z1, z2), Q̄0(z1, z2)). Therefore ( f̃λ, Q̃λ) con-
verges to ( f̄0(z1, z2), Q̄0(z1, z2)) in C2

loc(R
2+) as λ → 0. Hence (2.10) is proved.

��
In the following we show that ifHe(X0) is small, then the unique solution of (2.11)

satisfying (2.12) has the form

f̄0(z1, z2) = f0(z2), Q̄0(z1, z2) = (Q1
0(z2), 0). (2.13)
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To prove this conclusion, we only need to show that, ifHe(X0) is small, (2.11) has a
solution of this form and it satisfies (2.12). Then the uniqueness result of Lemma A.1
implies that this solution is the only solution of (2.11) satisfying (2.12).

Plugging (2.13) into (2.11) we see that ( f0(z2), Q1
0(z2)) satisfies the following

ODEs:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1
κ2

f
′′
0 = (1 − | f0|2 − |Q1

0|2) f0 in R+,

−(Q1
0)

′′ + | f0|2Q1
0 = 0 in R+,

f ′
0(0) = 0, (Q1

0)
′(0) = −h0,

f0(∞) = 1, (Q1
0)(∞) = 0,

(2.14)

where f ′
0 = d f0

dz2
, and h0 = He(X0) > 0. We look for the solution of (2.14) satisfying

(2.12).

Proposition 2.2 If (2.14) has a solution ( f0, Q1
0) ∈ C3(R+) ×C3(R+), then it is the

unique solution of (2.14) satisfying (2.12), and for any 0 < α1 < min{2,√2κ} and
any 0 < β1 < 1 we have

f ′
0(z2) > 0, |1 − f0(z2)| ≤ Ce−α1z2 ,

(Q1
0)

′(z2) < 0, 0 < Q1
0(z2) ≤ Ce−β1z2

for all z2 > 0, where C = C(He, κ, α1, β1).

Proof Step 1. Assume (2.14) has a solution ( f0, Q1
0) satisfying (2.12). Then ( f0, Q1

0) ∈
C3(R+) × C3(R+). By the maximum principle, it is easy to see that

Q1
0(z2) > 0, (Q1

0)
′(z2) < 0 for all 0 < z2 < ∞. (2.15)

Since f0(∞) = 1, by the comparison principle (or see Proposition B.2 in appendix
B), we easily obtain that: for any 0 < β1 < 1, there exists a constantC > 0 depending
on β1 and He such that

|Q1
0(z2)| ≤ Ce−β1z2 for all z2 > 0.

Next we show that f ′
0(z2) ≥ 0 for all z2 > 0. Suppose not, then there exist two

numbers c2 and c3 with 0 < c2 < c3 such that

f ′′
0 (c2) ≤ 0, f ′′

0 (c3) ≥ 0, f0(c2) > f0(c3). (2.16)

From the first equation in (2.14), we have

(1 − | f0|2 − |Q1
0|2)|z2=c2 ≥ 0, (1 − | f0|2 − |Q1

0|2)|z2=c3 ≤ 0. (2.17)
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From (2.15) we have Q1
0(c2) > Q1

0(c3), and by (2.16) we have f0(c2) > f0(c3).
Then

(1 − | f0|2 − |Q1
0|2)|z2=c2 < (1 − | f0|2 − |Q1

0|2)|z2=c3 .

This is a contradiction with (2.17).
Now we show that

f ′
0(z2) > 0 for all z2 > 0.

Otherwise, suppose there exists c4 ∈ (0,∞) such that f ′
0(c4) = 0, then f ′′′

0 (c4) ≥ 0.
This is a contradiction with

f ′′′
0 (c4) = −(1 − | f0|2 − |Q1

0|2) f ′
0 + (2 f0 f

′
0 + 2Q1

0(Q
1
0)

′) f0|z2=c4 < 0.

Therefore the strict inequality holds.
Let w(z2) = 1 − f0(z2). Then w satisfies

{− 1
κ2

w
′′ + w(2 + |Q1

0|2 − 3w + w2) = |Q1
0|2 in R+,

w′(0) = 0 and w(∞) = 0.

Note that 2 + |Q1
0|2 − 3w + w2 → 2 as z2 → +∞. Then from Proposition B.2 in

appendix B, for any 0 < α1 < min{2,√2κ} there exists a constant C > 0 such that

w(z2) ≤ C(He, κ, α1, β1)e
−α1z2 for all z2 > 0.

Step 2. We show that (2.14) has at most one solution satisfying (2.12). Define the
space

V =
{
(u, v) : u′, 1 − u, v′, v ∈ L2(R+), u′(0) = 0, v′(0) = 0

}
,

which is a reflexive Banach space equipped with the norm

‖(u, v)‖ = ‖1 − u‖L2(R+) + ‖u′‖L2(R+) + ‖v‖L2(R+) + ‖v′‖L2(R+).

Set

U =
{

( f0, P
1
0 ) ∈ V : 0 ≤ f0 ≤ 1, | f0|2 − (P1

0 + h0e
−z2)2 ≥ 1

3
+ 1

2
δ2
}

,

and define a functional E in U by

E[ f0, P1
0 ] =

∫ ∞

0

{ 1

κ2 | f ′
0|2 + | f0|2(P1

0 + h0e
−z2)2

+ 1

2
(1 − | f0|2)2 + |(P1

0 )′|2 − 2h0e
−z2 P1

0

}
dz2.
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It is easy to see that U is a closed and convex subset of V , and E is strictly convex,
coercive and weakly lower semi-continuous on U with respect to the norm inherited
from V . Therefore, E has a unique minimizer ( f0, P1

0 ) ∈ U .

Let ( f0, Q1
0) be a solution of (2.14) satisfying (2.12). From step 1, we see that

f ′
0(z2) > 0 for all z2 > 0. It follows that 0 < f0(z2) < 1 for all z2 ≥ 0. Let
P1
0 = Q1

0 − h0e−z2 . Then from (2.12), we see that ( f0, P1
0 ) lies in the interior of

U , and it is a critical point of the strictly convex functional E . Hence ( f0, P1
0 ) is the

unique minimizer of E inU . This shows that if (2.14) has a solution satisfying (2.12)
then it is unique. ��

Another proof of uniqueness of the solution of (2.14) satisfying (2.12) will be given
in Lemma A.1 in Appendix A.

Definition 2.3 We define

h∗ = sup
{
h : (2.14) has a solution ( f0, Q

1
0) satisfying | f0|2 − |Q1

0|2 >
1

3
and 0 < f0 ≤ 1 for all h0 ∈ (0, h)

}
.

Proposition 2.4 We have

√
2

3
≤ h∗ ≤

√
6

3
. (2.18)

The proof of Proposition 2.4 will be given in section 5 after Theorem 5.1.
From Propositions 2.2 and 2.4, for any 0 < h0 < h∗, (2.14) has a unique solution

( f0, Q1
0) satisfying (2.12) for some positive constant δ. Then we define f̂0(0, z2) and

Q̂0(0, z2) by letting

f̂0(0, z2) = f0(z2), Q̂0(0, z2) = (Q1
0(z2), 0).

Moreover, for each y1 �= 0, we can define f̂0(y1, z2) and Q̂0(y1, z2) by using the
equations (5.18) in section 5. We will see later that ( f̂0(y1, z2), Q̂0(y1, z2)) gives the
leading order term of the asymptotic expansions at X0, which provides the information
how the minimum points of f 2−|Q|2 depend on the intensity of the applied magnetic
filed.

Based on Proposition 2.2, we have the exponential decay in the z2−direction for
1 − f̂0(y1, z2) and Q̂0(y1, z2) which will be used later.

Proposition 2.5 LetHe be a C3 function on �̄ satisfying ‖He‖C0(∂�) < h∗. Then for
any 0 < α1 < min{2,√2κ} and any 0 < β1 < 1, we have

|1 − f̂0(y1, z2)| +
∑

0≤i≤3, 0≤ j≤2
i2+ j2 �=0

|∂ i+ j

yi1z
j
2

f̂0(y1, z2)| ≤ Ce−α1z2 ,

∑

0≤i≤3, 0≤ j≤2

|∂ i+ j

yi1z
j
2

Q̂0(y1, z2)| ≤ Ce−β1z2 ,
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where the constants C depend only on He, κ , α1 and β1.

The proof will be given in appendix B.

2.2 The first order term

Next we derive the first order term ( f̂1(y1, z2), Q̂1(y1, z2)) of the expansions, which
will be useful to determine how the geometry of the domain influences the distribution
of the minimum points of f 2 − |Q|2.

We first consider the values of this term for y1 = 0. Set, for z2 ≥ 0,

f1(z2) := f̂1(0, z2), Q1(z2) ≡ (Q1
1(z2), Q

2
1(z2)) := Q̂1(0, z2).

For convenience, we write ∂y1Q̂0(0, z2) as follows:

∂y1Q̂0(0, z2) = (q(z2), 0). (2.19)

Substituting (2.9) into system (1.1) under the z−coordinates, equating the coeffi-
cients of λ, and then considering the problem at (0, z2), we obtain a system for
( f1(z2), (Q1

1(z2), Q
2
1(z2))) in the variable z2 ∈ R+:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− 1
κ2

f
′′
1 + (3| f0|2 + |Q1

0|2 − 1) f1 = −2 f0Q1
0Q

1
1 − k0

κ2
f

′
0 in R+,

−(Q1
1)

′′ + | f0|2Q1
1 = −2 f0Q1

0 f1 − k0∂2Q1
0 in R+,

q ′ + | f0|2Q2
1 = 0 in R+,

f
′
1(0) = 0, (Q1

1)
′(0) = k0Q1

0(0) on z2 = 0,

(2.20)

where k0 = k(X0) is the value of the curvature of ∂� at the point X0, and κ is
the Ginzburg-Landau parameter. The detailed derivation of (2.20) will be given in
appendix C.

From the third equation of (2.20), we immediately obtain that

Q2
1(z2) = −q ′(z2)| f0|−2(z2). (2.21)

From Proposition 2.5 we see that

|Q2
1(z2)| ≤ C(He, κ, α1, β1)e

−β1z2 for all z2 > 0,

where 0 < β1 < 1.
Applying Proposition B.2 in appendix B to (2.20), we get the following

Proposition 2.6 There exists a solution ( f1(z2), (Q1
1(z2), Q

2
1(z2))) to system (2.20)

such that, for any 0 < α2 < min{2,√2κ} and any 0 < β2 < 1, we have

| f1(z2)| ≤ Ce−α2z2 , |Q1
1(z2)| ≤ Ce−β2z2 for all z2 > 0,
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where the constants C depend only on �, He, κ , α2 and β2.

Proof Using the estimate in Proposition 2.5, we have

| f ′
0| ≤ Ce−α1z2 , |∂2Q1

0| ≤ Ce−β1z2 for all z2 > 0,

where C = C(κ, α1, β1,He). Then by noting that

(
(3| f0|2 + |Q1

0|2 − 1) 2 f0Q1
0

2 f0Q1
0 | f0|2

)

→
(
2 0
0 1

)

as z2 → +∞,

and fromPropositionB.2 in appendixB,wehave the solution ( f1(z2), (Q1
1(z2), Q

2
1(z2)))

to system (2.20), and | f1(z2)| ≤ C(κ,He) for all z2 > 0. Now applying Proposi-
tion B.2 in appendix B again, from the second equation in (2.20), for any 0 < β2 < 1,
we have |Q1

1(z2)| ≤ C(κ, β2,He)e−β2z2 for all z2 > 0, where we have taken
β1 = (β2 + 1)/2. At last, using the estimate on Q1

1(z2), and by the first equation
in (2.20) we can obtain the estimate for f1. ��

Similarly, for each y1 �= 0, we can also define f̂1(y1, z2) and Q̂1(y1, z2) (see the
equations (5.19) in section 5), and we also have

Proposition 2.7 LetHe be a C3 function on �̄ satisfying ‖He‖C0(∂�) < h∗. Then for
any 0 < α2 < min{2,√2κ} and any 0 < β2 < 1, we have

∑

0≤i≤3, 0≤ j≤2

|∂ i+ j

yi1z
j
2

f̂1(y1, z2)| ≤ Ce−α2z2 ,

∑

0≤i≤3, 0≤ j≤2

|∂ i+ j

yi1z
j
2

Q̂1(y1, z2)| ≤ Ce−β2z2

for all z2 > 0, where the constants C depend only on �, He, κ , α2 and β2.

The proof is similar to that of Proposition 2.5, we here omit it.

2.3 The second order term

Nextwe look for the second order term ( f̂2(y1, z2), Q̂2(y1, z2)) in the expansion at X0,
which will be needed to derive the uniform estimation for the approximation solution.

We first derive the values of this term at y1 = 0. Let, for z2 ≥ 0,

f2(z2) = f̂2(0, z2), Q2(z2) = Q̂2(0, z2) = (Q1
2(z2), Q

2
2(z2)).
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Substituting (2.9) into (1.1) under the z−coordinates, equating the coefficients
of λ2, and then considering this problem at (0, z2), we obtain the equations of
( f2(z2), (Q1

2(z2), Q
2
2(z2))) for z2 ∈ R+:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
κ2

f
′′
2 + (3| f0|2 + |Q1

0|2 − 1) f2 = −2 f0Q
1
0Q

1
2 − r1 in R+,

−(Q1
2)

′′ + | f0|2Q1
2 = −2 f0Q

1
0 f2 − r2 in R+,

| f0|2Q2
2 + (∂z2 y1 Q̂

1
1

∣
∣
∣
y1=0

− k0q − k′
0Q

1
0 + k0z2q

′) + 2 f0 f1Q
2
1 = 0 in R+,

f
′
2(0) = 0, (Q1

2)
′(0) = ∂y1 Q̂

2
1

∣
∣
∣
y1=0

+ k0Q
1
1 on z2 = 0,

(2.22)

where k0 = k(0) is the curvature of ∂� at the point X0, k′
0 = ∂k

∂s (0), q = q(z2) is the
function defined in (2.19), and

r1(z2) = − 1

κ2 (∂y1y1 f̂0
∣
∣
∣
y1=0

− k0( f1)
′ − k2(0)z2( f0)

′)

+ f0(2Q
1
0Q

1
2 + | f1|2 + |Q1

1|2 + |Q2
1|2) + f1(2 f0 f1 + 2Q1

0Q
1
1),

r2(z2) = ∂z2 y1 Q̂
2
1

∣
∣
∣
y1=0

+ k0(Q
1
1)

′ + k0Q
1
0 + k20z2(Q

1
0)

′ + | f1|2Q1
0 + 2 f0 f1Q

1
1.

The detailed calculations will be given in appendix D. It is easy to see that

Q2
2(z2) = −| f0|−2(∂z2 y1 Q̂

1
1

∣
∣
∣
y1=0

− k0q − k′
0Q

1
0 + k0z2q

′ + 2 f0 f1Q
2
1). (2.23)

From Proposition 2.5 and Proposition 2.7, we have

|Q2
2(z2)| ≤ Ce−β2z2 for all z2 > 0,

where 0 < β2 < 1 and C = C(κ,�, β2,He).

Proposition 2.8 There exists a solution ( f2(z2), (Q1
2(z2), Q

2
2(z2))) to system (2.22)

such that, for any 0 < α3 < min{2,√2κ} and any 0 < β3 < 1, there exist constants
C such that

| f2(z2)| ≤ Ce−α3z2 , |Q1
2(z2)| ≤ Ce−β3z2 for all z2 > 0,

where C = C(He, κ, α3, β3).

Proof Using the estimate in Proposition 2.5 and in Proposition 2.7, it is easy to see
that, for any 0 < α2 < min{2,√2κ} and any 0 < β2 < 1, there exist constants C
such that

|r1(z2)| ≤ Ce−α2z2 , |r2| ≤ Ce−β2z2 for all z2 > 0,
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where we have taken α1 = (α2 + 1)/2, β1 = (β2 + 1)/2, and we have used the same
letter C to denote constants depending on κ, α2,�, β2 and He. Note that the matrix

(
3| f0|2 − |Q1

0|2 − 1 2 f0Q1
0

2 f0Q1
0 | f0|2

)

→
(
2 0
0 1

)

as z2 → +∞.

Then by taking α2 = (α3 + 1)/2, β2 = (β3 + 1)/2, the conclusion of this proposition
can be obtained by Proposition B.2 in appendix B. ��

For each y1 �= 0 we can also define f̂2(y1, z2) and Q̂2(y1, z2), and we have

Proposition 2.9 LetHe be a C3 function on �̄ satisfying ‖He‖C0(∂�) < h∗. Then for
any 0 < α3 < min{2,√2κ} and any 0 < β3 < 1, we have

∑

0≤i≤3, 0≤ j≤2

|∂ i+ j

yi1z
j
2

f̂2(y1, z2)| ≤ Ce−α3z2 ,

∑

0≤i≤3, 0≤ j≤2

|∂ i+ j

yi1z
j
2

Q̂2(y1, z2)| ≤ Ce−β3z2

for all z2 > 0, where the constants C depend only on �, He, κ , α3 and β3.

The proof is similar to that of Proposition 2.5, and we omit it.

3 Uniform estimation for the approximation solution

In this section we shall construct an approximation solution to system (1.1), then we
shall apply the method of matched asymptotic expansions (for the detail see [17]) to
derive estimates of this solution with respect to the parameter λ, from which we can
derive that the approximation solution we constructed is a global one.

To construct the approximation solution we need an inner asymptotic expansion
valid inside the boundary layer, and an outer asymptotic expansion valid outside the
boundary layer.

The outer expansion is (1, 0). In fact, we write the outer expansion in the form

U f (x, λ) = 1 +
∞∑

k=1

λkh f
k (x), λ → 0,

UQ(x, λ) =
∞∑

k=1

λkhQk (x), λ → 0.

The right sides of these equalities should be understood as formal expansions in the
powers of λ. Substituting these expressions of U f and UQ into system (1.1) and
equating the coefficients of the powers λk for each k ≥ 1, we find that

h f
k (x) = 0, hQk (x) = 0, x ∈ �, k ≥ 1.
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The inner expansion of the form (2.9) can be construct as in section 2. In fact, for
each y1 �= 0, we can find the leading order term ( f̂0(y1, z2), Q̂0(y1, z2)), the first order
term ( f̂1(y1, z2), Q̂1(y1, z2)), and the second order terms ( f̂2(y1, z2), Q̂2(y1, z2)) by
the processes similar to that for the solutions of (2.11), of system (2.20) and of system
(2.22). For more details see (5.18) and (5.19) below.

To construct the global approximation solution ( fap,Qap(x)), we fix a neighbor-
hoodN0 of the boundary ∂� such that, for each point X0 ∈ ∂�, there is a ball Bε(X0)

and aC2,α diffeomorphism that straightens the portion of ∂� that lies inN0
⋂

Bε(X0).

Set

d0 := dist (∂�,�\N0) , σn := {x ∈ �̄ : dist(x, ∂�) ≤ d0/n
}
. (3.1)

Then we define a smooth function χ(x) by

χ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x ∈ σ4;
smooth, x ∈ σ2\σ4;
0, x ∈ �\σ2.

Note that χ(x) is independent of λ.
Then we define the approximation solution by

fap(x) = χ(x)
(
f̂0(y1, z2) + λ f̂1(y1, z2) + λ2 f̂2(y1, z2)

)+ 1 − χ(x),

Qap(x) = χ(x)
(
Q̂0(y1, z2) + λQ̂1(y1, z2) + λ2Q̂2(y1, z2)

)
,

(3.2)

where z2 = y2/λ, x = ψ(y1, y2) and ψ is defined by (2.1). Since χ(x) = 0 outside
of a neighborhood of X0, we can extend the approximation solution by zero outside
of the support of χ , such that the approximation solution ( fap,Qap(x)) is defined
everywhere in �̄.

Now we define an operatorLλ as follows. For a scalar function f and a vector field
Q,

Lλ( f ,Q) :=
(

−λ2

κ2� f − (1 − f 2 − |Q|2) f , λ2curl2Q + f 2Q
)

. (3.3)

Lemma 3.1 Let

b(x, λ) = (b1(x, λ),b2(x, λ)) := Lλ( fap(x),Qap(x)). (3.4)

Then there exists a constant λ0 such that for any λ ∈ (0, λ0) we have

‖b1‖C0(�̄) + ‖b2‖C0(�̄) + ‖λ∇b2‖C0(�̄) + ‖λ2∇ div b2‖C0(�̄) ≤ C
(
�, κ,He) λ3.

(3.5)
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The proof of Lemma 3.1 will be given in appendix D.
Now we introduce the remainder terms R f and RQ by letting

R f = f − fap, RQ = Q − Qap. (3.6)

Then (R f ,RQ) satisfies the equations

⎧
⎪⎪⎨

⎪⎪⎩

− λ2

κ2
�R f = (1 − | f |2 − f fap − | fap|2 − |Q|2)R f

+ fap(Q + Qap) · RQ + b1 in �,

λ2curl2RQ + | f |2RQ + ( f + fap)R fQap = b2 in �,

(3.7)

and boundary conditions

⎧
⎪⎨

⎪⎩

∂R f

∂n
= 0, λ curlRQ = B3,

n · RQ = | fap|−2
[
λ| f |−2(| f |2 − | fap|2)∇tanHe + B4

]
on ∂�,

(3.8)

where b1 and b2 are defined by (3.4), B3 and B4 are given by (E.2) and (E.4) in
Appendix E respectively. The derivation of (3.8) is lengthy and will be given in
Appendix E.

In the following, we derive the H1, H2 and C0 estimates of (R f ,RQ) in terms of
b1, b2, B3 and B4. We need the following space

H(�, curl) = {u ∈ L2(�,R2) : curlu ∈ L2(�)}.

Lemma 3.2 (H1 estimate) Let ( f ,Q) be the solution of (1.1) satisfying (1.8), and let
(R f ,RQ) be defined by (3.6) with R f ∈ H1(�) and RQ ∈ H(�, curl). Then there
exists a constant λ0 > 0 such that, for any 0 < λ < λ0 we have

‖R f ‖L2(�) + ‖λ∇R f ‖L2(�) + ‖RQ‖L2(�) + ‖λ∇RQ‖L2(�)

≤ C
(
‖b1‖L2(�) + ‖b2‖L2(�) + ‖λ div b2‖L2(�) + ‖B3‖H1/2(∂�) + ‖B4‖H1/2(∂�)

)
,

(3.9)

where the constant C depends only on �, He, κ and δ, but not on λ.

Proof Step 1. Note that (R f ,RQ) can be viewed as a weak solution of (3.7) in the
sense of

∫

�

{λ2

κ2∇R f · ∇B +
(
(| f |2 + f fap + | fap|2 + |Q|2 − 1)R f

− fap(Q + Qap) · RQ

)
B
}
dx =

∫

�

b1Bdx,

(3.10)
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and

∫

�

λ2curlRQ · curlD +
(
| f |2RQ + ( f + fap)R fQap

)
· Ddx

=
∫

�

b2 · Ddx +
∫

∂�

λ2curlRQ · (n × D)dS
(3.11)

for all B ∈ H1(�) and D ∈ H(�, curl). Taking B = R f and D = RQ in (3.10) and
(3.11) respectively, and then adding the two equalities together we get

∫

�

(λ2

κ2 |∇R f |2 + λ2|curlRQ|2 + (| f |2 + f fap + | fap|2 + |Q|2 − 1)|R f |2

+ | f |2|RQ|2 + R f ( fQap − fapQ) · RQ
)
dx

=
∫

�

(b1R f + b2 · RQ)dx +
∫

∂�

(λn × RQ)B3dS.

(3.12)

Using (3.6) we can derive

R f ( fQap − fapQ) · RQ = |R f |2Qap · RQ − fap R f |RQ|2,

and

| f |2|RQ|2 − fap R f |RQ|2 =
(
| f |2 − fap f + | fap|2

)
|RQ|2.

Then

| f |2|RQ|2 + R f ( fQap − fapQ) · RQ

= |R f |2Qap · RQ +
[

( f − 1

2
fap)

2 + 3

4
| fap|2

]

|RQ|2.

Step 2. We claim that, for any given ε > 0, there exists λ1 > 0 such that for any
λ ∈ (0, λ1) we have

|R f |2|Qap(x)| < ε for all x ∈ �.

Indeed, from Proposition 2.5, Proposition 2.7 and Proposition 2.9, there exists
0 < β3 < 1 such that

|Q̂0| + |Q̂1| + |Q̂2| ≤ C(�,He, β3)e
−β3z2 ,

which shows that

|Qap(x)| ≤ M0e
−β3

dist(x,∂�)
λ
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for some M0 depending on �,He and β3. Now we choose R0 sufficiently large such
that

M0e
−β3R0 < ε.

This implies that

|R f |2|Qap(x)| ≤ | f − fap|2|Qap(x)| ≤ |Qap(x)| < ε if dist(x, ∂�) > λR0.

On the other hand, from lemma 2.1 and the uniqueness of the solution to (2.11)
satisfying (2.12), we conclude that,

‖ f̃λ − f̂0(λz1, z2)‖C0(�̃z∩B+
R0

(0)) → 0,

as λ → 0. Here we keep the notation used in section 2. Therefore, there exists λ1 > 0
such that for any λ ∈ (0, λ1) and any x0 ∈ ∂� we have

| f − fap|2 = |R f (x)|2 <
ε

M0
if x ∈ � ∩ BλR0(x0),

where we have used the boundedness of f̂1 and f̂2. Then

|R f |2|Qap(x)| <
ε

M0
M0 < ε if dist(x, ∂�) ≤ λR0.

Now the claim is proved.
Step 3. By the trace theorem on H(�, curl), we have

∣
∣
∣
∣

∫

∂�

(λn × RQ)B3dS

∣
∣
∣
∣ ≤ λ‖B3‖H1/2(∂�)‖n × RQ‖H−1/2(∂�)

≤ λ‖B3‖H1/2(∂�)(‖curlRQ‖L2(∂�) + ‖RQ‖L2(∂�)).

Note that, there exists λ2 > 0 such that for any λ ∈ (0, λ2) we have

| f |2 >
1

3
+ δ2

2
, | fap|2 >

1

3
+ δ2

2
.

Then taking ε in the claim sufficiently small, and using the Cauchy’s inequality, we
obtain from (3.12) that

‖R f ‖L2(�) + ‖λ∇R f ‖L2(�) + ‖RQ‖L2(�) + ‖λcurlRQ‖L2(�)

≤ C
(‖b1‖L2(�) + ‖b2‖L2(�) + ‖B3‖H1/2(∂�)

)
,

(3.13)

where C = C(�,He, κ, δ).
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Denote by

f̂ap = f̂0(y1, z2) + λ f̂1(y1, z2) + λ2 f̂2(y1, z2).

From Proposition 2.5, Proposition 2.7 and Proposition 2.9, it follows that

| f̂ap| + |∇y1 f̂ap| + |λ∇y2 f̂ap| ≤ C(�,He, κ). (3.14)

Then by (3.2) we have

|λ∇ fap(x)| ≤ C(�,He, κ) for all x ∈ �.

From the second equation of (3.7), we have

div
(| f |2RQ + ( f + fap)R fQap − b2

) = 0. (3.15)

From this and (3.13), and using the fact λ∇ f = λ∇R f + λ∇ fap, we find

‖λ divRQ‖L2(�) ≤ C
(‖b1‖L2(�) + ‖b2‖L2(�) + ‖λ div b2‖L2(�) + ‖B3‖H1/2(∂�)

)
,

where C = C(�,He, κ, δ).
We now consider the estimate for n · RQ. From (E.6) in appendix E, we have

‖n · RQ‖H1/2(∂�)

≤ ‖ f −2
ap ‖C1(∂�)

(
‖B4‖H1/2(∂�) + C(�,He)‖λ| f |−2(| f |2 − | fap|2)‖H1/2(∂�)

)

≤ C
(‖B4‖H1/2(∂�) + ‖R f ‖L2(�) + ‖λ∇R f ‖L2(�)

)
,

where C = C(�,He, κ, δ). In the last inequality we have used the trace theorem on
H1(�), and the inequalities:

‖ fap‖C1(∂�) ≤ C(�,He, κ, δ) since (3.14),

1

3
< | f |2 ≤ 1,

1

3
< | fap|2 ≤ 1, |λ∇ fap| ≤ C(�,He, κ, δ).

We apply the following div-curl-gradient inequality (see [11, P.212, Corollary 1])

‖∇RQ‖L2(�) ≤ C(�)
(‖RQ‖L2(�) + ‖ divRQ‖L2(�)

+ ‖curlRQ‖L2(�) + ‖n · RQ‖H1/2(∂�)

)
.

(3.16)

Then using (3.13) and the estimate on divRQ and ν ·RQ obtained above, we get (3.9).
��
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Therefore, by applying the estimate of b in � (see Lemma 3.1), the estimate of B3
(see (E.3)) and the estimate of B4 on ∂� (see (E.5)) in appendix E, for small λ we
have

‖R f ‖L2(�) + ‖λ∇R f ‖L2(�) + ‖RQ‖L2(�) + ‖λ∇RQ‖L2(�) ≤ Cλ3, (3.17)

where C = C(�,He, κ, δ).
Next, we establish the H2 estimate for (R f ,RQ).

Lemma 3.3 Let ( f ,Q) be the solution of (1.1) satisfying (1.8), and let (R f ,RQ) be
the solution of (3.7) with R f ∈ H1(�) and RQ ∈ H(�, curl). Then there exists a
constant λ0 > 0 such that, for any 0 < λ < λ0 we have

‖λ2∇2R f ‖L2(�) + ‖λ2∇2RQ‖L2(�) ≤ Cλ3, (3.18)

where the constant C depends only on �, He, κ and δ, but not on λ.

Proof Step 1. By the usual difference quotient method 5, from the first equation of
(3.7) and the boundary condition for R f in (3.8) we immediately obtain that

‖λ2∇2R f ‖L2(�) ≤ C
(‖R f ‖L2(�) + ‖RQ‖L2(�) + ‖b1‖L2(�)

)
,

where the constant C depends on �. From (3.5) and (3.17), we have

‖λ2∇2R f ‖L2(�) ≤ C(�,He, κ, δ)λ3. (3.19)

Step 2. Let H = λcurlRQ. From the second equation of (3.7), we can deduce that
H satisfies

{−λ2�H + f 2H = F in �,

H = B3 on ∂�,

where

RQ = (R1
Q, R2

Q)

F = λcurl(b2 − (R f + 2 fap)R fQap) − λ(∂1( f
2)R2

Q − ∂2( f
2)R1

Q).

Then by the Cauchy’s inequality, and using f ≥ 1/3 we have

‖λ∇H‖L2(�) + ‖H‖L2(�) ≤ C(�)
(‖F‖L2(�) + ‖B3‖H1/2(∂�)

)
,

5 We refer to [14, Theorem 8.8] for the interior H2 estimates, [14, Theorem 8.12] for the boundary H2

estimates.
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where we have used the inequality

λ2
∣
∣
∣
∣

∫

∂�

∂H

∂n
HdS

∣
∣
∣
∣ ≤ λ2‖H‖H1/2(∂�)

∥
∥
∥
∥
∂H

∂n

∥
∥
∥
∥
H−1/2(∂�)

≤ C(�)‖B3‖H1/2(∂�)

(∥
∥
∥λ

2∇H
∥
∥
∥
L2(�)

+
∥
∥
∥λ

2�H
∥
∥
∥
L2(�)

)

.

From the expressions of fap and Qap (see (3.2)), then by Proposition 2.5, Proposi-
tion 2.7 and Proposition 2.9 we have

| fap(x)| + |Qap(x)| + |λ∇ fap(x)| + |λ∇Qap(x)| ≤ C(�,He, κ, δ) for all x ∈ �.

(3.20)

This gives that

‖F‖L2(�) ≤ C(�,He, κ, δ)
(‖λ∇b2‖L2(�) + ‖R f ‖L2(�) + ‖λ∇R f ‖L2(�)

)
.

Therefore, we have

‖λ∇H‖L2(�) + ‖H‖L2(�) ≤ C
(‖λ∇b2‖L2(�) + ‖R f ‖L2(�) + ‖λ∇R f ‖L2(�)

+‖B3‖H1/2(∂�)

)
,

where C = C(�,He, κ, δ). From (3.5), (3.7) and the estimate on B3 (see (E.3)), we
can conclude that

‖∇(curlRQ)‖L2(�) ≤ C(�,He, κ, δ)λ. (3.21)

By (3.15), we have

divRQ = [div(b2 − ( f + fap)R fQap) − 2 f ∇ f · RQ
]
f −2.

Then using Hölder’s inequality and f = R f + fap, we have

‖λ2∇ divRQ‖L2(�)

≤ C
(‖R f ‖L2(�) + ‖λ∇R f ‖L2(�) + ‖λ∇R f ‖2L4(�)

+ ‖λ2∇2R f ‖L2(�)

+ ‖λ div b2‖L2(�) + ‖λ2∇ div b2‖L2(�)

)+ 6λ2‖∇R f ‖L4(�)‖∇RQ‖L4(�),

where we have used the estimates in (3.5), (3.20) and 1/3 < f ≤ 1, C =
C(�,He, κ, δ). Note that

‖∇R f ‖L4(�) ≤ C(�)
(
‖∇2R f ‖L2(�) + ‖∇R f ‖L2(�)

)
≤ C(�,He, κ, δ)λ

(3.22)
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by the Sobolev imbedding theorem. Then by (3.5) and (3.17), it follows that

‖∇(divRQ)‖L2(�) ≤ C(�,He, κ, δ)λ(1 + ‖∇RQ‖L4(�)). (3.23)

We now give the estimate of ν · RQ. From (3.8), it follows that

λ‖ν · RQ‖H3/2(∂�) ≤ C(�,He, κ, δ)
(
‖B4‖H3/2(∂�) + ‖λ2| f |−2(| f |2 − | fap|2)‖H3/2(∂�)

)

≤ C(�,He, κ, δ)
(
‖B4‖H3/2(∂�) + ‖λ2| f |−2(| f |2 − | fap|2)‖H2(�)

)
,

where we have used the boundedness of ‖ fap‖C2(∂�) and ‖∇tanHe‖C2(∂�). Using
(3.22) and (3.20), we have

‖λ2| f |−2(| f |2 − | fap|2)‖H2(�) ≤ C(�,He, κ, δ)λ3.

Then by the estimate on B4 (see (E.5)), we now obtain that

‖ν · RQ‖H3/2(∂�) ≤ C(�,He, κ, δ)λ2. (3.24)

By applying the div-curl-gradient inequality (see [3, section 2])

‖u‖H2(�) ≤ C(�)
(‖u‖H1(�) + ‖divu‖H1(�) + ‖curlu‖H1(�) + ‖ν · u‖H3/2(∂�)

)
,

we at last obtain that

‖∇2RQ‖L2(�) ≤ C(�,He, κ, δ)λ(1 + ‖∇RQ‖L4(�)),

where we have used (3.21), (3.23), (3.17) and (3.24). By the Sobolev imbedding
theorem, then choosing λ sufficiently small, we have

‖∇2RQ‖L2(�) ≤ C(�,He, κ, δ)λ(1 + ‖∇RQ‖L2(�)) ≤ C(�,He, κ, δ)λ.

We end our proof. ��
We use the notations introduced in section 2. Let X0 ∈ ∂� be fixed and U be a

neighborhood of X0. We assume that ψ defined by (2.1) is a diffeomorphism from
B+
R (0) onto U⋂�. Here B+

R (0) denotes an open half ball with the center at the origin
and the radius R. Let R̃ f and R̃Q be the representations of R f and RQ under the
z-coordinate system respectively. Then we have the estimate

‖R̃ f ‖H2(B+
1 (0)) + ‖R̃Q‖H2(B+

1 (0)) ≤ Cλ2,

where the constant C depends onHe,�, κ and δ, but not on λ.

Applying the Sobolev imbedding theorem ( [1, Lemma 5.17]), we can derive the

C0 estimate for R̃ f and R̃Q on a half ball B+
1 .
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Theorem 3.4 Let ( f ,Q) be the solution of system (1.1) satisfying (1.8), and let
(R̃ f , R̃Q) be the solution of system (3.7) under the z-coordinate system. Then there
exists a constant λ0 > 0 such that, for any 0 < λ < λ0 we have

‖R̃ f ‖C0(B+
1 )

+ ‖R̃Q‖
C0(B+

1 )
≤ Cλ2,

where the constant C depends only on �, He, κ and δ, but not on λ.

Proof of (1.9) and (1.10) The inequalities (1.9) and (1.10) follow from Theorem 3.4
immediately. ��

4 Decay estimate for Meissner solutions

In this section we prove Theorem 1.1. We shall follow the notations in section 3. We
also introduce the new variable t = x

λ
, and set

�λ =
{
t ∈ �λ : t = x

λ
, x ∈ �

}
.

Let ( f ,Q) be the solution of (1.1), and let ( fap,Qap) be the approximation solution
constructed in section 3 in the x-coordinates. Let f̌ , Ř f , f̌ap, Q̌, ŘQ, Q̌ap, B̌3 and b̌
be the representations of f , R f , fap,Q,RQ,Qap, B3 and b in the t-coordinate system
respectively. Then (Ř f , ŘQ) satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
κ2

�Ř f = (| f̌ |2 + f̌ f̌ap + | f̌ap|2 + |Q̌|2 − 1)Ř f − f̌ap(Q̌ + Q̌ap) · ŘQ − b̌1 in �λ,

curl2ŘQ + | f̌ |2ŘQ + ( f̌ + f̌ap)Ř f Q̌ap = b̌2 in �λ,

∂ Ř f
∂n = 0, curlŘQ = B̌3 on ∂�λ.

(4.1)

Lemma 4.1 (Schauder estimate) Let ( f ,Q) be the solution of (1.1) satisfying (1.8).
Then there exists a constant C depending on�, ‖He‖C3(∂�), κ and δ, but independent
of λ, such that

∥
∥
∥ f̌
∥
∥
∥
C3(�λ)

+
∥
∥
∥Q̌
∥
∥
∥
C3(�λ)

≤ C . (4.2)

Proof The proof is similar to that of Lemma 9.2 in [26], and we give only the outline
of the proof here. For any number m > 0, let Bm(x0) denote a ball with radius m and
center x0 ∈ �λ, and

Om := Bm(x0) ∩ �λ.

Step 1. The scaled function f̌ satisfies the following equation in �λ:

− 1

κ2� f̌ = (1 − | f̌ |2 − |Q̌|2) f̌ in �λ,
∂ f̌

∂n
= 0, on ∂�λ. (4.3)
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From (1.8) we see that

1

3
≤ f̌ (t) ≤ 1, |Q̌(t)|2 ≤ 2

3
, t ∈ �λ.

By the L p estimate of elliptic equations we see that f̌ ∈ W 2,p(O1) for any 1 < p <

∞, and hence f̌ ∈ C1,α(O1) for any 0 < α < 1.
Step 2. Q̌ satisfies the following equation on �λ:

{
curl2Q̌ + | f̌ |2Q̌ = 0 in �λ,

curlQ̌ = Ȟe, ν · Q̌ = − f̌ −2∇tanȞe on ∂�λ.
(4.4)

From (4.4) we can derive the integral estimate of curlQ̌. From the first equality we see
that

div Q̌ = 2 f̌ −1∇ f̌ · Q̌ ∈ L2(O1). (4.5)

Then we use the cut-off argument and use the div-curl-gradient inequality for vector
fields vanishing on ∂O1/2 to get an estimate on the norm ‖Q̌‖H1(O1/2)

. It follows that

div Q̌ = 2 f̌ −1∇ f̌ · Q̌ ∈ H1(O1/2).

We further use the difference quotient method to derive an estimate for ‖Q̌‖H2(O1/3)
.

By this and the Sobolev imbedding theorem we find that Q̌ ∈ W 1,p(O1/3) for any
1 < p < ∞, hence

Q̌ ∈ Cα(O1/3,R
2) for any 0 < α < 1. (4.6)

From this and (4.5) we see that

divQ̌ ∈ Cα(O1/3) for any 0 < α < 1. (4.7)

Step 3. Now we denote

Q̌(t) = (Q̌1(t), Q̌2(t)), Ȟ(t) = curlQ̌(t).

Ȟ is a solution of the following Dirichlet problem

{
�Ȟ + ∂2( f 2 Q̌1) − ∂1( f 2 Q̌2) = 0 in �λ,

Ȟ = Ȟe on ∂�λ.
(4.8)

Applying the interior L p estimates of elliptic equations and using the result obtained
in step 2, we see that Ȟ ∈ W 2,p(O1/4) for any 1 < p < ∞. This and the Sobolev
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imbedding theorem imply that curlQ̌ = Ȟ ∈ C1,α(O1/4). From this, (4.6) and (4.7),
and applying the div-curl-gradient inequality

‖u‖Ck+1,α(D̄) ≤ C(D, k, α){‖u‖Ck,α(D̄) + ‖divu‖Ck,α(D̄) + ‖curlu‖Ck,α(D̄)

+‖ν · u‖Ck+1,α(∂D)}, (4.9)

with k = 0 to ζ Q̌, where ζ is a suitable cut-off function, we obtain Q̌ ∈ C1,α(O1/5).
Step 4. Using equation (4.3) again we can show that f̌ ∈ C3,α(O1/6). From this

and (4.7) we get div Q̌ ∈ C1,α(O1/6). Applying Schauder estimates to (4.8) we get
curlQ̌ = Ȟ ∈ C2,α(O1/7). Then using (4.9) with k = 1 we get Q̌ ∈ C2,α(O1/8).
From this and (4.5) we see that div Q̌ ∈ C2,α(O1/8). So using (4.9) with k = 2 we
find Q̌ ∈ C3,α(O1/9). ��

Combining (3.5) and Lemma 4.1 we have

‖b̌‖C2(�λ) ≤ Cλ3,

where C is independent of λ. Then by the scaling argument and using Lemma 3.2 and
Lemma 4.1, we find

‖Ř f ‖H1(�λ) + ‖ŘQ‖H1(�λ) ≤ Cλ2, (4.10)

where C depends on �, κ , δ and He, but is independent of λ.
We now establish the interior Cα estimate for (Ř f , ŘQ). Denote

d(t) = dist(t, ∂�λ), ωn := {t ∈ �λ : d(t) ≥ n} . (4.11)

Lemma 4.2 Let ( f ,Q) be the solution of (1.1) satisfying (1.8). Then there exists a
constant C depending on �, He, κ and δ, but not on λ, such that

‖Ř f ‖C0(ω1)
+ ‖ŘQ‖C0(ω1)

≤ Cλ2, (4.12)

where ω1 is defined in (4.11) for n = 1.

Proof Using (4.10) and applying Sobolev imbedding theorem (see [1, Chapter 6]), we
can show that, for any 1 < p < ∞ and any ball B1(x0) ⊂ �λ we have

‖ŘQ‖L p(B1(x0)) + ‖Ř f ‖L p(B1(x0)) ≤ C(p)
(
‖Ř f ‖H1(�λ) + ‖ŘQ‖H1(�λ)

)
≤ Cλ2.

where the constantC in the right side depends on�,He, κ , δ and p, but is independent
of λ. Then we apply the interior W 1,p elliptic estimates to (4.1) (see Theorem 2.2 in
[8, Chapter 10]) and find that

‖∇ Ř f ‖L p(B 1
2
(x0)) + ‖∇ŘQ‖L p(B 1

2
(x0)) ≤ C(p)

(
‖ŘQ‖L p(B1(x0)) + ‖Ř f ‖L p(B1(x0))

)
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≤ Cλ2.

Taking p > 2 in this inequality and applying the Sobolev imbedding theorem again,
we obtain (4.12). ��

Proof of Theorem 1.1 The proof is based on the Agmon’s estimate [2].
First, from the expressions of fap and Qap given in (3.2), and using Lemma 4.2,

we see that, for any positive constants β4 < 1 and α4 < min{2,√2κ}, there exists N0
depending on α4 and β4, such that for any x satisfying d(x, ∂�) > N0λ we have

f (x) = fap(x) + R f (x) > β4, κ2( f 2 + f + |Q|2) > α2
4 . (4.13)

Step 1. We prove the exponential decay of Q.
Multiplying the second equation of (1.1) by η20Qwith η0 ∈ H1

0 (�), and integrating
over �, we obtain

∫

�

(
λ2|curl(η0Q)|2 + |η0 fQ|2

)
dx = λ2

∫

�

|∇η0 × Q|2dx . (4.14)

Take

d(x) = d(x, ∂�), η0(x) = ζ0(x)e
β4 d(x)/λ,

where 0 < β4 < 1, and ζ0 ∈ C∞
0 (�, [0, 1]) is a cutoff function satisfying

ζ0(x) =
{
1, if d(x) > (N0 + 1)λ,

0, if d(x) < N0λ,

and |∇ζ0(x)| ≤ 2/λ for all x . Plugging this η0 into (4.14), and using (4.13) and the
estimate |Q| ≤ 1, we derive

∫

�

e2β4 d(x)/λ|Q|2dx ≤ C, (4.15)

where the constant C depends on �, β4, κ , δ and He, but not on λ.

Next, we let

A(x) = eβ4 d(x)/λQ(x).

Then from (4.14), (4.2) and (4.15), we have

∫

�

|λcurlA|2dx ≤ C, (4.16)
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where C = C(�, β4, κ, δ,He). From (1.1), we have div( f 2Q) = 0 in �. Then we
obtain that

λ f divA + 2λ∇ f · A − f c1(x) · A = 0 in �, (4.17)

where

c1(x) = β4∇d(x). (4.18)

Using |λ∇ f | ≤ C (see (4.2)) and (4.15), we have

∫

�

|λ divA|2dx ≤ C(�,He, κ, δ, β4). (4.19)

Note that n · A = n · Q = −λ f −2∇tanHe on ∂�. Then there exists a constant C
depending on �, He, κ and δ, such that

‖n · A‖H1/2(∂�) ≤ ‖He‖C2(∂�)‖λ f −2‖H1/2(∂�)

≤ C(�)‖He‖C2(∂�)‖λ f −2‖H1(�) ≤ C,

where in this inequality we have used the trace theorem on H1(�) and ‖λ∇ f ‖L2(�) ≤
C . Applying (4.15), (4.16), (4.19) and then by the div-curl-gradient inequality (3.16),
we have

∫

�

|λ∇A|2dx ≤ C, (4.20)

where C = C(�,He, κ, δ, β4).

From (1.1), we can derive that A is a weak solution of the following system:

λ2curlcurlA − λ curlE − F(x) = 0 in �, (4.21)

where A = (A1, A2),

E(x) = β4(∂1d(x)A2 − ∂2d(x)A1), c2(x) = β4curld(x) = β4(∂2d(x),−∂1d(x)),

curlE = (∂2E,−∂1E), F(x) = (λcurlA)c2(x) − E(x)c2(x) − f 2A.

Denote by

G(x) = f −1 (2λ∇ f · A − f c1(x) · A) ,

and let

Ǎ(t) = A(λt), F̌(t) = F(λt), Ě(t) = E(λt), Ǧ(t) = G(λt).
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From (4.21) and (4.17), for any � ∈ H1
0 (B2(t0)) with B2(t0) ⊂ �t being a disc of

the center t0 and radius 2, we have

∫

B2(t0)
∇Ǎ · ∇�dt =

∫

B2(t0)
curlǍ · curl�dt +

∫

B2(t0)
div Ǎ · div�dt

=
∫

B2(t0)
Ěcurl�dt +

∫

B2(t0)
F̌ · �dt +

∫

B2(t0)
Ǧ div�dt .

Since div F̌ = 0 in B2(t0), we can find Ȟ ∈ L p(B2(t0)) (see Lemma 3 in [11, Chapter
IX]) such that curlȞ = F̌ and ‖Ȟ‖L p(B2(t0)) ≤ C(p)‖F̌‖L2(B2(t0)) for any 2 ≤ p < ∞.

Now we can apply the interior W 1,p elliptic estimates to Ǎ (see Theorem 2.2 in [8,
Chapter 10]) and find that

‖∇Ǎ‖L p(B1(t0))

≤ C(p)
(
‖Ě‖L p(B2(t0)) + ‖Ǧ‖L p(B2(t0)) + ‖Ȟ‖L p(B2(t0)) + ‖Ǎ‖H1(B2(t0))

)
.

Taking p = 3 in the last inequality and applying the Sobolev imbedding theorem, we
obtain

‖∇Ǎ‖L3(B1(t0)) ≤ C‖Ǎ‖H1(B2(t0)) ≤ Cλ−1,

where C = C(�,He, κ, δ, β4).

Since W 1,3 is continuously embedded into C0, and then using the arbitrariness of
the ball B1(t0) ⊂ �λ, we have

‖Ǎ‖C0(ω2)
≤ Cλ−1, (4.22)

where C = C(�, β4, κ, δ,He), and ω2 is defined by (4.11). Since ∂� ∈ C3, then
there exists a positive constant μ depending on � such that the distance function
d(x) ∈ C3(�μ) (see [14, Lemma 14.16]), where

�μ = {x ∈ �̄ : d(x) < μ}. (4.23)

Using the equations (4.17) and (4.21), then by the Schauder’s estimate [14, Theorem
6.2] on �μ,λ we have

‖Ǎ‖C1(ω3
⋂

� μ
2 ,λ

) ≤ Cλ−1,

where C = C(�, β4, κ, δ,He), and �μ,λ = {t = x/λ ∈ �λ : x ∈ �μ

}
. Then

|λcurlQ(x)| ≤ C(�, β4, κ, δ,He)λ−1e−β4 d(x)/λ for x ∈ ∂�μ
2
\∂�.
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For any 0 < β < β4, there exists λ1 > 0 such that, for any λ ∈ (0, λ1) we have

|λcurlQ(x)| ≤ C1e
−β d(x)/λ for x ∈ ∂�μ

2
\∂� (4.24)

and by (4.22)

|Q(x)| ≤ C2e
−β d(x)/λ for x ∈ �\�μ

4
, (4.25)

where the constants C1 and C2 depending on �,β, κ, δ andHe can be taken the same
number. Let

H = λcurlQ, B(x) = eβ d(x)/λH .

Then from the second equation of (1.1), we see that B(x) satisfies

λ2 div( f −2∇B) − 2λβ f −2∇d · ∇B + ( f −2β2 − λβ f −2�d − 1)B = 0 for x ∈ �μ
2
.

There exists positive constants ε (depending on �,β, κ, δ,He) and λ2 (depending on
ε,�, β, κ, δ,He) such that for any λ ∈ (0, λ2) we have

f −2β2 − λβ f −2�d − 1 < −ε for x ∈ �μ
2
\�λN0 ,

where we have used the first inequality in (4.13). By the maximum principle [14,
Theorem 3.7], we have

‖B‖C0(� μ
2

\�λN0 ) ≤ ‖B‖C0(∂(� μ
2

\�λN0 )) ≤ max(eβN0 ,C1),

where C1 is given in (4.24). By the Schauder’s estimate [14, Theorem 6.2] again, we
have

‖λ∇B‖C0(� μ
4

\�λ(N0+1))
≤ C(�,He)‖B‖C0(� μ

2
\�λN0 ).

Then we have

|λ2curl2Q(x)| ≤ 2|λ∇H(x)| ≤ Ce−β d(x)/λ for x ∈ �μ
4
\�λ(N0+1),

where C = C(�, β, κ, δ,He). Using the second equation in (1.1), we have

|Q(x)| = |λ2 f −2curlcurlQ(x)| ≤ Ce−β d(x)/λ for x ∈ �μ
4
,

wherewe have used |Q(x)| ≤ 1 for x ∈ �λ(N0+1),C = C(�, β, κ, δ,He). Combining
this inequality with the estimate in (4.25), we obtain the exponential decay estimate
for Q.

Step 2. We prove the exponential decay of f .

123



578 X.-B. Pan, X. Xiang

Let g = 1 − f . Multiplying the first equation of (1.1) by η21g with η1 ∈ H1
0 (�),

and integrating over �, we obtain

∫

�

(
λ2

κ2 |∇(η1g)|2 + (2 − 3g + |g|2 + |Q|2)(η1g)2
)

dx

=
∫

�

|η1|2|Q|2gdx + λ2

κ2

∫

�

|g∇η1|2dx .
(4.26)

Take

η1(x) = ζ1(x)e
α4 d(x)/λ,

where 0 < α4 < min{√2κ, 2β}, and ζ1 ∈ C∞
0 (�, [0, 1]) is a cutoff function satisfy-

ing

ζ1(x) =
{
1, if d(x) > (N0 + 1)λ,

0, if d(x) < N0λ,

and |∇ζ1(x)| ≤ 2/λ for all x . Plugging this η1 into (4.26), using (4.13) and the fact
|g| < 1, we get

∫

�

e2α4 d(x)/λ|g|2dx ≤ C,

where C = C(�,He, κ, δ, α4, β), but C does not depend on λ.

Now we set

h(x) = eα4 d(x)/λg(x).

Using (4.26) again, we have

‖h‖L2(�) + ‖λ∇h‖L2(�) ≤ C(�,He, κ, δ, α4, β).

Then h is a weak solution of

λ2

κ2�h − λ

κ2 div(hv) = r(x) in �,

where

v(x) = α4∇d(x),

r(x) = v
κ2 · (λ∇h − hv) + (2 − 3g + |g|2 + |Q|2)h − |Q|2eα4 d(x)/λ.
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Let

ȟ(t) = h(λt), ď(t) = ď(λt), ř(t) = ř(λt)

Then for any ϕ ∈ H1
0 (B2) with B2(t0) ⊂ �t being a ball with the center t0 and radius

2, we have

∫

B2(t0)

1

κ2∇ ȟ · ∇ϕdt =
∫

B2(t0)

1

κ2 ȟď · ∇ϕdt −
∫

B2(t0)
ř · ϕdt

We look for φ ∈ H1
0 (B2(t0))

⋂
H2(�) such that

∫

B2(t0)
ř · ϕdt =

∫

B2(t0)
∇φ · ∇ϕdt for any ϕ ∈ H1

0 (B2)

and φ satisfies ‖∇φ‖L p(B2(t0)) ≤ C(p)‖ř‖L2(B2(t0)) with 2 < p < ∞. Now we can

apply the interior W 1,p elliptic estimates to ȟ (see Theorem 2.2 in [8, Chapter 10])
and find that

‖∇ ȟ‖L p(B1(t0)) ≤ C(p, κ)
(
‖ȟ‖L p(B2(t0)) + ‖∇φ‖L p(B2(t0)) + ‖ȟ‖H1(B2(t0))

)
.

Taking p = 3 in the last inequality and applying the Sobolev imbedding theorem, we
obtain

‖∇ȟ‖L3(B1(t0)) ≤ C(‖ȟ‖H1(B2(t0)) + 1) ≤ Cλ−1.

whereC = C(�,He, κ, δ, α4, β).By the Sobolev imbedding theorem again, we have
ȟ ∈ C0(ω2), where ω2 is defined by (4.11). Then

|g(x)| ≤ C(�,He, κ, δ, α4, β)λ−1e−α4 d(x)/λ for x ∈ �̄.

For any 0 < α < α4, there exists λ3 > 0 such that, for any λ ∈ (0, λ3) we have

|g(x)| ≤ C(�,He, κ, δ, α, β)e−α d(x)/λ for x ∈ �\�μ
2
, (4.27)

where �μ
2
is defined in (4.23). Let

u(x) = g(x)eα d(x)/λ.

Then u(x) satisfies

λ2

κ2�u − 2αλ

κ2 ∇d · ∇u = s(x) in �,
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where

s(x) =
(

−α2

κ2 + λα

κ2 �d + 2 − 3g + |g|2 + |Q|2
)

u − |Q|2eα d(x)/λ.

Since 0 < α < min{√2κ, 2}, there exist ε1 > 0 (depending on�,He, κ, α, δ),λ4 > 0
(depending on ε1,�,He, κ, α, δ) and N1 (depending on �,He, κ, α, δ) such that, for
any λ ∈ (0, λ4) and any x ∈ �μ

2
\�λN1 we have

−α2

κ2 + λα

κ2 �d + 2 − 3g + |g|2 + |Q|2 > ε1 > 0.

Using the maximum principle [14, Corollary 3.2], we then can deduce that

‖u‖C0(� μ
2

\�λN1 ) ≤ ‖u‖C0(∂(� μ
2

\�λN1 )) + ε−1
1 sup

x∈� μ
2

\�λN1

|Q|2eα d(x)/λ ≤ C,

where C = C(�, β, α, κ, δ,He). Combining this inequality with the estimate in
(4.27), and then using the boundedness of |g(x)| ≤ 1 for x ∈ �λN1 , we obtain the
exponential decay estimate for 1 − f . ��

5 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. We shall first establish two results
for some ordinary differential systems. The first result is Theorem 5.1, which will be
used to show how the minimum points of | f |2 − |Q|2 depend on the applied fieldHe,
and the second is Theorem 5.2 which is needed to prove how the minimum points of
| f |2 − |Q|2 depend on the curvature of ∂�.

We first establish the mixed monotonicity on h0, of the solution of (2.14) satisfying
(2.12). Existence of such solution has been proved in Proposition 2.2. For simplicity
of notation, we take positive constants h1 > h2, and denote the solution ( f0, Q1

0) of
(2.14) with h0 = hi by ( fi , gi ), i = 1, 2. So ( fi , gi ) is the solution of the following
problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1
κ2

( fi )
′′ = (1 − | fi |2 − |gi |2) fi in R+,

−(gi )′′ + | fi |2gi = 0 in R+,

( fi )
′
(0) = 0, fi (∞) = 1,

(gi )′(0) = −hi , gi (∞) = 0.

(5.1)

Theorem 5.1 Let ( fi , gi ) be the solution of (5.1) satisfying

inf
R+

(| fi |2 − |gi |2) ≥ 1

3
+ δ2
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for i = 1, 2. If h1 > h2 > 0, then

f1(z2) < f2(z2), g1(z2) > g2(z2) for all z2 ≥ 0.

Proof We prove the monotonicity property by an iterative method. As the process is
very technical, we describe the main idea of the proof first.

We first let f (0)
i = 1, and solve the second equation of (5.1) with fi = f (0)

i ,

together with the boundary conditions given on the last line of (5.1), and get g(0)
i .

Next we solve the first equation of (5.1) with gi = g(0)
i , together with the boundary

conditions given on the third line, and obtain the solution f (1)
i .

Then we solve the second equation of (5.1) again but with fi = f (1)
i , together with

the boundary conditions on the last line, and obtain the solution g(1)
i .

Then we solve the first equation of (5.1) again but with gi = g(1)
i , together with

the boundary conditions on the third line, and obtain the solution f (2)
i .

We iterate this process and obtain two sequences

{( f (k)
i , g(k)

i )}∞k=1, i = 1, 2.

We claim that these two sequences have the following mixed monotonicity property:

(i) For each i = 1, 2,

1 ≥ f (k)
i > f (k+1)

i >

√
3

3
, 0 < g(k)

i < g(k+1)
i <

√
6

3
, for all k = 1, 2, · · · .

(ii)

f (k)
1 < f (k)

2 , g(k)
1 > g(k)

2 , for all k = 1, 2, · · · .

The monotonicity properties (i) and (ii) will be proved later, see step 2 and step 3 in
the detailed proof.

From the monotonicity property (i), and by the elliptic estimates, the sequence
( f (k)

i , g(k)
i ) converges in C2,α

loc (R+) to a solution ( fi , gi ) of (5.1).
From the monotonicity property (ii), we can show that f1(z2) ≤ f2(z2) and

g1(z2) ≥ g2(z2) for all z2 ≥ 0. Then by the maximum principle we can show that the
strict inequalities hold for z2 > 0.

Now we give the detailed proof of the theorem.
Step 1. Set f (0) = 1. Let g(0)

1 and g(0)
2 be the solutions of the following equations

{−(g(0)
1 )′′ + | f (0)|2g(0)

1 = 0 in R+,

(g(0)
1 )′(0) = −h1, (g(0)

1 )(∞) = 0,
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and

{−(g(0)
2 )′′ + | f (0)|2g(0)

2 = 0 in R+,

(g(0)
2 )′(0) = −h2, (g(0)

2 )(∞) = 0,

respectively. It is easy to see that

g(0)
1 (z2) = h1e

−z2 > g(0)
2 (z2) = h2e

−z2 for all z2 ≥ 0.

Step 2. Let gh1 ∈ L2(R+) and gh2 ∈ L2(R+) be two given smooth functions and

assume that
√
6
3 > gh1(z2) > gh2(z2) > 0 for all z2 ≥ 0. Let p1(z2) and p2(z2) be

the solutions of the following two problems

{− 1
κ2

p′′
1 = (1 − |p1|2 − |gh1 |2)p1 in R+,

p1(∞) = 1, p′
1(0) = 0,

and
{− 1

κ2
p′′
2 = (1 − |p2|2 − |gh2 |2)p2 in R+,

p2(∞) = 1, p′
2(0) = 0,

respectively. The existence and the uniqueness of the solution p1 follows from the
minimization problem of the functional

min
f ∈W

∫ ∞

0

{ 1

κ2 | f ′
(z2)|2 + | f (z2)|2|gh1(z2)|2 + 1

2
(1 − | f (z2)|2)2

}
dz2,

where

W =
{
u : u′, 1 − u ∈ L2(R+), u ∈ L∞(R+)

}
.

It is easy to see that p1 ≥ 0. By the standard elliptic estimates, the solution p1 is
smooth, and hence p1 > 0. Similarly, we have p2 > 0.

Claim 1 p1(z2) ≤ p2(z2) for all z2 ≥ 0.
Suppose otherwise Claim 1 were false. Then there exist z02 ∈ [0,∞) and z12 ∈

(z02,∞] such that

p1(z
0
2) ≥ p2(z

0
2), p1(z

1
2) = p2(z

1
2), p1(z2) > p2(z2) for all z2 ∈ (z02, z

1
2).

(5.2)

This gives that

p′
2(z

0
2) ≤ p′

1(z
0
2), p′

2(z
1
2) ≥ p′

1(z
1
2). (5.3)
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Indeed, if z02 = 0, then p′
2(z

0
2) = p′

1(z
0
2) = 0; if 0 < z02 < ∞, then p2(z02) = p1(z02),

and p′
2(z

0
2) ≤ p′

1(z
0
2) because of the last inequality in (5.2). So the first inequality in

(5.3) is true. If z12 = ∞, then p′
2(z

1
2) = p′

1(z
1
2) = 0; if 0 < z12 < ∞, then p2(z12) =

p1(z12), and p′
2(z

1
2) ≥ p′

1(z
1
2) because of the last inequality in (5.2). Therefore the

second inequality in (5.3) is true.
From the equations for p1 and p2 we have

− 1

κ2 (p1 p
′
2 − p2 p

′
1)

′ = p1 p2
(
|p1|2 − |p2|2 − |gh2 |2 + |gh1 |2

)
.

Integrating the above equality from z02 to z12, we then find that the left side of the
resulted equality is

1

κ2 (p1 p
′
2 − p2 p

′
1)(z

0
2) − 1

κ2 (p1 p
′
2 − p2 p

′
1)(z

1
2) ≤ 0.

However the right side of the resulted equality is

∫ z12

z02

p1 p2
(
|p1|2 − |p2|2 − |gh2 |2 + |gh1 |2

)
dz2 > 0,

so we get a contradiction. Therefore Claim 1 is true.

Claim 2 p1(z2) < p2(z2) for all z2 ≥ 0.
To prove this, let w(z2) = p1(z2) − p2(z2). From the equations of p1 and p2 we

have

− 1

κ2w′′ = w(1 − |p1|2 − |p2|2 − p1 p2 − |gh2 |2) + (|gh2 |2 − |gh1 |2)p1. (5.4)

Suppose there exists z32 ∈ [0,∞) such that w(z32) = 0. Then we have

w′(z32) = 0; w′′(z32) ≤ 0 if z32 > 0, lim
z→0+ w′′(z) ≤ 0 if z32 = 0. (5.5)

In fact, w(z2) is non-positive for any z2 ≥ 0, and w(z32) = 0, so z32 is a maximum
point of w. If z32 > 0, then we have obviously w′(z32) = 0 and w′′(z32) ≤ 0. If z32 = 0,
then w′(0) = p′

1(0) − p′
2(0) = 0, which together with the fact that z32 is a maximum

point implies the last inequality in (5.5).
Note that

(|gh2 |2(z2) − |gh1 |2(z2))p1(z2) < 0 for all z2 > 0.

Then by (5.4) and by noting that w(z32) = 0, we have that

w′′(z32) > 0 if z32 > 0, lim
z→0+ w′′(z) > 0 if z32 = 0.
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This is a contradiction to (5.5). Therefore Claim 2 is true.

Step 3. Let fh1(z2) and fh2(z2) be given functions and assume that 0 < fh1(z2) ≤
fh2(z2) < 1 for all z2 ≥ 0. Let q1 and q2 be the solutions of the following problems

{−q ′′
1 + f 2h1q1 = 0 in R+,

q ′
1(0) = −h1, q1(∞) = 0,

and

{−q ′′
2 + f 2h2q2 = 0 in R+,

q ′
2(0) = −h2, q2(∞) = 0,

respectively. We show that

q1(z2) > q2(z2) for all z2 ≥ 0. (5.6)

To prove (5.6), we introduce a function q3 which is a solution of the following
equation:

{−q ′′
3 + f 2h2q3 = 0 in R+,

q ′
3(0) = −h1, q3(∞) = 0.

By the maximum principle, it is easy to see that, for any z2 > 0,

q ′
i (z2) < 0, qi (z2) > 0 for i = 1, 2, 3.

Claim 3 q1(z2) ≥ q3(z2) for all z2 ≥ 0, and q1(z2) > q3(z2) for all z2 ≥ 0 if
0 < fh1(z2) < fh2(z2) < 1.

Suppose Claim 3 were false. Then there exists z42 ∈ [0,∞) and z52 ∈ (z42,∞] such
that

q1(z2) < q3(z2) for z2 ∈ (z42, z
5
2) (5.7)

and

q1(z
4
2) ≤ q3(z

4
2), q ′

1(z
4
2) ≤ q ′

3(z
4
2) < 0,

q1(z
5
2) = q3(z

5
2), q ′

3(z
5
2) ≤ q ′

1(z
5
2) < 0.

(5.8)

From the equations for q1 and q3 we find

(q1q
′
3 − q3q

′
1)

′ = q1q3
(
| fh2 |2 − | fh1 |2

)
. (5.9)
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Integrating (5.9) from z42 to z52 we get

0 ≤
∫ z52

z42

q1q3
(
| fh2 |2 − | fh1 |2

)
dz2

= (q1q
′
3 − q3q

′
1)(z

5
2) − (q1q

′
3 − q3q

′
1)(z

4
2) ≤ 0. (5.10)

Then, since fh2(z2) ≥ fh1(z2) > 0 for all z2 ≥ 0, g1(z2) and g3(z2) are positive
functions, we must have

fh2(z2) = fh1(z2) for all z2 ∈ (z42, z
5
2).

Moreover, we have q1(z42) = q3(z42) and q ′
1(z

4
2) = q ′

3(z
4
2) by (5.10), which gives that

q1(z2) = q3(z2) for z2 ∈ (z42, z
5
2) by the uniqueness of the solutions for the initial

value problem. This is a contradiction to (5.7). By a similar proof, using (5.10) again
we have q1(z2) > q3(z2) for all z2 ≥ 0 if 0 < fh1(z2) < fh2(z2) < 1. Therefore
Claim 3 is true.

Claim 4 q3(z2) > q2(z2) for all z2 ≥ 0.
Suppose Claim 4 were false. Then there exists z62 ∈ [0,∞) and z72 ∈ (z62,∞] such

that

q3(z
6
2) ≤ q2(z

6
2), q ′

3(z
6
2) ≤ q ′

2(z
6
2) < 0,

q3(z
7
2) = q2(z

7
2), q ′

2(z
7
2) ≤ q ′

3(z
7
2) < 0.

From the equations for q2 and q3 we have

(q2q
′
3 − q3q

′
2)

′ = 0 for all z2 > 0.

Integrating this equality from z62 to z72 we get

(q2q
′
3 − q3q

′
2)(z

7
2) = (q2q

′
3 − q3q

′
2)(z

6
2). (5.11)

For the left side term in (5.11) we have

q2(z
7
2)q

′
3(z

7
2) − q3(z

7
2)q

′
2(z

7
2) = q2(z

7
2)(q

′
3(z

7
2) − q ′

2(z
7
2)) ≥ 0.

If z62 = 0, then the right side term in (5.11) is

q2(0)q
′
3(0) − q3(0)q

′
2(0) = −q2(0)h1 + q3(0)h2 ≤ q2(0)(h2 − h1) < 0,

which is a contradiction.
If z62 > 0, then from (5.11) we have

0 ≤ q2(z
6
2)q

′
3(z

6
2) − q3(z

6
2)q

′
2(z

6
2)

= [q2(z62) − q3(z
6
2)]q ′

3(z
6
2) + q3(z

6
2)[q ′

3(z
6
2) − q ′

3(z
6
2)].
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Each term in the right side of the above equality is non-positive. So we must have
q2(z62) = q3(z62) and q ′

2(z
6
2) = q ′

3(z
6
2). Then we apply the existence and uniqueness

theorem for the initial value problems of ordinary differential equations on the interval
[0, z62], and find that q2(z2) = q3(z2) for all z2 ∈ [0, z62]. In particular

−h2 = q ′
2(0) = q ′

3(0) = −h1,

which is a contradiction to the assumption that h1 > h2. Now Claim 4 is proved.

Combining Claims 3 and 4 we conclude that

q1(z2) ≥ q3(z2) > q2(z2) for all z2 > 0.

Now (5.6) has been proved.
Step 4. Let i = 1, 2 and k ≥ 0. Assume f (k)

i and f (k+1)
i are two given functions

satisfying

0 < f (k+1)
i (z2) < f (k)

i (z2) < 1 for all z2 ≥ 0,

and hi is a given constant. Let g(k)
i and g(k+1)

i be the solutions of the following two
problems

{−(g(k)
i )′′ + | f (k)

i |2g(k)
i = 0 in R+,

(g(k)
i )′(0) = −hi , g(k)

i (∞) = 0,
(5.12)

and

{−(g(k+1)
i )′′ + | f (k+1)

i |2g(k+1)
i = 0 in R+,

(g(k+1)
i )′(0) = −hi , g(k+1)

i (∞) = 0,

respectively. From Claim 3 in step 3 we see that

g(k)
i (z2) < g(k+1)

i (z2) for all z2 ≥ 0.

Let i = 1, 2 and k ≥ 0. Assume g(k)
i and g(k+1)

i are two given functions satisfying

0 < g(k)
i (z2) < g(k+1)

i (z2) for all z2 ≥ 0.

Let f (k+1)
i and f (k+2)

i be the solution of the following problems

{− 1
κ2

( f (k+1)
i )′′ = (1 − | f (k+1)

i |2 − |g(k)
i |2) f (k+1)

i in R+,

( f (k+1)
i )′(0) = 0, ( f (k+1)

i )(∞) = 1,
(5.13)
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and

{− 1
κ2

( f (k+2)
i )′′ = (1 − | f (k+1)

i |2 − |g(k+1)
i |2) f (k+2)

i in R+,

( f (k+2)
i )′(0) = 0, ( f (k+2)

i )(∞) = 1,

respectively. From step 2 we see that

0 < f (k+2)
i (z2) < f (k+1)

i (z2) ≤ 1 for all z2 ≥ 0.

Step 5. Let i = 1, 2. Given constants h1 and h2, let ( fi , gi ) be the unique solution
of (5.1) satisfying

0 < fi (z2) < 1, gi (z2) > 0 for all z2 ≥ 0.

We construct two sequences { f (k)
i }∞k=0 and {g(k)

i }∞k=0 as follows. First, we let

f (0)
i (z2) = 1 for i = 1, 2. Then we obtain the sequences by induction as follows:

if we know f (k)
i (z2), then we solve the equation of (5.12) to obtain g(k)

i (z2); if we

know g(k)
i (z2), then we solve the equation of (5.13) to obtain f (k+1)

i (z2).

From Claim 3 in step 3, we have g(0)
i (z2) < gi (z2) for all z2 ≥ 0, since fi (z2) <

f (0)
i (z2). Next using g(0)

i (z2) < gi (z2), we have fi (z2) < f (1)
i (z2) for all z2 ≥ 0

by Claim 2 in step 2. Then using fi (z2) < f (1)
i (z2), we have g(1)

i (z2) < gi (z2) for

all z2 ≥ 0. By induction and from step 4, we finally obtain a sequence ( f (k)
i , g(k)

i )

satisfying, for all z2 ≥ 0,

1 = f (0)
i (z2) > f (1)

i (z2) > f (2)
i (z2) > · · · > f (k)

i (z2) > f (k+1)
i (z2) > · · · > fi (z2)

and

0 < g(0)
i (z2) < g(1)

i (z2) < g(2)
i (z2) < · · · < g(k)

i (z2) < g(k+1)
i (z2) < · · · < gi (z2).

Then, noting that ( f (k)
i (z2), g

(k)
i (z2)) satisfies the equations for f ki and gki , usingwhich

we can derive the following estimate

‖ f (k)
i ‖C3(R+) + ‖g(k)

i ‖C3(R+) ≤ Ci ,

where the norm ‖ f ‖C3(R+) is defined by

‖ f ‖C3(R+) =
3∑

j=0

sup
z2∈R+

| f ( j)(z2)|,

and the constant Ci depends only on fi and gi , and hence depends only on hi for each
i . So we can apply the Arzela’s theorem and using the uniqueness of the solution to
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(5.1), to derive

lim
k→∞ f (k)

i (z2) = fi (z2), lim
k→∞ g(k)

i (z2) = gi (z2) for each z2 ≥ 0, i = 1, 2.

From step 2 and step 3, we have

f (k)
1 (z2) < f (k)

2 (z2), g(k)
1 (z2) > g(k)

2 (z2), for z2 ≥ 0, k = 1, 2, · · · .

Therefore, f1(z2) ≤ f2(z2) and g1(z2) ≥ g2(z2) for all z2 ≥ 0. From step 3, we
actually have g1(z2) > g2(z2) for all z2 ≥ 0. Then applying the result of step 2, we
finally obtain that f1(z2) < f2(z2) and g1(z2) > g2(z2) for all z2 ≥ 0. ��
Proof of Proposition 2.4 Step 1. We prove that (2.14) has a solution ( f0, Q1

0) satisfying

(2.12) when h0 =
√
2
3 .We construct sequences { fi } and {gi }which solve the following

problems

{−(gi )′′ + ( fi )2gi = 0 in R+,

(gi )′(0) = −h0, gi (∞) = 0,
(5.14)

and

{− 1
κ2

( fi+1)
′′ = (1 − | fi+1|2 − |gi |2) fi+1 in R+,

( fi+1)
′(0) = 0, ( fi+1)(∞) = 1.

(5.15)

In this step we always let h0 =
√
2
3 .

Let f0 =
√
6
3 . Solving the equation (5.14) for i = 0, we get that g0 =

√
3
3 e−√

6z2/3.

Then we look for f1 which solves (5.15) for i = 0 and g0 =
√
3
3 e−√

6z2/3. In fact, f1
can be obtained by minimization:

min
∇ f ∈L2(R+),

1− f ∈L2(R+),0≤ f ≤1

∫ ∞

0

{ 1

κ2 | f ′
(z2)|2 + | f (z2)|2|g0(z2)|2 + 1

2
(1 − | f (z2)|2)2

}
dz2.

Using the fact that: t2|g0|2 + 1
2 (1 − t2)2 is monotonically decreasing with respect to

t if g20 ≤ 1
3 and 0 < t ≤

√
6
3 . Then we have

| f (z2)|2|g0(z2)|2 + 1

2
(1 − | f (z2)|2)2 ≥

(√
6

3

)2

|g0(z2)|2 + 1

2

⎛

⎝1 −
(√

6

3

)2
⎞

⎠

2

if f (z2) ≤
√
6
3 . Therefore, the solution f1 satisfies f1(z2) ≥

√
6
3 for all z2 ≥ 0.

Actually, by the maximum principle, we have f1(z2) >
√
6
3 for all z2 ≥ 0.
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Repeating this process we can solve equation (5.14) and equation (5.15) in turn
to find the sequences { fi } and {gi }. In particular, from step 3 in Theorem 5.1 (see
Claim 3) we have g0(z2) > g1(z2) for all z2 ≥ 0, since f0(z2) < f1(z2); then from
step 2 in Theorem 5.1 we have f1(z2) < f2(z2) for all z2 ≥ 0. Repeating using step
2 and step 3 in Theorem 5.1, we obtain that, for all z2 ≥ 0,

√
6

3
= f0(z2) < f1(z2) < f2(z2) < f3(z2) < · · · < 1,

√
3

3
≥ g0(z2) > g1(z2) > g2(z2) > g3(z2) > · · · > 0.

(5.16)

From the proof of step 5 in Theorem 5.1, the limit

( lim
i→∞ fi (z2), lim

i→∞ gi (z2)) := ( f
√
2/3(z2), g

√
2/3(z2))

is the solution of (2.14) satisfying (2.12) when h0 =
√
2
3 .

Step 2. We prove that (2.14) has a solution ( f0, Q1
0) satisfying (2.12) when 0 <

h0 <
√
2
3 . Let ( f

√
2/3(z2), g

√
2/3(z2)) be the solution obtained in step 1 when h0 =√

2/3. For any given 0 < h1 <
√
2/3, similar to the construction of the sequences

( fi , gi ) in (5.16), we first let f
h1
0 (z2) = f

√
2/3(z2), and solve the equation (5.14) with

h0 = h1 and f0(z2) = f h10 (z2), then we can obtain the solution gh10 (z2) < g
√
2/3(z2)

for all z2 ≥ 0 by step 3 in Theorem 5.1; next we solve the equation (5.15) with
g0(z2) = gh0 (z2) to obtain the solution f h11 (z2), and f h11 (z2) > f h10 (z2) for all z2 ≥ 0
by step 2 in Theorem 5.1. Repeating solving (5.14) and (5.15), we obtain a sequence
( f h1i , gh1i ) satisfying

f
√
2/3(z2) = f h10 (z2) < f h11 (z2) < f h12 (z2) < f h13 (z2) < · · · < 1,

g
√
2/3(z2) > gh10 (z2) > g1(z2)

h1(z2) > gh12 (z2) > gh13 (z2) > · · · > 0

for all z2 ≥ 0. Using the proof of step 5 in Theorem 5.1 again, the limit

( lim
i→∞ f h1i (z2), lim

i→∞ gh1i (z2))

is the solution of (2.14) satisfying (2.12) when h0 = h1 <
√
2
3 .

Step 3. We prove that (2.14) has no solutions satisfying (2.12) when h0 =
√
6
3 .

Solving the equation (5.14) when h0 =
√
6
3 and f0(z2) = 1, we obtain that g0(z2) =√

6
3 e−z2 . If there exists a solution ( f ∗(z2), g∗(z2)) to equation (2.14) satisfying (2.12)
when h0 =

√
6
3 , then from step 2 and step 3 in Theorem 5.1, it follows that 0 <
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f ∗(z2) ≤ 1, g∗(z2) ≥ g0(z2) > 0. Therefore,

min
z2∈R+

(
( f ∗(z2))2 − (g∗(z2))2

)
≤ min

z2∈R+

(
1 − g20(z2)

)
= 1

3
.

This is a contradiction with (2.12). This shows that there does not exist solutions of
(2.14) satisfying (2.12) when h0 =

√
6
3 . We now have the bound of h∗. ��

Next we establish themixedmonotonicity of the solution of (2.20) on the parameter
k0 in the equations. For this purpose, we take two real constants k1 < k2, and compare
the solutions ( f1,i , Q1

1,i ), i = 1, 2, of (2.20) with k0 equal to ki . For the convenience

of our discussion we write the equations for ( f1,i , Q1
1,i ) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

1
κ2

(− f
′′
1,i + ki f

′
0) = (1 − 3| f0|2 − |Q1

0|2) f1,i − 2 f0Q1
0Q

1
1,i in R+,

(−(Q1
1,i )

′′ + ki (Q1
0)

′
) + | f0|2Q1

1,i + 2 f0Q1
0 f1,i = 0 in R+,

f ′
1,i (0) = 0, (Q1

1,i )
′(0) = ki Q1

0(0) on z2 = 0.

(5.17)

In (5.17) the functions f0 and Q1
0 are the solutions to equations (2.14).

Theorem 5.2 Let i = 1, 2, and let ( f1,i , Q1
1,i ) ∈ H1(R+) × H1(R+) be the solution

of (5.17). If k1 < k2, then we have

f1,1(z2) > f1,2(z2), Q1
1,1(z2) ≤ Q1

1,2(z2) for all z2 ≥ 0.

Proof Note that (5.17) is a linear equation of ( f1,i , Q1
1,i ), and when f0 and Q1

0 are
fixed, the equation is linear in ki . Hence in order to prove the conclusion, it suffices
to prove that if k1 > 0, then

f1,1(z2) < 0, Q1
1,1(z2) > 0 for all z2 ≥ 0.

Note that the solution ( f1,1, Q1
1,1) is the unique minimizer of the following minimiza-

tion problem

min
( f1,1,Q1

1,1)∈H1(R+)×H1(R+)

∫

R+
J [ f1,1, Q1

1,1]dz2,

where

J [ f1,1, Q1
1,1] = 1

κ2
| f ′
1,1|2 + |(Q1

1,1)
′ |2 + (3| f0|2 + |Q1

0|2 − 1)| f1,1|2 + 4 f0Q
1
0 f1,1Q

1
1,1

+ | f0|2|Q1
1,1|2 + 2k1(Q

1
0)

′
Q1
1,1 + 2

κ2
k1 f

′
0 f1,1.

From Proposition 2.2, we have

0 < f0(z2) < 1, f
′
0(z2) > 0, Q1

0(z2) > 0, (Q1
0)

′
(z2) < 0 for all z2 > 0.
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It follows that

J [−| f1,1|, |Q1
1,1|] ≤ J [ f1,1, Q1

1,1].

This shows that the unique solution ( f1,1, Q1
1,1) of (5.17) satisfies

f1,1(z2) ≤ 0, Q1
1,1(z2) ≥ 0 for all z2 ≥ 0.

Suppose there exists a point z02 ≥ 0 such that f1,1(z02) = 0. Then z02 is a maximum
point of f1,1. If z02 > 0, then we obviously have f

′′
1,1(z

0
2) ≤ 0. However, this is a

contradiction, because from this and by the first equation of (5.17) we have

0 < − 1

κ2 ( f
′′
1,1 − k1 f

′
0)(z

0
2) =

[
(1 − 3 f 20 − (Q1

0)
2) f1,1 − 2 f0Q

1
0Q

1
1,1

]
(z02) ≤ 0.

If z02 = 0, since f ′
1,1(0) = 0 and

2 f0Q
1
0Q

1
1,1 + 1

κ2 (k1 f
′
0) > 0 if z2 > 0,

then there exists σ > 0 such that for z2 ∈ (0, σ ) we have

1

κ2 ( f
′′
1,1) = (3| f0|2 + |Q1

0|2 − 1) f1,1 + 2 f0Q
1
0Q

1
1,1 + 1

κ2 (k1 f
′
0) ≥ 0 ( �≡ 0).

Therefore, f1,1(z2) ≥ 0 ( �≡ 0) for z2 ∈ (0, σ ). This is a contradiction with f1,1(z2) ≤
0. Thus we have f1,1(z2) < 0 for any z2 ≥ 0 We finish the proof of this theorem. ��

Proof of Theorem 1.2 From Theorem 1.1 we know that 1− fλ andQλ decay exponen-
tially in the normal direction away from the boundary ∂�. Therefore, in order to prove
Theorem 1.2 we only need to analyze the asymptotic expansion of ( fλ,Qλ) near the
boundary ∂�.

LetN0 be a neighbourhood of a point on ∂� in the x-coordinates, and let ( f̂ , Q̂) be
the representations of ( fλ,Qλ) under the y-coordinates (see section 2). Then, in the
coordinates (y1, z2) with z2 = y2/λ, f̂λ and Q̂λ have the following representations:

f̂λ(y) = f̂0(y1, z2) + λ f̂1(y1, z2) + R f (y1, z2, λ),

Q̂λ(y) = Q̂0(y1, z2) + λQ̂1(y1, z2) + RQ(y1, z2, λ).
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The leading order terms f̂0(y1, z2) and Q̂0(y1, z2) = (Q̂1
0(y1, z2), 0) satisfy, for

each fixed y1, the following problem in the variable z2:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− 1
κ2

∂2

∂z22
f̂0 = (1 − | f̂0|2 − |Q̂1

0|2) f̂0 in R+,

− ∂2

∂z22
Q̂1

0 + | f̂0|2 Q̂1
0 = 0 in R+,

∂z2 f̂0(y1, 0) = 0, ∂z2 Q̂
1
0(y1, 0) = −Ĥe(y1),

f̂0(y1,∞) = 1, Q̂1
0(y1,∞) = 0,

(5.18)

where Ĥe(y1) is the value ofHe at the point x = ψ(y1, 0) ∈ ∂� andψ(·, ·) is defined
by (2.1).

The first order terms f̂1(y1, z2) and Q̂1(y1, z2) = (Q̂1
1(y1, z2), Q̂

2
1(y1, z2)) satisfy,

for any fixed y1, the following problem in the variable z2:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
κ2

(− ∂2

∂z22
f̂1 + k(y1)∂z2 f̂0) = (1 − 3| f̂0|2 − |Q̂1

0|2) f̂1 − 2 f̂0 Q̂1
0 Q̂

1
1 in R+,

(− ∂2

∂z22
Q̂1

1 + k(y1)∂z2 Q̂
1
0) + | f̂0|2 Q̂1

1 + 2 f̂0 Q̂1
0 f̂1 = 0 in R+,

∂z2 f̂1(y1, 0) = 0, ∂z2 Q̂
1
1(y1, 0) = 0,

f̂1(y1,∞) = 1, Q̂1
1(y1,∞) = 0,

(5.19)

where k(y1) is the curvature of ∂� at the point x = ψ(y1, 0).
The error terms R f and RQ defined in (3.6) satisfy the following inequality

|R f (y1, z2, λ)| + |RQ(y1, z2, λ)| ≤ Cλ2, for any x = ψ(y1, λz2) ∈ N0,

where the constant C depends only on �,He, κ and δ, but not on λ and x , see
Theorem 3.4.

Using the fact that Q̂2
0(y1, z2) ≡ 0, we have

| f̂λ(y1, z2)|2 − |Q̂λ(y1, z2)|2
= (| f̂0(y1, z2)|2 − |Q̂1

0(y1, z2)|2)
+ λ(2 f̂0(y1, z2) f̂1(y1, z2) − 2Q̂1

0(y1, z2)Q̂
1
1(y1, z2)) + O(λ2).

(5.20)

We first check the leading order term | f̂0(y1, z2)|2 − |Q̂1
0(y1, z2)|2 in the right side

of (5.20). From Proposition 2.2 we know that, for any fixed y1 we have

f̂0(y1, z2) > 0, Q̂1
0(y1, z2) > 0,

∂z2 f̂0(y1, z2) > 0, (∂z2 Q̂
1
0)(y1, z2) < 0 for all z2 > 0.
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Hence | f̂0(y1, z0)|2−|Q̂1
0(y1, z2)|2 has a strict minimum at some point (y1, 0), which

implies that | fλ(x)|2 − |Qλ(x)|2 has a strict minimum on the domain boundary ∂�.
Next we examine the location of the minimum points of | fλ(x)|2 − |Qλ(x)|2 on

boundary ∂�. It follows from Theorem 5.1 that the function f̂0(y1, 0) is strictly
decreasing with respect to the value of Ĥe(y1), and Q̂1

0(y1, 0) is strictly increasing
with respect to the value of Ĥe(y1). Therefore, the minimum points of | f̂0(y1, z2)|2 −
|Q̂1

0(y1, z2)|2 are located at the maximum points of Ĥe(y1). Since the function
2 f̂0(y1, z2) f̂1(y1, z2) − 2Q̂1

0(y1, z2)Q̂
1
1(y1, z2) is uniformly bounded, from (5.20)

we see that the minimum points of | f̂λ(y)|2 − |Q̂λ(y)|2 approach the set ∂�(He)

defined by (1.11) for small λ.
Note that the set ∂�(He) may be large. To get more precise information about the

location in ∂�(He) of the minimum points of | fλ(x)|2 − |Qλ(x)|2, we need to check
the values of the first order term

W (y1) ≡ 2 f̂0(y1, 0) f̂1(y1, 0) − 2Q̂1
0(y1, 0)Q̂

1
1(y1, 0)

among all y1 ∈ C, where

C = {y1 : x = ψ(y1, 0) ∈ ∂�(He)}.

Note that both functions f̂1(y1, 0) and Q̂1
1(y1, 0) depend on the curvature k(y1) of

∂�, see (5.19). From Theorem 5.2, we see that f̂1(y1, 0) is strictly decreasing with
respect to k(y1), and Q̂1

1(y1, 0) is increasing with respect to k(y1). Therefore, W (y1)
is strictly decreasing with respect to k(y1), and hence the minimum points of W (y1)
are located at the maximum points of k(y1) on C.

Note that

ψ(C) = S(He),

where S(He) is the set defined in (1.12). Then the minimum points of | fλ(x)|2 −
|Qλ(x)|2 must sub-converge to the set S(He) as λ → 0 (see Definition 3 in section
1). Now Theorem 1.2 is proved. ��

6 Further remarks

6.1 Chapman’s conjecture on vortex nucleation

Consider an appliedmagnetic fieldHe = σH,whereH is a continuous andpositive-
valued function on �̄ and σ > 0. Let ( f σ ,Qσ ) be a Meissner solution of (1.1).
Theorem 1.2 suggests that, if the penetration depth λ is sufficiently small, then, as
the applied magnetic field increases to a critical value σ0 = HS(H), the minimum
value d f σ ,Qσ will approach the value 1/3 from above, and the minimum points of
| f σ |2 − |Qσ |2 will sub-converge to the maximum points ofH over the set ∂�(H). In
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594 X.-B. Pan, X. Xiang

particular, if He = h is a positive constant and increases to HS , the minimum points
of | f σ |2−|Qσ |2 will sub-converge to the maximum points of the curvature of domain
boundary. Therefore it is natural to generalize Chapman’s conjecture in [7] to the case
where the Ginzburg-Landau parameter is finite and the applied field is non-constant.

We first note that, under the assumption that the minimum of | f σ | is continuous
with respect to the parameter σ , and by the definition of σ0 = Hsh(H), f σ0 has zero
points which are called the vortices, while for all 0 < σ < σ0, f σ has no zero points,
Then we say that the first vortices nucleate when σ = σ0, and we look for the location
of these vortices.

Conjecture 6.1 As σ increases to Hsh(H), the first vortices will nucleate at points in
the set S(H) which is defined in (1.12) withHe replaced byH.

6.2 Meissner states of three dimensional superconductors

The Meissner states of a three dimensional superconductor can be described by
the three-dimensional version of equation (1.4) and approximately by the three-
dimensional version of (1.1), and the limiting system obtained by letting κ tend to
infinity is the three-dimensional version of (1.5).

The stable solutions Q of (1.5) in three dimensions have been studied by several
authors, see [3, 22, 33] and the references therein. Monneau [22] proved that the
maximum points of |Q(x)| occur on the boundary. Bates and Pan [3] proved that, as λ

tends zero, the maximum points of |Q(x)| sub-converge to the maximum points of the
module of the tangential component of the applied magnetic field. In the special case
when the appliedmagnetic field is given byHe = σhwhere h is a constant unit vector,
the maximum points of |Q(x)| sub-converge to the subset of the boundary ∂�where h
is tangential to ∂�. Xiang [33] further obtained the geometric characterization of the
limiting position of the maximum points of |Q(x)|. TheMeissner states of anisotropic
superconductors have been studied by Pan.

For the three-dimensional version of the system (1.4), existence, regularity and
uniqueness of the stable solutions and the asymptotic behavior as κ tends to infinity
have been studied in [26].

6.3 Comparison of Meissner effects and surface superconductivity

It would be interesting to compare the boundary layer behaviors of the solutions
( f ,Q) of (1.1) which describe the Meissner effect of a superconductor in a weak
magnetic field, with the boundary layer behaviors of the solutions (�,A) of the
Ginzburg-Landau system (1.3) which describe the surface superconductivity of a type
II superconductor subjected to an applied magnetic field lying in between the second
critical field HC2 and the third critical field HC3 . In particular, for the cylindrical super-
conductors in an applied magnetic field He = σ we have the following conclusions:
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— For the solutions (�,A) of (1.3), as κ tends to infinity while λ is fixed, ifHe is
strong and lies below but very close to the critical field HC3 , the maximum points of
|�(x)| sub-converge to the maximum points of the curvature of the domain boundary.
|�| exponentially decays in the normal direction away from the boundary, and it also
exponentially decays on ∂� along the tangential direction away from the maximum
points of the curvature of ∂�. See for instance [10, 12, 13, 16, 23] and the references
therein, from which we will see that the analysis of the concentration behavior of �

is more challenging due to the non-uniqueness of the solutions of (1.3).
— For the solutions ( fλ,Qλ) of (1.1), as λ tends to zero while κ is fixed, if He

is weak and below the critical field HS , the minimum points of f 2λ (x) − |Qλ(x)|2
sub-converge to the maximum points of the curvature of the domain boundary. More-
over, (1− fλ(x),Qλ(x)) exponentially decays in the normal direction away from the
boundary, see Theorems 1.1 and 1.2 in this paper. However, for any applied magnetic
fieldHe(x), (1 − fλ(x),Qλ(x)) does not decay on ∂� along the tangential direction
away from the set S(He). In fact, in the coordinates (y1, z2) with z2 = y2/λ, the
Meissner solution ( f̂λ, Q̂λ) has the following expansions:

f̂λ(y) = f̂0(y1, z2) + λ f̂1(y1, z2) + O(λ2),

Q̂λ(y) = Q̂0(y1, z2) + λQ̂1(y1, z2) + O(λ2).

For each fixed y1 �= 0, the leading order terms f̂0(y1, ·) and Q̂0(y1, ·) = (Q̂1
0(y1, ·), 0)

is a solution of equation (5.18) and satisfies the condition (2.12), hence is uniquely
determined by Ĥe(y1), and the profile of the solution ( f̂0(y1, ·), Q̂0(y1, ·)) is similar
to that of ( f̂0(0, ·), Q̂0(0, ·)). Thus the solution ( f̂λ, Q̂λ) does not decay along the
tangential direction.

—For the solutionsQ of (1.5), as λ tends to zero (while κ = ∞), ifHe = σ is weak
and below the critical field HS , the maximum points of |Q(x)| sub-converge to the
minimum points of the curvature of the domain boundary, see [3, 27, 33]. Moreover,
Qλ(x) exponentially decays in the normal direction away from the boundary, but does
not decay on ∂� along the tangential direction away from the minimum points of the
curvature.

6.4 Meissner states in various setting

Remark 6.2 Let us emphasize that the stability of a Meissner solution stated in Def-
inition 1 is with respect to the Meissner equation (1.1). ( f ,Q) is a stable Meissner
solution of (1.1) does not mean that it is also stable with respect to the full Ginzburg-
Landau system on �.

Proof Recall that, if we restrict ourself in �, the Ginzburg-Landau functional on �

has the following form

E[�,A] =
∫

�

{∣
∣
∣
(λ

κ
∇ − iA

)
�

∣
∣
∣
2 + 1

2
(1 − |�|2)2 + |λcurlA − He|2

}
dx .

The Euler-Lagrange equation of this functional is the Ginzburg-Landau system on �.
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Let ( f ,Q) be a solution of (1.1). For any smooth pair (g,B) we have

E ′′ 〈[ f ,Q], [g,B]〉 =
∫

�

(
Re
[(λ

κ
∇ f − iQ f

)
(iBḡ)

]
+
∣
∣
∣
λ

κ
∇g − iB f − iQg

∣
∣
∣
2

+ 1

2
(g f̄ + f ḡ)2 − (1 − | f |2)|g|2 + λ2|curlB|2

)
dx .

Take g = 2i f and B = λκ−1 f −1∇ f . Then we have

Re

[(
λ

κ
∇ f − iQ f

)

(iBḡ)
]

= 2
λ2

κ2 |∇ f |2,

curl B = λ

κ
curl( f −1∇ f ) = λ

κ
[∂1( f −1∂2 f ) − ∂2( f

−1∂1 f )] = 0,
∣
∣
∣
∣
λ

κ
∇g − iB f − iQg

∣
∣
∣
∣

2

= λ2

κ2 |∇ f |2 + 4|Q|2| f |2,
(
g f̄ + f ḡ

)2 = 0.

Therefore, we have

E ′′ 〈[ f ,Q], [2i f , λ

κ
f −1∇ f ]〉 =

∫

�

(

3
λ2

κ2 |∇ f |2 + 4(|Q|2 + | f |2 − 1)| f |2
)

dx .

Using system (1.1), we obtain that

∫

�

(|Q|2 + f 2 − 1) f 2dx = −
∫

�

λ2

κ2 |∇ f |2dx,

which implies that

E ′′ 〈[ f ,Q], [2i f , λ

κ
f −1∇ f ]〉 = −λ2

κ2

∫

�

|∇ f |2dx < 0.

This shows that ( f ,Q) is an unstable solutionwith respect to the full Ginzburg-Landau
system in �. ��

It has been proved in [28–30] that HC1 ∼ C log κ
κ

, and if the applied magnetic field
is below HC1 , then the global minimizers of the Ginzburg-Landau functional on �

have no vortices hence they are Meissner solutions, and they are stable with respect
to the full Ginzburg-Landau system in �. On the other hand, the study in [5–7] imply
that HS ∼ C for large κ . Proposition 2.4 and Remark 6.2 above show that, if the
applied magnetic field He is such that system (1.1) has a solution satisfying (1.8) for
any small λ and

H0 ≤ He < h∗,
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where H0 is any positive number, hence HC1 � He < HS , the Meissner solutions
( f ,Q) are stablewith respect to the equation (1.1), but notwith respect to theGinzburg-
Landau system in �.

It is interesting that for the applied magnetic fieldHe much larger than HC1 , more
precisely HC1 < He < Cκα−1 with 0 < α < 1

4 , stable Meissner solutions of (1.3)
can still be obtained for large Ginzburg-Landau parameter κ � 1 with λ fixed, see
[29, Theorem 1] and [31, Theorem 11.1]. In this paper we consider the situation with
fixed κ and with small λ, and the solutions we found exhibit boundary layer. It will
be interesting to know if the Meissner solutions obtained in [29, 31] have boundary
layer behavior when the applied magnetic fieldHe � HC1 , κ � 1 and λ is small.

An interesting problem related to the critical fields HS and Hsh for Meissner states
is the supercooling field Hsc for vortex solutions, and the hysteretic behavior of the
superconductors, which have been investigated by F.H. Lin and Q. Du in [19].

We would like to mention that the Meissner states of type I superconductors have
also been investigated, and surprising phenomena have been explored in [9].
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Appendix A: Uniqueness of the solution to system (2.11)

Lemma A.1 If (2.11) has a solution ( f0,Q0) ∈ C2(R2+,R3) satisfying (2.12), then it
is unique.

Proof The uniqueness has been proved in Proposition 2.2, where we used the fact that
the functional E is strictly convex. Here we give a direct proof. The idea of the proof
goes back to Lemma 4.2 in [26] where the case of the bounded domains was treated.

Let ( f1,Q1) and ( f2,Q2) be two solutions, both satisfying

| f0|2 − |Q0|2 >
1

3
+ δ2.

Let h ∈ H1(R2) and B ∈ H1(curl,R2), both with compact support. We have

∫

R
2+

{ 1

κ2∇( f1 − f2) · ∇h −
[
(1 − | f1|2 − |Q1|2) f1 − (1 − | f2|2 − |Q2|2) f2

]
h

+ (| f1|2Q1 − | f2|2Q2) · B + curl(Q1 − Q2) · curlB
}
dz = 0.
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Take h = η2( f1 − f2) and B = η2(Q1 − Q2), where η is a smooth function with
compact support in R2. Then we have

∫

R
2+

{ 1

κ2 |∇(η( f1 − f2))|2 + |curl(η(Q1 − Q2))|2dx

+
∫

R
2+

∫ 1

0
{| ft (Q1 − Q2) + 2( f1 − f2)Qt |2 + (3 f 2t − 3|Qt |2 − 1)| f1 − f2|2

}
η2dtdz

=
∫

R
2+

{ 1

κ2 |( f1 − f2)∇η|2 + |(Q1 − Q2) × ∇η|2dx, (A.1)

where ft = f1 + t( f1 − f2) and Qt = Q1 + t(Q1 − Q2). Note that

| ft (Q1 − Q2) + 2( f1 − f2)Qt |2 + (3 f 2t − 3|Qt |2 − 1)| f1 − f2|2 ≥ δ2

9
|Q1 − Q2|2,

3 f 2t − 3|Qt |2 − 1 ≥ δ2.

Then

| ft (Q1 − Q2) + 2( f1 − f2)Qt |2 + (3 f 2t − 3|Qt |2 − 1)| f1 − f2|2

≥ δ2

18
|Q1 − Q2|2 + δ2

2
| f1 − f2|2.

Taking η = e−σr ξ(r), where ξ(r) is a smooth cut-off function such that ξ(r) = 1 for
r < R, ξ(r) = 0 for r > R + 1, and ξ ′(r) ≤ 2. Then we have

∫

B+
R

(
δ2

18
|Q1 − Q2|2 + δ2

2
| f1 − f2|2

)

e−2σr dz

≤ σ 2

κ2

∫

B+
R+1

| f1 − f2|2e−2σr dz + σ 2
∫

B+
R+1

|Q1 − Q2|2e−2σr dz

+ 4e−2σ R
∫

B+
R+1\B+

R

|Q1 − Q2|2dz + 4

κ2
e−2σ R

∫

B+
R+1\B+

R

| f1 − f2|2dz.

Letting R → ∞ first and then letting σ → 0 in the above inequality , we obtain that
f1 = f2 and Q1 = Q2. ��
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Appendix B: Exponential decay for some ODEs

Consider the following system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′′ = a11(z2)u + a12(z2)v + b1(z2) in R+,

v′′ = a21(z2)u + a22(z2)v + b2(z2) in R+,

u′(0) = u0, v′(0) = v0,

u(∞) = 0, v(∞) = 0.

(B.1)

Definition B.1 We say that the coefficient matrix A(z2) = (ai j (z2))2×2 is elliptic if
there exist positive constants λ and M such that

λ|ξ |2 ≤
2∑

i, j=1

ai j (z2)ξiξ j ≤ M |ξ |2. (B.2)

for all ξ ∈ R
2 and almost every z2 ∈ R+.

Proposition B.2 Assume that the matrix A(z2) = (ai j (z2))2×2 is elliptic, and suppose
there exist positive constants α5, β5, M1 and M2 such that

|b1(z2)| ≤ M1e
−α5z2 , |b2(z2)| ≤ M2e

−β5z2 , z2 ≥ 0. (B.3)

Then system (B.1) has a unique solution (u, v) ∈ C2(R+) ∩ H1(R+). Moreover, for
any real number μ satisfying 0 < μ < min{√λ, α5, β5} we have

|u(z2)| ≤ Ce−μz2 , |v(z2)| ≤ Ce−μz2 , z2 ≥ 0, (B.4)

where the constant C depends on the constants in (B.2) and (B.3).

Proof Replacing u by u − u0e−λz2 and v by v − v0e−λz2 , we see that there is no
loss of generality in assuming u0 = v0 = 0. Let us fix a constant μ with 0 < μ <

min{√λ, α5, β5}, and take a function η ∈ C2(R+) satisfying

η(z2) = 1 for z2 ∈ [0, 1], e−μxη(z2) < 2 and |η′(z2)| ≤ μη(z2) for all z2 ≥ 0.

(B.5)

Define a space

Y =
{
(u, v) : (ηu) ∈ H1(R+), (ηv) ∈ H1(R+), u′(0) = 0, v′(0) = 0

}
.

Equipped with the norm

‖(u, v)‖Y =
(
‖ηu‖2H1(R+)

+ ‖ηv‖2H1(R+)

)1/2

123



600 X.-B. Pan, X. Xiang

and the inner product

〈(u1, v1), (u2, v2)〉 =
∫

R+
{η2(u1u2 + v1v2) + (ηu1)

′(ηu2)′ + (ηv1)
′(ηv2)

′}dz2,

Y is a Hilbert space.
Define a bilinear form B[(·, ·), (·, ·)] on Y by

B[(u, v), (u∗, v∗)]

=
∫

R+

{
(ηu)′(ηu∗)′ + (ηv)′(ηv∗)′ − η′2

η2
(ηu)(ηu∗) − η′2

η2
(ηv)(ηv∗)

− η′

η
[(ηu∗)′(ηu) − (ηu∗)(ηu)′] − η′

η
[(ηv∗)′(ηv) − (ηv∗)(ηv)′]

+ (a11(z2)ηu + a12(z2)ηv)(ηu∗) + (a21(z2)ηu + a22(z2)ηv)(ηv∗)
}
dz2.

Using the condition (B.2) on the coefficient matrix A and the assumption (B.5) on the
function η, and by the Cauchy’s inequality, there exists a constant K depending only
on the constants in (B.2) and μ, such that for all (u, v) and (u∗, v∗) in Y we have

B[(u, v), (u∗, v∗)] ≤ K‖(u, v)‖Y ‖(u∗, v∗)‖Y ,

B[(u, v), (u, v)] ≥ min{1, λ − μ2}‖(u, v)‖2Y .

Therefore, B is bounded and coercive onY . Then the existence and uniqueness of the
solution to (B.1) in Y follows from the Lax-Milgram lemma.

Set ǔ = ηu and v̌ = ηv. Then (ǔ, v̌) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ǔ′′ = 2η′
η
ǔ′ + η′′

η
ǔ − 2η′2

η2
ǔ + a11(z2)ǔ + a12(z2)v̌ + ηb1(z2) in R+,

v̌′′ = 2η′
η

v̌′ + η′′
η

v̌ − 2η′2
η2

v̌ + a21(z2)ǔ + a22(z2)v̌ + ηb2(z2) in R+,

ǔ′(0) = 0, v̌′(0) = 0,

ǔ(∞) = 0, v̌(∞) = 0.

(B.6)

Also, we have

min{1, λ − μ2}
(
‖ǔ‖2H1(R+)

+ ‖v̌‖2H1(R+)

)
≤ B[(u, v), (u, v)]

=
∫

R+

(
ηb1(z2)ǔ + ηb2(z2)v̌

)
dz2.

Then by the Cauchy’s inequality we get

‖ǔ‖H1(R+) + ‖v̌‖H1(R+) ≤ C .
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Since H1(R+) is continuously embedded into C0(R+), then we have

‖ǔ‖C0(R+) + ‖v̌‖C0(R+) ≤ C .

This proves (B.4). ��

Proof of Proposition 2.5 From Proposition 2.2, we obtain the decay estimate for
| f̂0(y1, z2)| and |Q̂0(y1, z2)| at y1 = 0. Next we derive the estimates for ∂y1 f̂0(y1, z2)
and ∂y1Q̂0(y1, z2) at y1 = 0. Recall that

p(z2) := ∂y1 f̂0(0, z2), (q(z2), 0) := ∂y1Q̂0(0, z2).

Then from the equation (5.18) in section 5, we see that (p(z2), q(z2)) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
κ2

p′′(z2) = (3| f0|2 + |Q1
0|2 − 1)p + 2Q1

0 f0q in R+,

q ′′(z2) = 2 f0Q1
0 p + f 20 q in R+,

p′(0) = 0, q ′(0) = −Ĥe
y1(0),

p(∞) = 0, q(∞) = 0.

(B.7)

Let λ(z2) be the minimum eigenvalue of the matrix

(
3| f0|2 + |Q1

0|2 − 1 2 f0Q1
0

2 f0Q1
0 | f0|2

)

.

Then λ(z2) → 1 as z2 → ∞. Now we can apply Proposition B.2 to conclude that, for
any real number β1 satisfying 0 < β1 < 1 we have

|p(z2)| + |q(z2)| ≤ C(κ, β1,�,He)e−β1z2 .

Applying Proposition B.2 again for the first equation in (B.7) and noting that |Q1
0| ≤

Ce−β1z2 , for any real number α1 satisfying 0 < α1 < min{2,√2κ}, we have

|p(z2)| ≤ C(κ, α1, β1,�,He)e−α1z2 .

We derive the higher derivative estimates of f̂0(y1, z2) and Q̂0(y1, z2) at y1 = 0.
From the equation (3.5), we see that

u(z2) := ∂ i
yi1
f̂0(0, z2), v(z2) := ∂ i

yi1
Q̂1

0(0, z2) for i = 2, 3
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satisfy

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
κ2
u′′(z2) = (3| f0|2 + |Q1

0|2 − 1)u + 2Q1
0 f0v + Fi (z2) in R+,

v′′(z2) = 2 f0Q1
0u + f 20 v + Gi (z2) in R+,

u′(0) = 0, v′(0) = −Ĥe
yi1

(0),

u(∞) = 0, v(∞) = 0,

(B.8)

where

|Fi (z2)| ≤ C(κ, α1, β1,�,He)e−min{3α1,2β1}z2 ,
|Gi (z2)| ≤ C(κ, α1, β1,�,He)e−(α1+β1)z2

for i = 2, 3. As the proof of the estimates of p(z2) and q(z2), by applying Propo-
sition B.2 we can obtain the decay estimates of ∂ i

yi1
f̂0(0, z2) and ∂ i

yi1
Q̂1

0(0, z2) for

i = 2, 3.
Applying the above argument to the equations of ∂ i

yi1
f̂0(0, z2) and ∂ i

yi1
Q̂1

0(0, z2)

respectively, we immediately obtain the decay estimates of |∂ i+2
yi1z

2
2
f̂0(y1, z2)| and

|∂ i+2
yi1z

2
2
Q̂0(y1, z2)| for i = 0, · · · , 3.

Integrating from z2 to ∞ on both sides of the equations of ∂ i
yi1
f̂0(0, z2) and

∂ i
yi1
Q̂1

0(0, z2) respectively, we can obtain the decay estimates of |∂ i+1
yi1z2

f̂0(y1, z2)| and
|∂ i+1

yi1z2
Q̂0(y1, z2)| for i = 0, . . . , 3.

Now we have proved Proposition 2.5 for y1 = 0. Replacing Ĥe(0) by Ĥe(y1) in
(B.7) and in (B.8), then noting that Ĥe ∈ C3(∂�), we see that Proposition 2.5 also
holds for y1 �= 0. Now we have completed the proof. ��

Appendix C: Derivation of system (2.20)

To derive equation (2.20) we need the local coordinate expansions introduced in [24,
section 3]. Here we keep the notations in section 2. We use Ri (|y31 |), i = 1, 2, · · · ,
to denote a function of y1 and z2 which is of order (|y31 |) uniformly for z2, and use
Ri (λ

k), k > 0, i = 1, 2, · · · , to denote a function of y1 and z2 which is of order (λk).
For the function g defined in (2.2) we have, for λ > 0 small,

g(z) = 1 − λk(0)z2 − λ2k′(0)z1z2 + O(λ3),

1

g(z)
= 1 + λk(0)z2 + λ2

(
k2(0)z22 + k′(0)z1z2

)
+ O(λ3),

(C.1)

where k′(0) = dk
ds (0) = dk

dy1
(0). For any fixed z2 ≥ 0, we have the formal asymptotic

expansions for f̂0(y1, z2) and Q̂0(y1, z2) with respect to the variable y1 at the point
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(0, z2):

f̂0(y1, z2) = f0 + y1∂y1 f̂0(0, z2) + 1

2
y21∂y21

f̂0(0, z2) + R1(|y31 |),

Q̂0(y1, z2) = Q0 + y1∂y1Q̂0(0, z2) + 1

2
y21∂y21

Q̂0(0, z2) + R2(|y31 |),
(C.2)

where

( f0,Q0) = ( f̂0(0, z2), Q̂0(0, z2)) = ( f̂0(0, z2), (Q̂
1
0(0, z2), Q̂

2
0(0, z2)))

is the solution of (2.14), ( f̂0(y1, z2), Q̂0(y1, z2)) is the solution of (5.18).
Write

p(z2) := ∂y1 f̂0(0, z2), (q(z2), 0) := ∂y1Q̂0(0, z2). (C.3)

Then we take the expansions for f̃ and Q̃ in (2.6) with respect to λ, and have

f̃ = f0 + λ(pz1 + f1) + R3(λ
2), Q̃=Q0+λ((qz1, 0) + Q1) + R4(λ

2),

(C.4)

where f1 = f̂1(0, z2) and Q1 = Q̂1(0, z2) = (Q1
1, Q

2
1) are to be determined.

Firstly, we have

λcurlQ(x) = 1

g

[
∂z1 Q̃2 − ∂z2(gQ̃1)

]

= −(Q1
0)

′ + λ(k(0)Q1
0 − (Q1

1)
′ − z1q

′(z2)) + R5(λ
2).

(C.5)

Then,

1

g

(

∂z1

(
1

g
∂z1 f̃

)

+ ∂z2

(
g∂z2 f̃

))

= ( f0)
′′ + λ

(
( f1)

′′ − k(0)( f0)
′ + p′′(z2)z1

)+ R6(λ
2)

(C.6)

and

(1 − | f̃ |2 − |Q̃|2) f̃ = (1 − | f0|2 − |Q0|2) f0 + λ
(
(1 − | f0|2 − |Q0|2)(pz1 + f1)

− 2 f0( f0(pz1 + f1) + Q0 · ((qz1, 0) + Q1))
)+ R7(λ

2),

(C.7)

where p = p(z2) and q = q(z2) are defined in (C.2). Using (C.5), for M1(λz) and
M2(λz) defined by (2.3) we have

M1(λz) = −(Q1
0)

′′ − λ
[
(Q1

1)
′′ + q ′′(z2)z1 − k(0)(Q1

0)
′]+ R8(λ

2),

M2(λz) = λq ′(z2) + R9(λ
2).

(C.8)
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Also, we have

| f̃ |2Q̃ = | f0|2Q0 + λ
[
2 f0(pz1 + f1)Q0 + | f0|2((qz1, 0) + Q1)

]
+ R10(λ

2).

(C.9)

We now consider the equations at the point (0, z2). We have

1

g

(

∂z1

(
1

g
∂z1 f̃

)

+ ∂z2

(
g∂z2 f̃

))

= ( f0)
′′ + λ

(
( f1)

′′ − k(0)∂2 f0
)+ R11(λ

2)

(C.10)

and

(1 − | f̃ |2 − |Q̃|2) f̃ = (1 − | f0|2 − |Q1
0|2) f0

+ λ
(
(1 − | f0|2 − |Q1

0|2) f1 − 2 f0( f0 f1 + Q1
0Q

1
1)
)+ R12(λ

2).
(C.11)

For M1(λz) we have

M1(λz) = −(Q1
0)

′′ + λ
[− (Q1

1)
′′ + k(0)(Q1

0)
′]+ R13(λ

2). (C.12)

Also, we have

| f̃ |2Q̃ = | f0|2Q0 + λ
[
2 f0 f1Q0 + | f0|2Q1

]
+ R14(λ

2). (C.13)

Comparing with the coefficients of λ, we obtain the equations (2.20) for the first order
terms.

Appendix D: Derivation of system (2.22) and proof of (3.5)

We follow the notations used in section 2 and in appendix C. LetRi (λ
2) be the terms

appear in appendix C, and it has been proved in section 3 that these terms have the
order O(λ2) uniformly for y1 and z2. In this section we shall expand these terms in
the form

Ri (λ
2) = λ2Ri + Ri (λ

3) for i = 3, · · · , 14,

where Ri denotes a functions of y1 and z2 which is independent of λ, and Ri (λ
3)

denotes a function of y1 and z2 which is of the order O(λ3).
From the inner expansion (2.9) and the expansion (C.2), we have the expansions

for the function R3 and the vector field R4 in (C.4):

R3(λ
2) = λ2

(
1

2
z21∂y21

f̂0(0, z2) + z1∂y1 f̂1(0, z2) + f2

)

+ R16(λ
3), (D.1)
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and

R4(λ
2) = λ2

(1

2
z21∂y21

Q̂1
0(0, z2) + z1∂y1 Q̂

1
1(0, z2) + Q1

2(0, z2),

z1∂y1 Q̂
2
1(0, z2) + Q2

2(0, z2)
)

+ R17(λ
3),

(D.2)

where

( f̂0(0, z2), Q̂0(0, z2)) = ( f0, (Q
1
0, 0))

is the solution of (2.14),

( f̂1(0, z2), Q̂1(0, z2)) = ( f1, (Q
1
1, Q

2
1))

is the solution of (2.20), and

( f̂2(0, z2), Q̂2(0, z2)) = ( f2, (Q
1
2, Q

2
2))

is to be determined now.
From (C.5), we have

R5(λ
2) = λ2

(
∂y1 Q̂

2
1 + k′(0)z1Q1

0 + k′(0)z1z2(Q1
0)

′ + k(0)
(
z1∂y1 Q̂

1
0

∣
∣
y1=0 + Q1

1

)

− (Q1
2)

′ + k(0)z2
[
z1∂y1z2 Q̂

1
0

∣
∣
y1=0 + (Q1

1)
′]− 1

2
z21∂y21 z2

Q̂1
0

∣
∣
y1=0

− z1∂y1z2 Q̂
1
1

∣
∣
y1=0 + k(0)z2

[
k(0)Q1

0 − (Q1
1)

′ − z1∂y1z2 Q̂
1
0

∣
∣
y1=0

]

− (Q1
0)

′ [k2(0)z22 + k′(0)z1z2
] )+ R18(λ

3).

(D.3)

Then we have the expansions for R6 in (C.6) and for R7 in (C.7):

R6(λ
2) =λ2

(
∂y21

f̂0
∣
∣
y1=0 + 1

2
z21∂z22 y21

f̂0
∣
∣
y1=0 + z1∂z22 y1

f̂1
∣
∣
y1=0 − k(0)

[
p′z1 + ( f1)

′]

+ ( f2)
′′ − k(0)z2

[
p′′z1 + ( f1)

′′]− ( f0)
′k′(0)z1 − ( f0)

′′k′(0)z1z2
+ k(0)z2

[
( f1)

′′ + p′′z1 − k(0)( f0)
′ − k(0)z2( f0)

′′]

+ ( f0)
′′ [k2(0)z22 + k′(0)z1z2

] )+ R19(λ
3),
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and

R7(λ
2) = λ2

(
[
1

2
z21∂y21

f̂0
∣
∣
y1=0 + z1∂y1 f̂1

∣
∣
y1=0 + f2

]

(1 − f 20 − |Q0|2)
+ (pz1 + f1)[−2 f0(pz1 + f1) − 2Q1

0(qz1 + Q1
1) − 2Q2

0Q
2
1]

+ f0

[

−(pz1 + f1)
2 − 2 f0

(
1

2
z21∂y21

f̂0
∣
∣
y1=0 + z1∂y1 f̂1

∣
∣
y1=0 + f2

)

− (qz1 + Q1
1)

2 − 2Q1
0

(
1

2
z21∂y21

Q̂1
0

∣
∣
y1=0 + z1∂y1 Q̂

1
1

∣
∣
y1=0 + Q1

2

)

−(Q2
1)

2 − 2Q2
0(z1∂y1 Q̂

2
1

∣
∣
y1=0 + Q2

2)
] )+ R20(λ

3).

From (D.1), (D.2) and (C.8), we see that

R8(λ
2) =λ2

(
∂z2 y1 Q̂

2
1

∣
∣
y1=0 − 1

2
z21∂z22 y21

Q̂1
2

∣
∣
y1=0 − z1∂z22 y1

Q̂1
1

∣
∣
y1=0 + k′(0)z1z2(Q1

0)
′′

− (Q1
2)

′′ + 2k(0)
[
q ′z1 + (Q1

1)
′]+ k(0)z2

[
q ′′z1 + (Q1

1)
′′]+ k′(0)z1(Q1

0)
′

− k(0)
[
q ′z1 + (Q1

1)
′ − k(0)Q1

0

]− (Q1
0)

′′ [k2(0)z22 + k′(0)z1z2
]

− k(0)z2
[
q ′′z1 + (Q1

1)
′′ − k(0)(Q1

0)
′ − k(0)z2(Q

1
0)

′′] )+ R21(λ
3)

(D.4)

and

R9(λ
2) =λ2

(
z1∂z2 y21

Q̂1
0

∣
∣
y1=0 + ∂z2 y1 Q̂

1
1

∣
∣
y1=0 − k(0)q − k′(0)Q1

0

+ k(0)z2q
′)+ R22(λ

3).
(D.5)

From (D.1), (D.2) and (C.9), we have

R10(λ
2) =λ2

( [

(pz1 + f1)
2 + 2 f0

(
1

2
z21∂y21

f̂0
∣
∣
y1=0 + z1∂y1 f̂1

∣
∣
y1=0 + f2

)]

Q0

+ f 20

(
1

2
z21∂y1y1 Q̂

1
0

∣
∣
y1=0 + z1∂y1 Q̂

1
1

∣
∣
y1=0 + Q1

2, z1∂y1 Q̂
2
1

∣
∣
y1=0 + Q2

2

)

+ 2 f0(pz1 + f1) [(qz1, 0) + Q1]
)

+ R23(λ
3).

(D.6)

We now consider the equations at the point (0, z2). From the expression ofR6(λ
3),

it follows that,

R11(λ
2) = λ2

(
∂y21

f̂0
∣
∣
y1=0 + f

′′
2 − k(0)( f1)

′ − k2(0)z2( f0)
′)+ R24(λ

3). (D.7)
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From the expression of R7(λ
3), we have

R12(λ
2) =λ2

(
f2(1 − 3 f 20 − |Q0|2) + f0

[
− f 21 − (Q1

1)
2 − (Q2

1)
2
]

− 2 f0Q
1
0Q

1
2 + f1

[
−2 f0 f1 − 2Q1

0Q
1
1

] )
+ R25(λ

3).

(D.8)

From the expressions of R8(λ
3) and R9(λ

3), we have

R13(λ
2) =λ2

(
∂z2 y1 Q̂

2
1

∣
∣
y1=0 − (Q1

2)
′′ + k(0)(Q1

1)
′ + k(0)Q1

0

+ k2(0)z2(Q
1
0)

′)+ R26(λ
3)

and

R14(λ
2) = λ2

(
∂z2 y1 Q̂

1
1

∣
∣
y1=0 − k(0)q − k′(0)Q1

0 + k(0)z2q
′)+ R27(λ

3).

From R10(λ
3), it follows that

R15(λ
2) = λ2(( f 21 + 2 f0 f2)Q0 + 2 f0 f1Q1 + f 20 Q2) + R28(λ

3).

Comparing with the coefficients of λ2, we obtain the equations (2.22) for the second
order terms.

Proof of Lemma 3.1 Step 1. From (3.2), we can see that

b(x, λ) = (0, 0) for all x ∈ �\σ2,

where σn is defined by (3.1). Then (3.5) holds for x ∈ �\σ2.
Step 2. We show the estimate (3.5) when x ∈ σ4. We consider this problem in

a neighborhood U of X0 ∈ ∂�. We follow the notation used in section 2 and in
appendix C.

To obtain b̃, we replace the expressions of f̃ and Q̃ by

f̂0(y1, z2) + λ f̂1(y1, z2) + λ2 f̂2(y1, z2) and Q̂0(y1, z2) + λQ̂1(y1, z2) + λ2Q̂2(y1, z2)

under the z− coordinate system in (C.4) respectively.
We first estimate b̃1(z1, z2, λ), where b̃1(z1, z2, λ) is the representation of b1(x, λ)

under the z-coordinate system. At the point (0, z2), from (D.7) and (D.8) we have

R24(λ
3) =λ3κ−2

(
g−3
0 k′(0)z2

[
∂y1 f̂0

∣
∣
y1=0 + λ∂y1 f̂1

∣
∣
y1=0 + λ2∂y1 f̂2

∣
∣
y1=0

]

+ g−2
0

[
(1 + g0)k(0)z2∂y21

f̂0
∣
∣
y1=0 + ∂y21

f̂1
∣
∣
y1=0 + λ∂y21

f̂2
∣
∣
y1=0

]

− g−1
0

[
k(0)( f0)

′ − λk3(0)z22( f1)
′ − λk2(0)z2( f2)

′]

− k3(0)z22( f0)
′ − k2(0)z2( f1)

′ − k(0)( f2)
′)
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and

R25(λ
3) = − λ3

(
( f1 + λ f2)

[
2Q1

0Q
1
2 + 2 f0 f2 + f 21 + (Q1

1)
2 + (Q2

1)
2
]

+ 2 f2( f0 f1 + Q1
0Q

1
1) + ( f0 + λ f1 + λ2 f2)

[
2Q1

1Q
1
2 + 2 f1 f2

+ 2Q2
1Q

2
2 + λ

(
f 22 + (Q1

1)
2 + (Q2

1)
2
) ])

,

where k0 = k(0) is the curvature of ∂� at the point X0, k′
0 = dk

ds (0) = dk
dy1

(0),

g0 = g(0, λz2) = 1 − λk(0)z2.

We see that R24(λ
3) and R25(λ

3) are the polynomials of f̂0, f̂1, f̂2, Q̂0, Q̂1, Q̂2 and
their derivatives up to the order 2 at (0, z2). From Proposition 2.5, Proposition 2.7 and
Proposition 2.9, it follows that

|R24(λ
3)| + |R25(λ

3)| ≤ C(�,He, κ)λ3.

For any x ∈ σ4, letψ be defined by (2.1), x = ψ(y1, y2), z1 = y1/λ, z2 = y2/λ.Then
b̃1(0, z2, λ) = R24(λ

3)+R25(λ
3). Note that f̂0, f̂1, f̂2, Q̂0, Q̂1, Q̂2 and their deriva-

tives up to the order 2 are continuously differentiable with respect to the parameter y1
(by applying the continuous differentiability of solutions with respect to parameters
in the theory of ODEs). Therefore, for each z1 �= 0, we also have

|b̃1(z1, z2, λ)| ≤ C(�,He, κ)λ3.

We now estimate b̃2 = (b̃12, b̃
2
2). At the point (y1, z2) with y1 = λz2, from (D.4)

we have

R̃21(λ
3) =λ3

[
s3 + λk(y1)z2(s2 + λs3) + λ2k2(y1)z

2
2(s1 + λs2 + λ2s3)

+ λ3k3(y1)z
3
2g

−1(−∂z22
Q̂1

0 + λs1 + λ2s2 + λ3s3)
]

+ λ3
[
k(y1)s5 + 2λ2k2(y1)z2(s4 + λs5)

+ λ3k3(y1)z
2
2g

−2(2g + 1)(−∂z2 Q̂
1
0 + λs4 + λ2s5)

]
,

where

s1 = k(y1)Q̂
1
0 + k(y1)z2∂z22

Q̂1
0 + k(y1)∂z2 Q̂

1
0 − ∂z22

Q̂1
1,

s2 = ∂y1z2 Q̂
2
1 + k(y1)Q̂

1
1 + k(y1)z2∂z22

Q̂1
1 − ∂z22

Q̂1
2 + k(y1)∂z2 Q̂

1
1,

s3 = ∂y1z2 Q̂
2
2 + k(y1)Q̂

1
2 + k(y1)z2∂z22

Q̂1
2 + k(y1)∂z2 Q̂

1
2
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and

s4 = k(y1)z2∂z2 Q̂
1
0 + k(y1)Q̂

1
0 − ∂z2 Q̂

1
1,

s5 = ∂y1 Q̂
2
1 + k(y1)Q̂

1
1 + k(y1)z2∂z2 Q̂

1
1 − ∂z2 Q̂

1
2λ
(
∂y1 Q̂

2
2 + k(y1)Q̂

1
2 + k(y1)z2∂z2 Q̂

1
2

)
.

From (D.5) we have

R̃22(λ
3) = − λ3

[
s7 + 2k(y1)z2(s6 + λs7) + k2(y1)z

2
2g

−2(2g + 1)(−∂y1z2 Q̂
1
0 + λs6 + λ2s7)

]

− λ3
[
k′(y1)z2s8 + k(y1)k

′(y1)z22g−3(1 + g + g2)(−∂z2 Q̂
1
0 + λs8)

]
,

where g is defined by (2.2),

s6 =k(y1)∂y1 Q̂
1
0 + k′(y1)Q̂1

0 + ∂y1z2 Q̂
1
0 − ∂y1z2 Q̂

1
1 + k′(y1)z2∂z2 Q̂1

0,

s7 =∂y21
Q̂2

1 + λ∂y21
Q̂2

2 + k(y1)∂y1 Q̂
1
1 + λk(y1)∂y1 Q̂

1
2 + k′(y1)Q̂1

1 + λk′(y1)Q̂1
2

+ k(y1)z2∂y1z2 Q̂
1
1 − ∂y1z2 Q̂

1
2 + λk(y1)z2∂y1z2 Q̂

1
2 + k′(y1)z2(∂z2 Q̂1

1 + λ∂z2 Q̂
1
2),

and

s8 =k(y1)z2∂z2 Q̂
1
0 + k(y1)Q̂

1
0 − ∂z2Q

1
1

+ λ
(
∂y1 Q̂

2
1 + k(y1)Q̂

1
1 + k(y1)z2∂z2 Q̂

1
1 − ∂z2 Q̂

1
2

)

+ λ2
(
∂y1 Q̂

2
2 + k(y1)Q̂

1
2 + k(y1)z2∂z2 Q̂

1
2

)
.

From (D.6) we have

R̃1
23(λ

3) = λ3
[
(Q̂1

0 + λQ̂1
1 + λ2 Q̂1

2)(2 f̂1 f̂2 + λ f̂ 22 ) + (Q̂1
1 + λQ̂1

2)( f̂
2
1 + 2 f̂0 f̂2) + 2 f̂0 f̂1 Q̂

1
2

]
,

R̃2
23(λ

3) = λ3
[
(λQ̂2

1 + λ2 Q̂2
2)(2 f̂1 f̂2 + λ f̂ 22 ) + (Q̂2

1 + λQ̂2
2)( f̂

2
1 + 2 f̂0 f̂2) + 2 f̂0 f̂1 Q̂

2
2

]
.

Then

b̃12 = −R̃21 − R̃1
23, b̃22 = −R̃22 − R̃2

23.

We see that b̃12 and b̃
2
2 are the polynomials of f̂0, f̂1, f̂2, Q̂0, Q̂1, Q̂2 and their deriva-

tives up to the order 2. Using Proposition 2.5, Proposition 2.7 and Proposition 2.9
again, we have

‖b̃2‖C0(ψ−1(σ4))
+ ‖ divz b̃2‖C1(ψ−1(σ4))

≤ C(�,He, κ)λ3.

where σ4 is defined in (3.1), ψ is defined by (2.1). Thus, we have (3.5) for x ∈ σ4 by
the scaling argument.
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Step 3. From Proposition 2.5, Proposition 2.7 and Proposition 2.9, we see that, each
component of b̃(z, λ) is a linear combinations of exponentially decaying terms with
respect to z2. Therefore, for x ∈ σ2\σ4 we also have (3.5) for small λ.

We now finish the proof of (3.5). ��

Appendix E: Derivation of the boundary condition (3.8)

To derive the boundary condition of R f , we use the boundary condition of f̂0 in (5.18),
that of f̂1 in (5.19), and that of f̂2 (see (2.22) when y1 = 0), and find

∂R f

∂n
= ∂ f

∂n
+ ∂

∂z2

(
f̂0(y1, z2) + λ f̂1(y1, z2) + λ2 f̂2(y1, z2)

)∣
∣
∣
z2=0

= 0.

To derive the boundary condition forRQ, we first consider the value of λ curlRQ at
X0 ∈ ∂�. We keep the notation used in section 2. We use equality (C.5) in appendix C
with Q(x) replaced by Qap(x), and use equality (D.3) in appendix D. Then we have

λ curlQap(X0) =
(

− ∂2Q
1
0 + λ(k0Q

1
0 − ∂2Q

1
1) + λ2(∂y1 Q̂

2
1

∣
∣
y1=0 + k0Q

1
1 − ∂2Q

1
2)

+ λ3(k0Q
1
2 + ∂1Q

2
2)
)∣
∣
∣
z2=0

,

where k0 is the curvature of ∂� at X0. Then we use the boundary condition of Q1
0 in

(2.14), the boundary condition of (Q1
1, Q

2
1) in (2.20), and that of (Q1

2, Q
2
2) in (2.22)

to get

λcurlQap(X0) = He(X0) + λ3(k0Q
1
2 + ∂1Q

2
2)
)∣∣
∣
z2=0

.

Similarly, for any x ∈ ∂�, we also have

λcurlQap(x) = He(x) − B3(x) on ∂�, (E.1)

where

B3(x) = −λ3
(
k(x)Q̂1

2(y1, z2) + ∂1 Q̂
2
2(y1, z2)

)∣
∣
∣
z2=0

, (E.2)

k(x) is the curvature of ∂� at x , z2 = y2/λ, x = ψ(y1, y2) and ψ is defined by (2.1).
From Proposition 2.9, we have

‖B3‖C2(∂�) ≤ C
(
�,He) λ3. (E.3)

Combining (E.1)with the boundary conditionλcurlQ = He on ∂�,we immediately
obtain that

λ curlRQ = B3 on ∂�.
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Now we compute the value of n · RQ on ∂�. We first calculate the value of f 2apn ·
Qap(x) at X0 ∈ ∂�. From (2.21) and (2.23), we have

| f0|2Q2
1

∣
∣
z2=0 = ∂y1z2 Q̂

1
0

∣
∣
y1=0,z2=0 = Ĥe

y1(0),

and

(| f0|2Q2
2 + 2 f0 f1Q

2
1)
∣
∣
z2=0 = −(∂z2 y1 Q̂

1
1 − ∂y1(k Q̂

1
0))
∣
∣
y1=0,z2=0

= −∂y1(∂z2 Q̂
1
1 − (k Q̂1

0))
∣
∣
y1=0,z2=0 = 0.

Then

| fap|2n · Qap(X0) = −( f0 + λ f1 + λ2 f2)
2(λQ2

1 + λ2Q2
2)

= −λĤe
y1(0) + λ3R̃2(y1, z2)

∣
∣
∣
y1=0,z2=0

,

where

R̃2(y1, z2) =( f 21 + 2 f0 f2)Q
2
1 + 2 f0 f1Q

2
2 + λ

(
2 f1 f2Q

2
1 + ( f 21 + 2 f0 f2)Q

2
2

)

+ λ2
(
f 22 Q

2
1 + 2 f1 f2Q

2
2

)
+ λ3 f 22 Q

2
2.

Similarly, for any x ∈ ∂�, we also have

f 2apn · Qap(x) = −λ∇tan(He)(x) − B4(x),

where

B4(x) = λ3R̃2(y1, z2)
∣
∣
∣
z2=0

, (E.4)

z2 = y2/λ, x = ψ(y1, y2), and ψ is defined by (2.1). From Proposition 2.5, Proposi-
tion 2.7 and Proposition 2.9, we have

‖B4‖C2(∂�) ≤ C
(
�,He) λ3. (E.5)

From the second and the third equations in (1.1), it follows that

f 2n · Q = −λ2n · curl2Q = −λ∇tan(λcurlQ) = −λ∇tan(He).

This gives that

ν · RQ = f −2
ap

[
B4 + λ| f |−2(| f |2 − | fap|2)∇tan(He)

]
:= B5. (E.6)

Summarizing, we obtain the boundary conditions (3.8) for system (3.7).
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