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Abstract
GivenM a compact, connected and orientable, real-analyticmanifold, and closed, real-
valued, real-analytic 1-forms ω1, . . . , ωm on M , we characterize the global analytic
hypoellipticity of the first operator featuring in the differential complex over M × T

m

naturally associated to an involutive systemof vector fields determined by them.Global
Gevrey hypoellipticity is determined simultaneously.

Mathematics Subject Classification (primary) 35F35; (secondary) 35H10 · 35R01

1 Introduction

Oneof the foremostmodels of systems of linear PDEs is that of the so-called tube struc-
tures, whose global properties have long attracted the attention of several researchers;
see e.g. [1–6, 8, 9, 11] as well as further references therein and subsequent works.

A straightforward way to define a corank m tube structure goes as follows: given
a compact manifold M and closed 1-forms ω1, . . . , ωm on M , we look at the product
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1326 G. Araújo

manifold M × T
m and the sub bundle V ⊂ CT (M × T

m) annihilated by all the forms
ζk

.= dxk −ωk , k = 1, . . . ,m; here (x1, . . . , xm) denote standard angular coordinates
on the torus T

m . Such a bundle is then involutive (in the sense of Frobenius) and
therefore gives rise to a complex of first-order differential operators on M × T

m

[7, 17], whose first operator L maps (complex-valued) functions to 1-forms via the
expression

L f
.= dt f +

m∑

k=1

ωk ∧ (∂xk f ), (1.1)

where t ∈ M , x ∈ T
m and dt stands for the exterior derivative on M .

The question of determining global hypoellipticity of L is then of interest:

u ∈ D′(M × T
m) and Lu ∈ �1C∞(M × T

m) �⇒ u ∈ C∞(M × T
m), (1.2)

which was previously investigated mainly when m = 1, or for general corank when
M is itself a torus. In the former situation, a classical result [1, Theorem 2.4] yields a
complete characterization when ω = ω1 is real: L is globally hypoelliptic in M × T

1

if and only if ω is neither rational nor Liouville – a Diophantine condition that aims
to describe how ω can be approximated by rational forms in the Fréchet topology of
�1C∞(M). This is our motivation and starting point.

In thiswork,we takeM a compact (and for simplicity also connected and orientable)
real-analytic manifold and real-analytic 1-forms ω1, . . . , ωm which we assume to be
real-valued and closed, aiming to characterize, instead, global analytic hypoellipticity
of L:

u ∈ D′(M × T
m) and Lu ∈ �1Cω(M × T

m) �⇒ u ∈ Cω(M × T
m).

Besides some necessary conceptual adjustments for treating the case of arbitrary
corank m, the actual difficulties arise from the more delicate nature of the spaces of
real-analytic functions and forms. In Sect. 2, we define properly their natural (locally
convex) topologies on a general compact, real-analytic manifold: from a functional
analytic perspective, such topologies turn them in what one calls DFS spaces, which
are well-understood [12] but have properties rather diverse than, say, Fréchet spaces.
This fact is crucial to understand the structure of their bounded sets – a notion that is
instrumental in the very definition of the number theoretic conditions (Definition 3.2)
we impose on the system ωωω

.= (ω1, . . . , ωm).
The advantage of such an abstract approach is that we can abstain from adding any

further hypotheses to M (such as the existence of global frames) and also make our
definitions inherently coordinate-free; nevertheless, all of themadmit characterizations
by means of local data computed via suitable norms (which we actually needed in our
proofs).

We prove our results in the more general framework of Gevrey classes of order
s ≥ 1 (the real-analytic case corresponds to s = 1) whose definition and essential
properties we recall in Sect. 2 and along the way as needed; we refer the reader to [15]
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Global analytic hypoellipticity of involutive... 1327

for more details. Next, we investigate the global s-hypoellipticity (3.1) of L, whose
characterization is the content of our main result (Theorem 3.4). For that matter, we
can relax our assumptions and suppose that the 1-forms ω1, . . . , ωm are just Gevrey
of order s (even though our base manifold M is always assumed real-analytic, mainly
for simplicity). Actually, one is tempted to conjecture that our strategy can be carried
out in ultradifferentiable settings of Roumieu type.

It must be pointed out that our results were previously obtained when M is a torus
T
n [9, Theorem 8.3], where its strong geometric properties were used: for instance,

its parallelizability and the possibility of doing “total” Fourier series (whilst in our
case only a partial Fourier series in the x-variable makes sense, see Sect. 5), which
in turn enables one to effectively reduce L to an operator with constant coefficients
in T

n × T
m ; such properties make many technical issues a lot simpler. In the present

work, however, we prove our results for a general M—in particular, we do not make
use of symmetries or assume the existence of a global frame of vector fields for V .

In [9], even the definition of the correct number theoretic condition is clearer: theirs
and ours turn out, however, to be the same (Proposition 4.1); this is achieved through a
concrete realization of our abstract Diophantine conditions by means of the so-called
matrix of periods ofωωω (Sect. 4), which also happens to be critical in obtaining estimates
throughout the proofs. Curiously, what plays a role in our conditions is the dimension
d of the homology space H1(M; R), and not the dimension n of M as a manifold, thus
revealing their true nature (when M = T

n these parameters are of course equal).
Moreover, although at a first glance there is no relationship between the definitions

of s-exponential Liouville systems (Definition 3.2) for different values of s, the fact
that these conditions can be read off as inequalities involving the matrix of periods
of ωωω allows us to compare them, and conclude, for instance, that when s1 > s2 the
global s1-hypoellipticity of L implies its global s2-hypoellipticity (provided the latter
makes sense).

Finally, a similar condition can be obtained in classifying (smooth) global hypoel-
lipticity of L, thus generalizing [1, Theorem 2.4] to arbitrary corank. We state it in
Sect. 7 (the proofs are omitted since can be easily obtained using our framework). This
condition can be encoded in an inequality (7.1) involving the matrix of periods of ωωω

as well (of “polynomial flavor”, as in [8]); which, in turn, imply the Gevrey ones (4.2)
by simple comparison. A corollary of this reasoning is the following: if L is globally
hypoelliptic in M × T

m then it is also globally s-hypoelliptic in M × T
m for every

s ≥ 1 for which ω1, . . . , ωm are Gs .

2 Spaces of Gevrey forms on compact manifolds and their topologies

The space Gs(U ) of Gevrey functions of order s ≥ 1 over an open set U ⊂ R
n

consists of all functions f ∈ C∞(U ) such that for each compact set K ⊂ U one can
find constants C, h > 0 for which

sup
K

|∂α f | ≤ Ch|α|α!s, ∀α ∈ Z
n+.
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1328 G. Araújo

Given K ⊂ R
n a regular compact set (i.e. K is the closure of a bounded open set with

smooth boundary) and h > 0 we define

Gs,h(K )
.=

{
f ∈ C∞(K ) ; ‖ f ‖s,h,K

.= sup
α∈Zn+

h−|α|α!−s sup
K

|∂α f | < ∞
}

.

This is a Banach space with respect to the norm ‖ · ‖s,h,K , and for h+ > h the natural
inclusion map Gs,h(K ) ↪→ Gs,h+(K ) is compact, meaning that

Gs(K )
.= lim−→

h>0

Gs,h(K )

is a so-called DFS space.
Now let � be a real-analytic manifold. A function f ∈ C∞(�) is said to belong to

Gs(�) if given an analytic atlas {(Ui , χi )}i∈I of�we have that f ◦χ−1
i ∈ Gs(χi (Ui ))

for every i ∈ I ; this is a meaningful definition since Gevrey regularity is preserved by
composition with real-analytic diffeomorphisms. It is also independent of our choice
of the atlas {(Ui , χi )}i∈I .

When � is further assumed to be compact (and, for simplicity, also connected) we
endow Gs(�) with a locally convex topology as follows. We select a finite analytic
atlas {(Ui , χi )}i∈I of � and regular compact sets Ki ⊂ Ui whose interiors still cover
�, and endow Gs(�) with the coarsest topology which makes continuous each one
of the linear maps

f ∈ Gs(�) �−→ f ◦ χ−1
i ∈ Gs(χi (Ki )), i ∈ I .

Or, equivalently, the coarsest topology that makes continuous their direct sum

f ∈ Gs(�) �−→ ( f ◦ χ−1
i )i∈I ∈

⊕

i∈I
Gs(χi (Ki )), (2.1)

where we endow the right-hand side with the (finite) direct sum topology; this is also
a DFS space, actually [12, Theorems 9 and 10]

⊕

i∈I
Gs(χi (Ki )) = lim−→

h>0

⊕

i∈I
Gs,h(χi (Ki )). (2.2)

Notice that the map (2.1) is injective since the family {Ki }i∈I covers �, and also has
closed range (as one easily checks using (2.2) and [12, Theorem 6’]), being therefore
a topological isomorphism onto its range (since closed subspaces of DFS spaces are
also DFS [12, Theorem 7’] and the Open Mapping Theorem [13, p. 59] applies).

This device allows one to recast the topology on Gs(�) as follows: for each h > 0
we define

Gs,h(�)
.= { f ∈ Gs(�) ; f ◦ χ−1

i ∈ Gs,h(χi (Ki )), ∀i ∈ I }
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Global analytic hypoellipticity of involutive... 1329

and endow it with the norm

‖ f ‖s,h,�
.=

∑

i∈I
‖ f ◦ χ−1

i ‖s,h,χi (Ki );

then Gs(�) = lim−→Gs,h(�) as the direct limit of an injective sequence of Banach
spaces with compact inclusion maps. By [12, Lemma 3 and Theorem 6’] we conclude:

Proposition 2.1 A subset B ⊂ Gs(�) is bounded if and only if B is contained in some
Gs,h(�) and is bounded there. A sequence { fν}ν∈N converges to zero in Gs(�) if and
only if there exists h > 0 such that either one of the following equivalent conditions
hold:

(1) { fν}ν∈N ⊂ Gs,h(�) and ‖ fν‖s,h,� → 0;
(2) { fν ◦ χ−1

i }ν∈N ⊂ Gs,h(χi (Ki )) and ‖ fν ◦ χ−1
i ‖s,h,χi (Ki ) → 0 for every i ∈ I .

It follows that the inclusion map Gs(�) ↪→ C∞(�) is continuous. Moreover, the
topology we endowed Gs(�) with is clearly independent of the coverings employed.
Indeed, denote temporarily by τ the topology on Gs(�) defined above. Pick any
analytic chart (U0, χ0) in � and K0 ⊂ U0 a compact set, and let I0

.= I ∪ {0}.
Then {(Ui , χi )}i∈I0 is a new analytic atlas and {K̊i }i∈I0 is an open covering of �. By
definition, the topology induced on Gs(�) by this new choice is the coarsest one to
make each assignment

f ∈ Gs(�) �−→ f ◦ χ−1
i ∈ Gs(χi (Ki )), i ∈ I0,

continuous. Denote it by τ0: since I ⊂ I0 we conclude that τ ⊂ τ0 by definition, i.e. the
identity map (Gs(�), τ0) → (Gs(�), τ ) is continuous, hence a homeomorphism (by
the Open Mapping Theorem), meaning that τ0 = τ . Proceeding inductively, any finite
refinement of our choices yields that same topology τ ; since any two initial choices
admit a common refinement (namely, their union) we are done.

The same basic construction works on the space of Gevrey sections of any real-
analytic vector bundle over �, but here we will only deal with the space of Gevrey
1-forms�1Gs(�). A smooth 1-form f ∈ �1C∞(�) can bewritten on each coordinate
patch Ui as

f =
n∑

j=1

fi j dχi j , fi j ∈ C∞(Ui ),

where χi = (χi1, . . . , χin) : Ui → R
n . Since each χi is a real-analytic map, we have

that f ∈ �1Gs(�) if and only if fi j ◦ χ−1
i ∈ Gs(χi (Ui )) for each j ∈ {1, . . . , n} and

i ∈ I .If

fi
.= ( fi1, . . . , fin) : Ui −→ R

n
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1330 G. Araújo

then the condition above reduces to: fi ◦ χ−1
i ∈ Gs(χi (Ui ))

n for every i ∈ I . We put
on Gs(χi (Ki ))

n the (finite) product topology, which turns it into a DFS space in the
same manner as above; actually

Gs(χi (Ki ))
n = lim−→

h>0

Gs,h(χi (Ki ))
n,

where Gs,h(χi (Ki ))
n is a Banach space with norm

(g1, . . . , gn) ∈ Gs,h(χi (Ki ))
n �−→

n∑

j=1

‖g j‖s,h,χi (Ki ).

We endow �1Gs(�) with the coarsest topology that makes the linear map

f ∈ �1Gs(�) �−→ ( fi ◦ χ−1
i )i∈I ∈

⊕

i∈I
Gs(χi (Ki ))

n

continuous: again, this is the locally convex injective limit of the Banach spaces

�1Gs,h(�)
.= { f ∈ �1Gs(�) ; fi ◦ χ−1

i ∈ Gs,h(χi (Ki ))
n, ∀i ∈ I }, h > 0,

where the norm is defined, say, by

‖ f ‖s,h,�
.=

∑

i∈I

n∑

j=1

‖ fi j ◦ χ−1
i ‖s,h,χi (Ki ),

hence turning �1Gs(�) into a DFS space. One then easily derives the following
criteria for boundedness and convergence of sequences there.

Proposition 2.2 A subset B ⊂ �1Gs(�) is bounded if and only if there exists constants
C, h > 0 such that

‖ fi j ◦ χ−1
i ‖s,h,χi (Ki ) ≤ C,

for every f ∈ B, every i ∈ I and j ∈ {1, . . . , n}. A sequence { fν}ν∈N converges to
zero in �1Gs(�) if and only if there exists h > 0 such that for every i ∈ I and j ∈
{1, . . . , n}we have {( fν)i j ◦χ−1

i }ν∈N ⊂ Gs,h(χi (Ki )) and ‖( fν)i j ◦χ−1
i ‖s,h,χi (Ki ) →

0.

Again, one deduces that the inclusion map �1Gs(�) ↪→ �1C∞(�) is continuous
and that the topology on �1Gs(�) just introduced is independent of the coverings
chosen.
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Global analytic hypoellipticity of involutive... 1331

3 A class of real differential operators

Let M be a compact real-analytic manifold, which for simplicity we further assume
to be connected and oriented. Given a system ω1, . . . , ωm of real, closed 1-forms
belonging to �1Gs(M), our main purpose is to study global s-hypoellipticity of the
differential operator L as defined in (1.1), by which we mean

u ∈ D′(M × T
m) and Lu ∈ �1Gs(M × T

m) �⇒ u ∈ Gs(M × T
m). (3.1)

Our classification will be in terms of properties of the system ωωω
.= (ω1, . . . , ωm). Let

us first recall [1, Definition 2.1]:

Definition 3.1 A real 1-form α ∈ �1C∞(M) is integral if dα = 0 and
∫
σ

α ∈ 2πZ

for every 1-cycle σ in M . It is otherwise rational if qα is integral for some q ∈ Z\{0}.
Definition 3.2 We say that ωωω = (ω1, . . . , ωm) is:

(1) a rational system if there existsξ ∈ Z
m\{0} such that

ξ · ωωω .=
m∑

k=1

ξkωk

is an integral 1-form i.e.

1

2π

∫

σ

ξ · ωωω ∈ Z (3.2)

for every 1-cycle σ in M .
(2) an s-exponential Liouville system if ωωω is not rational and there exist ε > 0, a

sequence of integral forms {θν}ν∈N ⊂ �1Gs(M; R) and {ξν}ν∈N ⊂ Z
m such

that |ξν | → ∞ and

{eε|ξν | 1s (ξν · ωωω − θν)}ν∈Nis bounded in�1Gs(M). (3.3)

Remark 3.3 The reader should notice that ωωω can be a rational system even if no ωk

is a rational form in the sense of Definition 3.1. Moreover, the conditions set forth in
Definition 3.2 depend only on the cohomology classes of ω1, . . . , ωm in H1(M; R).
In fact, suppose that ωωω• .= (ω•

1, . . . , ω
•
m) is another m-tuple of real, closed 1-forms

in �1Gs(M) such that [ω•
k ] = [ωk] in H1(M; R) for every k ∈ {1, . . . ,m}, i.e. there

exist gk ∈ C∞(M; R) such that ω•
k = ωk + dgk (hence gk are a posteriori Gs). It is

then clear that ξ ·ωωω• and ξ ·ωωω are in the same cohomology class for every ξ ∈ Z
m , in

particular their integrals over an1-cycle are the same;moreover, ξν ·ωωω•−θ•
ν = ξν ·ωωω−θν

provided we let

θ•
ν

.= θν −
m∑

k=1

(ξν)k dgk
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1332 G. Araújo

which is obviously integral if so is θν .

We are ready to state our main result. The next sections are dedicated to prove it.

Theorem 3.4 Letω1, . . . , ωm ∈ �1Gs(M) be real and closed. The operatorL defined
in (1.1) is globally s-hypoelliptic if and only ifωωω = (ω1, . . . , ωm) is neither a rational
system nor an s-exponential Liouville system.

4 Thematrix of periods

The notions established in Definition 3.2 admit a more concrete characterization. Fix

σ1, . . . , σd 1 − cycles inM (�)

whose classes in H1(M; Z) form a basis of its free part

and regard them as a real basis of H1(M; R). We may assume that these cycles are
smooth (or even real-analytic [16, Theorem 5]). To ωωω (as defined in the previous
section) we then assign a matrix of periods as follows: define A(ωωω) ∈ Md×m(R) by

A(ωωω)�k
.= 1

2π

∫

σ�

ωk, � ∈ {1, . . . , d}, k ∈ {1, . . . ,m},

that is1

A(ωωω)ξ = 1

2π

(∫

σ1

ξ · ωωω, . . . ,

∫

σd

ξ · ωωω
)

, ξ ∈ Z
m . (4.1)

Again, the definition of A(ωωω) clearly depends only on the classes [ω1], . . . , [ωm] ∈
H1(M; R) and we therefore have a linear map

A : H1(M; R)m −→ Md×m(R).

As in [9, Section 3], we say that a d × m matrix with real entries A satisfies
condition (DC)2s if for every ε > 0 there exists Cε > 0 such that

|κ + Aξ | ≥ Cεe
−ε(|κ|+|ξ |) 1s , ∀(κ, ξ) ∈ (Zd × Z

m)\{(0, 0)}; (4.2)

or, equivalently, if for every ε > 0 there exists Cε > 0 such that

|κ + Aξ | ≥ Cεe
−ε|ξ | 1s , ∀(κ, ξ) ∈ (Zd × Z

m)\{(0, 0)}.
1 About the notation: ξ in (4.1) is to be regarded as a column vector, so it should, more properly, be
transposed. We keep however this notation for simplicity and use it consistently along the text.
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Global analytic hypoellipticity of involutive... 1333

This condition implies [9, Lemma 8.1] that for every ε > 0 there exists Cε > 0 such
that

max
�

|e2π ia�·ξ − 1| ≥ Cεe
−ε|ξ | 1s , ∀ξ ∈ Z

m\{0}, (4.3)

where a� ∈ R
m denotes the �-th row of A.

Proposition 4.1 The system ωωω is rational if and only if A(ωωω)(Zm\{0}) ∩ Z
d �= ∅. It is

an s-exponential Liouville system if and only if it is not rational and A(ωωω) does not
satisfy (DC)2s .

Proof If ωωω is a rational system then it follows from (4.1) that A(ωωω)ξ ∈ Z
d for some

ξ ∈ Z
m\{0}. Conversely, if A(ωωω)ξ ∈ Z

d then

1

2π

∫

σ�

ξ · ωωω ∈ Z, ∀� ∈ {1, . . . , d},

which thanks to (�) is enough to ensure (3.2) for every 1-cycle σ in M .
For the second statement, we need some preliminary remarks. By de Rham’s The-

orem, one can identify H1(M; R) with the dual space of H1(M; R), via the pairing

([α], [σ ]) ∈ H1(M; R) × H1(M; R) �−→ 1

2π

∫

σ

α ∈ R,

and hence consider

ϑ1, . . . , ϑd ∈ �1C∞(M; R) closed (�)

whose classes form a basis of H1(M; R) dual to [σ1], . . . , [σd ].

We can assumewithout loss of generality that each ϑ� is actually real-analytic. Indeed,
by endowing M with a real-analytic Riemannian metric (which is always possible
thanks to Grauert’s embedding theorem [10]), the Laplace–Beltrami operator

�
.= dd∗ + d∗d : �1C∞(M) −→ �1C∞(M)

is an elliptic, real-analytic operator, and by Hodge theory every cohomology class
in H1(M) has a representative f ∈ �1C∞(M) such that � f = 0; such an f is
therefore real-analytic thanks to the ellipticity of �.

We may write for each k ∈ {1, . . . ,m}

ωk =
d∑

�=1

λ�kϑ� + dvk,

where each λ�k ∈ R is uniquely determined by

λ�k = 1

2π

∫

σ�

ωk = A(ωωω)�k,
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1334 G. Araújo

and vk ∈ Gs(M; R) by ellipticity of the exterior derivative on M . Hence, for ξ ∈ Z
m ,

ξ · ωωω =
d∑

�=1

(
m∑

k=1

A(ωωω)�kξk

)
ϑ� +

m∑

k=1

ξkdvk . (4.4)

We assume from here until the end of the proof that ωωω is not a rational system;
hence, as we have seen, A(ωωω)ξ /∈ Z

d for every ξ ∈ Z
m\{0}.

Suppose first that A(ωωω) does not satisfy (DC)2s . Then there exists ε > 0 and a
sequence {(κν, ξν)}ν∈N ⊂ Z

d × Z
m\{(0, 0)} such that

lim
ν→∞ eε|ξν | 1s |κν + A(ωωω)ξν | = 0. (4.5)

Suppose by contradiction that {ξν}ν∈N is bounded: the same cannot hold for {κν}ν∈N
(otherwise the sequence {(κν, ξν)}ν∈N would attain at most finitely many values, con-
tradicting (4.5)). Moreover, in this case,

eε|ξν | 1s |κν + A(ωωω)ξν | ≥ |κν + A(ωωω)ξν | ≥ |κν | − |A(ωωω)ξν | ≥ |κν | − C,

for some C > 0, now contradicting the unboundedness of {κν}ν∈N. We can therefore
assume that |ξν | → ∞ as ν → ∞. Now define

θν
.= −

d∑

�=1

(κν)�ϑ� +
m∑

k=1

(ξν)kdvk . (4.6)

Clearly each θν is an integral 1-form. Furthermore, using (4.4) and (4.6) we obtain

ρν
.= eε|ξν | 1s (ξν · ωωω − θν) = eε|ξν | 1s

d∑

�=1

(
m∑

k=1

A(ωωω)�k(ξν)k + (κν)�

)
ϑ�.

We fix a coordinate chart (U ; t1, . . . , tn) in M and a compact set K ⊂ U . Hence,
there exist C1, h1 > 0 such that

sup
K

|∂α
t ϑ�| ≤ C1h

|α|
1 α!s, ∀α ∈ Z

n+, ∀� ∈ {1, . . . , d}.

Thus on K ,

|∂α
t ρν | ≤ eε|ξν | 1s

d∑

�=1

(
m∑

k=1

|A(ωωω)�k(ξν)k + (κν)�|
)

|∂α
t ϑ�|

≤ C1h
|α|
1 α!seε|ξν | 1s

d∑

�=1

m∑

k=1

|A(ωωω)�k(ξν)k + (κν)�|
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Global analytic hypoellipticity of involutive... 1335

≤ C2h
|α|
1 α!seε|ξν | 1s |A(ωωω)ξν + κν |

≤ C3h
|α|
1 α!s,

for some constant C3 > 0 independent of ν thanks to (4.5). This proves that {ρν}ν∈N
is bounded in �1Gs(M); hence, ωωω is an s-exponential Liouville system.

Conversely, suppose that there exist ε > 0, a sequence of integral forms {θν}ν∈N ⊂
�1Gs(M; R) and {ξν}ν∈N ⊂ Z

m , such that |ξν | → ∞ and (3.3) holds. Again, we may
write for every ν ∈ N

θν =
d∑

�=1

βν�ϑ� + dgν, (4.7)

where βν� ∈ Z and gν ∈ Gs(M; R). By associating (4.4) with (4.7) we have

ρν
.= eε|ξν | 1s (ξν · ωωω − θν)

= eε|ξν | 1s
d∑

�=1

(
m∑

k=1

A(ωωω)�k(ξν)k − βν�

)
ϑ� + eε|ξν | 1s

(
m∑

k=1

(ξν)kdvk − dgν

)
.

As a consequence of the exactness of both dvk and dgν we have

1

2π

∫

σ�

ρν = eε|ξν | 1s
(

m∑

k=1

A(ωωω)�k(ξν)k − βν�

)
, ∀� ∈ {1, . . . , d}, ∀ν ∈ N.

Since by hypothesis {ρν}ν∈N is bounded in �1Gs(M) we can find a constant C > 0
such that

∣∣∣∣
∫

σ�

ρν

∣∣∣∣ ≤ C, ∀� ∈ {1, . . . , d}, ∀ν ∈ N.

Indeed, only the sup norms of the local coefficients of the ρν added across a finite
covering of M play a role in the estimation of such integrals (no derivatives are
required). Therefore, by setting κν

.= −(βν1, . . . βνd) ∈ Z
d one obtains

|A(ωωω)ξν + κν | ≤ C1e
−ε|ξν | 1s , ∀ν ∈ N,

for some C1 > 0. Since |ξν | → ∞, by possibly extracting a subsequence we may

assume that e− ε
2 |ξν | 1s < (C1ν)−1, for every ν ∈ N, which allows us to obtain

|A(ωωω)ξν + κν | ≤ 1

ν
e− ε

2 |ξν | 1s , ∀ν ∈ N;

therefore A(ωωω) does not satisfy (DC)2s . ��
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Remark 4.2 If d
.= dim H1(M; R) then any A ∈ Md×m(R) is the matrix of periods of

some system of closed 1-forms ωωω = (ω1, . . . , ωm) on M . Indeed, defining

ωk
.=

d∑

�=1

A�kϑ�, k ∈ {1, . . . ,m},

where ϑ1, . . . , ϑd are as in (�), yields A(ωωω) = A by previous computations. We
can use this fact to provide examples of systems ωωω on M that satisfy the number
theoretic conditions in Definition 3.2, as these can be read directly from A(ωωω) by
Proposition 4.1. For instance, in [9] many examples of matrices A that do (or do not)
satisfy condition (DC)2s are discussed.

5 Partial Fourier series

Let U ⊂ R
n be an open set. Given f ∈ C∞(U × T

m) we define for each ξ ∈ Z
m a

function f̂ξ ∈ C∞(U ) by

f̂ξ (t)
.=

∫

Tm
e−i x ·ξ f (t, x)dx, t ∈ U ;

more generally, if f ∈ D′(U × T
m) we define f̂ξ ∈ D′(U ) by the rule

φ ∈ C∞
c (U ) �−→ 〈 f , φ ⊗ e−i x ·ξ 〉 ∈ C.

It is easy to see that this construction is local in U ; that is

V ⊂ U open �⇒ ̂( f |V×Tm )ξ = f̂ξ |V .

A related issue is the following formula that one checks at once:

(̂φ f )ξ = φ f̂ξ , ∀φ ∈ C∞(U ). (5.1)

Another important feature is its invariance under changes of variables. We take
χ : U ′ → U a diffeomorphism between open sets in R

n and define

X
.= χ × idTm : U ′ × T

m −→ U × T
m, (5.2)

that is, X(t ′, x) = (χ(t ′), x) for (t ′, x) ∈ U ′ × T
m . One checks easily that

(̂X∗ f )ξ = χ∗ f̂ξ , ∀ξ ∈ Z
m, (5.3)

whatever f ∈ D′(U × T
m).
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Finally, we are able to define f̂ξ ∈ D′(M) for f ∈ D′(M × T
m), where M is now

a smooth manifold. On a coordinate domain U ⊂ M we must define f̂ξ |U ∈ D′(U )

through the following steps:

(1) take χ1 : U ′
1 → U a diffeomorphism where U ′

1 ⊂ R
n is an open set;

(2) define X1
.= χ1 × idTm ;

(3) let f1
.= X∗

1( f |U×Tm ) ∈ D′(U ′
1 × T

m);

(4) take its Fourier coefficient (̂ f1)ξ ∈ D′(U ′
1) (using the former definition);

(5) define f̂ξ |U .= (χ−1
1 )∗(̂ f1)ξ ∈ D′(U ).

This definition is independent of our choice of parametrization onU : if χ2 : U ′
2 → U

is another such diffeomorphism then we let, in accordance with (5.2),

χ
.= χ−1

2 ◦ χ1 : U ′
1 −→ U ′

2 �⇒ X
.= χ × idTm = X−1

2 ◦ X1 : U ′
1 × T

m −→ U ′
2 × T

m

so that, by (5.3),

χ∗(̂ f2)ξ = (̂X∗ f2)ξ = (̂ f1)ξ ,

where we have used that

X∗ f2 = X∗X∗
2( f |U×Tm ) = (X2 ◦ X)∗( f |U×Tm ) = X∗

1( f |U×Tm ) = f1,

and from which it follows that

(χ−1
1 )∗(̂ f1)ξ = (χ−1

1 )∗χ∗(̂ f2)ξ = (χ−1
2 )∗(̂ f2)ξ .

Notice that this procedure yields, for f ∈ L1
loc(M × T

m):

f1(t
′, x) = f (χ1(t

′), x) �⇒ (̂ f1)ξ (t
′) =

∫

Tm
e−i x ·ξ f (χ1(t

′), x)dx

�⇒ f̂ξ (t) =
∫

Tm
e−i x ·ξ f (t, x)dx

as expected.
Let again U ⊂ R

n be an open set.

Lemma 5.1 An f ∈ D′(U × T
m) is zero if and only if f̂ξ = 0 for every ξ ∈ Z

m.

Proof Suppose all the partial Fourier coefficients of f are zero. Thanks to (5.1) we
may assume that f ∈ E ′(U × T

m), which we regard as a continuous linear functional
onC∞(U ×T

m), whose vanishing we proceed to check. ByC-linearity, it is sufficient
to show that it vanishes on the space of real-valued functions C∞(U × T

m; R).
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Let ψ ∈ C∞(Tm; R). Using Fourier series we can write

ψ = 1

(2π)m

∑

ξ∈Zm

ψ̂ξ eix ·ξ , ψ̂ξ ∈ C,

with convergence in C∞(Tm). We have that

〈 f , φ ⊗ ψ〉 = 1

(2π)m

∑

ξ∈Zm

ψ̂ξ 〈 f , φ ⊗ eix ·ξ 〉 = 1

(2π)m

∑

ξ∈Zm

ψ̂ξ 〈 f̂(−ξ), φ〉 = 0,

whatever φ ∈ C∞(U ; R); hence, by passing to finite sums of simple tensors we
prove that f vanishes onA .= C∞(U ; R) ⊗C∞(Tm; R). This is a real subalgebra of
C∞(U × T

m; R) that satisfies:

(1) given distinct (t, x), (t ′, x ′) ∈ U × T
m there exists g ∈ A such that g(t, x) �=

g(t ′, x ′);
(2) given (t, x) ∈ U × T

m there exists g ∈ A such that g(t, x) �= 0; and
(3) given (t, x) ∈ U ×T

m and a non-zero (v,w) ∈ TtU ⊕TxTm ∼= T(t,x)(U ×T
m)

there exists g ∈ A such that dg(t,x)(v, w) �= 0.

These happen to be the hypotheses of Nachbin’s extension of the Stone-Weierstrass
Theorem [14, Theorem 1.2.1], by virtue of which A is dense in C∞(U × T

m; R).
Continuity of f entails our conclusion. ��

5.1 Gevrey type estimates

Back to an open set U ⊂ R
n , for an f ∈ D′(U × T

m) we take a closer look at the
following couple of properties:

(1) for each ξ ∈ Z
m we have that f̂ξ ∈ C∞(U ) and

(2) for each compact set K ⊂ U there exist constants C, h, ε > 0 such that

sup
K

|∂α
t f̂ξ | ≤ Ch|α|α!se−ε|ξ | 1s , ∀α ∈ Z

n+, ∀ξ ∈ Z
m . (5.4)

Let us investigate how they behave under a change of variables χ : U ′ → U . First,
concerning condition 1, it is clear from (5.3) that f̂ξ is smooth in U if and only

if (̂X∗ f )ξ is smooth in U ′. As for condition 2, we will be interested only in the
case when χ is a real-analytic diffeomorphism, in which case the same is true for
its associated diffeomorphism X defined in (5.2). Keeping in mind (5.3), a careful
inspection in the proof of [15, Proposition 1.4.6] shows that if (5.4) holds for some
constants C, h, ε > 0 (provided of course each f̂ξ is smooth) then
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sup
K ′

∣∣∣∂α
t ′ (̂X

∗ f )ξ
∣∣∣ ≤ C ′(h′)|α|α!se−ε|ξ | 1s , ∀α ∈ Z

n+, ∀ξ ∈ Z
m,

where K ′ .= χ−1(K ) ⊂ U ′ and C ′, h′ > 0 depend only on C , h and χ . Notice that
every compact set K ′ ⊂ U ′ is of that form. We summarize our conclusions in the first
statement of the next result.

Proposition 5.2 Conditions 1–2 are invariant by real-analytic changes of variables.
They hold if and only if f ∈ Gs(U × T

m).

Proof We prove the equivalence stated above. If f ∈ Gs(U × T
m) then given K ⊂ U

a compact set there exist C, h > 0 such that

sup
K×Tm

|∂α
t f | ≤ Ch|α|α!s, ∀α ∈ Z

n+;

hence for any t ∈ K and α ∈ Z
n+,

|∂α
t f̂ξ (t)| =

∣∣∣∣
∫

Tm
e−i x ·ξ ∂α

t f (t, x)dx

∣∣∣∣ ≤
∫

Tm
|∂α
t f (t, x)|dx ≤ C(2π)mh|α|α!s .

For the converse, conditions 1–2 ensure that the series

1

(2π)m

∑

ξ∈Zm

f̂ξ (t)e
ix ·ξ

converges uniformly on compact sets to a continuous function g : U × T
m → C,

which is actually smooth and, moreover, satisfies

∂α
t ∂β

x g(t, x) = 1

(2π)m

∑

ξ∈Zm

∂α
t f̂ξ (t)(iξ)βeix ·ξ ,

with uniform convergence on compact sets for every (α, β) ∈ Z
n+ × Z

m+ thanks to 2.
In particular, for t ∈ K we have

|∂α
t ∂β

x g(t, x)| ≤ 1

(2π)m

∑

ξ∈Zm

|∂α
t f̂ξ (t)||ξ ||β| ≤ 1

(2π)m
Ch|α|α!s

∑

ξ∈Zm

|ξ ||β|e−ε|ξ | 1s ,

which easily yields g ∈ Gs(U × T
m). Since we are allowed to integrate under the

summation sign we obtain

ĝη(t) = 1

(2π)m

∑

ξ∈Zm

∫

Tm
e−i x ·η f̂ξ (t)eix ·ξdx = f̂η(t), ∀η ∈ Z

m;

hence, by Lemma 5.1 we conclude that f = g is Gs . ��
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5.2 Forms of type (0, 1)

Let M be a smooth manifold. Given U ⊂ M the domain of a coordinate system
(t1, . . . , tn) we denote by �0,1C∞(U × T

m) the space of 1-forms f on U × T
m with

no dx component i.e.

f =
n∑

j=1

f j dt j , (5.5)

where f j ∈ C∞(U × T
m). We then define f̂ξ ∈ �1C∞(U ) by

f̂ξ
.=

n∑

j=1

(̂ f j )ξ dt j . (5.6)

One can prove that these definitions are independent of the choice of coordinates
on U (recall (5.1)), which allows us to define the space �0,1C∞(M × T

m) of all
f ∈ �1C∞(M × T

m) such that f |U×Tm ∈ �0,1C∞(U × T
m) for every coordinate

open set U ⊂ M , as well as their partial Fourier coefficients f̂ξ ∈ �1C∞(M). We
also let �0,1Gs(U × T

m)
.= �0,1C∞(U × T

m) ∩ �1Gs(U × T
m).

More generally, forU ⊂ M we define�0,1D′(U×T
m) as the space of currents f ∈

�1D′(U×T
m)which can bewritten as (5.5),where now f j ∈ D′(U×T

m) for each j ∈
{1, . . . , n}, in which casewe define f̂ξ ∈ �1D′(U ) by (5.6). Again, this is independent
of the coordinates (t1, . . . , tn) so we can define the space of currents�0,1D′(M×T

m)

and their partial Fourier coefficients, which are elements of �1D′(M). One can apply
the results in the previous section to each local coefficient f j in order to retrieveGevrey
regularity of f from local estimates on f̂ξ ; more precisely, on their local coefficients

(̂ f j )ξ .
Concerning our operator L defined in (1.1), notice that for u ∈ C∞(M × T

m) we
have that Lu ∈ �0,1C∞(M × T

m) and, moreover,

(̂Lu)ξ = dûξ + i ûξ (ξ · ωωω)
.= Lξ ûξ , (5.7)

thus defining a differential operator Lξ = d + i(ξ · ωωω) ∧ · : C∞(M) → �1C∞(M);
identity (5.7) also holds for u ∈ D′(M × T

m). It is enough to check this locally: we
reason in a coordinate chart (U ; t1, . . . , tn), where

ωk =
n∑

j=1

ω jk dt j , ω jk ∈ C∞(U ),

hence, by (1.1), we have that

Lu =
n∑

j=1

(
∂t j u +

m∑

k=1

ω jk∂xk u

)
dt j

.=
n∑

j=1

(L j u) dt j
.=

n∑

j=1

f j dt j
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belongs to �0,1D′(U × T
m), where L j is a complex vector field with smooth coef-

ficients on U × T
m for each j ∈ {1, . . . , n}. We take as a parametrization of U the

inverse of the chart map χ
.= (t1, . . . , tn)−1 : U ′ → U where U ′ ⊂ R

n is an open set
and let X

.= χ × idTm . Notice that

X∗ f j = X∗(L j u) = (X∗L j )(X
∗u) = ∂t j (X

∗u) +
m∑

k=1

(ω jk ◦ χ)∂xk (X
∗u),

where by abuse of notation (t1, . . . , tn) also denotes the standardEuclidean coordinates
onU ′ so that ∂t j is simply a partial derivative. Using the local definition of the Fourier
coefficients we take an arbitrary φ ∈ C∞

c (U ′) and evaluate

〈 ̂(X∗ f j )ξ , φ〉 = 〈X∗ f j , φ ⊗ e−i x ·ξ 〉

= 〈∂t j (X∗u), φ ⊗ e−i x ·ξ 〉 +
m∑

k=1

〈(ω jk ◦ χ)∂xk (X
∗u), φ ⊗ e−i x ·ξ 〉

= −〈X∗u, (∂t j φ) ⊗ e−i x ·ξ 〉 −
m∑

k=1

〈X∗u, (ω jk ◦ χ)φ ⊗ (−iξke
−i x ·ξ )〉

= −〈(̂X∗u)ξ , ∂t j φ〉 + i
m∑

k=1

ξk〈(̂X∗u)ξ , (ω jk ◦ χ)φ〉

= 〈∂t j (̂X∗u)ξ , φ〉 + i
m∑

k=1

ξk〈(ω jk ◦ χ)(̂X∗u)ξ , φ〉,

which implies that

̂(X∗ f j )ξ = ∂t j (̂X
∗u)ξ + i

m∑

k=1

ξk(ω jk ◦ χ)(̂X∗u)ξ

as elements of D′(U ′). Finally, pulling everything back to U via χ−1 we obtain, by
definition,

(̂ f j )ξ = ∂t j ûξ + i
m∑

k=1

ξkω jk ûξ inU ,

for each j ∈ {1, . . . , n}; hence, by (5.6),

f̂ξ =
n∑

j=1

(
∂t j ûξ + i ûξ

m∑

k=1

ξkω jk

)
dt j = dûξ + i ûξ

m∑

k=1

ξkωk = dûξ + i ûξ (ξ · ωωω).
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6 Proof of Theorem 3.4

Before we start, we state a technical lemma whose proof follows closely that of [9,
Lemma 4.3].

Lemma 6.1 Let U ⊂ R
n be an open set and φφφ = (φ1, . . . , φm) : U → R

m be a
smooth map satisfying the following condition: for some compact set K ⊂ U there
exist C1, h1 > 0 such that

sup
K

|∂αφk | ≤ C1h
|α|
1 α!s, ∀α ∈ Z

n+, ∀k ∈ {1, . . . ,m}.

Then for every ε > 0 we can find h2 > 0 depending on C1, h1,m and ε such that

sup
K

|∂αeiξ ·φφφ | ≤ h|α|
2 α!seε|ξ | 1s , ∀α ∈ Z

n+, ∀ξ ∈ Z
m .

We will make use of the universal covering space � : M̃ → M of M . One can
prove that since M is a real-analytic manifold then so is M̃ , and that � is a real-
analytic map that satisfies the following property: a map f : M → N is real-analytic
(resp.Gs) – N being an arbitrary real-analytic manifold – if and only if the same holds
for f ◦ � : M̃ → N .

It is also helpful to endow M with a real-analytic Riemannian metric, Tm with the
standard (flat) metric and M × T

m with the product metric, whose volume forms we
denote by dμ, dx and dμ ∧ dx , respectively. We assume without loss of generality
that

∫
M dμ = 1, and for � ∈ {M, T

m, M × T
m} we consider the space of square

integrable functions L2(�).

Step 1

Suppose that ωωω is a rational system. Then there exists η ∈ Z
m\{0} such that η · ωωω is

integral. It is well-known that if we take a ψ ∈ C∞(M̃; R) such that dψ = �∗(η ·ωωω)

(recall that integral forms on M are by definition closed, and therefore exact on M̃)
then

for everyp, q ∈ M̃ such that�(p) = �(q)we haveψ(p) − ψ(q) ∈ 2πZ,

which is the condition one needs to descend eiψ to M via� to a function g ∈ C∞(M).
Notice that

�∗(dg) = d�∗g = deiψ = ieiψdψ = �∗[ig(η · ωωω)] �⇒ dg = ig(η · ωωω) onM,

thanks to injectivity of �∗ (since � is a submersion). By ellipticity of the exterior
derivative on M̃ we haveψ ∈ Gs(M̃; R), which in turn yields g ∈ Gs(M). We define

u
.= 1

(2π)m

∞∑

ν=1

ν−2gνe−i x ·(νη) ∈ L2(M × T
m),
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which satisfies ûξ = ν−2gν if ξ = −νη and ûξ = 0 otherwise. Notice that u does not
belong to Gs(M × T

m): indeed, if it did (Proposition 5.2) there would exist constants
C, ε > 0 such that

sup
M

|ûξ | ≤ Ce−ε|ξ | 1s , ∀ξ ∈ Z
m,

contradicting that |û(−νη)(t)| = ν−2|g(t)|ν = ν−2, for every ν ∈ N. However,

L(−νη)û(−νη) = d(ν−2gν) + i(ν−2gν)(−νη · ωωω) = ν−1gν−1[dg − ig(η · ωωω)].

Hence, (̂Lu)ξ = Lξ ûξ = 0, for every ξ ∈ Z
m ; i.e.Lu = 0 (which follows by applying

Lemma 5.1 locally), showing that L is not globally s-hypoelliptic.

Step 2

We proceed to the case where ωωω is an s-exponential Liouville system. By hypothesis
there exist ε > 0, a sequence of integral forms {θν}ν∈N ⊂ �1Gs(M; R) and a sequence
{ξν}ν∈N ⊂ Z

m such that |ξν | → ∞ and (3.3) holds. For each ν ∈ N we select
ψν ∈ C∞(M̃; R) such that dψν = �∗θν , and once again integrality of θν allows us to
descend eiψν to a function gν ∈ C∞(M) that satisfies dgν = igνθν on M ; as before,
ψν and gν are a posteriori Gs on their respective domains.

Assume without loss of generality ξν �= ξν′ if ν �= ν′, and set

u
.= 1

(2π)m

∞∑

ν=1

ν−2gνe
−i x ·ξν ;

by similar arguments as in the previous step we have u ∈ L2(M ×T
m)\Gs(M ×T

m).
We will prove that f

.= Lu ∈ �1Gs(M × T
m). Notice that

L(−ξν)û(−ξν) = d(ν−2gν) + i(ν−2gν)(−ξν · ωωω) = iν−2gν(θν − ξν · ωωω)

= −iν−2e−ε|ξν | 1s gνρν,

where {ρν}ν∈N is bounded in �1Gs(M); hence,

f̂ξ =
{

−iν−2e−ε|ξν | 1s gνρν, i f ξ = ξν;
0, otherwise.

(6.1)

We proceed to estimate the Gs norms of these terms.
We address gν first, focusing our attention on a coordinate domain V ⊂ M so small

that � : Ṽ → V is a real-analytic diffeomorphism for some open set Ṽ ⊂ M̃ . Let
φν ∈ Gs(V ; R) be given by φν ◦ � = ψν |Ṽ ; hence,

gν = eiφν on V (6.2)
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and therefore

�∗(dφν) = d�∗φν = dψν = �∗θν �⇒ dφν = θν on V . (6.3)

Since DFS spaces are regular injective limits of Banach spaces, one can reduce the
property of boundedness in �1Gs(M) to boundedness in some normed space (Propo-
sition 2.2): this one piece of information (the actual definition of the norm is irrelevant
in this argument) can be used to prove that, in the topology of �1Gs(M),

eε|ξν | 1s (ξν · ωωω − θν) bounded �⇒ |ξν |−1(ξν · ωωω − θν) bounded �⇒ |ξν |−1θν bounded,

where we have used that |ξν | → ∞. Hence, by Proposition 2.2, given a compact set
K ⊂ V there exist C1, h1 > 0 such that

sup
K

∣∣∣∂α
t (|ξν |−1θν)

∣∣∣ ≤ C1h
|α|
1 α!s, sup

K

∣∣∂α
t ρν

∣∣ ≤ C1h
|α|
1 α!s, ∀α ∈ Z

n+, ∀ν ∈ N,

(6.4)

with the abuse of notation of treating a 1-form as a n-tuple of functions on V , on
which the partial derivatives act, and whose indices we omit. It follows from the
former inequality, together with identity (6.3), that there exist C2, h2 > 0 such that

sup
K

∣∣∣∂α
t (|ξν |−1φν)

∣∣∣ ≤ C2h
|α|
2 α!s, ∀α ∈ Z

n+, ∀ν ∈ N;

hence, by the scalar version of Lemma 6.1 applied to (6.2) we conclude that one can
find h3 > 0 (depending only on C2, h2, ε) such that

sup
K

|∂α
t gν | = sup

K

∣∣∣∂α
t e

iφν

∣∣∣ = sup
K

∣∣∣∂α
t e

i |ξν |(|ξν |−1φν)
∣∣∣ ≤ h|α|

3 α!se ε
2 |ξν | 1s , (6.5)

for every α ∈ Z
n+ and ν ∈ N. From (6.4) and (6.5) one then deduces that

sup
K

|∂α
t (gνρν)| ≤ C1e

ε
2 |ξν | 1s ∑

β≤α

(
α

β

)
h|α|−|β|
3 (α − β)!sh|β|

1 β!s ≤ C4h
|α|
4 α!se ε

2 |ξν | 1s ,

for some constants C4, h4 > 0. This ultimately proves, in view of (6.1), that

sup
K

|∂α
t f̂ξ | ≤ C4h

|α|
4 α!se− ε

2 |ξν | 1s , ∀α ∈ Z
n+, ∀ξ ∈ Z

m,

ensuring that f ∈ �1Gs(M × T
m) by Proposition 5.2.
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Step 3

Finally, we consider the case when the system ωωω is neither rational nor s-exponential
Liouville. In this situation, take u ∈ D′(M×T

m) such that f
.= Lu ∈ �1Gs(M×T

m).
Then, for every ξ ∈ Z

m we have

f̂ξ = Lξ ûξ = dûξ + i ûξ (ξ · ωωω).

For each k ∈ {1, . . . ,m} we take a function ψk ∈ Gs(M̃; R) such that dψk = �∗ωk .
It follows that

d[eiξ ·ψψψ�∗(ûξ )] = eiξ ·ψψψd�∗(ûξ ) + �∗(ûξ )de
iξ ·ψψψ

= eiξ ·ψψψ {�∗( f̂ξ ) − i�∗[ûξ (ξ · ωωω)]} + �∗(ûξ )ie
iξ ·ψψψ�∗(ξ · ωωω) = eiξ ·ψψψ�∗( f̂ξ )

(6.6)

on M̃ , where we employed the notation ψψψ
.= (ψ1, . . . , ψm). For each � ∈ {1, . . . , d}

we denote by σ̃� : [0, 2π ] → M̃ a lift of the 1-cycle σ� described in (�) to M̃ . If we fix
a base point t0 ∈ M and some t̃0 ∈ �−1(t0) we can assume that σ�(0) = t0 = σ�(2π)

and that σ̃�(0) = t̃0 for every � ∈ {1, . . . , d}. Then, by (6.6),

∫

σ̃�

eiξ ·ψψψ�∗( f̂ξ ) =
∫

σ̃�

d[eiξ ·ψψψ�∗(ûξ )]

= eiξ ·ψψψ(t̃�)ûξ (�(t̃�)) − eiξ ·ψψψ(t̃0)ûξ (�(t̃0)) = (eiξ ·ψψψ(t̃�) − eiξ ·ψψψ(t̃0))ûξ (t0),

where t̃�
.= σ̃�(2π) ∈ �−1(t0), which allows us to deduce that

ûξ (t0) = eiξ ·[ψψψ(t̃0)−ψψψ(t̃�)]ûξ (t0) + e−iξ ·ψψψ(t̃�)
∫

σ̃�

eiξ ·ψψψ�∗( f̂ξ ). (6.7)

Observe that

ψk(t̃�) − ψk(t̃0) =
∫

σ̃�

dψk =
∫

σ̃�

�∗ωk =
∫

�◦σ̃�

ωk =
∫

σ�

ωk = 2πA(ωωω)�k;

hence,

A(ωωω)ξ = 1

2π

(
ξ · [ψψψ(t̃1) − ψψψ(t̃0)], . . . , ξ · [ψψψ(t̃d) − ψψψ(t̃0)]

)
.

Due to our assumptions on ωωω, we have by Proposition 4.1 that A(ωωω) satisfies con-
dition (DC)2s . Hence, by (4.3) for every ε > 0 there exists Cε > 0 such that

max
�

∣∣∣1 − eiξ ·[ψψψ(t̃0)−ψψψ(t̃�)]
∣∣∣ = max

�

∣∣∣1 − e−2π i(A(ωωω)ξ)�

∣∣∣ ≥ Cεe
−ε|ξ | 1s , ∀ξ ∈ Z

m\{0}.
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Therefore, for a given ξ ∈ Z
m\{0}we pick that � ∈ {1, . . . , d} at which the maximum

in the left-hand side is attained; in particular, that term does not vanish, allowing us to
conclude from (6.7) that

|ûξ (t0)| = |e−iξ ·ψψψ(t̃�)|∣∣1 − eiξ ·[ψψψ(t̃�)−ψψψ(t̃0)]∣∣

∣∣∣∣
∫

σ̃�

eiξ ·ψψψ�∗( f̂ξ )
∣∣∣∣ ≤ C−1

ε eε|ξ | 1s
∣∣∣∣
∫

σ̃�

eiξ ·ψψψ�∗( f̂ξ )
∣∣∣∣ .

(6.8)

We claim that there exist C, δ > 0 such that

∣∣∣∣
∫

σ̃�

eiξ ·ψψψ�∗( f̂ξ )
∣∣∣∣ ≤ Ce−δ|ξ | 1s , ∀ξ ∈ Z

m . (6.9)

Indeed, first of all we have, by definition,

∫

σ̃�

eiξ ·ψψψ�∗( f̂ξ ) =
∫ 2π

0
eiξ ·(ψψψ◦σ̃�) σ̃ ∗

� �∗( f̂ξ ) =
∫ 2π

0
eiξ ·(ψψψ◦σ̃�) σ ∗

� ( f̂ξ ).

As in Sect. 2, we fix a finite family {Ki }i∈I of coordinate compact subsets of M whose
interiors form an open covering of M , and a partition 0 = τ0 < τ1 < · · · < τN = 2π
such that for each r ∈ {1, . . . , N } (that will remain fixed until (6.11) and upon which
our choices will depend without explicit mention) σ�([τr−1, τr ]) is contained in the
interior of a single Ki (depending on r ). Denoting by (t1, . . . , tn) a fixed set of real-
analytic coordinates in a neighborhood of that Ki , we write f as (5.5) and f̂ξ as (5.6),
and conclude that on [τr−1, τr ] ⊂ R we have

σ ∗
� ( f̂ξ ) =

n∑

j=1

(̂( f j )ξ ◦ σ�) d(t j ◦ σ�) =
n∑

j=1

(̂( f j )ξ ◦ σ�)g j dτ, (6.10)

for some continuous function2 g j in [τr−1, τr ].
Hence,

∫ τr

τr−1

eiξ ·(ψψψ◦σ̃�) σ ∗
� ( f̂ξ ) =

n∑

j=1

∫ τr

τr−1

eiξ ·(ψψψ(σ̃�(τ )))(̂ f j )ξ (σ�(τ ))g j (τ ) dτ.

Now, since f ∈ �1Gs(M × T
m) one can apply Proposition 5.2 to find constants

C ′, δ > 0 independent of r such that

sup
Ki

|̂( f j )ξ | ≤ C ′e−δ|ξ | 1s , ∀ j ∈ {1, . . . , n}, ∀ξ ∈ Z
m,

2 We stress that the expression (6.10) can only be obtained because σ�([τr−1, τr ]) ⊂ Ki lies within a
coordinate patch of M . One cannot expect that the whole image of the cycle σ� be contained in such a
patch, and this is the reason to introduce the partition 0 = τ0 < τ1 < · · · < τN = 2π .
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and, therefore,

∣∣∣∣
∫ τr

τr−1

eiξ ·(ψψψ◦σ̃�) σ ∗
� ( f̂ξ )

∣∣∣∣ ≤
n∑

j=1

∫ τr

τr−1

|̂( f j )ξ (σ�(τ ))||g j (τ )| dτ ≤ C ′′e−δ|ξ | 1s ,

(6.11)

for some C ′′ > 0 independent of ξ ∈ Z
m and r ∈ {1, . . . , N }. Since

∫

σ̃�

eiξ ·ψψψ�∗( f̂ξ ) =
∫ 2π

0
eiξ ·(ψψψ◦σ̃�) σ ∗

� ( f̂ξ ) =
N∑

r=1

∫ τr

τr−1

eiξ ·(ψψψ◦σ̃�) σ ∗
� ( f̂ξ ),

we conclude that

∣∣∣∣
∫

σ̃�

eiξ ·ψψψ�∗( f̂ξ )
∣∣∣∣ ≤

N∑

r=1

∣∣∣∣
∫ τr

τr−1

eiξ ·(ψψψ◦σ̃�) σ ∗
� ( f̂ξ )

∣∣∣∣ ≤ C ′′Ne−δ|ξ | 1s , ∀ξ ∈ Z
m,

thus proving (6.9).
It follows from (6.8) and (6.9), by taking ε

.= δ/2 in the former and C1
.= C−1

ε C ,
that

|ûξ (t0)| ≤ C1e
− δ

2 |ξ | 1s , ∀ξ ∈ Z
m . (6.12)

Next we must estimate the derivatives of ûξ . Once again we take V ⊂ M a coor-
dinate ball centered at t0, so small that � : Ṽ → V is a real-analytic diffeomorphism
for an open set Ṽ ⊂ M̃ ; this time, for each k ∈ {1, . . . ,m} there exists φk ∈ Gs(V ; R)

so that φk ◦ � = ψk on Ṽ ; notice that dφk = ωk on V , and thus

d(eiξ ·φφφ ûξ ) = eiξ ·φφφdûξ + ûξde
iξ ·φφφ = eiξ ·φφφ[ f̂ξ − i ûξ (ξ · ωωω)] + ûξ [ieiξ ·φφφ(ξ · ωωω)]

= eiξ ·φφφ f̂ξ .

Therefore, by integrating over the segment {τ t0 + (1 − τ)t ; τ ∈ [0, 1]} ⊂ V we
deduce that

eiξ ·φφφ(t)ûξ (t) − eiξ ·φφφ(t0)ûξ (t0) =
∫ t

t0
eiξ ·φφφ f̂ξ ,

which implies that

ûξ (t) = eiξ ·[φφφ(t0)−φφφ(t)]ûξ (t0)︸ ︷︷ ︸
.=Υ 1

ξ (t)

+ e−iξ ·φφφ(t)
∫ t

t0
eiξ ·φφφ f̂ξ

︸ ︷︷ ︸
.=Υ 2

ξ (t)

, ∀t ∈ V , ∀ξ ∈ Z
m .

(6.13)
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It follows from (6.12) and Lemma 6.1 that on a given compact set K ⊂ V

|∂α
t Υ 1

ξ | ≤ C1e
− δ

2 |ξ | 1s |∂α
t e

−iξ ·φφφ | ≤ C1h
|α|
2 α!se− δ

4 |ξ | 1s , ∀α ∈ Z
n+, ∀ξ ∈ Z

m,

(6.14)

for some h2 > 0. We further write

Υ 2
ξ (t) = e−iξ ·φφφ(t)

∫ t

t0
eiξ ·φφφ f̂ξ

.= e−iξ ·φφφ(t)Yξ (t), (6.15)

so that

dYξ = eiξ ·φφφ f̂ξ .

It follows from the hypothesis that f ∈ �1Gs(M×T
m) and Proposition 5.2 that there

exist C3, h3, θ > 0 such that

sup
K

|∂α
t f̂ξ | ≤ C3h

|α|
3 α!se−θ |ξ | 1s , ∀α ∈ Z

n+, ∀ξ ∈ Z
m, (6.16)

where again we treat 1-forms on V as n-tuples of functions. Therefore, it follows
from (6.16) and Lemma 6.1 that for some h4 > 0 we have on K :

|∂α
t (dYξ )| ≤

∑

β≤α

(
α

β

)
|∂α−β
t eiξ ·φφφ ||∂β

t f̂ξ |

≤
∑

β≤α

(
α

β

)
|∂α−β
t eiξ ·φφφ |C3h

|β|
3 β!se−θ |ξ | 1s

≤
∑

β≤α

(
α

β

)
h|α|−|β|
4 (α − β)!sC3h

|β|
3 β!se− θ

2 |ξ | 1s

≤ C3h
|α|
5 α!se− θ

2 |ξ | 1s ,

whatever α ∈ Z
n+, for some h5 > 0. By possibly increasing C3 and h5, one obtains

sup
K

|∂α
t Yξ | ≤ C3h

|α|
5 α!se− θ

2 |ξ | 1s , ∀α ∈ Z
n+, ∀ξ ∈ Z

m . (6.17)

Finally, we return to (6.15); one repeats the previous argument using Lemma 6.1 and
now (6.17) to conclude that

sup
K

|∂α
t Υ 2

ξ | ≤ C7h
|α|
7 α!se− θ

4 |ξ | 1s , ∀α ∈ Z
n+, ∀ξ ∈ Z

m, (6.18)
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for some constants C7, h7 > 0. Using (6.13), (6.14) and (6.18), we deduce the exis-
tence of C, h and ε > 0 such that

sup
K

|∂α
t ûξ | ≤ Ch|α|α!se−ε|ξ | 1s , ∀α ∈ Z

n+, ∀ξ ∈ Z
m .

Since M can be covered by finitely many V with the aforementioned properties and
K ⊂ V is arbitrary, this last estimate shows that u is Gs in M × T

m by a final
application of Proposition 5.2.

7 Final remarks

Using the tools developed above, one can derive the following characterizations of
(smooth) global hypoellipticity of the operator L, thus extending [1, Theorem 2.4]
to arbitrary corank. Of course, in that case M and the 1-forms ω1, . . . , ωm can be
assumed just smooth.

In order to properly state them, we need some preliminary definitions.

Definition 7.1 We say thatωωω = (ω1, . . . , ωm) is a Liouville system ifωωω is not rational
and there exist a sequence of integral forms {θν}ν∈N ⊂ �1C∞(M; R) and {ξν}ν∈N ⊂
Z
m such that |ξν | → ∞ and

{|ξν |ν(ξν · ωωω − θν)}ν∈N is bounded in�1C∞(M).

Definition 7.2 We say that a matrix A ∈ Md×m(R) satisfies condition (DC)2 if there
exist C, ρ > 0 such that

|κ + Aξ | ≥ C(|κ| + |ξ |)−ρ, ∀(κ, ξ) ∈ (Zd × Z
m)\{(0, 0)}. (7.1)

Notice that the latter condition implies condition (DC) used in [8] to study global
solvability of corankm tube structures when M = T

d . It also implies condition (DC)2s
for every s ≥ 1.

Theorem 7.3 The following are equivalent:

(1) L is globally hypoelliptic; i.e. (1.2) holds.
(2) ωωω = (ω1, . . . , ωm) is neither a rational system nor a Liouville system.
(3) The matrix of periods A(ωωω) satisfies condition (DC)2.

We omit the proof. As a consequence, using the theorem above together with The-
orem 3.4 and Proposition 4.1 we conclude that when ω1, . . . , ωm are Gs we have:

Corollary 7.4 If L is globally hypoelliptic then it is globally s-hypoelliptic.
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