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Abstract
Consider the class of optimal partition problems with long range interactions

inf

{
k∑

i=1

λ1(ωi ) : (ω1, . . . , ωk) ∈ Pr (�)

}
,

where λ1(·) denotes the first Dirichlet eigenvalue, and Pr (�) is the set of open k-
partitions of � whose elements are at distance at least r : dist(ωi , ω j ) ≥ r for every
i �= j . In this paper we prove optimal uniform bounds (as r → 0+) in Lip–norm for
the associated L2-normalized eigenfunctions, connecting in particular the nonlocal
case r > 0 with the local one r → 0+. The proof uses new pointwise estimates
for eigenfunctions, a one-phase Alt–Caffarelli–Friedman and the Caffarelli-Jerison-
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Kenig monotonicity formulas, combined with elliptic and energy estimates. Our result
extends to other contexts, such as singularly perturbed harmonic maps with distance
constraints.

Keywords Dirichlet integral · Harmonic functions · Laplacian eigenvalues ·
Lipschitz estimates · Long range interactions · Optimal partition problems · Optimal
regularity · Segregation phenomena
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1 Introduction

The purpose of this paper is to investigate uniform regularity estimates for a family
of long-range (nonlocal) interaction problems. Let � be a smooth bounded domain of
R

N , N ≥ 2 and k ≥ 2 be integers. Given r ≥ 0, we consider the set of all k-partitions
of � whose elements are at distance at least r :

Pr (�) =
{
(ω1, . . . , ωk)

∣∣∣∣ωi ⊂ � is a nonempty open set for all i,
ωi ∩ ω j = ∅ and dist(ωi , ω j ) ≥ r ∀i �= j

}

(notice that the request that ωi ∩ ω j = ∅ is redundant for r > 0, but not for r = 0). It
is plain that there exists r̄ > 0 (which depends on � and on k) such that Pr (�) �= ∅,
for every r ∈ [0, r̄). For any such r , we are concerned with the following optimization
problem:

cr := inf

{
k∑

i=1

λ1(ωi ) : (ω1, . . . , ωk) ∈ Pr (�)

}
, (1.1)

where λ1(·) denotes the first Dirichlet eigenvalue.
The short-range (local) case, corresponding to the choice r = 0, is a typical example

of optimal partition problem, a very active topic of research since the seminal paper [3].
Existence and properties of minimizers for c0 are essentially understood: we collect
in the following theorem what has been proved in [6, 13, 33] (see also [21] and [26]).

Theorem A The optimal value c0 is attained by a minimal partition (�1,0, . . . , �k,0)

which exhausts �, in the sense that
⋃

i �i,0 = �; moreover, the free boundary⋃
i ∂�i,0 consists of piece-wise C1,α-hypersurfaces of dimension N − 1, up to a

singular set of dimension N − 2 (the singular set is actually discrete in dimension
N = 2). Finally, the eigenfunctions ui,0 associated with �i,0 are globally Lipschitz
continuous, which is the optimal regularity in this case.

Finer results for the singular set are proved in the recent paper [1].
Much less is known in the nonlocal case r > 0. In a joint paper with S. Terracini

[28] (see Theorem 1.2 and Theorem 1.3-(3), (6) therein), we have shown the following
properties.
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Free boundary problems with long-range interactions... 553

(1) Existence. The level cr is achieved by an open optimal partition (�1,r , . . . , �k,r );
(2) Exterior sphere condition and exact distance between the optimal sets. Given

x0 ∈ ∂�i,r\∂�, there exists j �= i and y0 ∈ ∂� j,r such that |x0 − y0| = r , and
�i,r ∩ Br (y0) = ∅; in particular, dist(�i,r ,� j,r ) = r and each set �i,r satisfies
an exterior sphere condition of radius r at any of its boundary point.

The second statement together with [4, Lemma 6.4] yields:

(3) Measure of the Free Boundary. The sets ∂�i,r have locally finite perimeter in �.

The approach used both in the local [6, 13, 33] and in the nonlocal case [28] consists
in studying the following relaxed formulation of cr in terms of measurable functions
rather than sets:

c̃r = inf

{
k∑

i=1

∫
�

|∇ui |2
∣∣∣∣ ui ∈ H1

0 (�),
∫
�
u2i = 1 ∀i,∫

�
u2i u

2
j = 0 and dist(supp ui , supp u j ) ≥ r , ∀i �= j

}
.

(1.2)

It is shown that there exists a minimizer ur = (u1,r , . . . , uk,r ) for c̃r . Moreover:

(a) Optimal regularity. Each ui,r is Lipschitz continuous in �. In particular, the posi-
tivity sets �i,r := {ui,r > 0} are open and (�1,r , . . . , �k,r ) ∈ Pr (�);

(b) Equation of ui,r . −�ui,r = λ1(�i,r )ui,r in �i,r . The partition (�1,r , . . . , �2,r )

achieves cr , which coincides with c̃r , and satisfies conditions (1)–(3).

Under an additional regularity assumption of the free boundary ∂�i , we have also
derived a free boundary condition, satisfied by the eigenfunctions of the optimal par-
titions (see [28, Theorem 1.6]). The validity of such a condition remains a crucial
open problem in the general setting for optimal partition problems with a distance
constraint.

The techniques adopted in the local and nonlocal cases are completely different.
Powerful tools typically employed in the former ones, such as monotonicity formulas,
free boundary conditions and blow-up methods, cannot be adapted in the context of
optimal partitions at distance, due to the nonlocal nature of the interaction between
different densities/sets. This is why the free boundary regularity for problem c0 is
settled,while the sameproblem for cr is open.However, the commonoptimal Lipschitz
regularity of ur suggests that it should be possible to look at both problems, the local
and the nonlocal ones, as a 1-parameter family, where the parameter is the distance
r between the different supports. The main results of this paper establish that this is
possible, at least at the level of the eigenfunctions. More precisely:

Theorem 1.1 There exists a constant C > 0 such that

‖ur‖Lip(�) := ‖ur‖L∞(�) + ‖∇ur‖L∞(�) ≤ C,

for any 0 < r < r̄ , and any minimizer ur of cr .

Observe that, for each r > 0 fixed, Lipschitz regularity is proved via a barrier
argument, which is possible due to the exterior sphere condition (see [28, Theorem
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3.4]). However the barrier used depends on the radius, and the argument breaks down
as r → 0+. Here we rely on different methods.

Combining this theorem with the information obtained in previous papers about
the local case r = 0, we have the following.

Theorem 1.2 There exists C > 0 such that

c0 ≤ cr ≤ c0 + Cr for sufficiently small r > 0.

In particular, cr → c0 as r → 0. Moreover, given any minimizer ur of cr for r > 0,
there exists u0 ∈ H1

0 (�) ∩ Lip(�), solution to c0, such that, up to a subsequence,

ur → u0 strongly in H1
0 (�) ∩ C0,α(�), for every α ∈ (0, 1).

We believe that these results may pave the way to the development of a common
free boundary regularity theory. This will be the object of future investigations.

A closely related problem concerns the regularity of singularly perturbed harmonic
maps and of their free boundaries. Under the previous assumptions on �, let

�r̄ =
⋃
x∈�

Br̄ (x) = {x ∈ R
N : dist(x,�) < r̄},

and, given k ≥ 2 nonnegative nontrivial functions f1, . . . , fk ∈ H1(�r̄ ) ∩ C(�r̄ )

satisfying

dist(supp fi , supp f j ) ≥ r̄ ∀i �= j, supp fi ∩ (�r̄ \ �) �= ∅ ∀i,

let us consider the minimization problems

hr := inf
u∈Hr

k∑
i=1

∫
�

|∇ui |2, r ∈ [0, r̄),

where

Hr =
{
u = (u1, . . . , uk) ∈ H1(�r̄ ,R

k)

∣∣∣∣
∫
�
u2i u

2
j = 0 and dist(suppui , suppu j ) ≥ r ∀i �= j

ui = fi a.e. in �r̄ \ �

}
.

(1.3)

As for the optimal partition problems, the local case r = 0 is essentially understood
(see [7, 33]), while for the nonlocal one r > 0, studied in [28], there are still many
open questions. However, local and nonlocal cases share the same optimal regularity
for the minimizers: if ur is a minimizer of hr , then it is locally Lipschitz continuous
in �, both for r = 0 and r > 0. Therefore, it is natural to wonder whether a result
similar to Theorem 1.1 holds true or not. We can give an affirmative answer.
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Theorem 1.3 For any compact set K ⊂⊂ �, there exists a constant C > 0 (which
depends on K , �, N and on r̄) such that

‖ur‖Lip(K ) := ‖ur‖L∞(K ) + ‖∇ur‖L∞(K ) ≤ C,

for any 0 < r < r̄ , and any minimizer ur of hr . Moreover there exists u0 ∈ H0 ∩
Liploc(�), solution to h0, such that, up to a subsequence,

ur → u0 strongly in H1
loc(�) ∩ C0,α

loc (�), for every α ∈ (0, 1).

Problems cr and hr are closely related, both for r = 0 and r > 0. In turn, they are
both related to the study of the asymptotic behavior of multi-components system in the
limit of strong competition. This topic attracted a lot of attention in the last decades,
mainly in the local setting, for which by now a variety of results are available: systems
with symmetric quadratic interaction between the different densities were studied in
[5, 12, 14, 30]; systems with variational cubic interaction in [7, 10, 11, 15, 23, 27,
30, 31, 39]; analogue problems for systems driven by the fractional Laplacian were
addressed in [16, 34, 35, 37, 38]; the fully nonlinear setting was studied in [8, 25]; and
systems with asymmetric diffusion or asymmetric interaction were tackled in [29, 36,
39]. See also the references therein.

In contrast, besides [28], the only contributions regarding long range interaction
models are [4] and [2]; in [4], the authors analyzed the spatial segregation for systems
such as {

�ui,β = βui,β
∑

j �=i (χB1
|u j |p) in �

ui,β = fi ≥ 0 in �1 \ �,
(1.4)

with 1 ≤ p < +∞. In the above equation, χB1 denotes the characteristic function
of B1(0), and 
 stays for the convolution. The authors proved the equi-continuity and
gradient bounds for families of viscosity solutions {uβ : β > 0} to (1.4), the local
uniform convergence to a limit configuration u, and then studied the free-boundary
regularity of the positivity sets {ui > 0} in the case p = 1 and dimension N = 2. In
[2], the author proved a uniqueness result.

Notation and structure of the paper

We mainly use standard notation. Whenever a function f is radially symmetric, we
write f (x) = f (|x |). We denote by Br (x0) the Euclidean ball of radius r > 0 and
center x0; whenever x0 = 0, we simply write Br . In most of the integrals, the volume
or surface elements are omitted, for the sake of brevity; the domain of integration
suggests the natural choice.

The rest of the paper is devoted to the proof of Theorem 1.1. We focus on the case
N ≥ 3. In Sect. 2, we present some preliminary inequalities regarding eigenfunctions
of the Laplacian. Section3 contains the proof of Theorem 1.1. Concerning the case
N = 2 in Theorem 1.1, and Theorem 1.3, we shall not present the details. The proof
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follows the same sketch of the one of Theorem 1.1, being actually a bit simpler at sev-
eral points. We will stress the main differences in some remarks whenever necessary.

2 Preliminary results

We devote this section to some inequalities about eigenfunctions of the Laplacian
that will be crucial in order to reach the conclusion of Theorem 1.1. Some of these
inequalities are already known and are presented here for the sake of clarity. Some
others may be of independent interest and are given in a general setting.

2.1 Pointwise estimate of the gradient of eigenfunctions

We show that the maximum of the gradient of a positive eigenfunction is reached
at the boundary of its domain, up to a multiplicative constant depending only on the
dimension, and in particular not on the domain�. The following result can be extended
to more general bounded domains (in which case the gradient may be unbounded),
but we state and prove it only under the following additional regularity assumption on
�. Precisely, we recall that � is said to satisfy the uniform exterior sphere condition
with radius ρ if for every x0 ∈ ∂�, there exists a ball B ⊂ R

N \ � with radius ρ such
that x0 ∈ ∂B. Moreover, we say that � enjoys the uniform exterior sphere condition
if there exists ρ > 0 such that � enjoys the uniform exterior sphere condition with
radius ρ.

Lemma 2.1 Let� ⊂ R
N be a nonempty bounded domain that enjoys the uniform exte-

rior sphere condition. Let λ = λ1(�) be the first positive eigenvalue of the Laplacian
with Dirichlet boundary conditions with eigenfunction u ∈ H1

0 (�),

{
−�u = λu in �

u = 0 on ∂�.

There exists a universal constant C = C(N ) > 0 and a sequence {xn} ⊂ � such that

lim
n→+∞ dist(xn, ∂�) = 0 and lim inf

n→+∞ |∇u(xn)| ≥ C‖∇u‖L∞(�).

Proof By classical regularity theory of elliptic equations, we know that the eigenfunc-
tion u is a C∞ function inside of � and is Lipschitz continuous up to the boundary
[20, Proposition 2.20], and by the maximum principle we can assume that u > 0 in
�. Exploiting the regularity of u inside of �, we find that the function x �→ |∇u(x)|
is continuous and bounded in �. In order to reach the conclusion, since � is bounded,
it suffices to show that, if |∇u(x)| attains its maximum inside of �, then its maximum
value is still comparable to the value of the gradient close to a point on the boundary.
Hence we can further assume that there exists y ∈ � such that

‖∇u‖L∞(�) = |∇u(y)|.
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Letting r = dist(y, ∂�) > 0, we consider the function v ∈ Lip(B1) defined as

v(x) := u(y + r x)

r |∇u(y)| .

Then, by definition, we see that v > 0 and |∇v| ≤ 1 in B1, with |∇v(0)| = 1 and

{
−�v = λr2v in B1

v(z) = 0 for some z ∈ ∂B1 ∩ ∂�−y
r .

(2.1)

Observe that, by set inclusion, we find λr2 ≤ λ1(B1), the first Dirichlet eigenvalue
of the unit ball in R

N . Moreover, |v(x)| = |v(x) − v(z)| ≤ |x − z| ≤ 2 for every
x ∈ B1. We want to show that v(0) ≥ m for some m > 0 that depends only on the
dimension N . By elliptic regularity theory [19, Corollary 6.3], we know that there
exists a constant CN > 0 that depends only on the dimension N such that

‖D2v‖L∞(B1/2) ≤ CN
(‖v‖L∞(B1) + ‖λr2v‖L∞(B1) + ‖λr2∇v‖L∞(B1)

)
≤ 2CN (1 + λ1(B)) ,

where D2v is the Hessian matrix of v. Let

AN = max (3, 2CN (1 + λ1(B1)))

which, ultimately, depends only on the dimension N . For any x ∈ B1/2 we have

v(x) = v(0) + ∇v(0) · x + R(x),

where the remainder verifies |R(x)| ≤ AN‖x‖2/2. We now take

x0 = − 1

AN
∇v(0),

which belongs to B1/2 since AN > 2 and |∇v(0)| = 1. Recalling that v > 0 in B1
and using again the fact that |∇v(0)| = 1, we find

0 ≤ v(x0) ≤ v(0) − 1

AN
|∇v(0)|2 + 1

2AN
|∇v(0)|2 = v(0) − 1

2AN
,

that is

v(0) ≥ 1

2AN
> 0.

Combining this estimate with the fact that |∇v| ≤ 1 we have that

min

{
v(x) : |x | ≤ 1

4AN

}
≥ 1

2AN
− 1

4AN
= 1

4AN
> 0.
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We now consider the function v ∈ C2(B1\B1/(4AN )) defined as

v(x) = DN

(
1

|x |N−2 − 1

)
,

for a constant DN > 0 defined by the relation DN ((4AN )N−2 − 1) = 1/(4AN ).
Therefore, v is the solution to the problem

⎧⎪⎨
⎪⎩

−�v = 0 ≤ −�v in B1 \ B1/(4AN )

v = 0 ≤ v on ∂B1

v = 1
4AN

≤ v on ∂B1/(4AN ).

Notice that v is radially decreasing, ∂rv is radially increasing, and

∂rv(x) ≤ ∂rv(z) = (2 − N )DN =: −κN < 0 ∀x ∈ B1 \ B1/(4AN ).

Moreover, by the maximum principle, v ≤ v in B1\B1/(4AN ). We claim that this
implies that there exists a sequence {zn} ⊂ B1 such that

zn → z and lim inf
n→∞ |∇v(zn)| ≥ κN .

Indeed, let us assume by contradiction that there exists ε > 0 such that for any x ∈
Bε(z)∩ B1 we have |∇v(x)| < κN . We consider the function f ∈ Lip([0, 1]), defined
as f (t) = v((1− t)z) for all t ∈ [0, 1]. We have that | f ′(t)| = |∇v((1− t)z) · z| < κN
for all t ∈ (0, ε), thus

f (ε) = f (0) +
∫ ε

0
f ′(s)ds ≤

∫ ε

0
| f ′(s)|ds < εκN �⇒ v((1 − ε)z) < εκN .

On the other hand, by the same reasoning as before we have that

v((1 − ε)z) = −
∫ ε

0
∂rv((1 − s)z)ds ≥ εκN ,

in contradiction with the fact that v ≤ v in B1\B1/(4AN ). The conclusion follows by
scaling back to the original function u. ��

2.2 Mean-value property for eigenfunctions

We show that the eigenfunctions of the Laplacian and their gradients enjoy a mean-
value property similar to harmonic functions. For a given λ̄ > 0, let R̄ = R̄(λ̄) > 0
be such that the ball B2R̄ has first Dirichlet eigenvalue equal to λ̄. We denote by ϕ the
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corresponding positive eigenfunction, with

⎧⎪⎨
⎪⎩

−�ϕ = λ̄ϕ in B2R̄,

ϕ = 0 on ∂B2R̄,

ϕ(0) = 1.

(2.2)

We recall that ϕ is radially symmetric and radially decreasing, attaining its only max-
imum at the origin and ϕ(x) = JN/2−1,1(α|x |) where JN/2−1,1 is the Bessel function
of first kind and index N/2 − 1, and α > 0 is a suitable scaling parameter.

Lemma 2.2 Let R ≤ R̄ and assume there exists a nonnegative function v ∈ C∞(BR)

such that

−�v ≤ λv in BR,

for λ ≤ λ̄. Then for any r ∈ (0, R) we have

1

r N

∫
Br

v ≤ 1

ϕ(R)RN

∫
BR

v.

Proof First we observe that, since ϕ > 0 in BR ,

− div

(
ϕ2∇

(
v

ϕ

))
= −�vϕ + �ϕv ≤ (λ − λ̄)vϕ ≤ 0 in BR .

For 0 < r < R, integrating the previous inequality in Br we find

0 ≤
∫
Br

div

(
ϕ2∇

(
v

ϕ

))
= ϕ2(r)

∫
∂Br

∂ν

(
v

ϕ

)
�⇒

∫
∂Br

∂ν

(
v

ϕ

)
≥ 0.

Introduce the smooth function � : (0, R) → R as

�(r) := 1

r N−1

∫
∂Br

v(y)

ϕ(y)
dσy =

∫
∂B1

v(r x)

ϕ(r x)
dσx .

Taking the derivative of � yields

�′(r) = 1

r N−1

∫
∂Br

∂ν

(
v

ϕ

)
≥ 0,

that is, the function r �→ �(r) is positive and increasing for r < R. As a result, for
any 0 < s < t < R we have

t N−1
∫

∂Bs

v

ϕ
≤ sN−1

∫
∂Bt

v

ϕ
.

123



560 N. Soave et al.

Next, for a given r ∈ (0, R), we integrate the previous inequality for s ∈ (0, r) and
afterwards for t ∈ (r , R), and deduce that

(
RN

N
− r N

N

)∫
Br

v

ϕ
≤ r N

N

∫
BR\Br

v

ϕ
.

By rearranging the terms we obtain

1

r N

∫
Br

v

ϕ
≤ 1

RN

∫
BR

v

ϕ
.

To conclude we recall that ϕ is decreasing in r and that ϕ(0) = 1. ��
A direct consequence of the mean-value property is a similar inequality for the

gradient of eigenfunctions.

Corollary 2.3 Let R ≤ R̄ and assume there exists a function u ∈ C∞(BR) such that

−�u = λu in BR,

for 2λ ≤ λ̄. Then for any r ∈ (0, R) we have

1

r N

∫
Br

|∇u|2 ≤ 1

ϕ(R)RN

∫
BR

|∇u|2

and, in particular,

|∇u(0)|2 ≤ 1

ϕ(R)|BR |
∫
BR

|∇u|2.

Proof It suffices to consider Lemma 2.2 with v = |∇u|2, since

−�|∇u|2 = 2

(
λ|∇u|2 −

N∑
i=1

|∇uxi |2
)

≤ 2λ|∇u|2 in BR

and 2λ ≤ λ̄. ��

2.3 Energy estimate of the gradient of eigenfunction

Previously we have shown a mean-value property for the gradient of eigenfunction
in the interior of their support. In this section we prove a similar result for points on
the boundary. It rests on a monotonicity formula of Alt-Caffarelli-Friedman type for a
single function defined in a domain that enjoys the exterior sphere condition. We thus
first prove such formula.
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As before, we fix λ̄ > 0 and let R̄ = R̄(λ̄) > 0 be such that the ball B2R̄ has first
Dirichlet eigenvalue equal to λ̄, with eigenfunction ϕ normalized in such a way that
ϕ(0) = 1. Let �ϕ ∈ C2(B3R̄/2 \ {0}) be a positive and radial solution of

− div
(
ϕ2∇�ϕ

)
= δ in B3R̄/2, (2.3)

where δ is the Dirac delta centered at the origin. A direct computation shows that we
can choose

�ϕ(r) = (N − 2)
∫ 3R̄/2

r

s1−N

ϕ2(s)
ds, r = |x |.

With this choice we additionally have that �ϕ(3R̄/2) = 0, �ϕ(r) > 0 for any r ∈
(0, 3R̄/2), and �′

ϕ(r) = − N−2
ϕ2(r)r N−1 . We also define

ψ(r) := r N−2ϕ2(r)�ϕ(r). (2.4)

which we assume to be extended by continuity for r = 0. We have the following.

Lemma 2.4 The function ψ is Lipschitz continuous in B3R̄/2 and radially symmetric.

For any r ∈ [0, R̄],ψ(r) > 0, whileψ(3R̄/2) = 0 and there exists C = C(N , λ̄) ≥ 0
such that

|ψ(r) − 1| ≤ Cr for r ∈ (0, 3R̄/2). (2.5)

Proof We only need to show (2.5), as the other properties in the statement are direct
consequences of the definition of the function ψ . We have

ψ(r) − 1

r
= 1

r

(
(N − 2)

∫ 3R̄/2

r

s1−N

r2−N

ϕ2(r)

ϕ2(s)
ds − 1

)

= 1

r

(
(N − 2)

∫ 3R̄/2

r

s1−N

r2−N

ϕ2(r)

ϕ2(s)
ds − (N − 2)

∫ +∞
r

s1−N

r2−N
ds

)

= (N − 2)r N−3

(∫ 3R̄/2

r
s1−N

(
ϕ2(r)

ϕ2(s)
− 1

)
ds −

∫ +∞
3R̄/2

s1−N ds

)

= (N − 2)r N−3

(∫ 3R̄/2

r
s1−N ϕ(r) + ϕ(s)

ϕ2(s)
(ϕ(r) − ϕ(s)) ds − (3R̄)2−N

(N − 2)22−N

)
.

Now observe that, by monotonicity of ϕ,

0 ≤ ϕ(r) + ϕ(s)

ϕ2(s)
≤ 2ϕ(0)

ϕ2(3R̄/2)
= 2

ϕ2(3R̄/2)
,
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and that, since ϕ is smooth and radial,

ϕ(r) = 1 + ϕ′′(ξ)
r2

2
, ϕ(s) = 1 + ϕ′′(η)

s2

2

for some ξ, η ∈ (0, 3R̄/2). Therefore, there exists C > 0, depending on R̄, such that

∣∣∣∣ψ(r) − 1

r

∣∣∣∣ ≤ CrN−3

(
r2

∫ 3R̄/2

r
s1−N ds +

∫ 3R̄/2

r
s3−N ds + C

)
≤ C,

since N ≥ 3. ��

We are now in a position to state the monotonicity formula. We work with the
family of open domains

Br \ B1(−e1) =
{
x ∈ Br : (x1 + 1)2 +

N∑
i=2

x2i > 1

}
,

where e1 = (1, 0, . . . , 0) is the first vector of the canonical basis of RN .

Proposition 2.5 Let λ ≤ λ̄ and let u ∈ H1(BR̄) be a nonnegative solution to

{
−�u ≤ λu in BR̄ \ B1(−e1)

u = 0 in BR̄ ∩ B1(−e1).

Then there exist C = C(N , λ̄) > 0 and r̃ = r̃(N , λ̄) > 0, such that the function

�(r) := eCr
1

r2

∫
Br

ψ

|x |N−2

∣∣∣∣∇
(
u

ϕ

)∣∣∣∣
2

= eCr
1

r2

∫
Br

ϕ2�ϕ

∣∣∣∣∇
(
u

ϕ

)∣∣∣∣
2

. (2.6)

is nondecreasing in r ∈ (0, r̃), and

1

r N

∫
Br

|∇u|2 ≤ C�(r) ∀r ∈ (0, r̃). (2.7)

Moreover, if −�u = λu in {u > 0}, and {u = 0} has locally finite perimeter, then:

�(r) ≤ C

rN

∫
Br

|∇u|2 r ∈ (0, r̃). (2.8)

Remark 2.6 In dimension N = 2 we need to change the definition of function � in
(2.6) as follows:
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�(r) = eCr
1

r2

∫
Br

ϕ2
∣∣∣∣∇

(
u

ϕ

)∣∣∣∣
2

.

The proof follows by similar computations.

We start by stating and proving an estimate of the first eigenvalue of spherical caps,
and a Poincaré-type inequality.

Lemma 2.7 (Estimates for eigenvalues) Consider the spherical caps

ωr : = ∂B1 \ B1/r (−e1/r) =
{
y ∈ ∂B1 :

(
y1 + 1

r

)2

+
N∑
i=2

y2i >
1

r2

}

=
{
y ∈ ∂B1 : y1 > − r

2

}

and let λ1(ωr ) stand for the first Dirichlet eigenvalue of the Laplace-Beltrami operator
on ωr :

λ1(ωr ) = inf
u∈H1

0 (ωr )

∫
ωr

|∇T u|2∫
ωr

|u|2 ,

where ∇T u is the tangential gradient of u. Then there exist r̄ = r̄(N ) and C =
C(N ) > 0 such that

N − 1 − Cr ≤ λ1(ωr ) ≤ N − 1 for r ∈ (0, r̄). (2.9)

Proof The sets ωr are invariant under rotations with respect to the first axis. As a
result, the first eigenfunction depends only on θ = arccos〈y, e1〉 ∈ [0, π ], the polar
angle with e1 (see [32]). We have

λ1(ωr ) = inf

{∫ θr
0 (sin θ)N−2|w′(θ)|2 dθ∫ θr
0 (sin θ)N−2w2(θ) dθ

∣∣∣∣w ∈ H1 ([0, θr ]) ,

w (θr ) = 0

}
, (2.10)

where θr > 0 is

θr = arccos
(
− r

2

)
= π

2
+ r

2
+ O(r3)

for r > 0 small enough. The first eigenvalue of ωr is simple, and the corresponding
eigenfunction is a multiple of the unique positive solution w = wr of

{
−((sin θ)N−2w′)′ = λ1(ωr )(sin θ)N−2w in (0, θr ),

w′(0) = 0, w(θr ) = 0, w(0) = 1.
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A direct computation shows that when r = 0, that is θr = π/2, we have

w0 = cos θ and λ1(ω0) = N − 1.

By set inclusion we can deduce that the function r �→ λ1(ωr ) is monotone decreas-
ing in r ; moreover, as the first eigenvalue is simple, the function r �→ λ1(ωr ) is
differentiable at r = 0. Thus the limit for r → 0 exists and we have

λ1(ωr ) = N − 1 − Ar + o(r)

for a positive constant A = A(N ) that depends only on the dimension.
We can be more precise, by giving an explicit value for the constant in the Taylor

expansion of λ1(ωr ). To this aim, we make use of a shape derivative of the domain ωr .
We introduce the family of smooth diffeomorphisms� ∈ C∞([0, 1]×[0, π ]; [0, π ]),
defined as

�(r , θ) = 2θr
π

θ.

We observe that �(0, θ) = θ (that is, �(0, ·) is the identity), while for any r > 0, �
maps the set [0, π/2] to the set [0, θr ]. Moreover we have ∂�

∂r (0, θ) = θ
π
. Applying

the theory of domain variation (see e.g. [22, Théorème 5.7.1]) we find that

A = d

dr
λ1(ωr )|r=0 = −

∫
∂ω0

(w′
0)

2∂r�
(
0, π

2

)
∫
ω0

(w0)2
< 0.

��
Next we state and prove an inequality of Poincaré-type for H1 functions that equal

to zero on a ball.

Lemma 2.8 (Poincaré-type inequality) For any R > 0, there exists a constant CP =
CP (N , R) such that

1

r

∫
∂Br

u2 + 1

r2

∫
Br

u2 ≤ CP

∫
Br

|∇u|2

for any r ∈ (0, R] and u ∈ H1(Br ) with u = 0 in Br ∩ B1(−e1).

Proof We start with a change of variable, letting v(x) = u(r x) we find that the
statement of the result is equivalent to showing that

∫
∂B1

v2 +
∫
B1

v2 ≤ C
∫
B1

|∇v|2

for any v ∈ H1(B1) with v = 0 in B1 ∩ B1/r (−e1/r), r ∈ (0, R). Assume, by
contradiction, that there exist sequences {vn} ⊂ H1(B) and rn → r̃ ∈ [0, R] such
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that vn = 0 on B1 ∩ B1/rn (−e1/rn), and

∫
∂B1

v2n +
∫
B1

v2n = 1 while
∫
B1

|∇vn|2 → 0.

We conclude that the sequence {vn} converges in H1(B1) to a non-zero constant
function v ∈ H1(B1). On the other hand, by taking the limit of the sequence of sets
{B1 ∩ B1/rn (−e1/rn)}, it must be that v = 0 in B1 ∩ B1/r̃ (−e1/r̃) if r̃ > 0, or v = 0
in B1\{x1 ≤ 0} ir r̃ = 0, a contradiction. ��

We state and prove a useful consequence of the previous inequality.

Corollary 2.9 There exist C = C(N , λ̄) and r̃ = r̃(N , λ̄) > 0, such that

∫
Br

|∇u|2 ≤ C
∫
Br

ψ2
∣∣∣∣∇

(
u

ϕ

)∣∣∣∣
2

for any r ∈ (0, r̃) and u ∈ H1(Br ), with u = 0 in Br ∩ B1(−e1).

Proof The result follows by a chain of straightforward inequalities. We have, for
r ∈ (0, R̄],
∫
Br

|∇u|2 =
∫
Br

∣∣∣∣∇u − u
∇ϕ

ϕ
+ u

∇ϕ

ϕ

∣∣∣∣
2

≤ 2
∫
Br

∣∣∣∣∇u − u
∇ϕ

ϕ

∣∣∣∣
2

+ 2
∫
Br

∣∣∣∣u∇ϕ

ϕ

∣∣∣∣
2

≤ 2
∫
Br

ϕ2
∣∣∣∣∇

(
u

ϕ

)∣∣∣∣
2

+ 2

∥∥∥∥∇ϕ

ϕ

∥∥∥∥
2

L∞(Br )

∫
Br

u2

≤ 2C(R̄)

∫
Br

ψ2
∣∣∣∣∇

(
u

ϕ

)∣∣∣∣
2

+ 2CP (N , R̄)r2
∥∥∥∥∇ϕ

ϕ

∥∥∥∥
2

L∞(BR̄)

∫
Br

|∇u|2,

where we used Lemmas 2.4 and 2.8. The result follows by rearranging the terms in the
last inequality and choosing r̃ = r̃(N , R̄) = r̃(N , λ̄) > 0 sufficiently small in such a
way that

2CPr̃
2
∥∥∥∥∇ϕ

ϕ

∥∥∥∥
2

L∞(BR̄)

≤ 1

2
.

��
Proof of Proposition 2.5 We start by showing the monotonicity of the function�. First
of all, let w := u/ϕ ∈ H1(BR̄), which satisfies

{
− div(ϕ2∇w) ≤ 0 in BR̄

w = 0 in BR̄ ∩ B1(−e1).
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We now show that in this case there exists C > 0 such that �(r) defined in (2.6)
is monotone nondecreasing in r , for r sufficiently small. To start with, by formally
testing the equation for w by �ϕw and integrating in Br , we see that∫

Br
ϕ2�ϕ |∇w|2 ≤

∫
∂Br

ϕ2�ϕw(∂νw) −
∫
Br

ϕ2w∇w · ∇�ϕ

=
∫

∂Br
ϕ2�ϕw(∂νw) −

∫
Br

ϕ2∇(
w2

2
) · ∇�ϕ (2.11)

(to justify rigorously this computation, it is enough to take a sequence of mollifiers
{ρm}, work with the regular function ρm ∗ u → u and wm := (ρm ∗ u)/ϕ, integrate
by parts in the domain Br \ Bε and let first ε → 0 and then m → ∞). Now, by testing
the equation for �ϕ—(2.3)—by w2/2, and integrating by parts, we find

∫
Br

ϕ2∇(
w2

2
) · ∇�ϕ =

∫
∂Br

ϕ2(∂ν�ϕ)
w2

2
+ w2(0)

2
≥

∫
∂Br

ϕ2(∂ν�ϕ)
w2

2
.

(2.12)

By plugging (2.12) into (2.11) and recalling the definition of �ϕ and ψ :

∫
Br

ψ

|x |N−2 |∇w|2 =
∫
Br

ϕ2�ϕ |∇w|2

≤
∫

∂Br

(
ϕ2�ϕw(∂νw) − 1

2
w2ϕ2(∂ν�ϕ)

)

=
∫

∂Br

(
ϕ2�ϕw(∂νw) + N − 2

2r N−1w2
)

=
∫

∂Br

(
ψ

|x |N−2w(∂νw) + N − 2

2|x |N−1w2
)

. (2.13)

We now compute the logarithmic derivative of � and find

d

dr
log�(r) = C − 2

r
+

∫
∂Br

ψ(x)

|x |N−2 |∇w|2∫
Br

ψ(x)

|x |N−2 |∇w|2

≥ C − 2

r
+

∫
∂Br

ψ(x)

|x |N−2 |∇w|2∫
∂Br

(
ψ

|x |N−2w(∂νw) + N − 2

2|x |N−1w2
)

= C − 2

r
+

ψ(r)

r N−2

∫
∂Br

|∇w|2

ψ(r)

r N−2

∫
∂Br

w(∂νw) + N − 2

2r N−1

∫
∂Br

w2
.
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Let v = v(r) := w(r x), which by assumption vanishes in the complementary of the
set

ωr = ∂B1 \ B1/r (−e1/r) ⊂ ∂B1.

Then

d

dr
log�(r) ≥ C − 2

r
+ ψ(r)

r

∫
ωr

|∇v|2∫
ωr

(
ψ(r)v(∂νv) + N − 2

2
v2

)

= C − 2

r
+ 1

rψ(r)

∫
ωr

(
ψ2(r)(∂νv)2 + ψ2(r)|∇θ v|2

)
∫

ωr

(
ψ(r)v(∂νv) + N − 2

2
v2

)

≥ C − 2

r
+ 1

rψ(r)

∫
ωr

(
ψ2(r)(∂νv)2 + ψ2(r)λ1(ωr )v

2
)

∫
ωr

(
ψ(r)v(∂νv) + N − 2

2
v2

) .

Since

∫
ωr

(
ψ(r)v(∂νv) + N − 2

2
v2

)
≤

∫
ωr

(
ψ2(r)

2a(N − 2)
(∂νv)2 + (N − 2)(a + 1)

2
v2

)
,

by choosing a > 0 such that

1

2a(N − 2)
= (N − 2)(a + 1)

2ψ2(r)λ1(ωr )
⇐⇒ a = 1

N − 2

√(
N − 2

2

)2

+ ψ2(r)λ1(ωr ) − 1

2

= γ (λ1(ωr )ψ
2(r))

N − 2
,

where

γ (t) :=
√(

N − 2

2

)2

+ t − N − 2

2
,

we see that

d

dr
log�(r) ≥ C − 2

r
+ 2

rψ(r)
γ
(
ψ2(r)λ1(ωr )

)

= 2

r

(
−1 + C

2
r + 1

ψ(r)
γ
(
ψ2(r)λ1(ωr )

))
.
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Since γ (N − 1) = 1 and γ ′(N − 1) = 1
N > 0, by Lemmas 2.4 and 2.7 we have the

existence of constants C1,C2,C3 > 0 such that

γ
(
ψ2(r)λ1(ωr )

)
ψ(r)

≥ γ ((1 − C1r)(N − 1 − C2r))

1 + C1r
≥ 1 − C3r .

for any r sufficiently small. In conclusion, by choosing C := 2C3, we have that � is
nondecreasing for small r > 0.

Next we show (2.7), which is actually a direct consequence of Lemma 2.4 and
Corollary 2.9. Indeed we find

1

r N

∫
Br

|∇u|2 ≤ C

rN

∫
Br

ψ2
∣∣∣∣∇

(
u

ϕ

)∣∣∣∣
2

≤ C

r2

∫
Br

ψ2

|x |N−2

∣∣∣∣∇
(
u

ϕ

)∣∣∣∣
2

.

Finally we show (2.8). Using estimate (2.13), we see that

�(r) ≤ eCr

r2

∫
∂Br

(
ψ

|x |N−2

(
u

ϕ

)
∂ν

(
u

ϕ

)
+ N − 2

2|x |N−1

(
u

ϕ

)2
)

= eCrψ(r)

r N

∫
∂Br

(
u

ϕ

)
∂ν

(
u

ϕ

)
+ eCr (N − 2)

2r N+1ϕ2(r)

∫
∂Br

u2

≤ eCrψ(r)

r Nϕ2(r)

∫
∂Br

u∂νu − eCrψ(r)ϕ′(r)
r Nϕ3(r)

∫
∂Br

u2 + eCr (N − 2)

2r N+1ϕ2(r)

∫
∂Br

u2

≤ eCrψ(r)

r Nϕ2(r)

∫
∂Br

u∂νu + eCr

r Nϕ2(r)(
(N − 2)

2r
+ ψ(r)|ϕ′(r)|

ϕ(r)

)∫
∂Br

u2.

Multiplying the equation −�u = λu by u and integrating by parts in Br ∩ {u > 0}
(since {u = 0} has locally finite perimeter, we can apply [17, Section 5.8 - Theorem
1]) yields to the identity

∫
Br

|∇u|2 =
∫

{u>0}∩Br
|∇u|2 = λ

∫
{u>0}∩Br

u2 +
∫

∂({u>0}∩Br )
u∂νu

= λ

∫
Br

u2 +
∫

∂Br
u∂νu

which in turns give us the estimate

∫
∂Br

u∂νu ≤
∫
Br

|∇u|2.
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By Lemma 2.8,

∫
∂Br

u2 ≤ CPr
∫
Br

|∇u|2,

and we can conclude that

�(r) ≤ eCr

r Nϕ(r)2

[
ψ(r)(1 + r2λCP ) + CP

(
(N − 2)

2
+ ψ(r)|ϕ′(r)|r

ϕ(r)

)]∫
Br

|∇u|2

finally yielding to

�(r) ≤ C
1

r N

∫
Br

|∇u|2

for any r ∈ (0, r̃). ��
We cite a useful corollary that is a straightforward consequence of Proposition 2.5.

Corollary 2.10 Let � ⊂ R
N be a connected open (and non-empty) set that enjoys the

exterior sphere condition at any point of its boundary, which we assume to have locally
finite perimeter. Assume, moreover, that at x0 ∈ ∂� the exterior sphere has radius at
least equal to r0. Let λ = λ1(�) be the first eigenvalue of the Laplacian with Dirichlet
boundary conditions, and assume that λ ≤ λ̄. Let u ∈ H1

0 (�) be the corresponding
eigenfunction. There exist C = C(N , λ̄) and r̃ = r̃(N , λ̄) such that

1

r N

∫
Br (x0)

|∇u|2 ≤ C
1

RN

∫
BR(x0)

|∇u|2

for any 0 < r < R ≤ r0r̃ .

Proof By a change of variables, the problems reduces to the one where r0 = 1. In
such a case, by Proposition 2.5, we have the existence of C,C ′, r̃ , depending only on
N and λ such that, whenever 0 < r < R < r̃ ,

1

r N

∫
Br (x0)

|∇u|2 ≤ C�(r) ≤ C�(R) ≤ C ′

RN

∫
Br

|∇u|2,

which concludes the proof. ��

3 Uniform bounds

In this section we prove Theorem 1.1. Assume, without loss of generality, that �

satisfies the uniform exterior sphere condition of radius larger than or equal to 1. Recall
that r̄ > 0 denotes a value such that Pr (�) �= ∅, for every r ∈ [0, r̄). In what follows,
for r ∈ (0, r̄), we let ur = (u1,r , . . . , uk,r ) be a nonnegative minimizer for cr (recall
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the characterization (1.2)), with (�1,r , . . . , �k,r ) := ({u1,r > 0}, . . . , {uk,r > 0})
being an optimal partition. Recall also that properties (1)-(3) and (a)-(b) hold true.
The main idea of the proof is to show that, if the eigenfunctions do not have uniformly
bounded gradients, then it is possible to construct a competitor for the minimization
problem that has a smaller energy, thus contradicting the minimality of ur .

The starting point is to prove uniform bounds of the eigenfunctions in the H1 and
the L∞ norms.

Lemma 3.1 There exist constants C,� > 0 such that

‖ur‖H1
0 (�), ‖ur‖L∞(�) ≤ C

and

λ1(�) ≤ λi,r := λ1({ui,r > 0}) ≤ � ∀i = 1, . . . , k,

for every r ∈ (0, r̄).

Proof The lower bound on λi,r follows from the monotonicity of the eigenvalues with
respect to domain inclusion. On the other hand, since r �→ Pr (�) is decreasing with
respect to domain inclusion, then r �→ cr is monotone increasing and, in particular,
cr ≤ cr̄ for 0 ≤ r < r̄ and

k∑
i=1

∫
�

|∇ui,r |2 =
k∑

i=1

λ1({ui,r > 0}) ≤ cr̄ .

Since ui,r ∈ H1
0 (�) is a positive solution to −�ui,r ≤ λ1({ui,r > 0})ui,r in �, the

L∞-uniform bounds are a standard consequence of theBrezis-Kato iteration technique
(see for instance the proof of Corollary 1.6 in [24] for the precise details in this
framework). ��

We assume from now on, by virtue of a contradiction argument, that the gradient of
ur is not uniformly bounded. That is, there exist a sequence {rn} ⊂ (0, r̄), a sequence
of minimizers {un} associated with crn , and a sequence of indexes {in} such that

Mn := max
i=1,...,k

‖∇ui,n‖L∞(�) = ‖∇uin ,n‖L∞(�) → +∞ as n → +∞. (3.1)

Up to a subsequence and a relabelling, we can suppose that in = 1 for every n. In
what follows, we work constantly under this assumption.
Notation. In what follows we take λ̄, the constant appearing in Sect. 2, equal to �,
the upper bound of the eigenvalues λi,r (see Lemma 3.1). Moreover, without loss of
generality, we assume r̃ = 1 in Corollary 2.10.

Lemma 3.2 We have rn → 0.
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Proof Assume that the thesis is false. Then, up to striking out a subsequence, we
have that rn → r0 for some r0 > 0. We recall that each ui,n ∈ H1

0 (�i,rn ) solves
−�ui,n = λi,rn ui,n in �i,rn . All of these sets satisfy a 1

2r0-uniform exterior sphere
condition, for any n sufficiently large. By [28, Theorem 3.4] we have that there exists
a constant C > 0 such that

‖∇ui,n‖L∞(�i,rn ) ≤ C
(‖ui,n‖L∞(�i,rn ) + ‖λi,nui,n‖L∞(�i,rn )

)
.

Since the right hand side is bounded by Lemma 3.1, we obtain a contradiction. ��
Now that we have established the behavior of the sequence {rn}, we can introduce

the quantities that will guide us in the proof of our main result.

Lemma 3.3 Let C > 0 be the dimensional constant of Lemma 2.1. There exists a
sequence {xn} ⊂ {u1,n > 0} such that

CMn ≤ |∇u1,n(xn)| ≤ Mn (3.2)

and, moreover,

Rn := dist(xn, ∂{u1,n > 0}) = o(rn)

as n → ∞.

Proof We can directly apply Lemma 2.1 to each function u1,n (for n fixed) to obtain
the desired result. ��

Now, let yn ∈ ∂{u1,n > 0} be a projection of xn onto ∂{u1,n > 0}, so that Rn =
|xn − yn|. We shall analyze the behavior of the sequence {xn} and of {yn}. As a first
step, we show that the sequence {xn} is very close to the free-boundary ∂�1,n ∩� and
not to the fixed boundary of �. This is the content of the next result.

Lemma 3.4 We have that dist(xn, ∂�)/rn → +∞. In particular yn ∈ ∂�1,n \ ∂�

and, moreover,

M2
n ≤ C

1

r Nn

∫
Brn (yn)

|∇u1,n|2

for a constant C = C(N , λ̄) > 0 and n sufficiently large.

Proof We prove this result by virtue of a contradiction argument. Assume that there
exists a constant κ > 0 and a subsequence (which we shall not relabel) such that

dist(xn, ∂�) ≤ κrn .

We assume that n is sufficiently large in such a way that r̃(N , λ1,n) ≥ 1.
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Case 1) yn ∈ ∂�. In this case, by joining Corollaries 2.3 and 2.10, and recalling that
� has the exterior sphere condition with radius at least 1, we have that

CMn ≤ |∇u1,n(xn)|2 ≤ C
1

RN
n

∫
BRn (xn)

|∇u1,n|2 ≤ 2NC
1

(2Rn)N

∫
B2Rn (yn)

|∇u1,n|2

≤ C
∫
B1(yn)

|∇u1,n|2 ≤ C‖u1,n‖2H1 ,

and we find a contradiction with Lemma 3.1, since Mn → +∞.
Case 2) yn /∈ ∂�. In this second caseweneed an additional step. Letρn = dist(yn, ∂�)

and zn ∈ ∂� such that |zn − yn| = ρn . It is plain that ρn ≤ (1+κ)rn . At first, by using
again Corollary 2.3, and Corollary 2.10 on balls centered in yn , where {u1,n > 0} has
an exterior sphere of radius rn > 2Rn , we obtain

CM2
n ≤ |∇u1,n(xn)|2 ≤ C

1

RN
n

∫
BRn (xn)

|∇u1,n|2

≤ 2NC
1

(2Rn)N

∫
B2Rn (yn)

|∇u1,n|2 ≤ C

rNn

∫
Brn (yn)

|∇u1,n|2.
(3.3)

At this point, since Brn (yn) ⊂ Brn+ρn (zn), ρn ≤ (1+ κ)rn , and {u1,n > 0} has, at zn ,
an exterior ball or radius 1, Corollary 2.10 again yields

M2
n ≤ 1

r Nn

∫
Brn (yn)

|∇u1,n |2 ≤ C
(rn + ρn)

N

r Nn

1

(rn + ρn)N

∫
Brn+ρn (zn)

|∇u1,n |2

≤ C(2 + κ)N
1

(rn + ρn)N

∫
Brn+ρn (zn)

|∇u1,n |2 ≤ C
∫
B1(zn)

|∇u1,n |2 ≤ C‖u1,n‖2H1 ,

and we find again a contradiction with Lemma 3.1.
This completes the proof of the first part of the statement. To obtain the desired

estimate, one can now proceed as in (3.3). ��
To proceed further, we recall the Caffarelli–Jerison–Kenig formula, a fundamental

result for free-boundary problems [9]. Let u, v ∈ H1(RN ) be two continuous and non-
negative functions such that u(x)v(x) = 0 for any x ∈ R

N and ‖u‖L2 = ‖v‖L2 = 1.
Assume moreover that there exists a constant M > 0 such that

−�u ≤ M, −�v ≤ M in RN

in the sense of measures. Then there exists C = C(N , M) such that

1

r2

∫
Br (x)

|∇u|2
|x − y|N−2 · 1

r2

∫
Br (x)

|∇v|2
|x − y|N−2 ≤ C

for any x ∈ R
N and r ∈ (0, 1). We can directly apply the Caffarelli–Jerison–Kenig

formula to our setting, since {un} is uniformly bounded in L∞(�) and the eigenvalues
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{λi,n} are uniformly bounded as well, see Lemma 3.1. Thus, there exists a constant
C = C(N , λ̄) > 0 such that

1

r N

∫
Br (yn)

|∇u1,n|2 · 1

r N

∫
Br (yn)

|∇u j,n|2 ≤ 1

r2

∫
Br (yn)

|∇u1,n|2
|x − yn|N−2

· 1
r2

∫
Br (yn)

|∇u j,n|2
|x − yn|N−2 ≤ C (3.4)

for any 0 < r < 1 and any j �= 1.
Now we introduce the following rescaled functions

vn(x) := un(yn + rnx)

rnMn
, x ∈ �n := � − yn

rn
,

extended as 0 to RN \ �.
Clearly, we have vn ∈ H1

0 (�n), ‖∇vn‖L∞(RN ) ≤ 1, and vn(0) = 0, for every n.
Each set {vi,n > 0} enjoys the exterior sphere condition of the same radius 1. By
Lemmas 3.3 and 3.4, the sets �n exhaust RN as n → ∞. Moreover,

∫
RN

v2i,n = 1

r N+2
n M2

n

∫
RN

u2i,n = 1

r N+2
n M2

n

,

∫
RN

|∇vi,n|2 = 1

r Nn M2
n

∫
RN

|∇ui,n|2 = 1

r Nn M2
n
λi,n,

(3.5)

and vn is a minimizer for the following scaled version of problem (1.2):

inf
{
J (v) : vi ∈ H1

0 (�n) \ {0} ∀i, dist(supp vi , supp v j ) ≥ 1, ∀i �= j
}

, (3.6)

where

J (v) =
k∑

i=1

∫
�n

|∇vi |2∫
�n

v2i
=

k∑
i=1

∫
RN |∇vi |2∫

RN v2i
.

The asymptotic properties of {vn} are collected in the following statement.

Lemma 3.5 There exists a globally Lipschitz function v = (v1, . . . , vk) defined inRN ,
with Lipschitz constant 1, such that:

(i) vn → v in C0,α
loc (RN ), for every α ∈ (0, 1), and strongly in H1

loc(R
N );

(ii) the first component v1 is not identically 0 in B1, and moreover, for any R ≥ 1
there exists a constant C = C(R) such that

∫
BR

|∇v1,n|2 ≥ C
rNn M2

n

λ1,n

∫
RN

|∇v1,n|2. (3.7)
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(iii) the other components v j , j �= 1, vanish identically in R
N , and moreover, for any

R > 1 there exists C = C(R) such that

∫
BR

|∇v j,n|2 + v2j,n ≤ C
rNn

M2
nλ j,n

∫
RN

|∇v j,n|2. (3.8)

Proof TheC0,α
loc convergence vn → v to some v ∈ Liploc(R

N ), with ‖∇v‖L∞(RN ) ≤ 1,
follows directly from the uniform gradient bound, and the fact that vn(0) = 0, via the
Ascoli-Arzelà theorem. To show that the convergence is also strong in H1

loc(R
N ), it

is not difficult to adapt the argument in [33, Lemma 3.11]: in fact, since −�vi,n ≤
r2nλi,nvi,n and −�vi ≤ 0 in R

N , there exists (local) nonnegative Radon measures
μi,n, μi ∈ Mloc(R

N ) such that

−�vi,n = r2nλi,nvi,n + μi,n, −�vi = μi ,

and since vi,n⇀vi weakly in H1
loc(R

N ), then μi,n⇀μi in the sense of measures
Mloc(R

N ). Then, the argument follows by testing −�(vi,n − vi ) = r2nλi,nvi,n +
μi,n − μi with (vi,n − vi )ϕ, for ϕ ∈ C∞

c (RN ). This proves (i). Concerning (ii), we
just need to recall that

M2
n ≤ C

1

r Nn

∫
Brn (yn)

|∇u1,n|2

by Lemma 3.4. This gives, by rescaling and passing to the limit in n, that∫
B1

|∇v1,n|2 ≥ 1

C
�⇒

∫
B1

|∇v1|2 ≥ 1

C

and hence v1 �≡ 0 in B1. Furthermore, combining this estimate and (3.5), we obtain
(3.7). It remains to prove the validity of point (iii). By scaling (3.4), we have that for
any R > 1 and n sufficiently large,

∫
BR

|∇v j,n |2 ≤ C
∫
B1

|∇v1,n |2
∫
BR

|∇v j,n |2 ≤ C
∫
BR

|∇v1,n |2
∫
BR

|∇v j,n |2 ≤ CR2N M−4
n ,

that is, ∫
BR

|∇v j,n|2 ≤ CR2N M−4
n → 0. (3.9)

Thus, for any R > 1, the sequence {v j,n} converges in H1(BR) and in C0,α(BR) (for
any α ∈ (0, 1)) to a constant c. But since v2j,n(0) = 0, necessarily the limit c = 0 and,

since R > 1 was arbitrarily fixed, v j ≡ 0 in R
N for every j = 2, . . . , k. Moreover,

by Lemma 2.8 we have∫
BR

(|∇v j,n|2 + v2j,n) ≤ (1 + CP )

∫
BR

|∇v j,n|2
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for a constant CP = CP (N , R) that depends only on the dimension N and on the
fixed radius R. On the other hand, recalling (3.5) and (3.9), we find

∫
BR

|∇v j,n|2∫
RN

|∇v j,n|2
≤ CR2N M−4

n
1

r Nn M2
n
λ j,n

�⇒
∫
BR

|∇v j,n|2 ≤ C
rNn

M2
nλ j,n

∫
RN

|∇v j,n|2.

Putting these last two inequalities together, estimate (3.8) follows. ��

Point (iii) of the previous lemma establishes that the energy of each v j,n , with j ≥ 2,
“escapes to infinity”: thus, whenever we remove mass from a fixed ball and distribute
it on the remainder of the domain, the H1-norm should not increase in a significant
way. We can be more precise. Let ρ > 0 be a fixed large positive number and let η be
the defined by

η(x) :=

⎧⎪⎨
⎪⎩
1 if |x | > 2 + ρ

|x | − (1 + ρ) if 1 + ρ ≤ |x | ≤ 2 + ρ

0 if |x | < 1 + ρ.

We point out that 0 ≤ η ≤ 1, |∇η| ≤ 1. Let also v̄ j,n := ηv j,n , for j ≥ 2. We have
that v̄ j,n = v j,n in R

N\B2+ρ , while v̄ j,n ≤ v j,n in B2+ρ , and actually the support of
v j,n is “cut" by the multiplication with η. In the next lemma we estimate the energy
gap between v̄ j,n and v j,n .

Lemma 3.6 Let δn := r Nn /M2
n , which tends to 0 as n → ∞. There exists C > 0 such

that

∫
RN

|∇v̄ j,n|2∫
RN

v̄2j,n

≤
(
1 + C

λ j,n
δn

) ∫
RN

|∇v j,n|2∫
RN

v2j,n

for every n sufficiently large.

Proof Recalling that ‖v j,n‖H1(BR) → 0 for all R > 0, we find that

∫
RN

v2j,n =
∫
RN

η2v2j,n +
∫
RN

(
1 − η2

)
v2j,n ≤

∫
RN

v̄2j,n +
∫
B2+ρ

v2j,n =
∫
RN

v̄2j,n + C

λ j,n
δn

∫
RN

|∇v j,n|2,

where in the last step we used estimate (3.8) (notice that C depends on ρ, which is
fixed). Similarly, we find
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∫
RN

|∇v̄ j,n |2 =
∫
RN

(
|∇η|2v2j,n + 2ηv j,n∇η · ∇v j,n + η2|∇v j,n |2

)

=
∫
RN

|∇v j,n |2 +
∫
B2+ρ

[
(η2 − 1)|∇v j,n |2 + |∇η|2v2j,n + 2ηv j,n∇η · ∇v j,n

]

≤
∫
RN

|∇v j,n |2 +
∫
B2+ρ

[
(η2 − 1)|∇v j,n |2 + 2|∇η|2v2j,n + η2|∇v j,n |2

]

≤
∫
RN

|∇v j,n |2 + 2
∫
B2+ρ

(
v2j,n + |∇v j,n |2

)
≤

(
1 + C

λ j,n
δn

)∫
RN

|∇v j,n |2.

As a result, combining this with (3.5) and recalling from Lemma 3.1 that the eigen-
values λ j,n are bounded from above and away from 0, we obtain that

∫
RN

|∇v̄ j,n|2∫
RN

v̄2j,n

≤

(
1 + C

λ j,n
δn

)∫
RN

|∇v j,n|2∫
RN

v2j,n − C

λ j,n
δn

∫
RN

|∇v j,n|2
=

1 + C
λ j,n

δn

1 − Cδnr2n

∫
RN

|∇v j,n|2∫
RN

v2j,n

≤
(
1 + C

λ j,n
δn

) ∫
RN

|∇v j,n|2∫
RN

v2j,n

for n sufficiently large, which is the desired result. ��
Now the idea is to construct a competitor for vn with lower energy J . This will

be in contradiction with the fact that vn is a minimizer for (3.6), and will complete
the proof. The j-th component of the competitor will be v̄ j,n , for j ≥ 2. We need
to conveniently define the first component v̄1,n , and the idea is to enlarge the support
of v1,n (taking advantage of the fact that the support of v j,n was previously cut, for
j ≥ 2), in order to substantially lower the Rayleigh quotient of v1,n . We present the
details in what follows.

We have already established that, in any ball BR with R > 1, the function v1 is
not identically 0. Moreover, 0 ∈ ∂{v1,n > 0} for every n, and {v1,n > 0} satisfies the
exterior sphere condition of radius 1 at 0, and, in the exterior sphere, we have v1,n ≡ 0.
Up to a rotation, it is not restrictive to suppose that B1(e1) is such exterior sphere. We
consider a new sequence of functions v̄1,n ∈ H1

0 (�n) defined piece-wise as follows:

• for |x | ≥ ρ, we let v̄1,n(x) = v1,n(x);
• for |x | < ρ, we let v̄1,n be such that

v̄1,n = argmin

{∫
Bρ

|∇v|2 : v − v1,n ∈ H1
0 (Bρ),

∫
Bρ

v2 =
∫
Bρ

v21,n

}
. (3.10)

Since v1,n ≡ 0 in Bρ ∩ B1(e1), the support of v̄1,n is strictly larger than the one of v1,n ,
and it is at distance at least 1 from the support of v̄ j,n , for any j ≥ 2 (by definition
of η). Moreover, we have that

123



Free boundary problems with long-range interactions... 577

∫
RN

v̄21,n =
∫
RN

v21,n while
∫
RN

|∇v̄1,n|2 <

∫
RN

|∇v1,n|2.

Concerning the last inequality, we have to be more precise.

Lemma 3.7 There exists ε ∈ (0, 1) such that∫
Bρ

|∇v̄1,n|2 ≤ (1 − ε)

∫
Bρ

|∇v1,n|2 ∀n. (3.11)

Proof The proof is quite long and, for the reader’s convenience, we divide it into some
intermediate steps. Assume by contradiction that, up to striking out a subsequence,

(1 − εn)

∫
Bρ

|∇v1,n|2 ≤
∫
Bρ

|∇v̄1,n|2 ≤
∫
Bρ

|∇v1,n|2, (3.12)

with εn → 0+. Since {v̄1,n} is bounded in H1(Bρ), v1,n = v̄1,n on ∂Bρ ,‖v1,n‖L2(Bρ) =
‖v̄1,n‖L2(Bρ), and v1,n → v1 �≡ 0 strongly in H1(Bρ) (see Lemma 3.5), we have that

up to a subsequence v̄1,n⇀v̄ weakly in H1(Bρ), strongly in L2(Bρ) and in L2(∂Bρ)

(by compactness of the trace operator H1(Bρ) → L2(∂Bρ)), with v1 = v̄ on ∂Bρ ,
and

∫
Bρ

v̄21 =: c > 0. Moreover, by minimality and the strong maximum principle

−�v̄1,n = λ̄n v̄1,n, v̄1,n > 0 in Bρ,

for some λ̄n ∈ R.
Step 1) The sequence {λ̄n} is bounded. To prove this claim, we first show that there

exists r ∈ (0, ρ) and a subsequence nk → +∞ such that,

∫
Br

v̄21,nk ≥ c

2
for every k. (3.13)

Indeed, if by contradiction this were not true, we would have that

∫
Br

v̄21,n <
c

2
for every r ∈ (0, ρ), for every n large.

But, in this case, if rm → ρ−, with a diagonal selection we could find an increasing
sequence nm → ∞ such that

∫
Brm

v̄21,nm <
c

2
for every m;

then, by strong convergence,

c

2
>

∫
Brm

v̄21,nm =
∫
Bρ

v̄21,nmχBrm →
∫
Bρ

v̄21 = c > 0,
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a contradiction. Now, denoting for the sake of simplicity by {v̄1,n} the sequence in
(3.13), let us take a non-negative ϕ ∈ C∞

c (Bρ), with ϕ ≡ 1 on Br , and let us test the
equation of v̄1,n with v̄1,nϕ

2: we obtain

|λ̄n|
∫
Bρ

v̄21,nϕ
2 =

∣∣∣∣∣
∫
Bρ

|∇v̄1,n|2ϕ2 + 2v̄1,nϕ∇v̄1,n · ∇ϕ

∣∣∣∣∣ ≤ C‖v̄1,n‖2H1(Bρ)
.

Since the coefficient of |λ̄n| is bounded from below, by (3.13), and {v̄1,n} is bounded
in H1(Bρ), this implies that {λn} is bounded.

Step 2) v̄1,n → v̄ strongly in H1(Bρ). Let v̄1,n = wn + v1,n , by linearity we
have that the sequence {wn} ⊂ H1

0 (Bρ) converges weakly in H1
0 (Bρ) and strongly in

L2(Bρ) to v̄ − v1. Moreover, for any n ∈ N, wn solves

∫
Bρ

∇wn · ∇ϕ − λ̄nwnϕ +
∫
Bρ

∇v1,n · ∇ϕ − λ̄nv1,nϕ = 0 ∀ϕ ∈ H1
0 (�).

That is, for any n,m ∈ N, we have

∫
Bρ

∇(wn − wm) · ∇ϕ +
∫
Bρ

∇(v1,n − v1,m) · ∇ϕ − (
λ̄nv1,n − λmv1,m

)
ϕ

+ (
λ̄nwn − λ̄mwm

)
ϕ = 0,

for every ϕ ∈ H1
0 (�). Taking ϕ = wn − wm ∈ H1

0 (Bρ) yields

∫
Bρ

|∇(wn − wm)|2 = −
∫
Bρ

∇(v1,n − v1,m) · ∇(wn − wm)

−
∫
Bρ

(
λ̄nwn − λ̄mwm − λ̄nv1,n + λmv1,m

)
(wn − wm).

Now we recall that v1,n → v in H1(Bρ), v̄1,n⇀v̄ in H1(Bρ), and that the sequence
{λ̄n} is bounded, as proved in Step 1. Thus, we deduce that the right hand side of
the previous equation converges to 0 as m, n → +∞. That is, {wn} is a Cauchy
sequence in H1(Bρ), and we conclude by linearity that v̄1,n → v̄ strongly in H1(Bρ),
as claimed.

Step 3) We are ready to prove that (3.12) gives a contradiction, which entails the
validity of estimate (3.11). Recall the variational characterization of v̄1,n , given in
(3.10). Collecting what we proved so far, we have that v̄1,n → v̄ strongly in H1(Bρ),
where v̄ satisfies, for some λ̄ ∈ R,

{
−�v̄ = λ̄v̄, v̄ > 0 in Bρ

v̄ = v1 on ∂Bρ;

moreover ‖v̄‖L2(Bρ) = ‖v1‖L2(Bρ). We claim that v̄ minimizes
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inf

{∫
Bρ

|∇w|2 : w − v1 ∈ H1
0 (Bρ),

∫
Bρ

w2 =
∫
Bρ

v21

}
.

The desired contradiction follows easily from this claim: by (3.12) and the strong
convergence v1,n → v1, we would have that also v1 is a nonnegative minimizer for
the same problem. But any nonnegative minimizer solves

−�v = λv, v > 0 in Bρ

for some λ > 0, which is in contradiction with the fact that v1 ≡ 0 in Bρ ∩ B1(e1). To
prove that v̄ is a minimizer, we argue again by contradiction, and suppose that there
exists w ∈ H1(Bρ) such that

w − v1 ∈ H1
0 (Bρ),

∫
Bρ

w2 =
∫
Bρ

v21,

∫
Bρ

|∇w|2 <

∫
Bρ

|∇v̄|2.

In this case, take

zn = w + (v̄1,n − v̄) + tnϕ with ϕ ∈ C∞
c (Bρ) :

∫
Bρ

wϕ > 0.

and tn → 0 to be chosen later. It is plain that zn − v̄1,n ∈ H1
0 (Bρ), with zn → w

strongly in H1(Bρ). Thus, by strong convergence,

∫
Bρ

|∇w|2 <

∫
Bρ

|∇v̄|2 �⇒
∫
Bρ

|∇zn|2 <

∫
Bρ

|∇v̄1,n|2

for every n large enough. Now we show that we can choose tn in such a way that∫
Bρ

z2n = ∫
Bρ

v̄21,n . In fact, to impose such a condition
∫
Bρ

z2n = ∫
Bρ

v̄21,n amounts to
require that

∫
Bρ

v̄2 +
∫
Bρ

(v̄1,n − v̄)2 + t2n

∫
Bρ

ϕ2 + 2tn

(∫
Bρ

wϕ + (v̄1,n − v̄)ϕ

)

+2
∫
Bρ

(v̄1,n − v̄)w =
∫
Bρ

v̄21,n .

This is an equation of type

t2n + antn + bn = 0 with an → a > 0 and bn → 0,

where we used the fact that
∫
Bρ

wϕ > 0 by assumption, and the convergence of v̄1,n

to v̄. Such an equation clearly admits a solution tn → 0. To sum up, we showed that
zn is an admissible competitor for v̄1,n with a lower energy, in contradiction with the
minimality of v̄1,n . The contradiction shows that w as above cannot exist, that is, v̄1
is a minimizer. As observed, this completes the proof of the lemma. ��
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Conclusion of the proof of Theorem 1.1 As consequence of the Lemma 3.7, we can give
a quantitative estimate for the energy gap between v1,n and v̄1,n . Indeed, exploiting
also (3.7), we have that

∫
RN

|∇v̄1,n |2 =
∫
Bρ

|∇v̄1,n |2 +
∫
RN \Bρ

|∇v̄1,n |2 ≤ (1 − ε)

∫
Bρ

|∇v1,n |2 +
∫
RN \Bρ

|∇v1,n |2

≤
∫
RN

|∇v1,n |2 − ε

∫
Bρ

|∇v1,n |2

≤
∫
RN

|∇v1,n |2 − εC
rNn M2

n

λ1,n

∫
RN

|∇v1,n |2 =
(
1 − εC

M4
n

λ1,n
δn

)∫
RN

|∇v1,n |2,

where δn = r Nn /M2
n , as in Lemma 3.6, andC > 0 is a positive constant independent of

n. Combining this estimate with Lemma 3.6, we can finally prove that the competitor
v̄n = (v̄1,n, v̄2,n, . . . , v̄k,n) has lower energy than vn : indeed

J (v̄n) =
k∑

i=1

∫
RN

|∇v̄i,n|2∫
RN

v̄2i,n

=

∫
RN

|∇v̄1,n|2∫
RN

v̄21,n

+
k∑
j=2

∫
RN

|∇v̄ j,n|2∫
RN

v̄2j,n

≤
(
1 − εC

M4
n

λ1,n
δn

) ∫
RN

|∇v1,n|2∫
RN

v21,n

+
k∑
j=2

(
1 + C

λ j,n
δn

) ∫
RN

|∇v j,n|2∫
RN

v2j,n

≤ J (vn) +
⎛
⎝−εC

M4
n

λ1,n
δnr

2
nλ1,n +

N∑
j=2

C

λ j,n
δnr

2
nλ j,n

⎞
⎠

≤ J (vn) + δnr
2
n

(
C(k − 1) − εCM4

n

)
< J (vn)

for every n large, where in the last step we have exploited the fact that Mn → +∞, as
by assumption. This is a contradiction with the minimality of vn , and completes the
proof of the Lipschitz bound in Theorem 1.1. ��

We now pass to the proof of Theorem 1.2. We start with an estimate which implies
the convergence of cr to c0 as r → 0.

Lemma 3.8 There exists a constant C > 0 such that

c0 ≤ cr ≤ c0 + Cr

for any r > 0.

Proof The estimate c0 ≤ cr is straightforward, so we prove the second one. We will
use the solution of the problem c0 (that is with distance constraint r = 0) to construct
a competitor for cr with r > 0.
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Let u ∈ H1
0 (�) be any minimizer of the problem c0, and recall from Theorem A

that u ∈ Lip(�). We denote K = maxi=1,...,N ‖∇ui‖L∞(�). For any i = 1, . . . , N we
let �i = {ui > 0} so that �i ∩ � j = ∅, and we have

∫
�

u2i = 1,
∫

�

|∇ui |2 = λ1(�i ).

We also recall from Theorem A that the free-boundary N := {x ∈ � : u(x) =
0} = �\(∪i�i ) is an (N − 1)-rectifiable set of finite (N − 1)-Hausdorff measure.
In particular, by the rectifiability of N , we have that the Minkowski content of N
coincides with its (N − 1)-Hausdorff measure ( [18, Thm 3.2.39]). More explicitly,
if for a given r > 0 we denote the r -tubular neighborhood of N as

Nr = {x ∈ R
N : dist(x,N ) < r},

then we have

lim
r→0+

|Nr |
2r

= HN−1(N ),

where | · | is the Lebesgue measure in Rn .
Fix now a constant C ≥ 2 such that for any r > 0 sufficiently small we have

|Nr | ≤ CrHN−1(N ).

We define a cutoff function η ∈ Lip(�) as follows

η(x) =

⎧⎪⎨
⎪⎩
0 if x ∈ Nr/2,
dist(x,N )−r/2

r/2 if dist(x,N ) ∈ [r/2, r ],
1 if � \ Nr .

Observe that 0 ≤ η(x) ≤ 1 and we have, for a.e. x ∈ �,

|∇η(x)| =
{
0 if dist(x,N ) < r/2or dist(x,N ) > r
2
r if dist(x,N ) ∈ [r/2, r ].

We claim that, for r > 0 small enough, the function uη ∈ H1
0 (�) is an admissible

competitor for the functional with distance constraint greater than or equal to 0, and
moreover that

J (uη) ≤ J (u) + CrHN−1(N ).

Indeed, by construction we immediately see that, for any i �= j ,

dist(supp(uiη), supp(u jη)) ≥ r .
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Thus uη is an admissible competitor for cr . In order to estimate the energy

J (uη) =
k∑

i=1

∫
�i

|∇(uiη)|2∫
�i

|uiη|2
,

we proceed separately for each component.We start with the denominator correspond-
ing to the function uiη, for which we can write

∫
�i

|uiη|2 =
∫

�i

|ui |2 −
∫

�i∩Nr

|ui |2(1 − |η|2) = 1 −
∫

�i∩Nr

|ui |2(1 − |η|2).

Since |∇ui | ≤ K , we find that

|ui (x)| ≤ dist(x,N )K ∀x ∈ �;

thus, recalling that 0 ≤ η(x) ≤ 1 for any x ∈ �, we can carry on with the estimate as
follows

∫
�i∩Nr

|ui |2(1 − |η|2) ≤
∫

�i∩Nr

dist(x,N )2K 2 ≤ K 2r2 |�i ∩ Nr | .

Finally we find that, for r > 0 small

(∫
�i

|uiη|2
)−1

≤ 1 + 2K 2r2 |�i ∩ Nr | .

Concerning the numerator of the Rayleigh quotient, we get

∫
�i

|∇(uiη)|2 =
∫

�i

|∇ui |2 +
∫

�i∩Nr

(|∇(uiη)|2 − |∇ui |2)

= λ1(�i ) +
∫

�i∩Nr

(|∇ui |2(|η|2 − 1) + |ui |2|∇η|2 + 2uiη∇ui · ∇η)

≤ λ1(�i ) +
∫

�i∩Nr

(|ui |2|∇η|2 + 2uiη∇ui · ∇η).

We estimate the two remaining terms separately. For the first one we have

∫
�i∩Nr

|ui |2|∇η|2 ≤
∫

�i∩{r/2<dist(x,N )<r}
dist(x,N )2K 2 4

r2
≤ 4K 2 |�i ∩ Nr | .
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For the second one, in a similar fashion, we obtain

∫
�i∩Nr

2uiη∇ui · ∇η ≤
∫

�i∩Nr

2ui |∇ui ||∇η|

≤
∫

�i∩{r/2<dist(x,N )<r}
2 dist(x,N )K 2 2

r
≤ 4K 2 |�i ∩ Nr | .

As a result, recollecting the two estimates, we obtain

∫
�i

|∇(uiη)|2 ≤ λ1(�i ) + 8K 2 |�i ∩ Nr | .

By combining the previous inequalities, we can control the Rayleigh quotient of
uiη as follows:

∫
�i

|∇(uiη)|2∫
�i

|uiη|2
≤ λ1(�i ) + CK 2 |�i ∩ Nr | + R(r),

where C is a constant independent of r and R(r) is a remainder term of higher order.
Summing up in i we find

J (uη) =
k∑

i=1

∫
�i

|∇(uiη)|2∫
�i

|uiη|2
≤

k∑
i=1

λ1(�i ) + CK 2
k∑

i=1

|�i ∩ {dist(x,N ) < r}|

≤ J (u) + CK 2|Nr | ≤ J (u) + C2rHN−1(N ).

To conclude, it suffices to remark that, since uη is an admissible competitor for cr ,

cr ≤ J (uη) ≤ J (u) + C2rHN−1(N ) = c0 + C2rHN−1(N ).

��
Proof of Theorem 1.2 Let ur be a minimizer for problem cr , with r > 0 sufficiently
small. From Theorem 1.1, Lemma 3.8 and the fact that ur |∂� = 0, there exists u ∈
Lip(�) such that, up to a subsequence,

ur → u weakly in H1(�), strongly in C0,α(�).

This implies that ‖ui,0‖L2(�) = 1 for every i ,
∫
�
u2i,0u

2
j,0 = 0 and dist

(suppui,0, suppu j,0) = 0 for every i �= j ; thus, u0 is an admissible competitor for c0.
Moreover, since ‖∇ui,0‖L2(�) ≤ lim infr→0 ‖∇ui,r‖L2(�) for every i ,
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c0 = lim
r→0

cr = lim
r→0

k∑
i=1

∫
�

|∇ui,r |2 ≥
k∑

i=1

∫
�

|∇ui,0|2 ≥ c0,

which shows that u0 achieves c0, and that ur → u0 strongly in H1
0 (�). ��

Remark 3.9 The proof of Theorem 1.3 (the case of singularly perturbed harmonic
maps with distance constraint) follows by similar arguments, with few differences (for
instance the corresponding results in Sect. 2 are much easier to prove). In particular,
functions ur are not zero on ∂� and we cannot achieve the first conclusion of Lemma
3.4, i.e., the sequence {xn} may accumulate at ∂�. To circumvent this issue one can
reason with the family of functions {urη}, where η ∈ C∞

0 (�) is a positive smooth
cutoff. We refer to [30] for further details. This is the reason why the uniform estimate
in Theorem 1.3 is only of local type (true in any compact K ⊂ �).
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