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Abstract
In this article, we prove that the density of integers a, b such that a4 + b3 is square-
free, when ordered by max{|a|1/3, |b|1/4}, equals the conjectured product of the local
densities. We show that the same is true for polynomials of the form βa4 + αb3 for
any fixed integers α and β. We give an exact count for the number of pairs (a, b)
of integers with max{|a|1/3, |b|1/4} < X such that βa4 + αb3 is squarefree, with a
power-saving error term.

Mathematics Subject Classification 11N32 · 11N36 · 11N45

1 Introduction

A classical question in analytic number theory is to determine the probability that a
given polynomial F with integer coefficients takes squarefree values when evaluated
at random integers. The simplest case of one-variable and degree-one asks for the
probability that a random integer is squarefree, which is well-known to be 6/π2. In
general, one conjectures that the desired probability equals the product over all primes
p of the probabilities that the values of F are not divisible by p2.

The one-variable degree-two case can also be solved by elementary methods. The
one-variable degree-three case was solved by Hooley [10]. For homogeneous polyno-
mials of two variables, the question is known up to degree 6 due to Greaves [8]. For
non-homogeneous polynomials of two variables that factor completely into a product
of linear factors over some extension of Q, the question is known also up to degree 6
due to Hooley [11]. Very recently, Kowalski [12] proved the case where F is a sum of
at least 3 cubic polynomials in different variables. The cases when F is the discrimi-
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nant of monic polynomials or when F is the discriminant of general polynomials were
proven to equal the conjectured probability by Bhargava–Shankar–Wang [5, 6].

Conditional on the abc-conjecture, Granville [7] proved the one-variable case in
general and a bound on the error term was later obtained by Murty–Pasten [13]. Also
conditional on the abc-conjecture, Poonen [14] proved the multi-variable case where
the variables are growing to infinity one by one. Unconditionally, very little is known
otherwise. In most cases, it is even unknown whether the polynomial takes squarefree
values infinitely often—the most famous example being a4 + 2.

In this paper, we consider for the first time the polynomial a4 + b3. Our method in
fact allows us to consider all polynomials of the form βa4 +αb3 for any fixed integers
α and β. We prove:

Theorem 1 Let α and β be fixed nonzero integers such that gcd(α, β) is squarefree.
Let

N (X;α, β) = #{(a, b) ∈ Z2 : max{|a|1/3, |b|1/4} < X , βa4 + αb3 is squarefree}.

For any positive integer m, let ρα,β(m) = #{(a, b) mod m : m | βa4 + αb3} and
let

C(α, β) =
∏

p

(1 − ρα,β(p2)p−4).

Then

N (X;α, β) = C(α, β) · 4X7 + Oε(X
6.992+ε).

The implied constant depends on α and β.

The case α = 256 and β = −27 is of special importance since 256b3 − 27a4 is the
discriminant of the quartic polynomial x4 +ax +b. An elementary calculation shows
that ρ256,−27(p2) equals p3 for p = 2, 3; and equals 2p2 − p for p ≥ 5. Therefore,
we have:

Theorem 2 Whenpairs (a, b)of integers areorderedby H(a, b) = max{|a|1/3, |b|1/4},
the density of quartic polynomials of the form x4 +ax +b having squarefree discrim-
inant exists and is equal to

1

3

∏

p≥5

(1 − 2

p2
+ 1

p3
)

which is approximately 28.03%.

It is also of interest to determine the density of irreducible quartic polynomials
f (x) = x4 + ax + b such that Z[x]/( f (x)) is the ring of integers of Q[x]/( f (x)).
This density is proved to be ζ(2)−1 for the case of general monic polynomials of
any degree in [5]. It is then not surprising that the same density holds for the case of
trinomial quartics.
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Theorem 3 Whenpairs (a, b)of integers areorderedby H(a, b) = max{|a|1/3, |b|1/4},
the density of quartic polynomials f (x) of the form x4 + ax + b that are irreducible
and such that Z[x]/( f (x)) is the ring of integers of Q[x]/( f (x)) exists and is equal
to ζ(2)−1.

It is easy to see that the Euler product C(α, β) gives an upper bound for the desired
density, if it exists, by applying the Chinese Remainder Theorem to more and more
primes. As is standard in sieve theory, to demonstrate the lower bound, a “tail estimate”
is required to show that there are not too many pairs (a, b) of integers such that
βa4 + αb3 is divisible by m2 for some squarefree integer m. More precisely, we
prove:

Theorem 4 Let α and β be fixed nonzero integers such that gcd(α, β) is squarefree.
For any squarefree integer m, let

Nm(X;α, β) = #{(a, b) ∈ Z2 : |a| ≤ X3, |b| ≤ X4,m2 | βa4 + αb3}.

Then for any positive real number M and ε > 0,

∑

m>M
m squarefree

Nm(X;α, β) = Oε

(
X7+ε

√
M

)
+ Oε(X

6.992+ε) (1)

The implied constants depend on α and β.

We note that since the exponents 3 and 4 are coprime, it is enough to prove Theorem
4 for one choice of α, β. Indeed, we have

−256 · 27 · α8β3(βa4 + αb3) = 256(−3α3βb)3 − 27(4α2βa)4,

which implies that,

Nm(X;α, β) ≤ Nm(cα,βX; 256,−27)

for some constant cα,β depending only on α, β. Hence the power saving bound (1)
for α = 256 and β = −27 implies it for all other α and β. We simplify notation by
writing �(a, b) for 256b3 − 27a4.

For any prime p and pair (a, b) of integers such that p2 | �(a, b), we say p2

strongly divides �(a, b) if p2 | �(a′, b′) for any integers a′ ≡ a (mod p) and b′ ≡ b
(mod p); otherwise, we say p2 weakly divides �(a, b). Note in this case, for p ≥ 5,
p2 strongly divides �(a, b) if and only if p | a and p | b. For any squarefree integer
m, let W(1)

m (respectively W(2)
m ) denote the set of pairs (a, b) of integers such that p2

strongly divides (respectively weakly divides) �(a, b) for every prime p | m. Then
we prove:
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Theorem 5 For any positive real number M and ε > 0,

(a) #
⋃

m>M
m squarefree

{(a, b) ∈ W(1)
m : H(a, b) < X} = O

( X7

M

)
+ O

(
X4

)
; (2)

(b) #
⋃

m>M
m squarefree

{(a, b) ∈ W(2)
m : H(a, b) < X} = Oε

(
X6.992+ε

)
+ Oε

(
X7+ε

M

)
,

(3)

where the implied constants are independent of M and X.

Wenow briefly describe our methods. Theorem 5(a) is immediate with the first term
counting the contribution from a �= 0 and the second term counting the contribution
from a = 0. We devote the rest of the paper to proving Theorem 5(b). We follow the
strategy of [5] to embed W(2)

m into the space W of 4 × 4 symmetric matrices. More
precisely, let A0 denote the 4×4matrixwith 1’s on the anti-diagonal and 0’s elsewhere.
The group G = PSO(A0) = SO(A0)/〈±I 〉 acts on W via the action g · B = gBgt

for g ∈ G and B ∈ W . Define the invariant polynomial of an element B ∈ W by

fB(x) = det(A0x − B).

Then fB is amonic quartic polynomial.Weextend the definition H(a, b) to arbitrary
monic quartic polynomials by

H(x4 + c1x
3 + c2x

2 + c3x + c4) = max{|c1|, |c2|1/2, |c3|1/3, |c4|1/4}.

Define the discriminant and height of an element B ∈ W by the discriminant and
height of fB , respectively. We then construct a map

σm : W(2)
m → 1

4
W (Z)

with fσm (a,b) = x4 + ax + b as in [5], where 1
4W (Z) is the lattice of elements B

whose coefficients have denominators dividing 4. We note that the existence of the
map σm (and the formula for fσm (a,b)) is not immediate and is crucial to our method. It
thus remains to count G(Z)-orbits in 1

4W (Z) that intersect the image of σm for some
squarefree m > M , and have height bounded by X .

The space W has several subspaces: W00 consisting of B ∈ W whose (1, 1)- and
(1, 2)-entries are 0; W01 consisting of B ∈ W whose (1, 1)- and (1, 3)-entries are 0;
and W0 consisting of B ∈ W whose (1, 1)-entry is 0. From our construction of σm in
Section 2.2, we see that σm(a, b) in fact lands in W00 for any (a, b) ∈ W(2)

m , and so is
guaranteed to be distinguished in the sense of [9]. We obtain a bound of Oε(X7+ε/M)

for the distinguished cusps W00 and W01 and a bound of Oε(X6+ε) for the “thick”
cusp W0\(W00 ∪ W01).
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The main novelty of this paper is on counting orbits of distinguished elements
in the main body W\W0. We use the circle method to handle the condition that the
invariant polynomials have vanishing x2-coefficients, combinedwith the Selberg sieve
to impose the distinguished condition to obtain the desired power saving.

We remark that Heath–Brown’s result [15] on the density of integers n such that
nd + c is k-free specializes to the case of squarefree values of the cubic polynomial
n3 + c where c is a constant. A major observation of [15] is that counting triples
(n, s, t) with n3 + c = s2t when n and s are large and c is fixed, is akin to counting
points close to the projective curve N 3 = S2T . The bigger c is, which in our case can
be as big as n3, the worse the estimate gets. As such, we cannot patch the results of
[15] together to prove Theorem 1.

This paper is organized as follows. In Sect. 2, we set up the embedding intoW and
collect some results on the invariant theory for the action of G on W , which allows
us to reduce Theorem 5(b) to a result on counting G(Z)-orbits in 1

4W (Z). In Sect. 3,
we apply Bhargava’s averaging trick and count in the thick cusp and the distinguished
cusps. In Sect. 4, we use the circle method and the Selberg sieve to count in the main
body. Finally, in Sect. 5, we prove Theorem 1, Theorem 3 and Theorem 4.

2 Embedding into the space of 4× 4 symmetric matrices

Let A0 be the 4× 4 matrix with 1’s on the anti-diagonal and 0’s elsewhere. The group
G = PSO(A0) = SO(A0)/〈±I 〉 acts on the spaceW of symmetric 4× 4 matrices via
the action g · B = gBgt for g ∈ G and B ∈ W . The ring of polynomial invariants
over C is freely generated by the coefficients of the invariant polynomial fB(x) =
det(A0x − B), which is a monic quartic polynomial. Define G-invariant discriminant
�(B) and height H(B) of an element B ∈ W by�(B) = �( fB) and H(B) = H( fB).
We recall some of the arithmetic invariant theory for this representation. See [5, 9] for
more detail.

2.1 Invariant theory for the representationW of G

Let k be a field of characteristic not 2. For any monic quartic polynomial f (x) ∈ k[x]
such that�( f ) �= 0, letC f denote the smooth hyperelliptic curve y2 = f (x) of genus
1, let J f denote its Jacobian (which is an elliptic curve), and let J f [2] denote the 2-
torsion subgroup scheme of J f . The stabilizer in G(k) of an element B ∈ W (k) with
fB(x) = f (x) is naturally isomorphic to J f [2](k), which in turn is in bijection with
the set of even factorization of f (x) over k. An even factorization of f (x) over k is
an unordered pair (g(x), h(x)) of quadratic polynomials with g(x)h(x) = f (x) such
that either (i) g and h are both defined over k; or (ii) they are (defined and) conjugate
over a quadratic extension of k.

An element B ∈ W (k) or its G(k)-orbit is said to be: k-soluble if �(B) �= 0 and
there exists a nonzero vector v ∈ k4 such that

vt A0v = 0 = vt Bv; (4)
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k-distinguished if�(B) �= 0 and there exist linearly independent vectors v,w ∈ k4

such that
vt A0v = vt Bv = wt A0w = vt A0w = vt Bw = 0. (5)

Moreover, the set of k-lines Span(v) satisfying (4), if nonempty, is in bijection with
J fB (k); and the set of k-flags Span(v) ⊂ Span(v,w) satisfying (5), if nonempty, is in
bijection with J fB [2](k). The set of k-soluble orbits with fB(x) = f (x) is in bijection
with J f (k)/2J f (k). The number of k-distinguished orbits with fB(x) = f (x) is 1 if
f (x) has a linear factor over k or if f (x) admits a factorization of the form g(x)h(x)
where g and h are not rational over k but are conjugate over a quadratic extension of
k; and is 2 otherwise.

Let W00 denote the subspace of W consisting of matrices B whose (1, 1)- and
(1, 2)-entries are 0. LetW01 denote the subspace ofW consisting of matrices B whose
(1, 1)- and (1, 3)-entries are 0. LetW0 denote the subspace ofW consisting ofmatrices
B whose (1, 1)-entry is 0. Let {e1, e2, e3, e4} denote the standard basis for k4.Then we
see that the elements in W0(k) with nonzero discriminants are k-soluble with v = e1
in (4); the elements in W00(k) with nonzero discriminants are k-distinguished with
v = e1 and w = e2 in (5); and the elements in W01(k) with nonzero discriminants are
k-distinguished with v = e1 and w = e3 in (5). A further polynomial invariant, called
the Q-invariant, is defined on W00 in [5, Sect. 3.1]. For the case of 4 × 4 matrices
B, this is simply the (1, 3)-entry b13. The Q-invariant has the following important
property:

Proposition 1 Let B ∈ W00(Q) be an element whose invariant polynomial fB(x) has
no even factorizations over Q. If B ′ ∈ W00(Q) is any element that is G(Z)-equivalent
to B, then the (1, 3)-entries of B ′ and B are equal up to sign. If B ′ ∈ W01(Q) is any
element that is G(Z)-equivalent to B, then the (1, 2)-entry of B ′ equals the (1, 3)-entry
of B up to sign.

Proof We prove the statement for B ′ ∈ W01(Q). The statement for W00(Q) follows
by a similar argument (see also [5, Proposition 3.1]).

Let γ0 be the element of SO(A0)(Z[i]) defined by

γ0(e1) = ie1, γ0(e2) = ie2, γ0(e3) = −ie3, γ0(e4) = −ie4,

where i = √−1 is a root to x2 + 1 = 0. Then any γ ∈ PSO(A0)(Z) can either be
lifted to some γ̃ ∈ SO(A0)(Z) or to γ0γ̃ ∈ SO(A0)(Z[i]) for some γ̃ ∈ SO(A0)(Z).

Suppose B ′ = γ Bγ t for some γ ∈ PSO(A0)(Z). Then either B ′ = γ̃ Bγ̃ t or
B ′ = γ0γ̃ Bγ̃ tγ t

0 for some γ̃ ∈ SO(A0)(Z). Since B ′ satisfies (5) with v = e1 and
w = e3, we see that in either case, B satisfies (5) with v = γ̃ t e1 and w = γ̃ t e3. Since
B ∈ W00(Q), we also seewhat B satisfies (5)with v = e1 andw = e2. The assumption
that fB has no even factorizations overQ then implies that SpanQ(e1) = SpanQ(γ̃ t e1)
and SpanQ(e1, e2) = SpanQ(γ̃ t e1, γ̃ t e3). Since γ̃ t is a matrix with integer entries,
we see that there are integers α1, α2, α3 such that

γ̃ t e1 = α1e1,

γ̃ t e3 = α2e2 + α3e1.
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Since γ̃ ∈ SO(A0)(Z), we must then have

γ̃ t e4 = α−1
1 e4 − α3α

−1
1 α−1

2 e3,

γ̃ t e2 = α−1
2 e3,

with α1 = ±1 and α2 = ±1. The (1, 2)-entry b′
12 of B

′ is then either (γ̃ t e1)t B(γ̃ t e2)
or (i γ̃ t e1)t B(i γ̃ t e2). In both cases, we have b′

12 = ±α1α
−1
2 et1Be3 = ±b13. ��

Let U � A2\{� = 0} be the space of monic quartic polynomials of the form
x4 + ax + b with nonzero discriminant. Note if f ∈ U (Z) has an even factorization
over Q, then it is either reducible over Q or factors as g(x)h(x) where g and h are
conjugate over some quadratic extension of Q. The next result then shows that the
number of elements of U (Z) failing the condition of Proposition 1 is negligible.

Proposition 2 The number of elements f ∈ U (Z) with H( f ) < X such that f (x)
is either reducible over Q or factors as g(x)h(x) where g and h are conjugate over
some quadratic extension of Q is O(X4 log X).

Proof Throughout this proof, we use repeatedly the classical result that the sum∑
|n|<X d(n) of the divisor function is O(X log X) and that the sum

∑
|n|<X τ3(n)

of the triple-divisor function is O(X log2 X). See for example [1, Sect. 3.5].
Suppose first f (x) = x4 + ax + b has a linear factor x − r over Q. When b = 0,

one can choose a freely. When b �= 0, then since r | b, we get O(X4 log X) choices
for the pair (r , b), which then uniquely determines a since a = −r3 − b/r . Hence,
there are O(X4 log X) such f (x) with a linear factor.

Next we consider the case where f (x) = x4 + ax + b does not have a linear
factor but factors as (x2 + cx + d)(x2 − cx + e) over Q. Since f (x) does not have
a linear factor, we see that b �= 0. Then from de = b, we get O(X4 log X) choices
for the triple (d, e, b). Comparing the x2-coefficients gives c2 = d + e, and so c is
determined given d and e. Comparing the x-coefficients then uniquely determines a.
Hence, there are O(X4 log X) such f (x) that factors as a product of two irreducible
quadratic polynomials.

Finally, we consider the case where f (x) = x4 + ax + b is irreducible over Q but
factors as

(
x2 + e1

√
dx + c2 + e2

√
d

2

) (
x2 − e1

√
dx + c2 − e2

√
d

2

)

over the ring of integers in Q(
√
d) for some d. If a = 0, then we have O(X4) choices

for b. Suppose now a �= 0. Comparing the x-coefficients gives e1e2d = a. Hence there
are O(X3 log2 X) choices for the tuple (e1, e2, d, a). Comparing the x2-coefficients
gives c2 − e21d = 0, and so c2 is determined given e1 and d. Comparing the constant
terms then uniquely determines b. Hence, there are O(X4) such f (x) that factors into
conjugate quadratic polynomials over some quadratic extension of Q. ��

We end this section with a bound on distinguished elements over finite fields, which
will be used in the Selberg sieve in Sect. 4.
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Proposition 3 Let p ≥ 7 be a prime. Then the number dp of elements B ∈ W (Fp)

with fB ∈ U (Fp) and is not Fp-distinguished satisfies

1

16
p8 + O(p7) ≤ dp ≤ 3

4
p8 + O(p7).

Proof Over the finite field Fp, every orbit with nonzero discriminant is Fp-soluble.
Moreover, for anymonic quartic polynomial f (x) ∈ Fp[x]with nonzero discriminant,
the number #J f (Fp)/2J f (Fp) of Fp-orbits with invariant polynomial f equals the
size #J f [2](Fp) of any stabilizer with invariant polynomial f . Hence, the number of
B ∈ W (Fp) with fB = f equals #G(Fp) = p2(p2 − 1)2. There are p2 + O(p)
polynomials f ∈ U (Fp) and so a total of p8 + O(p7) elements B ∈ W (Fp) with
fB ∈ U (Fp). Moreover, for any f ∈ U (Fp), there is at least one Fp-distinguished
orbit with stabilizer having size at most 4. Hence, we have the upper bound dp ≤
3
4 p

8 + O(p7).
Consider next quartic polynomials of the form

ga,b(x) := (x − a)(x − b)(x2 + (a + b)x + (a2 + ab + b2)) ∈ U (Fp).

Since ga,b(x) has a linear factor, there is only one distinguished orbit with invariant
ga,b. Moreover, we have 2 ≤ #Jga,b [2](Fp) ≤ 4. Hence, there is at least one non-
distinguished orbit of size at least |G(Fp)|/4. It remains to count the number of
such ga,b(x) with nonzero discriminant, which is equivalent to requiring that a �= b,
that a is not a root of the quadratic factor, and that the quadratic factor has nonzero
discriminant. In other words, we have a �= b, 3(a + b/3)2 + (2/3)b2 �= 0 and
3(a + b/3)2 + (8/3)b2 �= 0. Given any b, there are at least p − 5 choices for a.
Finally, given any ga,b with nonzero discriminant, we see that ga,b = ga′,b′ if and only
if x2+(a+b)x+(a2+ab+b2) = (x−a′)(x−b′) or (x−a)(x−b) = (x−a′)(x−b′),
as any other possibility contradicts �(ga,b) �= 0. Hence, there are at least p(p− 5)/4
quartic polynomials with nonzero discriminant of the form ga,b for some a, b ∈ Fp.

Therefore, we have at least 1
16 p

8 + O(p7) non-distinguished elements B in W (Fp)

with fB ∈ U (Fp). ��

2.2 EmbeddingW(2)
m into 1

4W(Z)

In light of Proposition 2, it is sufficient to prove Theorem 5 with W(2)
m replaced by

the set of pairs (a, b) ∈ W(2)
m such that fa,b(x) := x4 + ax + b is irreducible and

does not factor into a product of quadratic polynomials conjugate over some quadratic
extension of Q. We prove some preliminary results in order to use the map σm defined
in [5, Sect. 3.2].

Fix (a, b) ∈ W(2)
m and fix any prime p | m. For any (a′, b′) ∈ Z2 with a′ ≡ a

(mod p) and b′ ≡ b (mod p), we have fa′,b′(x) ≡ fa,b(x) (mod p). Since p2

weakly divides �(a, b), we see that fa,b(x) has a unique double root mod p. Let
r ∈ Z be an integer such that fa,b(x + r) = x4 + b1x3 + b2x2 + b3x + b4 with p | b3
and p | b4. We claim that p2 | b4. Note the discriminant of a quartic polynomial is of
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the form

�(x4 + b1x
3 + b2x

2 + b3x + b4) = b4�
′(b1, b2, b3, b4)

+b23�(x3 + b1x
2 + b2x + b3)

where �′ is some polynomial with integer coefficients. Suppose for a contradiction
that p2 � b4. Then, since �( fa,b(x + r)) = �( fa,b(x)) = �(a, b). we have p2 |
�( fa,b(x + r)) and so p | �′(b1, b2, b3, b4). Hence, p2 | �(g(x)) for any monic
quartic polynomial g(x) congruent to fa,b(x + r). Now for any (a′, b′) ∈ Z2 with
a′ ≡ a (mod p) and b′ ≡ b (mod p), we have fa′,b′(x + r) ≡ fa,b(x + r) (mod p)
and so p2 | �( fa′,b′(x + r)). Since �( fa′,b′(x + r)) = �(a′, b′), this contradicts the
assumption that p2 weakly divides �(a, b).

By theChineseRemainderTheorem, there exists an integer r such that fa,b(x+r) =
x4+c1x3+c2x2+mc3x+m2c4 for some integers c1, c2, c3, c4. Consider the following
matrix:

B(c1, c2, c3, c4) =

⎛

⎜⎜⎝

0 0 m 0
0 1 −c1/2 0
m −c1/2 c21/4 − c2 −c3/2
0 0 −c3/2 −c4

⎞

⎟⎟⎠ .

A direct computation shows that fB(c1,c2,c3,c4)(x) = x4 + c1x3 + c2x2 + mc3x +
m2c4. We now set σm(a, b) = B(c1, c2, c3, c4) + r A0 ∈ 1

4W (Z). Then

fσm (a,b)(x)=det(x A0−(B(c1, c2, c3, c4) + r A0))= fB(c1,c2,c3,c4)(x − r)= fa,b(x).

Note in fact that the image of σm lies insideW00(Q) and the (1, 3)-entry of any element
in the image of σm is m. We combine Proposition 1 and the above in the following
theorem.

Theorem 6 Let m be any squarefree integer. There is a map σm : W(2)
m → 1

4W (Z)

such that the following two conditions are satisfied:

(a) fσm (a,b) = fa,b(x) for any (a, b) ∈ W(2)
m ;

(b) the (1, 3)-entry (respectively the (1, 2)-entry) of any element in W00(Q) (respec-
tively W01(Q)) that is G(Z)-equivalent to some element in σm(W(2)

m ) equals m in
absolute value.

3 Averaging and counting in the cusp

Fix any positive real number M . Let LM denote the set of elements in 1
4W (Z) that are

G(Z)-equivalent to some elements in σm(W(2)
m ) for some squarefree integer m > M .

Write N (LM , X) for the number ofG(Z)-orbits inLM having height at most X . Since
G(Z)-equivalent elements have the same invariant polynomials, we see by Theorem
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1246 G. C. Sanjaya and X. Wang

6(a) that

N (LM , X) ≥ #
⋃

m>M
m squarefree

{ f ∈ W(2)
m : H( f ) < X}.

Therefore, Theorem 5(b) follows from the following result.

Theorem 7 For any positive real number M and any ε > 0, we have

N (LM , X) = Oε

(
X6.992+ε

)
+ Oε

(
X7+ε

M

)
. (6)

In Sect. 3.1, we recall the set up in [9] for counting G(Z)-orbits in 1
4W (Z) and

divide up a fundamental domainF for the left-multiplication action of G(Z) on G(R)

into the main body, the thick cusp, and the distinguished cusps. In Sect. 3.2, we obtain
bounds for the contribution from the thick cusp and the distinguished cusps. Finally
in Sect. 4, we obtain bounds for the contribution from the main body and complete
the proof of Theorem 7.

3.1 Counting G(Z)-orbits in 1
4W(Z)

The counting problem for the representation W of G is studied in [9]. In this section,
we recall some of the set up and results of [9].

Let R be a fundamental domain for the action of G(R) on the elements of W (R)

having nonzero discriminant and height bounded by 1 as constructed in [9, Sect. 4.1].
LetF be a fundamental set for the left-multiplication action ofG(Z) onG(R) obtained
using the Iwasawa decomposition of G(R). More explicitly, we have

G(R) = N (R)T K ,

where N is a unipotent group consisting of lower triangular matrices, K is compact,
and T is the split torus of G given by

T =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

t−1
1

t−1
2

t2
t1

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

We also make the following change of variables: set

s1 = t1/t2, s2 = t1t2.

We denote an element of T with coordinates ti (resp. si ) by (t) (resp. (s)). We may
take F to be contained in a Siegel set, i.e., contained in N ′T ′K , where N ′ consists
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of elements in N (R) whose entries are absolutely bounded and T ′ ⊂ T consists of
elements in (s) ∈ T with s1 ≥ c and s2 ≥ c for some positive constant c.

For any h ∈ G(R), since Fh remains a fundamental domain for the action of
G(Z) on G(R), the set (Fh) · (XR) (when viewed as a multiset) is a finite cover of
a fundamental domain for the action of G(Z) on the elements in W (R) with nonzero
discriminant and height bounded by X . The degree of the cover depends only on the
size of stabilizer in G(R) and is thus absolutely bounded by 4. The presence of these
stabilizers is in fact the reason we consider (Fh) · (XR) as a multiset. Hence, we have

N (LM , X) � #
{(

(Fh) · (XR)
) ∩ LM

}
. (7)

Let G1 be a compact left K -invariant set inG(R)which is the closure of a nonempty
open set. Averaging (7) over h ∈ G1 and exchanging the order of integration as in
[4, Theorem 2.5], we obtain

N (LM , X) �
∫

γ∈F
#
{(

(γG1) · (XR)
) ∩ LM

}
dγ, (8)

where the implied constant depends only onG1 and R, andwhere dγ is a Haarmeasure
on G(R) given by

dγ = dn s−1
1 s−1

2 d×s dk,

where dn is a Haar measure on the unipotent group N (R), dk is a Haar measure on
the compact group K , and d×s = s−1

1 ds1 s
−1
2 ds2 is the standard Haar measure on G2

m
(see [9, (20)]).

Since si ≥ c for every i , there exists a compact subset N ′′ of N (R) containing
(t)−1N ′ (t) for all t ∈ T ′. Since N ′′, K , G1 are compact and R is bounded, the set
E = N ′′KG1R is bounded. Then we have

N (LM , X) �
∫

si�1
#
{(

(s) · XE
) ∩ LM

}
s−1
1 s−1

2 d×s. (9)

The (i, j)-entry of any B ∈ XE is bounded by c0X , where c0 > 0 is a constant
depending only on G1 and R. The action of the torus T then scales each entry of B.
We denote the coordinates of W by bi j for 1 ≤ i ≤ j ≤ 4 and define

w(b11) = s−1
1 s−1

2 , w(b12) = s−1
2 , w(b13) = s−1

1 , w(b14) = 1,
w(b22) = s1s

−1
2 , w(b23) = 1, w(b24) = s1,

w(b33) = s−1
1 s2, w(b34) = s2,

w(b44) = s1s2.

Then the (i, j)-entry of any B ∈ (s) · XE is bounded by c0Xw(bi j ).
We define two distinguished cusps: T00 ⊂ T ′ consisting of elements (s) such that

c0Xw(b11) < 1/4 and c0Xw(b12) < 1/4; and T01 ⊂ T ′ consisting of elements (s)
such that c0Xw(b11) < 1/4 and c0Xw(b13) < 1/4. We define the thick cusp T0 to be
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1248 G. C. Sanjaya and X. Wang

the subset of T ′ consisting of elements (s) such that c0Xw(b11) < 1/4, c0Xw(b12) ≥
1/4, and c0Xw(b13) ≥ 1/4. We define the main body T ′′ to be the complement
T ′\(T00∪T01∪T0). Then for any (s) ∈ T00, we have

(
(s) · XE

)∩ 1
4W (Z) ⊂ W00(Q);

for any (s) ∈ T01, we have
(
(s) · XE

) ∩ 1
4W (Z) ⊂ W01(Q); and for any (s) ∈ T0. we

have
(
(s) · XE

) ∩ 1
4W (Z) ⊂ W0(Q).

Since the invariant polynomials of elements in LM have the form x4 + ax + b,
we now express the conditions of the invariant polynomial having vanishing x3- and
x2-coefficients in terms of the coordinates bi j . The x3-coefficient is the anti-trace, and
so we have

b23 = −b14.

After replacing b23 by−b14, we see that the x2-coefficient is the following quadratic
form:

q(bi j ) := −b11b44 − b22b33 − 2b12b34 − 2b13b24 − 2b214.

3.2 Counting in the cusps

In this section, we compute the contribution to (9) for (s) ∈ T00, (s) ∈ T01 and for
(s) ∈ T0.

Proposition 4 For any positive real number M and ε > 0, we have

∫

(s)∈T00
#
{(

(s) · XE
) ∩ LM

}
s−1
1 s−1

2 d×s = Oε

( X7+ε

M

)
, (10)

∫

(s)∈T01
#
{(

(s) · XE
) ∩ LM

}
s−1
1 s−1

2 d×s = Oε

( X7+ε

M

)
, (11)

∫

(s)∈T0
#
{(

(s) · XE
) ∩ LM

}
s−1
1 s−1

2 d×s = Oε

(
X6+ε

)
. (12)

Proof Consider first the distinguished cusp T00. In this case, any element in
(
(s) ·

XE
) ∩ LM is an element in W00(Q) that is G(Z)-equivalent to some element in

σm(W(2)
m ) for some m > M . Hence, by Theorem 6, we have |b13| > M for any

element B ∈ (
(s) · XE

) ∩ LM . In other words, we have Xs−1
1 � M . Moreover, note

that if b11 = b12 = b22 = 0, then det(x A0 − B) = ((x − b14)(x − b23) − b13b24)2

which implies that�(B) = 0. Hencewemay assume that Xs1s
−1
2 � 1. Let T ′

00 denote
the subset of T00 consisting of elements (s) with Xs−1

1 � M and Xs1s
−1
2 � 1. Note

we also have s1 � X and s2 � X2 for (s) ∈ T ′
00.

The quadratic form q(bi j )when restricted toW00 simplifies to q1(bi j ) = −b22b33−
2b13b24 − 2b214. Hence, we have

#
(
(s) · XE ∩ LM

) �ε

(
(Xw(b14))

1+ε(Xw(b22) + Xw(b33))

+ (Xw(b14)Xw(b13)Xw(b24))
1+ε

)
Xw(b34)Xw(b44)
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� X4+εs21s2 + X4+εs32 + X5+εs1s
2
2

� X4+εs21s2 + X5+εs1s
2
2 .

Integrating these two terms separately gives
∫

(s)∈T ′
00

X4+εs21s2s
−1
1 s−1

2 d×s =
∫

(s)∈T ′
00

X4+εs1d
×s � X5+ε log X

M
,

∫

(s)∈T ′
00

X5+εs1s
2
2s

−1
1 s−1

2 d×s =
∫

(s)∈T ′
00

X5+εs2d
×s

�
∫

(s)∈T ′
00

X6+εs1d
×s� X7+ε log X

M
.

The integral over the other distinguished cusp T01 has the same bound via the same
analysis with s1 and s2 switched.

Finally, we consider the thick cusp T0. In this case, we have Xs−1
1 � 1 and

Xs−1
2 � 1. The quadratic form q(bi j ) when restricted to W0 simplifies to q2(bi j ) =

−b22b33 − 2b12b34 − 2b13b24 − 2b214. The above analysis shows that the number
of choices for (b22, b33, b13, b24, b14) such that q1(bi j ) = 0 is Oε(X2+εs1s

−1
2 +

X2+εs−1
1 s2 + X3+ε). Multiplying it by (Xw(b12)+ Xw(b34))Xw(b44) gives a bound

of Oε(X4+εs21s2 + X4+εs32 + X5+εs1s22 ) for the number of B ∈ (
(s) · XE

)∩LM with
q1(bi j ) = 0. The contribution from q1(bi j ) �= 0 is

Oε

(
(Xw(b22)Xw(b33)Xw(b13)Xw(b24)Xw(b14))

1+εXw(b44)
) = Oε(X

6+εs1s2).

Using the bound s1 � X and s2 � X , we have

#
{(

(s) · XE
) ∩ LM

} �ε X4+εs21s2 + X4+εs32 + X5+εs1s
2
2 + X6+εs1s2 � X6+εs1s2.

Multiplying by s−1
1 s−1

2 and integrating then give the desired bound (12). ��

For the main body T ′′, we have Xs−1
1 s−1

2 � 1. Since both s1 and s2 are bounded
below by some absolute constant, we still have the bound s1 � X and s2 � X . The
above analysis gives a bound of

Oε

((
(X2+εs1s

−1
2 + X2+εs−1

1 s2 + X3+ε)(Xw(b12) + Xw(b34))

+ X5+ε
)
(Xw(b11) + Xw(b44))

)

= Oε

(
(X3+εs−1

1 s22 + X4+εs2 + X5+ε)Xs1s2
)

= Oε

(
X6+εs1s2

)

for the number of B ∈ (
(s) · XE

)∩LM with q2(bi j ) = 0. Multiplying by s−1
1 s−1

2 and
integrating give a bound of Oε(X6+ε).
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It remains to consider the contribution to the main body integral from the number
of B ∈ (

(s) · XE
) ∩ LM with q2(bi j ) �= 0. We have a trivial bound of Oε(X7+ε) for

the number of such B. For any positive real number δ, let T ′′
δ denote the subset of T ′′

where s1 � X δ or s2 � X δ . Then we have

∫

(s)∈T ′′
δ

#
{(

(s) · XE
) ∩ LM

}
s−1
1 s−1

2 d×s = Oε(X
7−δ+ε). (13)

Therefore, it remains to consider the main body integral under the additional
assumption that s1 � X δ and s2 � X δ where δ is some small enough positive
real number.

4 Counting in themain body using the circle method

In this section, we consider the contribution to (9) from the main body under the
additional assumption that s1 � X δ and s2 � X δ . Let V � A9 denote the subspace
of W cut out by b14 = −b23. For any B ∈ V (Q), let

q(B) = −b11b44 − b22b33 − 2b12b34 − 2b13b24 − 2b214.

Since scaling an element B ∈ V (Q) by 4 does not affect the vanishing of q(B) or
whether it is Q-distinguished, it is enough to count points in a box in V (Z) defined
by |bi j | ≤ 4c0Xw(bi j ). The assumption on s1 and s2 implies that 4c0Xw(bi j ) =
O(X1+2δ) for all i, j . The goal of this section is to prove the following theorem:

Theorem 8 Let δ < 0.01 be a positive real number. Let B be a box in V (R) defined by
|bi j | ≤ Xi j for (i, j) = (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (3, 4), (4, 4)
where Xi j are real numbers satisfying c

−1
1 X1−2δ ≤ Xi j ≤ c1X1+2δ , X14 = c2X and

X11X44 = X22X33 = X12X34 = X13X24 = c22X
2,

for some positive constants c1, c2. Let N dist
q (B) denote the number of Q-distinguished

elements B ∈ B ∩ V (Z) with q(B) = 0 . Then

N dist
q (B) = Oε

(
X

209
30 + 137

45 δ+ε
)

. (14)

Multiplying the bound (14) by s−1
1 s−1

2 and integrating over 1 � s1, s2 � X δ ,
combining with (13), (9) and Proposition 4, and setting δ = 3/364 then completes the
proof of Theorem 7.

We will prove Theorem 8 by applying a Selberg sieve. To do so, we need to count
elements in B ∩ V (Z) satisfying congruence conditions. For any B, B ′ ∈ V (Z) and
any integer r , we write B ≡ B ′ (mod r) if and only if B − B ′ ∈ rV (Z). We prove:

Theorem 9 Let m be an odd squarefree positive integer with m � X1/3. Let B and
δ be as in Theorem 8. Let B0 ∈ V (Z) be an element such that m | q(B0) and B0 is
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nonzero modulo p for each prime factor p of m. Let Nq(B;m, B0) denote the number
of B ∈ B ∩ V (Z) such that B ≡ B0 (mod m) and q(B) = 0.

For each r ≥ 1, set

Cq(r) = 1

r9
∑

0≤a<r
gcd(a,r)=1

∑

B mod r

e
(a
r
q(B)

)
(15)

Define the singular series
S(q) =

∑

r≥1

Cq(r), (16)

and for each prime p, the series

S(q; p) =
∑


≥0

Cq(p

). (17)

Define the singular integral

S∞(B; q) =
∫

R

∫

B
e(θq(B)) dB dθ, (18)

where e(x) = e2π i x and dB denotes the Euclidean measure on V (R). Then,

Nq(B;m, B0) = 1

m8

⎛

⎝
∏

p|m
S(q; p)−1

⎞

⎠S(q)S∞(B; q) + O

(
X6.85(1+2δ)

m5.5
log X

)
,

(19)
with the implied constant being absolute. All the series defined above converge abso-
lutely and they have positive value.

We note that the conditionsm � X1/3, δ < 0.01 and eventually picking δ = 3/364
are not optimal. They are only to make sure that the term Oε(X6.992+ε) in Theorem 7
beats O(X7).

4.1 Proof of Theorem 9 using the circle method

Fix an odd squarefree m. For any α ∈ [0, 1], let

SB(α;m, B0) =
∑

B∈B∩V (Z)
B≡B0 mod m

e
( α

m
q(B)

)
.

Then,

Nq(B;m, B0) =
∫ 1

0
SB(α;m, B0)dα.
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Let r1 and r2 be positive real numbers, to be picked later, with r1 � X1−2δ

m and
r2 � X1+2δ . Split the interval [0, 1] into the major arcs M and the minor arcs m =
[0, 1] \ M, where

M =
{
α :

∣∣∣α − a

r

∣∣∣ ≤ 1

rr2
, gcd(a, r) = 1, 0 ≤ a < r ≤ r1

}
.

4.1.1 Major arc estimate

We estimate first the major arc integral

∫

M
SB(α;m, B0)dα =

∑

r≤r1

∑

0≤a<r
gcd(a,r)=1

∫

|θ |≤ 1
rr2

SB
(a
r

+ θ;m, B0

)
dθ.

Fix some α = a
r + θ ∈ M, where |θ | ≤ 1

rr2
. We have

SB(α;m, B0) =
∑

B1 mod rm
B1≡B0 mod m

e
( a

rm
q(B1)

) ∑

B∈B∩V (Z)
B≡B1 mod rm

e

(
θ

m
q(B)

)

=
∑

B1 mod rm
B1≡B0 mod m

e
( a

rm
q(B1)

) ∑

B′∈B′∩V (Z)

e

(
θ

m
q(rmB ′ + B1)

)
,

whereB′ = {B ′ ∈ V (R) : rmB ′+B1 ∈ B} is another box. To compute the exponential
sum over a box, we use the following result from [16, Proposition 8.7].

Lemma 1 Let f (x) be a real function on an interval [a, b] such that | f ′(x)| ≤ 1
2 for

all x ∈ (a, b). Suppose further that f ′′(x) ≥ 0 on (a, b) or that f ′′(x) ≤ 0 on (a, b).
Then,

∑

a<n<b

e( f (n)) =
∫ b

a
e( f (x)) dx + O(1),

with the implied constant being absolute.

We note that [16, Proposition 8.7] requires that f ′′(x) > 0, but the same proof
applies when f ′′(x) ≥ 0 or when f ′′(x) ≤ 0. The following multivariable version
also follows immediately.

Lemma 2 Let f (x1, . . . , x
) be a real function on a box R = ∏
i [ai , bi ] such that

| ∂ f
∂xi

(x)| ≤ 1
2 on R for all i = 1, . . . , 
. Suppose for any i = 1, . . . , 
 and for any

fixed x j ∈ (a j , b j ) for all j �= i , the second partial derivative ∂2 f
∂x2i

(x) as a function of
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xi is either non-negative on (ai , bi ) or non-positive on (ai , bi ). Then

∑

n∈R∩Z


e( f (n)) =
∫

R
e( f (x)) dx + O(max{Vol(R̄), 1}),

where Vol(R̄) denotes the greatest d-dimensional volume of any projection ofR onto
a coordinate subspace obtained by equating 
 − d coordinates to zero, where d takes
all values from 1 to 
 − 1. The implied constant depends only on 
.

We apply Lemma 2 to the box B′ and the quadratic polynomial f (bi j ) =
θ
m q(rmB ′ + B1) viewed as a function in the coordinates of B ′. The partial derivative
of f with respect to bi j equals θr ∂q

∂bi j
(rmB ′ + B1) which is bounded by c3c1θr X1+2δ

where c3 is a constant depending only on q (and equals 2 in this case). Hence, we
can bound the first order partial derivatives by 1

2 by taking r2 ≥ 2c3c1X1+2δ . The
second partial derivative of f with respect to any bi j is a constant since f is quadratic.
Finally, the side lengths of B′ are of the form 2Xi j/(rm) � X1−2δ/(r1m) � 1 by the
assumption on r1. Hence, we have

∑

B′∈B′∩V (Z)

e

(
θ

p
q(rmB ′ + B1)

)

=
∫

B′
e

(
θ

m
q(rmB ′ + B1)

)
dB ′ + O

((
X1+2δ

rm

)8
)

= 1

r9m9

∫

B
e

(
θ

m
q(B)

)
dB + O

((
X1+2δ

rm

)8
)

.

Summing over the r9 possible B1’s then gives

SB(α;m, B0) = cq(a; r ,m, B0)

∫

B
e

(
θ

m
q(B)

)
dB + O

(
r X8(1+2δ)

m8

)
, (20)

where

cq(a; r ,m, B0) = 1

r9m9

∑

B1 mod rm
B1≡B0 mod m

e
( a

rm
q(B1)

)
.

In the light of (15), we define for any integer r ≥ 1 and any integer a coprime to r ,

cq(a; r) = 1

r9
∑

B mod r

e
(a
r
q(B)

)
.

Lemma 3 If gcd(r ,m) = 1, then cq(a; r ,m, B0) = 1

m9 cq(a; r). Otherwise

cq(a; r ,m, B0) = 0.
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Proof We consider the case gcd(r ,m) = 1 first. Let m̄ be any integer such that
mm̄ ≡ 1 (mod r). For any integer n divisible by m, we have a

rm n ≡ am̄
r n (mod 1).

Suppose now B1, B ′ ∈ V (Z) with B1 ≡ B0 (mod m) and B1 ≡ B ′ (mod r). Then
q(B1) ≡ q(B0) ≡ 0 (mod m) and q(B1) ≡ q(B ′) (mod r) and so

e
( a

rm
q(B1)

)
= e

(
am̄

r
q(B1)

)
= e

(
am̄

r
q(B ′)

)
.

Since m and r are coprime, we have by the Chinese Remainder Theorem,
∑

B1 mod rm
B1≡B0 mod m

e
( a

rm
q(B1)

)
=

∑

B′ mod r

e
(a
r
q(B ′)

)
.

Dividing by r9m9 gives us cq(a; r ,m, B0) = 1

m9 cq(a; r).
Now, we consider the case gcd(r ,m) > 1. Suppose that p is a prime dividing

gcd(r ,m). We rewrite the sum as

∑

B1 mod rm
B1≡B0 mod m

e
( a

rm
q(B1)

)
=

∑

B′ mod rm/p
B′≡B0 mod m

∑

B′
0 mod p

e

(
a

rm
q

(
rm

p
B ′
0 + B ′

))
.

Given v,w ∈ V , we write 〈v,w〉 = q(v + w) − q(v) − q(w) for the associated
bilinear form. Hence, we have

q

(
rm

p
B ′
0 + B ′

)
= q(B ′) + rm

p
〈B ′, B ′

0〉 + r2m2

p2
q(B ′

0).

Since rm | r2m2

p2
, the inner sum equals

∑

B′
0 mod p

e

(
a

rm

(
q(B ′) + rm

p
〈B ′, B ′

0〉
))

= e
( a

rm
q(B ′)

) ∑

B′
0 mod p

e

(
a

p
〈B ′, B ′

0〉
)

.

Since B ′ ≡ B0 is nonzero modulo p and q is non-degenerate modulo p for p ≥ 3,
the linear form 〈B ′, ∗〉 : V (Fp) → Fp is nonzero. Moreover, a is coprime to p since
p | r and a is coprime to r . Therefore, the above exponential sum vanishes and as a
result, cq(a; r ,m, B0) = 0. ��

Integrating (20) over the arc |θ | ≤ 1
rr2

and summing over a and r now give

∫

M
S(α;m, B0)dα

=
∑

r≤r1
gcd(r ,m)=1

∑

0≤a<r
gcd(a,r)=1

1

m9 cq (a; r)
∫

|θ |≤ 1
rr2

∫

B
e

(
θ

m
q(B)

)
dB dθ + O

(
r21 X

8(1+2δ)

r2m8

)
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=
∑

r≤r1
gcd(r ,m)=1

1

m8Cq (r)
∫

|θ |≤ 1
mrr2

∫

B
e(θq(B)) dB dθ + O

(
r21 X

8(1+2δ)

r2m8

)
, (21)

Our aim is to replace the above truncated sum by the singular series

Sm(q) =
∑

gcd(r ,m)=1

1

m8Cq(r) (22)

and the above integral by the singular integral S∞(B; q). To this end, we prove the
following bounds:

Lemma 4 With notations as above, we have:

(a) for all r ≥ 1,
|Cq(r)| ≤ 4r−7/2; (23)

(b) for all θ �= 0, ∫

B
e(θq(B)) dB � min{X9, |θ |−9/2}; (24)

(c) the singular integral

S∞(B; q) =
∫

R

∫

B
e(θq(B)) dBdθ � X7. (25)

The above implied constants depend only on q (which is fixed).

Proof We prove first the bound

∑

B mod r

e
(a
r
q(B)

)
≤ 8r9/2. (26)

Also, we prove the bound with the constant 8 replaced by
√
2 for r odd. Recall that

q(bi j ) = −b11b44 − b22b33 − 2b12b34 − 2b13b24 − 2b214. Hence (26) follows from

∑

x,y mod r

e
(a
r
xy

)
= gcd(a, r)r ,

∣∣∣∣∣
∑

x mod r

e
(a
r
x2

)∣∣∣∣∣ ≤ (2 gcd(a, r)r)1/2,

where gcd(a, r) | 2. Note that the second sum is a standard quadratic Gauss sum and
the bound follows, for example, from [3, Sects. 1.3–1.6]. Thus, for r odd, |Cq(r)| ≤√
2r−9/2φ(r) ≤ √

2r−7/2, where φ(r) is the Euler’s totient function. Meanwhile, for
r even, we have |Cq(r)| ≤ 8r−9/2φ(r) ≤ 4r−7/2. This proves (23).

Next we prove the bound (24). The X9 bound is trivial since Vol(B) � X9.Wemay
also assume that θ > 0 as the case θ < 0 follows by complex conjugation. Setting
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1256 G. C. Sanjaya and X. Wang

B ′ = θ1/2B, we see that it suffices to prove the following general statement: for any
box B′ centered at the origin,

∫

B′
e(q(B ′)) dB ′ � 1.

Again, using the explicit formula of q, it reduces to proving that for any X ,Y > 0,

∫ X

−X

∫ Y

−Y
e(xy) dydx � 1,

∫ X

−X
e(x2)dx � 1.

The first integral can be computed as follows:

∫ X

−X

∫ Y

−Y
e(xy)dx dy =

∫ X

−X

sin(2πxY )

πx
dx =

∫ XY

−XY

sin(2πx)

πx
dx � 1.

Now, we bound the second integral. Since e(x2) is an even function, we can write

∫ X

−X
e(x2)dx = 2

∫ X

0
e(x2)dx .

For 0 < X < 1, we can use the trivial estimate. For X ≥ 1, we use the trivial estimate
for x ∈ [0, 1] and partial integration for x ∈ [1, X ]:

∫ X

0
e(x2)dx � 1 +

[
e(x2)

2x

]X

1
+

∫ X

1

e(x2)

2x2
dx � 1 + 1 +

[
1

2x

]X

1
� 1.

Finally, by using (24), we have

S∞(B; q) �
∫

|θ |≤X−2
X9dθ +

∫

|θ |≥X−2
|θ |−9/2dθ � X7,

which is the desired bound (25). ��
Note the bound (23) on Cq(r) implies that

|S(q) − 1| ≤ 4(ζ(7/2) − 1) < 1

and that for each prime p,

|S(q; p) − 1| ≤ 4
∑


≥1

p−(7/2)
 = 4

p7/2 − 1
< 1.

Hence, the series defined by (16) and (17) have positive values.
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Combining the bounds (23), (24) and (25) with (21), we have

∫

M
S(α;m, B0)dα

=
∑

r≤r1
gcd(r ,m)=1

(
1

m8Cq(r)(S∞(B; q) + O((mrr2)
7/2)

)
+ O

(
r21 X

8(1+2δ)

r2m8

)

=
(
Sm(q) +

∑

r>r1

O(r−7/2m−8)

)
S∞(B; q) +

∑

r≤r1

O(r−7/2m−8(mrr2)
7/2)

+ O

(
r21 X

8(1+2δ)

r2m8

)

= Sm(q)S∞(B; q) + O

(
X7

r5/21 m8
+ r1r

7/2
2

m9/2 + r21 X
8(1+2δ)

r2m8

)
, (27)

where Sm(q) is defined in (22).

4.1.2 Minor arc estimate

We now estimate the minor arc integral. Fix some α = a
r + θ ∈ m, where r1 < r ≤ r2

and |θ | ≤ 1
rr2

. Then

|SB(α;m, B0)|2 =
∑

B′,B′′∈B∩V (Z)
B′,B′′≡B0 mod m

e
( α

m
(q(B ′′) − q(B ′))

)

=
∑

B∈V (Z)

∑

B′∈B∩V (Z)
B′≡B0 mod m

B′+mB∈B∩V (Z)

e
( α

m
(m2q(B) + m〈B ′, B〉)

)
,

where the second equality follows by setting B ′′ = B ′ + mB. The set of B ∈ V (Z)

for which the inner sum is non-empty is contained in the box B′′ = 1
m (B − B) =

{ 1
m (B ′′ − B ′) : B ′, B ′′ ∈ B}. Taking absolute values now give

|SB(α;m, B0)|2 ≤
∑

B∈B′′∩V (Z)

∣∣∣∣∣∣∣∣∣∣∣

∑

B′∈B∩V (Z)
B′≡B0 mod m

B′+mB∈B∩V (Z)

e
(
α〈B ′, B〉)

∣∣∣∣∣∣∣∣∣∣∣
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1258 G. C. Sanjaya and X. Wang

=
∑

B∈B′′∩V (Z)

∣∣∣∣∣∣∣∣∣∣∣

∑

B1∈V (Z)
B0+mB1∈B

B0+mB1+mB∈B

e (αm〈B1, B〉)

∣∣∣∣∣∣∣∣∣∣∣

. (28)

Let bi j denote the entries of B and let xi j denote the entries of B1. Then from the
explicit formula for q, we have

〈B1, B〉 = −b11x44 − b44x11 − b22x33 − b33x22
−2b12x34 − 2b34x12 − 2b13x24 − 2b24x13 − 4b14x14. (29)

Each xi j takes all integer values within an interval, depending only on bi j , of length
at most 2Xi j/m. Hence, the inner sum in (28) factors into a product of geometric
sums. For each (i, j), let ci j denote the integer coefficient in front of each bi j in (29)
and let Ii j denote the closed interval [−2Xi j/m, 2Xi j/m]. Then we have

|SB(α;m, B0)|2 �
∏

(i, j)

∑

bi j∈Ii j∩Z
min

{
Xi j

m
, ||αci jmbi j ||−1

}
,

where || · || is the distance to the nearest integer function.
Recalling that α = a

r + θ with |θ | ≤ 1
rr2

, we have

|θci jmbi j | ≤ 4mbi j
rr2

≤ 8Xi j

rr2
≤ 8c1X1+2δ

rr2
≤ 1

2r

by taking r2 ≥ 16c1X1+2δ . So we have the lower bound

||αci jmbi j || ≥ 1

2
||a
r
mci j bi j ||.

Write ri j = r/ gcd(r ,mci j ) ≥ r/(4m) and ai j = amci j/ gcd(r ,mci j ). We have

|SB(α;m, B0)|2 �
∏

(i, j)

∑

bi j∈Ii j∩Z
min

{
Xi j

m
, ||ai j

ri j
bi j ||−1

}
.

Now if ri j > 4Xi j/m, then

∑

bi j∈Ii j∩Z
min

{
Xi j

m
, ||ai j

ri j
bi j ||−1

}
≤ Xi j

m
+2

�2Xi j /m�∑


=1

ri j



� Xi j

m
+ri j log Xi j . (30)
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If ri j ≤ 4Xi j/m, then

∑

bi j∈Ii j∩Z
min

{
Xi j

m
, ||ai j

ri j
bi j ||−1

}
� Xi j

m

4Xi j/m

ri j
+ 4Xi j/m

ri j

�ri j /2�∑


=1

ri j



� X2
i j

rm
+ Xi j

m
log Xi j . (31)

Combining (30) and (31) then gives

∑

bi j∈Ii j∩Z
min

{
Xi j

m
, ||ai j

ri j
bi j ||−1

}
� X2(1+2δ)

rm
+ r2 log X .

Raising it to the power 9 and taking square root give

SB(α;m, B0) � X9(1+2δ)

r9/2m9/2 + r9/22 log9/2 X .

Finally, integrating over the minor arc gives

∫

m
SB(α;m, B0) �

∑

r1<r≤r2

∑

0≤a<r
(a,r)=1

∫

|θ |≤ 1
rr2

(
X9(1+2δ)

r9/2m9/2 + r9/22 log9/2 X

)
dθ

�
∑

r1<r≤r2

(
X9(1+2δ)

r2r9/2m9/2 + r7/22 log9/2 X

)

� X9(1+2δ)

r2r
7/2
1 m9/2

+ r9/22 log9/2 X , (32)

where the last bound follows from r2 � X1+2δ.

4.1.3 Proof of Theorem 4.2

We are ready to prove Theorem 9. By (27) and (32), we have

Nq(B;m, B0) = Sm(q)S∞(B; q)

+O

(
X7

r5/21 m8
+ r1r

7/2
2

m9/2 + r21 X
8(1+2δ)

r2m8 + X9(1+2δ)

r2r
7/2
1 m9/2

+ r9/22 log9/2 X

)
,

where Sm(q) is defined in (22). Take

r1 = X
2
11 (1+2δ)m

7
11 , r2 = X1.522(1+2δ)

m1.223 log X
.
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Sincem � X1/3 and δ < 0.01, we see that r1m � X1−2δ and X1+2δ � r2 � X2.
With this choice of r1 and r2, we have

Nq(B;m, B0) = Sm(q)S∞(B; q) + O

(
X6.85(1+2δ)

m5.5
log X

)
.

Finally, since Cq is multiplicative (as easily verified), the singular series Sm(q)

defined in (22) equals

Sm(q) = 1

m8

⎛

⎝
∏

p|m
S(q; p)−1

⎞

⎠S(q).

This completes the proof of Theorem 9.

4.2 Proof of Theorem 4.1 using the Selberg sieve

For any prime p, we say an element B ∈ V (Fp) (or W (Fp)) is Fp-reducible if either
�(B) = 0 ∈ Fp or �(B) �= 0 and B is Fp-distinguished in the sense of Section 2.1.
We begin by proving that any B ∈ V (Z) that is Q-distinguished is Fp-reducible for
every prime p. For any prime p, let αp : V (Z) → V (Fp) and βp : Z4 → F4

p denote
the reduction-mod-p maps.

Lemma 5 Suppose B ∈ V (Z) isQ-distinguished. Let p be a prime such that p � �(B).
Then αp(B) is Fp-distinguished.

Proof Since B is Q-distinguished, there exist linearly independent vectors v,w ∈ Q4

satisfying (5); namely

vt A0v = vt Bv = wt A0w = vt A0w = vt Bw = 0.

By scaling v and w, we may assume that v,w ∈ Z4 and βp(v), βp(w) �= 0.
If βp(v), βp(w) are linearly independent over Fp, then αp(B) is Fp-distinguished
since the vectors βp(v), βp(w) satisfy (5) and �(αp(B)) �= 0 since p � �(B). If
βp(v), βp(w) are linearly dependent over Fp, then there exists a1 ∈ {0, 1, . . . , p −
1} and w1 ∈ Z4 such that w = a1v + pw1. Note that v,w1 also satisfy (5). If
βp(v), βp(w1) are linearly independent over Fp, then we are done. Otherwise, there
exists a2 ∈ {0, 1, . . . , p − 1} and w2 ∈ Z4 such that w1 = a2v + pw2. Note now
w = (a1 + pa2)v + p2w2. We may now repeat this process. If it terminates at some
v,wn ∈ Z4 with βp(v), βp(wn) linearly independent over Fp, then we are done. If it
does not terminate, then there exists a sequence a1, a2, . . . ∈ {0, 1, . . . , p − 1} such
that for any n ≥ 1,w−(a1+ pa2+· · ·+ pn−1an)v ∈ pnZ4. This implies that v andw

are linearly dependent over Zp and so also over Qp, which contradicts the assumption
that they are linearly independent over Q since v,w ∈ Q4. ��

We now apply the Selberg sieve ( [16, Theorem 6.4]) to prove Theorem 8. We
follow the setup as in [17, Sect. 3]. Let z be a number less than X1/3. Let P be the
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product of all primes p with N ≤ p < z where N is some large absolute constant to
be determined later. For each m | P , let am be the number of elements B ∈ B ∩ V (Z)

such that:

• q(B) = 0;
• for any prime p | P

m , B is Fp-reducible;
• for any prime p | m, B is not Fp-reducible.

For m � P , we set am = 0. Then, applying the Selberg sieve will give us the count
for

a1 =
∑

gcd(n,P)=1

an,

which is the number of elements B ∈ B ∩ V (Z) with q(B) = 0 and is Fp-reducible
for all primes p | P .

For any squarefree m | P , the expression
∑

n≡0 mod m

an

counts the number of elements B ∈ B ∩ V (Z) such that q(B) = 0 and B is not Fp-
reducible for any p | m. Recall that for any prime p, we defined dp in Proposition 3 for
the number of B0 ∈ W (Fp) with fB0 ∈ U (Fp) and are not Fp-distinguished, which
is the same as the number of B0 ∈ V (Fp) with q(B0) = 0 and are not Fp-reducible.
The condition that �(B0) �= 0 in Fp also implies that B0 is nonzero modulo p. Thus,
by Proposition 3 and Theorem 9, we have

∑

n≡0 mod m

an = 1

m8

∏

p|m

(
dpS(q; p)−1

)
S(q)S∞(B; q) + O

(
X6.85(1+2δ)m2.5 log X

)

=
⎛

⎝
∏

p|m

dpS(q; p)−1

p8

⎞

⎠S(q)S∞(B; q) + O
(
X6.85(1+2δ)m2.5 log X

)
.

We set g(m) =
∏

p|m
g(p) and um = O

(
X6.85(1+2δ)m2.5 log X

)
for each squarefree

m | P , where

g(p) = dpS(q; p)−1

p8

for each prime p | P . By (23), we have

S(q; p) = 1 + O
( ∑


≥1

p−7
/2
)

= 1 + O(p−7/2).
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Recall from Proposition 3, we have the bound

1

16
+ O(p−1) ≤ dp

p8
≤ 3

4
+ O(p−1).

Hence, by taking N large enough, we have the bound
1

32
≤ g(p) ≤ 7

8
for p ≥ N .

Now, set h(m) =
∏

p|m

g(p)

1 − g(p)
for all squarefree m | P . Let D > 1 with D < z

be a real number to be picked later and set

H =
∑

m<
√
D

m|P

h(m).

Then, by [16, Theorem 6.4], we have

a1 =
∑

gcd(n,P)=1

an ≤ H−1S(q)S∞(B; q) + R,

where

|R| ≤
∑

m<
√
D

m|P

τ3(m)um �ε X6.85(1+2δ) log X
∑

m<
√
D

m2.5+ε

�ε X6.85(1+2δ)D1.75+ε log X

for any ε > 0.
Meanwhile, for p prime, we have 1

31 ≤ h(p) ≤ 8 and so for any ε > 0,

H � π(
√
D) �ε D0.5−ε .

Thus, we get

N dist
q (B) ≤ a1 �ε X7D−0.5+ε + X6.85(1+2δ)D1.75+ε log X .

Taking D = X (1/15)−(54.8/9)δ gives the desired bound (14).

5 Proof of Theorem 1, Theorem 3 and Theorem 4

We prove Theorem 4 first. By the paragraph following Theorem 4, it is enough to
consider the case α = 256 and β = −27.We note that for (a, b) ∈ Z2 with H(a, b) <

X , there are at most X ε integers m whose square divides �(a, b). Hence, it is enough
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to prove:

X ε · #
⋃

m>M
m squarefree

{(a, b) ∈ Z2 : H(a, b) < X ,m2 | �(a, b)} �ε

X7+ε

√
M

+ X6.992+ε .

Moreover, if m2 | �(a, b), then we can factor m = m1m2 where m1 is the product
of all prime factors p ofm such that p2 strongly divides�(a, b), andm2 is the product
of all prime factors p of m such that p2 weakly divides �(a, b). Since at least one of
m1 or m2 is at least m′ for some squarefree integer m′ ≥ √

m, we have

⋃

m>M
m squarefree

{(a, b) ∈ Z2 : H(a, b) < X ,m2 | �(a, b)}

⊂
⋃

m′>
√
M

m′ squarefree

W(1)
m′ ∪

⋃

m′>
√
M

m′ squarefree

W(2)
m′ .

Theorem 4 now follows from Theorem 5.
Next, we prove Theorem 1 using an inclusion-exclusion sieve. We have

N (X;α, β) =
∑

m

μ(m)Nm(X;α, β).

By covering the box (−X3, X3) × (−X4, X4) by (2X3m−2 + O(1))(2X4m−2 +
O(1)) boxes of size m2 ×m2, each of which contains ρα,β(m2) integral points (a, b)
such that m2 | βa4 + αb3, we have the following individual count

Nm(X;α, β) = 4X7m−4ρα,β(m2) + O(X4m−2ρα,β(m2)) + O(ρα,β(m2)).

Since ρα,β(m2) = O(m2), we sum over m < Xη for some η > 0 to get

∑

m<Xη

μ(m)Nm(X;α, β)

= 4X7
∑

m<Xη

μ(m)
ρα,β(m2)

m4 + O(X4+η) + O(X1+3η)

= C(α, β) · 4X7 + O(X7−η) + O(X4+η) + O(X1+3η). (33)

We take η = 0.1 and apply Theorem 4 with M = X0.1 to get

N (X;α, β) = C(α, β) · 4X7 + O(X6.9) + Oε(X
6.9+ε + X6.992+ε).

The proof of Theorem 1 is now complete.
Finally, we prove Theorem 3. By Proposition 2, we see that 100% of the quartics

of the form x4 + ax + b are irreducible. For any prime p and any irreducible monic
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polynomial f (x) ∈ Z[x], if Z[x]/( f (x)) is not maximal at p, then p2 | �( f ). Hence
the tail estimate for the number of monic quartics of the form x4 + ax + b whose
discirminant is divisible by the square of a large prime implies the tail estimate for the
number ofmonic quartics f (x) = x4+ax+b such thatZ[x]/( f (x)) is not maximal at
a large prime. Therefore, it remains to compute the p-adic density for monic quartics
f (x) = x4 + ax + b such that Z[x]/( f (x)) is maximal at p.
Fix a prime p. For any g ∈ Z[x], let ḡ denote its reduction inFp[x]. By [2, Corollary

3.2], Z[x]/( f (x)) is not maximal at p if and only if there exists a monic polynomial
u ∈ Z[x] such that ū ∈ Fp[x] is irreducible and f ∈ (p2, pu, u2) ⊂ Z[x]. Suppose
f (x) = x4 + ax + b ∈ Z[x] and u(x) is monic with f ∈ (p2, pu, u2). Then ū2 | f̄ .
Hence deg(u) ≤ 2. Suppose u(x) = x2 + cx + d ∈ Z[x] has degree 2. Then

f (x) − u2 = 2cx3 + (2d + c2)x2 + (2cd − a)x + (d2 − b) ∈ pZ[x].

If p �= 2, then we have p | c and p | d, in which case ū = x2 is not irreducible.
If p = 2, then from the x2-coefficient, we have 2 | c, in which case ū = x2 + d̄ is
also not irreducible. Hence u(x) = x − r , for some r ∈ Z, is linear. We now have
f (x + r) ∈ (p2, px, x2), which is equivalent to p | f ′(r) and p2 | f (r). Note this
implies p2 | f (r ′) for any r ′ ≡ r (mod p). We may then take r ∈ {0, 1, . . . , p − 1}.
From p | f ′(r), we get a ≡ −4r3 (mod p). Once we fix one of the p choices of
a ∈ {0, 1, . . . , p2 − 1}, from p2 | f (r), we get b ≡ −r4 − ar (mod p2). Thus there
are p pairs (a, b) associated to each r ∈ {0, 1, . . . , p − 1}.

Suppose now a pair (a, b) arises from two distinct r1, r2 ∈ {0, 1, . . . , p− 1}. Then
r1, r2 are both double roots of f̄ (x) and so we have f̄ (x) = (x − r1)2(x − r2)2 =
(x2−(r1+r2)x+r1r2)2. Since f (x) has vanishing x3- and x2-coefficients, the same is
true for f̄ (x).When p �= 2, this is possible only if (x−r1)(x−r2) = x2 which implies
that r1 ≡ r2 ≡ 0 (mod p) and so r1 = r2. When p = 2, this implies r1 + r2 ≡ 0
(mod 2) and thus r1 = r2. Both cases yield a contradiction.

As a result, there are p2 pairs (a, b) ∈ {0, 1, . . . , p2 − 1}2 such that Z[x]/(x4 +
ax + b) is not maximal at p. We therefore obtain the desired 1 − p−2 for the p-adic
density of monic quartics f (x) = x4 + ax + b such that Z[x]/( f (x)) is maximal at
p.
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