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Abstract
It has been recently established in David and Mayboroda (Approximation of green
functions and domains with uniformly rectifiable boundaries of all dimensions.
arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost
affine in the weak sense, and moreover, in some scenarios such Green function esti-
mates are equivalent to the uniform rectifiability of a set. The present paper tackles
a strong analogue of these results, starting with the “flagship" degenerate opera-
tors on sets with lower dimensional boundaries. We consider the elliptic operators
Lβ,γ = − div Dd+1+γ−n∇ associated to a domain � ⊂ R

n with a uniformly recti-
fiable boundary � of dimension d < n − 1, the now usual distance to the boundary
D = Dβ given by Dβ(X)−β = ∫

�
|X − y|−d−βdσ(y) for X ∈ �, where β > 0

and γ ∈ (−1, 1). In this paper we show that the Green function G for Lβ,γ , with
pole at infinity, is well approximated by multiples of D1−γ , in the sense that the
function

∣
∣D∇(

ln
( G
D1−γ

))∣∣2 satisfies a Carleson measure estimate on�. We underline
that the strong and the weak results are different in nature and, of course, at the level
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of the proofs: the latter extensively used compactness arguments, while the present
paper relies on some intricate integration by parts and the properties of the “magical"
distance function from David et al. (Duke Math J, to appear).

Mathematics Subject Classification 42B37 · 31B25 · 35J25 · 35J70

Résumé
Dans David and Mayboroda (Approximation of green functions and domains with
uniformly rectifiable boundaries of all dimensions. arXiv:2010.09793) il est démontré
que pour les domaines à bord uniformément rectifiable, la fonction de Green vérifie
des estimations faibles de bonne approximation par des fonctions affines, avec une
réciproque vraie dans certains cas encourageants. Ici on part de la rectifiabilité uni-
forme et on démontre les estimations fortes naturelles d’approximation de la fonction
de Green, et aussi des solutions, par des applications affines (ou, de manière équiv-
alente, des multiples de la distance au bord adoucie). L’étude inclut les analogues
naturels du Laplacien dans les domaine dont la frontière est de grande co-dimension.
Onconsidère les opérateurs elliptiques Lβ,γ = div Dd+1+γ−n∇ associés à undomaine
� ⊂ R

n dont le bord � est Ahlfors régulier et uniformément rectifiable de dimen-
sion d < n − 1 et à la distance au bord maintenant usuelle D = Dβ définie par
Dβ(X)−β = ∫

�
|X − y|−d−βdσ(y) pour X ∈ �, où β > 0 et γ ∈ (−1, 1) sont des

paramètres et σ unemesure Ahlfors régulière sur�. Les auteurs ont montré précédem-
ment que la mesure elliptique associée à Lβ,γ est bien définie et est mutuellement
absolument continue par rapport à σ , avec un poids de A∞. Ici on démontre que la
fonction de Green G avec pôle à l’infini associée à Lβ,γ est bien approchée par les

multiples de D, au sens où la fonction
∣
∣D∇(

ln
( G
D1−γ

))∣
∣2 vérifie une condition de

Carleson sur �. Ces nouvelles estimations sont différentes en nature. Les estimations
de David and Mayboroda (Approximation of green functions and domains with uni-
formly rectifiable boundaries of all dimensions. arXiv:2010.09793) reposaient sur des
arguments de compacité; ici on a besoin d’estimations plus précises, obtenues par
intégration par parties et en utilisant les propriétés algébriques de la fonction Dα dans
le cas“magique” de David et al. (Duke Math J, to appear).
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1 Introduction

Rectifiable sets are an important notion in geometric measure theory and the calculus
of variation, in particular because the sets that minimize an energy often enter this
category. In the past decades, many mathematicians worked on finding characteriza-
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tions of rectifiability by properties apparently unrelated to geometric measure theory.
In the early 90’s, the quantifiable version—uniform rectifiability—was introduced in
[7, 8] along with many characterizations in terms of geometry (such as big pieces of
Lipschitz images, or using Peter Jones’ β numbers) and in terms of singular integrals.
Later, it was observed that uniformly rectifiable sets may be the right extension of Lip-
schitz graphs for elliptic boundary value problems, that is, if � ⊂ R

n is an open set
with uniformly rectifiable boundary and � provides enough access its the boundary,
then we can control the oscillations of the harmonic functions in �. It is even more
noteworthy that a criterion for rectifiability can be obtained using harmonic functions.
Indeed, Hofmann, Martell, and Uriarte-Tuero proved in [19, 21] that under some con-
ditions regarding the access to the boundary, ∂� is uniformly rectifiable if and only if
the harmonic measure on ∂� is absolutely continuous in a quantitative way—called
A∞—with respect to the surface measure (see also [2]). The optimal topological con-
ditions in this regard have been identified in [1]. These were accompanied but a rich
array of beautiful and difficult alternative characterizations, exploring Carleson esti-
mates for the solutions, behavior of the singular integral operators, extensions to more
general elliptic operators, to mention just a few. Here we do not aim to provide a
survey of the related literature; the reader can consult, e.g., [12] for a more detailed
presentation of the literature.

A weakness of the above theory is the fact that the harmonic measure on � only
makes sense when� ⊂ R

n is of dimension d > n−2, because lower dimensional sets
have probability zero to be hit by a Brownian motion. As a consequence, rectifiability,
a notion that exists for all integer dimensions, can only be characterized by means of
the harmonic measure for sets � ⊂ R

n of dimension d = n − 1. To overcome this
obstacle, the authors of the present article developed a theory of degenerate elliptic
operators. The idea was to define a ‘harmonic measure’ on a set � of dimension
d < n − 1 by replacing the Laplacian by an operator on � := R

n \ � in the form
L = − divw(x)∇, where w(x) goes to infinity at an appropriate rate when x is
approaching �, so that the corresponding ‘Brownian motion’ is attracted by � and
hits the boundary with probability one. The articles [10, 13] set the elliptic theory for
this. In particular an appropriate elliptic measure is constructed for a large class of sets
of any dimension d < n (or even mixed dimensions) and operators L as above, with
the usual nice properties such as the non-degeneracy and doubling properties for the
harmonic measure, the Harnack inequality and the comparison principle for solutions,
and estimates for the change of poles.

Then we tested the relevancy of our new elliptic measure. Dahlberg proved in [6]
that the classical harmonic measure is absolutely continuous with respect to the sur-
face measure, and even A∞, whenever the boundary is Lipschitz. In [11] we assumed
that � is the graph of a Lipschitz function ϕ : R

d → R
n−d with small Lipschitz

constant, and proved the same A∞ property for correctly chosen operators. Yet we
had to be careful about the operator we picked because as showed in [12], based on
counterexamples from [3, 23], not every operator L will work. We wanted an explicit
operator, which could be constructed by a single method for any set of dimension d.
We set our choice on

Lβ,γ := − div(Dβ)d+1+γ−n∇, (1.1)
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where β > 0, γ ∈ (−1, 1), and Dβ is defined on � as

Dβ(X) :=
(∫

�

|X − y|−d−βdσ(y)

)−1/β

. (1.2)

The quantity Dβ is equivalent to the distance to the boundary, i.e., there exists C > 0
such that

C−1 dist(X , �) ≤ Dβ ≤ C dist(X , �) for X ∈ �, (1.3)

but the advantage of Dβ over dist(., �) is to always be smooth in a certain quantitative
way.

When γ = 0, the level of the degeneracy Dd+1−n
β in the coefficients of the operator

Lβ,0 := − div(Dβ)d+1−n∇ makes it a perfect analogue of the Laplacian for the
sets with a d-dimensional boundary when d < n − 1. In particular, we proved that
the harmonic measure associated to Lβ,γ is A∞ with respect to the d-dimensional
Hausdorff measure. Moreover, recently, in two distinct papers [14, 17] we extended
this result to the more general case where � ⊂ R

n is uniformly rectifiable. Studying
these operators and the dimension of the support of the corresponding ellipticmeasure,
we were naturally drawn to introducing a parameter γ which seemingly unbalances
the situation. Besides, for d = n − 1, the operator Lβ,γ := − div(Dβ)γ ∇ is the
celebrated Caffarelli-Silvester extension of the fractional Laplacian operator (cf. [4]).
However, we were surprised to realize that the argument in [11] extends to all γ ∈
(−1, 1) rather simply, and the generalization to uniformly rectifiable set is stated for
any γ ∈ (−1, 1) in [17]. The proof in [14] relies on geometric arguments, such as
corona decompositions and the construction of sawtooth domains, and an extrapolation
argument, which allow one to reduce to the case of small Lipschitz graphs. The proof
of [17] is substantially simpler and more direct, and is based on a trick unique to the
case where the dimension of � is at most n − 2.

Theorem 1.4 [14, 17] Let� ⊂ R
n be a d-Ahlfors regular uniformly rectifiable set with

d < n − 1, and let σ be an Ahlfors regular measure that satisfies (2.1). Take β > 0,
γ ∈ (−1, 1), define Lβ,γ as in (1.1), and construct the associated harmonic measure
ωX

β,γ as in Definition 2.20. Then ωX
β,γ is A∞-absolutely continuous with respect to σ .

This means that for every choice of ε ∈ (0, 1), there exists δ ∈ (0, 1), that depends
only on Cσ , C0, ε, n, d, β, and γ , such that for each choice of x ∈ �, r > 0, a Borel
set E ⊂ B(x, r) ∩ �, and a corkscrew point X = Ax,r as in (2.3),

σ(E)

σ (B(x, r) ∩ �)
< δ ⇒ ωX

�,L(E)

ωX
�,L(B(x, r) ∩ �)

< ε. (1.5)

It is known that in the present context where all our measures are doubling, the A∞
condition also implies that under the assumptions of (1.5),

ωX
�,L(E)

ωX
�,L(B(x, r) ∩ �)

< δ ⇒ σ(E)

σ (B(x, r) ∩ �)
< ε. (1.6)
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Observe that in the previous theorem, contrary to the case of co-dimension 1, i.e.
when d = n − 1, we don’t assume any topological condition. And that is perfectly
natural, since the domain � := R

n \ � has a lot of paths and ample access to the
boundary (see Lemmas 2.1 and 11.6 in [10]). The next big objective would be to
prove the reverse implication, meaning that if the harmonic measure on � is A∞ with
respect to the Hausdorff measure, then � is uniformly rectifiable. Unfortunately (and
surprisingly) this fails brutally when d +β = n + 2 (see [9]), and although we expect
this to be the only exception, the methods used to prove the converse in co-dimension
1 do not appear to be adaptable to the higher codimension case.

The purpose of the present paper is to provide different estimates on the harmonic
functions, which we hope will ultimately furnish one side of the desired criterion.
Indeed, as established in [15], some weak bounds on the Green function are equivalent
to the uniform rectifiability even in lower dimensional settings. The general idea is
that instead of trying to characterize rectifiable sets using the harmonic measure, we
would do so using the property that the Green function behaves like a distance to the
boundary. This is not a surprising idea, as the Green functions and harmonic measure
are deeply connected, and are both prominent in the analysis of the free boundary
problems, and the proof of the properties of the harmonic measure in [10, 13] heavily
relies on a comparison between the harmonic measure and Green functions. Yet, the
results we are about to prove are not known in the “classical" setting of domains with
an n − 1 dimensional boundary, except for a few simple situations and certainly not
in the generality of the uniformly rectifiable sets which we attack in this paper.

We will use the Green function with a pole at infinity, which is constructed in [9,
Definition 6.2, Lemma 6.5] with the following properties.

Proposition 1.7 [9] Let � ⊂ R
n be a d-Ahlfors regular uniformly rectifiable set with

d < n − 1. Take β > 0, γ ∈ (−1, 1), and construct Lβ,γ on � := R
n \ � as in (1.1).

There exists a continuous function G∞ = G∞
β,γ on R

n such that

(i) G∞ > 0 on �,
(ii) G∞ = 0 on �,
(iii) there exists a positive Borel measure ω∞ = ω∞

β,γ on � such that

∫

�

∇G∞ · ∇ϕ Dd+1−n+γ
β dx =

∫

�

ϕ(y)dω∞(y) for ϕ ∈ C∞
0 (Rn).

We call G∞ the Green function with pole at infinity, and G∞ is unique up to multipli-
cation by a scalar constant.

TheGreen functionwith pole at infinity for the Laplacian inRn+ = {(x, t) ∈ R
n−1×

(0,+∞)} is G∞(x, t) = t . The one for the operator − div |t |d+1−n in R
n \ R

d =
{(x, t) ∈ R

n × R
n−d , t 
= 0} is G∞(x, t) = |t |. There is a third case where G∞ can

be computed, which is when� is a d-Ahlfors regular set with d < n−2, andwe choose
the specific operator Ln−d−2,0; then one can easily compute that G∞ = Dn−d−2. In
[9] this is called the magic case. The rough idea of what follows is that, when γ = 0,
a good Green function at infinity should behave a bit like the distance to the boundary
�, or like Dβ which is its smooth substitute. When γ 
= 0, similar homogeneity
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considerations lead us to expect that in the good cases, G∞ will behave like D1−γ
β

instead. Here is our main result.

Theorem 1.8 Let � ⊂ R
n be a d-Ahlfors regular uniformly rectifiable set with d <

n − 1, and let σ be an Ahlfors regular measure on � that satisfies (2.1). For β > 0
and γ ∈ (−1, 1), let Lβ,γ be as in (1.1) and define G∞

β,γ as in Proposition 1.7. Then
for any α > 0, there exists C > 0 that depends only on Cσ , C0, α, β, γ , d, n such that
for any ball B := B(x, r) centered on �, one has

∫

B

∣
∣
∣
∣
∣
∇ ln

(
G∞

β,γ

D1−γ
α

)∣
∣
∣
∣
∣

2

Dd+2−n
α dX ≤ Cσ(B). (1.9)

Remarks:

• Remember that G∞
β,γ is only defined up to a constant. Yet, the above theorem

makes perfect sense, because the value of left-hand side of (1.9) does not change
when we replace G∞

β,γ by KG∞
β,γ , where K is a positive constant.

• Theorem 1.8 is just the application of Theorem 2.21 to the Green function at
infinity:we shall generalize the estimate of Theorem1.8 to a large class of solutions
that is interesting by itself. However, we decided to highlight the above statement,
which was our true purpose in our search for characterizations of rectifiability.

• Here we decided to use the same measure σ for the definitions of Lβ,γ and Dα ,
but a minor modification of the proof would allow us to take two different Ahlfors
regular measures σ and σ̃ to define Lβ,γ and and Dα .

• As we have pointed out above, these results are not known for d = n − 1 in the
generality of the uniformly rectifiable sets. In the half-space one can see somewhat
similar estimates in [16] and the bounds on the second derivatives of the Green
function for a special class of operators were, in disguise, obtained in [20]. How-
ever, it is not clear how to deduce from [20] a co-dimension 1 analogue of (1.9),
directly or using interpolation.

In the present paper we only show that good geometric properties (the uniform
rectifiability of�) imply precise approximation properties ofG∞ by Dα , and the proof
will rely heavily on the A∞ property of the harmonic measure and some intermediate
results in [17] concerning the uniform rectifiability of �. We do not address the issue
of the converse in this paper. Yet there are good reasons to believe that it may be easier
to prove than for the absolute continuity of the harmonic measure. In a parallel paper
[15], the authors study a less precise (weaker) approximation property of the Green
function, and show that in some cases (but where d > n − 2) it already implies the
uniform rectifiability of �, while in the case of the present paper it implies another
strange property of potentials defined on �. But we did not manage to prove that this
strange property is impossible to obtain when d + α 
= n + 2.

The reader should be aware that even thoughwe think of theGreen function estimate
(1.9) as a possible alternative to the A∞ absolute continuity of the harmonic measure
for the characterization of uniform rectifiability, we already know that in the general
context of elliptic operator in the form L = − div A∇, the A∞ absolute continuity
(1.5)—or (1.6)—is not equivalent to (1.9). A counterexample in R

n+, that can be
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extended to any codimensions using the construction (4.6) in [12], is given in the next
lines. Denote the running point in R

n+ as (x, r) ∈ R
n−1 × (0,+∞), and observe that

in this case Dα(x, r) = cαr . We set b(r) := 1/(2 + cos(r)) and we construct Lb :=
− div b(r)∇. By uniqueness of the Green function with pole at infinity (Proposition
1.7), we have

G∞(x, r) =
∫ r

0

ds

b(s)
= 2r + sin(r).

On one hand, r ≤ G∞(x, r) ≤ 3r for all (x, r) ∈ R
n+, and that is enough, by

using a comparison principle with the harmonic measure, to show that the harmonic
measure associated to L is equivalent to the surface measure onRn−1 (see for instance
Theorem 1.17 in [18] for details), hence it is A∞ absolutely continuous with respect
to the surface measure. On the other hand, we have

∣
∣
∣
∣∇ ln

(G∞
Dα

)∣
∣
∣
∣ =

∣
∣
∣
∣
∇G∞

G∞ − ∇Dα

Dα

∣
∣
∣
∣ =

∣
∣
∣
∣
2 + cos(r)

2r + sin(r)
− 1

r

∣
∣
∣
∣ ≥ 1

3r

∣
∣
∣
∣cos(r) − sin(r)

r

∣
∣
∣
∣ .

That is, for any ball B(x, R) ⊂ R
n centered on the boundary R

n−1, we have

∫

B(x,R)

∣
∣
∣
∣∇ ln

(G∞
Dα

)∣
∣
∣
∣

2
Dα dX ≥ cn R

n−1
∫ R/2

0

∣
∣
∣
∣cos(r) − sin(r)

r

∣
∣
∣
∣

2 dr

r
≥ c′n Rn−1 ln(R),

when R is large (e.g. R ≥ 100), and where cn, c′
n are constants that depends only on n.

As a consequence, (1.9) fails for the elliptic operator Lb. This highlights the difference
betweenGreen function and harmonicmeasure estimates for general elliptic operators.

Coming back to the Green function, the reader might wonder about the comparison
with the results in [15]. It is not easy to describe the results in [15] avoiding technicali-
ties, but roughly speaking, we only proved there the weak statement that the set where
the Green function behaves like a distance to the boundary is a Carleson-prevalent set.
This carries the structural information saying that there are a lot of points and a lot
of scales where the desired estimate is true, but it carries no norm control. Respec-
tively, the methods heavily rely on compactness arguments. In the present paper the
arguments and the results are completely different, aiming at a strong norm control
in the form of (1.9) and using a new idea that the “magical" distance function identi-
fied in [9], being an explicit solution to a certain PDE, can be effectively used in the
integration-by-parts arguments (cf. [17]). A good comparison is a familiar to many
experts integration by parts with the weight t which disappears when the Laplacian
hits t , although the details in our case are necessarily considerably more involved.

In the next section, we shall give the definitions that we skipped up to now to lighten
the introduction, such as the definition of Ahlfors regular and uniformly rectifiable
sets. We also introduce the results from [17] which we will rely upon. The remainder
of the article will be devoted to the proof of our main result.

We shall use the notation A(x) � B(x) when A(x) ≤ CB(x) and C is a constant
whose dependence into the various parameters will be either recalled or obvious from
context. We also write A(x) ≈ B(x) when A(x) � B(x) and A(x) � B(x).
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2 Definitions and anterior results

For the rest of the article, we take � ⊂ R
n and � := R

n \ �. We assume that � is a
d-Ahlfors regular set with d < n − 1, that is � is closed and there exists a measure σ

supported on � and a constant Cσ ≥ 1 such that

C−1
σ rd ≤ σ(B(x, r)) ≤ Cσ r

d for x ∈ �, r > 0. (2.1)

It is known that if the above property (2.1) is true for some measure σ , then it is also
true when σ is replaced byHd |�—the d-dimensional Hausdorff measure restricted to
�.

The Ahlfors regularity of � and the low dimension d < n − 1 are sufficient condi-
tions to obtain the aforementioned equivalence (1.3). Indeed, Lemma 5.1 in [11] gives
us that

C−1 dist(X , �) ≤ Dβ ≤ C dist(X , �) for X ∈ �, (2.2)

where the constant C > 0 above depends only on β > 0, Cσ and n − d > 1.
Moreover, Lemma 11.6 in [10] entails the existence of a constant C that depends

only on Cσ and n − d > 1 such that for any x ∈ � and r > 0, we can find a point
Ax,r such that

C−1r ≤ dist(Ax,r , �) ≤ |Ax,r − x | ≤ Cr . (2.3)

In other words, when � is d-Ahlfors regular with d < n − 1, its complement auto-
matically satisfies the interior corkscrew condition.

We shall also assume that � is uniformly rectifiable. Equivalent definitions of uni-
form rectifiability were given in [7, 8], and the reader may use their preferred one, but
since we will only use the uniform rectifiability of � via results from [17] that rely
on the summability properties of Tolsa’s α-numbers, we will use these properties as a
definition of uniform rectifiability. We need some notation first.

We denote by  the set of affine d-dimensional planes in R
n . Each plane P ∈ 

is associated with a measure μP , which is the restriction to P of the d-dimensional
Hausdorff measure (i.e. μP is the Lebesgue measure on the plane). A flat measure is
a measure μ that can be written μ = cμP where c is a positive constant and P ∈ .
The set of flat measure is called F .

We need the following variant of Wasserstein distances to quantify the difference
between two measures, and then measure how far σ is from flat measures.

Definition 2.4 For x ∈ R
n and r > 0, denote by Lip(x, r) the set of 1-Lipschitz

functions f supported in B(x, r), that is the set of functions f : Rn → R such that
f (y) = 0 for y ∈ R

n \ B(x, r) and | f (y) − f (z)| ≤ |y − z| for y, z ∈ R
n . The

normalized Wasserstein distance in B(x,r) between two measures σ and μ is

distx,r (μ, σ ) = r−d−1 sup
f ∈Lip(x,r)

∣
∣
∣

∫
f dσ −

∫
f dμ

∣
∣
∣. (2.5)
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The distance to flat measures is then defined by

ασ (x, r) = inf
μ∈F

distx,r (μ, σ ). (2.6)

One can easily check that when (2.1) holds, the quantity ασ is uniformly bounded,
i.e. there exists a constantC that depends only on d, n, andCσ such that ασ (x, r) ≤ C
for x ∈ � and r > 0.

Let � be a d-Ahlfors regular set, and σ a measure that satisfies (2.1). Tolsa’s
characterization of uniform rectifiability, Theorem 1.2 in [25], is as follows1: � is
uniformly rectifiable if and only if there exists a constant C0 > 0 such that

∫ r

0

∫

�∩B(x,r)
|ασ (y, s)|2 dσ(y)

ds

s
≤ C0σ(B(x, r)) for x ∈ � and r > 0.

(2.7)

Here we will only use the fact that (2.7) holds when � is uniformly rectifiable.
That is, we will only use (2.7) and do not need to know other properties of uniformly
rectifiable sets. The property (2.7) will allow us to obtain additional estimates on the
smooth distance Dβ . The presentation of those boundswill be easier after the following
definition.

Definition 2.8 Let the function f be defined on�. We say that f satisfies the Carleson
measure condition when f ∈ L∞(�) and | f (X)|2 dist(X , �)d−ndX is a Carleson
measure, that is,

∫

B(x,r)
| f (X)|2 dist(X , �)d−ndX ≤ Cσ(B(x, r)) (2.9)

for x ∈ � and r > 0, with a constant C that does not depend on x or r .
Thus this is actually a quadratic Carleson condition. For short, we shall write f ∈

CM , or f ∈ CM(C) when we want to refer to the constant in (2.9).

Due to (2.2), we can replace dist(X , �)d−n with Dd−n
β (X), and even choose β to fit

our purposes; we shall often do this without additional explanations. We shall rely
strongly on Lemma 1.24 in [17], which says the following.

Lemma 2.10 Let � be uniformly rectifiable, so that (2.1) and (2.7) hold. Let β > 0.
Then there exist a scalar function b and a vector function V , both defined on �, such
that

∫

�

|X − y|−n(X − y)dσ(y) = (b∇Dβ + V)Dd+1−n
β for X ∈ � (2.11)

and a constant C1 that depends only on Cσ , C0, β, n, and d, such that

1 Tolsa’s characterization of rectifiability in [25] is given with dyadic cubes but one can easily check that
our bound (2.7) is equivalent to Tolsa’s one.
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C−1
1 ≤ b ≤ C1, (2.12)

Dβ∇b ∈ CM(C1), (2.13)

|V| ≤ C1, (2.14)

and

V ∈ CM(C1). (2.15)

Observe that the left-hand side of (2.11) is divergence free. So if we use (2.11) and
we write the divergence free condition in weak terms, we obtain

∫

�

(b∇Dβ + V) · ∇ϕ Dd+1−n
β dX = 0 for ϕ ∈ C∞

0 (�). (2.16)

We also need the following, which is Lemma 1.26 in [17].

Lemma 2.17 Let � be uniformly rectifiable, i.e., assume that (2.1) and (2.7) hold.
Let α, β > 0. Then Dα∇[Dβ/Dα] satisfies the Carleson measure condition with a
constant that depends only on Cσ , C0, α, β, n, and d.

We are now finished with the geometric background and turn to the elliptic theory.
Pick β > 0 and γ ∈ (−1, 1). We whall use the operator Lβ,γ constructed in (1.1);
hence Lβ,γ enters the scope of the theory developed in [13], and in particular there is
an elliptic measure ωX which we shall describe now.

We first need a Hilbert space Wγ , which is the same as in [13], Definition 3.1, but
is more easily defined as

Wγ = {
u ∈ L1

loc(R
n), ‖u‖γ :=

∫

�

|∇u(X)|2 dist(X , �)d+1+γ−ndX < +∞};
(2.18)

the equivalence between the two definition is proved as in [10, Lemma 3.3 and
Lemma 5.21].

Each f ∈ Wγ has a trace on �, which lies in a corresponding Sobolev space Hγ

(which is equal to H1/2(�) when γ = 0); then we denote byWγ,0 the set of functions
in Wγ with zero trace; Wγ,0 is also the completion of C∞

0 (�) under the norm ‖.‖γ .
And for any open set E ⊂ R

n , we write that u ∈ Wγ (E) [respectively, u ∈ Wγ,0(E)]
if uϕ ∈ Wγ [respectively, uϕ ∈ Wγ,0] for any ϕ ∈ C∞

0 (E).
Then there is a notion of weak solution for Lβ,γ = 0, which the reader may also

find in [13], such that in particular

∫

�

(∇u · ∇ϕ) Dd+1+γ−n
β = 0 for ϕ ∈ C∞

0 (�). (2.19)

when u is a weak solution for Lβ,γ = 0 (in�). Here and below, we remove the variable
X and the integration symbol dX from the notation when they are not entirely needed;
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unless otherwise specified, all our integrals on�will be against the Lebesgue measure
dX .

With all this notation, themain properties of our ellipticmeasuresωX are as follows.

Definition 2.20 For each X ∈ �, we can define a unique probability measure ωX :=
ωX

β,γ on � with the following properties. For any g ∈ C0(�) (i.e., continuous function
on � and compactly supported), the function ug defined as

ug(X) =
∫

�

g(y)dωX (y)

is a weak solution to Lβ,γ and, if in addition g lies in the Sobolev space Hγ , then
ug ∈ Wγ and the trace of ug is equal to g.

The space Hγ ∩C0(�) is dense inC0(�) (with the sup norm), so the last condition is
our way of solving a Dirichlet problem. We are now ready to state the general version
of our main theorem.

Theorem 2.21 Let � ⊂ R
n be a d-Ahlfors regular uniformly rectifiable set with d <

n − 1, and let σ be an Ahlfors regular measure on � that satisfies (2.1). For β > 0
and γ ∈ (−1, 1), define Lβ,γ as in (1.1). Then for any α > 0, there exists C > 0 that
depends only on Cσ , C0, α, β, γ , d, n, such that for any ball B := B(x, r) centered on
� and any non-negative non identically zero weak solution u of Lβ,γ u = 0 in �∩ 3B
which lies in Wγ,0(3B), one has

∫

B

∣
∣
∣
∣
∣
∇ ln

(
u

D1−γ
α

)∣
∣
∣
∣
∣

2

Dd+2−n
α ≤ Cσ(B). (2.22)

The proof of the Theorem will use the uniform rectifiability of � via Theorem 1.4
and Lemma 2.10. The Lemma will be used to estimate the left-hand side of (2.22) via
simple integration techniques, except for one more complicated term in the form

∫ ∣
∣
∣
∣
∣
∇ ln

(
u

D1−γ
α

)∣
∣
∣
∣
∣
|∇φB,ε | Dd+1−n

α ,

where φB,ε is a well chosen cut off function, which is related to the integral of the
logarithm of the Poisson kernel and that will be estimated using Theorem 1.4, that is,
the A∞ absolute continuity of the harmonic measure.

3 Proof of Theorem 2.21

Let us recall

Lemma 3.1 Let� ⊂ R
n be a d-Ahlfors regular uniformly rectifiable setwith d < n−2,

and let σ be an Ahlfors regular measure on � that satisfies (2.1). Define Lβ,γ as in
(1.1). Then there exist C > 0 and θ ∈ (0, 1], that depend only on Cσ , C0, β, γ , n and
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d, such that for each choice of x ∈ �, r > 0, any Borel set E ⊂ B(x, r) ∩ �, and any
corkscrew point X = Ax,r as in (2.3), one has

ωX
β,γ (E)

ωX
β,γ (B(x, r))

≤ C

(
σ(E)

σ (B(x, r))

)θ

(3.2)

and

σ(E)

σ (B(x, r))
≤ C

(
ωX

β,γ (E)

ωX
β,γ (B(x, r))

)θ

. (3.3)

Here and below, we assume implicitly that the constant C in (2.3) (the definition
of corkscrew points) is chosen to depend on Cσ , n and d only. If we allow a larger C
in (2.3), the constants in (3.2) and (3.3) depend on C as well.

Proof The conditions (3.2) and (3.3) are another characterizations of the fact that
ωX ∈ A∞(σ ), which is true by Theorem 1.4. The fact that (3.2)–(3.3) is implied by
(1.6) can be found in [22, Theorem 1.4.13] and its proof in [5, Lemma 5]. ��

For our next result, we want to establish that the logarithm of the Poisson kernel,

that is, ln( dωX

dσ
), is integrable. We want a quantitative version, and moreover, we shall

state this in a form that is more directly applicable when we need it (in the proof of
Proposition 3.8).

Lemma 3.4 Let �, σ , and Lβ,γ as in Lemma 3.1.
Take B := B(x, r), a ball centered on �, and X = Ax,r , a corkscrew point as in

(2.3). If {Qi }i∈I is a finitely overlapping collection of Borel subsets of B ∩ �, then

∑

i∈I

∣
∣
∣
∣
∣
ln

(
ωX

β,γ (Qi )

σ (Qi )

σ (B)

ωX
β,γ (B)

)∣
∣
∣
∣
∣
σ(Qi ) ≤ Cσ(B), (3.5)

where C depends only on Cσ , C0, β, γ , n, d, and the maximal number of overlaps in
the collection {Qi }i∈I .
Proof We introduce for k ∈ Z,

Ik :=
{

i ∈ I, 2k ≤ ωX
β,γ (Qi )

σ (Qi )

σ (B)

ωX
β,γ (B)

≤ 2k+1

}

.

Then we define

Ek :=
⋃

i∈Ik
Qi .
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Since {Qi } is finitely overlapping, we have∑
i∈Ik σ(Qi ) ≤ Cσ(Ek), and we can thus

write

∑

i∈I
ln

(
ωX

β,γ (Qi )

σ (Qi )

σ (B)

ωX
β,γ (B)

)

σ(Qi ) �
∑

k∈Z
(|k| + 1)σ (Ek). (3.6)

Yet, since {Qi }i∈Ik is a finitely overlapping covering of Ek ,

ωX
β,γ (Ek) ≈

∑

i∈Ik
ωX

β,γ (Qi ) ≈ 2k
ωX

β,γ (B)

σ (B)

∑

i∈Ik
σ(Qi ) ≈ 2k

ωX
β,γ (B)

σ (B)
σ (Ek),

which means that

ωX
β,γ (Ek)

σ (Ek)

σ (B)

ωX
β,γ (B)

≈ 2k . (3.7)

The use of (3.7) in (3.2) leads to

σ(Ek) � 2−k/(1−θ)σ (B)

while the use of (3.7) in (3.3) gives

σ(Ek) � 2kθ/(1−θ)σ (B).

We use the first of the last two estimate to bound σ(Ek) when k ≥ 0 and the second
one to bound σ(Ek) when k is negative. Combined with (3.6), we deduce

∑

i∈I
ln

(
ωX

β,γ (Qi )

σ (Qi )

σ (B)

ωX
β,γ (B)

)

σ(Qi ) �
∑

k≥0

(k + 1)2− k
1−θ σ (B) +

∑

k<0

(1 − k)2− kθ
1−θ σ (B)

� σ(B).

The lemma follows. ��
Proposition 3.8 Let � ⊂ R

n be a d-Ahlfors regular uniformly rectifiable set with
d < n − 2, and let σ be an Ahlfors regular measure that satisfies (2.1). Take β > 0
and γ ∈ (−1, 1), define Lβ,γ as in (1.1). Then for any ball B centered on � and
any non-negative non identically zero weak solution u to Lβ,γ u = 0 in 3B ∩ �, with
u ∈ Wγ,0(3B),

∫

B

∣
∣
∣
∣
∣
∇ ln

(
u

D1−γ
β

)∣
∣
∣
∣
∣

2

Dd+2−n
β ≤ Cσ(B). (3.9)

with a constant C > 0 that depends only on Cσ , C0, β, γ , d, and n.
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Observe that Proposition 3.8 is the special case of Theorem 2.21 where we take
α = β. We shall now check that conversely, Theorem 2.21 follows from Proposition
3.8 and Lemma 2.17.

Proof of Theorem 2.21 from Proposition 3.8 with the help of Lemma 2.17. Let α > 0.
Notice that

∣
∣
∣
∣
∣
∇ ln

(
u

D1−γ
α

)∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∇

[

ln

(
u

D1−γ
β

)

+ (1 − γ ) ln

(
Dβ

Dα

)]∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∇

[

ln

(
u

D1−γ
β

)]∣
∣
∣
∣
∣
+ (1 − γ )

Dα

Dβ

∣
∣
∣
∣∇

[
Dβ

Dα

]∣
∣
∣
∣ .

So Proposition 3.8, Lemma 2.17, and (2.2) easily implies (3.9). ��
Proof of Proposition 3.8. The proof of the lemma will be divided into 4 steps. The core
step is step 4, where we use the properties of the solutions. Step 3 treats in advance the
most complicated term that we met in Step 4. In this step, we will compare a solution
u to a Green function, then to the harmonic measure, and finally we use Lemma 3.4.
In Step 2, we construct the finitely overlapping covering {Qi }i∈I that will be needed
in order to invoke Lemma 3.4. At last, Step 1 introduces the cut-off function φB,ε used
to bound the left-hand side of (2.22) and shows that Dβ∇φB,ε satisfies the Carleson
measure condition.

Step 1: Introduction of the cut-off function φB,ε . Let B = B(x, r) be a ball in R
n

centered on the boundary � and ε > 0 small. The proof of Theorem 2.21 is a local
one and thus as usual will involve cut off functions. Take ψ ∈ C∞

0 (R) be such that
ψ ≡ 1 on [−1, 1], ψ is compactly supported in (−2, 2), 0 ≤ ψ ≤ 1, and |ψ ′| ≤ 2.
We define the function φB,ε on � by

φB,ε(X) := ψ

(
dist(X , B)

10 dist(X , �)

)

ψ

(
2 dist(X , B)

r

)

ψ

(
ε

dist(X , �)

)

. (3.10)

The support of φB,ε is thus contained in

E0 = {
X ∈ 2B, dist(X , B) ≤ 20 dist(X , �) and dist(X , �) ≥ ε/2

}
. (3.11)

The gradient of φB,ε comes from 3 regions; the first one (associated to the first cut-off)
is

{
X ∈ E0 , 10 dist(X , �) ≤ dist(X , B) ≤ 20 dist(X , �)

}

⊂ E1 := {
X ∈ 2B, 10 dist(X , �) ≤ dist(X , B) ≤ 20 dist(X , �)

}
,

(3.12)

the second one is

{
X ∈ E0 , r ≤ 2 dist(X , B) ≤ 2r

} ⊂ E2 := {
X ∈ 2B, r/40 ≤ dist(X , �) ≤ 2r

}

(3.13)

123



Green function estimates on complements of low-dimensional... 1811

because dist(X , �) ≤ 2r when X ∈ 2B and similarly dist(X , �) ≥ 1
20 dist(X , B) ≥

r
20 , and the third region is contained in

E3 := {
X ∈ 2B, ε/2 ≤ dist(X , �) ≤ ε

}
. (3.14)

Then it is easy to check that the gradient of φB,ε satisfies

|∇φB,ε | ≤ 100

dist(X , �)

[
1E1 + 1E2 + 1E3

]
. (3.15)

We claim that 1E1 , 1E2 , and 1E3 all satisfy the Carleson measure condition. That is,
we have

∫

B(y,s)
12
E j

dist(X , �)d−n ≤ Csd (3.16)

for 1 ≤ j ≤ 3, y ∈ �, and 0 < s < +∞. Of course the square can be removed, and it
will follows from (3.15), (3.16) (as soon as we prove it), and (2.2) that for any β > 0,
y ∈ � and s ∈ (0,+∞), we have

∫

B(y,s)
|Dβ∇φB,ε |Dd−n

β +
∫

B(y,s)
|Dβ∇φB,ε |2Dd−n

β ≤ Csd , (3.17)

where the constant C > 0 depends only on β, n, d, and Cσ .
We will prove the claim (3.16) in the end of the next Step.

Step 2: Construction of the collection {Qi }i∈I . We would like to have a collection
of boundary cubes Qi ⊂ � and the corresponding Whitney cubes Ri ⊂ � satisfying
rather usual nice properties: bounded overlap, control of the size and and the distance
to the boundary for Ri ’s, reasonable placement of the corkscrew points. There are
plenty of papers that present various versions of this construction, but here, in fact,
we need something simpler than usual as we do not need to control the cones or the
related Harnack chains. For these reasons, let us simply carry out the construction by
hands.

We need a family of Whitney cubesW , as constructed in [24]. We record the basic
properties ofW that we shall need. The collectionW is the family of maximal dyadic
cubes R ⊂ � such that 20R ⊂ �, different cubes Ri and R j , i 
= j , in W have
disjoint interiors (by maximality), their union covers � = R

n \ �, and for Q ∈ W

20Q ⊂ � but 60R ∩ � 
= ∅. (3.18)

Moreover, given R ∈ W , the number of cubes R̃ ∈ W such that

dist(R, �) ≈ dist(R̃, �) and dist(R, R̃) � dist(R, �) (3.19)

is uniformly bounded by a constant that depends only on the dimensions and the
constants involved in (3.19). Also, the cubes R̃ ∈ W such that 3R ∩ 3R̃, all satisfy
(3.19).
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We will use the cubes ofW to cover the region E1 ∪ E2 ∪ E3. Consider the subset
W0 ⊂ W of cubes R ∈ W thatmeet E1∪E2∪E3, and label these cubeswith a set I , so
thatW0 = {Ri ; i ∈ I }. We also want to associate a boundary ball Qi = �∩ B(xi , ri )
to each Ri , i ∈ I . This is a classical thing to do, but we shall do it by hand to get a
slightly better control. We shall choose the Qi so that

Qi ⊂ 3B ∩ � (3.20)

(we can do this and this will be helpful because we shall consider solutions in 3B),

{Qi }i∈I has bounded overlap, (3.21)

where the bound for the overlap depends only on Cσ , n, and d, and

ri ≈ dist(Ri , �) ≈ dist(Ri , xi ), (3.22)

also with constants depend only on Cσ , n, and d. As a consequence, we will be able
to use any point Xi ∈ Ri as a corkscrew point for the pair (xi ,Cri ) (see (2.3)).

So let us construct the Qi . First write I = I1 ∪ I2 ∪ I3, a disjoint union where
I2 = {

i ∈ I ; Ri ∩ E2 
= ∅}
, then I3 = {

i ∈ I \ I2 ; Ri ∩ E3 
= ∅}
, and finally

I1 = {
i ∈ I \ (I2 ∪ I3) ; Ri ∩ E1 
= ∅}

.
We start with i ∈ I2. This is the simplest case because E2 ⊂ 2B = B(x, 2r), and

dist(X , �) ≥ r/40 on E2. By definition of W , I2 has at most C elements (see near
(3.19)), and for each i ∈ I2 we take xi = x and ri = 3r (and hence Qi = � ∩ 3B);
the constraints (3.20), (3.21), (3.22) for I2 are easily checked.

Next consider i ∈ I3; thus Ri meets E3, where ε/2 ≤ dist(X , �) ≤ ε. Pick xi ∈ �

such that dist(xi , E3 ∩ Ri ) = dist(�, E3 ∩ Ri ), and take ri = ε. Then Qi ⊂ 3B if ε is
small enough, because E3 ⊂ 2B and diam(Ri ) ≈ dist(Ri , �) ≈ dist(E3 ∩ Ri , �) ≈
ε, (3.22) holds for the same reasons, and the Qi , i ∈ I3 have bounded overlap by the
property near (3.19).

Finally, for i ∈ I1, take Xi ∈ Ri ∩ E1 and xi ∈ � such that |Xi − xi | = dist(Ri ∩
E1, �), and set Qi = � ∩ B(xi , ri ), with ri = |Xi − xi |. Since Xi ∈ E1, the definition
(3.12) yields

dist(Xi , B) ≤ 20 dist(X , �) = 20|Xi − xi | ≤ 2 dist(Xi , B) ≤ 2r , (3.23)

and in particular xi ∈ 5
2 B. Also, Xi /∈ E2 (because i /∈ I2), so ri = dist(Ri ∩E1, �) ≤

dist(Xi , �) ≤ r/40, and hence Qi ⊂ 3B, as needed for (3.20). The Whitney property
(3.22) holds essentially by definition (and because Ri is a Whitney cube), so we just
need to bound the overlap of the Qi .

Assume that Q j ∩ Qi 
= ∅ for two indices i, j ∈ I1, and let Xi , X j , ri , and r j be
as above. Let us first check that ri ≈ r j . By (3.23)

dist(xi , B) ≤ |Xi − xi | + dist(Xi , B) ≤ 21|Xi − xi | = 21ri
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and

dist(xi , B) ≥ dist(Xi , B) − |Xi − xi | ≤ 9|Xi − xi | = 9ri ,

which can be summarized as

9ri ≤ dist(xi , B) ≤ 21ri . (3.24)

Similarly,

9r j ≤ dist(x j , B) ≤ 21r j . (3.25)

We can assume without loss of generality that dist(x j , B) ≤ dist(xi , B), which,
together with (3.24)–(3.25), leads to 9r j ≤ 21ri . Moreover, since Qi ∩ Q j 
= ∅,

ri + r j ≥ |x j − xi | ≥ dist(xi , B) − dist(x j , B) ≥ 9ri − 21r j ,

hence 22r j ≥ 8ri . Recall that 9r j ≤ 21ri , so the two radii are equivalent. The bounded
overlap property follows, because |x j − xi | ≤ ri + r j when Qi ∩ Q j 
= ∅.

This completes our construction of Whitney cubes Ri and associated surface balls
Qi , with the properties (3.20)–(3.22) (notice that the overlap constant for the Qi , i ∈ I ,
is less than the sum of the overlap constants for the I j ).

With this at hand, let us prove (3.16). This is now quite easy as for any y ∈ � and
0 < s < +∞ we have

∫

B(y,s)
12
E1∪E2∪E3

dist(X , �)d−n

≤
∑

Ri : Ri∩B(y,s) 
=∅

∫

Ri
dist(X , �)d−n �

∑

Ri : Ri∩B(y,s) 
=∅
rdi � sd , (3.26)

using the bounded overlap property (3.21).

Step 3: Estimates for the integral S. Take u ∈ Wγ,0(3B), a weak solution to
Lβ,γ u = 0 in 3B. Let X0 ∈ 2B be a corkscrew point for the boundary ball 2B ∩ �,
and also choose another corkscrew point X1 ∈ �∩8B \4B, so that dist(X0, �) ≥ cr
and dist(X1, �) ≥ cr for a small constant c that depends only on Cσ , d, and n. In this
Step 3, we prove that

S :=
∫

E1∪E2∪E3

∣
∣
∣
∣
∣
ln

(
u

D1−γ
β

D1−γ
β (X0)

u(X0)

)∣
∣
∣
∣
∣
Dd−n

β ≤ Crd , (3.27)

where C depends only on Cσ , C0, β, γ , n and d.
We shall use the comparison principle to compare u to the Green function, and

then estimate the Green function in terms of harmonic measure. We define the Green
function g on�×� as in [13, Section 11]. The precise definition is not relevant for the
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present proof, and the properties that we care about are the fact that X → g(X , X1)

lies in Wγ,0(3B) and is a solution to Lβ,γ u = 0 in 3B, and that g(X ,Y ) = g(Y , X)

(which is true because the operator Lβ,γ is selfadjoint). Theorem 15.64 in [13] (the
comparison theorem) yields that

u(X)

u(X0)
≈ g(X , X1)

g(X0, X1)
for X ∈ 2B, (3.28)

with constants that depend only on Cσ , C0, n, d, β and γ . Actually, Theorem 15.64
in [13] requires the solutions (in our case u and g(., X1)) to be solutions in a larger
ball 2K B ∩ �, and not in only 3B ∩ �. This condition is only needed because [13]
also allows sets � of codimension 1 or less, and then we need to ensure that we can
connect every component of 2B ∩ � by Harnack chains that stays in 2K B. Here �

is of dimension d < n − 1, so 2B ∩ � is very well connected in the first place (see
Lemma 2.1 in [10]) , and assuming that u and g(., X1) are solutions in 3B is enough.
Using the fact that g(X ,Y ) is symmetric, we deduce that

u(X)

u(X0)
≈ g(X1, X)

g(X1, X0)
for X ∈ 2B. (3.29)

Recall that X0 is a corkscrew point associated to 2B and that if X ∈ Ri , then
dist(X , �) ≥ C−1ri and |X − xi | ≤ Cri by (3.22), so X can be used as a corkscrew
point for the boundary ball Qi . As a consequence, Lemma 15.28 in [13], (where
here m(B ∩ �) is the mass of B for the measure dist(X , �)d+1+γ−ndX on �, with
γ ∈ (−1, 1), so m(B ∩ �) ≈ rd+1+γ ; see the discussion in Section 3.2 of [13]), and
the doubling property of harmonic measure (Lemma 15.43 of [13]) give that

g(X1, X0) ≈ dist(X0, �)1−d−γ ωX1(3B)

and for each i ∈ I

g(X1, X) ≈ dist(X , �)1−d−γ ωX1(Qi ) for X ∈ Ri ,

where the constants depend only onCσ ,C0, n, d, β and γ . Using the equivalence (2.2)
and the Ahlfors regularity of σ , we deduce that

g(X1, X0) ≈ Dβ(X0)
1−γ ωX1(3B)

σ (3B)
(3.30)

and for each i ∈ I ,

g(X1, X) ≈ Dβ(X)1−γ ωX1(Qi )

σ (Qi )
for X ∈ Ri . (3.31)
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We gather (3.29), (3.30), and (3.31) to obtain that, for every i ∈ I and every X ∈ Ri ,

u(X)

D1−γ
β (X)

D1−γ
β (X0)

u(X0)
≈ ωX1(Qi )

σ (Qi )

σ (3B)

ωX1(3B)
, (3.32)

where the constants depend only on Cσ , C0, n, d, β and γ . This immediately implies
that for i ∈ I and X ∈ Ri ,

∣
∣
∣
∣
∣
ln

(
u(X)

D1−γ
β (X)

D1−γ
β (X0)

u(X0)

)∣
∣
∣
∣
∣
≤ C +

∣
∣
∣
∣ln

(
ωX1(Qi )

σ (Qi )

σ (3B)

ωX1(3B)

)∣
∣
∣
∣

and then

S ≤
∑

i∈I

∫

Ri

∣
∣
∣
∣
∣
ln

(
u

D1−γ
β

D1−γ
β (X0)

u(X0)

)∣
∣
∣
∣
∣
Dd−n

β

≤
∑

i∈I

[

C +
∣
∣
∣
∣ln

(
ωX1(Qi )

σ (Qi )

σ (3B)

ωX1(3B)

)∣
∣
∣
∣

] ∫

Ri
Dd−n

β .

(3.33)

By(2.2) and the fact that Ri ∈ W is a Whitney cube with the property (3.22) (by
construction), we have Dβ ≈ ri on Ri and |Ri | � rni . Hence

∫

Ri
Dd−n

β � rdi ≈ σ(Qi )

by (2.1). Using this observation in (3.33), we infer that

S ≤
∑

i∈I

[

C +
∣
∣
∣
∣ln

(
ωX1(Qi )

σ (Qi )

σ (3B)

ωX1(3B)

)∣
∣
∣
∣

]

σ(Qi )

= C
∑

i∈I
σ(Qi ) +

∑

i∈I

∣
∣
∣
∣ln

(
ωX1(Qi )

σ (Qi )

σ (3B)

ωX1(3B)

)∣
∣
∣
∣ σ(Qi ).

The first term of the right-hand side is bounded by Cσ(3B) since the Qi , i ∈ I , are
contained in � ∩ 3B (by (3.20)) and have bounded overlap (by (3.21)). The second
term is also less than Cσ(3B), by Lemma 3.4. We conclude that

S � σ(3B) � rd

by (2.1). The claim 3.27 follows.

Step 4: Core of the proof. Let us turn to the main and last step of the proof. Set

T :=
∫

�

∣
∣
∣
∣∇ ln

( u

D1−γ
β

)∣
∣
∣
∣

2

φ2
B,εD

d+2−n
β . (3.34)
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We aim to prove that

T ≤ Crd + Crd/2T 1/2, (3.35)

where C depends only on Cσ , C0, β, γ , n and d. The solution u and the smooth
distance Dβ are uniformly bounded from above and from below by a positive constant
on the support of the cut-off function φB,ε . Thanks to this fact, the quantities of both
sides of (3.35) are finite, and (3.35) self-improves into

∫

�

∣
∣
∣∇ ln

( u

D1−γ
β

)∣
∣
∣
2
φ2
B,εD

d+2−n
β = T ≤ Crd , (3.36)

where C > 0 depends on the same parameters as in (3.35). Once we are there, the
left-hand side is uniformly bounded in ε, so taking ε → 0 leads to the desired result
(3.9).

Keep in mind that

∇ ln

(
u

D1−γ
β

)

= ∇u

u
− ∇D1−γ

β

D1−γ
β

= D1−γ
β ∇u − u∇D1−γ

β

D1−γ
β u

. (3.37)

We shall use Lemma 2.10 to obtain the existence of a scalar function b and a vector
function V such that

Hn−d−1 :=
∫

�

|X − y|−n(X − y)dσ(y) = (b∇Dβ + V)Dd+1−n
β (3.38)

as in (2.11), with the bounds (2.12)–(2.15).
Before we start to bound T , let us comment on Hn−d−1 and ∇Dβ . First, the vector

function Hn−d−1 is smooth and divergence free in �, and the formulation of this fact
in the weak sense is that for any compactly supported ϕ ∈ W 1,1(�),

∫

�

Hn−d−1 · ∇ϕ = 0. (3.39)

Set Hα(X) := ∫
�

|X − y|−d−1−α(X − y)dσ(y) for α > 0. Since |Hα(X)| ≤ ∫
�

|X −
y|−d−αdσ(y) = Dα(X)−α , (2.2) implies that

|Hα| � D−α
α � D−α

β . (3.40)

Moreover, observe that ∇(D−β
β ) = −(d + β)Hβ+1, directly by (1.2); since also

∇(D−β
β ) = −βD−β−1

β ∇Dβ , we deduce from (3.40) that

|∇Dβ | � 1. (3.41)
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We turn to the proof of (3.35). Write φ instead of φB,ε to lighten the notation. By
(2.12) and (3.37),

T �
∫

�

∣
∣
∣
∣∇ ln

(
u

D1−γ
β

)∣
∣
∣
∣

2

φ2b Dd+2−n
β =

∫

�

b∇u

u
·
( D1−γ

β ∇u − u∇D1−γ
β

D1−γ
β u

)

φ2Dd+2−n
β

−
∫

�

b∇D1−γ
β

D1−γ
β

· ∇
[

ln

(
u

D1−γ
β

)]

φ2Dd+2−n
β

:= T1 − T2.

Let us start with T2. We simplify the factors Dβ and we invoke the relation (3.38)
to get

T2 = (γ − 1)
∫

�

b∇Dβ

Dn−d−1
β

· ∇
[

ln

(
u

D1−γ
β

)]

φ2

= (γ − 1)
∫

�

Hn−d−1 · ∇
[

ln

(
u

D1−γ
β

)]

φ2

− (γ − 1)
∫

�

V · ∇
[

ln

(
u

D1−γ
β

)]

φ2Dd+1−n
β

:= T21 + T22.

We use the Cauchy–Schwarz inequality to bound T22, as follows:

|T22| �
( ∫

�

|V|2φ2Dd−n
β

) 1
2
( ∫

�

∣
∣
∣
∣∇

[

ln

(
u

D1−γ
β

)]∣
∣
∣
∣

2

φ2Dd+2−n
β

) 1
2

� T 1/2
(∫

2B
|V|2Dd−n

β

) 1
2

� rd/2T 1/2

by (2.15). This fits with (3.35). As for T21, notice that its value will not be changed if
we replace u by Ku, where K is a constant. Hence

T21 = (γ − 1)
∫

�

Hn−d−1 · ∇
[

ln

(
Ku

D1−γ
β

)]

φ2,

where K is a constant to be chosen later. We force φ2 into the gradient, then use the
fact that Hn−d−1 is divergence free (see (3.39)), and obtain

T21 = (γ − 1)
∫

�

Hn−d−1 · ∇
[
φ2 ln

( Ku

D1−γ
β

)]
− 2(γ − 1)

∫

�

Hn−d−1 · ∇φ φ ln
( Ku

D1−γ
β

)

= 0 − 2(γ − 1)
∫

�

Hn−d−1 · ∇φ φ ln
( Ku

D1−γ
β

)
.
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Recall that |Hn−d−1| � Dd+1−n
β by (3.40), and that |∇φ| � 1E1∪E2∪E3/Dβ by

(3.15) and (2.2), so

|T21| �
∫

E1∪E2∪E3

∣
∣
∣
∣ ln

(
Ku

D1−γ
β

)∣
∣
∣
∣D

d−n
β .

We choose K = D1−γ
β (X0)/u(X0), so that the right-hand side above is what we called

S in (3.27). Hence T21 � rd by (3.27), as needed for (3.35).
We switch to the estimation of T1. We want to use the fact that u is a solution, and

for this we write

T1 =
∫

�

∇u · D
1−γ
β

u

(D1−γ
β ∇u − u∇D1−γ

β

D1−γ
β u

)

bφ2Dd+1+γ−n
β

= −
∫

�

∇u · ∇
[D1−γ

β

u

]

bφ2Dd+1+γ−n
β

= −
∫

�

∇u · ∇
[

bφ2
D1−γ

β

u

]

Dd+1+γ−n
β +

∫

�

∇u · ∇b

(

φ2
D1−γ

β

u

)

Dd+1+γ−n
β

+ 2
∫

�

∇u · ∇φ

(

φb
D1−γ

β

u

)

Dd+1+γ−n
β

:= T11 + T12 + T13.

(3.42)

Notice that T11 = 0 because u is aweak solution to Lβ,γ u = 0 on�∩2B andφ2
D1−γ

β

u
lies in W 1,2

loc (�) and compactly supported in �. The terms T12 and T13 are morally
similar. In both case, we don’t like the terms with u because we don’t know so much
about it, so we use (3.37) to replace u by the nice function D1−γ

β , and the difference

will be controlled with the help of T 1/2, the square root of our initial integral. We start
with

T13 = 2
∫

�

∇u

u
· ∇φ φ b Dd+2−n

β

= 2
∫

�

(
∇u

u
− ∇D1−γ

β

D1−γ
β

)

· (∇φ) φ b Dd+2−n
β − 2(γ − 1)

∫

�

b∇Dβ

Dn−d−1
β

· (∇φ)φ

:= T131 + T132.

(3.43)
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We use (2.12) and the fact that Dβ∇φ satisfies the Carleson measure property to get

|T131| �
( ∫

�

|∇φ|2Dd+2−n
α

)1/2( ∫

�

∣
∣
∣
∣
∇u

u
− ∇D1−γ

β

D1−γ
β

∣
∣
∣
∣

2

φ2Dd+2−n
α

)1/2

� rd/2
( ∫

�

∣
∣
∣
∣∇ ln

(
u

D1−γ
α

)∣
∣
∣
∣

2

φ2Dd+2−n
α

)1/2

by (3.17), and then (3.37). The bound of T131 that we just obtained appears in the
right-hand side of (3.35), as desired. As for T132, we invoke (3.41), (2.12), and then
(3.17) to write

|T132| �
∫

2B
|Dβ∇φ|Dn−d

β � rd .

Similarly to T13, we treat T12 as follows:

T12 =
∫

�

∇u

u
· ∇b φ2Dd+2−n

β

=
∫

�

(∇u

u
− ∇D1−γ

β

D1−γ
β

)

· ∇b φ2Dd+2−n
β − (γ − 1)

∫

�

∇Dβ · ∇b φ2Dd+1−n
β

:= T121 + T122.

(3.44)

Thanks to the definition (3.34) and then (2.13),

|T121| �
(∫

�

∣
∣
∣
∣
∇u

u
− ∇D1−γ

β

D1−γ
β

∣
∣
∣
∣

2

φ2Dd+2−n
β

)1/2( ∫

�

|∇b|2φ2Dd+2−n
β

)1/2

� T 1/2
(∫

2B
|Dβ∇b|2Dd−n

β

) 1
2

� rd/2T 1/2.

(3.45)

Now, we want to use (3.38) again, so we force the function b to appear and we place
all the remaining terms in the second gradient. Then T122 becomes

T122 = −(γ − 1)
∫

�

b∇Dβ · ∇b

b
φ2Dd+1−n

β

= −(γ − 1)
∫

�

b∇Dβ · ∇[φ2 ln(b)] Dd+1−n
β

− 2(1 − γ )

∫

�

b∇Dβ · ∇φ φ ln(b) Dd+1−n
β

:= T1221 + T1222.
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We start with T1222. Since b ≈ 1, we have that |b ln(b)| � 1. Besides, |∇Dβ | � 1 by
(3.41). Therefore,

|T1222| �
∫

2B
|Dβ∇φ|Dd−n

β ,

and then |T1222| � rd by (3.17). We use (3.38) to write T1221 as

T1221 = (1 − γ )

∫

�

Hn−d−1 · ∇[φ2 ln(b)] + (γ − 1)
∫

�

V · ∇[φ2 ln(b)] Dd+1−n
β

= 0 + (γ − 1)
∫

�

V ·
[
2φ∇φ ln(b) + φ2∇b

b

]
Dd+1−n

β

by (3.39). Hence by (2.12) and then the Cauchy–Schwarz inequality,

|T1221| �
∫

2B
|V|(|∇φ| + |∇b|)Dd+1−n

β

�
(∫

2B
|V|2Dn−d

β

) 1
2
(∫

2B
(|Dβ∇φ|2 + |Dβ∇b|2)Dd−n

β

) 1
2

.

But since V , Dβ∇b, and Dβ∇φ all satisfies the Carleson measure condition, we
conclude that |T1221| � rd as desired.

We bounded each term derived from T by either rd or rd/2T 1/2, and consequently
proved the claim (3.35). As was observed before, (3.9), Proposition 3.8, and then
Theorems 2.21 and 1.8 follow. ��
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