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Abstract
L p boundedness of the circular maximal function MH1 on the Heisenberg group
H

1 has received considerable attentions. While the problem still remains open, L p

boundedness of MH1 on Heisenberg radial functions was recently shown for p > 2
by Beltran et al. (Ann Sc Norm Super Pisa Cl Sci. https://doi.org/10.2422/2036-2145.
202001-006, 2021). In this paper we extend their result considering the local maximal
operator MH1 which is defined by taking supremum over 1 < t < 2.We prove L p–Lq

estimates for MH1 on Heisenberg radial functions on the optimal range of p, q modulo
the borderline cases.Our argument also provides a simpler proof of the aforementioned
result due to Beltran et al.

Mathematics Subject Classification 42B25 · 22E25 · 35S30

1 introduction

For d ≥ 2 the spherical maximal function is given by

MRd f (x) = sup
t>0

∣
∣
∣
∣

1

σ(Sd−1)

∫

Sn−1
f (x − t y)dσ(y)

∣
∣
∣
∣
,

where S
d−1 ⊂ R

d is the (d − 1)-dimensional sphere centered at the origin and dσ is
the surface measure on S

d−1. When d ≥ 3, it was shown by Stein [21] that MRd f
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is bounded on L p if and only if p > d
d−1 . The case d = 2 was later settled by

Bourgain [5]. An alternative proof of Bourgain’s result was subsequently found by
Mockenhaupt, Seeger, Sogge [11], who used a local smoothing estimate for the wave
operator. We now consider the local maximal operator

MRd f (x) = sup
1<t<2

∣
∣
∣
∣

∫

Sd−1
f (x − t y)dσ(y)

∣
∣
∣
∣
.

As is easy to see, the maximal operator MRd can not be bounded from L p to Lq

unless p = q. However, MRd is bounded from L p to Lq for some p < q thanks to
the supremum taken over the restricted range [1, 2]. This phenomenon is called L p

improving. Almost complete characterization of L p improving property of MR2 was
obtained by Schlag [17] except for the endpoint cases. A different proof which is based
on L p–Lq

α smoothing estimate for the wave operator was also found by Schlag and
Sogge [18]. They also proved L p–Lq boundedness of MRd for d ≥ 3 which is optimal
up to the borderline cases. Most of the left open endpoint cases were settled by the
second author [8] but there are some endpoint cases where L p–Lq estimate remains
unknown though restricted weak type bounds are available for such cases. There are
results which extend the aforementioned results to variable coefficient settings, see
[18, 19]. Also, see [1, 4, 14] and references therein for recent extensions of the earlier
results.

The analogous spherical maximal operators on the Heisenberg group H
n also have

attracted considerable interests. TheHeisenberg groupH
n can be identifiedwithR

2n×
R under the noncommutative multiplication law

(x, x2n+1) · (y, y2n+1) = (x + y, x2n+1 + y2n+1 + x · Ay),

where (x, x2n+1) ∈ R
2n × R and A is the 2n × 2n matrix given by

A =
(

0 −In
In 0

)

.

The natural dilation structure on H
n is t(x, x2n+1) = (t x, t2x2n+1). Abusing the

notation, since there is no ambiguity, we denote by dσ the usual surface measure
of S

2n−1 × {0}. Then, the dilation dσt of the measure dσ is defined by 〈 f , dσt 〉 =
〈 f (t ·), dσ 〉. Thus, the average over the sphere is now given by

f ∗H dσt (x, x2n+1) =
∫

S2n−1
f (x − t y, x2n+1 − t x · Ay)dσ(y).

We consider the associated local spherical maximal operator

MHn f (x, x2n+1) = sup
1<t<2

| f ∗H dσt (x, x2n+1)| .

Similarly, the global maximal operator MHn is defined by taking supremum over
t > 0. As in the Euclidean case, L p boundedness of MHn is essentially equivalent to
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Lp − Lq estimates for the circular maximal operator… 1523

that of MHn (for example, see [2] or Section 2.5). The spherical maximal operator
on H

n was first studied by Nevo and Thangavelu [13]. It is easy to see that MHn is
bounded on L p only if p > 2n

2n−1 by using Stein’s example ([21]):

f (x, x2n+1) = |x |1−2n log
1

|x | φ0(x, x2n+1),

where φ0 is a cutoff function supported near the origin. For n ≥ 2, L p boundedness
of MHn on the optimal range was independently proved by Müller and Seeger [10],
and by Narayanan and Thangavelu [12]. Furthermore, for n ≥ 2, Roos, Seeger and
Srivastava[15] recently obtained the complete L p–Lq estimate for MHn except for
some endpoint cases. Also see [7] for related results.

However, the problem still remains open when n = 1.

Definition We say a function f : H
1 → C is Heisenberg radial if f (x, x3) =

f (Rx, x3) for all R ∈ SO(2).

Beltran, Guo, Hickman and Seeger [2] obtained L p boundedness of MH1 on the
Heisenberg radial functions for p > 2. In the perspective of the results concerning the
local maximal operators [8, 15, 17, 18], it is natural to consider L p–Lq estimate for
MH1 . Themain result of this paper is the following which completely characterizes L p

improving property of MH1 on Heisenberg radial function except for some borderline
cases.

Theorem 1.1 Let P0 = (0, 0), P1 = (1/2, 1/2), and P2 = (3/7, 2/7), and let T be
the closed region bounded by the triangle �P0P1P2. Suppose (1/p, 1/q) ∈ {P0} ∪
(T\(P1P2 ∪ P0P2)). Then, the estimate

‖MH1 f ‖q � ‖ f ‖L p (1.1)

holds for all Heisenberg radial function f . Conversely, if (1/p, 1/q) /∈ T, then the
estimate fails.

Though the Heisenberg radial assumption significantly simplifies the structure of
the averaging operator, the associated defining function of the averaging operator
is still lacking of curvature properties. In fact, the defining function has vanishing
rotational and cinematic curvatures at some points, see [2] for a detailed discussion.
This increases the complexity of the problem. To overcome the issue of vanishing
curvatures, Beltran et al. [2] used the oscillatory integral operators with two-sided
fold singularities and the variable coefficient version of local smoothing estimate [3]
combined with additional localization.

The approach in this paper is quite different from that in [2]. Capitalizing on the
Heisenberg radial assumption, we make a change of variables so that the averaging
operator on the Heisenberg radial function takes a form close to the circular average,
see (2.1) below. While the defining function of the consequent operator still does
not have nonvanishing rotational and cinematic curvatures, via a further change of
variables we can apply the L p–Lq local smoothing estimate (see, Theorem 3.1 below)
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1524 J. Lee, S. Lee

in a more straightforward manner by exploiting the apparent connection to the wave
operator (see (2.2) and (2.3)). Consequently, our approach also provides a simplified
proof of the recent result due to Beltran et al. [2]. See Sect. 2.5.

Even though we utilize the local smoothing estimate, we do not need to use the
full strength of the local smoothing estimate in d = 2 since we only need the sharp
L p–Lq local smoothing estimates for (p, q) near (7/3, 7/2). Such estimates can also
be obtained by interpolation and scaling argument if one uses the trilinear restriction
estimates for the cone and the sharp local smoothing estimate for some large p (for
example, see [9]).

The estimate (1.1) remains open when (1/p, 1/q) ∈ (P1P2 ∪ P0P2)\{P0, P1}.
However, we expect that those borderline cases should be true. Most of the corre-
sponding endpoint estimates for the circular maximal function (in R

2) are known to
be true [8], but to implement the approach in [8] we need the local smoothing esti-
mate without ε-loss regularity, which we are not able to establish yet even under the
Heisenberg radial assumption.

We close the introduction showing the necessity part of Theorem 1.1.
Optimality of p, q range. We show (1.1) implies (1/p, 1/q) ∈ T, that is to say,

(a) p ≤ q, (b) 1 + 1/q ≥ 3/p, (c) 3/q ≥ 2/p.

To see (a), let fR be the characteristic function of a ball of radius R � 1, centered at 0.
Then, MH1 fR is also supported in a ball B of radius∼ R and MH1 fR � 1 on B. Thus,
supR>1 ‖MH1 fR‖q/‖ fR‖p is finite only if p ≤ q. For (b) let gr be the characteristic
function of a ball of radius r � 1 centered at 0. Then, |MH1gr (x, x3)| � r when
(x, x3) is contained in a c0r−neighborhood of {(x, x3) : 1 < |x | < 2, x3 = 0} for a
small constant c0 > 0. Thus, (1.1) implies r1+1/q � r3/p, which gives 1+1/q ≥ 3/p
if we let r → 0. Finally, to show (c) we consider hr which is the characteristic
function of an r−neighborhood of {(x, x3) : |x | = 1, x3 = 0} with r � 1. Then,
|MH1hr (x, x3)| � c > 0 when (x, x3) is in an r−ball centered at 0. Thus, (1.1) gives
r3/q � r2/p, which yields 3/q ≥ 2/p.

Themaximal estimate (1.1) for general L p functions has a smaller range of p, q. Let
hr be a characteristic function of the set {(x, x3) : |x1−1| < r2, |x2| < r , |x3| < r} for
a sufficiently small r > 0. Then MH1hr (x, x3) ∼ r if −1 ≤ x1 ≤ 0, |x2| < cr , |x3| <

cr for a small constant c > 0 independent of r . Thus, (1.1) implies r1+2/q � r4/p.
It seems to be plausible to conjecture that (1.1) holds for general f modulo some
endpoint cases as long as 1+ 2/q − 4/p ≥ 0, 3/q ≥ 2/p, and 1/q ≤ 1/p. The range
of p, q is properly contained in T.

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1 while assuming Proposition 2.1 and Proposition
2.2 (see below), which we show in the next section.
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2.1 Heisenberg radial function

Since f is a Heisenberg radial function, we have f (x, x3) = f0(|x |, x3) for some f0.
Let us set

g(s, z) = f0(
√
2s, z), s ≥ 0.

Then, it follows f (x, x3) = g(|x |2/2, x3). Since f ∗H dσt (r , 0, x3) = ∫

f (r −
t y1,−t y2, x3 − tr y2)dσ(y) = ∫

g( r
2+t2
2 − tr y1, x3 − tr y2)dσ(y), we have

f ∗H dσt (r , 0, x3) = g ∗ dσtr

(r2 + t2

2
, x3

)

. (2.1)

Let us define an operator At by

At g(r , x3) = 1

(2π)2

∫

R2
ei(

r2+t2
2 ξ1+x3ξ2)d̂σ(trξ) ĝ(ξ)dξ. (2.2)

Using Fourier inversion, we have

f ∗H dσt (r , 0, x3) = At g(r , x3). (2.3)

Since f ∗H dσt is also Heisenberg radial,1 ‖MH1 f ‖qq = ∫ |MH1 f (r , 0, x3)|qrdrdx3.
A computation shows ‖ f ‖L p

x,x3
= ‖g‖L p

r ,x3
. Therefore, we see that the estimate (1.1)

is equivalent to
∥
∥r

1
q sup
1<t<2

|At g|
∥
∥
Lq
r ,x3

≤ C‖g‖p. (2.4)

In what follows we show (2.4) holds for p, q satisfying

p ≤ q, 3/p − 1/q < 1, 1/p + 2/q > 1. (2.5)

Then, interpolation with the trivial L∞ estimate proves Theorem 1.1.

2.2 Decomposition

Let φ denote a positive smooth function on R supported in [1− 10−3, 2+ 10−3] such
that

∑∞
j=−∞ φ(s/2 j ) = 1 for s > 0. We set φ j (s) = φ(s/2 j ). To show (2.4) we

decompose At as follows:

At g(r , x3) =
∑

k∈Z
φk(r)At g(r , x3).

1 This is true because SO(2) is an abelian group. However, SO(n) is not commutative in general, so the
property is not valid in higher dimensions.
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We break g via the Littlewood–Paley decomposition and try to obtain estimates
for each decomposed pieces. For the purpose we denote φ< j = ∑

	< j φ	 and φ≥ j =
∑

	≥ j φ	 and define the projection operators

P̂ j g(ξ) := φ j (|ξ |)ĝ(ξ), P̂< j g(ξ) := φ< j (|ξ |)ĝ(ξ).

Our proof of (2.4) mainly relies on the following two propositions, which we prove
in Sect. 3.

Proposition 2.1 Let |k| ≥ 2 and j ≥ −k. Suppose

p ≤ q, 1/p + 1/q ≤ 1, 1/p + 3/q ≥ 1. (2.6)

Then, for ε > 0 we have

∥
∥
∥ sup
1<t<2

|φk(r)AtPj g|
∥
∥
∥
Lq
r ,x3

�
{

2( j+k)( 3
2p − 1

2q − 1
2+ε)+ k

q − 2k
p ‖g‖L p , k ≥ 2,

2( j+k)( 3
2p − 1

2q − 1
2+ε)+ 2k

q − 2k
p ‖g‖L p , k < −2.

(2.7)

The estimate (2.7) continues to be valid for the case k = −1, 0, 1. However, the
range of p, q for which (2.7) holds gets smaller.

Proposition 2.2 Let j ≥ −1 and k = −1, 0, 1. Suppose p ≤ q, 1/p + 1/q < 1 and
1/p + 2/q > 1. Then, for ε > 0 we have

∥
∥
∥ sup
1<t<2

|φk(r)AtPj g|
∥
∥
∥
Lq
r ,x3

� 2
j
2 ( 3

p − 1
q −1)+ε j‖g‖L p .

We frequently use the following elementary lemma (for example, see [8]) which
plays the role of the Sobolev imbedding.

Lemma 2.3 Let I be an interval and let F be a smooth function defined on R
n × I .

Then, for 1 ≤ p ≤ ∞,

∥
∥
∥ sup

t∈I
|F(x, t)|

∥
∥
∥
L p(Rn)

� |I |− 1
p ‖F‖L p(Rn×I ) + ‖F‖

(p−1)
p

L p(Rn×I )‖∂t F‖
1
p

L p(Rn×I ).

2.3 Proof of (2.4)

We prove (2.4) handling the three cases k ≤ −2, |k| ≤ 1, and k ≥ 2, separately. We
first consider a change of variables

(r , x3, t) → (y1, y2, τ ) :=
(
r2 + t2

2
, x3, r t

)

, (2.8)
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which plays an important role in what follows. Note that

det
∂(y1, y2, τ )

∂(r , x3, t)
= r2 − t2. (2.9)

In order to show (2.4), we shall use the change of variables (2.8) to apply the local
smoothing estimate to the averaging operator At (see Sect. 3.1). Since 1 < t < 2,
| det ∂(y1, y2, τ )/∂(r , x3, t)| = |r2 − t2| ∼ max(22k, 1) for |k| ≥ 2. Thus, the cases
|k| ≥ 2 can be handled directly by using local smoothing estimates for the half wave
propagator. However, the determinant of the Jacobian may vanish when |k| ≤ 1. This
requires further decomposition away from the set {r = t}. See Sect. 3.3. This is why
we need to consider the three cases separately.

Let us set gk = P<−k g and gk = g−P<−kg so that g = gk + gk . Then, we break

φk(r)At g = φk(r)At gk + φk(r)At g
k . (2.10)

We use Propositions 2.1 and 2.2 to obtain the estimate for φk(r)At gk , whereas we
show the estimate for φk(r)At gk by elementary means using (2.2).

Case k ≤ −2

We claim that ∥
∥
∥r

1
q

∑

k≤−2

sup
1<t<2

|φk(r)At g|
∥
∥
∥
Lq
r ,x3

� ‖g‖L p (2.11)

holds provided that p, q satisfy 2/p < 3/q, 3/p − 1/q < 1, and (2.6). Thus (2.11)
holds for p, q satisfying (2.5).

We first consider φk(r)At gk . We shall show that

∥
∥
∥r

1
q sup
1<t<2

|φk(r)At gk |
∥
∥
∥
Lq
r ,x3

� 2
3k
q − 2k

p ‖g‖L p (2.12)

holds for 1 ≤ p ≤ q ≤ ∞. We recall (2.2) and note that ∂t (d̂σ(trξ)) is uniformly

bounded because |rξ | � 1. Since supp ĝk ⊂ {ξ : |ξ | ≤ C2−k} and ∂t e
r2+t2

2 ξ1 =
tξ1e

r2+t2
2 ξ1 , we have ‖φk(r)∂tAt gk‖q � 2−k‖φk(r)At gk‖q by the Mikhlin multiplier

theorem. Applying Lemma 2.3 to φk(r)At gk , we see that (2.12) follows if we show

‖φk(r)At gk‖Lq
r ,x3,t (R

2×[1,2]) � 2
3k
q − 2k

p ‖g‖L p . (2.13)

We now make use of the change of variables (2.8). Since k ≤ −2 and t ∈ [1, 2], we
have | det ∂(y1,y2,τ )

∂(r ,x3,t)
| ∼ 1. Thus the left hand side of (2.13) is bounded by

C
∥
∥
∥φk(r(y1, y2, τ ))

∫

eiy·ξ ĝ(ξ)d̂σ(τξ)φ<−k(ξ)dξ

∥
∥
∥
Lq
y,τ (R2×[2−1,22]).
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Changing variables ξ → 2−kξ and (y, τ ) → (2k y, 2kτ) gives

‖φk(r)At gk‖Lq
r ,x3,t (R

2×[1,2]) � 2
3k
q

∥
∥
∥

∫

eiy·ξ m(ξ)ĝ(2k ·)(ξ)dξ

∥
∥
∥
Lq
y,τ (R2×[2−1,22]),

wherem(ξ) = d̂σ(τξ)φ<0(ξ). Since τ ∼ 1 andφ<0(ξ) is a smooth function supported
in the set {ξ : |ξ | � 1}, m(ξ) is a smooth multiplier whose derivatives are uniformly
bounded. So, the multiplier operator given by m is uniformly bounded from L p(R2)

to Lq(R2) for τ ∈ [2−1, 22]. Thus, via scaling we obtain (2.13) and, hence, (2.12).
Using the triangle inequality and (2.12), we have

∥
∥
∥
∥
r

1
q sup
1<t<2

∑

k≤−2

|φk(r)At gk |
∥
∥
∥
∥
Lq
r ,x3

�
(

∑

k≤−2

2
3k
q − 2k

p

)

‖g‖p � ‖g‖p

because 2/p < 3/q. We now consider φk(r)At gk for which we use Proposition 2.1.
Since

∥
∥
∥
∥
r

1
q sup
1<t<2

∑

k≤−2

|φk(r)At g
k |

∥
∥
∥
∥
Lq
r ,x3

≤
∑

k≤−2

∑

j≥−k

∥
∥
∥
∥
r

1
q sup
1<t<2

|φk(r)AtPj g|
∥
∥
∥
∥
Lq
r ,x3

and since p, q satisfy 3/p− 1/q < 1, 2/p < 3/q, and (2.6), using the estimate (2.7),
we get

∥
∥
∥
∥
r

1
q sup
1<t<2

∑

k≤−2

|φk(r)At g
k |

∥
∥
∥
∥
Lq
r ,x3

�
(

∑

k≤−2

2
3k
q − 2k

p

)

‖g‖p � ‖g‖p.

Combining this with the above estimate for g → φk(r)At gk gives (2.11) and this
proves the claim.

Case k ≥ 2

In this case we show
∥
∥
∥
∥
r

1
q

∑

k≥2

sup
1<t<2

|φk(r)At g|
∥
∥
∥
∥
Lq
r ,x3

� ‖g‖L p (2.14)

if p ≤ q, 3/p − 1/q < 1, and (2.6) holds. So, we have (2.14) if (2.5) holds.
In order to prove (2.14) we first prove the following.

Lemma 2.4 Let k ≥ −1. If |t | � 1 and 0 ≤ s � 22k , then

|AtP<−kg|(
√
2s, x3) � EN

k ∗ |g|(s, x3), (2.15)

where EN
	 (y) = 2−2	(1 + 2−	|y|)−N .
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Proof We note that

AtP<−kg(
√
2s, x3) = K ∗ g

(

s + 2−1t2, x3
)

,

where

K (y) = 1

(2π)2

∫

eiy·ξφ<−k(ξ)d̂σ(t
√
2sξ)dξ.

We note ∂α
ξ [φ<−k(2−kξ)d̂σ(2−k t

√
2sξ)] = O(1) since s � 22k . Thus, changing

variables ξ → 2−kξ , by integration by parts we have |K | � EN
k for any N > 0. Since

|t | � 1 and k ≥ −1, we see EN
k (y1 + 2−1t2, y2) � EN

k (y1, y2). Therefore, we get
(2.15). ��

Proof of 2.14 We begin by observing a localization property of the operatorAt . From
(2.1) we note that

r2 + t2

2
− tr y1 ⊂ Ik := [22k−1(1 − 10−2), 22k+1(1 + 10−2)]

for r ∈ suppφk if k is large enough, i.e., 2−k ≤ 10−3. Thus, from (2.1) and (2.3) we
see that

φk(r)At g(r , x3) = φk(r)At ([g]k)(r , x3) (2.16)

where [g]k(r , x3) = χIk (r)g(r , x3). Clearly, the intervals Ik are finitely overlapping
and so are the supports of φk . Since p ≤ q, by a standard localization argument it is
sufficient for (2.14) to show

∥
∥
∥
∥
r

1
q sup
1<t<2

|φk(r)At g|
∥
∥
∥
∥
Lq
r ,x3

� ‖g‖L p (2.17)

for k ≥ 2.
Using the decomposition (2.10), we first consider φk(r)At gk . Changing variables

r �→ √
2s, we have

∥
∥
∥
∥
r

1
q sup
1<t<2

|φk(r)At gk |
∥
∥
∥
∥

q

Lq
r ,x3

�
∫

φk(
√
2s)

(

sup
1<t<2

|At gk(
√
2s, x3)|

)q

dsdx3.

Since 1 < t < 2, k ≥ 2, and gk = P<−kg, by Lemma 2.4 |At gk(
√
2s, x3)| �

EN
k ∗ |g|(s, x3). Hence,

∥
∥
∥
∥
r

1
q sup
1<t<2

|φk(r)At gk |
∥
∥
∥
∥
Lq
r ,x3

� ‖EN
k ∗ |g|‖Lq

s,x3
� 22k(1/q−1/p)‖g‖p ≤ ‖g‖p.

123
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The second inequality follows by Young’s convolution inequality and the third is clear
because k ≥ 2 and p ≤ q. We now handle φk(r)At gk . Since

∥
∥
∥r

1
q sup
1<t<2

|φk(r)At g
k |

∥
∥
∥
Lq
r ,x3

≤
∑

j≥−k

∥
∥
∥r

1
q sup
1<t<2

|φk(r)AtPj g|
∥
∥
∥
Lq
r ,x3

(2.18)

and since 3/p − 1/q < 1, p ≤ q, and (2.6) holds, using the estimate (2.7), we get

∥
∥
∥r

1
q sup
1<t<2

|φk(r)At g
k |

∥
∥
∥
Lq
r ,x3

� 2
2k
q − 2k

p ‖g‖p � ‖g‖p.

Therefore, we get (2.17). ��

2.4 Case |k| ≤ 1

To complete the proof of (2.4), the matter is now reduced to obtaining

∥
∥
∥r

1
q sup
1<t<2

|φk(r)At g|
∥
∥
∥
Lq
r ,x3

� ‖g‖L p , k = −1, 0, 1

if p, q satisfy (2.5). In order to show this we use Proposition 2.2. Using the decompo-
sition (2.10), we first consider φk(r)At gk . Since 1 < t < 2 and |k| ≤ 1, by Lemma
2.4 we have φk(r)|At gk | � EN

0 ∗ |g|. Hence, it follows that
∥
∥
∥r

1
q sup
1<t<2

|φk(r)At gk |
∥
∥
∥
Lq
r ,x3

� ‖g‖p

for 1 ≤ p ≤ q ≤ ∞.
We now consider φk(r)At gk . Note that (2.6) is satisfied if (2.5) holds. Since 3/p−

1/q < 1, by (2.18) and Proposition 2.2 we see

∥
∥
∥r

1
q sup
1<t<2

|φk(r)At g
k |

∥
∥
∥
Lq
r ,x3

�
∑

j≥−k

2
j
2 ( 3

p − 1
q −1)+ε j‖g‖L p � ‖g‖p

taking a small enough ε > 0. Therefore we get the desired estimate.

2.5 Global maximal estimate

Using the estimates in this section, one can provide a simpler proof of the result due
to Beltran et al. [2], i.e.,

‖r 1
p sup
0<t<∞

|At g|‖L p
r ,x3

≤ C‖g‖p (2.19)

for 2 < p ≤ ∞. In order to show this we use the following lemma which is a
consequence of Propositions 2.1 and 2.2.
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Lemma 2.5 Let 2 ≤ p ≤ 4. Then, for some c > 0 we have

∥
∥r

1
p sup
1<t<2

|AtPj g|
∥
∥
L p
r ,x3

≤ C2−cj‖g‖p . (2.20)

Proof We briefly explain how one can show (2.20). In fact, similarly as before, we
decompose

AtPj g = S1 + S3 + S3 + S4,

where

S1 :=
∑

k<− j

φk(r)AtPj g, S2 :=
∑

− j≤k≤−2

φk(r)AtPj g, S3 :=
∑

−1≤k≤1

φk(r)AtPj g,

and S4 = AtPj g − S1 − S2 − S3. Then, the estimate (2.20) follows if we show

‖r 1
p sup1<t<2 |S	|‖L p

r ,x3
≤ C2−cj‖g‖p, 	 = 1, 2, 3, 4 for some c > 0. The estimate

for S1 follows from (2.12) and summation over k < − j . Using the estimate of the
second case in (2.7), one can easily get the estimate for S2. The estimate for S3 is
obvious from Proposition 2.2. By Proposition 2.1 combined with the localization
property (2.16) we can obtain the estimate for S4. However, due to the projection
operator Pj we need to modify the previous argument slightly.

From (2.1) and (2.3) we see

AtPj g(r , x3) =
∫∫

g(z1, z2)K j

(
r2 + t2

2
− z1 − tr y1, x3 − z2 − tr y2

)

dσ(y)dz,

(2.21)

where K j = F−1(φ(2− j | · |). Note that |K j | � EN
− j for any N and k ≥ 2. If

r ∈ suppφk ,
√
2z1 /∈ Ik , and k is large enough, then we have

∣
∣
∣K j

(r2 + t2

2
− tr y1 − z1, x3 − tr y2 − z2

)∣
∣
∣

� 2−(2k+ j)N
(

1 + 2 j |r2 − 2z1| + 2−k |x3 − z2|
)−N

for any N since |2−1r2 − z1| � 22k and |r ty| � 2k . Hence it follows that

‖r 1
p φk(r)AtPj (1 − χIk )g‖p ≤ C2−(k+ j)N‖g‖p, 1 ≤ p ≤ ∞

for any N . We breakAtPj g = AtPjχIk g+AtPj (1−χIk )g. Using the last inequality
and then Proposition 2.1, we obtain
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‖S4‖p ≤
(

∑

k≥2

‖r 1
p φk(r)AtPjχIk g‖p

p

) 1
p

+
∑

k≥2

2−(k+ j)N‖g‖p � 2−cj‖g‖p

for some c > 0 by taking an N large enough. ��
Once we have (2.20), using a standard argument which relies on the Littlewood–

Paley decomposition and rescaling (for example, see [2, 5, 16] ) one can easily show
(2.19). Indeed, we break the maximal function into high and lower frequency parts:

sup
0<t<∞

|At g| ≤ Alow g + Ahigh g,

where

Alow g = sup
l

sup
2l≤t<2l+1

|AtP<−2l g|,

Ahigh g =
∑

k≥0

sup
l

sup
2l≤t<2l+1

|AtPk−2l g|.

For Alow g we claim

sup
2l≤t<2l+1

|AtP<−2l g(r , x3)| � MR2g(2−1r2, x3). (2.22)

This gives Alow g(r , x3) � MR2g(2−1r2, x3). Since MR2 is bounded on L p for
p > 2, for 2 < p ≤ ∞ we get

‖r 1
pAlow g‖L p

r ,x3
≤ C‖g‖p.

We now proceed to prove (2.22). Note that
∑

j≤2l φ(2− j | · |) = φ<1(22l | · |) and

φ<1 is a smooth function supported on [−22, 22]. Thus, similarly as in (2.21) we note
that AtP<−2l g(r , x3) = ∫∫

g(z1, z2)K̃l ∗ dσtr (2−1(r2 + t2) − z1, x3 − z2)dz where
K̃l = F−1(φ<1(22l | · |)). Since K̃l � EN

2l for any N , for 2l ≤ t < 2l+1 we see

|AtP<−2l g(r , x3)| �
∫

|g(z1, z2)|E2N
2l ∗ dσtr

(

2−1r2 − z1, x3 − z2
)

dz (2.23)

because 22l t2 � 1 and E2N
2l = 2−4l(1 + 2−2l |y|)−2N . Hence, taking an N large

enough, we note that

E2N
2l ∗ dσtr (x) �

{

(22l tr)−1(1 + 2−2l ||x | − tr |)−N , 22l � tr ,

2−4l(1 + 2−2l |x |)−N , 22l � tr ,
(2.24)

provided that 2l ≤ t < 2l+1. Indeed, to show this we only have to consider the case
22l � tr since the other case is trivial. By scaling x → tr x we may assume that

123



Lp − Lq estimates for the circular maximal operator… 1533

tr = 1. Thus, it is enough to show
∫

L−2(1 + L−1|x − y|)−2Ndσ(y) � L−1(1 +
L−1||x |−1|)−N for L � 1 with an N large enough. However, this is easy to see since
|x − y| ≥ ||x | − 1| and ∫

L−1(1 + L−1|x − y|)−Ndσ(y) � 1.
Therefore, combining (2.23) and (2.24), one can see

sup
2l≤t<2l+1

|AtP<−2l g(r , x3)| � MR2g(2−1r2, x3) + M2g(2
−1r2, x3).

Here M2 denotes the Hardy-Littlewood maximal function on R
2. This proves the

claim (2.22) since M2g � MR2g.

So we are reduced to showing ‖r 1
pAhigh g‖L p

r ,x3
≤ C‖g‖p for p > 2. For the

purpose it is sufficient to show

‖ sup
2l≤t<2l+1

|AtPk−2l g|‖p � 2−ck‖g‖p (2.25)

becauseAhigh g ≤ ∑

k≥0(
∑

l | sup2l≤t<2l+1 |AtPk−2l g|p)1/p and (
∑

l ‖Pk−2l g‖p
p)

1/p

� ‖g‖p. By scaling, using (2.2), we can easily see the inequality (2.25) is equivalent
to (2.20) while j replaced by k. So, we have (2.25) and this completes the proof of
(2.19).

3 Proof of Propositions 2.1 and 2.2

In order to prove Propositions 2.1 and 2.2, we are led by (2.2) to consider d̂σ(trξ)

for which we use the following well known asymptotic expansion (see, for example,
[20]):

d̂σ(ξ) =
N

∑

j=0

C±
j |ξ |− 1

2− j e±i |ξ | + EN (|ξ |), |ξ | � 1 (3.1)

where EN is a smooth function satisfying

| d
	

dr	
EN (r)| � r−N (3.2)

for 0 ≤ 	 ≤ 4 if r � 1. The expansion (3.1) relates the operator At to the wave
propagator. After changing variables, to prove Propositions 2.1 and 2.2 we can use the
local smoothing estimate for the wave operator (see Proposition 3.1 below).

3.1 Local smoothing estimate

Let us denote

eit
√−� f (x) = 1

(2π)2

∫

R2
ei(x ·ξ+t |ξ |) f̂ (ξ)dξ.
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We make use of L p–Lq local smoothing estimate for the wave equation in R
2.

Theorem 3.1 Let j ≥ 0. Suppose (2.6) holds. Then, for ε > 0 we have

∥
∥
∥eit

√−�Pj f
∥
∥
∥
Lq
x,t (R

2×[1,2]) � 2
3
2

(
1
p− 1

q

)

j+ε j‖ f ‖L p (3.3)

This follows by interpolating the estimates (3.3) with (p, q) = (2, 2), (1,∞), and
(4, 4). The estimate (3.3) with (p, q) = (2, 2) is a straightforward consequence of
Plancherel’s theorem and (3.3) with (p, q) = (1,∞) can be shown by the stationary
phase method (for example, see [8]). The case (p, q) = (4, 4) is due to Guth et al. [6].

From Theorem 3.1 we can deduce the following estimate via simple rescaling
argument.

Corollary 3.2 Let j ≥ −	. Suppose (2.6) holds. Then, for ε > 0 we have

∥
∥
∥eit

√−�Pj f
∥
∥
∥
Lq
x,t (R

2×[2	,2	+1]) � 2
3
2

(
1
p − 1

q

)

(	+ j)+
(
3
q − 2

p

)

	+ε(	+ j)‖ f ‖L p .

Proof Changing variables (x, t) → 2	(x, t), we see

∥
∥
∥eit

√−�Pj f
∥
∥
∥
Lq
x,t (R

2×[2	,2	+1]) = 2
3	
q

∥
∥
∥eit

√−�P	+ j f (2
	·)

∥
∥
∥
Lq
x,t (R

2×[1,2]) .

Thus, using (3.3) we have

∥
∥
∥eit

√−�Pj f
∥
∥
∥
Lq
x,t (R

2×[2	,2	+1]) � 2
3	
q + 3

2

(
1
p − 1

q

)

(	+ j)+ε(	+ j)‖ f (2	·)‖L p .

So, rescaling gives the desired inequality. ��

3.2 Proof of Proposition 2.1

We now recall (2.2) and (3.1). To show Proposition 2.1 we first deal with the contri-
bution from the error part EN . Let us set

Et g(r , x3) =
∫

ei(
r2+t2

2 ξ1+x3ξ2)EN (tr |ξ |) ĝ(ξ)dξ.

Lemma 3.3 Let j ≥ −k. Suppose (2.6) holds. Then, we have

∥
∥
∥ sup
1<t<2

|φk(r)EtP j g|
∥
∥
∥
Lq
r ,x3

�
{

2−(N−3)( j+k)2k(
1
q − 2

p )‖g‖L p , k ≥ −2,

2−(N−3)( j+k)2k(
3
q − 2

p )‖g‖L p , k < −2.
(3.4)

Proof We first consider the case k ≥ −2. Using Lemma 2.3, we need to estimate
φk(r)EtP j g and φk(r)∂tEtP j g in Lq

r ,x3,t (R
2 × [1, 2]). For simplicity we denote
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Lq
r ,x3,t = Lq

r ,x3,t (R
2 × [1, 2]). We first consider φk(r)EtP j g. Changing variables

r2
2 �→ s, we note that

φk(
√
2s)EtP j g(

√
2s, x3) = φk(

√
2s)

∫

K(

s − y1 + 2−1t2, x3 − y2
)

g(y1, y2)dy,

where

K(s, u) = 22 j
∫

ei2
j (sξ1+uξ2)φ0(ξ)EN (2 j t

√
2s|ξ |)dξ.

Since s ∼ 22k , using (3.2), we have |K(s, u)| � 22 j (1 + 2 j |(s, u)|)−M2−N ( j+k) for

1 ≤ M ≤ 4 via integration by parts. Thus, we have ‖φk(
√
2s)K(s + t2

2 , u)‖Lrs,u ≤
C2−N ( j+k)22 j(1− 1

r ) for 1 < t < 2 with a positive constant C . Young’s convolution

inequality gives ‖φk(
√
2s)EtP j g(

√
2s, x3)‖Lq

s,x3,t
� 2−N ( j+k)22 j(

1
p − 1

q )‖g‖L p . Thus,

reversing s → r2/2, after a simple manipulation we get

∥
∥
∥φk(r)EtP j g

∥
∥
∥
Lq
r ,x3,t

� 2−(N−2)( j+k)2k(
1
q − 2

p )‖g‖L p (3.5)

for 1 ≤ p ≤ q ≤ ∞. Indeed, we need only note that 2 j( 1p − 1
q ) − k

q ≤ 2( j + k) +
k( 1q − 2

p ) because j ≥ −k and 1
p − 1

q − 1 < 0.
We now consider φk(r)∂tEtP j g. Note that

∂tEt g(r , x3) =
∫

ei(
r2+t2

2 ξ1+x3ξ2)
(

tξ1EN (tr |ξ |) + r |ξ |E ′
N (tr |ξ |))ĝ(ξ)dξ. (3.6)

Using (3.2), we can handle φk(r)∂tEtP j g similarly as before. In fact, since |tξ1| � 2 j

and r |ξ | ∼ 2k+ j , we see

∥
∥
∥φk(r)∂tEtP j g

∥
∥
∥
Lq
r ,x3

� 2−(N−2)( j+k)2k(
1
q − 2

p )
(2 j+k + 2 j )‖g‖L p .

Hence, combining this and (3.5) with Lemma 2.3, we get (3.4) for k ≥ −2.
We now consider the case k < −2. We first claim that

‖φk(r)EtP j g‖Lq
r ,x3,t

� 2−(N−2)( j+k)2k(
2
q − 2

p )‖g‖L p . (3.7)

We use the transformation (2.8). By (2.9) we have | ∂(y1,y2,τ )
∂(r ,x3,t)

| ∼ 1. Therefore,

‖φk(r)EtP j g‖Lq
r ,x3,t

�
( ∫ ∣

∣
∣φk(r(y, τ ))K̃ (·, τ ) ∗ g(y)

∣
∣
∣

q
dydτ

) 1
q

,
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where

K̃ (y, τ ) =
∫

eiy·ξφ j (ξ)EN (τ |ξ |)dξ.

Note that τ ∼ 2k . Changing τ �→ 2kτ and ξ �→ 2 jξ , using (3.2) and integration
by parts, we have |K̃ (y, 2kτ)| ≤ C22 j (1 + 2 j |y|)−M2−N ( j+k) for 1 ≤ M ≤ 4 and
1 < τ < 2. Young’s convolution inequality gives

‖φk(r)EtP j g‖Lq
r ,x3,t

� 2−N ( j+k)22 j(
1
p− 1

q )‖g‖L p .

Thus, we get (3.7). As for φk(r)∂tEtP j g, we use (3.6) and repeat the same argument

to see ‖φk(r)∂tEtP j g‖Lq
r ,x3,t

� 2−N ( j+k)2 j22 j(
1
p − 1

q )‖g‖L p since |tξ1| � 2 j , r |ξ | ∼
2k+ j , and k < −2. Thus, we get

‖φk(r)∂tEtP j g‖Lq
r ,x3,t

� 2−(N−2)( j+k)2k2k(
2
q − 2

p )‖g‖L p .

Putting (3.7) and this together, by Lemma 2.3 we obtain (3.4) for k < −2. ��
By (3.1) and Lemma 3.3, to prove Propositions 2.1 and 2.2 we only have to consider

contributions from the remaining C±
j |trξ |− 1

2− j e±i |trξ |, j = 0, . . . , N . To this end, it

is sufficient to consider the major term C±
0 |trξ |− 1

2 e±i |trξ | since the other terms can
be handled similarly. Furthermore, by reflection t → −t it is enough to deal with

|trξ |− 1
2 ei |trξ | since the estimate (3.3) clearly holds with the interval [1, 2] replaced

by [−2,−1].
Let us set

Ut g(r , x3) =
∫

ei(
r2+t2

2 ξ1+x3ξ2+tr |ξ |)|rξ |− 1
2 ĝ(ξ)dξ. (3.8)

To complete the proof of Proposition 2.1, we need to show

∥
∥
∥ sup
1<t<2

|φk(r)UtPj g|
∥
∥
∥
Lq
r ,x3

�
{

2( j+k)( 3
2p − 1

2q − 1
2+ε)+ k

q − 2k
p ‖g‖L p , k ≥ 2,

2( j+k)( 3
2p − 1

2q − 1
2+ε)+ 2k

q − 2k
p ‖g‖L p , k ≤ −2.

(3.9)

Using Lemma 2.3, the matter is reduced to obtaining estimates for φk(r)UtPj g and
φk(r)∂tUtPj g in Lq

r ,x3,t . Note that

∂tUtPj g(r , x3, t) =
∫

ei(
r2+t2

2 ξ1+x3ξ2+tr |ξ |)̂Pj g(ξ)
tξ1 + r |ξ |
|rξ |1/2 dξ. (3.10)

By the Mikhlin multiplier theorem one can easily see

‖φk(r)∂tUtPj g‖Lq
r ,x3,t

�

⎧

⎨

⎩

2 j+k‖φk(r)UtPj g‖Lq
r ,x3,t

, k ≥ 0,

2 j‖φk(r)UtPj g‖Lq
r ,x3,t

, k < 0,
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where Lq
r ,x3,t denotes Lq

r ,x3,t (R
2 × [1, 2]). Therefore, by Lemma 2.3 it is sufficient

for (3.9) to prove that

‖φk(r)UtPj g‖Lq
r ,x3,t

�
{

2( j+k)( 3
2p − 3

2q − 1
2+ε)+ k

q − 2k
p ‖g‖L p , k ≥ 2,

2( j+k)( 3
2p − 3

2q − 1
2+ε)+ 3k

q − 2k
p ‖g‖L p , k ≤ −2.

We first consider the case k ≥ 2. As before, we use the change of variables (2.8).
Since |det ∂(y1,y2,τ )

∂(r ,x3,t)
| ∼ 22k from (2.9) and since τ = r t and 1 < t < 2, we have

∥
∥φk(r)UtPj g

∥
∥
Lq
r ,x3,t

� 2− 2k
q − j+k

2
∥
∥eiτ

√−�P j g
∥
∥
Lq
y,τ (R2×[2k−1,2k+2])

since |rξ | ∼ 2 j+k . Thus, Corollary 3.2 gives the desired estimate (3.9) for k ≥ 2.
The case k ≤ −2 can be handled in the exactly same manner. The only difference is
that |det ∂(y1,y2,τ )

∂(r ,x3,t)
| ∼ 1. Thus, the desired estimate (3.9) immediately follows from

Corollary 3.2.

3.3 Proof of Proposition 2.2

As mentioned already, the determinant of the Jacobian ∂(y1, y2, τ )/∂(r , x3, t) may
vanish when |k| ≤ 1. So, we need additional decomposition depending on |r − t |.
We also make decomposition in ξ depending on |ξ |−1ξ1 + 1 to control the size of the
multiplier |tξ1 + r |ξ || in a more accurate manner (for example, see (3.22)).

For m ≥ 0 let us set

ψm(ξ) = φ
(

2m
∣
∣|ξ |−1ξ1 + 1

∣
∣
)

,

ψm(ξ) = 1 −
∑

0≤ j<m

ψ j (ξ),

so that
∑

0≤k<m ψk + ψm = 1. We additionally define

Pj,mg = (φ jψmĝ)
∨, Pm

j g = (φ jψ
m ĝ)∨.

So it follows that
Pj =

∑

0≤k<m

Pj,k + Pm
j . (3.11)

Proposition 3.4 Let us set φk,l(r , t) = φk(r)φ(2l |r − t |). Let j ≥ −1 and k =
−1, 0, 1. Suppose (2.6) holds. Then, for ε > 0 we have

‖φk,lUtPj,mg‖Lq
r ,x3,t

� 2− j
2 2

l
q 2(m2 −l)( 1

p + 3
q −1)+ 3 j

2 ( 1
p − 1

q )+ε j‖g‖L p . (3.12)

In order to prove Proposition 3.4, wemake the change of variables (2.8). Since |k| ≤
1, we need only to consider (r , t) contained in the set [2−1 −10−2, 22 +102]× [1, 2].
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Set

Sl = {

(y1, y2, τ ) : 2−2l−1 ≤ |y1 − τ | ≤ 2−2l+1, y1, τ ∈ [2−3, 23]}.

By (2.8) y1−τ = (r − t)2/2. From (2.9) we note |det ∂(y1,y2,τ )
∂(r ,x3,t)

| ∼ 2−l if (y1, τ ) ∈ Sl .
Thus, changing variables (r , x3, t) → (y1, y2, τ ) we obtain

‖φk,lUtPj h‖Lq
r ,x3,t

� 2− 1
2 j2

l
q ‖eiτ

√−�Pj h‖Lq
y,τ (Sl )

. (3.13)

Therefore, for (3.12) it is sufficient to show

‖eiτ
√−�Pj,mg‖Lq

y,τ (Sl )
� 2(m2 −l)( 1

p + 3
q −1)+ 3 j

2 ( 1
p − 1

q )+ε j‖g‖L p (3.14)

for p, q satisfying (2.6). For the purpose we need the following lemma, which gives
an improved L2 estimate thanks to restriction of the integral over Sl . Indeed, one can
remove the localization y1, τ ∈ [2−3, 23].
Lemma 3.5 Let Dl = {(x1, x2, t) : 2−2l ≤ |x1 − t | ≤ 2−2l+1}. Then, we have

∥
∥
∥
∥

∫

ei(x ·ξ+t |ξ |)ĝ(ξ)ψm(ξ)dξ

∥
∥
∥
∥
L2
x,t (Dl )

� 2
m
2 −l‖g‖L2 . (3.15)

Proof We write x · ξ + t |ξ | = x1(ξ1 + |ξ |) + x2ξ2 + (t − x1)|ξ |. Then, changing
variables (x, t − x1) → (x, t) and ξ → η := L(ξ) = (ξ1 + |ξ |, ξ2), we see
∥
∥
∥
∥

∫

ei(x ·ξ+t |ξ |)ĝ(ξ)ψm(ξ)dξ

∥
∥
∥
∥
L2
x,t (Dl )

≤
∥
∥
∥

∫

ei(x ·η+t |L−1η|) ĥ(L−1η)

|det JL(η)|dη

∥
∥
∥
L2
x,t (R

2×Il )

where ĥ(ξ) = ĝ(ξ)ψm(ξ) and Il = [−2−2l+1,−2−2l ] ∪ [2−2l , 2−2l+1]. By
Plancherel’s theorem in the x−variable and integrating in t , we have

∥
∥
∥
∥

∫

ei(x ·ξ+t |ξ |)ĝ(ξ)ψm(ξ)dξ

∥
∥
∥
∥
L2
x,t (Dl )

≤ C2−l
∥
∥
∥
ĥ(L−1·)
|det JL|

∥
∥
∥
L2
x

.

A computation shows det JL = 1 + |ξ |−1ξ1, so |det JL| ∼ 2−m on the support of ĥ.
Thus, by changing variables and Plancherel’s theorem we get (3.15). ��

We also use the following elementary lemma.

Lemma 3.6 For any 1 ≤ p ≤ ∞, j , and m, we have

‖(φ jψmĝ )∨‖L p � ‖g‖L p , ‖(φ jψ
mĝ )∨‖L p � ‖g‖L p .

123



Lp − Lq estimates for the circular maximal operator… 1539

Proof Since ψm − ψm+1 = ψm , it suffices to prove the second inequality only. By
Young’s inequality we need only to show ‖(φ jψ

m)∨‖L1 � 1. By scaling it is clear
that ‖(φ j (ξ)ψm(ξ))∨‖L1 = ‖(φ0(ξ)ψm(ξ))∨‖L1 . Note that m(ξ) := φ0(ξ)ψm(ξ)

is supported in a rectangular box with dimensions 2−m × 1. So, m(ξ1, 2−mξ2) is
supported in a cube of side length ∼ 1 and it is easy to see ∂α

ξ (m(ξ1, 2−mξ2)) is
uniformly bounded for any α. This gives ‖(m(·, 2−m ·))∨‖1 � 1. Therefore, after
scaling we get ‖(φ0(ξ)ψm(ξ))∨‖L1 � 1. ��
Proof of 3.14 In view of interpolation the estimate (3.14) follows for p, q satisfying
(2.6) if we show the next three estimates:

‖eiτ
√−�Pj,mg‖L2

y,τ (Sl ) � 2
m
2 −l‖g‖L2 , (3.16)

‖eiτ
√−�Pj,mg‖L∞

y,τ (Sl ) � 2
3 j
2 ‖g‖L1 , (3.17)

‖eiτ
√−�Pj,mg‖L4

y,τ (Sl ) � 2ε j‖g‖L4 .

The first estimate follows from Lemma 3.5. Corollary 3.2 and Lemma 3.6 give the
other two estimates. ��

It is possible to improve the estimate (3.12) when j > m.

Proposition 3.7 Let j ≥ −1 and k = −1, 0, 1. Suppose 1 ≤ p ≤ q, 1/p + 1/q ≤ 1,
and j > m, then

‖φk,lUtP j,mg‖Lq
r ,x3,t

� 2− j
2 2

l
q 2

2
q (m2 −l)+ j−m

2 (1− 1
p − 1

q )+ 3 j
2 ( 1

p − 1
q )‖g‖L p .

Proof By (3.13) it is sufficient to show

‖eiτ
√−�Pj,mg‖Lq

y,τ (Sl )
� 2

2
q (m2 −l)+ j−m

2 (1− 1
p − 1

q )+ 3 j
2 ( 1

p − 1
q )‖g‖L p

for p, q satisfying 1 ≤ p ≤ q, 1/p + 1/q ≤ 1. In fact, by interpolation with the
estimates (3.16) and (3.17) we only have to show

‖eiτ
√−�Pj,mg‖L∞

y,τ (Sl ) � 2
j−m
2 ‖g‖L∞ . (3.18)

Let us set

K j,m
t (x) = 1

(2π)2

∫

ei(x ·ξ+t |ξ |)φ j (|ξ |)ψm(ξ)dξ.

Then eiτ
√−�Pj,mg = K j,m

τ ∗ g. Therefore, (3.18) follows if we show

‖K j,m
t ‖L1

x
� 2

j−m
2 (3.19)
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when t ∼ 1. Note that |ξ2|/|ξ | = √
1 − ξ1/|ξ |√1 + ξ1/|ξ | � 2−m

2 if ξ ∈ suppψm .
So, suppψm is contained in a conic sector with angle ∼ 2−m

2 . Let S be a sector

centered at the origin in R
2 with angle ∼ 2− j

2 and φS be a cut-off function adapted
to S. Then, by integration by parts it follows that

∥
∥
∥

∫

ei(x ·ξ+t |ξ |)φ j (|ξ |)φS(ξ)dξ

∥
∥
∥
L1
x

� 1

if t ∼ 1. (See, for example, [8]). Now (3.19) is clear since the support of ψm can be

decomposed into as many as C2
j−m
2 such sectors. ��

Finally, we prove Proposition 2.2 making use of Propositions 3.4 and 3.7. We recall
(2.2) and (3.1). As mentioned before, by Lemma 3.3 we need only to consider Ut (see
(3.8)) and it is sufficient to show

∥
∥ sup
1<t<2

|φk(r)UtPj g|
∥
∥
Lq
r ,x3

� 2
1
2 ( 3

p − 1
q −1) j+ε j‖g‖L p (3.20)

for p, q satisfying p ≤ q, 1/p + 1/q < 1 and 1/p + 2/q > 1.

Proof of 3.20 Let us set φl(·) = 1 − ∑l−1
j=0 φ(2 j ·) and φl

k(r , t) = φk(r)φl(|r − t |).
Then, we decompose

φk(r) =
∑

0≤l≤ j/2

φk,l(r , t) +
∑

j/2<l< j

φk,l(r , t) + φ
j
k (r , t).

Combining this with (3.11) and using
∑

j
2<l< j φk,l + φ

j
k ≤ φ

[ j/2]−1
k , by the triangle

inequality we have

∥
∥ sup
1<t<2

|φk(r)UtPj g|
∥
∥
Lq ≤

5
∑

i=1

Si ,

where

S1 =
∑

0≤l≤ j/2

∑

0≤m≤l−1

∥
∥ sup
1<t<2

φk,l |UtPj,mg|
∥
∥
Lq , S2 =

∑

0≤l≤ j/2

‖ sup
1<t<2

φk,l |UtP l
j g|‖Lq ,

S3 =
∑

j
2 <l< j

∑

0≤m≤ j−1

‖ sup
1<t<2

φk,l |UtPj,mg|‖Lq , S4 =
∑

0≤m≤ j−1

‖ sup
1<t<2

φ
j
k |UtPj,mg|‖Lq ,

S5 = ‖ sup
1<t<2

φ
[ j/2]−1
k |UtP j

j g|‖Lq .

The proof of (3.20) is now reduced to showing

Si � 2
1
2 ( 3

p − 1
q −1) j+ε j‖g‖L p , 1 ≤ i ≤ 5, (3.21)
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for p, q satisfying p ≤ q, 1/p + 1/q < 1 and 1/p + 2/q > 1.
Before we start the proof of (3.21), we briefly comment on the decomposition Si ,

i = 1, . . . , 5. As for S4 and S5, which are easier to handle, the sizes of r − t and
|ξ |−1ξ1 + 1 are sufficiently small on the supports of the associated multipliers, so
we can remove the dependence of t by an elementary argument. For S1, S2, and S3,
we use Lemma 2.3 combined with (3.10) to control the maximal operators. Different
magnitudes of contribution come from ∂tφk,l = O(2l) and |tξ1 + r |ξ ||, so we need to
compare them. Writing tξ1 + r |ξ | = t

(|ξ |−1ξ1 + 1
) + (r − t), we note

|tξ1 + r |ξ || � 2 j max{2−m, 2−l}. (3.22)

The decompositions in S1, S2, and S3 are made according to comparative sizes of
∂tφk,l = O(2l) and |tξ1 + r |ξ || in terms of l,m, and j .

We first consider S1. Using Lemma 2.3, we need to estimate φk,lUtPj,mg and
∂t (φk,lUtPj,mg) in Lq

r ,x3,t (R
2 × [1, 2]). Note that ∂tφk,l = O(2l) and 2l � 2 j−m .

Thus, recalling (3.10), we apply Lemma 2.3 and the Mikhlin multiplier theorem to
get

S1 �
∑

0≤l≤ j/2

l−1
∑

m=0

2
j−m
q

∥
∥φk,lUtPj,mg

∥
∥
Lq .

Thus, by Proposition 3.4 it follows that

S1 � 2− j
2+ j

q + 3 j
2 ( 1

p − 1
q )+ε j

∑

0≤l≤ j/2

2l(1−
1
p − 2

q )
l−1
∑

m=0

2
m
2 ( 1

p + 1
q −1)‖g‖L p .

Since 1/p + 1/q − 1 < 0 and 1/p + 2/q > 1, we obtain (3.21) with i = 1.
We can show the estimate (3.21) with i = 2 in the same manner. As before, since

∂tφk,l = O(2l) and 2l � 2 j−l , using (3.22), Lemma 2.3, and the Mikhlin multiplier
theorem, we have

S2 �
∑

0≤l≤ j/2

2
j−l
q

∥
∥φk,lUtP l

j g
∥
∥
Lq .

Thus, by (3.13) and Theorem 3.1, we have S2 �
∑

0≤l≤ j
2
2− j

2 2
j
q + 3 j

2 ( 1
p − 1

q )+ ε
2 j‖g‖L p ,

which gives (3.21) with i = 2.
We nowconsider S3, whichwe handle as before. Since j < 2l, 2 j max{2−m, 2−l} ≤

2l if l + m ≥ j . Similarly, 2 j−m ≥ 2 j max{2−m, 2−l} and 2 j−m ≥ 2l if l + m < j .
Using (3.22) and (3.10), we see

S3 �
∑

j/2<l< j

(
∑

j−l≤m≤ j−1

2
l
q ‖φk,lUtPj,mg‖Lq +

∑

0≤m< j−l

2
j−m
q ‖φk,lUtPj,mg‖Lq

)
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Since 1/p + 2/q > 1, using Proposition 3.7, we get (3.21) for i = 3.
We handle S4 and S5 in an elementary way without relying on Lemma 2.3. Instead,

we can control S4 and S5 more directly. Concerning S4 we claim that

S4 � 2
1
2 ( 3

p − 1
q −1) j‖g‖L p (3.23)

if 5/q > 1 + 1/p and 2 ≤ p ≤ q ≤ ∞. This clearly gives (3.21) with i = 4 for p, q
satisfying p ≤ q, 1/p + 1/q < 1 and 1/p + 2/q > 1. We note that

|φ j
kUtPj,mg(r , x3)| � 2− 1

2 j
∣
∣
∣φ

j
k

∫

ei2
j (r2ξ1+x3ξ2+r2|ξ |)m(ξ)φ0(ξ)ψm(ξ) ̂g(2− j ·)(ξ)dξ

∣
∣
∣,

where

m(ξ) = ei2
j ( t

2−r2
2 ξ1+(t−r)r |ξ |)|ξ |− 1

2 φ̃0(ξ),

and φ̃0 is a smooth function supported in [−π, π ]2 such that φ̃0φ0 = 1. If (r , t) ∈
suppφ

j
k , then |t−r | � 2− j . Thus, |∂α

ξ m(ξ)| � 1 for anyα.We remove the dependence
of t by using a bound on the coefficient of Fourier series, not the Sobolev embedding.
Expanding m into Fourier series on [−π, π ]2 we have m(ξ) = ∑

k∈Z2 Ck(r , t)eik·ξ
while |Ck(r , t)| � (1 + |k|)−N . Since 1 < t < 2, the estimate (3.23) follows after
scaling ξ → 2 jξ if we obtain

‖RPj,mg‖Lq
r ,x3 ([2−2,23]×R) � 2

1
2 ( 3

p − 1
q ) j‖g‖L p ,

where

Rg(r , x3) =
∫

ei(r
2ξ1+x3ξ2+r2|ξ |)ĝ(ξ)dξ.

When q = 2, changing variables r2 → r and following the argument in the proof
of Lemma 3.5 we have ‖RPj,mg‖L2

r ,x3
([2−2,23]×R) � 2m/2‖g‖L2 . On the other hand,

(3.18) gives ‖RPj,mg‖L∞
r ,x3

([2−2,23]×R) � 2( j−m)/2‖g‖L∞ . Interpolation between
these two estimates gives

‖RPj,mg‖Lq
r ,x3 ([2−2,23]×R) � 2

m
q + j−m

2 (1− 2
q )‖g‖Lq

for 2 ≤ q ≤ ∞. Since the support P̂j,mg(ξ) is contained in a rectangular region of
dimensions 2 j × 2 j−m

2 , by Bernstein’s inequality we have

‖R j
mg‖Lq

r ,x3 ([2−2,23]×R) � 2 j( 2
p − 3

q )+m( 5
2q − 1

2− 1
2p )‖g‖L p

for 2 ≤ p ≤ q ≤ ∞. Since 5/q > 1 + 1/p, this proves the claimed estimate (3.23).
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Finally, we show (3.21) with i = 5. Changing variables (ξ1, ξ2) → (2 jξ1, ξ2), we
observe

φ
[ j/2]−1
k |UtP j

j g(r , x3)| � 2
j
2 φ

[ j/2]−1
k

∣
∣
∣

∫

ei(
(r−t)2

2 2 j ξ1+x3ξ2)m(ξ)
̂P j

j g(2
jξ1, ξ2)dξ

∣
∣
∣,

where

m̃(ξ) = ei2
j r t(|(ξ1,2− j ξ2)|−ξ1)|(ξ1, 2− jξ2)|− 1

2 φ̃0(|(ξ1, 2− jξ2)|)ψ j−1(2 jξ1, ξ2).

Note that supp m̃ ⊂ {ξ1 ∈ [2−1, 22], |ξ2| ≤ 22}. Since |∂α
ξ m(ξ)| � 1

for any α, expanding m̃ into Fourier series on [−2π, 2π ]2 we have m̃(ξ) =
∑

k∈Z2 Ck(r , t)ei2
−1k·ξ while |Ck(r , t)| � (1 + |k|)−N . Hence, similarly as before,

changing variables (ξ1, ξ2) → (2− jξ1, ξ2), to show (3.21) with i = 5 it is sufficient
to obtain

∥
∥
∥
∥

sup
1<t<2

P j
j g

( (r − t)2

2
, x3

)
∥
∥
∥
∥
Lq
r ,x3 ([2−2,23]×R)

� 2
1
2 ( 3

p − 1
q ) j‖g‖L p (3.24)

for 1 ≤ p ≤ q ≤ ∞. Clearly, the left hand side is bounded by ‖P j
j g(x1, x3)‖Lq

x3 (L∞
x1

).

The Fourier transform ofP j
j g is supported on the rectangle {ξ1 ∈ [2 j−1, 2 j+2], |ξ2| ≤

2 j+2}. Thus, using Bernstein’s inequality in x1, we get

∥
∥
∥
∥

sup
1<t<2

P j
j g

( (r − t)2

2
, x3

)
∥
∥
∥
∥
Lq
r ,x3 ([2−2,23]×R)

� 2− j
2+ j

q ‖P j
j g‖Lq

for 1 ≤ q ≤ ∞. Another use of Bernstein’s inequality gives (3.24) for 1 ≤ p ≤ q ≤
∞. This completes the proof of (3.20). ��
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