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Abstract

L? boundedness of the circular maximal function My on the Heisenberg group
H' has received considerable attentions. While the problem still remains open, L?
boundedness of My on Heisenberg radial functions was recently shown for p > 2
by Beltran et al. (Ann Sc Norm Super Pisa CI Sci. https://doi.org/10.2422/2036-2145.
202001-006, 2021). In this paper we extend their result considering the local maximal
operator My which is defined by taking supremum over 1 < ¢ < 2. We prove L?—L4
estimates for My on Heisenberg radial functions on the optimal range of p, g modulo
the borderline cases. Our argument also provides a simpler proof of the aforementioned
result due to Beltran et al.

Mathematics Subject Classification 42B25 - 22E25 - 35S30

1 introduction

For d > 2 the spherical maximal function is given by

1

Mupa f(x) = sup o (5T

t>0

/ fx —ty)do(y)],
Snfl

where SY~! c R is the (d — 1)-dimensional sphere centered at the origin and do is
the surface measure on S?~!. When d > 3, it was shown by Stein [21] that Mpa f
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is bounded on L? if and only if p > ddTl' The case d = 2 was later settled by
Bourgain [5]. An alternative proof of Bourgain’s result was subsequently found by
Mockenhaupt, Seeger, Sogge [11], who used a local smoothing estimate for the wave

operator. We now consider the local maximal operator

Mpa f(x) = sup

I<r<2

fx —ty)do(y)|.
sd—1

As is easy to see, the maximal operator Mpa can not be bounded from L? to L4
unless p = q. However, My« is bounded from L? to L4 for some p < g thanks to
the supremum taken over the restricted range [1, 2]. This phenomenon is called L”
improving. Almost complete characterization of L? improving property of Mp> was
obtained by Schlag [17] except for the endpoint cases. A different proof which is based
on LP—L{, smoothing estimate for the wave operator was also found by Schlag and
Sogge [18]. They also proved L”—L4 boundedness of M« ford > 3 which is optimal
up to the borderline cases. Most of the left open endpoint cases were settled by the
second author [8] but there are some endpoint cases where L”—L? estimate remains
unknown though restricted weak type bounds are available for such cases. There are
results which extend the aforementioned results to variable coefficient settings, see
[18, 19]. Also, see [1, 4, 14] and references therein for recent extensions of the earlier
results.

The analogous spherical maximal operators on the Heisenberg group H" also have
attracted considerable interests. The Heisenberg group H” can be identified with R x
R under the noncommutative multiplication law

(x, x2n4+1) * (¥, Yon+1) = (X + ¥, X2n4+1 + Y2n+1 + X - Ay),

where (x, x2,41) € R¥ x R and A is the 2n x 2n matrix given by

A 0 -1,
L, 0 /)
The natural dilation structure on H”" is 7(x, xp,+1) = (fx, t2x2n+1). Abusing the
notation, since there is no ambiguity, we denote by do the usual surface measure

of S*"~! x {0}. Then, the dilation do; of the measure do is defined by (f, do;) =
(f(t-),do). Thus, the average over the sphere is now given by

[ doy(x, xop41) = /2 f @ =1y, Xongy — 1 - Ay)do(y).
S
We consider the associated local spherical maximal operator

My f(x, x2n41) = sup | f *mdor(x, xont1)] .

1<r<2

Similarly, the global maximal operator My is defined by taking supremum over
t > 0. As in the Euclidean case, L” boundedness of My is essentially equivalent to
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that of My (for example, see [2] or Section 2.5). The spherical maximal operator
on H" was first studied by Nevo and Thangavelu [13]. It is easy to see that My is

bounded on L” only if p > 23ﬁ 7 by using Stein’s example ([21]):

B 1
fx, xong1) = x| logmfbo(x,mnﬂ),

where ¢ is a cutoff function supported near the origin. For n > 2, L? boundedness
of My on the optimal range was independently proved by Miiller and Seeger [10],
and by Narayanan and Thangavelu [12]. Furthermore, for n > 2, Roos, Seeger and
Srivastava[15] recently obtained the complete L”—LY estimate for My except for
some endpoint cases. Also see [7] for related results.

However, the problem still remains open when n = 1.

Definition We say a function f : H' — C is Heisenberg radial if f(x,x3) =
f(Rx, x3) for all R € SO(2).

Beltran, Guo, Hickman and Seeger [2] obtained L? boundedness of My on the
Heisenberg radial functions for p > 2. In the perspective of the results concerning the
local maximal operators [8, 15, 17, 18], it is natural to consider L”—L4 estimate for
My . The main result of this paper is the following which completely characterizes L?
improving property of My on Heisenberg radial function except for some borderline
cases.

Theorem 1.1 Let Py = (0,0), Py = (1/2,1/2), and P, = (3/7,2/7), and let T be
the closed region bounded by the triangle A PyP) Py. Suppose (1/p, 1/q) € {Py} U
(T\(P1 P> U PyP)). Then, the estimate

1M fllg S 1 fllze (1.1)

holds for all Heisenberg radial function f. Conversely, if (1/p,1/q) ¢ T, then the
estimate fails.

Though the Heisenberg radial assumption significantly simplifies the structure of
the averaging operator, the associated defining function of the averaging operator
is still lacking of curvature properties. In fact, the defining function has vanishing
rotational and cinematic curvatures at some points, see [2] for a detailed discussion.
This increases the complexity of the problem. To overcome the issue of vanishing
curvatures, Beltran et al. [2] used the oscillatory integral operators with two-sided
fold singularities and the variable coefficient version of local smoothing estimate [3]
combined with additional localization.

The approach in this paper is quite different from that in [2]. Capitalizing on the
Heisenberg radial assumption, we make a change of variables so that the averaging
operator on the Heisenberg radial function takes a form close to the circular average,
see (2.1) below. While the defining function of the consequent operator still does
not have nonvanishing rotational and cinematic curvatures, via a further change of
variables we can apply the L”—L4 local smoothing estimate (see, Theorem 3.1 below)
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in a more straightforward manner by exploiting the apparent connection to the wave
operator (see (2.2) and (2.3)). Consequently, our approach also provides a simplified
proof of the recent result due to Beltran et al. [2]. See Sect. 2.5.

Even though we utilize the local smoothing estimate, we do not need to use the
full strength of the local smoothing estimate in d = 2 since we only need the sharp
LP—-L1 ]local smoothing estimates for (p, ¢) near (7/3, 7/2). Such estimates can also
be obtained by interpolation and scaling argument if one uses the trilinear restriction
estimates for the cone and the sharp local smoothing estimate for some large p (for
example, see [9]).

The estimate (1.1) remains open when (1/p, 1/q) € (P{P> U PyP>)\{Py, Py}.
However, we expect that those borderline cases should be true. Most of the corre-
sponding endpoint estimates for the circular maximal function (in R?) are known to
be true [8], but to implement the approach in [8] we need the local smoothing esti-
mate without e-loss regularity, which we are not able to establish yet even under the
Heisenberg radial assumption.

We close the introduction showing the necessity part of Theorem 1.1.

Optimality of p, q range. We show (1.1) implies (1/p, 1/q) € T, that is to say,

@p=<gq, 1+1/g>3/p, (¢)3/q>2/p.

To see (a), let fg be the characteristic function of a ball of radius R >> 1, centered at 0.
Then, My fr is also supported in a ball B of radius ~ R and My fgr 2 1 on B. Thus,
supp~1 My frll¢/1l fr |l p is finite only if p < g. For (b) let g, be the characteristic
function of a ball of radius r < 1 centered at 0. Then, |Myi g, (x, x3)| = r when
(x, x3) is contained in a cor —neighborhood of {(x, x3) : 1 < |x| < 2, x3 = 0} for a
small constant co > 0. Thus, (1.1) implies r'*1/9 < r3/? which gives 1 +1/q > 3/p
if we let r — 0. Finally, to show (¢) we consider &, which is the characteristic
function of an r —neighborhood of {(x, x3) : |x| = 1,x3 = 0} with » <« 1. Then,
| Mg hy(x, x3)| 2 ¢ > 0 when (x, x3) is in an r—ball centered at 0. Thus, (1.1) gives
r3/9 < r2/P which yields 3/q > 2/p.

The maximal estimate (1.1) for general L? functions has a smaller range of p, ¢g. Let
h, be a characteristic function of the set {(x, x3) : |x1—1| < rZ, |x2| < r, |x3| < r} for
a sufficiently small » > 0. Then My h,(x, x3) ~rif =1 <x; <0, [x2] < cr, |x3] <
cr for a small constant ¢ > 0 independent of 7. Thus, (1.1) implies r!t2/4 < r4/7,
It seems to be plausible to conjecture that (1.1) holds for general f modulo some
endpoint cases as longas 1 +2/g —4/p > 0,3/q > 2/p,and 1/q < 1/p. The range
of p, q is properly contained in T.

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1 while assuming Proposition 2.1 and Proposition
2.2 (see below), which we show in the next section.
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2.1 Heisenberg radial function

Since f is a Heisenberg radial function, we have f(x, x3) = fo(|x]|, x3) for some fp.
Let us set

2(s.2) = fo(W2s,2), s=0.

Then, it follows f(x,x3) = g(|x|2/2,x3). Since f xp dos(r,0,x3) = ff(r —

2442
ty1, —ty2, x3 — tryz)do (y) = [ ("= — tryi, x3 — tryz)do (y), we have

r? 41
fsmdoy(r,0,x3) = g *datr<T,x3>. 2.1

Let us define an operator 4, by

Aig(r, x3) =

2.2 A R
T /Rz ol + §1+X3§2)da(tr$)g(§)d§, 2.2)

Using Fourier inversion, we have
fHmdo(r, 0, x3) = Ag(r, x3). (2.3)
Since f *p doy is also Heisenberg radial,! || My 1|2 = [ |Myn f(r, 0, x3)|9rdrdxs.

A computation shows || f|l,» = llgll,» . Therefore, we see that the estimate (1.1)
X,x3 r.x3
is equivalent to

1
|re sup |Awgl] e < Clgllp (2.4)
l<t<2 3
In what follows we show (2.4) holds for p, g satisfying
p=q.3/p—1/qg<1, 1/p+2/q>1. (2.5)

Then, interpolation with the trivial L>° estimate proves Theorem 1.1.

2.2 Decomposition

Let ¢ denote a positive smooth function on R supported in [1 — 10_3, 2+1073] such
that Zﬁ7w¢(s/21) = 1lfors > 0. We set ¢;(s) = ¢(s/2/). To show (2.4) we
decompose A; as follows:

Ag(r,x3) =Y ge(r)Aig(r, x3).

keZ

! This is true because SO(2) is an abelian group. However, SO(n) is not commutative in general, so the
property is not valid in higher dimensions.
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1526 J.Lee,S. Lee

We break g via the Littlewood—Paley decomposition and try to obtain estimates
for each decomposed pieces. For the purpose we denote ¢ j = >, _ j e and ¢>; =
> o= P and define the projection operators

Pig&) =, (ENTE), P-;g@) = (ENZE&).

Our proof of (2.4) mainly relies on the following two propositions, which we prove
in Sect. 3.

Proposition 2.1 Let |k| > 2 and j > —k. Suppose
p=<q,l/p+1/g=<1,1/p+3/qg>1. (2.6)

Then, for € > 0 we have

GH(E— £ —t+eo+E-2
2 2p 22 " P , k>2,
) sup 1o (APl |\ S (2L 1y )+&_E”g”w 3
l<t<2 Ly« 2 J 2p 2q 2 € q P ”g“va k < _2
2.7
The estimate (2.7) continues to be valid for the case k = —1, 0, 1. However, the

range of p, g for which (2.7) holds gets smaller.

Proposition2.2 Let j > —1 andk = —1,0, 1. Suppose p < q, 1/p+1/q < 1 and
1/p+2/q > 1. Then, for € > 0 we have

We frequently use the following elementary lemma (for example, see [8]) which
plays the role of the Sobolev imbedding.

sup ¢k (r)A/Pjgl

1<t<2

q
Lr‘x3

Lemma 2.3 Let I be an interval and let F be a smooth function defined on R" x I.
Then, for 1 < p < oo,

(=D 1

_1 -
sup | F (x Oy ey S VP UF M@ty + 1F ey N U ooy

2.3 Proof of (2.4)

We prove (2.4) handling the three cases k < —2, |k| < 1, and k > 2, separately. We
first consider a change of variables

r2 412
(r,x3,t) = V1, y2,7) = > ,X3,71 ), (2.8)
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which plays an important role in what follows. Note that

a 9 b
PRACIERE IR N R 2.9)
a(r, x3,1)

In order to show (2.4), we shall use the change of variables (2.8) to apply the local
smoothing estimate to the averaging operator A; (see Sect. 3.1). Since 1 < ¢ < 2,
|det d(y1, y2, T)/3(r, x3,1)| = |r? — t?| ~ max(2%*, 1) for |k| > 2. Thus, the cases
|k| > 2 can be handled directly by using local smoothing estimates for the half wave
propagator. However, the determinant of the Jacobian may vanish when |k| < 1. This
requires further decomposition away from the set {r = ¢}. See Sect. 3.3. This is why
we need to consider the three cases separately.

Letus set gy = P-_x g and g¥ = g — P__4g so that g = gx + g*. Then, we break

De (N Ag = P () Argr + o () A g~ (2.10)

We use Propositions 2.1 and 2.2 to obtain the estimate for ¢ (r).4;g*, whereas we
show the estimate for ¢y (r).A; g by elementary means using (2.2).

Casek < -2

We claim that ]
ra Y sup lg(r)Asgl

k§721<t<2

holds provided that p, g satisfy 2/p < 3/q,3/p — 1/g < 1, and (2.6). Thus (2.11)
holds for p, g satisfying (2.5).
We first consider ¢ (r).A; gx. We shall show that

|

holds for I < p < g < oo. We recall (2.2) and note that o, (dAO' (tr&)) is uniformly
P2402
bounded because |r&| < 1. Since suppgr C {& : |§] < C27%} and 8¢ 76—

242
téle%fl , we have ||¢r (r)0: Ar gk llg S 2k lpx (). A&k |l 4 by the Mikhlin multiplier
theorem. Applying Lemma 2.3 to ¢ (r).A; gr, we see that (2.12) follows if we show

S llgllze 2.11)

q
Lr,X3

3k _ 2k
<2477 |gllLe (2.12)

q ~
r,x3

1
ra Sup2 i (r)As gk

1<t<

3k 2k
I () Augill s oy S 29 7 lghor. (2.13)

We now make use of the change of variables (2.8). Since k < —2 and ¢ € [1, 2], we
have | det 22192:9 | ~ | Thus the left hand side of (2.13) is bounded by

a(r,x3,1)

C|ox o1, y2. o) f eV 3(E)do (T6) b (£)dE

LY (R2x[2-1,22])
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Changing variables & — 27k¢ and (y, 1) — (2Fy, 2k7) gives

f e m(&)g (2K (&

<
19e) Argilley, @oxnnan S 27 : LY - (R2x[271.22))

wherem(§) = do (t&)p0(&).Since T ~ 1 and ¢ (£) is a smooth function supported

in the set {& : || < 1}, m(&) is a smooth multiplier whose derivatives are uniformly

bounded. So, the multiplier operator given by m is uniformly bounded from L? (R?)

to L4(R?) for T € [27!, 22]. Thus, via scaling we obtain (2.13) and, hence, (2.12).
Using the triangle inequality and (2.12), we have

3k 2k
< ( > 2. ﬂ)ngnp < lgly
k<-2

roosup Y (e Argil

1<t<2k< 2

Lr X3

because 2/p < 3/q. We now consider ¢ (r).A;g* for which we use Proposition 2.1.
Since

1

ra sup |¢p(r)APigl

I<r<2

1
ra

=2 2

rx3 k<— 2/> —k

1<t<2 k<—2 L;I,X3

and since p, g satisfy3/p —1/q < 1,2/p < 3/q, and (2.6), using the estimate (2.7),

we get

roosup > e Al

l<t<2k< )

3k 2k
S ( > 2 p>||g||p < gl
k<—2

Lr X3

Combining this with the above estimate for g — ¢ (r)A gk gives (2.11) and this
proves the claim.

Casek > 2

In this case we show

i3 sup (ge(r)Arg]

k>2 1<t<2

S llgllze (2.14)

Lr X3

if p<q,3/p—1/g <1, and (2.6) holds. So, we have (2.14) if (2.5) holds.
In order to prove (2.14) we first prove the following.

Lemma2.4 Letk > —1. If [t| < 1and 0 < s < 2%, then
|AP-kgl(V2s,x3) S EY * 1g1(s, x3), (2.15)

where EN (y) = 272¢(1 + 274y,
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Proof We note that
AP1g(W2s,x3) = K x g(s +27'1%, x3),

where

K() = / ¢V p_(8)d0 (1+/25E)dE.

(2m)?

We note 8?[¢<_k(2_k§)3;(2_kt«/2s§)] = 0(1) since s < 2%, Thus, changing
variables € — 27X&, by integration by parts we have |K | < Eliv for any N > 0. Since
lt] < 1and k > —1, we see 5,?’(y1 +2712, yy) < E,ﬁv(yl, y2). Therefore, we get

(2.15). o

Proof of 2.14 We begin by observing a localization property of the operator .4;. From
(2.1) we note that

;’2+t2
2

—try1 C I := 2211 = 1072), 221 (1 + 1072))

for r € supp ¢ if k is large enough, i.e., 27k <1073, Thus, from (2.1) and (2.3) we
see that

i (r)Arg(r, x3) = dr(r) Ar([g1i) (r, x3) (2.16)

where [gli(r, x3) = xy, (r)g(r, x3). Clearly, the intervals I are finitely overlapping
and so are the supports of ¢y. Since p < g, by a standard localization argument it is
sufficient for (2.14) to show

1
ra sup | (r)Agl

1<t<2

S llgllze 2.17)
Lq

rx3

for k > 2.
Using the decomposition (2.10), we first consider ¢y (r).A; gx. Changing variables
r — +/2s, we have

1
ra sup |dp(r)Ar gl

1<t<2

q q
< / m«@(sup |Atgk(@,x3>|> dsdxs.

ng} I<t<2

Since | <t < 2,k > 2,and gy = P-_xg, by Lemma 2.4 |A;gx(v/25,x3)] <
E,ﬁv * |g|(s, x3). Hence,

1 —
ra sup |¢n(r)Asgil <& * gl < 22XV gl, < ligllp-

I<t<2

q
Lr.x3
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1530 J.Lee,S. Lee

The second inequality follows by Young’s convolution inequality and the third is clear
because k > 2 and p < g. We now handle ¢ (r).A; g*. Since

| =X
j=—k

and since 3/p — 1/q < 1, p < g, and (2.6) holds, using the estimate (2.7), we get

Therefore, we get (2.17). O

1
q

risup Ik Agl| (2.18)

1<t<?2

1<t<?2 x3

1
ra -5 lgllpy < lgllp-

2.4 Case |k] <1

To complete the proof of (2.4), the matter is now reduced to obtaining

if p, g satisfy (2.5). In order to show this we use Proposition 2.2. Using the decompo-
sition (2.10), we first consider ¢ (r).A;gx. Since 1 < f < 2 and |k| < 1, by Lemma
2.4 we have ¢ (r)|Ar gr| < Sév % |g|. Hence, it follows that

forl < p<g <o0.
We now consider ¢ (r).A; g*. Note that (2.6) is satisfied if (2.5) holds. Since 3/p —
1/g < 1, by (2.18) and Proposition 2.2 we see

|

taking a small enough € > 0. Therefore we get the desired estimate.

1
ra sup |¢r(r)Agl S lgller, k=-1,0,1

1<t<2 r,X3

1
ra sup |ge(r)Argil |, S ligllp

l<t<2 .3

1 Je3_1_ ;
ro < 32257 el < gl

e

2.5 Global maximal estimate

Using the estimates in this section, one can provide a simpler proof of the result due
to Beltran et al. [2], i.e.,

1
e sup [Arglllpp = Cligly (2.19)

0O<t<oo

for 2 < p < oo. In order to show this we use the following lemma which is a
consequence of Propositions 2.1 and 2.2.
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Lemma 2.5 Let2 < p < 4. Then, for some ¢ > O we have
1 .
|r7 sup [APigl],» <C27Y|gll,. (2.20)
1<t<2 "3

Proof We briefly explain how one can show (2.20). In fact, similarly as before, we
decompose

A;Pig = S1 + 83+ S3 + S4,
where

Si=Y G(APe Si= Y GOAPE Sii= Y H()APg,

k<—j —j<k<-=-2 —1<k<l1

and Sy = A,Pjg — 81 — 8 — 83. Then, the estimate (2.20) follows if we show

||r% SUp;| ;<2 |Se|||L'1}.X} < C2_”j||g||[,, £ =1,2,3,4 for some ¢ > 0. The estimate
for S; follows from (2.12) and summation over k < —j. Using the estimate of the
second case in (2.7), one can easily get the estimate for S. The estimate for S3 is
obvious from Proposition 2.2. By Proposition 2.1 combined with the localization
property (2.16) we can obtain the estimate for S4. However, due to the projection
operator P; we need to modify the previous argument slightly.

From (2.1) and (2.3) we see

r? 412
A:Pig(r, x3) = g(z1, 22)K; S ATV~ =ty do(y)dz,
2.21)

where K; = F~1(¢(27/| - |). Note that |K;| < E’_Vj for any N and k > 2. If
r € supp ¢k, /2z1 ¢ I, and k is large enough, then we have

2
re+t
‘Kf( 2

. . —-N
< 2—(2k+j)N<1 +2J |,-2 —2z1 + 2_k|X3 - Zz|)

2

—try1 — 21, X3 —try2 — zz)‘

for any N since |27 172 — z;| > 2% and |rty| < 2F. Hence it follows that

1 e
177 (M AP; (1 — x108llp, < C27EF DN g, 1< p<oo

forany N. We break A;P; g = A;Pj x5, & + A:Pi(1 — x1,)g. Using the last inequality
and then Proposition 2.1, we obtain
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1532 J.Lee,S. Lee

1
1 P _ , o
141l < (Z||rv¢k<r)A,7>jx]kg||§> + Y 27 N g, S 27V gl

k=2 k>2
for some ¢ > 0 by taking an N large enough. O

Once we have (2.20), using a standard argument which relies on the Littlewood—
Paley decomposition and rescaling (for example, see [2, 5, 16] ) one can easily show
(2.19). Indeed, we break the maximal function into high and lower frequency parts:

sup |Argl < Aow g + -Ahigh 8

O<t<oo

where
Aiow g =sup sup  [AP<_zgl,
l 21<l<21+]
Anigh & = ZSUP sup | A Pr_2gl.
k>0 1 2l<t<2l+1

For A;yy g we claim

sup AP _yg(r, x3)| < Mpag(271r2, x3). (2.22)

21§t<21+1

This gives Ajpy g(r, x3) < Mp2 (27172, x3). Since M2 is bounded on L? for
p>2,for2 < p < oo we get

1
IIV”AzongIL,p,X3 <Cliglp-

We now proceed to prove (2.22). Note that Y° ;27| - |) = ¢1(2¥| - |) and

¢~1 is a smooth function supported on [ 22, 22]. Thus, similarly as in (2.21) we note
that A¢77< 28(r,x3) = [[ gz, 2)K; xdoy 27 (2 4+ 12) — 21, x3 — 22)dz where
Kl F N p-12%| ). Since Kl < 521 for any N, for 2 <t < 21 we see

|AP<—ng(r, x3)| < f g(z1, 22)IE5) % doy (271 — 21, x3 — 22)dz (2.23)

because 2212 < 1 and 5221N = 2741 + 2721y])~2N. Hence, taking an N large
enough, we note that

Q) ta + 27 x| — o)V, 2% <,

2.24
274 (1 4278 x)N, 24 >, @29

&N xdoy(x) < {

provided that 2! <t < 2!*1 Indeed, to show this we only have to consider the case
22l « tr since the other case is trivial. By scaling x — frx we may assume that
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tr = 1. Thus, it is enough to show [ L72(1 + L~ |x — y)™>Ndo(y) < L7'(1 +
L~ Y|x|—=1))~N for L « 1 with an N large enough. However, this is easy to see since
lx =yl = llx| = 1and [ L= (1 + L~ x — y)Vdo () S 1.

Therefore, combining (2.23) and (2.24), one can see

sup | AP-_og(r, x3)| S Mpag(27'r?, x3) + Mag (2712, x3).

2[§t<2[+'

Here 9, denotes the Hardy-Littlewood maximal function on R?. This proves the
claim (2.22) since Mrg < Mp2g.
1
So we are reduced to showing |77 Apien gll,» < Cligll, for p > 2. For the
l‘,X}
purpose it is sufficient to show

I sup  APeglll, S 27Nl (2.25)

2[Sl<21+]

because Apigh g < 342 (X) | Supy </ <ot [AiPr—2gl?)!/P and (3 1 Pe-gl)"”
< ligllp- By scaling, using (2.2), we can easily see the inequality (2.25) is equivalent
to (2.20) while j replaced by k. So, we have (2.25) and this completes the proof of
(2.19).

3 Proof of Propositions 2.1 and 2.2

In order to prove Propositions 2.1 and 2.2, we are led by (2.2) to consider Jg(tré )
for which we use the following well known asymptotic expansion (see, for example,
[20]):

N
do(§) = CTIEI /eI 4 En(ED, 5121 3.1
Jj=0
where Ey is a smooth function satisfying
d* N
|WEN(")| Sro (3.2

for0 < ¢ < 4if r = 1. The expansion (3.1) relates the operator A, to the wave
propagator. After changing variables, to prove Propositions 2.1 and 2.2 we can use the
local smoothing estimate for the wave operator (see Proposition 3.1 below).

3.1 Local smoothing estimate

Let us denote

it/—A _ i(x-E+1|E]) Fy
VR = o /R K Ferde.
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We make use of LP—L4 local smoothing estimate for the wave equation in R

Theorem 3.1 Let j > 0. Suppose (2.6) holds. Then, for € > 0 we have

3(1_1)iae;
<23 =) 3.3)

~

)e”ijf

LY (R2x[1,2])

This follows by interpolating the estimates (3.3) with (p, q) = (2, 2), (1, 00), and
(4, 4). The estimate (3.3) with (p, qg) = (2, 2) is a straightforward consequence of
Plancherel’s theorem and (3.3) with (p, g) = (1, 00) can be shown by the stationary
phase method (for example, see [8]). The case (p, ¢) = (4, 4) is due to Guth et al. [6].

From Theorem 3.1 we can deduce the following estimate via simple rescaling
argument.

Corollary 3.2 Let j > —£. Suppose (2.6) holds. Then, for € > 0 we have

S 2% (%_ql)(“j)*'(g_%)e%(lﬂ) I fllee.

eit«/ —Ar])'
J f Lz‘,(sz[Ze,Z“l])

Proof Changing variables (x, 1) — 2%(x, 1), we see

3¢
_2q

ity=A e
LY, (R2x[2¢,26+1]) ¢ Perif @)

‘eit —Apjf

LY, (R2x[1,2])

Thus, using (3.3) we have

(VD 5 < 3 3(Gg) it
k Lz,f(RZX[ZZ»ZZH]) ~

£ Q) ILe.

So, rescaling gives the desired inequality. O

3.2 Proof of Proposition 2.1

We now recall (2.2) and (3.1). To show Proposition 2.1 we first deal with the contri-
bution from the error part Ey. Let us set

r2+12

5zg(r,x3)=/ei( TEERRIE N (r|E]) (6)dE.

Lemma 3.3 Let j > —k. Suppose (2.6) holds. Then, we have

| sup 1euEPsgl|

1<t<2

—(N=3)(jh) k(=2
_ |2 =3+ G =D gl L, k> =2, 3.4)
N . 3.2 .
Lisy ™ | 2= N=3GH0KG =D el r, k< —2.

Proof We first consider the case k > —2. Using Lemma 2.3, we need to estimate
¢r(r)EPjg and ¢ (r)9:&Pjg in L], (R* x [1,2]). For simplicity we denote
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L‘]

rxat

= Lq X3, t(Rz x [1,2]). We first consider ¢y (r)&;P;g. Changing variables

2 > s, we note that

ok (V25)EPjg(V2s, x3) = P (v/25) / K(s —y1 +27'% x3 — y2) g (1, y2)dy,
where
K(s. u) = 22 / o S8 g (2) By (2714/25 € )

Since s ~ 22k using (3.2), we have |K(s, u)| < 22 (1 4+ 27|(s, u)|)~M2-NU+K) for
1 < M < 4 via integration by parts. Thus, we have i (v/25)KC (s + %, Wlier, <
C2-NUGH22/0=D) for | < ¢ < 2 with a positive constant C. Young’s convolution
inequality gives g (VZD)E P8 (Va5 1)l | 52 N0H0227G70 gl Thus,

reversing s — r2/2, after a simple manipulation we get
for 1 < p < g < oo. Indeed, we need only note that2](— — 37) — = <2(j+k) +

k(1 ——)because] > —kand 1 ———1 < 0.
We now consider ¢y, (r)B,E}P 8. Note that

. 1_2
S 2R g (35)

2402
8t5zg(r,X3)=/e’( # (161 En(tr|€]) + rE|Ely (17 1ED))8(6)dE.  (3.6)

Using (3.2), we can handle ¢ (r)9;&,Pj g similarly as before. In fact, since |£&1 | <2/
and r|€| ~ 2kKH7 | we see

S 2R @I 42T gl

H(ﬁk(”)atgt j8

q N
rr';

Hence, combining this and (3.5) with Lemma 2.3, we get (3.4) for k > —2.
We now consider the case k < —2. We first claim that

low(NEPsgls 270 DUHKG=D gl 3.7)

We use the transformation (2.8). By (2.9) we have |%| ~ 1. Therefore,

1

I¢x(EPj8lLy, S (/ )‘Pk(i’()’, K (. 1) *g(y)’qdydr)q,
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where
K(y,7) = /e"y‘%,»(s)EN(ﬂa)ds.

Note that 7 ~ 2F. Changing 7 +— 2"_ Tand § — 2JE, using (3.2) and integration
by parts, we have |K (y, 257)| < C2%/(1 + 27 |y|) " M2=NG+0 for 1 < M < 4 and
1 < 7 < 2. Young’s convolution inequality gives

CN(j4h)A2i (=1
IeeEPsglLe, 27N GT gL

Thus, we get (3.7). As for ¢y (r)9;£P; g, we use (3.6) and repeat the same argument
. . ! 1 .
0 see ge(aEPgll e S 2 NP2 g s since |t£1] S 27, rlE] ~
r,xs,
2%+J and k < —2. Thus, we get

(N=2)(i k(2-2
IeerdEPiglye, | <27 NPT g .

Putting (3.7) and this together, by Lemma 2.3 we obtain (3.4) for k < —2. O

By (3.1) and Lemma 3.3, to prove Propositions 2.1 and 2.2 we only have to consider
contributions from the remaining Cjiltrér%’jeﬂ"’s‘, j =0,..., N.Tothis end, it
is sufficient to consider the major term Céﬂtré _%ei””é | since the other terms can
be handled similarly. Furthermore, by reflection t — —t it is enough to deal with
[tr& |_%ei|’ "¢l since the estimate (3.3) clearly holds with the interval [1, 2] replaced

by [-2, —1].
Let us set .,
Ugtr. ) = [ N e, (3:8)
To complete the proof of Proposition 2.1, we need to show
GH(E— % —3+eo+E-2
2 o2 270 g, k=2,
sup | (r)UsP;g| ~ ; 311 2% _ 2k (3.9
H 1<t<2 Py Y 2Vt G O el e, k< —2.

Using Lemma 2.3, the matter is reduced to obtaining estimates for ¢ (r)f; P;g and
¢k (r)d,UPjgin LY .. ,. Note that

r,Xx3,t*

r2+t2

. N
UPjg(r, x3, 1) =fe’( 7 ERetrEID o (&) L

r&|1/2 @

(3.10)

By the Mikhlin multiplier theorem one can easily see

2N U P8l s o k=0,

r)0:U;P; N
IR S\ 2ol k<o,
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where L] ., denotes L] . (R? x [1,2]). Therefore, by Lemma 2.3 it is sufficient

for (3.9) to prove that
3

. 3 1 k _ 2k
QUG5 e, k22,

i 3 _3_1 3k _ 2k
2(]+k)(2p 29 2+€)+q » ||g||LI’, k S _2-

I U Prglie | S
We first consider the case k > 2. As before, we use the change of variables (2.8).

Since |det %| ~ 22K from (2.9) and since T = rr and 1 < ¢ < 2, we have

ok vk
leUPigle, <270 2 [ 0Pigl g o o)

since |r&| ~ 271K Thus, Corollary 3.2 gives the desired estimate (3.9) for k > 2.
The case k < —2 can be handled in the exactly same manner. The only difference is
that |det M| ~ 1. Thus, the desired estimate (3.9) immediately follows from

a(r,x3,t)
Corollary 3.2.

3.3 Proof of Proposition 2.2

As mentioned already, the determinant of the Jacobian d(y1, y2, T)/d(r, x3, t) may
vanish when |k| < 1. So, we need additional decomposition depending on |r — ¢|.
We also make decomposition in & depending on |£|~'&; + 1 to control the size of the
multiplier |¢&] + r|£]| in a more accurate manner (for example, see (3.22)).

For m > 0 let us set

Ym(E) = ¢(2"[1E]71E + 1
YrE =1- Y ),

0<j<m

),

so that 3 oy _,, Y& + ¥ = 1. We additionally define

Pimg = (¢j1/fm§)va 'ij"g = (¢jwm§)\/~
So it follows that

Pi= > Px+P (3.11)

0<k<m

Proposition 3.4 Let us set ¢ (r,t) = o (PQr —t]). Let j > —1 and k =
—1,0, 1. Suppose (2.6) holds. Then, for € > 0 we have

ik mopyLy3 3L i
Ikt Prmgllg, <2 22020 DT RGO gy, (312

In order to prove Proposition 3.4, we make the change of variables (2.8). Since |k| <
1, we need only to consider (r, 1) contained in the set [2~1 — 1072, 2% +10%] x [1, 2].
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Set
S={0Ly0: 27 <y - =27y e 270,27

By (2.8) y; — T = (r —)%/2. From (2.9) we note |det ag(yl_;;,)>| ~27lif(y1, 1) € 5.

Thus, changing variables (r, x3,1) — (y1, y2, T) we obtain
_li L TR
ok U Pillpe S 2722001 EPhllLg - (3.13)
Therefore, for (3.12) it is sufficient to show

: m_pyl 3 _ o3l L i
”el“/_A7)jymg”L?M(S,)52(2 l)(p+q 1)+2(p q)+€]||g”Lp (314)

for p, g satisfying (2.6). For the purpose we need the following lemma, which gives
an improved L? estimate thanks to restriction of the integral over S;. Indeed, one can
remove the localization yi, T € [2_3, 23].

Lemma3.5 Let D; = {(x1, x2,1) : 272 < |x; — t| < 272+, Then, we have

.S 27 gl 2. (3.15)
Lz (Dp)

H f e ETED (&) Yy (8)dE

Proof We write x - & + t|&| = x1(&1 + |&]) + x2& + (t — x1)|&|. Then, changing
variables (x,t — x1) — (x,t) and &€ — n := L(§) = (&1 + |&], &), we see

H / ! CETEN G (£ )y, (8)dE

7l
- H/ei@'"“‘ﬁ""') hE£=m
2o et JL(n)]

L2 (R2x1I))

where 7€) = 2E)Ym(&) and [} = [-272F1 27y [27% 272+1) By
Plancherel’s theorem in the x —variable and integrating in ¢, we have

VoD
|det J L|

H / S SHIEDE ) Y (§)dE

<c2! H .
L2,(D) L

A computation shows det J£ = 1 4 |&|7'£], so |det J£| ~ 27" on the support of h.
Thus, by changing variables and Plancherel’s theorem we get (3.15). O

We also use the following elementary lemma.

Lemma3.6 Forany 1l < p < oo, j, and m, we have
1@ ¥me) e S lighee, 1@;9"8) e S lglee.
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Proof Since ¥ — ¢! = v,,, it suffices to prove the second inequality only. By
Young’s inequality we need only to show [[(¢;¥")"||;1 < 1. By scaling it is clear
that [[(¢; E)Y™(E) VI = 1(@oE)Y™ (€)Yl 1. Note that m(§) = ¢o(€) Y™ (§)
is supported in a rectangular box with dimensions 27 x 1. So, m(&;,27"&,) is

supported in a cube of side length ~ 1 and it is easy to see Bg‘ (m(&1,27"&)) is
uniformly bounded for any «. This gives |[(m(-,27"-)V||; < 1. Therefore, after

~

scaling we get || (o (€)Y (€)Yl < 1. =

Proofof 3.14 In view of interpolation the estimate (3.14) follows for p, g satisfying
(2.6) if we show the next three estimates:

le™ AP mglliz sp £ 27 Nglzs (3.16)
it/ — A 37

e ™ AP mellix,sn <27 gl (3.17)

le"™ APy mgllLs s < 218l e

The first estimate follows from Lemma 3.5. Corollary 3.2 and Lemma 3.6 give the
other two estimates. O

It is possible to improve the estimate (3.12) when j > m.

Proposition3.7 Let j > —1andk = —1,0, 1. Suppose 1 < p <q,1/p+1/q <1,
and j > m, then

L 2mm_ J=me_1_1yy 31 _ 1
Ik Ui Pjmglle S 2742020 FDH =0T Gm0 g,
r,‘3.

Proof By (3.13) it is sufficient to show

m j—m 3j
s S 2B -DHF UG- D+H

it VA 1
1™ AP gl gl

for p, g satisfying 1 < p < ¢q, 1/p + 1/q < 1. In fact, by interpolation with the
estimates (3.16) and (3.17) we only have to show

iTJ—A j—m
lle'™ Aﬂ,mg||Lf,(S/) S277 lglliee. (3.18)

Let us set

Ktj’m(x) _ /ei(x'§+l|§|)¢j(|f§|)wm(§)d§.

(2m)?
Then '™V =4P; g = K™ % g. Therefore, (3.18) follows if we show
K"y S22 (3.19)
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when ¢ ~ 1. Note that |&]/1§| = /1 —&/[EIV1+&1/1E] < %_% if § € supp Y.
So, supp ¥, is contained in a conic sector with angle ~ 272. Let S be a sector

centered at the origin in R? with angle ~ 277 and ¢s be a cut-off function adapted
to S. Then, by integration by parts it follows that

H / JTEHED g (18 ps (§)dE H LS

if  ~ 1. (See, for example, [8]). Now (3.19) is clear since the support of v/, can be

. j—m
decomposed into as many as C2" 2 such sectors. O

Finally, we prove Proposition 2.2 making use of Propositions 3.4 and 3.7. We recall
(2.2) and (3.1). As mentioned before, by Lemma 3.3 we need only to consider U, (see
(3.8)) and it is sufficient to show

13 _1_
| sup loxUPigl] e <2277 gy (3.20)
1<t<2 "x3
for p, g satisfying p < ¢, 1/p+1/g <land 1/p+2/q > 1.
Proofof3.20 Let us set ¢/ (1) = 1 — le;lomzf!) and ¢L(r, 1) = ¢p (¢! (Ir — 1)).

Then, we decompose

)= Y i+ Y Gl ) + ).

0<i<j/2 jj2<l<j

Combining this with (3.11) and using 3>, _, - ¢r1 + ¢ < ol//*7! by the triangle
2
inequality we have

W

| sup ieeUPigl] o <3S

where
= > > | sup geilthPrmgl| e S2= D | sup dralthPlglliLe.
0<i<j/2 O<m<i—1 1<1<2 0<i<jj2 1<t=<2
;
= 2. > lsw $elhPimglle, Se= 3 |l sup g WhPimglllia,
<l<] 0<m<j—1 l<t<2 0<m<j—1 l<t<2

2]-1 j
Ss =1 sup o2 b P glllLa.

1<r<2

The proof of (3.20) is now reduced to showing

3 1 . .
S <225 VY g, 1<i <5, (3.21)

~
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for p, g satisfying p < ¢, 1/p+1/g <land 1/p+2/q > 1.

Before we start the proof of (3.21), we briefly comment on the decomposition §;,
i =1,...,5. As for S4 and S5, which are easier to handle, the sizes of » — ¢ and
|E|7'& + 1 are sufficiently small on the supports of the associated multipliers, so
we can remove the dependence of ¢ by an elementary argument. For Sy, Sz, and Sz,
we use Lemma 2.3 combined with (3.10) to control the maximal operators. Different
magnitudes of contribution come from 0;¢x ; = 02" and |t&] + r|€]|, so we need to
compare them. Writing & + r|&| = 1(|€|7'& + 1) + (r — 1), we note

11 + rl€]] < 2/ max{27™, 271} (3.22)

The decompositions in Si, S2, and S3 are made according to comparative sizes of
0Pkl = 02" and |t& + r|€|| in terms of [, m, and j.

We first consider §1. Using Lemma 2.3, we need to estimate ¢y ;U4 P; ,g and
O (P iUy Pjmg) in LY . ,(R? x [1,2]). Note that d;¢; = O(2') and 2! < 277,
Thus, recalling (3.10), we apply Lemma 2.3 and the Mikhlin multiplier theorem to
get

-
N szT”(ﬁk,lutpj,mgHLq-

0<i<j/2m=0

Thus, by Proposition 3.4 it follows that

-1
_Jyiy3i 11 i _1_2 mel 1
NP AR A S S i S R sl PI
0<i<j/2 m=0

Since 1/p+1/g—1<0and 1/p+2/q > 1, we obtain (3.21) with i = 1.

We can show the estimate (3.21) with i = 2 in the same manner. As before, since
dprs = 02') and 2! < 277!, using (3.22), Lemma 2.3, and the Mikhlin multiplier
theorem, we have

-1
S Z 2!7||¢k,1uz73;g”Lq~
0<i<j/2

Th i l+ﬂ(l_l)+£j
us, by (3.13) and Theorem 3.1, we have S, < Zo<1<% 2722472 g e,
which gives (3.21) with i = 2.

We now consider S3, which we handle as before. Since j < 21,27 max {27, 2! } <
2Lif I +m > j. Similarly, 2/ > 2/ max{2™™, 27!} and 2/ > 2L if | +m < j.
Using (3.22) and (3.10), we see

L j=m
S35 Y. ( > 20\ thPrmglle + Y 277 ||¢k,1uz7>,~,mg||u>

J2<l<j *j—l=m=j-1 O=m<j-I
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Since 1/p +2/q > 1, using Proposition 3.7, we get (3.21) fori = 3.
We handle S4 and S5 in an elementary way without relying on Lemma 2.3. Instead,
we can control S4 and S5 more directly. Concerning S4 we claim that

l(l,,,

1 .
S+ 522570 Y g (3.23)

if5/g > 14+ 1/pand2 < p < g < oco. This clearly gives (3.21) withi = 4 for p, g
satisfying p < ¢, 1/p+1/g < land 1/p +2/q > 1. We note that

61U Py g, 49)] 5 272 g] / /2 EHSEEIED 10 (£) g0 (6) Y (§)9 (21 ) (E)dlE |,

where

-

m(E) = & CTEHEIED b 3 e,

and 50 'is a smooth function supported in [—, 7% such that 50‘!"0 =1.1f (r,1) €

supp ¢,i ,then |t —r| < 27/, Thus, |3§‘m (&) < 1forany . We remove the dependence
of ¢ by using a bound on the coefficient of Fourier series, not the Sobolev embedding.
Expanding m into Fourier series on [—, 7% we have m(&) = Y kez? Cil(r, 1)e'kE
while |C(r, )] < (1 4 [k[)™V. Since 1 < t < 2, the estimate (3.23) follows after
scaling £ — 2/& if we obtain

1

103 _ 1y,
IRPimgllLs, 2220k S 22777 liglr,

€

where
Rg(r,x3) = /ei(rzél+X3§2+r2|5\)’g‘($)d5_

When ¢ = 2, changing variables 7> — r and following the argument in the proof
of Lemma 3.5 we have ”R,]Dj,mg”L%vx}([272,23]XR) < 2/2|g||;2. On the other hand,

(3.18) gives IRPjmgllre (-2.231xkr) < 2Y7™/2|gllL. Interpolation between
V,)C} ’
these two estimates gives

PHta-

2
IRP)mgllLs . 2-2.291xmy S 2 Vgl

for 2 < g < oo. Since the support P; ;,g(&) is contained in a rectangular region of
dimensions 2/ x 2/77 by Bernstein’s inequality we have

i i(2_3 + S 1 1
HR{"g”L?,m([Z’Z,?]xR) 5 2]([7 q) m(2q 2 Zp)”g”Lp

for2 < p < g <o0.Since 5/q > 1+ 1/p, this proves the claimed estimate (3.23).
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Finally, we show (3.21) with i = 5. Changing variables (£1, &) — (2/&1, &), we
observe

=

O P et )l £ 2P| [ Pl e,

where

() = 211260 5 27|10 (1. 27 E) )Y T 2181 £2).

Note that suppf C {& € [271,2%], & < 2%). Since [9gm(E)| < 1
for any «, expanding M into Fourier series on [—2m,27]*> we have m(§) =
> keze Ci(r, t)eiz_lk's while |Cx(r, 1) < (1 + |k])~V. Hence, similarly as before,
changing variables (£, &) — (277&1, &), to show (3.21) with i = 5 it is sufficient
to obtain

,S 2%(3_

o r—1)? i
sup P;g(T,J%) " gl (324
1<t<2 L?_x3([2’2,23]><R)

for 1 < p < g < o0o. Clearly, the left hand side is bounded by ||P}g(x1, x3)||Lq3 (L)
X x|

The Fourier transform of Pf g is supported on the rectangle {£| € [2/-1, 2742, &2 <

2712}, Thus, using Bernstein’s inequality in x|, we get

sup P'}g(ﬂ,m)

_Jal i
S272T0P gl
l<t<2 2

L} 5 (1272,2°]xR)

for 1 < g < oco. Another use of Bernstein’s inequality gives (3.24) for 1 < p < ¢ <
oo. This completes the proof of (3.20).

[m|
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