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Abstract
In this note, we make a step towards the classification of toric surfaces admit-
ting reducible Severi varieties. We provide two families of toric surfaces admitting
reducible Severi varieties. The first family is general, and is obtained by a quotient
construction. The second family is exceptional, and corresponds to certain narrow
polygons, which we call kites. We introduce two types of invariants that distinguish
between the components of the Severi varieties, and allow us to provide lower bounds
on the numbers of the components. The sharpness of the bounds is verified in some
cases, and is expected to hold in general for ample enough linear systems. In the
appendix, we establish a connection between the Severi problem and the topological
classification of univariate polynomials.
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1 Introduction

The study of families of curves on algebraic surfaces is a classical problem in algebraic
geometry. In the 1920’s, Severi considered the locus V irr

g,d of integral, degree d, genus
g, planar curves in an attempt to prove the irreducibility of the moduli spaces of alge-
braic curves. Such loci for different surfaces and linear systems are now called Severi
varieties. In 1986, Harris proved the irreducibility of the classical Severi varieties V irr

g,d
in characteristic zero [11], and very recently Christ, He, and the second author found
a characteristic-free proof of Harris’ theorem [5]. Over the years, the irreducibility of
Severi varieties was proved for other surfaces, such as Hirzebruch surfaces, Del-Pezzo
surfaces, and certain toric and K3 surfaces, see, e.g., [1, 6, 24, 25]. Most of the results
apply only in the case of small genus, but some are general.

On the negative side, for many surfaces of general type, Severi varieties are known
to be reducible, and even non-equidimensional, see [3]. In 2013, the second author
found first examples of reducible Severi varieties on toric surfaces, initially in positive
characteristic [27], and then in characteristic zero [28]. A different type of examples
was discovered recently by the first author in his study of the monodromy action on
the set of nodes of rational curves on toric surfaces [18].

The goal of the current paper is to make a step towards a classification of toric
surfaces admitting reducible Severi varieties, and towards a description of the corre-
sponding irreducible components.We unify the examples of [18, 27, 28], and introduce
certain invariants that distinguish between components of Severi varieties on toric sur-
faces.As a result, we are able to provide lower bounds on the numbers of the irreducible
components.

1.1 Themain results

Throughout the paper wework over an algebraically closed field of characteristic zero,
which by Lefschetz principle can be assumed to be C.
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Let g ≥ 0 be an integer, � ⊂ R
2 a lattice polygon, and (X ,L) the corresponding

polarized toric surface. In the current paper, we discuss two families of polarized
toric surfaces admitting reducible Severi varieties. The first family consists of certain
toric quotient surfaces, namely the quotients of toric surfaces by finite non-trivial
subgroups of the torus that act freely on the complement of the zero-dimensional
orbits. For such surfaces, the Severi varieties corresponding to any polarization and
genus are reducible, as long as the genus is strictly positive and small enough with
respect to the polarization. Recall that the Severi varieties V irr

0,L are irreducible by
[25, Proposition 4.1]. The following theorem provides a general lower bound on the
number of irreducible components of the Severi variety V irr

g,L in the case of positive
genus.

Theorem A If g ≥ 1, then the number of irreducible components of the Severi variety
V irr
g,L is bounded from below by the number of affine sublattices M ⊆ Z

2 for which
the following two conditions hold:

(a) ∂� ∩ M = ∂� ∩ Z
2, and

(b) |�◦ ∩ M | ≥ g;

where ∂� and �◦ denote the boundary and the interior of �, respectively.

Let us now explain the geometric meaning of conditions (a) and (b) above. For
an affine sublattice M satisfying condition (a), one can consider the polarized toric
surface (X ′,L′) associated to � but with respect to the lattice M . Then the natural
toric map X ′ → X represents X as a quotient of X ′ by a finite subgroup of the
torus that acts freely on the complement of the zero-dimensional orbits. Furthermore,
the pushforward of the curve class |L′| is |L|. Therefore, if V irr

g,L′ is not empty, then

its pushforward is a union of components of V irr
g,L. The non-emptiness of V irr

g,L′ is
equivalent to condition (b), because |�◦ ∩ M | is nothing but the arithmetic genus of
curves in |L′|. We denote by δM (Δ, g) the number of nodes of curves in V irr

g,L′ , i.e.,
δM (�, g) := |�◦ ∩ M | − g. Then condition (b) reads as follows: δM (�, g) ≥ 0.

The second family considered in this paper consists of a special type of lattice
polygons that we call kites. Let k′, k be non-negative integers such that k′ ≥ k and
k′ > 0. A kite �k,k′ is the polygon with vertices (0, 0), (±1, k), (0, k+ k′), see Fig. 1.
Let � = �k,k′ be a kite, and g ≥ 0 an integer. We define #k,k′,g to be the number of
sublattices M ⊆ Z

2 satisfying the conditions (a) and (b) of Theorem A and counted
with the following multiplicities: if the index of M in Z2 is odd, then the multiplicity
is equal to the number of integers 0 ≤ κ ≤ min{δM (�, g), g} that are congruent to
δM (�, g) modulo 2, and if the index is even, then the multiplicity is one. Notice that

Fig. 1 The kite �2,3
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1680 L. Lang, I. Tyomkin

even if the only sublattice satisfying conditions (a) and (b) is M = Z
2, its multiplicity

may be greater than one. For example, this is the case for the kite �2,3, and genus
g = 2.

Theorem B If � = �k,k′ is a kite, and (X ,L) the corresponding polarized toric
surface, then for any g ≥ 1, the number of irreducible components of V irr

g,L is bounded
from below by #k,k′,g.

Plainly the bound in Theorem B is usually strictly bigger than the bound in The-
orem A, since one counts the same lattices but with larger multiplicities. Moreover,
some of the surfaces in the second family do not belong to the first one, e.g., the
surface associated to the kite �2,3 is not a quotient of another toric surface by a finite
non-trivial subgroup of the torus.

Weprovide two proofs of themain results. One is tropical and another is topological.
The topological approach is based on the study of deformations of simple Harnack
curves, and one of its key ingredients is the following generalization of a result of
Kenyon and Okounkov [13, Proposition 10], which we believe to be of independent
interest.

Let [C] ∈ V irr
g,L be a curve, and ϒ := {γ1, . . . , γg} a collection of oriented simple

closed curves in the smooth locus of C that are contained in the open torus orbit
X• ⊂ X and are contractible in X•. Since X• is acyclic, each γ j bounds a smooth
disc Mj ⊂ X• that is unique up to homotopy. Set 	 := dz∧dw

zw , where (z, w) are toric
coordinates on X•, and consider the integrals∫

Mj

	 , j = 1, . . . , g. (1.1)

Since 	 is closed, these integrals are independent of the choice of Mj ’s. Furthermore,
since 	 vanishes on C , the integrals are also independent of the choice of γ j ’s within
their isotopy classes. Finally, any small deformation Ct of C induces a small defor-
mation ϒt of ϒ . Although the latter is not uniquely defined, the isotopy classes of the
γ j,t ’s are. Therefore, the integrals (1.1) induce well-defined functions on V irr

g,L in a
neighborhood of [C].
Theorem C Let W ⊂ V irr

g,L be the locus of curves having a given tangency profile with
the boundary divisor, [C] ∈ W any curve, and ϒ a collection of loops as above. If
ϒ generates a g-dimensional subspace of H1(C,Z), then the integrals (1.1) together
with the coordinates of the intersection points of C with the boundary divisor of X
provide a local system of coordinates on W.

We refer to [12, Lemma 3.1] for a similar statement in the case of curves on K3-
surfaces.

1.2 Discussion

To prove the irreducibility, or more generally, to classify the irreducible components
of a Severi variety, one often follows the following strategy. First, one proves that the
closure of any component contains components of Severi varieties of smaller genera,
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and then uses a monodromy type argument to get an upper bound on the number of
components.

The question, whether the closure of any component of a Severi variety on a toric
surface necessarily contains components of Severi varieties of smaller genera, is an
interesting open problem. This is known to be the case for P2 by [11], for Hirzebruch
surfaces by [25], and most generally, for toric surfaces associated to h-transverse
polygons by [4]. We expect this to be true in general, but we were not able to prove
this so far. Let us denote the union of the irreducible components of V irr

g,L containing

V irr
0,L in their closure by V ′

g,L.
A monodromy argument allows one to provide an upper bound on the number of

components of V ′
g,L. Indeed, it is not difficult to verify that in a neighborhood of an

integral, rational, nodal curve [C0], the closure of V ′
g,L consists of smooth branches,

parameterized by subsets of g nodes ofC0. Therefore, the number of such components
is bounded from above by the number of orbits of sets of g nodes under themonodromy
action on the set of nodes of C0. For planar curves, the monodromy acts as the full
symmetric group by [11]. More generally, this is the case if the toric surface is smooth
at (at least) one of its zero-dimensional orbits, and the polarization is ample enough;
see [18] for details. Thus, the upper bound in such cases is one.

To get a lower bound on the number of components of a Severi variety, onemust find
invariants that can distinguish between the components. This is precisely what we do
in the current paper. Unfortunately, even if V ′

g,L = V irr
g,L, there is often a discrepancy

between the upper bound prescribed by the monodromy calculations of [18], and the
lower bounds coming from the admissible values of the invariants we construct. One
could naively guess that the monodromy action on the nodes of C0 should prescribe
the number of components of V ′

g,L. However, this turns out to be wrong as the example
below shows. Therefore, it is not sufficient to analyze the monodromy action on the
sets of nodes of rational curves. We hope that investigating the monodromy actions
on the nodes of curves of higher genera could close the gap between the lower and the
upper bounds in most cases.

Example. Let � be the triangle with vertices (0, 0), (4, 1), (0, 3), and (X ,L) the
corresponding polarized toric surface. Consider the Severi variety V irr

2,L. By [4, Theo-
rem 4.6], any component of V irr

2,L contains V irr
0,L in its closure, and by [18, Lemma 4.1,

Theorem 3], the number of orbits of pairs of nodes ofC0 under the monodromy action
is two, which suggests that the number of components should also be two. However,
one can show that V irr

2,L is in fact irreducible. To see this, consider the floor decom-

posed parametrized tropical curve h : 
 → R
2 as in Figure 2. By using the techniques

of [5], one can show that any irreducible component V ⊆ V irr
2,L contains a K -point

[C] ∈ V (K ) over the field of Puiseux series, whose tropicalization is (
, h). On
the other hand, the space of tropical 
-reductions is integral (a single torus), by [26,
Proposition 3.21], and the deformation space is unobstructed by [26, Corollary 5.9].
Therefore, all realizations of (
, h) belong to the same irreducible component of the
Severi variety, and hence V irr

2,L is irreducible.
Next let us discuss the sharpness of the lower bounds in our main results, and

speculate on the expected number of the irreducible components of Severi varieties
on toric surfaces in general. First, notice that Theorem B implies that the bound of
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Fig. 2 The floor decomposed curve h : 
 → R
2 and its dual subdivision

Theorem A is not sharp for some special toric surfaces. However, we expect the
bound to be equal to the actual number of irreducible components of V irr

g,L at least

if the line bundle L is ample enough. In the case of kites, we have V ′
g,L = V irr

g,L
by [4, Theorem 4.6]. However, there is a discrepancy between the upper and the
lower bounds, and we expect the lower bound of Theorem B to be the correct one.
Proposition 3.1 verifies this guess for curves of genus one.

In the current paper, we discuss two families of toric surfaces admitting reducible
Severi varieties. While the first family (quotient surfaces) is rather general, and the
Severi varieties on such surfaces are reducible for almost all polarizations, the second
family is exceptional. In particular, any surface in the second family that does not
belong to the first family admits reducible Severi varieties for only finitely many
polarizations by [18].We believe that the remaining examples, if any, also formfinitely
many exceptional families, and correspond to some narrow polygons.

Finally, let us mention that the Severi problem for the surfaces associated to kites is
closely related to the topological classification of polynomials studied by Zvonkin in
[29]. It turns out that the irreducible components of the Severi varieties in this case are
in bijective correspondence with the components of the space of Laurent polynomials
with given passports. We believe this relation to be fruitful for both topics, and discuss
it in the Appendix.

1.3 The idea of the proofs

In order to prove the main results of this paper, we introduce two types of invariants
that distinguish between the irreducible components of the Severi variety V irr

g,L. We
then describe the admissible values of these invariants, and for each admissible value,
construct an irreducible component realizing this value. We provide two proofs of
the main theorems, one is topological, and another is tropical. We believe that both
approaches will be useful in the ultimate classification of the irreducible components
of Severi varieties on toric surfaces.

Our first invariant is a sublattice of the lattice of monomials of the toric surface,
that can be described either in topological or in tropical terms. The second invariant
makes sense only for polarized toric surfaces associated to kites. The set of nodes of
an integral curve on such a surface admits a natural (unordered) partition, that varies
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continuously with the curve. Therefore, the absolute value of the difference between
the cardinalities of the two blocks of nodes is an invariant of an irreducible component
of V irr

g,L, that we call the signature of the component.

2 Preliminaries, notation, and conventions

2.1 Toric geometry

We assume that the reader is familiar with the basics of toric geometry, and refer
to [8] for details. In particular, the construction of the polarized toric variety asso-
ciated to a lattice polygon, the notion of the dual fan, the functoriality of toric
varieties, and the structure of their orbit decomposition are assumed to be known.
For a convex polygon �, we denote by �◦ and ∂� the interior and the boundary of�,
respectively.

Our default pair of dual lattices is (Z2,Z2) with the standard pairing denoted by
〈·, ·〉. Sometimes we consider different integral structures on R

2 defined by various
sublattices. In such cases, we follow the standard convention of toric geometry, and
denote the lattice of monomials by M and the lattice of cocharacters by N . For a toric
surface X , we denote by X• the open orbit, and by ∂X := X \X• the boundary divisor.
Then the canonical divisor of X is given by KX = −∂X .

2.2 Severi varieties

For a projective polarized toric surface (X ,L), we denote by V irr
g,L ⊂ |L| the Severi

variety, i.e., the locus of integral nodal curves of geometric genus g that contain no
zero-dimensional orbits of X .

Severi varieties on toric surfaces are known to be smooth and equidimensional of
codimension δ in |L|, where δ is the number of nodes, or equivalently, the difference
between the arithmetic genus of L and g; see, e.g., [15, Theorem 1]. If L is associated
to a lattice polygon � in R2, then its arithmetic genus is given by the number of inner
lattice points in �. Therefore, the dimension of any component of V irr

g,L is given by

|∂� ∩ Z
2| + g − 1. (2.1)

Furthermore, by [15, Proposition 2], V irr
g,L is open and dense in the locus of all integral

curves of geometric genus g in |L| that contain no singular points of X .
We say that a curve inC ⊂ X is torically strictly transverse if it intersects the bound-

ary divisor ∂X transversely, i.e., C ∩ X is reduced and contains no zero-dimensional
orbits of X . It is well known that for a general [C] ∈ V irr

g,L, the curve C is torically
strictly transverse; see e.g., [25, Theorem 2.8].

Recall that in genus zero, Severi varieties on toric surfaces admit natural param-
eterizations by irreducible rational varieties. Therefore, V irr

0,L are irreducible for any
polarized toric surface, see [25, Proposition 4.1].
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2.3 Conventions

Throughout the paper we work over the field of complex numbers. The tropical argu-
ments are applied after a base change to the field of Puiseux series.

For convenience,we always assume that the lattice polygon, we work with, contains
the origin as its vertex. The latter can plainly be achieved by a translation, and hence
does not restrict the generality. The advantage of this assumption is that all sublattices
that appear in the statements and in the proofs become linear rather than affine.

3 The case of genus one

In this section we show that the bound of Theorem B is sharp in the case of genus one.

Proposition 3.1 If � = �k,k′ is a kite, and (X ,L) the corresponding polarized toric
surface, then the number of irreducible components of V irr

1,L is equal to #k,k′,1.

Remark 3.2 Notice that a sublatticeM ⊆ Z
2 satisfying the condition (a) of TheoremA

for � = �k,k′ is uniquely determined by its restriction to the y-axis, and containsre-
spectively. the point (0, 2k). Furthermore, associating to a sublattice M its index r ,
gives rise to a one-to-one correspondence between such sublattices and the positive
common divisors of k′ + k and 2k.

Proof By Remark 3.2, the number #k,k′,1 counts the positive common divisors
r of k′ + k and 2k for which δM (�, 1) ≥ 0, with multiplicities. Since
δM (�, 1) = ( k′+k

r − 1
)− 1, the latter inequality is equivalent to r < k′ + k. We

claim that all divisors r are counted with multiplicity one. Indeed, if r is even, then
its multiplicity is 1 according to the definition, and if r is odd, then the multiplicity is
equal to the number of integers 0 ≤ κ ≤ min{δM (�, 1), 1} ≤ 1 that are congruent to
δM (�, 1) modulo two. Since such κ is clearly unique, this proves the claim. Set now
d := gcd{k′ + k, 2k} = gcd{k′ + k, k′ − k}, and let σ(d) be the number of positive
divisors of d. Unless k = k′ or k = 0, the inequality r < k′ + k is automatically sat-
isfied, and the number #k,k′,1 is therefore equal to σ(d). Otherwise, the divisor r = d
has to be excluded and #k,k′,1 is then equal to σ(d) − 1.

Let [C] ∈ V irr
1,L be a general point, and E the normalization of the curve C .

Denote by O, P, Q, R the preimages in E of the toric divisors corresponding to
the sides of � with outer normals (−k,−1), (k,−1), (k′, 1), (−k′, 1), respectively.
Then k′(Q− R)+ k(P −O) and Q+ R− P −O are the divisors of the pull-backs of
the coordinate functions on the torus, and hence, in the group law of the elliptic curve
(E, O) the following holds:

P = R + Q and (k′ + k)Q = (k′ − k)R. (3.1)

Conversely, given an elliptic curve (E, O) and three points P, Q, R ∈ E satis-
fying (3.1) such that O, P, Q, R are distinct, pick rational functions x, y such that
div(x) = k′(Q − R) + k(P − O) and div(y) = Q + R − P − O . Then the rational
map (x, y) : E \ {O, P, Q, R} → (C∗)2 extends to a morphism φ : E → X and
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[φ∗E] ∈ |L|. Furthermore, since the pull-back under φ of the boundary divisor ∂X
is reduced, E is birational onto its image, and hence [φ(E)] ∈ V irr

1,L. Notice that the
functions x and y as above are unique up-to an action of C∗. Therefore, the number
of irreducible components of V irr

1,L is equal to the number of irreducible components
of the locus

V := {[E; O, Q, R] ∈ M1,3 | (k′ + k)Q = (k′ − k)R}

in the moduli space of genus-one curves with three marked points.
To describe the components of V , set m := k′+k

d > 0, n := k′−k
d ≥ 0, and let

a, b ∈ Z be integers such that am + bn = 1. For a divisor d ′|d, let M1,2[d ′] be the
moduli space of elliptic curves with marked point and level-d ′ structure, i.e.,M1,2[d ′]
parametrizes elliptic curves with marked points [E; O, S, T ] where O is the origin
of E , S a marked point, and T a torsion point of order precisely d ′. The projection
M1,2[d ′] → M1,1[d ′] forgetting the point S has irreducible fibers, and it is well
known that M1,1[d ′] is irreducible, since it is the quotient of the upper half-plane
by the modular group 
1(d ′), see, e.g., [23, pp.439-440]. Hence M1,2[d ′] is also
irreducible.

Pick a general point [E; O, S, T ] ∈ M1,2[d ′]. Then, the point O is distinct from
mS−bT sincem > 0 and S is not a torsion point. For the same reason, the point O is
distinct from nS+aT unless n = 0 and T = O , that is k′ = k and d ′ = 1. Eventually,
the points mS − bT and nS + aT are distinct unless (m − n)S is the torsion point
(a + b)T . The latter occurs only if m = n. However, m and n are relatively prime.
Thus, mS − bT = nS + aT if and only if m = n = 1 (implying that a + b = 1)
and T = O , that is k = 0 and d ′ = 1. Besides these particular cases, the three points
O, nS + aT ,mS − bT are distinct. Since the points are distinct, we can consider the
rationalmapM1,2[d ′] → M1,3 givenby [E; O, S, T ] �→ [E; O, nS+aT ,mS−bT ].
Its image Vd ′ is irreducible, has the same dimension as V and is contained in
V since

(k+k′)(nS+aT )=dmnS+dmaT =dmnS=dmnS+dnbT = (k − k′)(mS − bT ).

Hence Vd ′ is an irreducible component of V .
Next, let us show that V = ⋃

d ′|d Vd ′ , which implies that any irreducible com-
ponent of V is of the form Vd ′ for some d ′. Pick a general point [E; O, Q, R] ∈ V .
For dimension reasons, Q, R are not torsion points. Let us show that
[E; O, Q, R] ∈ ⋃

d ′|d Vd ′ . Set S′ := aR + bQ. Then

d(Q − nS′) = dQ − danR − dbnQ = dQ − damQ − dbnQ = dQ − dQ = O,

since, by definition, dnR = (k′ − k)R = (k′ + k)Q = dmQ and am + bn = 1. Thus,
Q−nS′ is a d-torsion point. Similarly, R−mS′ is a d-torsion point. Set T1 := Q−nS′
and T2 := R − mS′. Since am + bn = 1, the vectors (n,m) and (a,−b) form a free
basis of Z2, and hence there exists a unique pair of d-torsion points T , T ′ ∈ E such
that (T1, T2) = (nT ′,mT ′) + (aT ,−bT ). If we set S := S′ + T ′, then Q = nS + aT
and R = mS − bT as needed.
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Finally, notice that if d ′|d, [E; O, S, T ] ∈ M1,2[d ′], and the tuple
[E; O, Q, R] = [E; O, nS+aT ,mS−bT ] is its image in Vd ′ , then d ′ is precisely
the order of T = mQ − nR ∈ E , and hence the components corresponding to differ-
ent d ′-s are distinct. We have proved that the number of irreducible components of V ,
and hence also of V irr

1,L, is equal to σ(d) unless k′ = k or k = 0, in which case it is
equal to σ(d)−1. Thus, in both cases, it coincides with the number #k,k′,1 as asserted.

��

4 The invariants

In this section, we define the invariants that allow us to obtain the lower bounds in
Theorems A and B. The first invariant is a certain sublattice of Z2, that can be defined
either topologically or tropically for any component of the Severi variety V irr

g,L on a
toric surface. The second invariant is an integer, called the signature, and is specific
to the Severi varieties on the toric surfaces associated to kites.

4.1 The sublattices associated to the irreducible components

Throughout this section, � ⊆ R
2 is a convex lattice polygon one of whose vertices is

the origin,  its dual fan, and (X ,L) the associated polarized toric surface. Denote
by xm the monomial functions of X for m ∈ Z

2, and by {ni } ⊂ Z
2 the set of primitive

vectors along the rays of .
Let N ⊆ Z

2 be a sublattice containing all ni ’s. Since  is a complete fan, the ni ’s
generate R2 as a vector space, and hence N ⊆ Z

2 has finite index, which we denote
by r . Moreover, since N contains primitive vectors, and any primitive vector in Z

2

can be completed to a free basis of Z2, it follows that the quotient Z2/N is a cyclic
group of order r . Set

M := {m ∈ Z
2 | ∀n ∈ N , 〈n,m〉 ∈ rZ}, (4.1)

where 〈·, ·〉 denotes the standard scalar product on R2. Then M ⊂ Z
2 is the sublattice

of index r obtained from N by a rotation by π
2 . Furthermore, M = r · Hom(N ,Z).

Lemma 4.1 In the above notation the following holds: ∂� ∩ M = ∂� ∩ Z
2.

Proof Since the primitive integral vector along an edge of � is obtained from the
primitive integral vector along the corresponding ray of  by a rotation by π

2 , it
follows that M contains the primitive integral vectors along all edges of �, which
implies the assertion. ��

4.1.1 The topological point of view

For [C] ∈ V irr
g,L, set C

• := C ∩ X•, and let C̃• be the normalization of the curve C•.
We denote by NC the image of the map H1(C̃•,Z) → H1(X•,Z) = Z

2 induced by
the natural map C̃• → X•. Notice that since the lattice of monomials of X is Z2, the
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open orbit X• is canonically trivialized, and therefore so is the first homology group
H1(X•,Z).

Lemma 4.2 Let V ⊆ V irr
g,L be an irreducible component. Then, for a general [C] ∈ V ,

the sublattice NC ⊆ Z
2 is independent of [C], and contains all the ni ’s.

Proof Since V parameterizes curves of the same genus, the tautological family
CV → V is equinormalizable, i.e., the normalization C̃V → V is a family of smooth
curves of genus g, and hence topologically, it is a locally trivial fibration. Furthermore,
since generically the family CV → V is torically strictly transverse, there exists an
open dense subset B ⊆ V , over which the fibration C̃•

B → B is locally trivial. Finally,
since B is connected, the image of the first homology group of the fibers of C̃•

B → B
in H1(X•,Z) is constant. This proves the first part of the statement.

The second part follows from the fact that the fibers of CB → B intersect all
components of the boundary divisor, and the intersection is transverse. If p is an
intersection point of C with the component corresponding to a ray ρ of the dual fan,
then the image of a small loop around p corresponds to the class of the primitive
integral vector along ρ in Z2 = H1(X•,Z), see for instance [17, Lemma 1.12]. ��

Set N(V) := NC for a general [C] ∈ V . By the lemma, it is an invariant of the
irreducible component V . Let M(V ) be the lattice dual to N (V ) in the sense of (4.1),
i.e., the lattice obtained from N (V ) by a rotation by π

2 . Then ∂�∩ M(V ) = ∂�∩Z
2

by Lemma 4.1. We say that (N (V ), M(V )) is the pair of sublattices topologically
associated to the irreducible component V .

4.1.2 The tropical point of view

Let K be the field of Puiseux series over C, and ν : K → R ∪ {∞} its valuation. Let
[C] ∈ V irr

g,L(K ) be a K -point. Denote by C̃ its normalization, and let h : 
 → R
2 be

the canonical tropicalization of the natural map f : C̃ → X ; cf. [26] and [5, § 4.2].
Let us briefly recall how the canonical tropicalization works.

The underlying graph of 
 is the dual graph of the stable reduction of the curve C̃
withmarkedpoints f ∗(∂X): its vertices correspond to the components of the reduction,
edges – to the nodes, and legs – to the marked points. The incidence relation among
the vertices, edges, and legs is the natural one coming from the incidences between the
components of the reduction, the nodes, and the specializations of the marked points.
The length of the edge corresponding to a node p of the reduction is defined to be
ν(λ), where λ ∈ K is such that, étale locally at p, the stable model of C̃ is given by
xy = λ. Although λ depends on the neighborhood, its valuation does not, and hence
the length is well defined. The lengths of the legs are infinite.

The parametrization h is the piecewise integral affine map uniquely determined by
its slopes along the legs and its values at the vertices, which are defined as follows. If l
is the leg corresponding to a marked point p, then the slope ∂h

∂�l of h along l is given by

the order of pole of the monomial functions at p, i.e., 〈 ∂h
∂�l ,m〉 = −ordp( f ∗(xm)) for

any monomial function xm on X . The notation �l here indicates that the leg l is oriented
away from the vertex adjacent to it. For a vertex v, corresponding to an irreducible
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component C̃v of the reduction, h(v) ∈ Q
2 is defined to be the vector for which

〈h(v),m〉 = ν(λm) for any m ∈ Z
2, where λm ∈ K is a scalar such that λm f ∗(xm)

restricts to a non-zero rational function on C̃v . Once again, although λm is not uniquely
defined, its valuation is, and hence the definition makes sense.

For a parametrized tropical curve h : 
 → R
2, if �e is an oriented edge or leg of 
,

then the slope ∂h
∂�e is an integral vector, whose integral length is the stretching factor of

the piecewise integral affine map h. Recall that the degree of a parametrized tropical
curve h : 
 → R

2 is the collection ∇ of slopes of h along the non-contracted legs of

. We say that ∇ is dual to a polygon � if for each side ∂i� ⊂ �, the sum of vectors
in ∇, which are outer normal to ∂i�, is equal to the integral length of ∂i�.

We denote by N (
) ⊆ Z
2 the sublattice generated by all the slopes ∂h

∂�e . If the
degree of (
, h) is dual to �, and � = ∪�i is the Legendre dual subdivision of �

associated to 
, then the affine sublattice M(
) ⊆ Z
2 generated by all vertices of the

subdivision is dual to N (
) in the sense of (4.1), i.e., it is obtained from N (
) by a
rotation by π

2 . If h : 
 → R
2 is the tropicalization of f : C̃ → X corresponding to a

point [C] ∈ V irr
g,L(K ), then we set N tr

C := N (
) and M tr
C := M(
).

For an irreducible component V ⊆ V irr
g,L, let B ⊆ V be the open dense locus

of torically strictly transverse curves. Set N tr(V ) := ∑
[C]∈B(K ) N

tr
C ⊆ Z

2 and
M tr(V ) := ∑

[C]∈B(K ) M
tr
C ⊆ Z

2. We call this pair of sublattices the sublattices tropi-
cally associated to the irreducible component V . Notice that since for any [C] ∈ B, the
curve C is torically strictly transverse, it follows that the slopes of all legs of its tropi-
calization h : 
 → R

2 are primitive integral vectors belonging to the rays of the dual
fan. Therefore, the sublattice N tr

C contains all the ni ’s, and ∂�∩M tr(V ) = ∂�∩Z
2.

Remark 4.3 One can show that the topological and the tropical lattice invariants coin-
cide, i.e., (N (V ), M(V )) = (N tr(V ), M tr(V )). Since we will not use this, we only
indicate the main idea and leave the details to an interested reader. The general idea
is to compare the lattices using the curves in V defined over the subfield F ⊂ K of
convergent Puiseux series, and to prove that (i) all possible tropicalizations of curves
in V are realized by curves defined over F , and (ii) the irreducible component V con-
tains a Mumford curveC defined over F , whose tropicalization is regular. Property (i)
allows one to show that N tr(V ) ⊆ N (V ), and property (ii) – to deduce the equality.

4.2 The nodal partition and the signature

Let � = �k,k′ be a kite, and 0 ≤ g ≤ |�◦ ∩ Z
2| an integer. Set δ := δZ2(�, g),

as defined in Sect. 1.1. Then δ is the number of nodes of the curve C for any
[C] ∈ V irr

g,L. We claim that the set of δ nodes of C admits a natural unordered
partition into two blocks, which we call the nodal partition of C . Indeed, let
f ∈ H0(X ,L) be a Laurent polynomial defining C . Since C is torically strictly trans-
verse, all nodes of C belong to X•, and hence are given by the system of equations
f = z∂z( f ) = w∂w( f ) = 0. Furthermore, since � is a kite, the polynomial f is of
the form f (z, w) = az−1wk + p(w) + bzwk , where p(w) is a polynomial of degree
k + k′, and a, b ∈ C

∗. Thus, any node (z, w) ∈ C satisfies: −az−1 + bz = 0, and
hence z2 = a

b . We conclude, that the set of nodes of C admits a natural partition
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into two blocks, and a pair of nodes belongs to the same block if and only if their
z-coordinates coincide.

Plainly, the nodal partition varies continuously in the tautological family
CV irr

g,L
→ V irr

g,L. Furthermore, the number of nodes in the block corresponding to

a given value of z is equal to the number of critical points of p(w)

wk with critical value
p(w)

wk = −2bz. Therefore, the number of nodes in each block is bounded from above

by � k+k′
2 � = � δ+g+1

2 � = � δ+g
2 �.

Notice that the monodromy acts naturally on the two blocks of nodes of C , and the
blocks get interchanged, when a

b travels along a loop around 0 ∈ C. Therefore, the
partition is unordered, and the induced integer partition δ = δ1 + δ2, where δ1 ≥ δ2, is
an invariant of the irreducible component V ⊆ V irr

g,L containing [C]. The signature of
C and of V , is defined to be κ(V ) := κ(C) := δ1 − δ2. It is clear from the definition,
that for any irreducible component V ⊆ V irr

g,L, its signature satisfies the following

properties: κ(V ) is congruent to δ modulo 2, and κ(V ) + δ = 2δ1 ≤ 2� δ+g
2 �. Thus,

0 ≤ κ(V ) ≤ min

{
δ, 2

⌈
δ + g

2

⌉
− δ

}
.

In particular, if k+k′ is even, then δ + g is odd, and hence 0 ≤ κ(V ) ≤ min{δ, g+1}.
And if k + k′ is odd, then δ + g is even, and hence 0 ≤ κ(V ) ≤ min{δ, g}.

5 Tropical proofs of themain results

Let � ⊂ R
2 be a lattice polygon containing the origin as one of its vertices, and 

its dual fan. Let N ⊆ Z
2 be a sublattice containing the primitive vectors along all the

rays of . Recall that N is a sublattice of finite index r , and the quotient Z2/N is
isomorphic to the cyclic group Z/rZ. Let M ⊆ Z

2 be the sublattice obtained from N
by a rotation by π

2 . Then M = r · Hom(N ,Z) and N = r · Hom(M,Z). Since the
origin is a vertex of �, the sublattice M contains all vertices of �. Denote by μr the
kernel of the natural surjective homomorphism N ⊗Z C

∗ → Z
2 ⊗Z C

∗ = (C∗)2.

Lemma 5.1 Let (X ,L) and (X ′,L′) be the polarized toric varieties associated to the
polygon � with respect to the lattices Z2 and M. Then,

1. There is a natural μr -equivariant projection π : X ′ → X, and X = X ′/μr ;
2. The action of μr on the one-dimensional orbits of X ′ is free;
3. π∗L ∼= (L′)⊗r and π∗|L′| = |L|.
The assertions of the lemma are well-known in toric geometry. We only include a

sketch of its proof for the convenience of the reader.

Proof Since N = r ·Hom(M,Z), the variety X ′ is canonically isomorphic to the toric
variety associated to the fan with respect to the integral structure given by N . By the
functoriality of toric varieties, we obtain a natural morphism π : X ′ → X compatible
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with the actions of N ⊗ C
∗ and (C∗)2. Furthermore, π : X ′ → X is a Galois cover

with Galois group μr by, e.g., [8, § 2.6.2].
To verify (2), let ρ be a ray in , and O ⊂ X , O ′ ⊂ X ′ the corresponding one-

dimensional orbits. Then O = Spec
(
C[Z2 ∩ ρ⊥]) and O ′ = Spec

(
C[ 1r M ∩ ρ⊥]).

Since N contains the primitive integral vector of ρ, it follows that Z2 ∩ ρ⊥ has index
r in 1

r M ∩ ρ⊥, and hence the degree of π|O′ : O ′ → O is r , i.e., μr acts freely on O ′.
If [C] ∈ |L|, then the intersection of C with the divisor Dρ ⊂ X corresponding

to a ray ρ is given by the integral length of the dual side of �. Therefore, π∗(C).D′
ρ

is r times bigger, and hence coincides with the integral length of � with respect to
1
r M , or equivalently, the integral length of r� with respect to M . We conclude that
π∗L and (L′)⊗r belong to the same class in the Neron-Severi group NS(X ′). But
NS(X ′) ∼= Pic(X ′), and therefore π∗L ∼= (L′)⊗r . The second part of assertion (3) is
now clear. ��
Lemma 5.2 Let (X ,L) and (X ′,L′) be as in Lemma 5.1. Denote by V irr

g,L′ the Severi

variety of integral genus g curves in the linear system |L′| on X ′, and let V ′ ⊆ V irr
g,L′

be an irreducible component. Denote by V the locus of reduced curves in π∗(V ′).
Then,

1. dim(V irr
g,L′) = dim(V irr

g,L);

2. V ⊆ V irr
g,L is an irreducible component;

3. If � = �k,k′ is a kite, then κ(V ′) = κ(V ) if r is odd, and κ(V ) = g + 1 if r is
even;

4. (N tr(V ), M tr(V )) = (N tr(V ′), M tr(V ′)).

Proof By [15, Theorem 1], the Severi varieties V irr
g,L and V irr

g,L′ are equidimensional,
and

dim(V irr
g,L) = |∂� ∩ Z

2| + g − 1 = |∂� ∩ M | + g − 1 = dim(V irr
g,L′),

since |∂�∩Z
2|+ g−1 = |L|− δZ2(�, g) and |∂�∩M |+ g−1 = |L′|− δM (�, g).

This proves (1).
To prove (2), notice that since π∗ : |L′| → |L| is a finite morphism, we have the

equality of dimensions dim(π∗(V ′)) = dim(V irr
g,L). Thus, V is dense in an irreducible

component of V irr
g,L. On the other hand, if [C] belongs to this component, then π−1(C)

is a reduced curve in the linear system |(L′)⊗r |. Furthermore, π−1(C) is a specializa-
tion of a μr -orbit of an element of |L′|, and hence it is a μr -orbit of some [C ′] ∈ |L′|.
Plainly, π : C ′ → C is a birational map, and hence [C ′] ∈ V ′. Assertion (2) now
follows.

The proof of (3) is a rather long but straight-forward computation. We start with the
case whenM contains the point (0, k), i.e.,� is a kite alsowith respect to the sublattice
M . In this case, the action ofμr on a point (z, w) ∈ X• is given by ξ(z, w) = (ξ z, w),
and the projection π is given by π(z, w) = (zr , w).

Let [C ′] ∈ V ′ be general, and set C := π(C ′). Then [C] ∈ V , and hence
the curve C is nodal, torically strictly transverse, and has geometric genus g.
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Since π−1(C) = ∪ξ∈μr ξ(C ′), each node of C has r preimages, which are either
the μr -orbit of a node of C ′, or the μr -orbit of a point of intersection of C ′ with ξ(C ′)
for some 1 �= ξ ∈ μr . Recall that two nodes belong to the same block of the nodal
partition if and only if they have the same z-coordinates, and they belong to different
blocks if and only if their z-coordinates differ by a sign. Therefore, if r is odd, then a
pair of nodes of C ′ belongs to the same block of the nodal partition if and only if their
images do so; and if r is even, then all nodes of C ′ are mapped to the same block of
the nodal partition of C .

Let p ∈ C be a node, whose preimage on C ′ is a pair of points {p′
1, p

′
2}. Then there

exists a unique ξ ∈ μr such that p′
1 ∈ C ′ ∩ ξ(C ′), and hence p′

2 ∈ C ′ ∩ ξ−1(C ′).
Let cz−1wk/r + q(w) + ezwk/r be a section of L′ defining C ′. Then the intersection
C ′ ∩ ξ(C ′) is given by the system of equations:

cz−1wk/r + q(w) + ezwk/r = cξ−1z−1wk/r + q(w) + eξ zwk/r = 0,

or equivalently cz−1wk/r + q(w) + ezwk/r = cz−1 − eξ z = 0. Since C = π(C ′) is
nodal, the intersectionC ′ ∩ξ(C ′) is transverse. Thus, for each solution of cz−1 = eξ z,
we have k+k′

r solutions of cz−1wk/r + q(w) + ezwk/r = 0.
Assume that r is odd. To prove that κ(V ′) = κ(V ), it remains to show that each

block of the nodal partition ofC contains the same amount of nodes, whose preimages
are pairs of points in C ′. Since r is odd, ξ �= ξ−1 for any 1 �= ξ ∈ μr . Therefore, it
suffices to show that for any ξ �= 1, the points of intersection C ′ ∩ ξ(C ′) contribute
equally to the two blocks of the nodal partition of C , but the latter is clear because the
r -th powers of the two solutions of cz−1 = eξ z differ by a sign, and therefore each
one of them contributes k+k′

r nodes to the corresponding block.
Assume now that r is even. In this case, all nodes of C ′ are mapped to the block of

nodes of C for which z = ( c
e

)r/2. Similarly, for any ξ �= 1, all intersection points of

C ′ ∩ ξ(C ′) are mapped to the block in which z = ( c
e ξ

)r/2. Thus,

κ(V ) =
∣∣∣∣∣∣
k + k′

r

∑
1 �=ξ∈μr

ξ r/2 + δM (�, g)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
k + k′

r

∑
ξ∈μr

ξ r/2 − 1 − g

∣∣∣∣∣∣ = g + 1,

since |C ′ ∩ ξ(C ′)| = 2 k+k′
r for all ξ �= 1.

It remains to prove assertion (3) in the casewhenM does not contain the point (0, k).
By Remark 3.2, r is a common divisor of k + k′ and k − k′. In particular, r is a divisor
of 2k but it does not divide k since otherwise (0, k) ∈ M . Therefore, r is necessarily
even. For the computation, it is more convenient to apply an affine automorphism of
Z
2 so that � becomes the polygon with vertices (0, 0), (−1, 0), (1, 2k), (0, k + k′).

Then μr again acts by ξ(z, w) = (ξ z, w) and π(z, w) = (zr , w).
Let az−1+ p(w)+bzw2k be a section ofL defining the curveC . Then the nodes of

C satisfy−az−2+bw2k = 0, and hence two nodes ofC belong to the same block if and
only if they have the same value of zwk . Similarly, if cz−1+q(w)+ezw2k/r is a section
of L′ defining the curve C ′ ⊂ X ′, then the nodes of C ′ satisfy z2w2k/r = c

e . Thus, the

image (zr , w) of every node of C ′ satisfies zrwk = ( c
e

)r/2, and hence belongs to the
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same block of the nodal partition of C . Other nodes of C correspond to the points of
intersection of C ′ with ξ(C ′) for various 1 �= ξ ∈ μr , and the computation, identical
to the one we did above, shows that κ(V ) = g + 1.

Finally, let us prove (4). Let K be the field of Puiseux series, and [C ′] ∈ V irr
g,L′(K )

be such that π∗[C ′] ∈ V irr
g,L(K ). Set C := π(C ′). Then C ′ → C is birational, and

hence the normalizations C̃ ′ and C̃ are canonically isomorphic. Let us show that the
tropicalizations of f ′ : C̃ ′ → X ′ and f : C̃ → X coincide. Under the identification
C̃ ′ = C̃ , we have f = π ◦ f ′. Thus, the abstract tropical curves 
′ and 
 coincide,
and for any m ∈ Z

2, we have f ∗(xm) = ( f ′)∗(xm). Therefore, the parametrizations
h′ and h coincide too by their very definition. We conclude that N tr

C = N tr
C ′ .

We have seen in the proof of assertion (2), that for any [C] ∈ V (K ) there
exists [C ′] ∈ V ′(K ) such that π(C ′) = C . Thus, N tr

C = N tr
C ′ , and hence

N tr(V ) ⊆ N tr(V ′). Vice versa, for [C ′] ∈ V ′(K ), consider a general one-parameter
family
C ′
B → B ⊆ V ′(K ), and denote the fiber over a point b ∈ B byC ′

b. Set 0 := [C ′] ∈ B.
Then, C ′

0 = C ′, and for any b in a small punctured neighborhood of 0, the pushfor-
ward π∗([C ′

b]) belongs to V (K ). Hence N tr
C ′
b

⊆ N tr(V ). It remains to show that in

any punctured neighborhood of 0, there exists b such that the tropicalization of C ′
b

coincides with that of C ′. Indeed, if such b exists, then N tr
C ′ ⊆ N tr(V ), and hence

N tr(V ′) ⊆ N tr(V ).
To prove the existence of b as above, notice that since all curves in our family are

reduced of geometric genus g, the family is equinormalizable. Therefore, it admits a
tropicalization in the sense of [5] without marking the point 0 ∈ B, cf. Step 2 in the
proof of [5, Theorem 5.1]. By [5, Theorem 4.6], the tropicalization ofC ′

b depends only
on trop(b) ∈ trop(B), which in turn is completely determined by the specialization
of b on the stable reduction of B. Plainly, in any punctured neighborhood of 0 there
exist points, whose specializations on the stable reduction of B coincide with that of
0, which completes the proof. ��

5.1 Proof of Theorem A

Without loss of generality we may assume that � contains the origin as one of its
vertices, and the sublattices we are interested in are linear. Let M ⊆ Z

2 be a sublattice
satisfying the conditions (a) and (b) of the theorem. It is sufficient to prove that for
any 1 ≤ g′ ≤ |�◦ ∩ M |, there exists a convex M-integral triangulation � = ∪�i ,
whose set of vertices contains ∂� ∩ M and generates M , and the number of ver-
tices of the triangulation in �◦ is g′. Indeed, given such a triangulation for g′ = g,
the dual tropical curve h : 
 → R

2 is a trivalent irreducible curve of genus g, and
hence regular by [20, Proposition 2.23], i.e., its deformation space has the expected
dimension. Let (X ′,L′) be the polarized toric surface corresponding to the polygon �

with respect to the lattice M . Then h : 
 → R
2 is realizable by an irreducible nodal

algebraic curve f : C → X ′ of genus g over the field of Puiseux series; see, e.g., [22,
Lemma 3.12] or [26, Theorem 6.2]. Let V ′ be the component of the Severi variety
V irr
g,L′ containing [C], and V := π∗(V ′) the corresponding component of V irr

g,L. Then
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M tr(V ) = M tr(V ′) = M by Lemma 5.2 (4), which implies the asserted bound on the
number of irreducible components of V irr

g,L.
Let us construct the desiredM-triangulations of�. Since ∂�∩M = ∂�∩Z

2, there
exists m ∈ �◦ ∩ M such that {m} ∪ (∂� ∩ M) generates M . Thus, the triangulation
with vertices {m} ∪ (∂� ∩ M) is the desired convex triangulation in the case g′ = 1.
We proceed by induction. Once a desired triangulation � = ∪�i is constructed for
1 ≤ g′ < |�◦ ∩ M |, we construct the triangulation for g′ + 1 in the following way:
if there is a triangle �i containing a lattice point in its interior, then we add this point
as a new vertex of the triangulation. Otherwise there is a pair of triangles containing
a lattice point in the interior of their common edge, and we add this point as a new
vertex of the triangulation. Plainly, the new triangulation is convex in both cases, and
the number of vertices of the new triangulation in the interior of � is g′ + 1. ��

5.2 Proof of Theorem B

Let M ⊆ Z
2 be a sublattice of index r . A pair (M, κ) is called admissible if and only if

M satisfies conditions (a) and (b) of Theorem A, and one of the following conditions
holds

– the index r is even and κ = g + 1, or
– the index r is odd, 0 ≤ κ ≤ min{δM (�, g), g}, and κ is congruent to δM (�, g)

modulo 2.
To prove the theorem, it is sufficient to construct for any admissible pair (M, κ),
an irreducible component V ⊆ V irr

g,L such that (M tr(V ), κ(V )) = (M, κ). Pick an
admissible pair (M, κ), and let (X ′,L′) be the polarized toric surface associated to
the polygon � with respect to the lattice M .

Assume first, that r is even. Then κ = g + 1. As in the proof of Theorem A, there
exists an irreducible componentV ′ ⊆ V irr

g,L′ such thatM tr(V ′) = M . SetV := π∗(V ′).
Then M tr(V ) = M and κ(V ) = g + 1 = κ by Lemma 5.2 (3)-(4).

Assume now that r is odd. Then κ ≤ min{δM (�, g), g}, and hence

κ + g ≤ δM (�, g) + g = |�◦ ∩ M | = k + k′

r
− 1.

Consider the M-integral triangulation of � = �k,k′ , whose inner vertices are the
points

k′− 2r , k′− 4r , . . . , k′− 2κr , k′− 2κr − r , k′−2κr−2r , . . . , k′ − 2κr − (g − κ)r

on the y-axis. Notice that k′−2κr−(g−κ)r = k′−(κ+g)r ≥ k′−(k+k′−r) = r−k,
and therefore such a triangulation exists. The triangulation subdivides the interval
[−k, k′] on the y-axis into g + 1 subintervals. The top κ of them have M-integral
length 2, the next g − κ intervals have M-integral length one, and the bottom interval
has M-integral length

k′ − 2κr − (g − κ)r + k

r
= δM (�, g) + g + 1 − (κ + g) = δM (�, g) − κ + 1,
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which is odd since κ is congruent to δM (�, g) modulo 2. In particular, the vertices of
the subdivision generate the affine lattice M .

Let h : 
 → R
2 be the trivalent tropical curve dual to the triangulation constructed

above. We will prove that it is liftable to an algebraic curve [C ′] ∈ V irr
g,L′ for which

κ(C ′) = κ by using Shustin’s refined tropicalization [22, § 3.5]. Let us start by picking
an arbitrary tropical datum as in [22, § 3.7] with nodal amoeba h(
). Then, we can
apply [22, Theorem 5] to lift it to an algebraic curve C ′ over the field K . Furthermore,
since the triangles in the dual subdivision have no inner integral points, the nodes of
C ′ are in natural one-to-one correspondence with the nodes of the z-refinements of
the tropicalization ofC ′. This allows us to control the signature κ(C ′) in the following
way.

For each of the top κ intervals on the y-axis, its M-integral length is 2, and hence
there are two possible z-refinements as in [22, Lemma 3.9], and each of them con-
tributes a single node to C ′. The next g − κ intervals have M-integral length one,
and hence contribute no nodes at all. Finally, the bottom interval has an odd integral
length, and hence contributes an even number of nodes. Furthermore, the nodes of the
z-refinement corresponding to the bottom interval contribute equally to the two blocks
of nodes of C ′. Indeed, if h is the Chebyshev polynomial of an odd degree (or any of
its twists as in the proof of [22, Lemma 3.9]), then it has the same number of critical
points with critical values 1 and −1, and ±1 are the only critical values of h. There-
fore, half of the nodes of the bottom z-refinement, which is given by the polynomial
az2 + bzh(w) + c, have one value of the z-coordinate, and half – the opposite value.

Notice however, that changing the choice of the z-refinement corresponding to one
of the top κ intervals, changes the block to which the refining curve contributes its
node. Thus, after replacing some of the first κ refining curves with their twists, we
can make sure that all nodes of the first κ refining curves contribute to the same block
of nodes of C ′. Therefore, by [22, Lemma 3.12], there exists [C ′] ∈ V irr

g,L′ such that
κ(C ′) = κ . Furthermore, since the vertices of the triangulation generate M , we also
have: M tr(C ′) = M .

To finish the proof, let V ′ ⊆ V irr
g,L′ be the irreducible component containing [C ′],

and set, as usual, V := π∗(V ′). Then V ⊆ V irr
g,L is an irreducible component, and

since r is odd, we have

(M tr(V ), κ(V )) = (M tr(V ′), κ(V ′)) = (M, κ)

by Lemma 5.2 (3)-(4). This completes the proof. ��

6 Deformation of curves in toric surfaces

The main goal of this section is to introduce local coordinates on V irr
g,L that we can

use to construct deformations to curves of lower genus. In particular, we will prove
Theorem C.

For the convenience of the reader, we recollect the relevant material introduced in
Sect. 1.1. Fix [C] ∈ V irr

g,L, and pick a collection ϒ := {γ1, . . . , γg} of oriented simple
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closed curves in the smooth locus of C• such that each γ j is contractible in X• and
such that ϒ generates a g-dimensional subspace of H1(C,Z). Since X• is acyclic,
each γ j bounds a smooth disc Mj ⊂ X• that is unique up to homotopy. We denote by
	 the holomorphic 2-form dz∧dw

zw on X• � (C∗)2 and consider the integrals

∫
Mj

	 , j = 1, . . . , g. (6.1)

Since the 2-form 	 is closed, the above integrals do not depend on the choice of the
smooth membranes Mj ’s. Additionally, the integrals do not depend on the choice of
γ j ’s within a fixed isotopy class, as the form 	 is identically zero on C .

Denote by W ⊂ V irr
g,L the locus of curves having given tangency profile with the

boundary divisor. For any [C] ∈ W and any open neighborhood U ⊂ W of [C] such
that the monodromy action of π1(U , [C]) on C acts as the identity on ϒ , we can carry
the collection ϒ to a collection ϒ ′ of simple closed curves in [C ′] ∈ U . Therefore,
the integrals (6.1) define a map

�ϒ : U → C
g.

At last, denote by UC ⊂ U the subset of curves [C ′] such that C ′ ∩ ∂X = C ∩ ∂X .
The following statement is a slight generalization of Theorem C.

Theorem A For [C] ∈ U and ϒ as above, the restriction of the map �ϒ to UC is a
local diffeomorphism. Moreover, the integrals (6.1) together with the coordinates of
the intersection points of C with the boundary divisor of X provide a local system of
coordinates on W.

In order to prove TheoremA,wewill need a description of the space of holomorphic
1-forms on the normalization of C . We denote by π : C̃ → C the normalization map.
Recall that the adjoint polygon �a is defined by �a := conv(�◦).

Lemma 6.1 For any curve [C] ∈ V irr
g,L whose set of nodes is contained in X•, the space

of holomorphic 1-forms on the normalization C̃ is isomorphic to the linear subspace
L ⊂ H0(X ,L) consisting of the Laurent polynomials h(z, w) vanishing at the nodes
of C and having Newton polygon contained in �a. The isomorphism is given by the
map

h(z, w) �→ ξh := π∗( h(z, w)

∂w f (z, w) · zw dz
)

where f ∈ H0(X ,L) is a Laurent polynomial defining C•.

Proof Observe that L is isomorphic to the tangent space toUC at the point [C], which
is smooth of dimension g. It follows that L has the expected dimension. Moreover,
the two meromorphic 1-forms ξh and ξh̃ are linearly independent provided that h and
h̃ are. It remains to show that ξh is indeed holomorphic.
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Since h ∈ L vanishes at the nodes of C , the form ξh is holomorphic in a neighbor-
hood of the branches of the nodes. This can be seen using a local parametrization of
the branches in X•. The fact that ξh is holomorphic on the rest of the curve is proven
in [7, Lemma 4.3] (the proof is identical except that the charts C2 are to be replaced
with charts C∗ × C). ��
Proof of TheoremA Assume towards the contradiction that the restriction of�ϒ toUC

is not a local diffeomorphism at [C]. Then, there exists a non-zero polynomial h as in
Lemma 6.1 such that for

Ct := {(z, w) ∈ X• | f (z, w) = t · h(z, w)},

the derivative of the smooth function t �→ �ϒ([Ct ]) vanishes at 0. For any
j = 1, . . . , g, fix an arbitrarily small neighborhood Vj ⊂ X• of Mj and an arbitrarily
small ε > 0. In order to compute the j th coordinate of the derivative of �ϒ([Ct ]), we
introduce a C∞ complex-valued, time-dependent vector field

χ(z, w, t) = α(z, w, t)∂z + β(z, w, t)∂w

defined on Vj , in time |t | < ε, whose associated flow φt : Vj → X• maps C0 ∩ Vj to
Ct and such that φt (Mj ) is a smooth membrane. In particular, the j th coordinate of
�ϒ([Ct ]) is given by the integral

∫
φt (Mj )

	. Any such vector field, if it exists, satisfies
the relation

α · ∂z f + β · ∂w f = h + t(α · ∂zh + β · ∂wh), (6.2)

since any integral curve t �→ (z(t), w(t)) of χ satisfies the relation
f (z(t), w(t)) = t · h(z(t), w(t)) whose derivative with respect to t is (6.2). By the
assumption made on �ϒ , we have

0 = d

dt

∫
φt (Mj )

	

∣∣∣∣∣
t=0

= d

dt

∫
Mj

φ∗
t 	

∣∣∣∣∣
t=0

=
∫
Mj

d

dt
φ∗
t 	

∣∣∣∣∣
t=0

, (6.3)

where the second equality is the change of variables formula and the last integrand
is the Lie derivative of 	 with respect to χ . According to the Cartan Formula [16,
Proposition 5.3.1] and the fact that	 is closed, the Lie derivative of	 is the derivative
d(χ�	) of the contraction of 	 with χ . Using the relation

∂z f (z, w) · dz + ∂w f (z, w) · dw = 0

valid on C and the relation (6.2) specialized at t = 0, we obtain that

(χ�	)|C = α · dw − β · dz
zw

= −dz

zw

( ∂z f

∂w f
α + β

)

= −α · ∂z f + β · ∂w f

zw∂w f
dz = −h

zw∂w f
dz, (6.4)
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whose pullback to C̃ is the holomorphic form−ξh , see Lemma 6.1. Putting everything
together, we obtain that

0 =
∫
Mj

d

dt
φ∗
t 	

∣∣∣∣∣
t=0

=
∫
Mj

d(χ�	) =
∫

∂Mj

χ�	 = −
∫

γ j

ξh (6.5)

where the penultimate equality follows from Stokes’ Theorem and the last equality
from (6.4). Since (6.5) is valid for any j , and since the homology classes [γ j ] form
a basis of H1(C̃,Z), we deduce that ξh is zero, and in turn, that h = 0. This is a
contradiction.

It remains to prove the existence of the vector field χ . As a first approximation, we
can define χ to be the meromorphic vector field defined by

α := μh

∂z f − t∂zh
+ λ(∂w f − t∂wh) and β := (1 − μ)h

∂w f − t∂wh
− λ(∂z f − t∂zh)

with μ, λ ∈ C. Since ε is arbitrarily small, each curve Ct ∩ Vj is smooth. In par-
ticular, the gradient (∂z f − t∂zh, ∂w f − t∂wh) of f − th is nowhere vanishing on
C := ⋃

|t |<ε Ct ∩ Vj . Therefore, setting μ to either 0 or 1 and |λ| large enough, we
can ensure that χ is holomorphic and nowhere vanishing on C . Since χ satisfies (6.2),
the flow φt maps C0 to Ct . A priori, we cannot guarantee that χ is well defined on
the whole Vj × {|t | < ε}, since it is only meromorphic and may have poles inside the
latter set. To fix this, we can replace χ with � · χ , where �(z, w, t) is a test function
supported on an arbitrarily small neighborhood of C and such that �|C = 1. The
resulting vector field is C∞ and has the required properties. ��

7 Simple Harnack curves

In this section, we label the edges of � by �1, . . . ,�n according to the counter-
clockwise ordering on ∂�. For an edge � j , we denote by D j the corresponding toric
divisor in X . We also denote by (z, w) the coordinates on X• � (C∗)2 induced by the
dual lattice Z

2. The complex conjugation on (C∗)2 extends to an anti-holomorphic
involution conj on X . A curve [C] ∈ |L| is real if conj(C) = C and we denote by RC
the fixed locus of conj|C . As we did previously, we denote C• := C ∩ X•. Recall the
amoeba map

A : (C∗)2 → R
2

(z, w) �→ (
log |z|, log |w|) .

Definition 7.1 A real curve [C] ∈ |L| is a (possibly singular) simple Harnack curve
if the restriction of the amoeba map A : C• → R

2 is at most 2-to-1.

The above definition is shown to be equivalent to the original definition [21, Def-
initions 2 and 3] in [21, Theorem 1]. It is clear from the definition of the map A that
it identifies pairs of complex conjugated points on a real curve C . Therefore, simple
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Harnack curves are exactly those curvesC for which the restriction ofA toC• realizes
the quotient of C• by the involution conj, see e.g., [21, Lemma 5]. In particular, the
restriction ofA to RC• is 1-to-1 onto the boundary ofA(C•), see also [19, Lemma 8
and Corollary 9] for smooth curves.

Recall that any smooth simple Harnack curve C satisfies the following properties:
C is maximal, i.e., b0(RC) = g+1, where g is the genus ofC , and the real partRC has
a unique component that intersects the boundary divisor ∂X . It follows that A(C•) is
a topological disc with g holes bounded by the images of the g remaining components
of RC and with punctures on its boundary. Smooth/singular simple Harnack curves
are obtained from each other by contracting/expanding the latter holes, as shown by
the following lemma.

Lemma 7.2 The only singularities of simple Harnack curves are real isolated double
points. Moreover, there exists a smooth simple Harnack curve in the neighborhood of
any singular simple Harnack curve [C] ∈ |L|.
Proof The first property is actually a part of the original definition [21, Definition 3].
With respect to Definition 7.1 above, the latter property corresponds to [21, Lemma
6]. For the second part of the statement, let us fix a defining Laurent polynomial
f (z, w) for C•. Then, there exists another Laurent polynomial h(z, w) satisfying the
following:

– the Newton polygon New(h) of h equals New( f ) =: �;
– for any node (z, w) ∈ C•, we have h(z, w) = −1 (resp. h(z, w) = 1) if f is

positive (resp. negative) in a small neighborhood U ⊂ (R∗)2 of (z, w).
Indeed, the latter conditions are linear in the space |L|, and there are asmany conditions
as nodes. In particular, the number of conditions is at most |�◦ ∩ Z

2|, which in turn
is strictly less than the dimension of |L|. The space of polynomials h as above is
therefore not empty.

It follows now from theMorse Lemma that the curve defined by f +εh is a smooth
simple Harnack curve for any arbitrarily small ε > 0. Indeed, for any node (z, w),
there exist real analytic coordinates centered at (z, w) such that f + εh reads either
z2 + w2 − ε or ε − z2 − w2, that is the isolated double points of C are deformed into
compact ovals inRC•. The resulting curve satisfies therefore the requirements of [21,
Definition 2] which is equivalent to Definition 7.1. ��

Recall that for a smooth simpleHarnack curveC , the ordermapordof [9] establishes
a bijective correspondence between the set of compact connected components ofRC•
and the set of lattice points �◦ ∩ Z

2, see [19, Corollary 10].
According to [19, Lemma 11], the map ord on a smooth simple Harnack curve C

can be described as follows. First, assume that the vertex �n ∩ �1 is the origin.
Let c0 ⊂ RC• be the unique connected component joining the two consecutive
toric divisors Dn and D1. For any compact component c of RC•, draw a path
ρc ⊂ A(C) joining A(c0) to A(c). By the 2-to-1 property of the amoeba map, the
lift γc := A−1(ρc) is a loop in C•, which is invariant under complex conjugation.
There exists a unique orientation of γc such that the corresponding homology class
(a, b) ∈ H1((C

∗)2,Z) satisfies (−b, a) ∈ �◦ ∩Z
2 (note the sign mistake in the sixth

line of the proof of [19, Lemma 11]). Then, we have ord(c) = (−b, a). Observe that
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the homology class of γc is independent of the choice of ρc. In particular, the map ord
is well defined.

For a singular simple Harnack curve C , a compact component c of RC• can be of
two types: either c is a topological circle or it is a real isolated double point of C . In
the former case, we define γc as above. If c is a node of C we can repeat the same
construction as above where ρc is a path joining A(c0) to A(c) and γc := A−1(ρc).

Definition 7.3 For a singular simple Harnack curve C , define the order map

ord : {compact components of RC•} → �◦ ∩ Z
2

by ord(ν) = (−b, a)where (a, b) ∈ H1(X•,Z) is the homology class of the (properly
oriented) loop γc constructed above.

The fact that (−b, a) ∈ �◦ ∩ Z
2 (with the appropriate orientation of γc) follows

from the facts that
– it holds for smooth curves C ;
– the homology class of γc is constant under small perturbations of C ;
– singular Harnack curves can always be perturbed into smooth ones, thanks to

Lemma 7.2.
By the same arguments, the statement below follows now from [19, Corollary 10].

Proposition 7.4 For any singular simple Harnack curve, the order map is a bijection.

The existence of smooth simple Harnack curves in |L| is guaranteed by [19, Corol-
laryA4]. For singular ones, the existence is addressed in [13, Theorem6], [2, Theorems
2 and 10], [7, Theorem 3] in various contexts. The theorem below discusses the exis-
tence of singular Harnack curves with prescribed order map.

Theorem 7.5 For any integer 0 < g < |�◦ ∩ Z
2| and any subset E ⊂ �◦ ∩ Z

2 of
cardinality δ := |�◦ ∩Z

2|−g, there exists a one-parameter family of simple Harnack
curves {[Ct ]}t∈[0,1] ⊂ |L| such that Ct is smooth for all t < 1, the curve C1 is singular
and ord({nodes of C1}) = E. In particular, any Severi variety V irr

L,g contains a simple
Harnack curve.

In [13], it was observed that the Euclidean area of the g compact holes of the
amoeba A(C•) of a smooth simple Harnack curve can be completed into a system of
coordinates on the space of all simple Harnack curves for X = P

2, see [13, Theorem
6]. In particular, any sub-collection of these holes can be contracted to points by
prescribing the corresponding area to tend to zero.

The proof of Theorem 7.5 is based on the same idea. Below, we give an alternative
proof of the fact that the area of the holes ofA(C•) provides local coordinates, building
on the material of Sect. 6.

Proof of Theorem 7.5 Choose any smooth simple Harnack curve [C0] ∈ |L|, and
denote by H the space of smooth simpleHarnack curves in |L| that coincidewithC0 on
X \ X•. Note that H ⊂ |L| is a smooth subvariety of real dimension g� := |�◦ ∩Z

2|.

123



1700 L. Lang, I. Tyomkin

Consider the continuousmapArea : H → R
�◦∩Z2

≥0 that associates to any curveC the
Euclidean area of the holes ofA(C•), where each hole is indexed by the corresponding
point in �◦ ∩ Z

2 via the order map ord. We claim that the map Area is a local
diffeomorphism. Indeed, the map Area is nothing but the map �ϒ , where ϒ consists
of the g� compact connected components of RC• (note that the existence of the map
ord implies that the monodromy of H acts trivially onϒ). To see this, pick membranes
Mj to be the disc in (R∗)2 bounded by γ j . Since the 2-form 	 is the pullback under
the coordinate-wise complex logarithm of the Euclidean form dz ∧ dw, the integrals
(6.1) compute the Euclidean area of the holes of A(C•), and the claim follows by
Theorem A.

Next, notice that the map Area extends continuously to the closure H . Indeed, by
Lemma 7.2, the curves in the boundary of H correspond to the singular curves inwhich
some of the g� real ovals are contracted to real isolated double points. Therefore, we
obtain a continuous map Area : H → R

�◦∩Z2

≥0 . Moreover, by [13, Theorem 6], the
lattermap is proper in the case of planar curves, and the argument in loc. cit. generalizes
to arbitrary toric surfaces verbatim.

Finally, set (a j ) j∈�◦∩Z2 := Area([C0]), and consider the segment σ ⊂ R
�◦∩Z2

from the point Area([C0]) to the point (b j ) j∈�◦∩Z2 defined by b j = 0 if j ∈ E , and

b j = a j otherwise. We claim that there exists a path in H starting from [C0] and
mapping bijectively onto σ . To see this, define P to be the set of all closed paths
ρ starting from [C0] and mapping injectively into σ . The set P is totally ordered
and contains paths with non-empty relative interior since Area is a covering. Since
Area is proper on H , there exists a unique maximal element ρ̃ inP . Assume towards
the contradiction that the end point [C̃] of ρ̃ maps to an interior point of σ . Then
A(C̃•) bounds g� compact holes, or equivalently RC̃• contains g� ovals, that is C̃
is smooth. Since Area is a local covering on H , the smoothness of C̃ implies that ρ̃

can be extended into a longer path in P . This is a contradiction. Therefore ρ̃ maps
bijectively to σ and provides the sought degeneration of C0 to C1. ��

8 Topological proof of themain results

In this section, we use the notation � j , D j introduced in the previous section. We
assume with no loss of generality that �n ∩ �1 = 0.

Lemma 8.1 Let [C] ∈ V irr
g,L be a torically strictly transverse simpleHarnack curve and

denote E = ord({nodes of C}). If V ⊂ V irr
g,L is the irreducible component containing

[C], then the lattice M(V ) of Sect. 4.1 is generated by (� ∩ Z
2) \ E.

Proof As in Sect. 7, we denote by c0 the unique connected component ofRC• joining
Dn to D1. We denote by a1, . . . , ag the g ovals of RC•. For any a j , we choose a path
inside A(C•) joining A(c0) to A(a j ), and denote by ag+ j ⊂ C• its preimage under
the map A. By perturbing the paths if necessary, we can make sure that the loops
ag+ j avoid the nodes of C . Finally, let �1, . . . , �k be small loops around the punctures
of C•. Then, the collection of simple closed curves �1, . . . , �k , a1, . . . , a2g (oriented
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arbitrarily) lifts to a basis of H1(C̃•,Z). In particular, the homology classes of these
curves generate the sublattice NC .

Each � j is associated to a puncture ofC• corresponding to the intersection ofC with
one of the toric divisors of X . In turn, such toric divisor corresponds to an edge of �

directed by some primitive integer vector (a, b). It is a standard fact in toric geometry
that the homology class [� j ] is then given by ±(−b, a) (depending on the orientation
of � j ), cf. [17, Lemma 1.10]. In particular, the sublattice of N generated by the [� j ]’s
is the rotation by π

2 of the sublattice
〈
∂� ∩ Z

2
〉
. By the construction and the definition

of the order map, the following holds: for any 1 ≤ j ≤ g we have [a j ] = (0, 0) and
[ag+ j ] = ±(−b, a), where ord(a j ) = (a, b). We deduce that NC is the rotation by π

2
of the lattice generated by (� ∩ Z

2) \ E , which implies the assertion. ��
Proof of TheoremA The theorem follows from Lemmata 4.2 and 8.1 and Theorem 7.5.

��
Lemma 8.2 Let �k,k′ ⊂ R

2 be a kite, g, δ integers such that δ + g = k + k′ − 1, and
[C] ∈ V irr

g,L a simple Harnack curve. Set E := ord({nodes of C}) and

Eeven := E ∩ ({0} × 2Z) and Eodd := E \ Eeven .

Then, the nodal partition of C is {|Eeven|, |Eodd |}. In particular, any integer partition
δ = δ1 + δ2 such that 0 ≤ δ1, δ2 ≤ � k+k′−1

2 � is the nodal partition of some curve in
V irr
g,L.

Proof By definition, the nodal partition of C is the partition given by the sign of the
first coordinate of the nodes. By [19, Lemma 11], the sign corresponding to a node
ν ∈ C is given by the parity of the second coordinate of ord(ν). This proves the
first part of the statement. In particular, the nodal partition δ = δ1 + δ2 of C has to
satisfy 0 ≤ δ1, δ2 ≤ � k+k′−1

2 �, and for each such partition we can find E such that
{|Eeven|, |Eodd |} = {δ1, δ2}. The result now follows from Theorem 7.5. ��
Proof of Theorem B As in the tropical proof of the theorem, it is sufficient to con-
struct for any admissible pair (M, κ), an irreducible component V ⊆ V irr

g,L such that
(M(V ), κ(V )) = (M, κ); see §5.2 for the definition of an admissible pair. By Lem-
mata 8.1 and 8.2, it suffices to find a subset E ⊆ �◦ ∩ M of cardinality δ such that
(� ∩ M) \ E generates M , and

∣∣|Eeven| − |Eodd |∣∣ = κ . Such a set E can be taken
as the set of interior vertices of the M-integral triangulation of � constructed in Sect.
5.2. ��
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Appendix A

In this section, we establish a connection between the Severi varieties associated to
kites and the topological classification of polynomials as studied in [14] and [29].

Let � := �k′,k be a kite, and (X ,L) the corresponding polarized toric surface.
For our purpose, it will be convenient to shift the kite so that its vertices become
(±1, 0), (0,−k), and (0, k′). For a given integer g ≥ 0, set δ := δZ2(�, g). Recall
that a curve [C] ∈ |L| is defined by a Laurent polynomial of the form

f (z, w) = a

z
+ p(w) + bz (A.1)

where a, b ∈ C and p(w) is a univariate Laurent polynomial. Recall from Sect. 4.2
that any curve [C] ∈ V irr

g,L has an associated nodal partition δ = δ1 + δ2. Our first
observation is that the latter partition determines the passport of the polynomial p(w).

Consider a branched cover p : S → CP1 of degree d from a compact orientable
surface S. For any critical value b ∈ CP1 of p with fiber p−1(b) := {a1, . . . , ak}, we
have a partition d = d1 + · · · + dk where di is the multiplicity of p at ai . In turn, the
passport  of p is the collection of the partitions for all critical values of p other than
∞. In particular, any Laurent polynomial admits a passport.

Denote by Pk′,k the space of Laurent polynomials with set of exponents contained
in [−k, k′], to which the polynomial p(w) from (A.1) belongs. For a given passport
, denote by Pk′,k

 the subspace of Pk′,k consisting of polynomials with passport

. For k = 0, the space Pk′,k
 is a central object in the topological classification of

polynomials, see for instance [14]. It follows from the proof of [14, Theorem 6] that
Pk′,k

 is a smooth variety of complex dimension m + 2, where m is the number of

distinct finite critical values of . In particular, a path-connected component of Pk′,k


is irreducible and vice versa.
Let us denote by {2δ} the partition of d with exactly δ summands “2” and remaining

summands “1”. Since the case δ = 0 corresponds to a regular value, every time {20}
appears in a passport we disregard it. Then, we have the following simple lemma.

Lemma A.1 Let V ⊆ V irr
g,L be an irreducible component with nodal partition

δ = δ1 + δ2, then there is a Zariski open subset of curves [C] ∈ V for which the
Laurent polynomial p(w) of (A.1) has passport

{{2δ1}, {2δ2}, {2}, · · · , {2}}.
Proof Assume for simplicity that 0 < δ2 ≤ δ1. The case δ2 = 0 is similar. The
coordinates (z, w) of a node of a curve [C] ∈ V irr

g,L defined by (A.1) satisfy the
conditions f (z, w) = ∂z f (z, w) = ∂w f (z, w) or equivalently
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p′(w) = 0, z2 = a

b
and p(w) = −

(
a

z
+ bz

)
.

It follows that p(w) = ±2
√
ab, and the nodal partition corresponds to the distribution

of the w’s over the two critical values ±2
√
ab among the δ-many nodes of C . In

particular, the number m of distinct finite critical values of the polynomial p(w) is at
most k + k′ − 1 − (δ − 2) = k + k′ + 1 − δ and there is equality if and only if the
passport of p(w) is

{{2δ1}, {2δ2}, {2}, . . . , {2}}.
Clearly, the passport of p(w) is constant as long as [C] lies in a certain open Zariski

subset of V .We denote this generic passport by. According to the dimension formula
of Pk′,k

 and the fact that the 2 critical values of p(w) corresponding to nodes of C
are determined by a and b, the locus of polynomials p(w) corresponding to general
curves [C] ∈ V has dimension m + 2 − 2 = m. Therefore,

k + k′ + 2 − δ = dim(V ) = m + 2 − 1 = m + 1,

and hence m = k + k′ + 1 − δ. Thus,  is the sought passport. ��
Lemma A.2 Let  := {{2δ1}, {2δ2}, {2}, . . . , {2}} be a passport, where δ = δ1 + δ2

is a partition of δ. Then, the number of irreducible components V ⊆ V irr
g,L with nodal

partition δ = δ1 + δ2 is equal to the number of irreducible components of Pk′,k
 .

Proof Again, we assume for simplicity that 0 < δ2 ≤ δ1. The case δ2 = 0 is similar.
Denote by V{δ1,δ2} ⊆ V irr

g,L the union of the irreducible componentswith nodal partition

δ = δ1 + δ2, and by C{δ1,δ2} ⊂ H0(X ,L) \ {0} the cone over it. Then there is a
natural bijection between the sets of the irreducible components of V{δ1,δ2} andC{δ1,δ2}.
Furthermore, V{δ1,δ2} and C{δ1,δ2} are disjoint unions of their irreducible components.

By Lemma A.1, there exists a natural map g : C{δ1,δ2} → Pk′,k
 mapping

f (z, w) = a
z + p(w) + bz to p(w). Plainly, g is continuous, and hence induces

an injective map between the sets of irreducible components. We claim that the lat-
ter map is surjective. Indeed, any component W ⊆ Pk′,k

 is invariant under affine
transformations p �→ α p + β, where α ∈ C

∗, β ∈ C. Therefore, W contains p,
whose two special critical values are ±2. Let C be the curve given by the section
f (z, w) = 1

z + p(w) + z. It has nodal partition δ = δ1 + δ2, and hence W contains
the image of the irreducible component of C{δ1,δ2} containing f . This completes the
proof. ��

The above lemma can be used to obtain information on Severi varieties from the
spaces Pk′,k

 or the other way around, as illustrated by the following.

Corollary A.3 Assume that k + k′ ≥ 5 and that δ = 2. Then, the Severi variety V irr
g,L

has exactly 2 irreducible components.

Proof Since δ = 2, there are exactly 2 possible nodal partitions, namely 2 = 1 + 1
and 2 = 2 + 0. If 1 and 2 are the corresponding passports as in Lemma A.2, then
Pk′,k

1
is the space of Laurent polynomials with distinct critical values. In particular,
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it is irreducible. The polynomials in Pk′,k
2

have only simple critical values except

one, whose preimage contains 2 critical point. We claim that Pk′,k
2

is also irreducible.
Indeed, acting by pre-composition with an affine linear map, we can fix the 2 critical
points over the special critical value to be 0 and1.As the polynomials inPk′,k

2
satisfying

this extra condition form a linear subspace, this proves the claim. The result now
follows from Lemma A.2. ��
Corollary A.4 Let k, k′, g, δ, κ, δ1, and δ2 be non-negative integers such that k′ ≥ k,
k′ > 0, g + δ = k + k′ − 1, δ = δ1 + δ2 and κ = |δ1 − δ2|. Denote by
 := {{2δ1}, {2δ2}, {2}, · · · , {2}} the passport of Laurent polynomials in Pk′,k . Then,

the number of irreducible components of Pk′,k
 is bounded from below by the number

of lattices M ⊂ Z
2 such that (M, κ) is an admissible pair, see Sect. 5.2.

Proof By Lemma A.2, the number of irreducible components of Pk′,k
 is equal to

the number of irreducible components of V irr
g,L with nodal partition δ = δ1 + δ2 or

equivalently with signature κ . According to Sect. 5.2, the latter number is bounded
from below by the number of lattices M ⊂ Z

2 such that (M, κ) is an admissible
pair. ��
Remark A.5 (i) For a sublattice M ⊆ Z

2 of index r , a component V ⊆ V irr
g,L for

which M(V ) = M , and any curve [C] ∈ V , the Laurent polynomial p(w) of (A.1)
can be written p(w) = q(w)r if r is odd, and p(w) = q(w)r − 2(ab)r/2 if r is even.
Therefore, the existence of a lattice M compatible with κ and with index r ≥ 2 implies
that the passport  is decomposable in the sense of [29].

(ii) Let M, V , r , p, and q be as above. By [4], the closure of any component of
the Severi variety contains simple rational Harnack curves, and therefore V contains
simple Harnack curves. For simple Harnack curves, an explicit computation shows
that the polynomial q(w) is of type Sn in the sense of [29, Section 4.1], with n = k+k′.
Thus, [29,Conjecture 13], if true, implies the sharpness of the bound #k,k′,g ofTheorem
B in the case k = 0.

(iii) One could study the decomposability of more general passports by con-
sidering non-complete linear systems associated to support sets A ⊂ Z

2, follow-
ing the A-philosophy of [10]. For instance, let � be the polygon with vertices
(−m, 0), (1, 0), (0, k′), (0,−k) for some k′ ≥ k ≥ 0 and m ≥ 2, and A the set
consisting of the vertices of � and of the inner integral points of � that belong to the
y-axis. Consider the associated polarized toric variety (X ,L) and the non-complete
linear system |LA| ⊂ |L|. Then the curves in |LA| are given by polynomials of the
form

f (z, w) = a

zm
+ p(w) + bz.

Such curves admit nodal partitions of length m. Thus, in this case the Laurent poly-
nomials p(w) may have up to m + 1 special critical values, instead of 2. It would
be interesting to study the decomposability of the corresponding passports via the
reducibility of the Severi varieties V irr

g,LA
.
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