
Mathematische Annalen (2023) 385:631–691
https://doi.org/10.1007/s00208-021-02351-y Mathematische Annalen

Large time behaviour for the motion of a solid in a viscous
incompressible fluid

Sylvain Ervedoza1 · Debayan Maity2 ·Marius Tucsnak1

Received: 12 February 2021 / Revised: 14 December 2021 / Accepted: 16 December 2021 /
Published online: 22 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
In this article, we study the long-time behaviour of a system describing the coupled
motion of a rigid body and of a viscous incompressible fluid in which the rigid body
is contained. We assume that the system formed by the rigid body and the fluid fills
the entire space R3. In the case in which the rigid body is a ball, we prove the local
existence of mild solutions and, when the initial data are small, the global existence of
solutions for this system with a precise description of their large time behavior. Our
main result asserts, in particular, that if the initial datum is small enough in suitable
norms then the position of the center of the rigid ball converges to some h∞ ∈ R

3

as time goes to infinity. This result contrasts with those known for the analogues of
our system in 2 or 1 space dimensions, where it has been proved that the body quits
any bounded set, provided that we wait long enough. To achieve this result, we use
a “monolithic” type approach, which means that we consider a linearized problem in
which the equations of the solid and of the fluid are still coupled. An essential role is
played by the properties of the semigroup, called fluid-structure semigroup, associated
to this coupled linearized problem. The generator of this semigroup is called the fluid-
structure operator. Our main tools are new L p − Lq estimates for the fluid-structure
semigroup.Note that these estimates are proved for bodies of arbitrary shape. Themain
ingredients used to study the fluid-structure semigroup and its generator are resolvent
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estimates which provide both the analyticity of the fluid-structure semigroup (in the
spirit of a classical work of Borchers and Sohr) and L p − Lq decay estimates (by
adapting a strategy due to Iwashita).

Mathematics Subject Classification 35Q35 · 35B40 · 76D03 · 76D05

1 Introduction

We consider a homogeneous rigid body which occupies at instant t = 0 a ball B of
radius R > 0 and centered at the origin and we study the motion of this body in a
viscous incompressible fluid which fills the remaining part of R3. We denote by h(t),
S(t), F(t) the position of the centre of the ball, the domain occupied by the solid,
which coincides with the ball of radius R centered at h, and the domain filled by
the fluid, respectively, at instant t > 0. Moreover, the velocity and pressure fields in
the fluid are denoted by u and p, respectively. With the above notation, the system
describing the motion of the rigid ball in the fluid is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u + (u · ∇)u − μ�u + ∇ p = 0 (t > 0, y ∈ F(t)),

div u = 0, (t > 0, y ∈ F(t)),

u(t, y) = ḣ(t) + ω(t) × (y − h(t)) (t > 0, y ∈ ∂F(t)),

mḧ(t) = −
∫

∂S(t)
σ (u, p)ν ds (t > 0),

J ω̇(t) = −
∫

∂S(t)
(y − h(t)) × σ(u, p)ν ds (t > 0),

u(0, y) = u0(y) (y ∈ F(0)),

h(0) = 0, ḣ(0) = �0, ω(0) = ω0.

(1.1)

In the above equations, ω(t) represents the angular velocity of the ball (with respect
to its centre) and the fluid is supposed to be homogeneous with density equal to 1
and of constant viscosity μ > 0. Moreover, the unit vector field normal to ∂S(t) and
directed towards the interior of S(t) is denoted by ν(t, ·). The constant m > 0 and
the matrix J stand for the mass and the inertia tensor of the rigid body. Since in the
above equations the rigid body is a homogeneous ball of radius R, the inertia tensor
is independent of time and

J = 2mR2

5
I3.

Finally, the Cauchy stress tensor field in the fluid is given by the constitutive law

σ(u, p)k� = −pδk� + μ

(
∂uk
∂ y�

+ ∂u�

∂ yk

)

(1 ≤ k, � ≤ 3),
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where δk� stands for the Kronecker symbol.
The system (1.1) can be easily transformed into a system inwhich the fluid equation

is written in a fixed spatial domain. Indeed, using the change of frame x �→ y(t, x) :=
x + h(t) and setting

v0(x) = u0(x), v(t, x) = u(t, x + h(t)), π(t, x) = p(t, x + h(t)),

�(t) = ḣ(t) (t > 0, x ∈ F(0)),

and E := F(0) = R
3\B, Eq. (1.1) can be written in the form of the following system

of unknowns v, π , � and ω:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv + [(v − �) · ∇] v − μ�v + ∇π = 0 (t > 0, x ∈ E),

div v = 0, (t > 0, x ∈ E),

v = � + ω × x (t > 0, x ∈ ∂E),

m�̇(t) = −
∫

∂E
σ(v, π)ν ds, (t > 0),

J ω̇(t) = −
∫

∂E
x × σ(v, π)ν ds, (t > 0),

v(0, x) = v0(x) (x ∈ E),

�(0) = �0, ω(0) = ω0.

(1.2)

As far as we know, the initial and boundary value problem (1.2) has been first studied
in Serre [24], where it is proved, in particular, that (1.2) admits global in time weak
solutions (of Leray type). The existence and uniqueness of strong solutions, with initial
velocity supposed to be small (in the Sobolev space W 1,2) has been first established
in Cumsille and Takahashi [4]. For the L p theory for the local in time existence and
uniqueness of strong solutions of (1.2), we refer to Geissert et al. [9]. Let us also
mention that the analogue of (1.2) when the fluid–rigid body system fills a bounded
cavity 
 (instead of the whole R3) has also been studied in a quite important number
of papers (see, for instance, Maity and Tucsnak [20] and references therein).

A natural questionwhen considering (1.2) is the large time behaviour of the position
of the mass centre of the ball, i.e., of the function h defined by

h(t) =
∫ t

0
�(s) ds (t > 0).

It is, in particular, important to establish whether the centre of the rigid ball stabilizes
around some position inR3 or its distance to the origin tends to infinity when t → ∞.
As far as we know, this question is open in the three dimensional context of (1.2).
However, if one replaces the rigid ball by an infinite cylinder (so that the fluid can
be modeled by the Navier–Stokes equations in two space dimensions) the question is
studied in Ervedoza et al. [6], where it is established that the norm of �(t) behaves like
1
t when t → ∞, thus not excluding the possibility of an unbounded trajectory of the
rigid ball. Other results in the same spirit concern Burgers type models for the fluid,
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like Vázquez and Zuazua [29], or one dimensional viscous compressible fluids, like
Koike [17].

The main novelty brought in by our work is twofold. Firstly, we prove that (1.2) is
well-posed (globally in time) for initial data which are small in appropriate Lq type
spaces. Secondly, by appropriately choosing q, we prove that there exists h∞ ∈ R

3

such that limt→∞ h(t) = h∞, i.e., that the rigid body “stops” as t → ∞.
To state our main result we first recall that if G ⊂ R

3 is an open set, q > 1
and s ∈ R, the notation Lq(G) and Ws,q(G) stands for the standard Lebesgue and
Sobolev–Slobodeckij spaces, respectively. Our main result can be stated as follows:

Theorem 1.1 With the above notation for the set E. There exists ε0 > 0 such that for

every v0 ∈ [L3(E)
]3

and �0, ω0 ∈ R
3 with

div v0 = 0 in E, v0 · ν = (�0 + ω0 × x) · ν on ∂B. (1.3)

‖v0‖[L3(E)]3 + ‖�0‖R3 + ‖ω0‖R3 ≤ ε0, (1.4)

there exists a unique solution (v, �, ω) of (1.2) in C0([0,∞); [L3(E)
]3 × R

3 × R
3)

such that

sup
t>0

{
(‖v(t)‖[L3(E)]3 + ‖�(t)‖

R3 + ‖ω(t)‖
R3)

+ t1/2(‖v(t)‖[L∞(E)]3 + ‖�(t)‖
R3 + ‖ω(t)‖

R3) +min{1, t1/2}‖∇v(t)‖[L3(E)]9
}

< ∞.

(1.5)

with

lim
t→0

(
t1/4(‖v(t)‖[L6(E)]3 + ‖�(t)‖R3 + ‖ω(t)‖R3)

+t1/2‖v(t)‖[L∞(E)]3 + t1/2‖∇v(t)‖[L3(E)]9
)

= 0.

Moreover, for q ∈ (1, 3], there exists ε0(q) ∈ (0, ε0] such that if v0 ∈ [Lq(E)
]3 ∩

[
L3(E)

]3
satisfies (1.3) and

‖v0‖[L3(E)]3 + ‖�0‖R3 + ‖ω0‖R3 ≤ ε0(q),

then, for every p ∈ [max
{ 3
2 , q
}
,∞] the solution (v, �, ω) of (1.2) satisfies

sup
t>0

{t3/2(1/q−1/p)(‖v(t)‖[L p(E)]3 + ‖�(t)‖R3 + ‖ω(t)‖R3)} < ∞. (1.6)

In particular, if q < 3/2, taking p = ∞ in (1.6) we have that � ∈ L1([0,∞);R3),

hence that the position of the centre of the moving rigid ball converges to some point
at finite distance h∞ ∈ R

3 as t → ∞.
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Remark 1.2 In fact, one can prove that, for every v0 ∈ [L3(E)
]3

and �0, ω0 ∈ R
3

satisfying (1.3) and (1.4), the solution (v, �, ω) of (1.2) provided by Theorem 1.1
satisfies, for all θ ∈ [0, 1/2),

sup
t≥0

min{tθ , t1/2}‖∇v(t)‖[L3(E)]9 < ∞, (1.7)

see Theorem 8.2 afterwards.

As precisely stated in Theorem 8.2 below, the results in Theorem 1.1 can be com-
pleted to include a local in time existence result without any smallness assumption on
the initial data, see Sect. 8 for more precise statements.

The proof of Theorem 1.1 is based on decay estimates for the solutions of the
linearized version of (1.2). Therefore, an important part of this work is devoted to
the study of the semigroup associated to the linearized problem. As shown in the
forthcoming sections, this semigroup called the fluid-structure semigroup, and its
generator (called the fluid-structure operator) share several important properties of
the Stokes semigroup and Stokes operator in an exterior domain. To establish this fact,
an essential step consists in proving that the resolvent estimates derived in Iwashita [15]
and Giga–Sohr [10] for the Stokes operator also hold for the fluid-structure operator
(see also the corresponding estimates for the non-autonomous system describing the
Navier–Stokes flow around a rotating obstacle, which have been obtained in Hishida
[13,14]). Our results on the linearized problem will be derived for a solid of arbitrary
shape, opening the way to a generalization of Theorem 1.1 for solids of arbitrary
shape. However, the fixed point methodology used in the present paper to pass from
the linearized equations to the full nonlinear problem is strongly using the fact that
the rigid body is a ball (see the comments in Sect. 9 below concerning some tracks
towards themodification of this procedure for tackling rigid bodies of arbitrary shape).

Note that Theorem 1.1 refers to mild solutions of (1.2), i.e., satisfying the integral
equation

⎡

⎣
v(t, ·)
�(t)
ω(t)

⎤

⎦ = Tt

⎡

⎣
v0
�0
ω0

⎤

⎦+
∫ t

0
Tt−sP f (s) ds (t ≥ 0), (1.8)

where

f (s, x) = −1E (x) [(v(s, x) − �(s)) · ∇] v(s, x)) (x ∈ E, s ≥ 0),

T = (Tt )t≥0 is the fluid-structure semigroup and P is a Leray type projector on the
space of free divergence vector fields on R3 which coincide with a rigid velocity field
on B. A precise definition of these objects requires some preparation and notation, so
it is postponed to Sect. 3. However, we mention here that the roles of the projector
P and of the fluid-structure semigroup in this paper are very close to those played by
the Leray projector and the Stokes semigroup in the analysis of the Navier–Stokes
equations. Consequently, the construction and study of the fluid-structure semigroup
and of its generator are essential steps of our analysis, which are detailed in Sects. 4–7.
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The outline of the paper is as follows. In Sect. 2, we introduce the notation (in
particular several function spaces) that will be used throughout the article and we
recall several results on the Stokes system in exterior domains. In Sect. 3 we introduce
the fluid-structure operator and we give some of its basic properties. Section 4 is
devoted to resolvent estimates for the fluid-structure operator. We use existing results
on the Stokes system in exterior domains to derive our results. In Sects. 5 and 6 we
show that the fluid-structure operator generates a bounded analytic semigroup on a
suitable Banach space. We prove, in particular, L p − Lq decay estimates for the fluid-
structure semigroup in Sect. 7. Section 8 is devoted to the proof of Theorem 1.1. In
Sect. 9, we formulate some open problems. Some technical results are collected in
Appendix A and Appendix B.

2 Notation and preliminaries

Throughout this paper, the notation

N, Z, R, C

stands for the sets of natural numbers (starting with 1), integers, real numbers and
complex numbers, respectively. For n ∈ N, the euclidian norm on C

n will be simply
denoted by | · |. For θ ∈ (0, π) we define the sector θ in the complex plane by

θ = {λ ∈ C\{0} | |argλ| < θ}. (2.1)

Moreover, Z+ stands for N ∪ {0}. For n, m ∈ N, u : Rn → R
m and α ∈ Z

n+ we set

|α| =∑n
k=1 αk and we use the notation ∂αu for the partial derivative ∂ |α|u

∂x
α1
1 ...xαn

n
.

If G ⊂ R
3 is an open set, q > 1 and k ∈ N, we denote the standard Lebesgue

and Sobolev spaces by Lq(G) and by Wk,q(G), respectively. For s ∈ R, Ws,q(G)

denotes the Sobolev–Slobodeckij spaces. The norms on [Lq(G)]n and
[
Wk,q(G)

]n

with n ∈ N, will be denoted by ‖ · ‖q,G and ‖ · ‖k,q,G , respectively. When G = R
3,

these norms will be simply denoted by ‖ · ‖q and ‖ · ‖k,q , respectively. Moreover, the

space Wk,q
0 (G) is the completion of C∞

0 (G) with respect to the Wk,q(G) norm.
We use repeatedly below the following well known result due to Bogovskiı̆ [1]:

Lemma 2.1 Let G be a smooth bounded domain in R
3, q ∈ (1,∞) and k ∈ Z+ and

let

Lq
0(G) =

{

f ∈ Lq(G)

∣
∣
∣
∣

∫

G
f dx = 0

}

.

123
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Then there exists a linear bounded operator BG from
[
Wk,q

0 (G)
]3 ∩ [Lq

0(G)
]3

to

[Wk+1,q
0 (G)]3 such that

div (BG f ) = f in G,

(

f ∈
[
Wk,q

0 (G)
]3 ∩ [Lq

0(G)
]3
)

. (2.2)

We also introduce the homogeneous Sobolev spaces

Ŵ 1,q(G) :=
{
f ∈ Lq

loc(G) | ∇ f ∈ Lq(G)3
}

,

with the norm

‖ f ‖Ŵ 1,q (G) := ‖∇ f ‖q,G ,

where we identify elements differing by a constant.
Moreover, the function space

Lq
σ (G) =

{
ϕ ∈ [C∞

0 (G)
]3 | div ϕ = 0

}‖·‖q,G

,

will often appear in the remaining part of this work.
For k ∈ N, and s, q ∈ R with 1 < q < ∞, we define the weighted Sobolev spaces

Wk,q,s(G) by

Wk,q,s(G) =
{
f
∣
∣ (1 + |x |2)s/2 ∂α f ∈ Lq(G), |α| ≤ k

}
, (2.3)

and we set Lq,s(G) = W 0,q,s(G). For ϕ ∈ [W 1,q(G)]3 we denote by D(ϕ) the
associated strain field defined by

D(ϕ)i j = 1

2

(
∂ϕi

∂x j
+ ∂ϕ j

∂xi

)

(i, j ∈ {1, 2, 3}). (2.4)

To end this section, we recall several results due to Borchers and Sohr [2] and
Iwashita [15], on the Stokes system in the exterior domain E = R

3\O, whereO ⊂ R
3

is an open bounded set with ∂O of classC2. More precisely, we consider the stationary
Stokes problem:

⎧
⎪⎨

⎪⎩

λv − μ�v + ∇ p = f (x ∈ E),

div v = 0 (x ∈ E),

v = 0 (x ∈ ∂O).

(2.5)

By combining Theorem 1.2 in [2] and Corollary 3.2 in [15] we have:

Theorem 2.2 Let θ ∈ (π
2 , π

)
and let θ be the set defined in (2.1). Then
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1. Then there exist two families of operators (R(λ))λ∈θ and (P(λ))λ∈θ such that
for every λ ∈ θ we have

R(λ) ∈ L
(
[
Lq(E)

]3
,
[
W 2,q(E)

]3
)

,

P(λ) ∈ L
([
Lq(E)

]3
, Ŵ 1,q(E)

)
, (q > 1),

and the functions v = R(λ) f and p = P(λ) f satisfy (2.5). Moreover, there exists
a positive constant M, depending only onO, q and θ such that for every λ ∈ θ

we have

|λ|‖R(λ) f ‖q,E + ‖μ�R(λ) f − ∇P(λ) f ‖q,E ≤ M‖ f ‖q,E
(
q > 1, f ∈ [Lq(E)

]3
)

. (2.6)

2. For every q > 1, λ ∈ θ, m ∈ Z+, s > 3
(
1 − 1

q

)
and s′ < − 3

q , we have

R(λ) ∈ L
(
[
Wm,q,s(E)

]3
,
[
Wm+2,q,s′(E)

]3
)

,

P(λ) ∈ L
([
Wm,q,s(E)

]3
,Wm+1,q,s′(E)

)
.

Moreover, the functions λ �→ R(λ) and λ �→ P(λ) are holomorphic from θ to

L
(
[
Wm,q,s(E)

]3
,
[
Wm+2,q,s′(E)

]3
)

and L
([
Wm,q,s(E)

]3
,Wm+1,q,s′(E)

)
,

respectively. Finally, there exist

R0 ∈ L
(
[
Wm,q,s(E)

]3
,
[
Wm+2,q,s′(E)

]3
)

,

P0 ∈ L
([
Wm,q,s(E)

]3
,Wm+1,q,s′(E)

)

such that

lim sup
λ∈θ ,λ→0

|λ|− 1
2 ‖R(λ) − R0‖L

(

[Wm,q,s (E)]3,
[
Wm+2,q,s′ (E)

]3
) < ∞, (2.7)

lim sup
λ∈θ ,λ→0

|λ|− 1
2 ‖P(λ) − P0‖L([Wm,q,s (E)]3,Wm+1,q,s′ (E)

) < ∞. (2.8)

Remark 2.3 Setting R(0) := R0 and P(0) := P0, estimates (2.7) and (2.8) imply that
the functions λ �→ R(λ) and λ �→ P(λ) extend to continuous functions fromθ ∪{0}
to

L
(
[
Wm,q,s(E)

]3
,
[
Wm+2,q,s′(E)

]3
)

and L
([
Wm,q,s(E)

]3
,Wm+1,q,s′(E)

)
,

respectively.
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3 Some background on the fluid-structure operator

3.1 Definition and first properties

In this section, we introduce the fluid-structure operator and the fluid-structure semi-
group and we remind some of their properties, as established in the existing literature.
For the remaining part of this section the notation
 designs either an open, connected
and bounded subset of R3, with ∂
 of class C2, or we have 
 = R

3. Let O be an
open bounded set with smooth boundary such thatO ⊂ 
 and such that 0 is its center
of mass. We denote E
 = 
\O and we set ER3 := E . Moreover, we denote by ν the
unit normal vector on ∂O oriented towards the interior of O.

Reminding notation (2.4) for the tensor field D, we introduce the function space

X
q(
) =

{
� ∈ [Lq

σ (
)
]3
∣
∣
∣ D(�) = 0 in O

}
, (3.1)

associated to the sets 
 andO, which plays an important role in this work. Note that,
for every q ∈ (1,∞) the dual (Xq(
))∗ of Xq(
) can be identified with X

q ′
(
),

where
1

q
+ 1

q ′ = 1, with the duality pairing

〈 f , g〉
Xq′

(
),Xq (
)
=
∫

O
ρ f · g dx +

∫

E


f · g dx ( f ∈ X
q ′

(
), g ∈ X
q(
)),

where ρ is the constant density of the rigid body. Our notation is making explicit only
the dependence of Xq on 
 since these spaces will be used later on for various 
 and
with fixed O. For 
 = R

3, we simply set

X
q := X

q(R3). (3.2)

Since every � in Xq(
) satisfies D(�) = 0 in O, there exist a unique couple

[
�

ω

]

∈
C
3 × C

3 and ϕ ∈ Lq
σ (E
) such that

�(x) = ϕ(x)1E
(x) + (� + ω × x)1O(x) (x ∈ 
),

where 1U stands for the characteristic function of the set U (see for instance [27,
Lemma 1.1]). We can thus use the identification:

X
q (
) �

⎧
⎨

⎩

⎡

⎣
ϕ

�

ω

⎤

⎦ ∈ [Lq (E
)
]3 × C

3 × C
3, with div (ϕ) = 0 in E
,

ϕ(x) · ν(x) = (� + ω × x) · ν(x) for x ∈ ∂O and ϕ(x) · ν(x) = 0 for x ∈ ∂


⎫
⎬

⎭
,

(3.3)
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with

‖�‖Xq (
) � ‖ϕ‖q,E
 + |�| + |ω|.

The two results belowwill allow us to precisely introduce the projection operator Pq,


from
[
Lq(
)

]3 onto X
q(
) which will be used in the following, and which will be

denoted by Pq when 
 = R
3.

Proposition 3.1 Let O be an open bounded set of R3 with ∂O of class C2. For q > 1
let Gq

1 and Gq
2 be the spaces

Gq
1 =

{

u ∈
[
Lq (R3)

]3 | u = ∇q1 for some q1 ∈ L1loc(R
3)

}

,

Gq
2 =

⎧
⎪⎪⎨

⎪⎪⎩

u ∈
[
Lq (R3)

]3

∣
∣
∣
∣
∣
∣
∣
∣

div u = 0 in R3, u = ∇q2 in E, q2 ∈ L1loc(E),

u = ϕ in O with ϕ ∈ [Lq (O)]3,∫

O
ϕ dy = −

∫

∂O
q2ν ds,

∫

O
ϕ × y dy = −

∫

∂O
q2ν × y ds

⎫
⎪⎪⎬

⎪⎪⎭

.

Then for every u ∈ [Lq(R3)
]3

there exists a unique triple

⎡

⎣
v

w1
w2

⎤

⎦ ∈ X
q × Gq

1 × Gq
2

with

u = v + w1 + w2. (3.4)

The map u �→ v, denoted Pq , is a projection operator form
[
Lq(
)

]3
onto X

q(
).

Moreover, the dual of the operator Pq is Pq ′ , where
1

q
+ 1

q ′ = 1.

For the proof of Proposition 3.1 we refer to Wang and Xin [30, Theorem 2.2].

Proposition 3.2 Let 
 ⊂ R
3 be an open bounded set with ∂
 of class C2 . Let O be

an open bounded set with ∂O of class C2 such thatO ⊂ 
. For q > 1 let Gq
1(
) and

Gq
2(
) be the spaces

Gq
1 (
) =

{
u ∈ [Lq (
)

]3 | u = ∇q1 for some q1 ∈ W 1,q (
)
}

,

Gq
2 (
) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ [Lq (
)
]3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

div u = 0 in 
, u = ∇q2 in E
, q2 ∈ W 1,q (E
),

u(x) · ν(x) = 0 for x ∈ ∂
,

u = ϕ in O with ϕ ∈ [Lq (O)]3,∫

O
ϕ dy = −

∫

∂O
q2ν ds,

∫

O
ϕ × y dy = −

∫

∂O
q2ν × y ds

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Then for every u ∈ [Lq(
)
]3

there exists a unique triple (v,w1, w2) ∈ X
q(
) ×

Gq
1(
) × Gq

2(
) with

u = v + w1 + w2. (3.5)
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The map u �→ v, denoted Pq,
, is a projection operator form
[
Lq(
)

]3
onto Xq(
).

Furthermore, the dual of the operator Pq,
 is Pq ′,
, where
1

q
+ 1

q ′ = 1.

The proof of Proposition 3.2 is similar to the proof of [30, Theorem 2.2]. However,
for the sake of completeness we provide a short proof in Appendix A.

We also need some density results. Let us define

Y
q(
) = {u ∈ C∞

c (
), divu = 0 in 
, Du = 0 in O
}‖.‖q,


. (3.6)

As before, for 
 = R
3, we simply set

Y
q := Y

q(R3). (3.7)

Using Propositions 3.1 and 3.2, we have the following result

Proposition 3.3 We have Xq(
) = Y
q(
) and X

q = Y
q .

The proof of this proposition is similar to [7, Theorem 2] and [23, Theorem 1.6].
We provide a short proof in Appendix A.

The fluid-structure operator on 
 is the operator Aq,
 : D(Aq,
) → X
q(
)

defined, for every q > 1, by

D(Aq,
) =
{

ϕ ∈
[
W 1,q

0 (
)
]3 ∩ X

q(
)

∣
∣
∣
∣ ϕ|E
 ∈

[
W 2,q(E
)

]3
}

, (3.8)

Aq,
ϕ = Pq,
Aq,
ϕ (ϕ ∈ D(Aq,
)), (3.9)

where Pq,
 is the projector introduced in Proposition 3.1, and the operator Aq,
 :
D(Aq,
) → [

Lq(
)
]3 is defined by D(Aq,
) = D(Aq,
) and for every ϕ ∈

D(Aq,
),

Aq,
ϕ =
⎧
⎨

⎩

μ�ϕ in E
,

−2μm−1
∫

∂O
D(ϕ)ν ds −

(

2μJ −1
∫

∂O
y × D(ϕ)ν ds

)

× y in O,

(3.10)

where m and J are given in terms of the constant density ρ of the body by

m =
∫

O
ρ dx, J = (Jk,�)k,�∈{1,2,3} with Jk,� =

∫

O
ρ
(
δk,�|x |2 − xkx�

)
dx .

(3.11)

Note that the tensor of inertiaJ is positive. Also note that in the following, the density
ρ of the homogeneous body will not intervene anymore directly: it will only appear
through the constants m and J defined above.
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In the case 
 = R
3, the operators Pq,
,Aq,
 andAq,
 are denoted by Pq ,Aq and

Aq , respectively and Aq : D(Aq) → X
q is defined, for every q > 1, by

D(Aq) =
{

ϕ ∈
[
W 1,q(R3)

]3 ∩ X
q
∣
∣
∣
∣ ϕ|E ∈

[
W 2,q(E)

]3
}

, (3.12)

Aqϕ = PqAqϕ (ϕ ∈ D(Aq)). (3.13)

In the case q = 2 and when O is a ball, the fluid-structure operator Aq has been
introduced in Takahashi and Tucsnak [26], where it has been proven that this operator
generates an analytic semigroup on X

2. Later, Wang and Xin [30] proved that the
operator Aq generates an analytic semigroup on X

6/5 ∩ X
q if q ≥ 2 and that if the

solid is a ball in R3 the operator Aq generates an analytic semigroup (not necessarily
bounded) on X

2 ∩ X
q if q ≥ 6. One of our main result improves the result of Wang

and Xin [30]. Actually, in Theorem 6.1 we will prove that Aq generates a bounded
analytic semigroup on X

q for any q > 1. Moreover, this result is true for bodies of
arbitrary shape.

It is important for future use to rephrase the resolvent equation for Aq,
 in a form
involving only PDEs and algebraic constraints. To this aim, for λ ∈ C, we consider
the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λv − μ�v + ∇π = f (x ∈ E
),

div v = 0 (x ∈ E
),

v = 0 (x ∈ ∂
),

v = � + ω × x (x ∈ ∂O),

mλ� = −
∫

∂O
σ(v, π)ν ds + f�,

J λω = −
∫

∂O
x × σ(v, π)ν ds + fω.

(3.14)

In the above system the unknowns are v, π, � and ω, whereas

σ(v, π) := −π I + 2νD(v).

By slightly adapting the methodology used in [25,26] for the case q = 2, it can be
checked that we have the following equivalence:

Proposition 3.4 Let 
 ⊂ R
3 be an open, connected and bounded set with ∂
 of class

C2 or 
 = R
3. Let 1 < q < ∞ and λ ∈ C. Assume that f ∈ [

Lq(E
)
]3

and

f�, fω ∈ C
3. If (v, π, �, ω) ∈ [W 2,q(E
)

]3 × Ŵ 1,q(E
) × C
3 × C

3 satisfies (3.14)
then

(λI − Aq,
)V = F, (3.15)
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where

V = v1E
 + (� + ω × x)1O, F = Pq,


(
f 1E
 +

(
m−1 f� + J −1x × fω

)
1O
)

.

Conversely, assume that F ∈ X
q(
) and V ∈ D(Aq,
) satisfy (3.15). Then there

exists π ∈ Ŵ 1,q(E
) such that (v, �, ω) ∈ [W 2,q(E
)
]3 × C

3 × C
3 satisfies (3.14)

where

v = V |E
, � = 1

m

∫

O
V dx, ω = −J −1

∫

O
V × x dx,

and

f = F |E
, f� = 1

m

∫

O
F dx, fω = −J −1

∫

O
F × x dx .

3.2 The fluid-structure semigroup on bounded domains

In this subsection we assume that 
 is an open bounded set in R
3 with boundary of

class C2. In this case the operator Aq,
 has been extensively studied in Maity and
Tucsnak [20]. In particular, by combining the density result from Proposition 3.3 with
Theorem 1.3 and Theorem 4.1 from [20], we have

Theorem 3.5 With the above notation, let q > 1 and assume that
 ⊂ R
3 is bounded,

with ∂
 of class C2. Then the operator Aq,
, defined in (3.8) and (3.9), generates

an analytic and exponentially stable C0-semigroup, denoted T
q,
 =

(
T
q,

t

)

t≥0
, on

X
q(
).

The above result has the following consequence, which follows by standard analytic
semigroups theory:

Corollary 3.6 With the notation and under the assumptions in Theorem 3.5, for every
θ ∈ (π

2 , π
)
the exists a constant M, possibly depending on q, θ, O and 
, such that

(1 + |λ|)
∥
∥
∥
(
λI − Aq,


)−1
∥
∥
∥L(Xq (
))

+
∥
∥
∥Aq,


(
λI − Aq,


)−1
∥
∥
∥L(Xq (
))

≤ M (λ ∈ θ ∪ {0}).

By combining Corollary 3.6 and Proposition 3.4 we obtain the following result:

Proposition 3.7 Let θ ∈ (π/2, π), q ∈ (1,∞) and assume that 
 ⊂ R
3 is bounded,

with ∂
 of class C2. Then there exists a constant C > 0, possibly depending on θ, q,


 and O, such that for all λ ∈ θ, f ∈ [Lq(E
)
]3

and f�, fω ∈ C
3, there exists

a unique solution (v, π, �, ω) ∈ [
W 2,q(E
)

]3 × Ŵ 1,q(E
) × C
3 × C

3 of (3.14)
satisfying
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(1 + |λ|) (‖v‖q,E
 + |�| + |ω|)+ ‖v‖2,q,E
 + ‖∇π‖q,E


≤ C
(‖ f ‖q,E
 + | f�| + | fω|) . (3.16)

We need below the following slight generalization of Proposition 3.7:

Corollary 3.8 With the notation and assumptions in Proposition 3.7, let v ∈
[
W 2,q(E
)

]3
, π ∈ Ŵ 1,q(E
), �, ω ∈ C

3 be such that

v(x) = 0 (x ∈ ∂
)

v = � + ω × x (x ∈ ∂O),

div v ∈ W 1,q
0 (E
),

∫

E


div v dx = 0.

Then for every λ0 > 0 there exists a constant C = C(
, p, λ0, θ) such that

|λ| (‖v‖q,E
 + |�| + |ω|)+ ‖D2v‖q,E
 + ‖∇π‖q,E


≤ C
(
‖λv − �v + ∇π‖q,E
 + ‖∇div v‖q,E


+
∣
∣
∣
∣mλ� +

∫

∂O
σ(v, π)ν ds

∣
∣
∣
∣+
∣
∣
∣
∣J λω +

∫

∂O
x × σ(v, π)ν ds

∣
∣
∣
∣

)
, (3.17)

for every λ ∈ θ with |λ| ≤ λ0.

Proof According to Lemma 2.1 there exists ṽ ∈
[
W 2,q

0 (E
)
]3

such that div ṽ = div v

on E
 and

‖ṽ‖2,q,E
 ≤ C‖div v‖1,q,E
, (3.18)

where C is a constant depending only on 
 and on q. Setting u = v − ṽ we see that
u ∈ [W 2,q(E
)

]3
and

u(x) = 0 (x ∈ ∂
),

u(x) = � + ω × x (x ∈ ∂O),

σ (u, π) = σ(v, π) (x ∈ ∂O),

div u = 0 (x ∈ E
).

By applying Proposition 3.7 and elementary inequalities, it follows that

|λ| (‖u‖q,E
 + |�| + |ω|)+ ‖D2u‖q,E
 + ‖∇π‖q,E
 ≤ C‖λu − μ�u + ∇π‖q,E


+C

∣
∣
∣
∣mλ� +

∫

∂O
σ(v, π)ν ds

∣
∣
∣
∣+ C

∣
∣
∣
∣J λω +

∫

∂O
x × σ(v, π)ν ds

∣
∣
∣
∣ (λ ∈ θ).

The above estimate and (3.18) imply the conclusion (3.17). ��
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4 From the Stokes operator in exterior domains to the fluid-structure
operator in the whole space

In this section, we study the fluid structure operatorAq,
, defined in (3.12) and (3.13),
in the case 
 = R

3. As mentioned in Sects. 2 and 3, in this case the space X
q(
),

defined in (3.1), and the operators Pq,
, Aq,
 are simply denoted by X
q , Pq and Aq ,

respectively. The main idea developed in this section is that the resolvent of the fluid-
structure operator can be expressed in terms of the resolvent of the Stokes operator
with homogeneous Dirichlet conditions on the boundary of an obstacle of arbitrary
shapeO. The connection between these two families of resolvents is then used to study
the behaviour of the of (λI − Aq)

−1 for λ close to zero, in the spirit of the similar
results for the Stokes operator in exterior domains obtained by Iwashita [15].

Let O be an open, bounded subset of R3 with ∂O of class C2 and let E = R
3\O.

We consider the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λu − μ�u + ∇π = f (x ∈ E),

div u = 0 (x ∈ E),

u = � + ω × x (x ∈ ∂O),

mλ� = −
∫

∂O
σ(u, π)ν ds + f�,

J λω = −
∫

∂O
x × σ(u, π)ν ds + fω,

(4.1)

where f ∈ [Lq(E)]3, f�, fω ∈ C
3 and λ ∈ C. In the above system the unknowns are

u, π, � and ω, whereas

σ(u, π) := −π I + 2μD(u).

To study the solvability of (4.1) we introduce several auxiliary operators.
Firstly, given λ ∈ C and �, ω ∈ C

3, we consider the boundary value problem:

{
λw − μ�w + ∇η = 0, div w = 0 (x ∈ E),

w(x) = � + ω × x (x ∈ ∂O),
(4.2)

and we remind the notation (2.3) (and more generally the notation in Sect. 2) for the
possibly weighted Sobolev spaces in unbounded domains.

Proposition 4.1 Assume that θ ∈ (0, π). Then for all q > 1, for every λ ∈ θ and

�, ω ∈ C
3, the system (4.2) admits a unique solution (w, η) ∈ [W 2,q(E)

]3×Ŵ 1,q(E).
Moreover, let (Dλ)λ∈θ be the family of operators defined by

Dλ

[
�

ω

]

=
[
w

η

]

(λ ∈ θ, �, ω ∈ C
3), (4.3)
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where (w, η) ∈ [W 2,q(E)
]3×Ŵ 1,q(E) is the solution of (4.2). Then for every λ ∈ θ

and m ∈ N, we have

Dλ ∈ L(C6,
[
Wm+1,q(E)

]3 × Ŵm,q(E)), (4.4)

Dλ ∈ L
(

C
6,
[
Wm+1,q,s′(E)

]3 × Wm,q,s′(E)

) (

s′ < − 3

q

)

. (4.5)

Finally, there exists

D0 ∈
⋂

m∈N,q>1,s′<− 3
q

L
(

C
6,
[
Wm+1,q,s′(E)

]3 × Wm,q,s′(E)

)

such that

lim sup
λ∈θ ,λ→0

|λ|− 1
2 ‖D(λ) − D0‖L

(

C6,
[
Wm+1,q,s′ (E)

]3×Wm,q,s′ (E)

) < ∞, (4.6)

for every m ∈ N, q > 1 and s′ < − 3
q .

Proof We choose two balls B1 and B2 inR3 such thatO ⊂ B1 ⊂ B1 ⊂ B2.We define
a cut-off function χ ∈ C∞(R3) such that χ(x) ∈ [0, 1] for every x ∈ R

3 and

χ(x) =
{
1 if x ∈ B1,

0 if x ∈ E\B2.

We set

w(x) = χ(x)(� + ω × x) − BB2\B1
(∇χ · (� + ω × x)),

where BB2\B1
is the Bogovskii operator as introduced in Lemma 2.1. It is easy to see

that, div w = 0 in E, w(x) = � + ω × x for x ∈ ∂E and w ∈ Wk,q(E), for any
k ∈ N. Since w = w̃ + w, where w̃ satisfies

{
λw̃ − μ�w̃ + ∇η = −λw + ν�w, div w̃ = 0 (x ∈ E),

w̃ = 0 (x ∈ ∂O).

We can apply classical regularity results for Stokes (e.g. [15, Proposition 2.7(i)]) to
get (4.4) and Theorem 2.2 to obtain (4.5) and (4.6). ��
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The above result allows us to introduce the family of operators (Tλ)λ∈θ ⊂ L(C6)

defined by

Tλ

[
�

ω

]

=

⎡

⎢
⎢
⎣

∫

∂O
σ(w, η)ν ds

∫

∂O
x × σ(w, η)ν ds

⎤

⎥
⎥
⎦ (λ ∈ θ, �, ω ∈ C

3), (4.7)

where (w, η) is the solution of (4.2), given by Dλ according to (4.3).

Proposition 4.2 Let θ ∈ (0, π). For every λ ∈ θ let (Tλ)λ∈θ be the operators
defined in (4.7) and let (Kλ)λ∈θ be the family of operators defined by

Kλ =
[
λmI3 0
0 λJ

]

+ Tλ (λ ∈ θ). (4.8)

Then there exists K0 ∈ L(C6) invertible such that

lim sup
λ∈θ ,λ→0

|λ|− 1
2 ‖Kλ − K0‖L(C6) < ∞. (4.9)

Moreover, Kλ is invertible for every λ ∈ θ and

lim sup
λ∈θ ,λ→0

|λ|− 1
2

∥
∥
∥K−1

λ − K−1
0

∥
∥
∥L(C6)

< ∞. (4.10)

Proof For �, ω ∈ C
3 we set

[
w0
η0

]

= D0

[
�

ω

]

, K0

[
�

ω

]

=

⎡

⎢
⎢
⎣

∫

∂O
σ(w0, η0)ν ds

∫

∂O
x × σ(w0, η0)ν ds

⎤

⎥
⎥
⎦ ,

where D0 is the operator introduced in Proposition 4.1. Applying Proposition 4.1 and
a standard trace theorem it follows that (4.9) holds. The fact that K0 (which is called
the resistance matrix of O) is invertible is a classical result (see, for instance, Happel
and Brenner [11, Section 5.4], where it is shown that this matrix is strictly positive).

On the other hand, taking the inner product in
[
L2(E)

]3
of the first equation in

(4.2) by w, integrating by parts and using the second equation in (4.2) it follows that

〈

Tλ

[
�

ω

]

,

[
�

ω

]〉

C6
= λ

∫

E
|w|2 dx + 2μ

∫

E
|D(w)|2 dx (�, ω ∈ C

3, λ ∈ θ).

(4.11)
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Assume now that �, ω ∈ C
3 and λ ∈ θ are such that

Kλ

[
�

ω

]

=
[
λmI3 0
0 λJ

] [
�

ω

]

+ Tλ

[
�

ω

]

= 0.

Taking the inner product inC6 of the two sides of the above formula by

[
�

ω

]

and using

(4.11) it follows that

λm|�|2 + λ〈Jω,ω〉C3 + λ

∫

E
|w|2 dx + 2μ

∫

E
|D(w)|2 = 0.

If λ ∈ θ with Im λ �= 0 it follows that � = 0 and ω = 0. On the other hand, if λ ∈ θ

and Imλ = 0 we have Reλ > 0. In this case, we obtain w = 0 and consequently
� = ω = 0. We have thus shown that the operator in (4.8) is invertible for every
λ ∈ θ . This fact, (4.9) and the fact that K0 is invertible finally imply (4.10). ��

We are now in a position to state the main result in this section.

Theorem 4.3 Let q ∈ (1,∞) and θ ∈ (π
2 , π

)
. Then

1. For every λ ∈ θ there exist operators

R(λ) ∈ L
(
[
Lq(E)

]3 × C
6,
[
W 2,q(E)

]3 × C
6
)

,

P(λ) ∈ L
([
Lq(E)

]3 × C
6, Ŵ 1,q(E)

)
,

such that, for f ∈ [Lq(E)
]3

, f�, fω ∈ C
3, setting

⎡

⎣
u
�

ω

⎤

⎦ = R(λ)

⎡

⎣
f
f�
fω

⎤

⎦ , π = P(λ)

⎡

⎣
f
f�
fω

⎤

⎦ , (4.12)

then u, �, ω and π satisfy (4.1).

2. For λ ∈ θ, m ∈ Z+, s > 3
(
1 − 1

q

)
and s′ < − 3

q , we have

R(λ) ∈ L
(
[
Wm,q,s(E)

]3 × C
6,
[
Wm+2,q,s′(E)

]3 × C
6
)

, (4.13)

P(λ) ∈ L
([
Wm,q,s(E)

]3 × C
6,Wm+1,q,s′(E)

)
. (4.14)

Moreover, the functions λ �→ R(λ) and λ �→ P(λ) are holomorphic from θ to

L
(
[
Wm,q,s(E)

]3 × C
6,
[
Wm+2,q,s′(E)

]3 × C
6
)

and L
([
Wm,q,s(E)

]3 × C
6,
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Wm+1,q,s′(E)
)

, respectively. Finally, there exist

R0 ∈ L
(
[
Wm,q,s(E)

]3 × C
6,
[
Wm+2,q,s′(E)

]3 × C
6
)

,

P0 ∈ L
([
Wm,q,s(E)

]3 × C
6,Wm+1,q,s′(E)

)
,

such that

lim sup
λ∈θ ,λ→0

|λ|− 1
2 ‖R(λ) − R0‖L

(

[Wm,q,s (E)]3×C6,
[
Wm+2,q,s′ (E)×C6

]3
) < ∞, (4.15)

lim sup
λ∈θ ,λ→0

|λ|− 1
2 ‖P(λ) − P0‖L

(
[Wm,q,s (E)]3×C6,Wm+1,q,s′ (E)

) < ∞.

(4.16)

Proof Let m ∈ Z+, q > 1, s > 0, f ∈ [
Wm,q,s(E)

]3 and f�, fω ∈ C
3. For

λ ∈ θ ∪ {0} we remind from Proposition 4.2 that the matrix Kλ, defined in (4.8), is
invertible and we set

[
�λ

ωλ

]

= K−1
λ

⎡

⎢
⎣

f� −
∫

∂O
σ(R(λ) f , P(λ) f )ν ds

fω −
∫

∂O
x × σ(R(λ) f , P(λ) f )ν ds

⎤

⎥
⎦ (λ ∈ θ ∪ {0}), (4.17)

where (R(λ)) and (P(λ)) are the families of operators introduced in Theorem 2.2 and
Remark 2.3. The last formula implies, according to Proposition 4.2 and Theorem 2.2,
that there exist δ, cδ > 0 such that

|�λ| + |ωλ| ≤ cδ
(
| f�| + | fω| + ‖ f ‖[Wm,q,s (E)]3

)
(λ ∈ θ ∪ {0}, |λ| ≤ δ). (4.18)

For λ ∈ θ ∪ {0} we set

[
vλ

ηλ

]

= Dλ

[
�λ

ωλ

]

, where (Dλ)λ∈θ∪{0} is the family of

operators introduced in Proposition 4.1, and we define

[
uλ

πλ

]

=
[
R(λ) f
P(λ) f

]

+
[
vλ

ηλ

]

(λ ∈ θ ∪ {0}), (4.19)

where the operators (R(λ))λ∈θ∪{0}, (P(λ))λ∈θ∪{0} have been introduced in Theo-
rem 2.2 and Remark 2.3. By combining Theorem 2.2, Proposition 4.1 and (4.18) it

follows that for every s > 3
(
1 − 1

q

)
, s′ < − 3

q and δ > 0 there exists d > 0 (possibly

depending on s, s′ and δ) such that

‖uλ‖[
Wm+2,q,s′ (E)

]3 + ‖πλ‖Wm+1,q,s′ (E)
≤ d

(
| f�| + | fω| + ‖ f ‖[Wm,q,s (E)]3

)
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(λ ∈ θ ∪ {0}, |λ| ≤ δ, f ∈ [Wm,q,s(E)
]3

, f�, fω ∈ C
3). (4.20)

By combining (4.17) and (4.19) it follows that for every λ ∈ θ we have that u = uλ,
� = �λ, ω = ωλ and π = πλ satisfy (4.1). Consequently, if we set

R(λ)

⎡

⎣
f
f�
fω

⎤

⎦ =
⎡

⎣
R(λ) f + vλ

�λ

ωλ

⎤

⎦ (λ ∈ θ ∪ {0}), (4.21)

P(λ)

⎡

⎣
f
f�
fω

⎤

⎦ = P(λ) f + ηλ, (λ ∈ θ ∪ {0}), (4.22)

then for every λ ∈ θ the operatorsR(λ), P(λ) satisfy (4.13), (4.14) and u, �, ω and
π defined by (4.12) is indeed a solution of (4.1).

Finally the properties (4.15) and (4.16), withR0 := R(0), follow now from (4.21),
(4.22), together with (2.7), (2.8), (4.6) and (4.10). ��

5 Further properties of the fluid-structure semigroup inR
3

In this section we study the fluid structure operatorAq,
, defined in (3.12) and (3.13),
in the case 
 = R

3. More precisely, we give several results opening the way to the
proofs of the facts that Aq generates a bounded analytic semigroup and of the decay
estimates for the fluid-structure operator by collecting several results which follow
quite easily from the existing literature. The first one is:

Proposition 5.1 Let 1 < q < ∞ and let θ ∈ (π
2 , π

)
. Then there exist γ > 0 and

mq,θ > 0 such that

∥
∥
∥λ
(
λI − Aq

)−1
∥
∥
∥L(Xq )

≤ mq,θ , (λ ∈ θ, |λ| ≥ γ ). (5.1)

Consequently, Aq generates an analytic semigroup on X
q .

The proof of the above result can be obtained by a perturbation argument. Since
this argument is a slight variation of the proof of Theorem 3.1 in [20], where the
similar estimate is detailed for the case of fluid-structure system confined in a bounded
domain, we omit the proof. We also note that by combining Proposition 3.4 and the
first statement of Theorem 4.3, we have

Proposition 5.2 For every λ ∈ θ and F ∈ X
q , setting

R(λ)

⎡

⎣
F |E
�F
ωF

⎤

⎦ =
⎡

⎣
uλ,F

�λ,F

ωλ,F

⎤

⎦ , (5.2)
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where the family (R(λ)) has been introduced in (4.12) and

�F = 1

m

∫

O
F dx, ωF = −J −1

∫

O
F × x dx, (5.3)

we have

(
λI − Aq

)−1
F = uλ,F1E + (�λ,F + ωλ,F × x)1O. (5.4)

The result below provides some simple but important properties of the fluid-
structure operator Aq .

Proposition 5.3 For every 1 < q < ∞, the dual A∗
q of Aq is given by A∗

q = Aq ′ , with
1

q
+ 1

q ′ = 1.

Proof For G ∈ X
q ′

, we set

�G = 1

m

∫

O
G dx, ωG = −J −1

∫

O
G × x dx .

We consider the equation

(λI − Aq ′)W = G, (5.5)

which according to Proposition 3.4 is equivalent to the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λϕ − div σ(ϕ, πϕ) = G|E , divϕ = 0 (x ∈ E),

ϕ = ψ + κ × x, (x ∈ ∂O),

λmψ = −
∫

�

σ(ϕ, πϕ)ν ds + �G,

λJ κ = −
∫

�

y × σ(ϕ, πϕ)ν ds + ωG ,

(5.6)

where

ϕ = W |E , ψ = 1

m

∫

O
W dx, κ = −J −1

∫

O
W × x dx .

Assume that u ∈ [W 2,q(E)
]3

, π ∈ Ŵ 1,q(E), � ∈ C
3 and ω ∈ C

3 satisfy the system
(4.1). Taking the inner product in C3, of (5.61) by u and of (4.1) by ϕ, integrating by
parts and summing up the two formulas we obtain

∫

E
〈 f , ϕ〉C3 dx +

∫

∂O
σ(u, π)ν · ϕ ds
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=
∫

E
〈u,G〉C3 dx +

∫

∂O
σ(ϕ, πϕ)ν · u ds. (5.7)

Using the boundary conditions, the above relation can be written as

∫

E
〈 f , ϕ〉C3 dx + 〈 f�, ψ〉C3 + 〈 fω, κ〉C3

=
∫

E
〈u,G〉C3 dx + 〈�, �G〉C3 + 〈ω,ωG〉C3 . (5.8)

In terms of the operator Aq and Aq ′ , the above equality reads as

〈
(λI − Aq)U ,W

〉

Xq ,Xq′ = 〈U , (λI − Aq ′)W
〉

Xq ,Xq′ , (U ∈ D(Aq),W ∈ D(Aq ′)),

with U = u1E + (� + ω × y)1O. Therefore from the above identity we deduce
D(Aq ′) ⊂ D(A∗

q). In order to prove the reverse inclusion, we first note that, for
λ0 > 0 large enough the operator (λ0 I −Aq ′) is invertible (see Proposition 5.1). Take
λ0 as above and W ∈ D((λ0 I − Aq)

∗). Since X∗
q = Xq ′ , there exists Ũ ∈ D(Aq ′)

such that

(
λ0 I − Aq ′

)
Ũ =

(
λ0 I − A

∗
q

)
W .

Let U ∈ D(Aq). Then using the last two formulas, we obtain

〈
(λ0 I − Aq)U ,W

〉

Xq ,Xq′ =
〈
U , (λ0 I − A

∗
q)W

〉

Xq ,Xq′ = 〈U , (λ0 I − Aq ′)Ũ
〉

Xq ,Xq′

= 〈(λ0 I − Aq)U , Ũ
〉

Xq ,Xq′ .

In particular, we have

〈
(λ0 I − Aq)U ,W − Ũ

〉

Xq ,Xq′ = 0 for all U ∈ D(Aq). (5.9)

Therefore W = Ũ and this completes the proof. ��
The last result in this section provides some information on the resolvent equation

associated to Aq .

Proposition 5.4 Let λ ∈ C, such that λ /∈ (−∞, 0). Then for every q ∈ (1,∞) we
have

(i) Ker
(
λI − Aq

) = {0}.
(ii) Range

(
λI − Aq

) = X
q .

Proof Due to Proposition 3.4, it is enough to show that if (u, π, �, ω) ∈ [W 2,q(E)
]3×

Ŵ 1,q(E) × C
3 × C

3 satisfies the system (4.1) with ( f , f�, fω) = 0, then u = π =
� = ω = 0.
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We first consider the case q = 2. Multiplying, (4.11) by u, (4.14) by � and (4.15)
by ω, we obtain after integration by parts:

λ

∫

E
|u|2 + 2μ

∫

E
|D(u)|2 + λm|�|2 + λ 〈Jω,ω〉

C3 = 0. (5.10)

Note that, to justify properly these computations, we should multiply (4.11) by ϕRu,

where ϕR = ϕ(x/R), ϕ being a smooth cut-off function taking value one close to
the unit ball and vanishing outside the ball of radius 2, and R being a large positive
parameter. One should then prove the following convergences,

lim
R→∞

∫

E
ϕR |D(u)|2 dx =

∫

E
|D(u)|2 dx, (5.11)

lim
R→∞

∫

E
|u||∇u||∇ϕR | dx = 0, (5.12)

∃cπ ∈ R, such that lim
R→∞

∫

E
|π + cπ ||u||∇ϕR | dx = 0, (5.13)

the first limit coming from Lebesgue dominated convergence theorem and the second
from the fact that u ∈ L2(E) and ∇u ∈ L2(E). The last limit is more delicate and
is based on the fact that, since ∇π ∈ L2(E), there exists a constant cπ such that
π + cπ ∈ L6(E). Then we can write

∫

E
|π + cπ ||u||∇ϕR | dx ≤ ‖π + cπ‖6,E‖u‖2,R3\B(R)‖∇ϕR‖3,R3 .

To conclude (5.13), it then remains to check that ‖∇ϕR‖3,R3 is bounded uniformly in
R, while ‖u‖2,R3\B(R) goes to 0 as R → ∞.

If Imλ �= 0, we take the imaginary part of identity (5.10) and obtain that u =
π = � = ω = 0. If Imλ = 0, then Reλ ≥ 0, hence using the above identity and the
boundary conditions we also obtain u = π = � = ω = 0.

Let us then consider the case q > 2 and λ �= 0. Let B1 and B2 be two open balls
in R3 such that

O ⊂ B1, B1 ⊂ B2,

and let ϕ1, ϕ2 ∈ C∞(R3) be such that ϕ1(x) ≥ 0, ϕ2(x) ≥ 0, ϕ1(x) + ϕ2(x) = 1 for
every x ∈ R

3, ϕ1 = 1 on B1, ϕ1 = 0 on R
3\B2, ϕ2 = 1 on R

3\B2 and ϕ2 = 0 on
some open neighbourhood of B1. Then ϕ1u satisfies the following system
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(ϕ1u) − �(ϕ1u) + ∇(ϕ1π) = −2(∇u)(∇ϕ1) − (�ϕ1)u + π∇ϕ1 (x ∈ B2\O),

div (ϕ1u) = (∇ϕ1) · u (x ∈ B2\O),

ϕ1u = 0 (x ∈ ∂B2),

ϕ1u = � + ω × x (x ∈ ∂O),

mλ� +
∫

∂O
σ(ϕ1u, ϕ1π)ν ds = 0,

J λω +
∫

∂O
x × σ(ϕ1u, π)ν = 0.

(5.14)

Note that −2(∇u)(∇ϕ1) − (�ϕ1)u + π∇ϕ1 ∈
[
L2(B2\O)

]3
. Therefore, by using

Corollary 3.8 we obtain (ϕ1u, ϕ1π) ∈
[
W 2,2(B2\O)

]3 × W 1,2(B2\O). Similarly,

(ϕ2u, ϕ2π) satisfies the following system

{
λ(ϕ2u) − �(ϕ2u) + ∇(ϕ2π) = −2(∇u)(∇ϕ2) − (�ϕ2)u + π∇ϕ2 (x ∈ R

3),

div (ϕ2u) = (∇ϕ2) · u (x ∈ R
3).

(5.15)

We also have 2(∇u)(∇ϕ2) − (�ϕ2)u + π∇ϕ2 ∈ [
L2(R3)

]3
. By standard results

on Stokes operator in the whole space, we also get (ϕ2u, ϕ2π) ∈ [
W 2,2(R3)

]3 ×
Ŵ 1,2(R3).Combining the above results we obtain u ∈ [W 2,2(E)

]3
andπ ∈ Ŵ 1,2(E).

Let us consider the case 1 < q < 2 and λ �= 0. We use a bootstrap argument here.
Let us set f̄i = −2(∇u)(∇ϕi ) − (�ϕi )u + π∇ϕi . By Sobolev imbedding theorem

we obtain f̄1, f̄2 ∈
[
Lr (B2\O)

]3
, for r > q, with

1

3
+ 1

r
= 1

q
. This implies that

ϕ1u ∈
[
W 2,r (B2\O)

]3
and ϕ2u ∈ [W 2,r (R3)

]3
, hence u ∈ [W 2,r (E)

]3
. If r ≥ 2,

we are reduced to the previous case. Otherwise, we continue the process until we get
u ∈ [W 2,2(E)

]3
.

We next consider the case λ = 0, which only consists in justifying identity (5.10)
in that case, since u = π = � = ω = 0 would then follow immediately.

According to [8, LemmaV.4.1], we have that for all p ∈ (1,∞), D2u ∈ L p(E) and
∇π ∈ L p(E). Consequently, using [3, Theorem 2.1], for all r > 3/2, ∇u ∈ Lr (E).
In particular, ∇u ∈ L2(E) and we then get the convergence (5.11). We also have,
again from [3, Theorem 2.1], for all q̃ > 3, u ∈ Lq̃(E). Taking q̃ > 3 close to 3
and r > 3/2 close to 3/2 so that 1 − 1/q̃ − 1/r < 1/3, choosing s > 3 such that
1/s + 1/q̃ + 1/r = 1, we get

∫

E
|u||∇u||∇ϕR | dx ≤ ‖u‖q̃,E‖∇u‖r ,E‖∇ϕR‖s,E .

Using then that ‖∇ϕR‖s,E goes to 0 as R goes to infinity since s > 3, the convergence
(5.12) also holds.

Similarly, using that for all p ∈ (1,∞), ∇π ∈ L p(E), we get that there exists
cπ ∈ R such that π + cπ ∈ Lr (E) for all r > 3/2, and we then get, with the choices
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of q̃ > 3, r > 3/2 and s > 3 above, satisfying 1/s + 1/q̃ + 1/r = 1, that

∫

E
|π + cπ ||u||∇ϕR | dx ≤ ‖π + cπ‖r ,E‖u‖q̃,E‖∇ϕR‖s,E .

Using again that ‖∇ϕR‖s,E goes to 0 as R goes to infinity since s > 3, the convergence
(5.13) also holds. ��

6 Analyticity of the fluid-structure semigroup

Webegin by stating themain result in this section, which, besides being of independent
interest, is an important ingredient in the proof of ourmain results. In fact, asmentioned
earlier, this result improves the existing result of [30, Theorem 2.5, Theorem 2.9].

Theorem 6.1 For every 1 < q < ∞ and θ ∈ (π
2 , π

)
there exists Mq,θ > 0 such that

the operator Aq satisfies

∥
∥
∥λ(λI − Aq)

−1
∥
∥
∥L(Xq )

≤ Mq,θ (λ ∈ θ). (6.1)

Consequently, Aq generates a bounded analytic semigroup T
q = (T

q
t )t≥0 on X

q .

The guiding idea in proving the above result is borrowed from Borchers and Sohr
[2] and it consists in using a contradiction argument and appropriate cut-off functions,
combined with Proposition 3.7 and classical results for the Stokes operator in the
whole space.

A first step towards the proof of Theorem 6.1 is the following result, concerning
the case q ∈ (1, 3/2):

Proposition 6.2 Let q ∈ (1, 3
2

)
and θ ∈ (π

2 , π). Let (R(λ)) and (P(λ)) be the family

of the operators introduced in Theorem 4.3. For ( f , f�, fω) ∈ [Lq(E)
]3 ×C

3 ×C
3,

we set
⎡

⎣
u
�

ω

⎤

⎦ = R(λ)

⎡

⎣
f
f�
fω

⎤

⎦ , π = P(λ)

⎡

⎣
f
f�
fω

⎤

⎦ (λ ∈ θ). (6.2)

Then there exists a constant Mq,θ > 0 such that, for every ( f , f�, fω) ∈ [Lq(E)
]3 ×

C
3 × C

3 and for every λ ∈ θ,

|λ|(‖u‖q,E + |�| + |ω|) +
∥
∥
∥D2u

∥
∥
∥
q,E

+ ‖∇π‖q,E + |�| + |ω|
≤ Mq,θ (‖ f ‖q,E + | f�| + | fω|). (6.3)

Proof First remark that Proposition 5.1 easily implies (6.3) for λ ∈ θ with |λ| ≥ γ .
We thus focus on the proof of the estimate (6.3) for λ ∈ θ with |λ| ≤ γ . Assume
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that (6.3) is false for some q ∈ (1, 3
2

)
for λ ∈ θ with |λ| ≤ γ . Then there exists

a sequence of complex numbers (λn)n∈N, together with a sequence (un, �n, ωn) in
X
q ∩ (

[
W 2,q(E)

]3 ∩ ×C
3 × C

3) and (πn) in Ŵ 1,q(E) such that

0 < |λn| ≤ γ, | arg λn| ≤ θ (n ∈ N), (6.4)

|λn|(‖un‖q,E + |�n| + |ωn|) +
∥
∥
∥D2un

∥
∥
∥
q,E

+ ‖∇πn‖q,E

+|�n| + |ωn| = 1 (n ∈ N), (6.5)

‖λnun − μ�un + ∇πn‖q,E → 0, as n → ∞, (6.6)

mλn�n +
∫

∂O
σ(un, πn)ν ds → 0, as n → ∞, (6.7)

J λnωn +
∫

∂O
x × σ(un, πn)ν ds → 0, as n → ∞. (6.8)

To obtain the desired contradiction we proceed, following [2], in several steps.
Step 1: Localization.

Let B1 and B2 be two open balls in R3 such that

O ⊂ B1, B1 ⊂ B2,

and let ϕ1, ϕ2 ∈ C∞(R3) be such that ϕ1(x) ≥ 0, ϕ2(x) ≥ 0, ϕ1(x) + ϕ2(x) = 1 for
every x ∈ R

3, ϕ1 = 1 on B1, ϕ1 = 0 on R
3\B2, ϕ2 = 1 on R

3\B2 and ϕ2 = 0 on
some open neighbourhood of B1. After some calculations, we see that for each n ∈ N

we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λn(ϕ1un) − �(ϕ1un) + ∇(ϕ1πn) = ϕ1 (λnun − �un + ∇πn)

−2(∇un)(∇ϕ1) − (�ϕ1)un + πn∇ϕ1 (x ∈ B2\O),

div (ϕ1un) = (∇ϕ1) · un (x ∈ B2\O),

ϕ1un = 0 (x ∈ ∂B2),

ϕ1un = �n + ωn × x (x ∈ ∂O),

mλn�n +
∫

∂O
σ(ϕ1un, ϕ1πn)ν ds = mλn�n +

∫

∂O
σ(un, πn)ν,

J λnωn +
∫

∂O
x × σ(ϕ1un, πn)ν = J λnωn +

∫

∂O
x × σ(un, πn)ν ds.

(6.9)

By applying Corollary 3.8 and using the fact that ϕ1 vanishes outside B2, it follows
that there exists c > 0 such that for every n ∈ N we have

|λn |
(‖ϕ1un‖q,E + |�n | + |ωn |

)+ ‖D2(ϕ1un)‖q,E + ‖∇(ϕ1πn)‖q,E + |�n | + |ωn |
≤ c

(‖ϕ1(λnun − �un + ∇πn)‖q,E + ‖∇(∇ϕ1 · un)‖q,E + 2‖∇un · ∇ϕ1‖q,E
)

+c
(‖(�ϕ1)un‖q,E + ‖πn∇ϕ1‖q,E

)
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+c

(∣
∣
∣
∣mλn�n +

∫

∂O
σ(un, πn)ν

∣
∣
∣
∣+
∣
∣
∣
∣J λnωn +

∫

∂O
x × σ(un, πn)ν ds

∣
∣
∣
∣

)

. (6.10)

On the other hand, using the fact that ϕ2 = 0 on some open neighbourhood of B1, for
each n ∈ N we have:

⎧
⎪⎪⎨

⎪⎪⎩

λn(ϕ2un) − �(ϕ2un) + ∇(ϕ2πn) = ϕ2 (λnun − �un + ∇πn)

−2(∇un)(∇ϕ2) − (�ϕ2)un + πn∇ϕ2 (x ∈ R
3),

div (ϕ2un) = (∇ϕ2) · un (x ∈ R
3).

(6.11)

Using classical results for the Stokes operator in R
3 (see, for instance, McCracken

[22]), it follows that, for every n ∈ N we have

|λn|‖ϕ2un‖q,E + ‖D2(ϕ2un)‖q,E + ‖∇(ϕ2πn)‖q,E

≤ c
(‖ϕ2(λnun − �un + ∇πn)‖q,E + ‖∇(∇ϕ2 · un)‖q,E + 2‖∇un · ∇ϕ2‖q,E

)

+c
(‖(�ϕ2)un‖q,E + ‖πn∇ϕ2‖q,E

)
. (6.12)

By combining (6.10) and (6.12) it follows that for every n ∈ N we have

|λn |
(‖un‖q,E + |�n | + |ωn |

)+ ‖D2un‖q,E + ‖∇πn‖q,E + |�n | + |ωn |
≤ |λn |

(‖ϕ1un‖q,E + ‖ϕ2un‖q,E + |�n | + |ωn |
)+ ‖D2(ϕ1un)‖q,E + ‖D2(ϕ2un)‖q,E

+‖∇(πnϕ1)‖q,E + ‖∇(πnϕ2)‖q,E ≤ c‖λnun − �un + ∇πn‖q,E

+c

(∣
∣
∣
∣mλn�n +

∫

∂O
σ(un, πn)ν

∣
∣
∣
∣+
∣
∣
∣
∣J λnωn +

∫

∂O
x × σ(un, πn)ν ds

∣
∣
∣
∣

)

+W (un, ∇un, πn), (6.13)

where

W (un,∇un, πn) = c
2∑

j=1

(‖∇(∇ϕ j · un)‖q,E + 2‖∇un · ∇ϕ j‖q,E
)

+c
2∑

j=1

(‖(�ϕ j )un‖q,E + ‖πn∇ϕ j‖q,E
)

(n ∈ N). (6.14)

Step 2. Passage to the limit.
Let r , s > 1 be defined by

1

3
+ 1

s
= 1

q
and

1

3
+ 1

r
= 1

s
,

so that

2

3
+ 1

r
= 1

q
and 1 < s < 3. (6.15)
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By Theorem 2.1 and Lemma 3.1 in Crispo and Maremonti [3] and (6.5), we have

‖un‖r ,E ≤ C‖∇un‖s,E ≤ C‖D2un‖q,E ≤ C, (6.16)

‖πn‖s,E ≤ C‖∇πn‖q,E ≤ C . (6.17)

Thus, there exist a subsequence, still denoted by (un), (πn), (�n), (ωn) and u ∈
[
Lr (E)

]3
, π ∈ Ls(E), (�, ω) ∈ C

3 × C
3 and λ ∈ θ such that

un⇀[Lr (E)]3u, πn⇀Ls (E)π, �n → �, ωn → ω, λn → λ, as n → ∞, (6.18)

where ⇀X stands for the weak convergence in a Banach space X . Let us set

Un = un1E + (�n + ωn × x)1O (n ∈ N), U = u1E + (� + ω × x)1O. (6.19)

Then Un ∈ X
r and the sequence (Un) weakly converges to U in X

r . According to
(6.6)–(6.8) and by the definition of the operator Aq , we have that

Un ∈ D(Aq) for all n ∈ N, and (λn − Aq)Un →Xq (E) 0 as n → ∞.

Let W ∈ D(Aq ′) ∩ D(Ar ′). By Proposition 5.3,

0 = lim
n→∞

〈
(λn I − Aq)Un,W

〉

Xq ,Xq′ = 〈U , (λI − Ar ′)W 〉
Xr ,Xr ′ .

Since the set
{
(λI − Ar ′)W | W ∈ D(Aq ′) ∩ D(Ar ′)

} ⊆ X
q ′ ∩ X

r ′
is dense in X

r ′

(see Proposition 5.4), the last formula implies that U = 0. Consequently, using (6.5)
and (6.6),

λnun⇀[Lq (E)]30, �un⇀[Lq (E)]30, ∇πn⇀[Lq (E)]30, as n → ∞.

Next using the fact that supn ‖πn‖Ls (
) < ∞ (see (6.17)) we deduce that π = 0.
Now we consider the expression W (un,∇un, πn) defined in (6.14). We claim that

lim
n→∞ W (un,∇un, πn) = 0. (6.20)

To shorten the proof, since all the terms in W (un,∇un, πn) are the same as in [2],
we consider only one term of W (un,∇un, πn), say f j,n = ∇(∇ϕ j · un) for j ∈
{1, 2}, since the other terms can be estimated in a similar manner. Note that, f j,n ∈
[
W 1,q

0 (B2\B1)
]3

for every n ∈ N and using (6.16), (6.18) and the fact that u = 0 we

also have ( f j,n) converges weakly to 0 in
[
Lq(B2\B1)

]3
. Moreover, using (6.17)

‖ f j,n‖1,q,B2\B1
≤ C(‖un‖q,B2\B1

+ ‖∇un‖q,B2\B1
)

≤ C(‖un‖r ,B2\B1
+ ‖∇un‖s,B2\B1

) (since r , s > q)
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≤ C(‖un‖r ,E + ‖∇un‖s,E ) ≤ C . (6.21)

Thus, f j,n converges strongly to 0 in
[
Lq(B2\B1)

]3
as n → ∞. Consequently, we

obtain (6.20). This, together with (6.5), contradicts the estimate (6.13), which ends
the proof. ��

We are now in position to prove the main result in this section.

Proof of Theorem 6.1 We first note that from Proposition 3.4, Theorem 4.3 and Propo-
sition 6.2, we obtain (6.1) for 1 < q < 3

2 . In the case
3
2 ≤ q ≤ 2 we take q0 ∈ (1, 3

2 ).

We define 0 ≤ s ≤ 1 by

1

q
= s

q0
+ 1 − s

2
.

Since (6.1) holds for q0, there exists a constant Mθ,q0 > 0 such that

∥
∥
∥λ(λI − Aq0)

−1
∥
∥
∥L(Xq0 )

≤ Mθ,q0 (λ ∈ θ).

On the other hand, A2 is a self-adjoint operator on X
2 (see [26]). Therefore, we also

have

∥
∥
∥λ(λI − A2)

−1
∥
∥
∥L(X2)

≤ Mθ,2 (λ ∈ θ),

for some Mθ,2 depending only on θ. Then by Riesz–Thorin interpolation theorem (see
for instance [28, Theorem 1, Section 1.18.7]), we obtain

∥
∥
∥λ(λI − Aq)

−1
∥
∥
∥L(Xq )

≤ Ms
θ,q0M

1−s
θ,2 (λ ∈ θ). (6.22)

This ends the proof of (6.1) for
3

2
≤ q ≤ 2.

In the case 2 < q < ∞, we take 1 < q ′ ≤ 2 such that
1

q
+ 1

q ′ = 1. By

Proposition 5.3, we have λ(λI − Aq)
−1 = [λ(λI − Aq ′)−1]∗, so that

∥
∥
∥λ(λI − Aq)

−1
∥
∥
∥L(Xq )

=
∥
∥
∥λ(λI − Aq ′)−1

∥
∥
∥L(Xq′

)
(λ ∈ θ).

We have already seen that (6.1) holds for 1 < q ≤ 2. Thus from the above identity
we infer that, (6.1) holds for any 2 < q < ∞, which ends the proof. ��

We end this section with the result below, whose proof can be easily obtained by
combining Theorem 6.1 and the results from Lunardi [19, Chapter 3]:
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Corollary 6.3 With the assumptions and notations of Theorem 6.1, for any ε > 0 and
k ∈ N, there exists Cε > 0 such that

∥
∥
∥A

k−1
q U

∥
∥
∥
Xq

≤ ε

∥
∥
∥A

k
qU
∥
∥
∥
Xq

+ Cε ‖U‖Xq (U ∈ D(Ak
q)). (6.23)

7 Decay estimates for the fluid-structure semigroup

Based on Theorem 6.1, we consider the fluid-structure semigroup which is, for each
q ∈ (1,∞), the bounded analytic semigroupTq introduced in Theorem 6.1. Our main
result in this section is:

Theorem 7.1 (i) Let 1 < q < ∞. Let R0 > 0 be such that O ⊂ BR0 . Then for any
R > R0, there exists a constant C > 0, depending on q and R, such that

∥
∥T

q
t U
∥
∥
q,BR

≤ Ct−
3
2q ‖U‖Xq (t > 1, U ∈ X

q). (7.1)

(ii) Let 1 < q ≤ r < ∞ and σ = 3
2

(
1
q − 1

r

)
. Then there exists a constant C > 0,

depending on q and r , such that

∥
∥T

q
t U
∥
∥
Xr ≤ Ct−σ ‖U‖Xq (t > 0, U ∈ X

q). (7.2)

(iii) Let 1 < q ≤ r ≤ 3. Then there exists a constant C > 0, depending on q and r ,
such that

∥
∥∇T

q
t U
∥
∥
r ,E ≤ Ct−σ−1/2 ‖U‖Xq (t > 0, U ∈ X

q). (7.3)

(iv) Estimate (7.2) also holds for 1 < q < ∞ and r = ∞.

Let us emphasize that Theorem 7.1 holds for the linearized fluid-structure equations
for bodiesO of arbitrary shapes. It seems thus likely that these properties can be used
to derive the well-posedness for solids of arbitrary shape, see the discussion in Sect. 9
below.

Let us also mention that, Maremonti and Solonnikov in [21] proved that, while
considering Stokes equation in the exterior domain, the same decay estimates hold,
and the estimate (7.2) are sharp for 3/2 ≤ q ≤ r ≤ ∞. It is then expected that same
holds for the fluid-structure operator also. This is indeed the case, at least in the case
of the ball, see Theorem B.1 in the appendix for more details.

Our methodology to prove the above result is inspired by [15] and it consists in
using the resolvent estimates developed in Sects. 4–6. However, applying the strategy
proposed in [15] requires several adaptations which are described below.

To start with, we state the following regularity result of the projection operator Pq .

Proposition 7.2 Let k ∈ N. Assume that 1 < r ≤ q < ∞. Let u ∈ [Lq(R3)
]3

be

such that div u = 0 in D′(R3) and ∂αu ∈ [Lr (E)
]3

for every multi-index α ∈ Z
3+
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with |α| = k. Then ∂α(Pqu) ∈ [Lr (E)
]3

for every multi-index α ∈ Z
3+ with |α| = k.

Moreover, there exists a constant C independent of the choice of u with the above
properties, such that

∑

|α|=k

‖∂α
Pqu‖r ,E ≤ C

⎛

⎝
∑

|α|=k

‖∂αu‖r ,E + ‖u‖q
⎞

⎠ . (7.4)

Proof Let v = Pqu. Then

v(x) = �v + ωv × x (x ∈ O), (7.5)

where

�v = 1

m

∫

O
v dx, ωv = − 1

J

∫

O
v × x dx . (7.6)

Moreover, there exists a positive constant C , depending only on q and onO, such that
(see for instance [30, Proof of Theorem 2.2, Eq. (3.14)])

|�v| + |ωv| ≤ C ‖u‖q . (7.7)

Since div u = 0, we have that w1 from the decomposition (3.4) of u vanishes and,
according to [30, Proof of Theorem 2.2, Eq. (3.15)], w2 from the same decomposition
satisfies w2 = ∇π2, with π2 satisfying

�π2 = 0 in E,
∂π2

∂ν
= u · ν − (�v + ωv × x) · ν on ∂O. (7.8)

Then estimate (7.4) follows from (7.7) and from Giga and Sohr [10, proof of
Lemma 2.3]. ��
results characterising the graph norm of Am

q in terms of Sobolev spaces.

Proposition 7.3 Let 1 < q < ∞.

(i) Assume that U ∈ D(Aq) and AqU |E ∈ [Wm,q(E)
]3

for some m ∈ Z+. Then

U |E ∈ [Wm+2,q(E)
]3

and there exists a constant Cm > 0 such that

‖U‖m+2,q,E ≤ Cm

(∥
∥AqU

∥
∥
m,q,E + ‖U‖Xq

)
. (7.9)

(ii) For every m ∈ N, if U ∈ D(Am
q ), then U |E ∈ W 2m,q(E) and there exists a

constant Cm > 0 such that

‖U‖2m,q,E ≤ Cm

(∥
∥
∥A

m
q U
∥
∥
∥
Xq

+ ‖U‖Xq

)
(U ∈ D(Am

q )). (7.10)
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Proof Let us set AqU = −F , so that F |E ∈ [Wm,q(E)
]3. Moreover, we denote

u = U |E , � = 1

m

∫

O
U dx, ω = −J −1

∫

O
U × x dx .

Then according to Proposition 5.2 there exists π ∈ Ŵ 1,q(E) such that u, π, � and ω

satisfy

⎧
⎪⎨

⎪⎩

−μ�u + ∇π = F (x ∈ E),

div u = 0 (x ∈ E),

u = � + ω × x (x ∈ ∂O).

Let

[
w1
η1

]

= D1

[
�

ω

]

, where D1 is the Dirichlet map introduced in Proposition 4.1.

According to Proposition 4.1, for every k ∈ N there exists positive constants C1,k ,
C2,k such that

‖w1‖k+1,q,E + ‖π1‖Ŵ k,q (E) ≤ C1,k (|�| + |ω|) ≤ C2,k‖U‖Xq . (7.11)

We denote ũ = u − w1 and π̃ = π − η1. Then ũ and π̃ satisfy

⎧
⎪⎨

⎪⎩

−μ�ũ + ∇π̃ = F + w1 (x ∈ E),

div ũ = 0 (x ∈ E),

ũ = 0 (x ∈ ∂O).

According to [15, Proposition 2.7(i)], for every m ∈ N there exists a positive constant
C3,m such that

‖ũ‖m+2,q,E ≤ C3,m
(‖F‖m,q,E + ‖w1‖m,q,E + ‖ũ‖q,E

)
.

The above estimate together with (7.11) implies the estimate (7.9).
To prove (7.10), we use an induction argument. We first note that (7.10) is true

for m = 1, since it is nothing else but the estimate (7.9) for m = 0. Let us assume
that (7.10) is true for some m ∈ N and U ∈ D(Am+1

q ). Then by (7.9) and induction
hypothesis, there exists a positive constant Cm > 0 such that

‖U‖2m+2,q,E ≤ Cm

(∥
∥AqU

∥
∥
2m,q,E + ‖U‖Xq

)

≤ C
(∥
∥
∥A

m+1
q U

∥
∥
∥
Xq

+ ∥∥AqU
∥
∥
Xq + ‖U‖Xq

)
. (7.12)

Then the assertion (7.10) holds for m replaced by m + 1 by applying Corollary 6.3
repeatedly and (7.12). This completes the proof of the proposition. ��
Proposition 7.4 Let q ∈ (1,∞). Then:
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(i) For any m ∈ N, there exists a positive constant Cm > 0 such that

∥
∥
∥A

m
q U
∥
∥
∥
Xq

≤ Cm
(‖U‖2m,q,E + ‖U‖Xq

) (
U ∈ D(Am

q )
)

. (7.13)

(ii) Let θ ∈
(π

2
, π
)
and m ∈ N. Then there exists a positive constant Cm > 0 such

that

∥
∥
∥(λI − Aq)

−1F
∥
∥
∥
2m+2,q,E

≤ Cm
(‖F‖2m,q,E + ‖F‖Xq

)
,

(
F ∈ D(Am

q ), λ ∈ θ, |λ| ≥ 1
)

. (7.14)

Proof We use an induction argument to prove (7.13). Using Proposition 3.1, (3.9) and
(3.10) 111 note that the estimate (7.13) is true for m = 1. Assume that (7.13) holds
for some m ∈ N and U ∈ D(Am+1

q ). By the induction hypothesis, we have

∥
∥
∥A

m+1
q U

∥
∥
∥
Xq

≤ Cm

(∥
∥AqU

∥
∥
2m,q,E + ∥∥AqU

∥
∥
Xq

)
,
(
U ∈ D(Am+1

q )
)

. (7.15)

By applying Proposition 7.2 and Corollary 6.3, the above estimate implies that

∥
∥
∥A

m+1
q U

∥
∥
∥
Xq

≤ Cm
(‖U‖2m+2,q,E + ‖U‖Xq

) (
U ∈ D(Am+1

q )
)

. (7.16)

Thus (7.13) also holds when m is replaced by m + 1.
Finally (7.14) follows from the facts that

∥
∥
∥λ(λI − Aq)

−1
∥
∥
∥L(D(Am

q ))
≤ M, (λ ∈ θ) (7.17)

together with the estimates (7.10) and (7.13). ��
Remark 7.5 Putting together (7.10) and (7.13), it follows that, for every m ∈ N, the
graph normofAm

q is equivalent to ‖·‖2m,q,E+‖·‖Xq .Wealso note that this equivalence
also holds for the bounded domain version of the fluid-structure operator, i.e.,
 ⊂ R

3

open and bounded, and the operator Aq,
 defined in (3.9). Moreover, elements ϕ of

D(Am
q ) belong to

[
W 1,q(R3)

]3 ∩ X
q(R3) and satisfy ϕ|E ∈ [W 2m,q(E)

]3
.

To state the next results, which yield decay estimates for the fluid-structure semi-
group inweighted L p spaces,we remind fromSect. 2 the notation Lq,s for theweighted
Lebesgue spaces introduced in (2.3).

Theorem 7.6 Let 1 < q < ∞. Let s and s′ be real numbers such that s > 3(1− 1/q)

and s′ < −3/q. Then there exists a positive constant C, depending only on q, s and
s′, such that
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∥
∥T

q
t U
∥
∥[

Lq,s′ (R3)
]3 ≤ C(1 + t)−

3
2 ‖U‖[Lq,s (R3)]3, (U ∈ X

q ∩ [Lq,s(R3)]3).
(7.18)

Proof We first note that Theorem 4.3 is a complete analogue of Corollary 3.2 in [15],
and Theorem 6.1 is the analogue of the main result in [2]. We can thus complete the
proof following line by line the proof of Theorem 1.1 in [15]. ��
Remark 7.7 For U0 ∈ D(Aq), we denote by

u0 = U0|E , �0 = 1

m

∫

O
U0 dx, ω0 = − 1

J

∫

O
U0 × x dx .

Moreover for every t ≥ 0, we set U (t) = T
q
t U0 and

u(t) = U (t)|E , �(t) = 1

m

∫

O
U (t) dx, ω(t) = − 1

J

∫

O
U (t) × x dx .

Then there exists π ∈ C([0,∞); Ŵ 1,q(E)) such that (u, π, �, ω) satisfies the follow-
ing system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u − μ�u + ∇π = 0, divu = 0 (t ≥ 0, x ∈ E),

u = � + ω × x (t ≥ 0, x ∈ ∂O),

m�̇ +
∫

∂O
σ(u, π)ν ds = 0 (t ≥ 0),

J ω̇ +
∫

∂O
x × σ(u, π)ν ds = 0, (t ≥ 0),

u(0) = u0 (x ∈ E),

�(0) = �0, ω(0) = ω0.

(7.19)

Our next result in this section provides Lq − Lr smoothing estimates for the fluid-
structure semigroup T

q for small time:

Theorem 7.8 Let 1 < q ≤ r < ∞ and σ = 3
2

(
1
q − 1

r

)
. Then for each τ ∈ (0,∞),

there exists a constant C > 0, depending on τ, q and r , such that

∥
∥T

q
t U
∥
∥
Xr ≤ Ct−σ ‖U‖Xq (t ≤ τ, U ∈ X

q), (7.20)
∥
∥∇T

q
t U
∥
∥
r ,E ≤ Ct−σ− 1

2 ‖U‖Xq (t ≤ τ, U ∈ X
q). (7.21)

Proof Let N = [2σ ], where [·] denotes the integer part function. Let us assume that
N is even. Then by (7.10), there exists a constant C > 0 depending on τ, q and r ,
such that

∥
∥T

q
t U
∥
∥
N ,q,E + |�(t)| + |ω(t)| ≤ C

(∥
∥
∥A

N/2
q T

q
t U
∥
∥
∥
Xq

+ ∥∥Tq
t U
∥
∥
Xq

)
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≤ C
(
t−

N
2 ‖U‖Xq + τ

N
2 t−

N
2 ‖U‖Xq

)
≤ Ct−

N
2 ‖U‖Xq (t ∈ (0, τ ]).

(7.22)

In a similar manner, we also obtain

∥
∥T

q
t U
∥
∥
N+2,q,E + |�(t)| + |ω(t)| ≤ Ct−

N+2
2 ‖U‖Xq (t ∈ (0, τ ]). (7.23)

Thus by Sobolev embedding, interpolation and using (7.22)-(7.23), we obtain

∥
∥T

q
t U
∥
∥
Xr ≤ C

(∥
∥T

q
t U
∥
∥
r ,E + |�(t)| + |ω(t)|

)

≤ C
(∥
∥T

q
t U
∥
∥
2σ,q,E + |�(t)| + |ω(t)|

)

≤ C

(
∥
∥T

q
t U
∥
∥

2σ−N
2

N+2,q,E

∥
∥T

q
t U
∥
∥

N+2−2σ
2

N ,q,E + |�(t)| + |ω(t)|
)

≤ Ct−σ ‖U‖Xq , t ∈ (0, τ ].

If N is odd then we replace N by N −1. This completes the proof of (7.20). The proof
of (7.21) is completely similar, thus omitted here. ��

The next step towards the proof of Theorem 7.1 is the following result:

Lemma 7.9 With the notations and assumptions of Theorem 7.1, let d > R0 and let
m ∈ N. Moreover, denote Ed := {x ∈ E | |x | < d}. Then
(i) There exists a constant C > 0 depending on d and m such that for all t > 0,

∥
∥
∥T

q
t U
∥
∥
∥
q,Bd

+
∥
∥
∥T

q
t U
∥
∥
∥
2m,q,Ed

≤ C(1 + t)− 3
2
(‖U‖2m,q,Ed + ‖U‖Xq

)
, (7.24)

for every U ∈ D(Am
q ) with U = 0 for |x | > d.

(ii) There exists a constant C > 0 depending on d and m such that for all t > 0,

∥
∥
∥∂tT

q
t U
∥
∥
∥
q,Bd

+
∥
∥
∥∂tT

q
t U
∥
∥
∥
2m,q,Ed

≤ C(1 + t)− 5
2
(‖U‖2m+2,q,Ed + ‖U‖Xq

)
,

(7.25)

for every U ∈ D(Am+1
q ) with U = 0 for |x | > d.

Proof The proof can be obtained following line by line the proof Lemma 5.2 from
Iwashita [15]. More precisely, it suffices to use instead of Proposition 2.7 and
Lemma 2.8 in [15] our results in Proposition 7.3 and Proposition 7.4 above, respec-
tively, and to replace expansion (3.2) in [15] by (4.15) above. ��
Proposition 7.10 With the notation and assumptions of Remark 7.7 and Theorem 7.1,
let d > R0 + 5 and m ∈ N. Moreover, assume that U0 ∈ Ran(Tq

1). Then there exists
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a positive constant C, depending only on E, d,m and q, such that, for every t ≥ 0
we have

‖u(t, ·)‖2m,q,Ed + |�(t)| + |ω(t)| ≤ C(1 + t)
− 3

2q
(‖u0‖[3/q]+2m+2,q,E + |�0| + |ω0|

)
,

(7.26)

‖∂t u(t, ·)‖2m,q,Ed + |�̇(t)| + |ω̇(t)| ≤ C(1 + t)−
3
2q
(‖u0‖[3/q]+2m+4,q,E + |�0| + |ω0|

)
,

(7.27)

‖π(t, ·)‖2m+1,q,Ed ≤ C(1 + t)
− 3

2q
(‖u0‖[3/q]+2m+4,q,E + |�0| + |ω0|

)
, (7.28)

where [s] denotes the integer part of s ∈ R.

Proof We follow with minor modifications the steps of the proof of Lemma 5.3 in
[15].

Step 1. Since U0 ∈ Ran(Tq
1), we have U0 ∈ D(Ak

q) for all k ∈ N. Let ũ0 be an

extension of u0 to R
3 such that ũ0 ∈ [W 2m,q(R3)

]3
and ‖ũ0‖2m,q ≤ C ‖U0‖D(Am

q ),

whereC is a constant independent ofU0.Thendiv ũ0 ∈ W 2m−1,q
0 (O) and

∫

O
div ũ0 =

∫

∂O
(�0 + ω0 × x) · ν ds = 0. Then by Lemma 2.1 we have that BO (divũ0) ∈

W 2m,q
0 (O). Let us set

ψ = ũ0 − BO (divũ0) ,

where BO (divũ0) is seen as a function in
[
W 2m,q(R3)

]3
after its extension by 0 in E .

Then ψ ∈ [W 2m,q(R3)
]3

has the following properties

ψ(x) = U0(x) = u0(x) for all x ∈ E,

div ψ(x) = 0 in R3, ‖ψ‖2m,q ≤ C ‖U0‖D(Am
q ) . (7.29)

Step 2. We consider the following Stokes system in R3

{
∂tv0(t, x) − μ�v0(t, x) = 0, div v0(t, x) = 0 (t ≥ 0, x ∈ R

3),

v0(0, x) = ψ(x) (x ∈ R
3).

(7.30)

Let q and r be such that 1 < q ≤ r ≤ ∞ and define σ = 3
2 (

1
q − 1

r ). According to
classical estimates (see, for instance, [15, Lemma 5.1]) for the heat kernel, for every
m ∈ Z+, there exists a constant Cm > 0, depending on q and r , with

∥
∥∇mv0(t, ·)

∥
∥
r ≤ Cmt

−σ−m
2 ‖ψ‖q (t > 0), (7.31)

∥
∥∇mv0(t, ·)

∥
∥
r ≤ Cm(1 + t)−σ−m

2 ‖ψ‖[2σ ]+m+1,q (t ≥ 0), (7.32)
∥
∥∇m∂tv0(t, ·)

∥
∥
r ≤ Cmt

−σ−1−m/2 ‖ψ‖q (t > 0), (7.33)
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∥
∥∇m∂tv0(t, ·)

∥
∥
r ≤ Cm(1 + t)−σ−1−m

2 ‖ψ‖[2σ ]+m+3,q (t ≥ 0). (7.34)

Let ϕ ∈ C∞
0 (R3) be such that ϕ(x) = 1 for |x | ≤ d−2 and ϕ(x) = 0 for |x | > d−1.

Denote 
d = {
x ∈ R

3 | d − 2 ≤ |x | ≤ d − 1
}
and let Bd : D(
d) → [D(
d)]3 be

the Bogovskii operator such that div(Bdh) = h if
∫


d

h = 0. We define

v1(t, ·) = Bd(−∇ϕ · v0(t, ·)) (t ≥ 0). (7.35)

By applying (7.32) and (7.34), it follows that there exists a constantCm > 0,depending
on q, such that

‖v1(t, ·)‖m,q,E ≤ Cm ‖∇ϕ · v0(t, ·)‖m−1,q,E

≤ Cm(1 + t)−3/2q ‖ψ‖[3/q]+m,q (t ≥ 0), (7.36)

‖∂tv1(t, ·)‖m,q,E ≤ Cm ‖∇ϕ · ∂tv0(t, ·)‖m−1,q,E

≤ Cm(1 + t)−3/2q ‖ψ‖[3/q]+m+2,q (t ≥ 0). (7.37)

Step 3. We now set

v2(t, x) = u(t, x) − (1 − ϕ)v0(t, x) + v1(t, x) (t ≥ 0, x ∈ E). (7.38)

Then v2, π, � and ω satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv2 − μ�v2 + ∇π = f , div v2 = 0 (t > 0, x ∈ E),

v2 = � + ω × x (t > 0, x ∈ ∂O),

m�̇ +
∫

∂O
σ(v2, π)ν ds = 0 (t > 0),

J ω̇ +
∫

∂O
x × σ(v2, π)ν ds = 0 (t > 0),

v2(0, x) = ζ(x) (x ∈ E),

�(0) = �0, ω(0) = ω0,

(7.39)

where

f = −2(∇ϕ · ∇)v0 − μ(�ϕ)v0 + ∂tv1 − μ�v1, (7.40)

ζ(x) = ϕ(x)ψ(x) + v1(0, x) (x ∈ E). (7.41)

Moreover, we have

div f (t, x) = 0, div ζ(x) = 0 (t > 0, x ∈ E),

supp f (t, ·) ⊂ {d − 2 ≤ |x | ≤ d − 1} (t > 0). (7.42)
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Denote

V20 = ζ1E + (�0 + ω0 × x)1O,

and

V2(t, x) = v2(t, x)1E (x) + (�(t) + ω(t) × x)1O(x) (t > 0, x ∈ R
3).

(7.43)

Recall that U0 ∈ Ran(Tq
1), in particular U0 ∈ D(Am

q ) for every m ∈ N. Therefore
V20 ∈ D(Am

q ) for every m ∈ N and there exists a constant C > 0, depending on m
and q, such that

‖V20‖D(Am
q ) ≤ Cm ‖U0‖D(Am

q ) . (7.44)

Using (7.31), (7.32), (7.36) and (7.37), we infer that there exists a constant C > 0,
depending only on m and q, such that

‖ f (t, ·)‖m,q,E ≤ Cm(1 + t)−3/2q ‖ψ‖[3/q]+m+2,q (t > 0). (7.45)

On the other hand, applying the variation of the constants formula to (7.39), we have

V2(t, ·) = T
q
t V20 +

∫ t

0
T
q
t−s f (s, ·) ds (t ≥ 0). (7.46)

The last estimate, combined with Lemma 7.9, can be used, following line by line the
end of the third step of the proof of Lemma 5.3 in [15], to obtain the existence of a
constant C (depending only on d, m and q), such that for every t > 0 we have

‖V2(t, ·)‖2m,q,Ed
≤ Cm(1 + t)−3/2q (‖u0‖[3/q]+2m+2,q,E + |�0| + |ω0|

)
.

(7.47)

‖∂t V2(t, ·)‖2m,q,Ed
≤ Cm(1 + t)−3/2q (‖u0‖[3/q]+2m+4,q,E + |�0| + |ω0|

)
.

(7.48)

Final step. Estimates (7.26) easily follow by combining (7.38) with the estimates
(7.31)–(7.33), (7.36), (7.37), (7.47) and (7.48). The estimate (7.27) can be obtained
similarly. Putting together (7.26) and (7.27), from (7.191) we obtain

‖∇π(t, ·)‖2m,q,Ed
≤ ‖∂t u(t, ·)‖2m,q,Ed

+ ‖�u(t, ·)‖2m,q,Ed

≤ C(1 + t)−3/2q (‖u0‖[3/q]+2m+4,q,E + |�0| + |ω0|
)

(t ≥ 0).

Then the estimate (7.28) follows from the above estimate after redefining π as π −∫

Ed

π dx and applying Poincaré type inequalities. ��
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The results in Lemma 7.9 and Proposition 7.10 provide decay estimates for the
restrictions to bounded sets of the solution u of the linearized problem. The result
below provides decay estimates for the restriction of u(t, ·) to the exterior of the
bounded set Ed introduced in Lemma 7.9.

Proposition 7.11 With the notation and assumptions of Remark 7.7 and Theorem 7.1,
let d > R0 + 5. Moreover, assume that U0 ∈ Ran(Tq

1). Then, for q ∈ (1,∞) and
r ∈ [q,∞), there exists a positive constant C, depending only on E, d, q and r such
that,

‖u(t, ·)‖r ,{|x |>d} ≤ C(1 + t)−σ
(‖u0‖[3/q]+[2σ ]+7,q,E + |�0| + |ω0|

)
, (7.49)

and for q ∈ (1, 3] and r ∈ [q, 3], there exists a positive constant C, depending only
on E, d, q and r, such that

‖∇u(t, ·)‖r ,{|x |>d} ≤ C(1+ t)−σ−1/2 (‖u0‖[3/q]+[2σ ]+7,q,E + |�0| + |ω0|
)
, (7.50)

where [s] denotes the integer part of s ∈ R.

Proof Let χ ∈ C∞(R3) be such that χ(x) = 1 for |x | > d and χ(x) = 0 for
|x | < d − 1. It follows that for every t ≥ 0 we have that supp div(χu(t, ·)) ⊂
{d − 1 < |x | < d} . Then there exists v3(t, ·) such that div v3 = div(χu),

supp v3(t, ·) ⊂ {d − 1 < |x | < d} and for every m ∈ N, we have

‖v3(t, ·)‖m,q ≤ C(1 + t)−
3
2q
(‖u0‖[3/q]+m+2,q,E + |�0| + |ω0|

)
, (7.51)

‖∂tv3(t, ·)‖m,q ≤ C(1 + t)−
3
2q
(‖u0‖[3/q]+m+4,q,E + |�0| + |ω0|

)
, (7.52)

for some constant C > 0 depending on m and q. To derive the last two estimates we
have used Bogovskii Lemma, (7.26) and (7.27). We now define

v4(t, x) = χ(x)u(t, x) − v3(t, x) (t > 0, x ∈ R
3). (7.53)

Note that div v4 = 0 so that v4 satisfies

{
∂tv4 − μ�v4 + ∇(χπ) = h, divv4 = 0, (t > 0, x ∈ R

3),

v4(0, x) = v40(x) (x ∈ R
3),

(7.54)

where

h = −2(∇χ · ∇)u(t) − μ(�χ)u + ∂tv3 − μ�v3 + π∇χ, (7.55)

and

v40(x) = χ(x)U0(x) − v3(0, x) (x ∈ R
3). (7.56)
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Note that, since all the functions appearing in (7.54) are supported away from O, the
function v4 shares all the properties derived in Lemma 5.5 and proofs of Theorems 1.2
and 1.3 of [15]. In particular,

‖v4(t, ·)‖r ≤ C(1 + t)−σ
(‖u0‖[3/q]+[2σ ]+7,q,E + |�0| + |ω0|

)
(1 < q ≤ r < ∞),

(7.57)

and

‖∇v4(t, ·)‖r ≤ C(1 + t)−σ−1/2 (‖u0‖[3/q]+[2σ ]+7,q,E + |�0| + |ω0|
)

(1 < q ≤ r ≤ 3).

(7.58)

By combining (7.57), (7.51) (with m = [2σ ] + 1) and Sobolev’s embedding theorem
we conclude that

‖u(t)‖r ,{|x |>d} ≤ ‖v3(t)‖r ,E + ‖v4(t)‖r
≤ C ‖v3(t)‖[2σ ]+1,q,E + ‖v4(t)‖r
≤ C(1 + t)−

3
2q
(‖u0‖[3/q]+m+3,q,E + |�0| + |ω0|

)

+ C(1 + t)−σ
(‖u0‖[3/q]+m+7,q,E + |�0| + |ω0|

)

≤ C(1 + t)−σ
(‖u0‖[3/q]+m+7,q,E + |�0| + |ω0|

)
.

This completes the proof of (7.49).
Finally, the proof of (7.50) is obtained similarly from (7.58), together with (7.51)

(with m = [2σ ] + 2). ��
We are now in a position to prove the main result in this section.

Proof of Theorem 7.1, items (i)–(iii) For small times, Theorem 7.1 items (i)–(iii) simply
is Theorem 7.8, and we thus only focus on the estimates of Theorem 7.1 items (i)–(iii)
for times larger than 1.

To prove (7.1), it suffices to note that, for every U ∈ X
q we have Tq

1U ∈ D(Ak
q)

for any k ∈ N, so that applying (7.26) with m = 0 we obtain

∥
∥T

q
t+1U

∥
∥
q,BR

≤ C(1 + t)−3/2q‖U‖q,R3 (t > 0,U ∈ X
q). (7.59)

Concerning (7.2), we first note that this estimate holds for t ∈ (0, 1] (see (7.20)).
Again applying (7.26) with m = [2σ ] + 1, we get

∥
∥T

q
t+1U

∥
∥
r ,Ed

≤ C
∥
∥T

q
t+1U

∥
∥[2σ ]+1,q,Ed

≤ C(1 + t)−3/2q‖U‖q,R3 (t > 0,U ∈ X
q),

and by (7.49)

∥
∥T

q
t+1U

∥
∥
r ,{|x |>d} ≤ C(1 + t)−σ ‖U‖q,R3 (t > 0,U ∈ X

q).
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The above two estimates give (7.2) for t ≥ 1.
The proof of (7.3) follows analogously by combining (7.21), (7.26) and (7.50). ��
To complete the proof of Theorem 7.1, it remains to show that (7.2) holds for r = ∞

and 1 < q < ∞. To this aim, we first prove the following result

Proposition 7.12 With the notation and assumptions of Remark 7.7 and Theorem 7.1,
let d > R0 + 5. Moreover, assume that 1 < q < ∞ and U0 ∈ Ran(Tq

1). Then, for
q ∈ (1,∞), there exists a positive constant C, depending only on E, d and q, such
that for every t ≥ 0, we have

‖u‖∞,E ≤ C(1 + t)−
3
2q
(‖u0‖[3/q]+7,q,E + |�0| + |ω0|

)
, (t ≥ 0), (7.60)

where [s] denotes the integer part of s ∈ R.

Proof Combining (7.38) together with the estimates (7.32)(with m = 0, r = ∞),
(7.36)(with m = 3) and (7.47) (with m = 2), we deduce that

‖u‖∞,Ed ≤ C(1 + t)−3/2q (‖u0‖[3/q]+6,q,E + |�0| + |ω0|
)
, (t ≥ 0, 1 < q < ∞),

(7.61)

where the set Ed has been defined in Lemma 7.9. Moreover, using (7.51) with m = 3
we also have

‖v3(t, ·)‖∞ ≤ C(1 + t)
− 3

2q
(‖u0‖[3/q]+6,q,E + |�0| + |ω0|

)
, (t ≥ 0, 1 < q < ∞),

(7.62)

where v3 is defined as in Proposition 7.11. Therefore, by virtue of the decomposition
(7.53), it remains to show the L∞ estimate of v4,where v4 is defined by (7.54). Recall
the definition of h from (7.55). Using (7.26), (7.28), (7.51) and (7.52), we obtain for
any m ∈ N ∪ {0}

‖h(t, ·)‖m,q ≤ C(1 + t)−
3
2q
(‖u0‖[3/q]+m+4,q,E + |�0| + |ω0|

)
, (t ≥ 0, 1 < q < ∞).

(7.63)

Let us take q0 = min{5/4, q}. Then using (7.32) and the above estimate, we evaluate

‖v4(t, ·)‖∞

≤ C

(

(1 + t)−3/2q ‖v40‖[3/q]+1,q +
∫ t

0
(1 + t − s)−3/2q0 ‖h(s)‖[3/q0]+1,q0 ds

)

≤ C

(

(1 + t)−3/2q ‖v40‖[3/q]+1,q +
∫ t

0
(1 + t − s)−3/2q0 ‖h(s)‖[3/q0]+1,q ds

)

≤ C
(‖u0‖[3/q]+7,q,E + |�0| + |ω0|

)
(

(1 + t)−
3
2q +

∫ t

0

1

(1 + t − s)3/2q0 (1 + s)3/2q
ds

)
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≤ C(1 + t)−
3
2q
(‖u0‖[3/q]+7,q,E + |�0| + |ω0|

)
.

Note that, in the above estimate, we have used the fact that h has compact support,
which comes from its definition in (7.55) and the fact that v3 is compactly supported.
The above estimate together with (7.61) and (7.62) implies (7.60). ��
Proof of Theorem 7.1, item (iv), estimate (7.2) for q ∈ (1,∞) and r = ∞.

Note that, for everyU ∈ X
q we have Tq

1U ∈ D(Ak
q) for any k ∈ N. Thus applying

(7.60) we have

∥
∥T

q
t+1U

∥
∥∞ ≤ C(1 + t)−3/2q ‖U‖Xq (t > 0, 1 < q < ∞, U ∈ X

q).

This proves (7.2) for q ∈ (1,∞), r = ∞, and t ≥ 1.
For t ∈ (0, 1), 1 < q < ∞, and q0 > max{3, q}, we apply Theorem 7.8 to obtain

∥
∥T

q
t U
∥
∥∞,E ≤ C

∥
∥∇T

q
t U
∥
∥3/q0
q0,E

∥
∥T

q
t U
∥
∥1−3/q0
q0,E

≤ Ct−3/2q ‖U‖Xq ,

(0 < t < 1, U ∈ X
q).

where the constant C is independent of t . This completes the proof of item (iv) of
Theorem 7.1. ��

8 Proof of themain results

In this section, we focus on the analysis of the non-linear fluid-structuremodel, assum-
ing that the rigid body is a ball. Note that this assumption has been already used when
fixing the frame via a simple translation, which drastically simplifies the structure of
the non-linear terms. Given q > 1 we continue to use the notation X

q for the space
defined in Eq. (3.1) andTq for the fluid structure semigroup introduced in the previous
sections. However, to simplify the notation and when there is no risk of confusion, the
fluid-structure semigroup will be simply denoted by T. Similarly, if the appropriate
value of q is clear from the context, the projector Pq , introduced in Proposition 3.2, is
simply denoted by P.

The arguments we are using are close to those in Kato [16], with several adaptations
necessary to tackle the extra term coming from the motion of the rigid body, in a spirit
close to [6], and with the extensive use of the results obtained in the previous sections
on the fluid-structure semigroup, and in particular Theorem 7.1.

We rely, in particular, on the following lemma, which is a rather straightforward
consequence of Theorem 7.1:

Lemma 8.1 Let p0 and q0 be such that q0 ∈ [3/2,∞) and p0 ∈ [q0,∞]. Then there
exists C > 0 such that for every F ∈ Lq0(R3;R3×3) satisfying F = 0 in B and

div F ∈ [Lr (R3)
]3

for some r ∈ (1, p0]\{∞} we have

‖Tr
t Prdiv F‖p0 ≤ Ct−3/2(1/q0−1/p0)−1/2‖F‖q0,E (t > 0). (8.1)
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Proof The proof follows the same steps as those appearing in [6, Proof of Corollary
3.10]. More precisely, for F ∈ Lq0(R3;R3×3) satisfying F = 0 in B and div F ∈
[
Lr (R3)

]3
for some r ∈ (1, p0]\{∞}, we necessarily have F · ν = 0 on ∂B and for

t > 0, Tr
t Prdiv F is a well-defined element of Xr ∩ X

∞ (see Theorem 7.1).
Setting r0 = max{r , q0}, we thus have that
‖Tr

t Prdiv (F)‖r0
= sup

ϕ∈Xr ′0 , ‖ϕ‖
X
r ′0 ≤1

{
〈Tr

t Prdiv (F), ϕ〉
X
r0 ,X

r ′0

}

= sup
ϕ∈Xr ′0 , ‖ϕ‖

X
r ′0 ≤1

{
〈div F,Tr ′

t ϕ〉
Xr ,Xr ′

}
(by Proposi tion 3.1 and Proposi tion 5.3)

= sup
ϕ∈Xr ′0 , ‖ϕ‖

X
r ′0 ≤1

{

−
∫

E
F · ∇T

r ′
0
t ϕ dx

}

(as F = 0 in B)

≤ ‖F‖q0,E sup
ϕ∈Xr ′0 , ‖ϕ‖

X
r ′0 ≤1

‖∇T
r ′
0
t ϕ‖q ′

0,E
.

Finally, using (7.3), we obtain

‖Tr
t Prdiv F‖r0 ≤ Ct−3/2(1/q0−1/r0)−1/2‖F‖q0,E (t > 0).

Now, for p0 ∈ [r0,∞], we use

‖Trt Prdiv F‖p0 ≤ ‖Tr0t/2‖L (Xr0 ,Xp0 )‖Trt/2Prdiv F‖r0 ≤ Ct−3/2(1/q0−1/p0)−1/2‖F‖q0,E

where the last estimate comes from (7.2). ��
We state below a result which, taking in consideration the notation recalled at

the beginning of this section, clearly includes our main result in Theorem 1.1. More
precisely, this result provides local in time existence of solutions for initial data in X3

and global existence of solutions of (1.2) for small data in X
3, with a description of

the long time behavior of the solutions when further assuming that the initial datum
belongs to Xq for some q ∈ (1, 3].
Theorem 8.2 Let V0 ∈ X

3. Then there exists T0 > 0 such that there exists a unique

solution V =
⎡

⎣
v

�

ω

⎤

⎦ ∈ C0([0, T0];X3) with t1/4V (t) ∈ C0([0, T0];X6), t1/2V (t) ∈

C0([0, T0];X∞) and min{t1/2, 1}∇v(t) ∈ C0([0, T0];
[
L3(E)

]9
) of (1.2), such that

lim
t→0

(
‖t1/4V (t)‖X6 + ‖t1/2V (t)‖X∞ + ‖t1/2∇v(t)‖3,E

)
= 0.

Furthermore, this solution is such that for all p ∈ [3,∞], t3/2(1/3−1/p)V ∈
C0([0, T0];Xp).
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Besides, there exists ε0 > 0 such that if ‖V0‖3 ≤ ε0, T0 can be taken to be infinite,
i.e. T0 = ∞, for all p ∈ [3,∞], t3/2(1/3−1/p)V ∈ C0

b ([0,∞];Xp), and for all

θ ∈ [0, 1/2), min{t1/2, tθ }∇v(t) ∈ L∞(0,∞; [L3(E)
]9

).
For q ∈ (1, 3], there exists ε0(q) ∈ (0, ε0] such that if V0 belongs toXq∩X3 and sat-

isfies ‖V0‖3 ≤ ε0(q), then the solution V also satisfies, for all p ∈ [max{q, 3/2},∞],
t3/2(1/q−1/p)V ∈ C0

b ([0,∞];Xp).

Proof Existence theory for V0 ∈ X
3. We first focus on the existence of solutions V

of (1.2).
As mentioned in the introduction, we are looking for mild solutions V of the non-

linear problem (1.2), i.e. solutions of the Eq. (1.8). For each t > 0 we identify V (t, ·)

with a triple

⎡

⎣
v(t, ·)
�(t)
ω(t)

⎤

⎦, where v(t, ·) : E → R
3 and �(t), ω(t) ∈ R

3, as described in

(3.3).
We first remark that, since (v − �) · ν = 0 on ∂B, we have

− 1E [(v − �) · ∇] v = div F, (8.2)

where

F(s, x) = −1E (x)(v(s, x) − �(s)) ⊗ v(s, x) (s > 0, x ∈ R
3). (8.3)

In particular the triple V =
⎡

⎣
v

�

ω

⎤

⎦ is a mild solution of (1.2) iff it satisfies

V (t) = Tt V0 +
∫ t

0
Tt−s P div F(s) ds (t ≥ 0), (8.4)

where F is defined in (8.3). The above formulation will be intensively used in the
remaining part of the section, in conjunction with Lemma 8.1.

For T > 0, we introduce the class

C (T ) =
⎧
⎨

⎩
V =

⎡

⎣
v

�

ω

⎤

⎦ with t1/4V ∈ C0([0, T ];X6), t1/2V ∈ C0([0, T ];X∞)

and min{t1/2, 1}∇v ∈ C0([0, T ]; [L3(E)]9)
}

,

which we endow with the norm

‖V ‖C (T ) = ‖t1/4V (t)‖L∞(0,T ;X6) + ‖t1/2V (t)‖L∞(0,T ;X∞)

+‖min{t1/2, 1}∇v‖L∞([0,T ];[L3(E)]9).
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Note in particular that, for V =
⎡

⎣
v

�

ω

⎤

⎦ ∈ C (T ), we have the estimate

|�(t)| ≤ 1

max{t1/4, t1/2}‖V ‖C (T ), (t > 0).

We start by remarking that we are looking for a solution V of (1.8) or equivalently
(8.4). We then define the map �T : V ∈ C (T ) �→ �T V defined for t ∈ [0, T ] by

�T V (t) = Tt V0 +
∫ t

0
Tt−sP(1E (�(s) − v(s)) · ∇v(s)) ds, (8.5)

or, equivalently,

�T V (t) = Tt V0 +
∫ t

0
Tt−sPdiv (1E (�(s) − v(s)) ⊗ v(s)) ds,

Next we claim the following lemma:

Lemma 8.3 There exists a constant C0 > 0 independent of T such that

‖�T V ‖C (T ) ≤‖Tt V0‖C (T )+C0‖V ‖2C (T ), (V ∈ C (T )), (8.6)

‖�T V
a−�T V

b‖C (T )≤C0(‖V a‖C (T )+‖V a‖C (T ))‖V a−11V b‖C (T ),

(V a, V b∈C (T )). (8.7)

Proof Since estimate (8.6) can be easily deduced from (8.7) by taking Va = 0 and
V b = V , we prove only (8.7).

Let V a and V b be in C (T ). Then easy computations show that

�T V
a(t) − �T V

b(t) =
∫ t

0
Tt−sPdivG(s) ds,

where G is given by

G(s) = 1E

(
(�a(s) − va(s)) ⊗ va(s) − (�b(s) − vb(s)) ⊗ vb(s)

)
, (s ∈ (0, T ]).

Writing

G(s) = 1E ((�a(s) − �b(s)) − (va(s) − vb(s))) ⊗ va(s)

+1E (�b(s) − vb(s)) ⊗ (va(s) − vb(s)), (s ∈ (0, T ]),

we easily deduce that for all s ∈ (0, T ),

‖G(s)‖6 ≤ 2‖V a(s) − V b(s)‖∞(‖V a(s)‖6 + ‖V b(s)‖6)
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+ 2‖V a(s) − V b(s)‖6(‖V a(s)‖∞ + ‖V b(s)‖∞)

≤ 2

s3/4
(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ).

Besides, for all s ∈ (0, T ], divG(s) belongs to [L3(R3)]3 since V a and V b belongs
to C (T ). Therefore, using Lemma 8.1, with p0 = q0 = 6,

‖t1/4(�T V
a(t) − �T V

b(t))‖L∞(0,T ;X6)

≤ C sup
t∈(0,T ]

{

t1/4
∫ t

0

1

(t − s)1/2
1

s3/4
ds

}

(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T )

≤ C(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ), (8.8)

for some C independent of T , where we used that, by scaling, for all t > 0,

t1/4
∫ t

0

1

(t − s)1/2s3/4
ds =

∫ 1

0

1

(1 − s)1/2s3/4
ds.

Similarly, using again Lemma 8.1, with p0 = ∞, q0 = 6, we get, for some C
independent of T ,

‖t1/2(�T V
a(t) − �T V

b(t))‖L∞(0,T ;X∞)

≤ C sup
t∈(0,T ]

{

t1/2
∫ t

0

1

(t − s)3/4
1

s3/4
ds

}

(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T )

≤ C(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ). (8.9)

To estimate ∇(�T V a − �T V b), it is convenient to first write

�T V
a(t) − �T V

b(t) =
∫ t

0
Tt−sPg(s) ds, (t ∈ (0, T ]),

where g is given

g(s) = 1E ((�a(s) − �b(s)) · ∇va(s) + �b(s) · ∇(va(s) − vb(s)))

−1E (va(s) − vb(s))) · ∇va(s) − 1Evb(s) · ∇(va(s) − vb(s)), (s ∈ (0, T ]),

that we decompose as

g(s) = g�(s) + gv(s), (s ∈ (0, T ]),

with

g�(s)=1E ((�a(s)−�b(s)) · ∇va(s)+1E�b(s) · ∇(va(s)−vb(s)), (s ∈ (0, T ]),
gv(s)=−1E (va(s)−vb(s))) · ∇va(s)−1Evb(s) · ∇(va(s)−vb(s)), (s ∈ (0, T ]).
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We then bound g� in [L3(R3)]9: for s ∈ (0, T ],

‖g�(s)‖3 ≤ |�a(s) − �b(s)|‖∇va(s)‖3,E + |�b(s)|‖∇(va − vb)(s)‖3,E
≤ 2

max{s1/4, s1/2}min{1, s1/2} (‖V
a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T )

≤ 2

min{s3/4, s1/2} (‖V
a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ).

We also bound gv in [L2(R3)]9: for s ∈ (0, T ],

‖gv(s)‖2 ≤ ‖V a(s) − V b(s)‖X6‖∇va(s)‖3,E + ‖V b(s)‖X6‖∇(va − vb)(s)‖3,E
≤ 2

s1/4 min{1, s1/2} (‖V
a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T )

≤ 2

min{s3/4, s1/4} (‖V
a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ).

Accordingly, estimate (7.3) yields

‖min{1, t1/2}∇(�T V
a(t) − �T V

b(t))‖L∞(0,T ;[L3(E)]9)

≤ C sup
t∈[0,T ]

{∫ t

0

min{1, t1/2}
(t − s)1/2 min{s3/4, s1/2} ds +

∫ t

0

min{1, t1/2}
(t − s)3/4 min{s3/4, s1/4} ds

}

×(‖Va‖C (T ) + ‖Vb‖C (T ))‖Va − Vb‖C (T ).

We then show that the supremum in t ∈ [0, T ] can in fact be bounded by a constant
independent of T . For t ∈ (0, 1),

∫ t

0

min{1, t1/2}
(t − s)1/2 min{s3/4, s1/2} ds =

∫ t

0

t1/2

(t − s)1/2s3/4
ds = c1/2,3/4t

1/4 ≤ c1/2,3/4,

(8.10)
∫ t

0

min{1, t1/2}
(t − s)3/4 min{s3/4, s1/4} ds =

∫ t

0

t1/2

(t − s)3/4s3/4
ds = c3/4,3/4, (8.11)

where cα,β is defined for (α, β) ∈ (0, 1)2 by

cα,β =
∫ 1

0

1

(1 − s)αsβ
ds.

For t ≥ 1, we write

∫ t

0

min{1, t1/2}
(t − s)1/2 min{s3/4, s1/2} ds

=
∫ 1

0

1

(t − s)1/2s3/4
ds +

∫ t

1

1

(t − s)1/2s1/2
ds ≤ c1/2,3/4 + c1/2,1/2, (8.12)
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∫ t

0

min{1, t1/2}
(t − s)3/4 min{s3/4, s1/4} ds

=
∫ 1

0

1

(t − s)3/4s3/4
ds +

∫ t

1

1

(t − s)3/4s1/4
ds ≤ c3/4,3/4 + c3/4,1/4. (8.13)

Consequently, there exists some C independent of T > 0 such that

‖min{1, t1/2}∇(�T V
a(t) − �T V

b(t))‖L∞(0,T ;[L3(E)]9)
≤ C(‖V a‖C (T ) + ‖V b‖C (T ))‖V a − V b‖C (T ). (8.14)

Putting together estimates (8.8), (8.9) and (8.14), we conclude the estimate (8.7)
and Lemma 8.3. ��

According to Lemma 8.3, for K > 0, the set C (T , K ) = {V ∈ C (T ), ‖V ‖C (T ) ≤
K } is such that for all Va and V b in C (T , K ),

‖�T V
a − �T V

b‖C (T ) ≤ 2C0K‖V a − V b‖C (T ), (8.15)

where C0 is the constant in Lemma 8.3. Therefore, for K ≤ K0 = 1/(4C0), the map
�T is 1/2-Lipschitz in C (T , K ).

Now, for V0 ∈ X
3, the map T �→ ‖Tt V0‖C (T ) is a continuous increasing function

of T , which is bounded by C‖V0‖X3 according to estimates (7.2)–(7.3), and which
goes to 0 as T to 0 by density of D(A3) in X3 and the decay estimates (7.2)–(7.3).

Therefore, for V0 ∈ X
3, we can guarantee that there exists a time TK > 0 such that

‖Tt V0‖C (TK ) ≤ K

2
,

so that by (8.6), for K ≤ K0 = 1/(4C0), the set C (TK , K ) is stable by �TK , and �TK
is strictly contractive in it. Therefore, by Banach–Picard fixed point theorem, there
exists a fixed point V ∈ C (TK ), which is by construction a mild solution of (1.2).

Besides, this solution is such that for all T < TK , V |(0,T ) is the fixed point of �T

in C (T , K ). Therefore, for T such that ‖Tt V0‖C (T ) ≤ 1/(8C0), it is easy to check
from (8.6) that ‖V |(0,T )‖C (T ) ≤ 2‖Tt V0‖C (T ), and thus goes to 0 as T → 0.

Furthermore, V can be constructed as the limit of the sequence Vn+1 = �TK Vn for
n ∈ N, V1 = 0, for which we have, for all n ∈ N, Vn ∈ C (TK , K ). Elements of this
sequence satisfies

Vn+1(t) = Tt V0 +
∫ t

0
Tt−sPdiv (1E (�n(s) − vn(s)) ⊗ vn(s)) ds, (t ∈ (0, TK ]).

(8.16)

In particular, using Lemma 8.1, we get
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‖Vn+1‖L∞(0,TK ;X3)

≤ C‖V0‖X3 + C sup
t∈[0,TK ]

{∫ t

0

1

(t − s)1/2s1/2
ds

}

‖s1/4Vn(s)‖2L∞(0,TK ;X6)

+ C sup
t∈[0,TK ]

{∫ t

0

1

(t − s)1/2s1/2
ds

}

‖s1/2Vn(s)‖L∞(0,TK ;X∞)‖Vn‖L∞(0,TK ;X3)

≤ C‖V0‖X3 + CK 2 + CK‖Vn‖L∞(0,TK ;X3).

Therefore, taking K smaller if necessary to guarantee that CK < 1, we get that
the sequence Vn is also uniformly bounded in L∞(0, TK ;X3), so that its limit V is
also bounded in L∞(0, TK ;X3). We then easily deduce by interpolation that, for all
p ∈ [3,∞], t3/2(1/3−1/p)V ∈ C0([0, TK ];Xp).

Besides, since ‖Tt V0‖C (∞) ≤ C1‖V0‖X3 according to estimates (7.2)–(7.3) for
some constant C1, if ‖V0‖X3 is small enough (namely ≤ 1/(8C0C1)), we can take
K = 2C‖V0‖X3 and TK = ∞. In this case, we have from the above computations
that the above sequence Vn stays in C (∞, K ) and stays bounded in L∞(0,∞;X3)

with ‖Vn‖L∞(0,∞;X3) ≤ C‖V0‖X3 . Consequently, when ‖V0‖X3 is small enough, we
can deduce by interpolation that there exists C > 0 such that for all n ∈ N,

sup
p∈[3,∞]

‖t3/2(1/3−1/p)Vn‖L∞(0,∞;Xp) + ‖Vn‖C (∞) ≤ C‖V0‖X3 , (8.17)

and this also holds for the limit V of the sequence Vn :

sup
p∈[3,∞]

‖t3/2(1/3−1/p)V ‖L∞(0,∞;Xp) + ‖V ‖C (∞) ≤ C‖V0‖X3 .

Now, we prove that we also have that for all θ ∈ [0, 1/2), min{t1/2, tθ }∇v ∈
L∞(0,∞; [L3(E)]9), taking ‖V0‖X3 smaller if needed. Indeed, starting from (8.16),
that we rewrite

Vn+1(t) = Tt V0 +
∫ t

0
Tt−sP(1E (�n(s) − vn(s)) · ∇vn(s)) ds, (t ∈ (0, ∞)),

(8.18)

using (7.3) with r = 3 and q = 3 and q = 3/2, we have, for all t > 0 and n ∈ N,

‖min{t1/2, tθ }∇vn+1(t)‖[L3(E)]9) ≤ C min{t1/2, tθ }t−1/2‖V0‖X3

+ C min{t1/2, tθ }
∫ t

0
(t − s)−1/2|�n(s)|‖∇vn(s)‖[L3(E)]9 ds

+ C min{t1/2, tθ }
∫ t/2

0
(t − s)−1/2−1/2‖vn(s)‖X3‖∇vn(s)‖[L3(E)]9 ds

+ C min{t1/2, tθ }
∫ t

t/2
(t − s)−1/2‖vn(s)‖X∞‖∇vn(s)‖[L3(E)]9 ds
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≤ C‖V0‖X3

+ C‖V0‖X3

∫ t

0

min{t1/2, tθ }
(t − s)1/2 max{s1/2, sθ }min{s1/2, sθ } ds

‖min{s1/2, sθ }∇vn(s)‖L∞(0,∞;[L3(E)]9)

+ C‖V0‖X3

∫ t/2

0

min{t1/2, tθ }
(t−s)min{s1/2, sθ } ds‖min{s1/2, sθ }∇vn(s)‖L∞(0,∞;[L3(E)]9)

+ C‖V0‖X3

∫ t

t/2

min{t1/2, tθ }
(t − s)1/2s1/2 min{s1/2, sθ } ds

‖min{s1/2, sθ }∇vn(s)‖L∞(0,∞;[L3(E)]9).

where we used that the sequence (Vn) satisfies (8.17), and

‖max{s1/2, sθ }�n(s)‖L∞(0,∞) + ‖Vn(s)‖L∞(0,∞;X3) + ‖s1/2Vn(s)‖L∞(0,∞;X∞) ≤ C‖V0‖X3 .

Now, arguing as in (8.10)–(8.13), one can easily check that there exists a constant
C independent of t such that for all t > 0,

∫ t

0

min{t1/2, tθ }
(t − s)1/2 max{s1/2, sθ }min{s1/2, sθ } ds +

∫ t/2

0

min{t1/2, tθ }
(t − s)min{s1/2, sθ } ds

+
∫ t

t/2

min{t1/2, tθ }
(t − s)1/2s1/2 min{s1/2, sθ } ds ≤ C .

Consequently, combining the above estimates, we have, for all n ∈ N,

‖min{t1/2, tθ }∇vn+1(t)‖L∞(0,∞;[L3(E)]9) ≤ C‖V0‖X3

+C‖V0‖X3‖min{s1/2, sθ }∇vn(s)‖L∞(0,∞;[L3(E)]9). (8.19)

It follows that if ‖V0‖X3 is small enough, then the sequence (min{t1/2, tθ }∇vn(t)) is
bounded in L∞(0,∞; [L3(E)]9), and since vn converges to v in C (∞), we obtain
(min{t1/2, tθ }∇v(t)) ∈ L∞(0,∞; [L3(E)]9).

Uniqueness. Let V a and V b be two mild solutions of (1.2) with the same initial
datum V 0 in the class C (T0) such that for ‖V a‖C (T ) and

∥
∥V b

∥
∥
C (T )

go to 0 as T → 0.
Then, setting

e(t) = ‖V a − V b‖C (t), t ∈ (0, T0),

according to (8.7), we have

e(t) ≤ C0

(
∥
∥V a

∥
∥
C (t) +

∥
∥
∥V b

∥
∥
∥
C (t)

)

e(t), t ∈ (0, T0).
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Since ‖V a‖C (T ) and
∥
∥V b

∥
∥
C (T )

go to 0 as T → 0, there exists t0 ∈ (0, T0], such
that

C0

(
∥
∥V a

∥
∥
C (t0)

+
∥
∥
∥V b

∥
∥
∥
C (t0)

)

< 1

and thus e(t0) = 0, and V a and V b coincides on [0, t0]. If t0 < T0, it is easily seen
that this argument can be repeated on time intervals of the form [t∗, T ] with t∗ ≥ t0:
Using that for t ∈ (0, 1) such that t + t∗ ≤ T0,

∥
∥V a(· + t∗)

∥
∥
C (t) +

∥
∥
∥V b(· + t∗)

∥
∥
∥
C (t)

≤
(

t

t + t∗

)1/4 (∥
∥V a

∥
∥
C (T0)

+
∥
∥
∥V b

∥
∥
∥
C (T0)

)

.

we immediately have that there exists t1 > 0 such that if Va and V b coincide in [0, t∗]
with t∗ ≥ t0, then they coincide on [0,min{t∗ + t1, T0}]. This argument proves that
V a and V b in fact coincide on the whole time interval [0, T0].

The case of an initial datum in X
q for q ∈ (1, 3). Let q ∈ (1, 3) and V0 ∈

X
q ∩ X

3 with ‖V0‖X3 ≤ ε0. Then we know that the solution V of (1.2) is global
in time and belong to C (∞), and we know that the sequence given by V1 = 0 and
Vn+1 = �∞(Vn), i.e.

Vn+1(t) = Tt V0 +
∫ t

0
Tt−sPdiv (1E (�n(s) − vn(s)) ⊗ vn(s)) ds, (t ∈ (0,∞]),

= Tt V0 +
∫ t

0
Tt−sP(1E (�n(s) − vn(s)) · ∇vn(s)) ds, (t ∈ (0,∞]),

converges to V in C (∞), and we have the estimates (8.17).
To prove that V is bounded in some class, it is enough to check that the sequence

(Vn)n∈N is uniformly bounded in this class.
Let us start by proving that min{1, t1/2}∇v ∈ L∞(0,∞; [Lq(E)

]9
). With p ∈

(3,∞) such that 1/p + 1/q < 1,

‖min{1, t1/2}∇vn+1‖L∞(0,∞;[Lq (E)]9) ≤ C‖V0‖Xq

+ C‖V0‖X3 sup
t>0

{∫ t

0

min{1, t1/2} ds
(t − s)3/(2p)+1/2s3/2(1/3−1/p) min{1, s1/2}

}

× ‖min{1, t1/2}∇vn‖L∞(0,∞;[Lq (E)]9)

+ C‖V0‖X3 sup
t>0

{∫ t

0

min{1, t1/2} ds
(t − s)1/2 max{1, s1/2}min{1, s1/2}

}

× ‖min{1, t1/2}∇vn‖L∞(0,∞;[Lq (E)]9),

where we used that, according to (8.17),

‖t3/2(1/3−1/p)Vn‖L∞(0,∞;Xp) + ‖max{1, t1/2}�n‖L∞(0,∞) ≤ C‖V0‖X3 .
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We then use that

sup
t>0

{∫ t

0

min{1, t1/2}
(t − s)3/(2p)+1/2s3/2(1/3−1/p) min{1, s1/2} ds

}

≤ C,

sup
t>0

{∫ t

0

min{1, t1/2}
(t − s)1/2 max{1, s1/2}min{1, s1/2} ds

}

≤ C,

which can be proved along the same lines as in (8.10)–(8.11)–(8.12)–(8.13).
This allows to deduce

‖min{1, t1/2}∇vn+1‖L∞(0,∞;[Lq (E)]9)

≤ C‖V0‖Xq + C‖V0‖X3‖min{1, t1/2}∇vn‖L∞(0,∞;[Lq (E)]9). (8.20)

Accordingly, if ‖V0‖X3 is small enough, we have that

‖min{1, t1/2}∇vn+1‖L∞(0,∞;[Lq (E)]9)

≤ C‖V0‖Xq + 1

2
‖min{1, t1/2}∇vn‖L∞(0,∞;[Lq (E)]9),

so that the sequence (min{1, t1/2}∇vn)n∈N is uniformly bounded in L∞(0,∞;
[
Lq(E)

]9
), and passing to the limit n → ∞, min{1, t1/2}∇v belongs to L∞(0,∞;

[
Lq(E)

]9
).

Accordingly, min{t1/2, t}(vn − �n) · ∇vn belongs to L∞(0,∞; Lq(R3)) and we
can use Lemma 8.1 for q0 ≥ max{q, 3/2}.

Then we set q0 = max{q, 3/2}, and we next prove that t3/2(1/q−1/q0)V ∈
L∞(0,∞;Xq0) and t3/2(1/q−1/6)V ∈ L∞(0,∞;X6). In order to do that, again we
look at the sequence (t3/2(1/q−1/q0)Vn)n∈N in L∞(0,∞;Xq0):

‖t3/2(1/q−1/q0)Vn+1‖L∞(0,∞;Xq0 ) ≤ C‖V0‖Xq

+ C sup
t>0

{∫ t

0

t3/2(1/q−1/q0)

(t − s)1/2s1/2s3/2(1/q−1/q0)
ds

}

× ‖Vn‖C (∞)‖t3/2(1/q−1/q0)Vn‖L∞(0,∞;Xq0 )

≤ C‖V0‖Xq + C‖V0‖X3‖t3/2(1/q−1/q0)Vn‖L∞(0,∞;Xq0 ).

This implies that for ‖V0‖X3 small enough, the sequence (t3/2(1/q−1/q0)Vn)n∈N is
uniformly bounded in L∞(0,∞;Xq0) by C‖V0‖Xq .

Similarly, we consider the norm of t3/2(1/q−1/6)Vn in L∞(0,∞;X6):

‖t3/2(1/q−1/6)Vn+1‖L∞(0,∞;X6) ≤ C‖V0‖Xq

+ C sup
t>0

{∫ t/2

0

t3/2(1/q−1/6)

(t − s)1/2+3/2(1/q0−1/6)s1/2s3/2(1/q−1/q0)
ds

}

× ‖Vn‖C (∞)‖t3/2(1/q−1/q0)Vn‖L∞(0,∞;Xq0 )
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+ C sup
t>0

{∫ t

t/2

t3/2(1/q−1/6)

(t − s)1/2s1/2s3/2(1/q−1/6)
ds

}

‖Vn‖C (∞)‖t3/2(1/q−1/6)Vn‖L∞(0,∞;X6)

≤ C‖V0‖Xq + C‖V0‖X3‖V0‖Xq + C‖V0‖X3‖t3/2(1/q−1/3)Vn‖L∞(0,∞;X6).

Accordingly, if ‖V0‖X3 is small enough, the sequence (t3/2(1/q−1/6)Vn)n∈N is
bounded in L∞(0,∞;X6) by C‖V0‖Xq + C‖V0‖X3‖V0‖Xq .

Therefore, the limit V of the sequence (Vn)n∈N satisfies t3/2(1/q−1/q0)V ∈
L∞(0,∞;Xq0) and t3/2(1/q−1/6)V ∈ L∞(0,∞;X6).

Then, we use that V satisfies

V (t) = Tt V0 +
∫ t

0
Tt−sPdiv (1E (�(s) − v(s)) ⊗ v(s)) ds, (t ∈ (0,∞]),

and the fact that, from our previous computations, there exists C > 0 such that for all
s > 0,

‖(�(s) − v(s)) ⊗ v(s)‖6 ≤ 2 ‖V (s)‖∞ ‖V (s)‖6 ≤ C

s1/2s3/2(1/q−1/6)

≤ C

s3/(2q)+1/4
,

‖(�(s) − v(s)) ⊗ v(s)‖q0 ≤ 2 ‖V (s)‖∞ ‖V (s)‖q0 ≤ C

s1/2s3/2(1/q−1/q0)

≤ C

s1/2+3/2(1/q−1/q0)
.

Next, using Lemma 8.1 with q0 and p0 = ∞ for s ∈ (0, t/2), and with 6 and
p0 = ∞ for s ∈ (t/2, t), we have

‖t3/(2q)V (t)‖L∞(0,∞;X∞) ≤ C‖V0‖Xq

+C sup
t>0

{∫ t/2

0

t3/(2q)

(t − s)1/2+3/(2q0)s1/2+3/2(1/q−1/q0)
ds

+
∫ t

t/2

t3/(2q)

(t − s)3/4s3/2q+1/4 ds

}

≤ C < ∞.

Therefore, t3/(2q)V (t) ∈ L∞(0,∞;X∞). Since we have already proved that
t3/2(1/q−1/q0)V ∈ L∞(0,∞;Xq0), we conclude by interpolation that for all p ∈
[q0,∞], t3/2(1/q−1/p)V ∈ L∞(0,∞;Xp). ��

9 Concluding remarks and open questions

The main result in this paper, namely Theorem 1.1, concerns the wellposedness of the
system modelling the motion of a rigid ball in a viscous incompressible fluid filling
the remaining part of R3 and asserts that the position of the centre of the ball tends,
when t → ∞, to some position h∞ ∈ R

3. This result differs from those previously
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obtained in two space dimensions in [6], or for a simplified 1D model in [29], where
it has been shown that the distance of the centre of the ball to the origin tends to +∞
when t → ∞. Several open questions seem natural in view of our results.

One of the most challenging ones, for which we have no track at this stage, is
determining h∞ from the initial data.

Another natural question is the generalization of Theorem1.1 for a body of arbitrary
shape. When the rigid body is not a ball, writing the equations in a fixed domain
requires the use of more delicate changes of variables, since it has to include the
rotation of the body. There are basically two ways of doing that: one consists in
setting v(t, x) = Q∗(t)u(t, h(t) + Q(t)x) , where Q(t) is the rotation matrix of the
body, that is the solution of Q̇(t)Q∗(t)x = ω(t) × x starting from Q(0) = I d. The
problem is that such change of framewould induce in the fixed frame a term of the form
(ω × x) · ∇v which our estimate does not allow to handle since the identity mapping
does not belong to L∞(E). The alternative approach proposed in [4], which consists
in constructing a change of variable which follows the structure in a neighbourhood
of it and equals the identity far from the body, seems more suitable to deal with the
non-linear terms. However, this change of variable introduces a lot of delicate terms
which we do not know how to handle in the above setting so far. In fact, even in two
space dimensions, the existing results (see [6]) provide an analysis of the motion of
a rigid body in a viscous incompressible fluid in R

2 only in the case when the rigid
body is a disk.

Finally, let us mention that the counterparts in two space dimensions of some of
our results in Sects. 4–7 have been used in Takahashi and Lacave [18] to study the
behaviour of solutions of (1.2) when the radius of the rigid ball tends to zero (see
also He and Iftimie [12] and references therein). We believe that the approach in
[18] can be adapted to the three dimensional case by using our results on the fluid
structure-semigroup and its generator, but this deserves further work.
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Appendix A

A.1 Proof of Proposition 3.2

We first show that every u ∈ [Lq(
)
]3 can be written in the form u = v + w1 + w2,

with v ∈ X
q(
), w1 ∈ Gq

1(
) and w2 ∈ Gq
2(
).

To this aim, let q11 be the solution of the problem

�q11 = div u in 
, q11 = 0 on ∂
.

Thus q11 ∈ W 1,q
0 (
) and we have div(u−∇q11) = 0 in
. Accordingly (u−∇q11) ·ν

is well-defined on ∂
, and we can solve

�q12 = 0 in 
, ∂νq12 = (u − ∇q11) · ν on ∂
.

Setting then q1 = q11 + q12, and w1 = ∇q1, w1 ∈ Gq
1(
), and div (u − w1) = 0 in


 and (u − w1) · ν = 0 on ∂
.
Since we are looking for v ∈ X

q(
), we know that

v = �v + ωv × x for x ∈ O, (A.1)

for some �v ∈ R
3 and ωv ∈ R

3. We set

ϕ(x) = u(x) − ∇q1(x) − �v − ωv × x x ∈ O, (A.2)

and

w2 =
{

∇q2 in E


ϕ in O.
(A.3)

Since we are looking for w2 ∈ Gq
2(
) we require

�v = 1

m

∫

O
(u − ∇q1 − ϕ) dx = 1

m

[∫

O
(u − ∇q1) dx +

∫

∂O
q2ν ds

]

, (A.4)

and

ωv = − 1

J

∫

O
(u − ∇q1 − ϕ) × x dx

= − 1

J

[∫

O
(u − ∇q1) × x dx +

∫

∂O
q2ν × x ds

]

, (A.5)

where m and J are defined in (3.11).
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Now we define q2 as the solution of the Neumann problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�q2 = 0 in E
,

∂q2
∂ν

= 0 on ∂
,

∂q2
∂ν

= (u − ∇q1) · ν − (�v + ωv × x) · ν on ∂O,

(A.6)

where �v and ωv are defined in (A.4) and (A.5), respectively. Note that, q2 solves a
Laplace equation with non-local boundary condition. As shown below, we have that
q2 ∈ W 1,q(E
) and there exists a constant C depending on q, 
 and O such that

‖q2‖1,q,E

≤ C ‖u‖q,
 . (A.7)

In this case we can determine �v and ωv from (A.4) and (A.5) respectively. Conse-
quently, we obtain ϕ and w2 from (A.2) and (A.3) respectively. In particular, we have
that w2 ∈ Gq

2(
) and by setting v = u − w1 − w2 we can verify that v ∈ X
q(
).

We still have to prove that q2 ∈ W 1,q(
) and (A.7) holds. If q = 2, this is a
consequence of Lax–Milgram Theorem (see for instance [5, Lemma 1]). If q �= 2, we
employ a density argument. Assume that u ∈ [C∞

0 (
)
]3 and q2 solves (A.6). Then

there exists a constant C depending only on q,
 and O such that

‖q2‖1,q,E

≤ C

(‖u‖q,
 + |�v| + |ωv|
)
. (A.8)

Next, by following the arguments of the proof of Theorem 2.2 in [30], we have

|�v| + |ωv| ≤ C ‖u‖q,
 , (A.9)

whereC is a positive constant depending only on q,
 andO.The above two estimates
yield that there exists a positive constant C , depending only on q,
 and O, such
that estimate (A.7) holds. Thus the conclusion follows by a density argument. This
completes the proof of the existence of a decomposition with the required properties.
The proof of uniqueness of the decomposition is similar to that of [30, Theorem 2.2].

A.2 Proof of Proposition 3.3

Let Yq(
)⊥ and (Yq)⊥ be the annihilators of Yq(
) and Y
q respectively, i.e.,

Y
q(
)⊥ =

{

u ∈ Lq ′
(
) |

∫




u · v dx = 0 for all v ∈ Y
q(
)

}

,

(Yq)⊥ =
{

u ∈ Lq ′
(R3) |

∫

R3
u · v dx = 0 for all v ∈ Y

q
}

.

Let us set Gq ′
(
) = Gq ′

1 (
) ⊕ Gq ′
2 (
) and Gq ′ = Gq ′

1 ⊕ Gq ′
2 .
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Step 1. We claim that Yq(
)⊥ = Gq ′
(
) and (Yq)⊥ = Gq ′

.

Let us assume that u ∈ Gq ′
(
) = Gq ′

1 (
) ⊕ Gq ′
2 (
), i.e., u = u1 + u2 with

u1 ∈ Gq ′
1 (
) and u2 ∈ Gq ′

2 (
). Let us take v ∈ C∞
c (
), div v = 0 in 
, and

Dv = 0 in O. Then we have
∫




u1 · v dx =
∫




∇q1 · v dx = 0,

and
∫




u2 · v dx =
∫

E


∇q2 · v dx +
∫

O
ϕ · (�v + ωv × y) dy ( using the definition of Gq ′

2 (
))

=
∫

∂O
q2((�v + ωv × y) · ν) ds +

∫

O
ϕ · (�v + ωv × y) dy = 0.

Thus by density
∫



u · v = 0 for all v ∈ Y

q(
). This shows that u ∈ Y
q(
)⊥ and

Gq ′
(
) ⊂ Y

q(
)⊥. In a similar manner, we can show Gq ′ ⊂ (Yq)⊥.

Conversely, let us assume that u ∈ Y
q(
)⊥. Then according to Proposition 3.2,

u = w + w0, w = Pq ′,
u, w0 ∈ Gq ′
(
).

Since u ∈ Y
q(
)⊥, by similar calculation as above, we obtain for all v ∈ C∞

c (
),
with div v = 0 in 
 and Dv = 0 in O,

0 =
∫




u · v dx =
∫




w · v dx .

We claim that w ∈ Gq ′
2 (
). By choosing, v ∈ C∞

c (E
) with div v = 0 in E
, we
have

∫

E


w · v dx = 0 for all v ∈ C∞
c (E
),with div v = 0 in E
.

Then by de Rham’s theorem there is a distribution q2 such that w = ∇q2 in E
.

Further, from the fact that w ∈ X
q ′

(
) we have q2 ∈ L1
loc(E
), and if 
 is a bounded

domain we have q2 ∈ W 1,q ′
(E
). Furthermore, we have w = �w +ωw × y inO, and

0 =
∫




w · v dx =
∫

E


w · v dx + m�w · �v + Jωu · ωv,

for all v ∈ C∞
c (
), with div v = 0 in 
, Dv = 0 in O, and v = �v + ωv × y in O.

In particular,

∫

∂O
q2ν · v ds + m�w · �v + Jωw · ωv = 0,

for all v ∈ C∞
c (
), with div v = 0 in 
, and Dv = 0 in O.
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Now by choosing v as above with v = �v in O we infer that

∫

∂O
q2ν ds = −m�w = −

∫

O
w dy.

Similarly, by choosing v = ωv × y in O we get

−
∫

∂O
q2ν × y ds =

∫

O
w × y dy.

Therefore w ∈ Gq ′
(
). Since by construction, w = Pq ′,
u belongs to X

q ′
(
), and

X
q ′

(
) ∩ Gq ′
(
) = {0}, w = 0 and u = w0 belongs to Gq ′

(
). The proof is similar
when 
 = R

3.

Step 2. By Proposition 3.2, we have Xq ′ = [Lq ′
(
)]3/Gq ′

(
). Then

X
q(
) = X

q ′
(
)∗ =

[
[Lq ′

(
)]3/Gq ′
(
)
]∗ =

[
Gq ′

(
)
]⊥ = Y

q(
).

The same also holds when 
 = R
3.

Appendix B Optimality of the decay estimates in (7.2) in the case of a
ball

In this section, following [21, p.441], we prove the optimality of the decay estimates
(7.2) when O is the unit ball (the extension to any ball can be done analogously and
is left to the reader).

Theorem B.1 Let O be the unit ball, and T
q
t be the fluid-structure semigroup intro-

duced in Theorem 6.1 for q ∈ (1,∞).
There is no ε > 0 and r ≥ q ≥ 3/2 with r ≤ ∞ such that the semigroup Tt = T

q
t

satisfies

‖TtU‖Xr ≤ Ct−σ−ε ‖U‖Xq (t > 0, U ∈ X
q), (B.1)

where σ = 3
2

(
1
q − 1

r

)
.

In other words, item (ii) and (iv) of Theorem 7.1 are sharp decay estimates.

Proof First, using the semigroup property and the decay estimates (7.2), if (B.1) holds
for some r ∈ [3/2,∞] and q ∈ [3/2, r ], writing

‖Tt‖L(X3/2,X∞) ≤ ∥∥Tt/3
∥
∥L(Xr ,X∞)

∥
∥Tt/3

∥
∥L(Xq ,Xr )

∥
∥Tt/3

∥
∥L(X3/2,Xq )

the decay estimate (B.1) holds for r = ∞ and q = 3/2. Therefore, in the following,
we suppose without loss of generality that (B.1) holds with r = ∞ and q = 3/2, i.e.

‖TtU‖X∞ ≤ Ct−1−ε ‖U‖X3/2 (t > 0, U ∈ X
3/2). (B.2)
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Following the arguments in [21, p.441], we will prove that if this estimate holds,
then the Kirchhoff potential (see e.g. [11, p.163])

v(x) = 3

4

(
x

|x |3 x1 + e1
|x |
)

− 1

4

(

3
x

|x |5 x1 − e1
|x |3

)

, p(x) = 3μ

2

x1
|x |3 , (x ∈ E), (B.3)

would belong to L3(E), which is obviously not the case.
Indeed, recalling that we assumed that O is the unit ball. One can then check that

(v, p) in (B.3) satisfies the equations

{−μ�v + ∇ p = 0, div v = 0 (x ∈ E),

v = e1, (x ∈ ∂O).
(B.4)

Also note that V given by V |E = v and V |O = e1 belongs to all Xq with q > 3.
Next, let q ∈ (1, 3/2) and consider a datum U0 ∈ X

q ∩ X
3/2. With the notations

of Remark 7.7, U (t) = TtU0 corresponds to (u(t), π(t), �(t), ω(t)) solving (7.19).
Multiplying then the equation (7.19)(1) by v, integrating on E , doing integration

by parts and using the boundary conditions, we get

d

dt

(

m� · e1 +
∫

E
u · v dx

)

+
∫

∂O
σ(v, p)ν · (� + ω × x) ds = 0,

and integrating in time on (0, T ) for some T > 0,

〈V ,U0〉Xq′
,Xq = 〈V ,U (T )〉

Xq′
,Xq +

∫ T

0

∫

∂O
σ(v, p)ν · (� + ω × x) ds dt . (B.5)

On one hand, using the decay estimate (7.2), for s ∈ (q, 3/2), we have ‖U (T )‖Xs ≤
CT−αs‖U0‖Xq for some positive decay rate αs > 0, and since s′ > 3,

|〈V ,U (T )〉
Xq′

,Xq | = |〈V ,U (T )〉
Xs′ ,Xs | ≤ CT−αs‖V ‖Xs‖U0‖Xq .

On the other hand, using (7.2) with r = 3/2, we get that for all t ≥ 0, |�(t)| +
|ω(t)| ≤ C‖U0‖X3/2 , while the estimate (B.2) implies that for all t > 0, |�(t)| +
|ω(t)| ≤ Ct−1−ε‖U0‖X3/2 .

Accordingly, using identity (B.5), we get, for all U0 ∈ X
q ∩ X

3/2 and T > 0,

|〈V ,U0〉Xq′
,Xq | ≤ CT−αs ‖V ‖Xs ‖U0‖Xq + C‖σ(v, p)‖L∞(∂O)

∫ T

0

1

(1 + t)1+ε
dt‖U0‖X3/2 .

Letting T go to infinity, we obtain that for all U0 ∈ X
q ∩ X

3/2,

|〈V ,U0〉Xq′
,Xq | ≤ C‖U0‖X3/2 . (B.6)

This implies that V ∈ X
3 from [21, Lemma 2.6], and from the explicit formula of

V (recall (B.3)), we get a contradiction. ��
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