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Abstract
In this paper, we introduce a new notion of the Hermitian holomorphic vector bundles
satisfying the optimal L2-estimate, and give a characterization ofNakano positivity for
Hermitian holomorphic vector bundles via the notion. As an application, we provide
a new method to obtain Nakano positivity of direct image sheaves of twisted relative
canonical bundles associated to holomorphic families of complex manifolds. We also
present a comprehensive picture about converses of L p-estimates and L p-extension
for ∂̄ .
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1 Introduction

Positivity (e.g., both Nakano andGriffiths positivity) of Hermitian holomorphic vector
bundles play an important role in several complex variables and complex geometry.
Nakano positivity implies Griffiths positivity. Some important and influential results
are obtained under the assumptions of Nakano or Griffiths positivity. For example,
an L2 existence theorem by Hörmander [21] and Demailly [9] asserts that if a her-
mitian holomorphic vector bundle over a weakly pseudoconvex Kähler manifold is
Nakano positive, then the solution for ∂̄ with L2 estimate exists. Therefore, the char-
acterizations of Griffiths and Nakano positivity for Hermitian holomorphic vector
bundles are important. Although there exists characterization of Griffiths positivity
for a Hermitian holomorphic vector bundle, the characterization of Nakano positivity
for a Hermitian holomorphic vector bundle seems not to be available. In this paper, we
find an unexpected way to approach the characterization problem by considering the
converse problem of the above famous L2 existence theorem. In particular, we give
an answer to the characterization problem, proving that the converse proposition of
the L2 existence theorem holds. Another purpose of this paper is to present a global
picture of various converses of L p-theory for ∂̄ .

To state our results, we first introduce some notions which play a fundamental role
throughout the paper.

Definition 1.1 Let (X , ω) be a Kähler manifold of dimension n with a Kähler metric
ω which admits a positive Hermitian holomorphic line bundle, (E, h) be a (singular)
Hermitian vector bundle (maybe of infinite rank) over X , and p > 0.

(1) We call (E, h) satisfies the optimal L p-estimate if for any positive Hermitian
holomorphic line bundle (A, h A) on X , for any f ∈ C∞

c (X ,∧n,1T ∗
X ⊗ E ⊗ A)
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Positivity of holomorphic vector bundles in terms of... 577

with ∂̄ f = 0, there is u ∈ L p(X ,∧n,0T ∗
X ⊗ E ⊗ A), satisfying ∂̄u = f and

∫
X

|u|p
h⊗h A

dVω ≤
∫

X
〈B−1

A,h A
f , f 〉 p

2 dVω,

provided that the right hand side is finite, where BA,h A = [i�A,h A ⊗ I dE ,�ω].
(2) We call (E, h) satisfies the multiple coarse L p-estimate if for any m ≥ 1, for

any positive Hermitian holomorphic line bundle (A, h A) on X , and for any f ∈
C∞

c (X ,∧n,1T ∗
X ⊗E⊗m ⊗ A)with ∂̄ f = 0, there is u ∈ L p(X ,∧n,0T ∗

X ⊗E⊗m ⊗ A),
satisfying ∂̄u = f and

∫
X

|u|p
h⊗m⊗h A

dVω ≤ Cm

∫
X
〈B−1

A,h A
f , f 〉 p

2 dVω,

provided that the right hand side is finite, where Cm are constants satisfying the
growth condition 1

m logCm → 0 as m → ∞.

Definition 1.2 Let (E, h) be a holomorphic vector bundle (maybe of infinite rank)
over a domain D ⊂ C

n with a singular Finsler metric h, and p > 0.

(1) We call (E, h) satisfies the optimal L p-extension if for any z ∈ D, and a ∈ Ez

with |a| = 1, and any holomorphic cylinder P with z + P ⊂ D, there is f ∈
H0(z + P, E) such that f (z) = a and

1

μ(P)

∫
z+P

| f |p ≤ 1,

where μ(P) is the volume of P with respect to the Lebesgue measure. (Here by a
holomorphic cylinder we mean a domain of the form A(Pr ,s) for some A ∈ U (n)

and r , s > 0, with Pr ,s = {(z1, z2, . . . , zn) : |z1|2 < r2, |z2|2+· · ·+|zn|2 < s2}).
(2) We call (E, h) satisfies the multiple coarse L p-extension if for any z ∈ D, and

a ∈ Ez with |a| = 1, and any m ≥ 1, there is fm ∈ H0(D, E⊗m) such that
fm(z) = a⊗m and satisfies the following estimate:

∫
D

| fm |p ≤ Cm,

where Cm are constants independent of z and satisfying the growth condition
1
m logCm → 0 as m → ∞.

(See Sect. 2.4 for the definition of singular Finsler metrics.)

Remark 1.1 Similarly, one can define the optimal (resp. multiple coarse) L p-extension
condition for aHermitian holomorphic vector bundle (E, h) over aKählermanifold X .
But it is clear that if (E, h) satisfies the optimal (resp. multiple coarse) L p-extension
on X , then it admits the same condition when restricted on any open set D of X . So
we just focus on bounded domains in Definition 1.2. However, it is not the case for
the optimal (resp. multiple coarse) L p-estimate condition since a positive Hermitian
line bundle over an open domain in X may not extend to X .
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The notions defined in Definitions 1.1 and 1.2 for trivial line bundles were studied
in [12]. The multiple coarse L p-extension condition for vector bundles with singular
Finsler metrics was introduced in [13], and the multiple coarse L2-estimate condition
for Hermitian vector bundles was introduced in [22], which was named as the twisted
Hörmander condition there. A concept called “minimal extension property”, similar
to the optimal L2-extension condition, was introduced in [20]. Instead of holomorphic
cylinders, embedded holomorphic discs was used in the definition in [20].

The first and the main result is the following characterization of Nakano positivity
in terms of the optimal L2-estimate condition.

Theorem 1.1 Let (X , ω) be a Kähler manifold of dimension n which admits a pos-
itive line bundle, (E, h) be a smooth Hermitian vector bundle over X, and θ ∈
C0(X ,�1,1T ∗

X ⊗ End(E)) such that θ∗ = θ . If for any f ∈ C∞
c (X ,∧n,1T ∗

X ⊗ E ⊗ A)

with ∂̄ f = 0, and any positive Hermitian line bundle (A, h A) on X with i�A,h A ⊗
I dE + θ > 0 on supp f , there is u ∈ L2(X ,∧n,0T ∗

X ⊗ E ⊗ A), satisfying ∂̄u = f and

∫
X

|u|2h⊗h A
dVω ≤

∫
X
〈B−1

h A,θ f , f 〉h⊗h A dVω,

provided that the right hand side is finite, where Bh A,θ = [i�A,h A ⊗ I dE + θ,�ω],
then i�E,h ≥ θ in the sense of Nakano.

On the other hand, if in addition X is assumed to have a complete Kähler metric,
the above condition is also necessary for that i�E,h ≥ θ in the sense of Nakano.

In particular, if (E, h) satisfies the optimal L2-estimate, then (E, h) is Nakano
semi-positive.

We prove Theorem 1.1 by connecting�E,h with the optimal L2-estimate condition
through theBochner–Kodaira–Nakano identity, and thenusing a localization technique
to produce a contradiction if i�E,h ≥ θ is assumed to be not true.

As for the Griffiths positivity for singular hermitian or Finsler holomorphic vector
bundles, we have the following results.

Theorem 1.2 Let (X , ω) be a Kähler manifold, which admits a positive Hermitian
holomorphic line bundle, and (E, h) be a holomorphic vector bundle over X with a
continuous Hermitian metric h. If (E, h) satisfies the multiple coarse L p-estimate for
some p > 1, then (E, h) is Griffiths semi-positive.

Remark 1.2 If X admits a strictly plurisubharmonic function, it is obvious from the
proof that, in Theorems 1.1 and 1.2, we can take A to be the trivial bundle (with
nontrivial metrics).

The case that p = 2 and h is Hölder continuous for Theorem 1.2was proved in [22],
by showing that the multiple coarse L2-estimate condition implies the the multiple
coarse L2-extension condition and then applying [13, Theorem 1.2]. The case that E
is a trivial line bundle was proved in [12]. The proof of Theorem 1.2 is based on the
technique in [22].

Theorem 1.3 Let E be a holomorphic vector bundle over a domain D ⊂ C
n, and h be

a singular Finsler metric on E, such that |s|h∗ is upper semi-continuous for any local
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Positivity of holomorphic vector bundles in terms of... 579

holomorphic section s of E∗. If (E, h) satisfies the optimal L p-extension for some
p > 0, then (E, h) is Griffiths semi-positive.

A first result in this direction was given by Guan–Zhou in [17], where they showed
that Berndtsson’s plurisubharmonic variation of the relative Bergman kernels [1] can
be deduced from the optimal L2-extension condition. By developing Guan–Zhou’s
method, Hacon–Popa–Schnell in [20] proved that a Hermitian vector bundle (E, h)

with singular Hermitian metric is Griffiths semi-positive if it satisfies the so called
minimal extension property, a notion defined there as mentioned above. Theorem 1.3
is proved by combining the ideas in [17,19,20] and a lemma in [12].

Theorem 1.4 Let E be a holomorphic vector bundle over a domain D ⊂ C
n, and h be

a singular Finsler metric on E, such that |s|h∗ is upper semi-continuous for any local
holomorphic section s of E∗. If (E, h) satisfies the multiple coarse L p-extension for
some p > 0, then (E, h) is Griffiths semi-positive.

Theorem 1.4 was originally proved in [13]. In this paper, we give a new proof based
on the idea in the proof of [12, Theorem 1.5].

We should emphasize that Theorems 1.1–1.4 are true for vector bundles of infinite
rank, as well as for those of finite rank.

Remark 1.3 In applications, it is possible to prove that (E, eφh) satisfies the optimal
L p-extension for some φ ∈ C0(D), by Theorem 1.4, which implies that

i�E ≥ i∂∂̄φ ⊗ I dE

in the sense that i∂∂̄ log |s|2h∗ ≥ i∂∂̄φ in the sense of currents, for any nonvanishing
local holomorphic section s of E∗.

We now explain why Theorems 1.1–1.4 can be roughly viewed as studies of the
converses of L2-estimate for ∂̄ and Ohsawa–Takegoshi type L2-extensions.

Let (X , ω) be a weakly pseudoconvex Kähler manifold, and (E, h) be a Hermitian
holomorphic vector bundle over X . If the curvature of (E, h) is Nakano semi-positive,
then (E, h) satisfies the optimal L2-estimate and the multiple coarse L2-estimate by
works of Hörmander [21] and Demailly [9]. Combining Theorem 1.1, we see in this
setting that Nakano positivity for (E, h) is equivalent to satisfying the optimal L2-
estimate.

Let (E, h) be aHermitian holomorphic vector bundle over a bounded pseudoconvex
domain D. If the curvature of (E, h) is Nakano semi-positive, then (E, h) satisfies the
multiple coarse L2-extension by Ohsawa–Takegoshi [30], Manivel [27] and Demailly
[11], and satisfies the optimal L2-extension by Błocki [6] and Guan–Zhou [15–19].
Theorems 1.3 and 1.4 show that the optimal L2-extension condition and the multiple
coarse L2-extension condition imply Griffiths positivity of (E, h).

The second part of this paper is to apply the above theorems to study the curvature
positivity of direct image sheaves of twisted relative canonical bundles associated to
holomorphic fibrations, which is an active topic of extensive study in recent years (see
[1–5,7,13,17,20,24,31,33,34]). The main novelty here is that Theorem 1.1 provides a
natural explanation and a very simple unified proof of the Nakano positivity of direct
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580 F. Deng et al.

image bundles associated to families of both Stein manifolds and compact Kähler
manifolds, with an effective estimate of the lower bound of the curvatures. One may
expect more new applications of Theorem 1.1.

We first consider a family of bounded domains. Let � = U × D ⊂ C
n
t × C

m
z be

a bounded pseudoconvex domain and p : � → U be the natural projection. Let h be
a Hermitian metric on the trivial bundle E = � × C

r that is C2-smooth to �. For
t ∈ U , let

Ft :=
{

f ∈ H0(D, E |{t}×D) : ‖ f ‖2t :=
∫

D
| f |2ht

< ∞
}

and F := ∐
t∈U Ft . Since h is continuous to �, Ft are equal for all t ∈ U as vector

spaces. We may view (F, ‖ · ‖) as a trivial holomorphic Hermitian vector bundle of
infinite rank over U .

Theorem 1.5 Let θ be a continuous real (1, 1)-form on U such that i�E ≥ p∗θ⊗ I dE ,
then i�F ≥ θ ⊗ I dF in the sense of Nakano. In particular, if i�E > 0 in the sense of
Nakano, then i�F > 0 in the sense of Nakano.

Let π : X → U be a proper holomorphic submersion from a Kähler manifolds X
of complex dimension m + n, to a bounded pseudoconvex domain U , and (E, h) be a
Hermitian holomorphic vector bundle over X , with Nakano semi-positive curvature.
From theOhsawa–Takegoshi extension theorem, the direct image F := π∗(K X/U ⊗E)

is a vector bundle, whose fiber over t ∈ U is Ft = H0(Xt , K Xt ⊗ E |Xt ). There is a
hermitian metric ‖ · ‖ on F induced by h: for any u ∈ Ft ,

‖u(t)‖2t :=
∫

Xt

cmu ∧ ū,

where m = dim Xt , cm = im2
, and u ∧ ū is the composition of the wedge product and

the inner product on E . So we get a Hermitian holomorphic vector bundle (F, ‖ · ‖)
over U .

Theorem 1.6 The Hermitian holomorphic vector bundle (F, ‖·‖)overU defined above
satisfies the optimal L2-estimate. Moreover, if i�E ≥ p∗θ ⊗ I dE for a continuous
real (1, 1)-form θ on U, then i�F ≥ θ ⊗ I dF in the sense of Nakano.

Theorem 1.5 in the case that E is a line bundle is a result of Berndtsson [2, Theorem
1.1], the case for vector bundles E without lower bound estimate was proved by Raufi
[32, Theorem 1.5] with the same method of Berndtsson. Theorem 1.6 in the case that
L is a line bundle is due to Berndtsson [2], and the case for vector bundles was proved
in [26] and [25] by developing the method of Berndtsson.

Our method to Theorems 1.5 and 1.6 is very different. In fact, taking Theorem 1.1
for granted, one can clearly see why Theorems 1.5 and 1.6 should be true, since it is
obvious that the bundles F in Theorems 1.5 and 1.6 satisfy the optimal L2-estimate
by Hörmander’s L2-estimate for ∂̄ and Fubini’s theorem.

In this paper, we also provide some new methods to show that (F, ‖ · ‖) is Griffiths
semi-positive, via Theorems 1.2, 1.3, and 1.4. By applying the tensor-power technique
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introduced in [13], we show that (F, ‖·‖) satisfies the multiple coarse L2-estimate; by
applying the Ohsawa–Takegoshi extension theorem with optimal estimate for vector
bundles ([17,35]), we show that (F, ‖ · ‖) satisfies the optimal L2-extension; and by
applying the tensor-power technique mentioned above and the Ohsawa–Takegoshi
extension theorem, we show that (F, ‖ · ‖) satisfies the multiple coarse L2-extension.

2 Preliminaries

2.1 An extension property of Hermitianmetrics on a line bundle

In this section, we present a basic property of Kähler manifolds, which admit positive
Hermitian holomorphic line bundles.

Proposition 2.1 Let X be a Kähler manifold, which admits a positive Hermitian holo-
morphic line bundle, and (A, h A) be a positive Hermitian holomorphic line bundle
over X. Let (U ⊂ X , z = (z1, . . . , zn)) be a coordinate chart on X, such that A|U is
trivial. Then for any smooth strictly plurisubharmonic function ψ on U, for any point
x ∈ U, there is a neighbourhood V ⊂ U of x, and a positive Hermitian metric h̃ A on
the line bundle A, such that h̃ A = e−ψ̃ on U with ψ̃ |V = ψ |V .

Proof Assume that h A|U = e−φ for some smooth strictly plurisubharmonic function
φ on U . We may assume that z(x) = 0 and the unit ball B := B1 is contained in U .
We may assume that φ > 0 on B. Let χ be a cut-off function on B, such that χ is

identically equal to 1 on B1/4 and vanishes outside B3/4. Let φ̃ := φ + χ log(‖z‖2)
m + c

on B, where m, c � 1 is an integer such that φm is strictly p.s.h on B and φ̃ > ψ on
∂ B.

Now we define a function ψ̃ on U as follows:

ψ̃ =
{

φ̃, outside B;
maxε{φ̃, ψ}, on B.

As φ̃(x) = −∞ < ψ(x), and both φ̃ and ψ are continuous. Then for 0 < ε � 1,
there is a neighborhood V ⊂ B of x , such that ψ̃ = ψ on V , ψ̃ is strictly p.s.h on B.
So ψ̃ gives a positive Hermitian metric on A|U which coincides with e−ch A on U\B.
Define h̃ A|U = e−ψ̃ and h̃ A = e−ch A on X\U . h̃ A is a positive Hermitian metric on
A and h̃ A|V = e−ψ . ��

2.2 Basics of Hermitian holomorphic vector bundles

Let (X , ω) be a complexmanifold of complex dimension n, equippedwith aHermitian
metric ω, and (E, h) be a Hermitian holomorphic vector bundle of rank r over X . In
this subsection, we assume r < ∞.

Let D = D′ + ∂̄ be the Chern connection of (E, h), and �E,h = [D′, ∂̄] =
D′∂̄ + ∂̄ D′ be the Chern curvature tensor. Denote by (e1, . . . , er ) an orthonormal
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582 F. Deng et al.

frame of E over a coordinate patch � ⊂ X with complex coordinates (z1, . . . , zn),
and

i�E,h = i
∑

1≤ j,k≤n,1≤λ,μ≤r

c jkλμdz j ∧ dz̄k ⊗ e∗
λ ⊗ eμ, c̄ jkλμ = ck jμλ.

To i�E,h corresponds a natural Hermitian form θE,h on T X ⊗ E defined by

θE,h(u, u) =
∑

j,k,λ,μ

c jkλμ(x)u jλūkμ, u ∈ Tx X ⊗ Ex . (1)

Definition 2.1 • E is said to be Nakano positive (resp. Nakano semi-positive) if θE,h

is positive (resp. semi-positive) definite as a Hermitian form on T X ⊗ E , i.e. for
every u ∈ T X ⊗ E , u �= 0, we have

θ(u, u) > 0 (resp. ≥ 0).

• E is said to be Griffiths positive (resp. Griffiths semi-positive) if for any x ∈ X ,
all ξ ∈ Tx X with ξ �= 0, and s ∈ Ex with s �= 0, we have

θ(ξ ⊗ s, ξ ⊗ s) > 0 (resp. ≥ 0).

• Nakano negative (resp. Nakano semi-negative) and Griffiths negative (resp. Grif-
fiths semi-negative) are similarly defined by replacing > 0 (resp. ≥ 0) by < 0
(resp. ≤ 0) in the above definitions respectively.

Remark 2.1 The following are basic facts about Griffiths positivity and Nakano posi-
tivity.

• It is a well-known fact that, a Hermitian holomorphic vector bundle (E, h) is Grif-
fiths positive (resp. semi-positive) if and only if (E∗, h∗) is Griffiths negative (resp.
semi-negative). However, Nakano positivity does not share this duality condition,
see [8, Chapter VII, Page 339, Example 6.8] for an example.

• It is a fact that, Griffiths positivity can be explained as a several complex variables
property, see Definition 2.5 in Sect. 2.4. However, Nakano positivity does not have
such a characterization.

Remark 2.2 Let (E1, h1) and (E2, h2) be two Hermitian holomorphic vector bundles
over a complex n-dimensional manifold X . It is a basic fact that the Chern connection
DE1⊗E2 of (E1 ⊗ E2, h1 ⊗ h2) is just DE1 ⊗ IdE2 + IdE1 ⊗ DE2 , and we have the
following Chern curvature formula

�E1⊗E2,h1⊗h2 = �E1,h1 ⊗ IdE2 + IdE1 ⊗ �E2,h2 .

From (1) and Remark 2.2, we get the following
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Positivity of holomorphic vector bundles in terms of... 583

Lemma 2.1 Let (E1, h1) and (E2, h2) be two Hermitian holomorphic vector bundles
over a complex manifold X. Let (E, h) := (E1 ⊗ E2, h1 ⊗ h2). Then if (E1, h1) and
(E2, h2) are Nakano positive (resp. Nakano semi-positive), then (E, h) is Nakano
positive (resp. Nakano semi-positive).

Lemma 2.2 Let πi : Xi → Y be two holomorphic submersions for j = 1, 2. Let
X ⊂ X1 × X2 be the fiberwise product of X1 and X2 with respect to π1 and π2,
and pr j : X → X j be the natural projections from X to X j for j = 1, 2. Let
(E1, h1) and (E2, h2) be two Hermitian holomorphic vector bundles over X1 and X2,
respectively. Denote by (E, h) the Hermitian holomorphic vector bundle (pr∗

1 E1 ⊗
pr∗

2 E2, pr∗
1 h1 ⊗ pr∗

2 h2) on X. If (E1, h1) and (E2, h2) are Nakano positive (resp.
Nakano semi-positive), then E is also Nakano positive (resp. Nakano semi-positive).

For any u ∈ �p,q T ∗
X ⊗ E , we consider the global L2-norm

‖u‖2 =
∫

X
|u|2ω,hdVω,

where |u|ω,h is the pointwise Hermitian norm and dVω = ωn/n! is the volume form
on X . This L2-norm induces an L2-inner product on �p,q T ∗

X ⊗ E , and thus we can
define D′∗ and ∂̄∗ operators as the (formal) adjoint of D′ and ∂̄ , respectively. Let

�′ = D′D′∗ + D′∗ D′, �′′ = ∂̄ ∂̄∗ + ∂̄∗∂̄

be the corresponding D′ and ∂̄-Laplace operators.

Lemma 2.3 (Bochner–Kodaira–Nakano identity, see [8]) Let (X , ω) be a Kähler man-
ifold, (E, h) be a Hermitian vector bundle over X. The complex Laplacian operators
�′ = D′D′∗ + D′∗ D′ and �′′ = ∂̄ ∂̄∗ + ∂̄∗∂̄ acting on E-valued forms satisfy the
identity

�′′ = �′ + [i�E,h,�ω].

Let us saymore on theHermitian operator [i�E,h,�ω]. Let x0 ∈ X and (z1, . . . , zn)

be local coordinates centered at x0, such that (∂/∂z1, . . . , ∂/∂zn) is an orthonormal
basis of T X at x0. One can write

ω = i
∑

dz j ∧ dz̄ j + O(‖z‖),

and

i�E,h(x0) = i
∑

j,k,λ,μ

c jkλμdz j ∧ dz̄k ⊗ e∗
λ ⊗ eμ,

where (e1, . . . , er ) is an orthonormal basis of Ex0 . Let u = ∑
uK ,λdz ∧ dz̄K ⊗ eλ ∈

�n,q T ∗
X ⊗ E , where dz = dz1 ∧ · · · ∧ dzn . In [8, Chapter VII, Page 341, (7.1)], it is
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computed that

〈[i�E,h,�ω]u, u〉 =
∑

|S|=q−1

∑
j,k,λ,μ

c jkλμu j S,λūkS,μ. (2)

In particular, if q = 1, (2) becomes

〈[i�E,h,�ω]u, u〉 =
∑

j,k,λ,μ

c jkλμu j,λūk,μ. (3)

Comparing (1) and (3), we obtain the following

Lemma 2.4 Let (X , ω) be a Kähler manifold, (E, h) be a Hermitian vector bundle over
X. Then (E, h) is Nakano positive (resp. semi-positive) if and only if the Hermitian
operator [i�E,h,�ω] is positive definite (resp. semi-positive definite) on �n,1T ∗

X ⊗ E.

2.3 Basic concepts and conditions of Hermitian vector bundles of infinite rank

In this subsection, we will briefly discuss some concepts and basic conditions of
Hermitian holomorphic vector bundles of infinite rank, and explain why the above
mentioned Bochner–Kodaira–Nakano identity also holds in this framework.

Let H be aHilbert space (separable, say overC) with inner product (, ). LetU ⊂ R
n

be open. Let f : U → H be a map. If

∂ f

∂x j
= lim

�x j →0

f (x1, . . . , x j + �x j , . . . , xn) − f (x1, . . . , xn)

�x j
∈ H

exists and is continuous on U for any j = 1, 2, . . . , n, f is called of C1. We say f
is of Cr if all partial derivatives ∂r f

∂x
r1
1 ···∂xrn

n
: U → H of order r exist and continuous,

and f is smooth if f is of Cr for any r .
Let {eλ}∞λ=1 be an orthonormal basis of H . Then a map f : U → H can be written

as ( f1, f2, . . .), where fλ are functions on U such that

‖ f (z)‖2 =
∑
λ

| fλ(z)|2.

If f is continuous, byDini’s theorem, one can see that the series
∑

λ | fλ(z)|2 converges
uniformly locally on U to ‖ f (z)‖2; and if f is smooth, then

∑
λ | ∂r fλ

∂x
r1
1 ···∂xrn

n
|2 locally

uniformly converges to ‖ ∂r f
∂x

r1
1 ···∂xrn

n
‖2.

Now assume U ⊂ C
n be an open set. A map f : U → H is called holomorphic if

f is smooth and satisfies the Cauchy–Riemann equation

∂

∂ z̄ j
f := 1

2

(
∂

∂x j
+ i

∂

∂ y j

)
f = 0, j = 1, . . . , n.
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We now consider holomorphic vector bundles of infinite rank with H as the model
of the fibers. In the present paper, we will focus on local conditions of holomorphic
vector bundles, so we just consider the trivial bundle E := U × H → U , here we
view H as a locally convex topological complex vector space.

Definition 2.2 A Hermitian metric on E is a map

h : U → Herm(H)

which satisfies the following conditions:

(1) h is smooth, and
(2) h(z) ≥ δ(z)I d for some positive continuous function δ on U ,

where Herm(H) is the space of self-adjoint bounded operators on H .

Given h as above, we get a smooth family of inner products on H as

(u, v)z = (h(z)u, v), z ∈ U .

So our definition of the Hermitian metric on E matches to the definition of Hermitian
metrics for holomorphic vector bundles of finite rank.

Given a Hermitian metric h on E , we can define a unique connection D = D′ + ∂̄

on E which is compatible with h and whose (0, 1)-part is ∂̄ , as in the finite rank case.
We view a section of E as a map from U to H . Assume u is a smooth section of E ,
and v ∈ H viewed as a constant section of E , then from the condition that

∂(hu, v) = (h D′u, v),

we get

D′u = h−1∂(hu).

This formula shows that D′u is a smooth section of �1,0T ∗U ⊗ E .
The curvature operator of (E, h) is give by

�E,h = [D′, ∂̄],

which is an operator that maps smooth sections of E to smooth sections of�1,1T ∗U ⊗
E . In the same way as in the case of vector bundles with finite rank, Nakano positivity
and Griffiths positivity can be defined for (E, h).

We now show that, at any point z0 ∈ U , the metric h coincides with a flat metric up
to order 1. To show this, we may assume z0 = 0 and h0 = I d. Let h j = ∂h

∂z j
(0), j =

1, . . . , n, and define

ẽλ = eλ −
∑

j

z j h j (eλ),
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then

(ẽλ, ẽμ)z = δλμ + O(‖z‖2),

where the bound for O(‖z‖2) is uniform for λ,μ.
With the above preparation, following the line of the proof of [8, Theorem 1.1,

Theorem 1.2, Chapter VII, §1], we see that the Bochner–Kodaira–Nakano identity
also holds for (E, h).

2.4 Singular Finsler metrics on holomorphic vector bundles

In this subsection, we recall the notions of singular Finsler metrics on holomorphic
vector bundles and positively curved singular Finsler metrics on coherent analytic
sheaves, introduced in [13], see also [14].

Definition 2.3 Let E → X be a holomorphic vector bundle over a complex manifolds
X . A (singular) Finsler metric h on E is a function h : E → [0,+∞], such that
|cv|2h := h(cv) = |c|2h(v) for any v ∈ E and c ∈ C.

Definition 2.4 For a singular Finsler metric h on E , its dual Finsler metric h∗ on the
dual bundle E∗ of E is defined as follows. For f ∈ E∗

x , the fiber of E∗ at x ∈ X , | f |h∗
is defined to be 0 if |v|h = +∞ for all nonzero v ∈ Ex ; otherwise,

| f |h∗ := sup{| f (v)| : v ∈ Ex , |v|h ≤ 1} ≤ +∞.

Definition 2.5 Let (E, h) be a holomorphic vector bundle over a complex manifold
X , equipped with a singular Finsler metric h. We call h is negatively curved (in the
sense of Griffiths) if for any local holomorphic section s of E , the function log |s|2h is
plurisubharmonic, and we call h is positively curved (in the sense of Griffiths) if its
dual metric h∗ is negatively curved.

Definition 2.6 LetF be a coherent analytic sheaf on a complexmanifold X . Let Z ⊂ X
be an analytic subset of X such thatF |X\Z is locally free. A positively curved singular
Finsler metric h on F is a singular Finsler metric on the holomorphic vector bundle
F |X\Z , such that for any local holomorphic section s of the dual sheaf F∗ on an open
set U ⊂ X , the function log |s|h∗ is plurisubharmonic on U\Z , and can be extended
to a plurisubharmonic function on U .

Remark 2.3 Suppose that log |s|h∗ is p.s.h. on U\Z . It is well-known that if
codimC(Z) ≥ 2 or log |s|H∗ is locally bounded above near Z , then log |s|h∗ extends
across Z to U uniquely as a p.s.h function. Definition 2.6 matches Definition 2.3 and
Definition 2.5 if F is a vector bundle.

2.5 L2 theory for @̄

In this section, we recall Hörmander’s L2-estimate for ∂̄ and Ohsawa–Takegoshi type
L2-extension of holomorphic sections of the holomorphic vector bundles.
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We first clarify some notions and notations. Let H be a Hilbert space with an inner
product (·, ·), and A : H → H be a bounded semi-positive self-adjoint operator with
closed range I m A. The we have an orthogonal decomposition

H = I m A ⊕ ker A

and A|I m A : I m A → I m A is a linear isomorphism. In the remaining of the paper, we
always denote A|−1

I m A by A−1, as in general references about complex geometry, and
define (A−1v, v) = +∞ if v /∈ I m A.

Lemma 2.5 (c.f. [8, Theorem 4.5]) Let (X , ω) be a complete Kähler manifold, with
a Kähler metric which is not necessarily complete. Let (E, h) be a Hermitian holo-
morphic vector bundle of rank r over X, and assume that the curvature operator
B := [i�E,h,�ω] is semi-positive definite everywhere on �p,q T ∗

X ⊗ E, for some
q ≥ 1. Then for any form g ∈ L2(X ,�p,q T ∗

X ⊗ E) satisfying ∂̄g = 0 and∫
X 〈B−1g, g〉dVω < +∞, there exists f ∈ L2(X ,�p,q−1T ∗

X ⊗ E) such that ∂̄ f = g
and

∫
X

| f |2dVω ≤
∫

X
〈B−1g, g〉dVω.

The following L2-extension theorem for Kähler families is due to Zhou–Zhu [35,
Theorem 1.1]. The same result for projective families is due to Guan–Zhou [15–17].

Lemma 2.6 ([35, Theorem 1.1]) Let π : X → B be a proper holomorphic submer-
sion from a complex n-dimensional Kähler manifold (X , ω) onto a unit ball in C

m.
Let (E, h = hE ) be a Hermitian holomorphic vector bundle over X, such that the
curvature i�E,hE ≥ 0 in the sense of Nakano. Let t0 ∈ B be an arbitrarily fixed point.
Then for every section u ∈ H0(Xt0 , K Xt0

⊗ E |Xt0
), such that

∫
Xt0

|u|2ω,hdVωXt0
< +∞,

there is a section ũ ∈ H0(X , K X ⊗ E), such that ũ|Xt0
= ũ ∧ dt, with the following

L2-estimate
∫

X
|̃u|2ω,hdVX ,ω ≤ μ(B)

∫
Xt0

|u|2ω,hdVωXt0
,

where dt = dt1 ∧ · · · ∧ dtm, and t = (t1, . . . , tm) are the holomorphic coordinates
on C

m, and μ(B) is the volume of the unit ball in C
m with respect to the Lebesgue

measure on C
m.

Remark 2.4 We take R(t) = e−t , α0 = α1 = 0, and ψ = m log ‖t − t0‖2 in [35,
Theorem 1.1], and from [17, Lemma 4.14], [35, Remark 1.2], we can get the precise
form of Theorem 2.6.
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3 Positivities of holomorphic vector bundles via Lp-conditions for @̄

The aim of this section is to prove Theorems 1.1–1.4.

3.1 Characterizations of Nakano positivity in term of optimal L2-estimate
condition

Theorem 3.1 (= Theorem 1.1) Let (X , ω) be a Kähler manifold of dimension n with a
Kähler metric ω, which admits a positive Hermitian holomorphic line bundle, (E, h)

be a smooth Hermitian vector bundle over X, and θ ∈ C0(X ,�1,1T ∗
X ⊗ End(E))

such that θ∗ = θ . If for any f ∈ C∞
c (X ,∧n,1T ∗

X ⊗ E ⊗ A) with ∂̄ f = 0, and any
positive Hermitian line bundle (A, h A) on X with i�A,h A ⊗ I dE + θ > 0 on supp f ,
there is u ∈ L2(X ,∧n,0T ∗

X ⊗ E ⊗ A), satisfying ∂̄u = f and

∫
X

|u|2h⊗h A
dVω ≤

∫
X
〈B−1

h A,θ f , f 〉h⊗h A dVω,

provided that the right hand side is finite, where Bh A,θ = [i�A,h A ⊗ I dE + θ,�ω],
then i�E,h ≥ θ in the sense of Nakano. On the other hand, if in addition X is
assumed to have a complete Kähler metric, the above condition is also necessary for
that i�E,h ≥ θ in the sense of Nakano. In particular, if (E, h) satisfies the optimal
L2-estimate, then (E, h) is Nakano semi-positive.

Proof The second statement is a corollary of Theorem 2.5. We now give the proof of
the first statement. We give the proof in the case that θ is C1, and the general case
follows the proof by an approximation argument.

To illustrate the main idea more clearly, we may assume that there is a smooth
strictly plurisubharmonic function on X , which corresponds to the existence of a
positive Hermitian trivial holomorphic line bundle on X . For general case, the same
proof goes through by replacing data related to e−ψ by h A, and using Proposition 2.1.

Let ψ be any smooth strictly plurisubharmonic function on X . By assumption, we
can solve the equation ∂̄u = f for any ∂̄-closed f ∈ C∞

c (X ,∧n,1T ∗
X ⊗ E), with the

estimate

∫
X

|u|2e−ψdVω ≤
∫

X
〈B−1

ψ,θ f , f 〉e−ψdVω,

where Bψ,θ := [i∂∂̄ψ ⊗ I dE + θ,�ω]. For any α ∈ C∞
c (X ,∧n,1T ∗

X ⊗ E), we have

|〈〈α, f 〉〉ψ | = |〈〈α, ∂̄u〉〉ψ |
= |〈〈∂̄∗α, u〉〉ψ |
≤ ||u||ψ ||∂̄∗α||ψ,

where ∂̄∗ is the adjoint of ∂̄ with respect to ω, e−ψh.
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From Lemma 2.3, we obtain

|〈〈α, f 〉〉ψ |2

≤
∫

X
〈B−1

ψ,θ f , f 〉e−ψdVω

×
(
||D′α||2ψ + ||D′∗α||2ψ + 〈〈[i�E,h + i∂∂̄ψ ⊗ I dE ,�ω]α, α〉〉ψ − ||∂̄α||2ψ

)

≤
∫

X
〈B−1

ψ,θ f , f 〉e−ψdVω×
(
〈〈[i�E,h +i∂∂̄ψ ⊗ I dE ,�ω]α, α〉〉ψ +||D′∗α||2ψ

)
,

(4)

where D′ is the (1, 0) part of the Chern connection on E with respect to the metric
e−ψh.

Let α = B−1
ψ,θ f , i.e., f = Bψ,θα. Then inequality (4) becomes

(〈〈Bψ,θα, α〉〉ψ
)2

≤ 〈〈Bψ,θα, α〉〉ψ
(
〈〈[i�E,h,�ω]α, α〉〉ψ + 〈〈Bψ,0α, α〉〉ψ + ||D′∗α||2ψ

)
.

Therefore, we can get

〈〈[i�E,h − θ,�ω]α, α〉〉ψ + ||D′∗α||2ψ ≥ 0. (5)

We argue by contradiction. Suppose that i�E,h − θ is not Nakano semi-positive on
X . By Lemma 2.4, there is x0 ∈ X and ξ0 ∈ �n,1T ∗

X ,x0
⊗ Ex0 such that |ξ0| = 1 and

〈[i�E,h − θ,�ω]ξ0, ξ0〉 = −2c for some c > 0.
Let (U ; z1, z2, . . . , zn) be a holomorphic coordinate on X centered at x0 such that

ω = i
∑

dz j ∧ dz̄ j + O(|z|2), and assume {e1, e2, . . . , er } is a holomorphic frame of
E on U . Let ξ = ∑

ξ jλdz1 ∧ · · · ∧ dzn ∧ dz̄ j ⊗ eλ, with constant coefficients such
that ξ(x0) = ξ0. We may assume

〈[i�E,h − θ,�ω]ξ, ξ 〉 < −c

on U . Choose R > 0 such that B(0, R) := {z : |z| < R} ⊂ U , and write B(0, R) as
BR .

Choose χ ∈ C∞
c (BR), satisfying χ(z) = 1 for z ∈ BR/2. Let f = ∂̄ν with

ν(z) = (−1)n
∑
j,λ

ξ jλ z̄ jχ(z)dz1 ∧ · · · ∧ dzn ⊗ eλ.

Then

f (z) =
∑

ξ jλdz1 ∧ · · · ∧ dzn ∧ dz̄ j ⊗ eλ
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for z ∈ BR/2. From Proposition 2.1, we can construct a smooth strictly plurisubhar-

monic function ψ on X , such that ψ |BR (z) = |z|2 − R2

4 . For any integer m > 0,
set

ψm(z) = mψ(z).

As before, set αm = B−1
ψm ,θ f = 1

m B−1
ψ,θ/m f . By [8, Chapter VII, Theorem 1.1], we

have

D′∗ B−1
ψ,0 f (0) = 0.

So after shrinking R, we can get |D′∗αm(z)| ≤
√

c
2m for z ∈ BR/2 and any

m. Since f has compact support in BR , there is a constant C > 0, such that
|〈[i�E,h − θ,�ω]αm, αm〉| ≤ C2

m2 and |D′∗αm | ≤ C
m hold for any m > 0.

We now estimate both terms in (5) with α and ψ replaced by αm and ψm defined
as above.

m2
(
〈〈[i�E,h − θ, �ω]αm , αm〉〉ψm + ||D′∗αm ||2ψm

)

= m2

(∫
BR/2

〈[i�E,h − θ, �ω]αm , αm〉e−ψm dVω +
∫

BR/2

|D′∗αm |2e−ψm dVω

)

+ m2

(∫
BR\BR/2

〈[i�E,h − θ, �ω]αm , αm〉e−ψm dVω +
∫

BR\BR/2

|D′∗αm |2e−ψm dVω

)

≤ −3c

4

∫
BR/2

e−ψm dVω + 2C2
∫

BR\BR/2

e−ψm dVω. (6)

Since limm→+∞ ψm(z) = +∞ for z ∈ BR\B R/2, and ψm(z) ≤ 0 for z ∈ BR/2 and
all m. Therefore, we obtain from (6) that

〈〈[i�E,h − θ,�ω]αm, αm〉〉ψm + ||D′∗αm ||2ψm
< 0

for m >> 1, which contradicts to the inequality (5). ��

Remark 3.1 With the discussion in Sect. 2.3, the above proof holds for vector bundles
of infinite rank.

3.2 Griffiths positivity in terms of multiple coarse Lp-estimate condition

Theorem 3.2 (= Theorem 1.2) Let (X , ω) be a Kähler manifold, which admits a pos-
itive Hermitian holomorphic line bundle, and (E, h) be a holomorphic vector bundle
over X with a continuous Hermitian metric h. If (E, h) satisfies the multiple coarse
L p-estimate for some p > 1, then (E, h) is Griffiths semi-positive.
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Proof We prove the theorem by modifying the idea in [12,22]. For the same reason as
in the proof of Theorem 3.1, we may assume that there is a strictly smooth plurisub-
harmonic function on X .

We will show that (E, h) satisfies the multiple coarse L p-extension. We assume
that D′, z = (z1, . . . , zn) is an arbitrary coordinate chart on X , and let D be an
arbitrary relatively compact subset of D′. We assume that E |D′ = D′ × C

r is trivial
and ω|D ≤ C i/2

∑n
j=1 dz j ∧ dz̄ j with some C > 0.

Fix an integer m > 0, w ∈ D (we identify w with its coordinate z(w)) and a ∈ Ew

with |a|h = 1. We will construct f ∈ H0(X , E⊗m) such that f (w) = a⊗m and

∫
X

| f |p
h⊗m dVω ≤ C ′

m,

where C ′
m are uniform constants independent of w that satisfy

lim
m→∞

logC ′
m

m
= 0.

Let χ = χ(t) be a smooth function on R, such that

• χ(t) = 1 for t ≤ 1/4,
• χ(t) = 0 for t ≥ 1, and
• |χ ′(t)| ≤ 2 on R.

Viewing a as a constant section of E |D , we define an E⊗m-valued (n, 1)-form αε

by

αε := ∂̄χ

( |z − w|2
ε2

)
dz ⊗ a⊗m

= χ ′
( |z − w|2

ε2

) ∑
j

z j − w j

ε2
dz̄ j ∧ dz ⊗ a⊗m,

where dz = dz1∧· · ·∧dzn , and from Proposition 2.1, we can choose a smooth strictly
plurisubharmonic function ψδ on X such that

ψδ|D = |z|2 + n log(|z − w|2 + δ2),

where 0 < ε, δ � 1 are parameters. From the multiple coarse L p-estimate condition,
we obtain a smooth section uε,δ of E⊗m-valued (n, 0)-form on X such that ∂̄uε,δ = αε

and ∫
X

|uε,δ|p
h⊗m e−ψδ dVω ≤ Cm

∫
X
〈B−1

ψδ
αε, αε〉 p

2 e−ψδ dVω. (7)

On D, we have the following estimate:
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〈B−1
ψδ

αε, αε〉 =
∣∣∣∣∣χ ′

(
|z − w|2

ε2

)∣∣∣∣∣
2

· 1

ε4

〈
B−1

ψδ

∑
j

(z j − w j )dz j ∧ dz ⊗ a⊗m ,
∑

j

(z j − w j )dz j ∧ dz ⊗ a⊗m

〉

≤ C1

∣∣∣∣∣χ ′
(

|z − w|2
ε2

)∣∣∣∣∣
2

· 1

ε4
|z − w|2|a|2m

h(z),

where C1 depends only on ω. Note that

supp χ ′
( |z − w|2

ε2

)
⊂ {1/4 ≤ |z − w|2/ε2 ≤ 1}

and ψδ ≥ 2n log |z − w|, we have

(RHS of (7))

≤ CmC
p
2
1

∫
{ε2/4≤|z−w|2≤ε2}

∣∣∣∣χ ′
( |z − w|2

ε2

)∣∣∣∣
p

1

ε2p
|z − w|pe−ψδ |a|mp

h(z)dVω

≤ CmC
p
2
1

2p

ε2p

∫
{ε2/4≤|z−w|2≤ε2}

|z − w|pe−ψδ |a|mp
h(z)dVω

≤ CmC
p
2
1

2p

ε2p

∫
{ε2/4≤|z−w|2≤ε2}

ε p sup
B(w,ε)

|a|mp
h(z)e

−2n log |z−w|dVω

≤ C2Cm
supB(w,ε) |a|mp

h(z)

ε p
, (8)

where C2 = 2p+2nC
p
2
1 Cnμ(B1) and μ(B1) is the volume of the unit ball B1 with

respect to the Lebesgue measure.
To summarize, we have obtained a smooth section uε,δ of E⊗m-valued (n, 0)-form

on X such that

• ∂̄uε,δ = αε , and
• the following estimate holds:

∫
D

|uε,δ|p
h⊗m e−ψδ dVω ≤ C2Cm

supB(w,ε) |a|mp
h(z)

ε p
. (9)

Note that the weight function ψδ is decreasing when δ ↘ 0, e−ψδ is increasing
when δ ↘ 0. Fix δ0 > 0. Then, for δ < δ0, we have that

∫
D

|uε,δ|p
h⊗m e−ψδ0 dVω ≤

∫
D

|uε,δ|p
h⊗m e−ψδ dVω ≤ C2Cm

supB(w,ε) |a|mp
h(z)

ε p
.
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Thus {uε,δ}δ<δ0 forms a bounded sequence in L p(X , K X ⊗ E⊗m, e−ψδ0 ). Note that
p > 1, we can choose a sequence {uε,δ(k)}k in L p(X , e−δ0) which weakly converges
to some uε ∈ L p(X , K X ⊗ E⊗m, e−ψδ0 ), satisfying

∫
D

|uε |p
h⊗m e−ψδ0 dVω ≤ C2Cm

supB(w,ε) |a|mp
h(z)

ε p
.

Repeating this argument for a sequence {δ j } decreasing to 0, by diagonal argument,
we can select a sequence {uε,δk }k which weakly converges to uε in L p(X , K X ⊗
E⊗m, e−ψδ j ) with uε satisfying

∫
D

|uε |p
h⊗m e−ψδ j dVω ≤ C2Cm

supB(w,ε) |a|mp
h(z)

ε p

for all j . By the monotone convergence theorem,

∫
D

|uε |p
h⊗m e−ψ0dVω ≤ C2Cm

supB(w,ε) |a|mp
h(z)

ε p
.

Since ∂̄ is weakly continuous, we also have ∂̄uε = αε.

Since 1
|z−w|2n is not integrable near w, uε(w) must be 0. Let

fε := χ(|z − w|2/ε2)dz ⊗ a⊗m − uε .

Then fε ∈ H0(X ,∧(n,0)T ∗
X ⊗ E⊗m), fε(0) = dz ⊗ a⊗m and

∫
D

| fε |p
h⊗m dVω

≤
((∫

D

∣∣∣χ(|z − w|2/ε2)dz ⊗ a⊗m
∣∣∣p

h⊗m
dVω

)1/p

+
(∫

D
|uε |p

h⊗m dVω

)1/p
)p

≤ 2p
(∫

D

∣∣∣χ(|z − w|2/ε2)dz ⊗ a⊗m
∣∣∣p

h⊗m
dVω +

∫
D

|uε |p
h⊗m dVω

)
. (10)

Since χ ≤ 1 and the support of χ(|z − w|2/ε2) is contained in {|z − w|2 ≤ ε2}
and 0 < ε ≤ 1, we have

∫
D

∣∣∣χ(|z − w|2/ε2)dz ⊗ a⊗m
∣∣∣p

h⊗m
dVω ≤ Cnμ(B1) sup

B(w,ε)

|a|mp
h(z).

We also have
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∫
D

|uε |p
h⊗m dVω ≤ sup

z∈D
eψ0(z) ·

∫
D

|uε |p
h⊗m e−ψ0dVω

≤ sup
z∈D

eψ0(z) · C2Cm
supB(w,ε) |a|mp

h(z)

ε p

≤ C3Cm
supB(w,ε) |a|mp

h(z)

ε p
,

where C3 is a constant depends only on D. We may assume Cm ≥ 1. Combining these
estimates with (10), we obtain that

∫
D

| fε |p
h⊗m dVω ≤ C4Cm

supB(w,ε) |a|mp
h(z)

ε p
,

where C4 is a constant independent of m and w.
Let

Oε = sup
z,w∈D,|z−w|≤ε

∣∣log |a|h(z) − log |a|h(w)

∣∣ .

By the uniform continuity of log |a|h(z) on D, Oε is finite and goes to 0 as ε → 0. Let
ε := 1/m. We have

∣∣mp log |a|h(z) − mp log |a|h(w)

∣∣ ≤ mpO1/m for |z − w| ≤ 1/m.
Then

∫
D

| f1/m |pe−mφdVω ≤ C4Cmm pemp log |a|h(w)+mpO1/m

= C4Cmm pempO1/m . (11)

Let C ′
m = C4Cmm pempO1/m , we have

logC ′
m

m
= log(C ′′Cmm p)

m
+ pO1/m → 0.

Considering f1/m/dz, we see that (E, h) satisfies the multiple coarse L p-extension
on D, and hence (E, h) is Griffiths semi-positive on D by [13, Theorem 1.2]. Since
D is arbitrary, (E, h) is Griffiths semi-positive on X . ��

3.3 Griffiths positivity in terms of optimal Lp-extension condition

Theorem 3.3 (= Theorem 1.3) Let E be a holomorphic vector bundle over a domain
D ⊂ C

n, and h be a singular Finsler metric on E, such that |s|h∗ is upper semi-
continuous for any local holomorphic section s of E∗. If (E, h) satisfies the optimal
L p-extension for some p > 0, then (E, h) is Griffiths semi-positive.

Proof Let u be a holomorphic section of E∗ over D. Let z ∈ D and P be any
holomorphic cylinder such that z + P ⊂ D. Take a ∈ Ez such that |a|h = 1 and
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|u|h∗(z) = |〈u(z), a〉|. Since (E, h) satisfies the optimal L p-extension, there is a
holomorphic section f of E on z + P , such that f (z) = a and satisfies the estimate

1

μ(P)

∫
z+P

| f |p
h ≤ 1. (12)

Note that |u|h∗ ≥ |〈u, f 〉|/| f |h on z + P , it follows that

log |u|h∗ ≥ log |〈u, f 〉| − log | f |h .

Taking integration, we get that

p

(
1

μ(P)

∫
z+P

log |u|h∗
)

≥ p

(
1

μ(P)

∫
z+P

log |〈u, f 〉|
)

− 1

μ(P)

∫
z+P

log | f |p
h

≥ p

(
1

μ(P)

∫
z+P

log |〈u, f 〉|
)

− log

(
1

μ(P)

∫
z+P

| f |p
h

)

≥ p log |〈u(z), f (z)〉|
= p log |〈u(z), a〉| = p log |u(z)|h∗ ,

where the second inequality follows from Jensen’s inequality and (12), and the third
inequality follows from the fact that log |〈u, f 〉| is a plurisubharmonic function, and
from [12, Lemma 3.1]. Dividing by p, we obtain that

log |u(z)|h∗ ≤ 1

μ(P)

∫
z+P

log |u|h∗ .

Again from [12, Lemma 3.1], we see that log |u|h∗ is plurisubharmonic on D. ��

3.4 Griffiths positivity in terms of multiple coarse Lp-extension condition

The following theorem was originally given in [13, Theorem 6.4]. In the present
paper, we give a new proof of it based on Guan–Zhou’s idea [17] about connecting
optimal L2-extension condition to Berndtsson’s plurisubharmonic variation of relative
Bergman kernels [1].

Theorem 3.4 (= Theorem1.4) Let E be a holomorphic vector bundle over a domain
D ⊂ C

n, and h be a singular Finsler metric on E, such that |s|h∗ is upper semi-
continuous for any local holomorphic section s of E∗. If (E, h) satisfies the multiple
coarse L p-extension, then (E, h) is Griffiths semi-positive.

Proof Let u be a holomorphic section of E∗ over D. Then u⊗m ∈ H0(D, (E∗)⊗m).
Let z ∈ D and P be any holomorphic cylinder such that z + P ⊂ D. Take a ∈ Ez

such that |a|h = 1 and |u|h∗(z) = |〈u(z), a〉|. Since (E, h) satisfies themultiple coarse
L p-extension, there is fm ∈ H0(D, E⊗m), such that fm(z) = a⊗m and satisfies the
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following estimate

∫
D

| fm |p ≤ Cm,

whereCm are constants independent of z and satisfy the growth condition 1
m logCm →

0 as m → ∞. Since |u⊗m |(h∗)⊗m = |u|mh∗ ≥ |〈u⊗m , fm 〉|
| fm |h⊗m

, we have that

m log |u|h∗ ≥ log |〈u⊗m, fm〉| − log | fm |.

Taking integration, we get that

m

(
1

μ(P)

∫
z+P

log |u|h∗
)

≥ 1

μ(P)

∫
z+P

log |〈u⊗m , fm〉| − 1

p

(
1

μ(P)

∫
z+P

log | fm |p
)

≥ m log |u(z)|h∗ − 1

p
log

(
1

μ(P)

∫
z+P

| fm |p
)

≥ m log |u(z)|h∗ − 1

p
log

(
1

μ(P)

∫
D

| fm |p
)

≥ m log |u(z)|h∗ − 1

p
log(Cm/μ(P)),

where the first inequality follows from the fact that log |〈u⊗m, fm〉| is a plurisub-
harmonic function, and [12, Lemma 3.1], and Jensen’s inequality, and the second
inequality follows from the fact that z + P ⊂ D. Dividing by m in both sides, we
obtain that

1

μ(P)

∫
z+P

log |u|h∗ ≥ log |u(z)|h∗ − 1

mp
log(Cm/μ(P)).

Letting m → ∞, we see that log |u|h∗ satisfies the following inequality

log |u(z)|h∗ ≤ 1

μ(P)

∫
z+P

log |u|h∗ ,

since 1
m logCm → 0 as m → ∞. Then from [12, Lemma 3.1], we get that log |u|h∗ is

plurisubharmonic on D. ��

4 Positivities of direct images of twisted relative canonical bundles

4.1 Optimal L2-estimate condition and Nakano positivity

The aim of this subsection is to prove Theorems 1.5 and 1.6.
To avoid some complicated geometric quantities and highlight the main idea, we

first consider a simple case of Theorem 1.5 as a warm-up.
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Theorem 4.1 Let U and D be bounded domains in C
n
t and C

m
z respectively, and

φ ∈ C2(U × D) ∩ P SH(U × D). Assume that D is pseudoconvex. For t ∈ U, let
A2

t := { f ∈ O(D) : || f ||2t := ∫
D | f |2e−φ(t,·) < ∞} and F := ∐

t∈U A2
t . We may

view F as a Hermitian holomorphic vector bundle on U. Then (F, || · ||t ) is Nakano
semi-positive.

Proof We will first prove that (F, || · ||t ) satisfies the ∂̄ optimal L2-estimate for pseu-
doconvex domains contained in U . We may assume U is pseudoconvex.

For any smooth strictly plurisubharmonic function ψ on U , for any ∂̄ closed f ∈
C∞

c (T ∗
U �(0,1) ⊗ F) (We identify C∞

c (T ∗
U �(0,1) ⊗ F) with C∞

c (T ∗
U �(n,1) ⊗ F)). We

may write f = ∑n
j=1 f j (t, z)dt̄ j with f j (t, ·) ∈ Ft for t ∈ U and j = 1, 2, . . . , n.

Therefore, we may view f as a ∂̄-closed (0, 1)-form on U × D. By Lemma 2.5, there
exists a function u on U × D, satisfying ∂̄u = f and

∫
U×D

|u|2e−(φ+ψ)

≤
∫

U×D
| f |2

i∂∂̄(φ+ψ)
e−(φ+ψ)

≤
∫

U×D
| f |2

i∂∂̄ψ
e−(φ+ψ)

=
∫

U

n∑
j,k=1

ψ j k̄〈 f j (t, ·), fk(t, ·)〉t e
−ψ,

where (ψ j k̄)n×n := (
∂2ψ

∂t j ∂t̄k
)−1
n×n . Note that

∫
U×D |u|2e−(φ+ψ) = ∫

U ||u||2t e−ψ < ∞
and ∂u

∂ z̄ j
= 0 for j = 1, 2, . . . , m, we may view u as a L2-section of F on U . By

Theorem 1.1 and Remark 1.2, (F, || · ||t ) is Nakano semi-positive. ��
Let� = U × D ⊂ C

n
t ×C

m
z be a bounded pseudoconvex domains and p : � → U

be the natural projection. Let h be a Hermitianmetric on the trivial bundle E = �×C
r

that is C2-smooth to �. For t ∈ U , let

Ft :=
{

f ∈ H0(D, E |{t}×D) : ‖ f ‖2t :=
∫

D
| f |2ht

< ∞
}

and F := ∐
t∈U Ft . Since h is continuous to �, Ft are equal for all t ∈ U as vector

spaces. We may view (F, ‖ · ‖) as a trivial holomorphic Hermitian vector bundle of
infinite rank over U .

Theorem 4.2 (= Theorem 1.5) Let θ be a continuous real (1, 1)-form on U such that
i�E ≥ p∗θ ⊗ I dE , then i�F ≥ θ ⊗ I dF in the sense of Nakano. In particular, if
i�E > 0 in the sense of Nakano, then i�F > 0 in the sense of Nakano.

Proof By Theorem 3.1, it suffices to prove that (F, ‖ · ‖) satisfies: for any f ∈
C∞

c (U ,∧n,1T ∗
U ⊗ F ⊗ A) with ∂̄ f = 0, and any positive Hermitian line bundle
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(A, h A) on U with i�A,h A + θ > 0 on supp f , there is u ∈ L2(U ,∧n,0T ∗
U ⊗ F ⊗ A),

satisfying ∂̄u = f and

∫
U

|u|2h⊗h A
dVω ≤

∫
U

〈B−1
h A,θ f , f 〉h⊗h A dVω,

provided that the right hand side is finite, where Bh A,θ = [(i�A,h A + θ) ⊗ I dF ,�ω].
We may write f = ∑n

j=1 f j (t, z)dt ∧ dt̄ j with f j (t, ·) ∈ Ft ⊗ A for t ∈ U and

j = 1, 2, . . . , n. Therefore, wemay view f as a ∂̄-closed E ⊗ p∗ A-valued (n, 1)-form
on �. Let f̃ = f ∧ dz, then f̃ is a ∂̄-closed E ⊗ p∗ A-valued (m + n, 1)-form on �.
By assumption, i�E ≥ p∗θ ⊗ I dE . We get

i�E + i p∗(�A,h A) ⊗ I dE ≥ p∗(θ + i�A,h A ) ⊗ I dE .

Therefore,

〈[i�E + i p∗(�A,h A) ⊗ I dE ,�ω]−1 f̃ , f̃ 〉h⊗h A

≤ 〈[p∗(θ + i�A,h A ) ⊗ I dE ,�ω]−1 f̃ , f̃ 〉h⊗h A .

By Lemma 2.5, we can find an E ⊗ p∗ A-valued (n +m, 0)-form ũ on�, satisfying
∂̄ ũ = f̃ and

∫
�

|ũ|2h⊗h A

≤
∫

�

〈[p∗(θ + i�A,h A ) ⊗ I dE ,�ω]−1 f̃ , f̃ 〉h⊗h A

=
∫

U
〈B−1

h A,θ f , f 〉h⊗h A ,

where the last equality holds by the Fubini theorem. Since ∂ ũ
∂z j

= 0, ũ is holomorphic

along fibers and we may view u = ũ/dz as a section of KU ⊗ F ⊗ A. Also by the
Fubini theorem, we have

∫
�

|ũ|2h⊗h A
=

∫
U

||u||2h⊗h A
< ∞.

We also have ∂̄u = f . Hence (F, ‖·‖) satisfies the optimal L2-estimate and is Nakano
semi-positive by Theorem 3.1. ��

Let π : X → U be a proper holomorphic submersion from Kähler manifold X of
complex dimension m + n, to a bounded pseudoconvex domain U ⊂ C

n , and (E, h)

be a Hermitian holomorphic vector bundle over X , with the Chern curvature Nakano
semi-positive. From Lemma 2.6, the direct image F := π∗(K X/U ⊗ E) is a vector
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bundle, whose fiber over t ∈ U is Ft = H0(Xt , K Xt ⊗ E |Xt ). There is a hermtian
metric ‖ · ‖ on F induced by h: for any u ∈ Ft ,

‖u(t)‖2t :=
∫

Xt

cmu ∧ ū,

where m = dim Xt , cm = im2
, and u ∧ ū is the composition of the wedge product and

the inner product on E . So we get a Hermitian holomorphic vector bundle (F, ‖ · ‖)
over U .

Theorem 4.3 (= Theorem 1.6) The Hermitian holomorphic vector bundle (F, ‖ · ‖)
over U defined above satisfies the optimal L2-estimate. Moreover, if i�E ≥ p∗θ⊗ I dE

for a continuous real (1, 1)-form θ on U, then i�F ≥ θ ⊗ I dF in the sense of Nakano.

Proof Similar to the proof of Theorem 4.2, wemay assume θ = 0. From Theorem 3.1,
it suffices to prove that (π∗(K X/Y ⊗ E), ‖ · ‖) satisfies the optimal L2-estimate with
the standard Kähler metric ω0 on U ⊂ C

n . Let ω be an arbitrary Kähler metric on X .
Let f be a ∂̄-closed compact supported smooth (n, 1)-form with values in F , and

let ψ be any smooth strictly plurisubharmonic function on U .
We can write f (t) = dt ∧ ( f1(t)dt̄1 + · · · + fn(t)dt̄n), with fi (t) ∈ Ft =

H0(Xt , K Xt ⊗ E). One can identify f as a smooth compact supported (n+m, 1)-form
f̃ (t, z) := dt ∧( f1(t, z)dt̄1+· · ·+ fn(t, z)dt̄n) on X , with fi (t, z) being holomorphic
section of K Xt ⊗ E |Xt . We have the following observations:

• ∂̄z fi (t, z) = 0 for any fixed t ∈ B, since fi (t, z) are holomorphic sections K Xt ⊗
E |Xt .

• ∂̄t f = 0, since f is a ∂̄-closed form on B.

It follows that f̃ is a ∂̄-closed compact supported (n +m, 1)-form on X with values
in E . We want to solve the equation ∂̄u = f̃ on X by using Lemma 2.5. Now we
equipped E with the metric h̃ := he−π∗ψ , then i�E,h̃ = i�E,h + i∂∂̄π∗ψ ⊗ I dE ,
which is also semi-positive in the sense of Nakano.

We consider the integration

∫
X
〈[i�E,h + i∂∂̄π∗ψ ⊗ I dE ,�ω]−1 f̃ , f̃ 〉e−π∗ψdVω.

Note that, acting on �n+m,1T ∗
X ⊗ E , by Lemma 2.4, we have

[i�E,h + i∂∂̄π∗ψ ⊗ I dE ,�ω] ≥ [i∂∂̄π∗ψ ⊗ I dE ,�ω].

Thus we obtain that

[i�E,h + i∂∂̄π∗ψ ⊗ I dE ,�ω]−1 ≤ [i∂∂̄π∗ψ ⊗ I dE ,�ω]−1.

For any p ∈ X , we use Lemma 4.7 to modify ω at p. We take a local coordinate
(t1, . . . , tn, z1, . . . , cm) on X near p, where t1, . . . , tn is the standard coordinate on
U ⊂ C

n . Let ω′ = i
∑n

j=1 dt j ∧ dt̄ j + i
∑m

l=1 dzl ∧ dz̄l .
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Note that

i∂∂̄π∗ψ =
n∑

j=1

∂2ψ

∂t j∂ t̄k
dt j ∧ dt̄k,

we have

[i∂∂̄π∗ψ ⊗ I dE ,�ω′ ] f̃ =
∑
j,k

∂2ψ

∂t j∂ t̄k
f j (t, z)dt ∧ dt̄k,

and

[i∂∂̄π∗ψ ⊗ I dE ,�ω′ ]−1 f̃ =
∑
j,k

ψ jk f j (t, z)dt ∧ dt̄k

at p, where (ψ jk) = (
∂2ψ

∂t j ∂ t̄k
)−1. By Lemma 4.7, we have

〈[i∂∂̄π∗ψ ⊗ I dE ,�ω]−1 f̃ , f̃ 〉ωdVω

= 〈[i∂∂̄π∗ψ ⊗ I dE ,�ω′ ]−1 f̃ , f̃ 〉ω′dVω′

=
∑
j,k

ψ jkcm f j ∧ f̄kcndt ∧ dt̄ .

By Fubini’s theorem, we get that

∫
X
〈[i∂∂̄π∗ψ ⊗ I dE ,�ω]−1 f̃ , f̃ 〉ωe−π∗ψdVω

=
∫

X

∑
j,k

ψ jkcm f j ∧ f̄ke−π∗ψcndt ∧ dt̄

=
∫

U
< f j , fk >t ψ jke−ψcndt ∧ dt̄

=
∫

U
〈[i∂∂̄ψ,�ω0 ]−1 f , f 〉t e

−ψdVω0 ,

where by 〈·, ·〉t , we mean that pointwise inner product with respect to the Hermitian
metric ‖ · ‖ of F .

From Lemma 2.5, there is ũ ∈ �m+n,0(X , E), such that ∂̄ ũ = f̃ , and satisfies the
following estimate

∫
X

cm+nũ ∧ ¯̃ue−π∗ψ

≤
∫

X
〈[i�E,h + i∂∂̄π∗ψ ⊗ I dE ,�ω]−1 f̃ , f̃ 〉e−π∗ψdVω
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≤
∫

U
〈[i∂∂̄ψ,�ω0 ]−1 f , f 〉t e

−ψdVω0 . (13)

We observe that ∂̄ ũ|Xt = 0 for any fixed t ∈ U , since ∂̄ ũ = f̃ . This means that
ũt := ũ(t, ·) ∈ Ft . Therefore we may view ũ as a section u of F . It is obviously that
∂̄u = f .

From Fubini’s theorem, we have that

∫
X

cm+nũ ∧ ¯̃ue−π∗ψ =
∫

U
‖u‖2t e−ψdVω0 . (14)

Combining (13), we have

∫
U

‖u‖2t e−ψdVω0 ≤
∫

U
〈[i∂∂̄ψ,�ω0 ]−1 f , f 〉t e

−ψdVω0 .

We have proved that F satisfies the optimal L2-estimate, thus from Theorem 3.1 (and
Remark 1.2), F is Nakano semi-positive. ��

4.2 Multiple coarse L2-estimate condition and Griffiths positivity

We apply Theorem 1.2 and the fiber product technique introduced in [13] to provide
a new method to study the Griffiths positivity of direct images.

Theorem 4.4 The Hermitian holomorphic vector bundle (F, ‖ · ‖) over U as in
Theorem 4.3 satisfies the multiple coarse L2-estimate. In particular, F is Griffiths
semipositive.

Proof Let ω0 be the standard Kähler metric on U and ω be an arbitrary Kähler metric
on X . We have the following constructions:

• Let Xk := X ×π · · · ×π X be the k times fiber product of X with respect to the
map π : X → U .

• The induced map Xk → U by π is denoted by πk : Xk → U , and Xk,t :=
π−1

k (t) = Xk
t for every t ∈ U .

• There are natural holomorphic projections pr j from Xk to its j-th factor X .
• The induced Kähler metric ωk := pr∗

1ω + · · · + pr∗
k ω on Xk .

• Set E j := pr∗
j E , and Ek := E1 ⊗ · · · ⊗ Ek . Then Ek can be equipped with the

induced metric hk := pr∗
1 h ⊗ · · · ⊗ pr∗

k h.

We have the following observations:

• From Lemma 2.2, Ek equipped with the Hermitian metric hk is Nakano semi-
positive.

• From [13, Lemma 9.2], the direct image bundle Fk := (πk)∗(K Xk/U ⊗ Ek) =
(π∗(K X/U ⊗ E))⊗k = F⊗k , as Hermitian holomorphic vector bundles. (In fact,
[13, Lemma 9.2] was proved for line bundles, but it is clear that the proof also
works for vector bundles.)
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Let f be an arbitrarily fixed smooth compactly supported (m, 1)-form on U with
valued in Fk , such that ∂̄ f = 0. Letψ be an arbitrary smooth strictly plurisubharmonic
function on U . To prove that F satisfies the multiple coarse L2-estimate, we need to
show that one can solve the equation ∂̄u = f on U , with the estimate

∫
U |u|2

hk e−ψ ≤∫
U 〈B−1

ψ f , f 〉e−ψ , where Bψ = [i∂∂̄ψ,�ω0 ].
As in the proof ofTheorem4.3,wemay consider f as a smooth compactly supported

K Xk ⊗ Ek valued (0, 1)-form f̃ on Xk . Then it is clear that ∂̄ f̃ = 0. We consider the
following integration

∫
Xk

〈[i�Ek ,hk + i∂∂̄π∗
k ψ ⊗ I dEk ,�ωk ]−1 f̃ , f̃ 〉ωk e−π∗

k ψdVωk .

By the same analysis as in the proof of Theorem 4.3, we can get that

∫
Xk

〈[i�Ek ,hk + i∂∂̄π∗
k ψ ⊗ I dEk ,�ωk ]−1 f̃ , f̃ 〉ωk e−π∗

k ψdVωk

≤
∫

Xk

〈[i∂∂̄π∗
k ψ ⊗ I dEk ,�π∗

k ω0 ]−1 f̃ , f̃ 〉ωk e−π∗
k ψdVωk

=
∫

Xk

∑
j,k

ψ jkckm f j ∧ f̄ke−π∗
k ψcndt ∧ dt̄

=
∫

U
〈B−1

ψ f , f 〉t e
−ψdVω0 .

Now from Lemma 2.5, we can solve the equation ∂̄ ũ = f̃ with the estimate

∫
Xk

|ũ|2hk e−π∗
k ψdVωk ≤

∫
Xk

〈[i�Ek ,hk + i∂∂̄π∗
k ψ ⊗ I dEk ,�ωk ]−1 f̃ , f̃ 〉ωk e−π∗

k ψdVωk

≤
∫

U
〈B−1

ψ f , f 〉t e
−ψdVω0 .

Similarly, ∂̄ ũ|Xt = 0 for any fixed t ∈ U , since ∂̄ ũ = f̃ . This means that ũt :=
ũ(t, ·) ∈ Fk

t . Therefore we may view ũ as a section u of Fk . It is obviously that
∂̄u = f .

Applying Fubini’s theorem to the L.H.S of above inequality, we get that

∫
U

|ut |2t e−ψdVω0 ≤
∫

U
〈B−1

ψ f , f 〉t e
−ψdVω0 ,

which implies that (F, ‖ · ‖) satisfies the multiple coarse L2-estimate on U . ��

4.3 Optimal L2-extension condition and Griffiths positivity

Theorem 4.5 The Hermitian holomorphic vector bundle (F, ‖ · ‖) over U as in The-
orem 4.3 satisfies the optimal L2-extension. In particular, F is Griffiths semipositive.
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Proof For any t0 ∈ U , any holomorphic cylinder P such that t0 + P ⊂ U , and any
at0 ∈ Ft0 , which is a holomorphic section of K Xt0

⊗ E |Xt0
on Xt0 . Since E is Nakano

semi-positive, from Lemma 2.5, we get a holomorphic extension a ∈ H0(X , K X ⊗ E)

such that a|Xt0
= at0 ∧ dt , and with the estimate

∫
π−1(t0+P)

cm+na ∧ ā ≤ μ(P)

∫
Xt0

cmat0 ∧ āt0 = μ(P)|at0 |2t0 ,

where μ(P) is the volume of P with respect to the Lebesgue measure dμ on C
m .

Since at := (a/dt)|Xt ∈ H0(Xt , K Xt ⊗ E |Xt ), a/dt can be seen as a holomorphic
section of the direct image bundle F over t0 + P , and from Fubini’s theorem, we can
obtain that

∫
t0+P

|at |2t dVω0 ≤ μ(P)|at0 |2t0 ,

which is the desired optimal L2-extension. ��

4.4 Multiple coarse L2-extension condition and Griffiths positivity

In this subsection, we will prove the following

Theorem 4.6 The Hermitian holomorphic vector bundle (F, ‖ · ‖) over U as in The-
orem 4.3 satisfies the multiple coarse L2-extension. In particular, F is Griffiths
semipositive.

Proof Let (Xk, πk, ωk, Fk) be as in the proof of Theorem 4.4.
For any t0 ∈ U , at0 ∈ Ft0 , a⊗k

t0 is a holomorphic section of K Xk,t0
⊗ Ek . Since

Ek with the induced metric hk is semi-positive in the sense of Nakano on Xk , by
Lemma 2.6, there exists a ∈ H0(Xk, K Xk ⊗ Ek), such that a|Xk,t0

= a⊗k
t0 ∧ dt and

satisfies the following estimate

∫
Xk

|a|2hk dVωk ≤ C |a⊗k
t0 |2t0 ,

where C is a universal constant which only depends on the diameter and dimension
of U . We can view at := (a/dt)|Xt , t ∈ U as a holomorphic section of Fk . From
Fubini’s theorem, we have that

∫
Xk

|at |2hk dVωk =
∫

U
|at |2t dVω0 .

In conclusion, we get a holomorphic extension a/dt of a⊗k
t0 , with the estimate

∫
U

|at |2t dVω0 ≤ C |a⊗k
t0 |2t0 .
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This completes the proof of Theorem 4.6. ��

Remark 4.1 Let π : X → Y be a proper holomorphic map between Kähler manifolds
which may be not regular. Let (E, h) be a Hermitian holomorphic vector bundle
on X whose Chern curvature is Nakano semi-positive. Then the direct image sheaf
F := π∗(K X/Y ⊗E) can be equippedwith a natural singularmetric which is positively
curved in the sense of Definition 2.6. In fact, let Z ⊂ Y be the singular locus of π ,
then on X\π−1(Z), π is a submersion, and F is locally free and can be viewed as a
vector bundle F on Y ′ := Y\Z , with Ft = H0(K Xt ⊗ E |Xt ). The induced Hermitian
metric ‖ · ‖ on F is as follows: for any holomorphic section u ∈ H0(Y ′, F),

‖u‖2t :=
∫

Xt

cmu ∧ ū.

From one of Theorem 4.4, and Theorem 4.5, Theorem 4.6, we see that ‖ · ‖t is a
Hermitian metric on F with Griffiths semi-positive curvature. Moreover, by similar
argument as in [20, Proposition 23.3] (see also [13, Step 3 in the proof of Theorem
9.3]), one can show that the metric on F extends to a positively curved metric on F .
In the special case that E is a line bundle, the same conclusion is true if h is singular
and pseudoeffective (see [3,13,20,31,34]).
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Appendix

We prove a result used in the proof of Theorem 1.6, which seems to be already known.

Lemma 4.7 Let U ⊂ C
n be a domain, ω1, ω2 be any two Hermitian forms on U,

and E = U × C
r be trivial vector bundle on U with a Hermitian metric. Let � ∈

C0(X ,�1,1T ∗
X ⊗ End(E)) such that �∗ = −�. Then

I m[i�,�ω1 ] = I m[i�,�ω2 ],

and for any E-valued (n, 1) form u ∈ I m[i�,�ω1 ],

〈[i�,�ω1 ]−1u, u〉ω1dVω1 = 〈[i�,�ω2 ]−1u, u〉ω2dVω2 .

Proof For any z0 ∈ U , after a linearly transformation, we may assume ω1 =
i
∑n

j=1 dz j ∧ dz̄ j and ω2 = i
∑n

j=1 λ2j dz j ∧ dz̄ j at z0 with λ j > 0. Let w j = λ j z j
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for j = 1, 2, . . . , n, then ω2 = i
∑n

j=1 dw j ∧ dw̄ j . We may write

i� = i
∑
jkαβ

c jkαβdz j ∧ dz̄k ⊗ e∗
α ⊗ eβ = i

∑
jkαβ

c′
jkαβdw j ∧ dw̄k ⊗ e∗

α ⊗ eβ (15)

with c′
jkαβ = c jkαβ

λ j λk
.

Denote λ = ∏n
j=1 λ j . Let u = ∑

j,α u jαdz ∧ dz̄ j ⊗ eα , then u = ∑
j,α u′

jαdw ∧
dw̄ j ⊗ eα with u′

jα = u jα
λλ j

. Note that

[i�,�ω1 ]u =
∑
jkαβ

u jαc jkαβdz ∧ dz̄k ⊗ eβ, (16)

and
[i�,�ω2 ]u =

∑
jkαβ

u′
jαc′

jkαβdw ∧ dw̄k ⊗ eβ. (17)

So it is easy to see I m[i�,�ω1 ] = I m[i�,�ω2 ]. We write

[i�,�ω1 ]−1u =
∑
jkαβ

u jαd jkαβdz ∧ dz̄k ⊗ eβ,

[i�,�ω2 ]−1u =
∑
jkαβ

u′
jαd ′

jkαβdw ∧ dw̄k ⊗ eβ,

Then from Eqs. (15),(16), (17), we can get

d ′
jkαβ = λ jλkd jkαβ.

We now assume that {eα} are orthonormal at z0. Then

〈[i�,�ω1 ]−1u, u〉ω1dVω1 =
∑
jkαβ

d jkαβu jα ūkβcndz ∧ dz̄,

〈[i�,�ω2 ]−1u, u〉ω2dVω2 =
∑
jkαβ

d ′
jkαβu′

jα ū′
kβcndw ∧ dw̄.

Note also that

cndw ∧ dw̄ = λ2cndz ∧ dz̄,

We get

〈[i�,�ω1 ]−1u, u〉ω1dVω1 = 〈[i�,�ω2 ]−1u, u〉ω2dVω2 .

��
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