
Mathematische Annalen (2022) 384:1127–1155
https://doi.org/10.1007/s00208-021-02300-9 Mathematische Annalen

Stationary solutions in thermodynamics of stochastically
forced fluids

Dominic Breit1 · Eduard Feireisl2,3 ·Martina Hofmanová4

Received: 8 February 2021 / Revised: 20 July 2021 / Accepted: 14 October 2021 /
Published online: 19 November 2021
© The Author(s) 2021

Abstract
We study the full Navier–Stokes–Fourier system governing the motion of a general
viscous, heat-conducting, and compressible fluid subject to stochastic perturbation.
The system is supplemented with non-homogeneous Neumann boundary conditions
for the temperature and hence energetically open. We show that, in contrast with
the energetically closed system, there exists a stationary solution. Our approach is
based on new global-in-time estimates which rely on the non-homogeneous boundary
conditions combined with estimates for the pressure.
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1 Introduction

It is a common belief that the behaviour of turbulent fluid flows can be fully char-
acterized by a steady state of the system (driven by a suitable stochastic forcing to
substitute for possible perturbations due to changes in the boundary data), which is
approached asymptotically for large times. Mathematically speaking this gives rise to
an invariant measure of the underlying system. This is well-understood for the 2D
incompressible stochastic Navier–Stokes equations, cf. [10,12,16,19], where unique-
ness is well-known.

If uniqueness is not at hand, even the definition of an invariant measure becomes
ambiguous, and one rather studies stationary solutions of the dynamics: solutions with
a probability law which does not change in time. This law serves as a substitute for
an invariant measure. The existence of stationary solutions to the 3D incompressible
stochastic Navier–Stokes equations is a nowadays classical result from [11]. More
recently a counterpart for the compressible stochastic Navier–Stokes equations has
been established in [4]. It is interesting to note that in both cases stationarity provides
a certain regularising effect on the solutions (see also [13] in connection with this).

One may think that adding further physical principles such as the possibility of heat
transfer completes the picture. The stochastic Navier–Stokes–Fourier equations haven
been studied in [1] and the existence of weak martingale solutions has been shown.
They describe the motion of a general viscous, heat-conducting, and compressible
fluid subject to stochastic perturbation based on the Second Law of Thermodynamics
via an entropy balance as in [8] (see also [20] for an alternative approach based on
the internal energy balance due to [7]). Supplemented with homogeneous Neumann
boundary conditions for the temperature this is an energetically closed system. The
mechanical energy which is lost as dissipation is transferred into heat and, different
to the incompressible or the isentropic Navier–Stokes equations, weak solutions are
known to satisfy an energy equality. The latter one shows that the noise is constantly
adding energy to the system such that it can never reach a steady state and, as shown in
[1, Section 7], stationary solutions do not exist. Since this is physically not acceptable
we are looking for a physical principle which can counteract the energy creation by
the noise.

Different to [1] we consider in this paper an energetically open version of the
stochastic Navier–Stokes–Fourier equations, where heat can drain through the bound-
ary, see (1.5) below. The time evolution of the fluid in the reference physical domain
Q ⊂ R3 is governed by the following set of equations:

d� + div(�u) dt = 0, (1.1a)

d(�u) + [
div(ρu ⊗ u) + ∇ p(�, ϑ)

]
dt = div S(ϑ,∇u) dt

+ �F(�, ϑ,u) dW , (1.1b)

d(�e(�, ϑ)) +
[
div(�e(�, ϑ)u) + div q(ϑ,∇ϑ)

]
dt

=
[
S(ϑ,∇u) : ∇u − p(�, ϑ) div u

]
dt, (1.1c)
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Stationary solutions in thermodynamics… 1129

where W is a cylindrical Wiener process and the diffusion coefficient F can be iden-
tified with a sequence (Fk)k≥1 satisfying a suitable Hilbert-Schmidt assumption, see
Section 2 for the precise definitions. Here � denotes the density of the fluid, ϑ the
absolute temperature and u the velocity field. For the viscous stress tensor we suppose
Newton’s rheological law

S = S(ϑ,∇u) = μ(ϑ)
(
∇u + ∇uT − 2

3
div u I

)
+ η(ϑ) div u I. (1.2)

The internal energy (heat) flux is determined by Fourier’s law

q = q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ = −∇K(ϑ), K(ϑ) =
∫ ϑ

0
κ(z) dz. (1.3)

The thermodynamic functions p and e are related to the (specific) entropy s = s(�, ϑ)

through Gibbs’ equation

ϑDs(�, ϑ) = De(�, ϑ) + p(�, ϑ)D
( 1
�

)
for all �, ϑ > 0, (1.4)

where D denotes the total derivative with respect to (�, ϑ). We supplement (1.1)–
(1.4) with the boundary conditions (see also [9])

u|∂Q = 0, q · n|∂Q = d(ϑ)(ϑ − �0), and fix the total mass
∫

Q
� dx = M0, (1.5)

where �0 ∈ L1(∂Q) is strictly positive, M0 > 0 and we suppose that there are
d, d > 0 such that

dϑ ≤ d(x, ϑ) ≤ dϑ for all (x, ϑ) ∈ ∂Q × [0,∞). (1.6)

In view of Gibb’s relation (1.4), the internal energy equation (1.1c) can be rewritten
in the form of the entropy balance

d(�s) +
[
div(�su) + div

( q
ϑ

)]
dt = σ dt (1.7)

with the entropy production rate

σ = 1

ϑ

(
S : ∇u − q · ∇ϑ

ϑ

)
. (1.8)

In view of possible singularities, it is convenient to relax the equality sign in (1.8) to
the inequality

σ ≥ 1

ϑ

(
S : ∇u − q · ∇ϑ

ϑ

)
. (1.9)
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1130 D. Breit et al.

The system is augmented by the total energy balance

d
∫

Q

[
1

2
�|u|2 + �e

]
dx =

∫

Q
�F · u dW +

∑

k≥1

∫

Q

1

2
�|Fk |2 dx dt

−
∫

∂Q
d(ϑ)(ϑ − �0) dH2 dt, (1.10)

cf. [8, Chapter 2]. In case of a stationary solution applying expectations to (1.10)
clearly yields

∑

k≥1

E

∫

Q

1

2
�|Fk |2 dx dt = E

∫

∂Q
d(ϑ)(ϑ − �0) dH2 dt,

meaning energy created by the stochastic forcing can leave through the boundary.
The existence theory from [1], which leans on the analysis of the isentropic stochas-
tic Navier–Stokes equations from [5] and the deterministic Navier–Stokes–Fourier
equations from [8], can be applied to (1.1)–(1.5) without essential differences. In case
of the initial value problem an energy estimate can be derived in terms of the initial
data. Looking for stationary solutions, the initial data is not known and one has to use
stationarity instead. In [4] stationarity is used in combination with pressure estimates
to obtain a corresponding estimate for the isentropic problem. When applying the
same strategy to the non-isentropic problem (1.1)–(1.4), supplemented with homo-
geneous boundary conditions for the temperature flux, the temperature is deemed to
grow unboundedly due to the irreversible transfer of the mechanical energy into heat.

Assuming the non-homogeneous boundary conditions (1.5) instead we are able
to derive new global-in-time energy estimates, see (4.4). The main task is to control
the radiation energy given by aϑ4 without an information on the initial data. In the
case of homogeneous boundary conditions one can only obtain informations on the
temperature gradient which is not enough to even get estimates for ϑ in L1. For the
non-homogeneous problem we benefit from the boundary term in the energy balance
(1.10). A suitable application of Itô’s formula combined with Sobolev’s embedding
and an interpolation argument allows to control a higher power of the temperature in
terms of the energy, see (4.4). Finally, we derive some pressure estimate by means
of the Bogovskii operator in (4.6) and (4.16) to close the argument and to obtain
uniform-in-time estimates for the total energy. This leads to our main result which is
the existence of stationary martingale solutions to (1.1)–(1.5), see Theorem 2.1 for the
precise statement.

In order to make the ideas just explained rigorous one has to regularise the system
by adding artificial viscosity to the continuity equation (1.1a) (ε-layer) and add a high
power of the pressure in themomentum equation (1.1b) (δ-layer). The resulting system
has been solved in [1] by adding three additional layers. The same tedious strategy has
been applied in [4] in the construction of stationary solutions to the isentropic system.
Here, we follow a different strategy with a much simpler proof. Namely, inspired by
the approach due to Itô-Nisio [17] which we recently also applied to the isentropic
system with hard sphere pressure [3], we construct stationary solutions directly on the
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ε-level. The first step is to show uniform-in-time estimates for martingale solutions
to the initial value problem. In a second step stationary solutions can be constructed
by the Krylov–Bogoliubov method as the narrow limit of time-averages. A striking
feature of this approach is that stationary solutions are sitting on the trajectory space
and are approached asymptotically in time by any solution startingwith bounded initial
data of certain moments. With a stationary solution to the approximate system at hand
one can prove estimate (4.4) which is uniform in time, ε and δ. It has to be combined
with pressure estimates which differ on both levels, see (4.6) and (4.16), before one
can pass to the limit (both limits have to be done independently). The limit passage
can be performed as in previous papers and stationarity is preserved in the limit.

2 Mathematical framework and themain result

2.1 Stochastic forcing

The process W is a cylindrical Wiener process on a separable Hilbert space U, that is,
W (t) = ∑

k≥1 βk(t)ek with (βk)k≥1 being mutually independent real-valued standard
Wiener processes relative to (Ft )t≥0. Here (ek)k≥1 denotes a complete orthonormal
system in U. In addition, we introduce an auxiliary space U0 ⊃ U via

U0 =
{
v =

∑

k≥1

αkek;
∑

k≥1

α2
k

k2
< ∞

}
,

endowed with the norm

‖v‖2U0
=

∑

k≥1

α2
k

k2
, v =

∑

k≥1

αkek .

Note that the embedding U ↪→ U0 is Hilbert–Schmidt. Moreover, trajectories of W
are P-a.s. in C([0, T ];U0) (see [6]).

Choosing U = �2 we may identify the diffusion coefficients (Fek)k≥1 with a
sequence of real functions (Fk)k≥1,

�F(�, ϑ,u)dW =
∞∑

k=1

�Fk(x, �, ϑ,u)dβk .

We suppose that Fk are smooth in their arguments, specifically,

Fk ∈ C1(Q × [0,∞)2 × R3; R3),

where

‖Fk‖L∞ + ‖∇x,�,ϑ,uFk‖L∞ ≤ fk,
∞∑

k=1

f 2k < ∞. (2.1)
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We easily deduce from (2.1) the following bound

‖�Fk(�, ϑ,u)‖W−k,2(Q;R3)

<∼ ‖�Fk(�, ϑ,u)‖L1(Q;R3)

<∼ fk‖�‖L1(Q)

whenever k > 3
2 . Accordingly, the stochastic integral

∫ τ

0
�FdW =

∞∑

k=1

∫ τ

0
�Fk(�, ϑ,u) dβk

can be identified with an element of the Banach space space C([0, T ];W−k,2(Q)),

∫

Q

(∫ τ

0
�F(�, ϑ,u)dW · ϕ

)
dx

=
∞∑

k=1

∫ τ

0

(∫

Q
�Fk(x, �, ϑ,u) · ϕ dx

)
dβk, ϕ ∈ Wk,2(Q; R3), k >

3

2
.

2.2 Structural and constitutive assumptions

Besides Gibbs’ equation (1.4), we impose several restrictions on the specific shape of
the thermodynamic functions p = p(�, ϑ), e = e(�, ϑ) and s = s(�, ϑ). They are
borrowed from [8, Chapter 1], to which we refer for the physical background and the
relevant discussion.

We consider the pressure p in the form

p(�, ϑ) = pM (�, ϑ) + a
3ϑ4, a > 0, pM (�, ϑ) = ϑ5/2P

(
�

ϑ3/2

)
, (2.2)

e(�, ϑ) = eM (�, ϑ) + a ϑ4

�
, eM (�, ϑ) = 3

2
pM (�,ϑ)

�
= 3

2
ϑ5/2

�
P

(
�

ϑ3/2

)
, (2.3)

s(�, ϑ) = sM (�, ϑ) + 4a
3

ϑ3

�
, sM (�, ϑ) = S

(
�

ϑ3/2

)
, (2.4)

S = S(Z), S′(Z) = − 3
2

5
3 P(Z)−Z P ′(Z)

Z2 < 0, limZ→∞ S(Z) = 0, (2.5)

where

P ∈ C1[0,∞) ∩ C2(0,∞), P(0) = 0, P ′(Z) > 0, for all Z ≥ 0, (2.6)

0 <
3

2

5
3 P(Z) − Z P ′(Z)

Z
< c, for all Z > 0, (2.7)

and

lim
Z→∞

P(Z)

Z5/3
= p∞ > 0. (2.8)
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As shown in [8, Section 3.2] the assumptions above imply that there is c > 0 such
that

c−1�5/3 ≤ pM (�, ϑ) ≤ c(�5/3 + �ϑ), (2.9)

3p∞
2

�5/3 + aϑ4 ≤ �e(�, ϑ), (2.10)

0 ≤ eM (�, ϑ) ≤ c(�2/3 + ϑ), (2.11)

for all ϑ, � > 0. Moreover, there is s∞ > 0 such that

0 ≤ sM (�, ϑ) ≤ s∞(1 + | log(�)| + [log(ϑ)]+). (2.12)

Finally, for ϑ > 0 we introduce ballistic free energy given by

Hϑ(�, ϑ) = �
(
e(�, ϑ) − ϑs(�, ϑ)

)
,

which satisfies

−c(� + 1) + 1

4

(
�e(�, ϑ) + ϑ |s(�, ϑ)|) ≤ Hϑ(�, ϑ) ≤ c

(
�5/3 + ϑ4 + 1

)
(2.13)

on account of (2.11), (2.12) and [8, Prop. 3.2]. The viscosity coefficients μ, η are
continuously differentiable functions of the absolute temperature ϑ , more precisely
μ, λ ∈ C1[0,∞), satisfying

0 < μ(1 + ϑ) ≤ μ(ϑ) ≤ μ(1 + ϑ), (2.14)

sup
ϑ∈[0,∞)

(|μ′(ϑ)| + |λ′(ϑ)|) ≤ m, (2.15)

0 ≤ λ(ϑ) ≤ λ(1 + ϑ). (2.16)

The heat conductivity coefficient κ ∈ C1[0,∞) satisfies

0 < κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3). (2.17)

Finally, we introduce certain regularised versions of p, e, s and κ for fixed δ > 0:

pδ(�, ϑ) = p(�, ϑ) + δ(�2 + ��),

eM,δ(�, ϑ) = eM (�, ϑ) + δϑ, eδ(�, ϑ) = e(�, ϑ) + δϑ,

sM,δ(ϑ, �) = sM (ϑ, �) + δ logϑ, sδ(�, ϑ) = s(�, ϑ) + δ log(ϑ),

κδ(ϑ) = κ(ϑ) + δ
(
ϑ� + 1

ϑ

)
, Kδ(ϑ) =

∫ ϑ

0
κδ(z) dz.

(2.18)
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2.3 Martingale and stationary solutions

We start with a rigorous definition of (weak) martingale solution to problem (1.1)–
(1.5) as given in [1], where also the existence of a solution to the corresponding initial
value problem is proved.

Definition 2.1 (Martingale solution) Let Q ⊂ R3 be a bounded domain of classC2+ν ,
ν > 0. Then

(
(�,F, (Ft ),P), �, ϑ,u,W )

is called (weak) martingale solution to problem (1.1)–(1.5) provided the following
holds.

(a) (�,F, (Ft ),P) is a stochastic basis with a complete right-continuous filtration;
(b) W is an (Ft )-cylindrical Wiener process;
(c) the random variables

� ∈ L1loc([0,∞); L1(Q)), ϑ ∈ L1loc([0, ∞); L1(Q)), u ∈ L2loc([0,∞);W 1,2
0 (Q; R3))

are (Ft )-progressively measurable1, � ≥ 0, ϑ > 0 P-a.s.;
(d) the equation of continuity

∫ ∞

0

∫

Q

[
�∂tψ + �u · ∇ψ

]
dx dt = 0; (2.19)

holds for all ψ ∈ C∞
c ((0,∞) × R3) P-a.s.;

(e) the momentum equation

∫ ∞

0
∂tψ

∫

Q
�u · ϕ dx dt (2.20)

+
∫ ∞

0
ψ

∫

Q
�u ⊗ u : ∇ϕ dx dt −

∫ T

0
ψ

∫

Q
S(ϑ,∇u) : ∇ϕ dx dt

+
∫ ∞

0
ψ

∫

Q
p(�, ϑ) divϕ dx dt +

∫ ∞

0
ψ

∫

Q
�F(�, ϑ,u) · ϕ dx dW = 0;

holds for all ψ ∈ C∞
c (0,∞), ϕ ∈ C∞

c (Q; R3) P-a.s.

1 The progressive measurability is understood in the sense of random distributions as introduced in [2,
Section 2.2].
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(f) the entropy balance

−
∫ ∞

0

∫

Q

[
�s(�, ϑ)∂tψ + �s(�, ϑ)u · ∇ψ

]
dxdt

≥
∫ ∞

0

∫

Q

1

ϑ

[
S(ϑ,∇u) : ∇u + κ(ϑ)

ϑ
|∇ϑ |2

]
ψ dx dt

−
∫ ∞

0

∫

Q

κ(ϑ)∇ϑ

ϑ
· ∇ψ dx dt −

∫ ∞

0

∫

∂Q
ψ
d(ϑ)

ϑ
(ϑ − �0) dH2 dt

(2.21)

holds for all ψ ∈ C∞
c ((0,∞) × R3), ψ ≥ 0 P-a.s.;

(g) the total energy balance

−
∫ ∞

0
∂tψ

(∫

Q
E(�, ϑ,u) dx

)
dt = −

∫ ∞

0
ψ

∫

∂Q
d(ϑ − �0) dH2 dt

+
∫ ∞

0
ψ

∫

Q
�F(�, ϑ,u) · u dx dW dx

+ 1

2

∫ ∞

0
ψ

( ∫

Q

∑

k≥1

�|Fk(�, ϑ,u)|2 dx

)
dt

(2.22)

holds for any ψ ∈ C∞
c (0,∞) P-a.s. Here, we abbreviated

E(�, ϑ,u) = 1

2
�|u|2 + �e(�, ϑ).

In the following we are going to introduce the concept of stationary martingale
solutions. We start with a standard definition of stationarity for stochastic processes
with values in Sobolev spaces.

Definition 2.1 (Classical stationarity) Let ũ = {ũ(t); t ∈ [0,∞)} be an Wk,p(Q)-
valued measurable stochastic process, where k ∈ N0 and p ∈ [1,∞). We say that ũ
is stationary on Wk,p(Q) provided the joint laws

L(ũ(t1 + τ), . . . , ũ(tn + τ)), L(ũ(t1), . . . , ũ(tn))

on [Wk,p(Q)]n coincide for all τ ≥ 0, for all t1, . . . , tn ∈ [0,∞).

As can be seen from Definition 2.1, the velocity u and the temperature ϑ are not
stationary in the sense of Definition 2.1 as they are only equivalence classes in time.
Therefore we use the following definition of stationarity which has been introduced
in [4], and applies to random variables ranging in the space Lq

loc([0,∞);Wk,p(Q)).

Definition 2.2 (Weak stationarity) Let ũ be an Lq
loc([0,∞);Wk,p(Q))-valued ran-

dom variable, where k ∈ N0 and p, q ∈ [1,∞). Let Sτ be the time shift on the
space of trajectories given by Sτ ũ(t) = ũ(t + τ). We say that ũ is stationary on
Lq
loc([0,∞);Wk,p(Q)) provided the laws L(Sτ ũ), L(ũ) on Lq

loc([0,∞);Wk,p(Q))

coincide for all τ ≥ 0.
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Definitions 2.1 and 2.2 are equivalent as soon as the stochastic process in question
is continuous in time; or alternatively, if it is weakly continuous and satisfies a suitable
uniform bound, cf. [4, Lemma A.2 and Corollary A.3]. Furthermore, it can be shown
that both notions of stationarity are stable under weak convergence as can be seen
from the following two lemmas (the proofs of which can be found in [4, Appendix]).

Lemma 2.1 Let k ∈ N0, p, q ∈ [1,∞) and let (ũm) be a sequence of randomvariables
taking values in Lq

loc([0,∞);Wk,p(Q))). If, for all m ∈ N, ũm is stationary on
Lq
loc([0,∞);Wk,p(Q)) in the sense of Definition 2.2 and

ũm⇀ũ in Lq
loc([0,∞);Wk,p(Q)) P-a.s.,

then ũ is stationary on Lq
loc([0,∞);Wk,p(Q)).

Lemma 2.2 Let k ∈ N0, p ∈ [1,∞) and let (ũm) be a sequence of Wk,p(Q)-valued
stochastic processes which are stationary on Wk,p(Q) in the sense of Definition 2.1.
If for all T > 0

sup
m∈N

E

[

sup
t∈[0,T ]

‖ũm‖Wk,p(Q)

]

< ∞ (2.23)

and

ũm → ũ in Cloc([0,∞); (Wk,p(Q), w)) P-a.s.,

then ũ is stationary on Wk,p(Q).

In the following we define a stationary martingale solution to (1.1)–(1.5).

Definition 2.3 A weak martingale solution [�, ϑ,u,W ] to (1.1)–(1.5) is called sta-
tionary provided the joint law of the time shift

[
Sτ �,Sτ ϑ,Sτu,SτW − W (τ )

]
on

L1
loc([0,∞); Lγ (T3)) × L1

loc([0,∞);W 1,2(Q))

×L1
loc([0,∞);W 1,2(Q;R3)) × C([0,∞);U0)

is independent of τ ≥ 0.

We now state our main result concerning the existence of a stationary martingale
solution to (1.1)–(1.5).

Theorem 2.1 Let M0 ∈ (0,∞) be given. Suppose that the structural assumptions
(2.2)–(2.17) are in force and that the diffusion coecfficient F satisfies (2.1). Then
problem (1.1)–(1.5) admits a stationary martingale solution in the sense of Definition
2.3.

The proof of Theorem 2.1 is split into several parts. In the next section we study
the approximate system with regularisation parameters ε and δ. The proof will be
completed in Sect. 4 after passing to the limit in ε and δ.
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3 The viscous approximation

In this section we study the viscous approximation to (1.1)–(1.5), where the continuity
equation contains an artificial diffusion (ε-layer) and the pressure is stabilised by an
artificial high power to the density (δ-layer). In addition to the common terms we add
additional stabilising quantities in the continuity equations as in [4], see (3.1) below.

3.1 Martingale solutions

In this subsection we give a precise formulation of the approximated problem. For this
purpose we introduce a cut-off function

χ ∈ C∞(R), χ(z) =
⎧
⎨

⎩

1 for z ≤ 0,
χ ′(z) ≤ 0 for 0 < z < 1,
χ(z) = 0 for z ≥ 1.

Wedenote byMε the unique solution to the equation 2εz = χ(z/M0)which obviously
satisfies Mε ≤ M0. Finally, the diffusion coefficients are regularised by replacing F

by Fε,

Fε = (
Fk,ε

)
k≥1 , Fk,ε(x, �, ϑ,u) = χ

(
ε

�
− 1

)
χ

(
|u| − 1

ε

)
Fk(x, �, ϑ,u).

Let us start with a precise formulation of the problem.

• Regularized equation of continuity.

∫ ∞

0

∫

Q

[
�∂tϕ + �u · ∇ϕ

]
dx dt

= ε

∫ ∞

0

∫

Q

[∇� · ∇ϕ − 2�ϕ
]
dx dt − 2ε

∫ ∞

0

∫

Q
Mεϕ dx dt

(3.1)

for any ϕ ∈ C∞
c ((0,∞) × Q) P-a.s.

• Regularized momentum equation.

∫ ∞
0

∂tψ

∫

Q
�u · ϕ dx dt +

∫ ∞
0

ψ

∫

Q
�u ⊗ u : ∇ϕ dx dt

+
∫ ∞
0

ψ

∫

Q
pδ(ϑ, �) div ϕ dx dt

−
∫ ∞
0

ψ

∫

Q
S(ϑ,∇u) : ∇ϕ dx dt − ε

∫ ∞
0

ψ

∫

Q
�u · �ϕ dx dt

− 2ε
∫ ∞
0

ψ

∫

Q
�u · ϕ dx dt

= −
∫ ∞
0

ψ

∫

Q
�Fε(�, ϑ,u) · ϕ dx dW

(3.2)
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1138 D. Breit et al.

for any ψ ∈ C∞
c ((0,∞)), ϕ ∈ C∞(Q;R3) P-a.s.

• Regularized entropy balance.

−
∫ ∞
0

∫

Q

[
�sδ(�, ϑ)∂tψ + �sδ(�, ϑ)u · ∇ψ

]
ϕ dxdt

≥
∫ ∞
0

∫

Q

1

ϑ

[
S(ϑ, ∇u) : ∇u + κδ(ϑ)

ϑ
|∇ϑ |2 + δ

1

ϑ2

]
ψ dx dt

+
∫ ∞
0

ψ

∫

Q

κδ(ϑ)∇ϑ

ϑ
· ∇ϕ dx dt

−
∫ ∞
0

ψ

∫

∂Q
ϕ
d(ϑ)

ϑ
(ϑ − �0) dH2 dt

− ε

∫ ∞
0

ψ

∫

Q

[(
ϑsM,δ(�, ϑ) − eM,δ(�, ϑ) − pM (�, ϑ)

�

) ∇�

ϑ

]
· ∇ϕ dx dt

+
∫ ∞
0

ψ

∫

Q

[
εδ

2ϑ
(β�β−2 + 2)|∇�|2 + ε

1

�ϑ

∂ pM
∂�

(�, ϑ)|∇�|2 − εϑ4
]

ϕ dx dt

+
∫ ∞
0

ψ

∫

Q

( − 2ε� + 2εMε

) 1
ϑ

(
ϑsM,δ(�, ϑ) − eM,δ(�, ϑ) − pM (�, ϑ)

�

)
ϕ dx dt

(3.3)

for any ψ ∈ C∞
c ((0,∞)), ϕ ∈ C∞(Q;R3) P-a.s.

• Regularized total energy balance.

−
∫ ∞
0

∂tψ

(∫

Q
Eδ(�, ϑ, u) dx

)
dt +

∫ ∞
0

ψ

∫

Q
εϑ5 dt

+2ε
∫ T

0
ψ

∫

Q

[
δ�2 + δ�

� − 1
�� + 1

2
�|u|2

]
dx dt

+
∫ ∞
0

ψ

∫

∂Q
d(ϑ − �0) dH2 dt

=
∫ ∞
0

∫

Q

δ

ϑ2 ψ dx dt +
∫ ∞
0

ψεMε

∫

Q

(
2δ� + δ�

� − 1
��−1 + 1

2
|u|2

)
dx dt

+ 1

2

∫ T

0
ψ

(∫

Q

∑

k≥1

�|Fk,ε(�, ϑ, u)|2 dx

)
dt

+
∫ ∞
0

ψ

∫

Q
�Fε(�, ϑ, u) · u dW dx (3.4)

holds for any ψ ∈ C∞
c (0,∞) P-a.s., where we have set

Eδ = 1

2
�|u|2 + �eδ(�, ϑ) + δ

(
�2 + 1

� − 1
��

)
.

We have the following result.
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Proposition 3.1 Let ε, δ > 0 be given. Then there exists a weak martingale solution
[�ε, ϑε,uε] to (3.1)–(3.4). In addition, for n ∈ N and everyψ ∈ C∞

c ((0,∞)),ψ ≥ 0,
the following generalized energy inequality holds true

−
∫ ∞
0

∂tψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ) dx

]n
dt

+ nϑ

∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

Q
σε,δ dx dt

+ n
∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

Q
εϑ5 dt

+ n
∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

∂Q

d(ϑ)

ϑ

(
ϑ − ϑ

)
(ϑ − �0) dH2 dt

+ 2εnϑE

∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

Q

[

δ�2 + δ���

� − 1
+ 1

2
�|u|2

]

dx dt

+ 2εn
∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

Q
�
( pM

�ϑ
+ eM,δ

ϑ
− sM,δ

)(
�, ϑ

)
dx dt

≤nε

∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

Q

ϑ

ϑ2

(
eM,δ(�, ϑ) + �

∂eM
∂�

(�, ϑ)

)
∇� · ∇ϑ dx dt

+ n
∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

Q
�Fε(�, ϑ, u) · u dW dx

+ n

2

∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
(∫

Q

∑

k≥1

�|Fk,ε(�, ϑ, u)|2 dx

)
dt

+ nεMε

∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

Q

(

2δ� + δ���−1

� − 1
+ 1

2
|u|2

)

dx dt

+ nϑεMε

∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

Q

(
pM
�ϑ

+ eM,δ

ϑ
− sM,δ

)(
�, ϑ

)
dx dt

+ n(n − 1)

2

∫ ∞
0

ψ
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−2 ∞∑

k=1

∫ τ2

τ1

(∫

Q
�Fk,ε(�, ϑ, u) · u dx

)2
dt .

(3.5)

Here we abbreviated

σε,δ = 1

ϑ

[
S(ϑ,∇u) : ∇u + κ(ϑ)

ϑ
|∇ϑ |2 + δ

2

(
ϑ�−1 + 1

ϑ2

)
|∇ϑ |2 + δ

1

ϑ2

]

+ εδ

2ϑ

(
β��−2 + 2

)
|∇�|2 + ε

∂ pM
∂�

(�, ϑ)
|∇�|2
�ϑ

+ ε
�

ϑ
|∇u|2,

and Eδ,ϑ
H = 1

2�|u|2 + Hϑ(�, ϑ) + δ
(
�2 + 1

�−1�
�
)
, where

Hδ,ϑ (�, ϑ) = �
(
eδ(�, ϑ) − ϑsδ(�, ϑ)

) = Hϑ(�, ϑ) + δ�ϑ − ϑ� log(ϑ) (3.6)

with Hϑ(�, ϑ) introduced in (2.2).

Proof Although there are some differences to system (4.24)–(4.27) from [1] the
method still applies (in particular, it is possible to allow an unbounded time inter-
val by working with spaces of the from Lq

loc([0,∞); X) and Cloc([, 0,∞); X) for
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1140 D. Breit et al.

Banach spaces X ) and we obtain the existence of a weak martingale solution to (3.1)–
(3.4). We remark, in particular, that the solution in [1] is constructed with respect to
some initial lawwhich does not play any role in our analysis. For simplicity we choose

�0 = 1, ϑ0 = 1, u0 = 0,

which satisfies all the required assumptions.
As far as the energy inequality is concerned, the required version can be derived

on the basic approximate level (even with equality) and it is preserved in the limit. In
fact, one can argue as in [1, Section 4.1] to derive the version for n = 1, while the case
n ≥ 2 follows easily from Itô’s formula. It is worth to point out that this procedure to
test the continuity equation (3.1) with 1

2 |u|2 and 2δ� + δ�
�−1�

� gives rise to the terms

2εnϑE

∫ ∞

0
ψ

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

Q

[
δ�2 + δ�

� − 1
�� + 1

2
�|u|2

]
dx dt

and

nεMε

∫ ∞

0
ψ

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1
∫

Q

(
2δ� + δ�

� − 1
��−1 + 1

2
|u|2

)
dx dt

in (3.5) which are new in comparison to [1]. Also, the term

nϑεMε

∫ ∞

0
ψ

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1

∫

Q

(
pM (�, ϑ)

�ϑ
+ eM,δ(�, ϑ)

ϑ
− sM,δ(�, ϑ)

)
dx dt,

which arises due to the last line in (3.3), does not appear in [1]. Finally, as in (1.10) we
have the boundary term due to non-homogeneous boundary conditions being incor-
porated already in (3.3). ��

3.2 Uniform-in-time estimates

The first step is now to derive estimates which are uniform in time.

Proposition 3.2 Let (�, ϑ,u) be a weak martingale solution to (3.1)–(3.4). Assume
that

ess lim sup
t→0+

E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(t, ·) dx

]n
< ∞ (3.7)

for some n ∈ N. Then for any ϑ > 0 and ε ≤ ε0 there is E∞ = E∞(n, ε, δ, ϑ) such
that

E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n
≤ E∞, (3.8)
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as well as

E

∫ τ

0

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1(∫

Q
σε,δ dx +

∫

Q
εϑ5 dx

)
dt

≤ E∞(1 + τ) (3.9)

for a.a. τ > 0.

Proof The energy inequality in (3.5) yields for a.a. 0 < τ1 < τ2 (approximating
ψ = I(τ1,τ2) by a sequence of functions (ψm) ⊂ C∞

c (0,∞))

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ2, ·) dx

]n
+ nϑ

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q
σε,δ dx

+ n
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1( ∫

Q
εϑ5 dx +

∫

∂Q

d(ϑ)

ϑ

(
ϑ − ϑ

)
(ϑ − �0) dH2

)
dt

+ 2εnϑE

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

[
δ�2 + δ�

� − 1
�� + 1

2
�|u|2

]
dx dt

+ 2εn
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q
�

(
eM,δ + �

∂eM,δ

∂�

)(
�, ϑ

)
dx dt

≤
[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ1, ·) dx

]n

+ nε

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

ϑ

ϑ2

(
eM,δ + �

∂eM,δ

∂�
)(�, ϑ)

)
∇� · ∇ϑ dx dt

+ n
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

(
δ

ϑ2 + εϑϑ4
)
dx dt

+ n
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q
�Fε(�, ϑ, u) · u dW dx

+ n

2

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1(∫

Q

∑

k≥1

�|Fk,ε(�, ϑ, u)|2 dx

)
dt

+ εMεn
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

(

2δ� + δ���−1

� − 1
+ 1

2
|u|2

)

dx dt

+ εMεnϑ

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

(
pM
�ϑ

+ eM,δ

ϑ
− sM,δ

) (
�, ϑ

)
dx dt

+ n(n − 1)

2

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−2 ∞∑

k=1

( ∫

Q
�Fk,ε(�, ϑ,u) · u dx

)2
dt

=: (I ) + (I I ) + · · · + (V I I I ). (3.10)
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Let us first consider the terms on the left-hand side. We have

n
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

∂Q

d(ϑ)

ϑ

(
ϑ − ϑ

)
(ϑ − �0) dH2 dt

≥ n
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

∂Q
ϑ2 dH2 dt

− cn
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1

≥ n
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

∂Q
ϑ2 dH2 dt

− κn
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n
dt − cκ(τ2 − τ1)

for all κ > 0 as well as

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

[
δ�2 + δ�

� − 1
�� + 1

2
�|u|2

]
dx dt

≥ c
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n
dt − c(τ2 − τ1)

− c
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

(
ϑ4 + ϑ� log(ϑ)

)
dt

≥ c
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n
dt − cκ(τ2 − τ1)

− κ

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

(
εϑ5 + δ�2 + δ

1

ϑ3

)
dt

due to (2.13). Finally, due to (2.9)–(2.12),

pM (�, ϑ)

ϑ
+ �eM,δ(�, ϑ)

ϑ
− �sδ,M (�, ϑ)

is bounded from below by a negative constant, such that the corresponding term can
be bounded from below by −c(τ2 − τ1).
Using (2.1),

∫
Q � dx = Mε ≤ M0 and (2.13) the terms (V ) and (V I I I ) can be

bounded by

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1

+
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−2 ∫

Q
�|u|2 dx dt

≤ c
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1

+ c(τ2 − τ1)
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+ c
∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q
ϑ� log(ϑ) dt

≤ κ

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n
+ cκ(τ2 − τ1)

+ κ

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

(
εϑ5 + δ�2 + δ

1

ϑ3

)
dt,

where κ > 0 is arbitrary. Clearly, (I V ) vanishes after taking expectations. On account
of (2.9)–(2.12) we have

pM (�, ϑ)

�ϑ
+ eM,δ(�, ϑ)

ϑ
− sM,δ(�, ϑ) � 1 + �2/3

ϑ
≤ κ�� + κ

1

ϑ3 + cκ . (3.11)

Consequently, the estimate for (V I I ) is analogous to one for (V ) and (V I I I ) above.
We quote from [8, equ. (3.107)]

(I I ) ≤ ε

∫

Q

1

ϑ2 g

∣∣∣
∣eM (�, ϑ) + �

∂eM (�, ϑ)

∂�

∣∣∣
∣|∇�||∇ϑ | dx

≤ 1

2

∫

Q

[
δ

(
ϑ�−2 + 1

ϑ3

)
|∇ϑ |2 + εδ

ϑ

(
���−2 + 2

)
|∇�|2

]
dx (3.12)

provided we choose ε = ε(δ) > 0 small enough. Finally, we clearly have

(I I I ) ≤ κ

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

(
εϑ5 + δ

1

ϑ3

)
dt

+ cκ

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1

dt

≤ κ

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q

(
εϑ5 + δ

1

ϑ3

)
dx dt

+ κ

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n
dt + cκ(τ2 − τ1).

Combing everything and choosing κ small enough and noticing that δ 1
ϑ3 ≤ σε,δ yields

E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ2, ·) dx

]n
+ DE

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1 ∫

Q
σε,δ dx

+ DE

∫ τ2

τ1

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1( ∫

Q
εϑ5 dx +

∫

∂Q
ϑ2 dH2

)
dt

≤ E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ1, ·) dx

]n
+ c(τ2 − τ1) (3.13)
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for all 0 ≤ τ1 < τ2 with some D > 0. We obtain in particular

E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ2, ·) dx

]n
+ D

∫ τ2

τ1

E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n
dx

≤ E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ1, ·) dx

]n
+ C(τ2 − τ1).

Applying the Gronwall lemma from [3, Lemma 3.1] and recalling hypothesis (3.7) we
obtain

E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n
≤ exp(−Dt)

(
E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(0, ·) dx

]n
− C

D

)
+ C

D

≤ E∞

uniformly in τ > 0. Using this in (3.13) shows

E

∫ τ

0

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]n−1(∫

Q
σε,δ dx +

∫

Q
εϑ5 dx +

∫

∂Q
ϑ2 dH2

)
dt

≤ E∞(1 + τ)

by possibly enlarging E∞. ��

3.3 Stationary solutions

Based onProposition 3.2 themethod from [17] becomes available andwe can construct
a stationary solution to (3.1)–(3.4) following the ideas from [3] to which we refer for
further details. Different to Section 2.3 we consider stationary solutions sitting on the
space of trajectories that are defined on the real line R rather than the interval [0,∞).
We will call them entire stationary solutions. This construction is clearly stronger and
hence we obtain also stationary solutions in the sense of Definitions 2.1.

Clearly, Definition 2.1 can be easily modified for solutions ((�,F, (Ft )t≥−T ,P),

�, ϑ,u,W ) being defined on [−T ,∞) for some T > 0. An entire solution is than an
object

((�,F, (Ft )t∈R,P), �, ϑ,u,W )

which is a solution on [−T ,∞) for any T > 0. It takes values in the trajectory space

T = T� × Tϑ × Tu × TW ,

T� =
(
L2
loc(R;W 1,2(Q; Rd)), w

)
∩ Cweak,loc(R; L�(Q)),

Tϑ =
(
L2
loc(R;W 1,2(Q; Rd)), w

)
∩

(
L∞
loc(R; L4(Q)), w∗)

Tu =
(
L2
loc(R;W 1,2

0 (Q; Rd)), w
)

, TW = Cloc,0(R;U0),
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where Cloc,0 denotes the space of continuous functions vanishing at 0. We denote by
P(T ) the set of Borel probability measures on T .

We say that an entire solution to (3.1)–(3.4) of the problem (3.1)–(3.4) is stationary
if its law LT [�, ϑ,u,W ] is shift invariant in the trajectory space T , meaning

LT
[
Sτ [�, ϑ,u,W ]] = LT [�, ϑ,u,W ] for any τ ∈ R,

with the time shift operator

Sτ [�, ϑ,u,W ](t) = [�(t + τ), ϑ(t + τ),u(t + τ),W (t + τ) − W (τ )], t ∈ R, τ ∈ R.

Proposition 3.3 Let the assumptions of Theorem 2.1 be valid and let ε ≤ ε0 and
δ, ϑ > 0 be given. Let

(
(�,F, (Ft )t≥0,P), �, ϑ,u,W )

be a weak martingale solution of the problem (3.1)–(3.4) (in the sense of Definition
2.1 with the obvious modifications) such that

ess lim sup
t→0+

E

[
Eδ,ϑ
H (t)4

]
< ∞. (3.14)

Then there is a sequence Tn → ∞ and an entire stationary solution

(
(�̃, F̃, (F̃t )t∈R, P̃), �̃, ϑ, ũ, W̃ )

such that

1

Tn

∫ Tn

0
LT

[
St

[
�, ϑ,u,W

]]
dt → LT

[
�̃, ũ, ϑ̃, W̃

]
narrowly as n → ∞.

Proof Let [�,u,W ] be a dissipative martingale solution on [0,∞) defined on some
stochastic basis (�,F, (Ft )t≥0,P) and satisfying (3.14). We define the probability
measures

νS ≡ 1

S

∫ S

0
LT (St [�, ϑ,u,W ]) dt ∈ P(T ). (3.15)

We tacitly regard functions defined on time intervals [−t,∞) as trajectories on R by
extending them to s ≤ −t by the value at −t . As in [3, Prop. 5.1] we can show that
the family of measures {νS; S > 0} is tight on T . In fact, Proposition 3.2 yields

E
[
sups∈[−T ,T ] Emδ (s + t)

] + E

[∫ T
−T∨−t

∫
Q

(
|∇�|2 + |∇ϑ |2 + |∇u|2

)
(s + t) dx ds

]

� E
[Em(0)

] + c.
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This gives the same bounds on � and u as in [3] and we control additionally

E

[

sup
s∈[−T ,T ]

( ∫

Q
ϑ4 dx

)m

(s + t)

]

+ E

[∫ T

−T∨−t

∫

Q
|∇ϑ |2(s + t) dx

]

which implies tightness of 1
S

∫ S
0 LT (St [ϑ]) dt . Note also that we have control of ∇�

due to ε > 0 which is different from [3].
Due to [3, Lemma 5.2], if the narrow limit of

ντ,Sn ≡ 1

Sn

∫ Sn

0
L(St+τ [�,u,W ]) dt

in P(T ) as n → ∞ exists for some τ = τ0 ∈ R then it exists for all τ ∈ R and is
independent of the choice of τ . Applying Jakubowski–Skorokhod’s theorem [18], we
infer the existence of a sequence Sn → ∞ and ν ∈ P(T ) so that ν0,Sn → ν narrowly
inP(T ) as well as ντ,Sn → ν narrowly for all τ ∈ R. Accordingly, the limit measure
ν is shift invariant in the sense that for every G ∈ BC(T ) and every τ ∈ R we have
ν(G ◦ Sτ ) = ν(G). To conclude the proof of Theorem 3.3, it remains to show that ν

is a law of an entire solution to (3.1)–(3.4).
First of all, we can argue as in [3, Prop. 5.3] to show that for any S > 0

νS ≡ 1

S

∫ S

0
L(St [�,u,W ]) dt ∈ P(T )

is a dissipative martingale solution on (−T ,∞), provided (�, ϑ,u,W ) is a dissipative
martingale solution on (−T ,∞) defined on some probability space (�,F ,P). The
idea is to use that (3.1), (3.2) and (3.4) can be written as measurable mappings on the
paths space (see the proof of [3, Prop. 5.3] for how to include the stochastic integral).
Unfortunately, this is not true for the quantities hidden in σε,δ appearing in(3.4) and
(3.13). However, they are measurable on a subset, where the laws L(St [�,u,W ]) are
supported. Recall from (3.9) that σε,δ belongs a.s. to L1 in space and locally in time
for any solution. This is enough to arrive at the same conclusion.

To finish the proof we argue that the limit ν is the law of an entire solution to (3.1)–
(3.4). Now we consider the measures ντ,Sn−τ , n = 1, 2, . . . , and τ > 0. According to
the previous considerations, ντ,Sn−τ is a dissipative martingale solution to (3.1)–(3.4)
on [−τ,∞) and the narrow limit as n → ∞ exists and equals to ν. Now we take a
sequence τm → ∞ and choose a diagonal sequence such that

ντm ,Sn(m)−τm → ν as m → ∞.

Applying Jakubowski–Skorokhod’s theorem, we obtain a sequence of approximate
processes [�̃m, ũm, W̃m] converging a.s. to a process [�̃, ũ, W̃ ] in the topology of T .
Moreover, the law of [�̃m, ũm, W̃m] is ντm ,Sn(m)−τm and necessarily the law of [�̃, ũ, W̃ ]
is ν. By [2, Thm. 2.9.1] it follows that equations (3.1)–(3.4) as well as (3.5) also hold
on the new probability space. The limit procedure on this level is quite easy due to the
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artificial viscosity: By definition of T� the sequence �̃n is compact on L� . Moreover,
the strong convergence of ϑ̃n can be proved exactly as in the deterministic existence
theory (see [8, Sec. 3.5.3]). This is enough to pass to the limit in all nonlinearities
in (3.1), (3.2) and (3.4). The terms in (3.3) and (3.5) which are not compact (those
related to the quantity σε,δ) are convex functions and hence can be dealt with by
lower-semicontinuity. ��

4 Asymptotic limit

In this section we pass to the limit and the artificial viscosity and the artificial pressure
respectively. They crucial point is a uniform-in-time estimate, see (4.7) and (4.8)
below, which preserves stationarity in the limit. It has to be combined with pressure
estimates which differ on both levels. The key ingredient for estimates (4.7) and (4.8)
is the non-homogeneous boundary condition for the temperature, cf. (1.5).

4.1 The vanishing viscosity limit

In this section we start with a stationary solution (�, ϑ,u) to (3.1)–(3.4) existence of
which is guaranteed by Proposition 3.3. We prove uniform-in-time estimates and pass
subsequently to the limits in ε and δ.
The entropy balance (3.3) yields after taking expectations and using stationarity

E

∫

Q

1

ϑ

[
S(ϑ,∇u) : ∇u + κδ(ϑ)

ϑ
|∇ϑ |2 + δ

1

ϑ2

]
dx

≤ E

∫

Q

(
− 2ε� + 2εMε

)
1

ϑ

(
pM (�, ϑ)

�
+ eM,δ(�, ϑ) − ϑsM,δ(�, ϑ)

)
ϕ dx

+ E

∫

Q
εϑ4 dx + E

∫

∂Q

d(ϑ)

ϑ
(ϑ − �0) dH2.

On account of (3.11) the first two terms can be bounded by

cE

[ ∫

Q
δ�� dx + 1

]
+ 1

4
E

∫

Q
δ
1

ϑ3 dx .

The estimate is independent of δ if we choose ε ≤ δ. Similarly, we obtain

E

∫

∂Q

d(ϑ)

ϑ
(ϑ − �0) dH2 ≤ cE

∫

∂Q

(
ϑ + |∇ϑ |

)
+ c

≤ cE

[ ∫

Q
ϑ4 dx + 1

]
+ 1

4
E

∫

Q

κδ(ϑ)

ϑ
|∇ϑ |2 dx
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using (1.6) and the trace theorem. In conclusion,

E

∫

Q

1

ϑ

[
S(ϑ, ∇u) : ∇u + κδ(ϑ)

ϑ
|∇ϑ |2 + δ

1

ϑ2

]
dx� E

[ ∫

Q

(
δ�� + ϑ4

)
dx

]
+ 1

� E

[ ∫

Q
Eδ,ϑ
H (�, ϑ) dx

]
+ 1 (4.1)

independently of ε and δ recalling also (2.13) and
∫
Q � dx ≤ Mε ≤ M0. By (2.13)

this implies for any ξ > 0

E

[ ∫

Q
Eδ,ϑ
H (�, ϑ) dx

]
≤ cE

[ ∫

Q

(
δ�� + �5/3 + ϑ4 + δ�| log(ϑ)|

)
dx + 1

]

≤ cE

[ ∫

Q

(
δ�� + �5/3 + ϑ4) dx

]
+ ξ E

[ ∫

Q
δ
1

ϑ3 dx

]
+ cξ

≤ cE

[ ∫

Q

(
δ�� + �5/3 + ϑ4

)
dx

]

+ cξ E

[ ∫

Q
Eδ,ϑ
H (�, ϑ) dx

]
+ cξ

such that

E

[ ∫

Q
Eδ,ϑ
H (�, ϑ) dx

]
� E

[ ∫

Q

(
δ�� + �5/3 + ϑ4

)
dx

]
+ 1 (4.2)

independently of ε and δ.
In (3.5) we choose n = 2, apply expectations and use stationarity to obtain

2ϑE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q
σε,δ dx

+ 2E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q
εϑ5 dx

+ 2E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

∂Q

d

ϑ

(
ϑ − ϑ

)
(ϑ − �0) dH2

+ 4εϑE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q

[
δ�2 + δ�

� − 1
�� + 1

2
�|u|2

]
dx

+ 4εE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q
�

(
p(�, ϑ)

�ϑ
+ eδ(�, ϑ)

ϑ
− sδ(�, ϑ)

)
dx

≤ 2εE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q

ϑ

ϑ2

(
eM,δ(�, ϑ) + �

∂eM
∂�

(�, ϑ)

)
∇� · ∇ϑ dx

+ E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]( ∫

Q

∑

k≥1

�|Fk,ε(�, ϑ,u)|2 dx

)
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+ 2εMεE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q

(
2δ� + δ�

� − 1
��−1 + 1

2
|u|2

)
dx

+ 2εMεϑE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q

(
p(�, ϑ)

�ϑ
+ eδ(�, ϑ)

ϑ
− sδ(�, ϑ)

)
dx

+
∞∑

k=1

E

(∫

Q
�Fk,ε(�, ϑ,u) · u dx

)2

=: (I ) + (I I ) + (I I I ) + (I V ) + (V ). (4.3)

Arguing as in the proof of Proposition 3.2 but paying attention to the ε- and δ-
dependence we have

(I ) ≤ 1

4
E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q
σε,δ dx,

(I I ) ≤ cE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]
,

(I I I ) ≤ εϑE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q

[
δ�2 + δ�

� − 1
��

]
dx

+ cE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]
+ 1

4
E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q
σε,δ dx,

(I V ) ≤ εϑE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q

δ�

� − 1
�� dx + c

+ 1

4
E

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

] ∫

Q
σε,δ dx,

(V ) ≤ cE

[ ∫

Q
Eδ,ϑ
H (�, ϑ)(τ, ·) dx

]
.

Again these estimates are also uniform in δ if we choose ε small enough compared to
δ. Recalling (2.13) and

∫
Q � dx ≤ Mε ≤ M0 we thus obtain

‖ϑ‖L6(Q)

<∼ ‖ϑ‖W 1,2(Q)

<∼ 1 +
∫

Q

ϑ

ϑ

κ(ϑ)

ϑ
|∇ϑ |2dx +

∫

∂Q
ϑ2 dH2,

E

[∫

Q
Eδ,ϑ
H (�, ϑ, u) dx‖ϑ‖L6(Q)

]
>∼ E

[
‖ϑ‖4L4(Q)

‖ϑ‖L6(Q)

]
− E

[
‖ϑ‖L6(Q)

]

≥ E

[
‖ϑ‖5L30/7(Q)

]
− E

[
‖ϑ‖L6(Q)

]
.
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This, inserted in left-hand side of (4.3) yields

E

[
‖ϑ‖30/7

L30/7(Q)

]
+ E

[∫

Q
Eδ,ϑ
H (�, ϑ,u) dx

∫

Q
σε,δ dx

]

<∼ E

[ ∫

Q
Eδ,ϑ
H (�, ϑ) dx

]
+ 1.

(4.4)

independently of ε and δ using also (4.1).
In order to close the estimate why apply pressure estimates which now can depend

on δ. Let us introduce the so–called Bogovskii operator B enjoying the following
properties:

B : Lq
0(Q) ≡

{
f ∈ Lq(Q)

∣∣∣∣

∫

Q
f dx=0

}
→ W 1,q

0 (Q, Rd), 1 < q < ∞,

divB[ f ] = f ,

‖B[ f ]‖Lr (Q)
<∼ ‖g‖Lr (Q;Rd ) if f = div g, g · n|∂Q = 0, 1 < r < ∞,

(4.5)

see [14, Chapter 3] or [15]. Arguing as in [4, Section 5] (but replacing ∇�−1 by the
Bogovskii operator B) we obtain

E

[∫
Q

[
p(�, ϑ)� + 1

3�
2|u|2] dx

]

= c(M0)E

[∫
Q

(
p(�, ϑ) + 1

3�|u|2
)

dx

]

−E

[∫
Q

(
�u ⊗ u − 1

3�|u|2I
)

: ∇B(� − Mε) dx

]

+E

[∫
Q

(
4
3μ(ϑ) + η(ϑ)

)
div u � dx dt

]
+ E

[∫
Q �u · B div(�u) dx

]

+2εE
[∫

Q �εuε · B [
�ε − Mε

]
dx

]
+ εE

[∫
Q �2

ε div uε dx
]

=: (I ) + (I I ) + (I I I ) + (I V ) + (V ) + (V I ).

The terms (II) and (IV)–(VI) can be estimated as in [4] (note that they don’t contain
ϑ). In fact, we have by (2.13) and the continuity of ∇B

(I I ) � E‖√�u‖L2
x
‖u‖L6

x
‖√�∇B(� − Mε)‖L3

x

� E

∫

Q
EH (�, ϑ,u) dx‖∇u‖2L2

x
+ E‖√�∇B(� − Mε)‖2L3

x

� 1 + E

∫

Q
Eδ,ϑ
H (�, ϑ,u) dx
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provided � is large enough. Furthermore, we obtain for some α ∈ (0, 1)

(I V ) � E‖�u‖2L2
x

� E‖�‖2L3
x
‖u‖2L6

x
� E‖�‖2L3

x
‖∇u‖2L2

x

� E‖�‖2αL1
x
‖�‖2(1−α)

L� ‖∇u‖2L2
x

� E‖�‖2(1−α)

L� ‖∇u‖2L2
x

� E

∫

Q
Eδ,ϑ
H (�, ϑ,u) dx‖∇u‖2L2

x
+ E‖∇u‖2L2

x

� 1 + E

∫

Q
Eδ,ϑ
H (�, ϑ,u) dx

using again (2.13),
∫
Q � dx ≤ Mε ≤ M0, (4.4) as well as (4.1). We can estimate (V )

and (V I ) along the same lines. Using (2.14) and (2.16) we have for � large enough

(I I I ) � E

[∫

Q

(
ϑ4 + �4 + |∇u|2) dx

]
� E

[
1 +

(∫

Q
Eδ,ϑ
H (�, ϑ,u) dx

)]

due to (2.13) (4.1).Obviously, the same estimate holds for (I) such thatwe can conclude

E

[∫

Q

(
��+1 + ϑ4� + �2|u|2) dx

]
� E

[
1 +

∫

Q

(
�� + ϑ4 + �|u|2) dx

]
, (4.6)

using also (4.2). Obviously, we have

∫

Q

(
�� + ϑ4) dx ≤ ξ

∫

Q

(
��+1 + ϑ30/7) dx + c(ξ),

E

[∫

Q
�|u|2 dx

]
≤ ξ̃E

[∫

Q
�2|u|2 dx

]
+ c(ξ̃ )E

[∫

Q
|∇u|2 dx

]

≤ ξ̃E

[∫

Q
�2|u|2 dx

]
+ c(ξ̃ )

∫

Q

(
�� + ϑ4 + 1

)
dx

for any ξ, ξ̃ > 0 using again (4.1). Consequently, all terms can be absorbed in the
left-hand side and we end up with

E

[∫

Q

[
��+1 + ϑ4� + ϑ30/7 + �2|u|2

]
dx

]
≤ c (4.7)

as well as

E

[(∫

Q
Eδ,ϑ
H (�, ϑ,u) dx

) ∫

Q
σε,δ dx

]
≤ c (4.8)

using (4.1).
Estimates (4.7) and (4.8) are sufficient to pass to the limit in (3.1)–(3.4) arguing

as in [1, Section 5] (in fact, one has to combine ideas from [2] and [8]). In the limit
ε → 0, we obtain the following system.
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• Equation of continuity.

∫ ∞

0

∫

Q

[
�∂tϕ + �u · ∇ϕ

]
dx dt = 0 (4.9)

for any ϕ ∈ C∞
c ((0,∞) × Q) P-a.s.

• Momentum equation.

∫ ∞
0

∂tψ

∫

Q
�u · ϕ dx dt +

∫ ∞
0

ψ

∫

Q
�u ⊗ u : ∇ϕ dx dt

+
∫ ∞
0

ψ

∫

Q
pδ(ϑ, �) divϕ dx dt

−
∫ ∞
0

ψ

∫

Q
S(ϑ, ∇u) : ∇ϕ dx dt = −

∫ ∞
0

ψ

∫

Q
�F(�, ϑ, u) · ϕ dx dW

(4.10)

for any ψ ∈ C∞
c ((0,∞)), ϕ ∈ C∞(Q;R3) P-a.s.

• Entropy balance.

−
∫ ∞

0

∫

Q

[
�sδ(�, ϑ)∂tψ + �sδ(�, ϑ)u · ∇ψ

]
ϕ dxdt

≥
∫ ∞

0

∫

Q

1

ϑ

[
Sδ(ϑ,∇u) : ∇u + κδ(ϑ)

ϑ
|∇ϑ |2 + δ

1

ϑ2

]
ψ dx dt

+
∫ ∞

0

∫

Q

κδ(ϑ)∇ϑ

ϑ
· ∇ψ dx dt −

∫ ∞

0
ψ

∫

∂Q

d

ϑ
(ϑ − �0) dH2 dt

(4.11)

for any ψ ∈ C∞
c ((0,∞)), ϕ ∈ C∞(Q;R3) P-a.s.

• Total energy balance.

−
∫ T

0
∂tψ

( ∫

Q
Eδ(�, ϑ,u) dx

)
dt +

∫ ∞

0
ψ

∫

∂Q
d(ϑ − �0) dH2 dt

= ψ(0)
∫

Q
Eδ(�0, ϑ0,u0) dx +

∫ T

0

∫

Q

δ

ϑ2ψ dx dt

+ 1

2

∫ T

0
ψ

( ∫

Q

∑

k≥1

�|Fk(�, ϑ,u)|2 dx

)
dt

+
∫ T

0
ψ

∫

Q
�F(�, ϑ,u) · u dW dx

(4.12)

for any ψ ∈ C∞
c (0,∞) P-a.s.

To summarize, we deduce the following.
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Proposition 4.1 Let δ > 0 be given. Then there exists a stationary weak martingale
solution [�δ, ϑδ,uδ] to (4.9)–(4.12). Moreover, we have the estimates

E

[
‖ϑ‖30/7

L30/7(Q)

]
+ E

[∫

Q
Eδ,ϑ
H (�, ϑ,u) dx

∫

Q
σδ dx

]
(4.13)

<∼ E

[ ∫

Q
Eδ,ϑ
H (�, ϑ) dx

]
+ 1,

E

∫

Q
σδ dx � 1 + E

∫

Q
Eδ,ϑ
H (�, ϑ,u) dx, (4.14)

uniformly in δ, where

σδ = 1

ϑ

[
S(ϑ,∇u) : ∇u + κ(ϑ)

ϑ
|∇ϑ |2 + δ

2

(
ϑ�−1 + 1

ϑ2

)
|∇ϑ |2 + δ

1

ϑ2

]
.

Corollary 4.1 The solution from Proposition 4.1 satisfies the equation of continuity in
the renormalised sense.

4.2 The vanishing artificial pressure limit

Though (4.13) and (4.14) are uniform in δ, the final estimates (4.7) and (4.8) are
not. Again we have to close the estimate by some pressure bounds. Let (�, ϑ,u) be
a stationary solution to (4.9)–(4.12) as obtained in Proposition 4.1. Arguing as in [4,
Section 6] (replacing again ∇�−1 by the Bogovskii operator B) we have

E

[∫

Q

[
pδ(�, ϑ)�α + �1+α

δ |u|2
]
dx

]

≤ c(M0)

(
E

[∫

Q

[
1

2
�|u|2 + pδ(�, ϑ)

]
dx

]
+ 1

)

+ E

[∫

Q

(
4

3
μ(ϑ) + η(ϑ)

)
div u �α dx

]

+ E

[∫

Q

(
�u ⊗ u − 1

3
�|u|2I

)
: ∇B

[
�α

]
dx

]

+ E

[∫

Q
�u · B[div(�αu) + (α − 1)�α div u] dx

]

=: (I ) + (I I ) + (I I I ) + (I V ),

(4.15)

where α > 0 will be chosen sufficiently small. As in the proof of [4, Prop. 6.1] we
obtain

(I ) + (I I I ) + (I V ) � E

[∫

Q
Eδ,ϑ
H (�, ϑ,u) dx

∫

Q
|∇u|2 dx

]
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+ E

[∫

Q
Eδ,ϑ
H (�, ϑ,u) dx

]
+ 1.

Also we see that

(I I I ) � E

[∫

Q
|∇u|2 dx

]
+ E

[∫

Q

(
�γ + ϑ4) dx

]
+ 1

� E

[∫

Q
|∇u|2 dx

]
+ E

[∫

Q
Eδ,ϑ
H (�, ϑ,u) dx

]
+ 1

choosing α small enough and using (2.14) and (2.16). Combining these estimate with
(4.13) and (4.14) we conclude

E

[ ∫

Q

(
δ��+α+�γ+α + ϑ4�α + �1+α|u|2) dx

]

� E

[
1 +

∫

Q

(
δ�� + �γ + ϑ4 + �|u|2) dx

]
,

(4.16)

recalling also (4.2). As in the proof of (4.7) and (4.8) we deduce

E

[∫

Q

[
�γ+1 + ϑ4� + ϑ30/7 + �2|u|2

]
dx

]
≤ c (4.17)

E

[(∫

Q
Eδ,ϑ
H (�, ϑ,u) dx

) ∫

Q
|∇u|2 dx

]
≤ c, (4.18)

E

[(∫

Q
Eδ,ϑ
H (�, ϑ,u) dx

) ∫

Q
σδ dx

]
≤ c, (4.19)

using (4.14). With estimates (4.17) and (4.18) at hand we can follow the lines of [1,
Section 6] to pass to the limit δ → 0 in (4.9) and (4.10). The limit in (4.9) and (4.10)
can be performed as in [1, Section 7] due to (4.17) and (4.19). This finishes the proof
of Theorem 2.1.
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