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Abstract

We give a comprehensive study of the analytic properties and long-time behavior of
solutions of a reaction-diffusion system in a bounded domain in the case where the
nonlinearity satisfies the standard monotonicity assumption. We pay the main attention
to the supercritical case, where the nonlinearity is not subordinated to the linear part
of the equation trying to put as small as possible amount of extra restrictions on this
nonlinearity. The properties of such systems in the supercritical case may be very
different in comparison with the standard case of subordinated nonlinearities. We
examine the global existence and uniqueness of weak and strong solutions, various
types of smoothing properties, asymptotic compactness and the existence of global
and exponential attractors.
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1 Introduction

We study the following reaction-diffusion system in a bounded domain € ¢ R? with
smooth boundary:

du=DAu—f) +g u|_,=up ul,,=0 (1.1)

(endowed with the Dirichlet boundary conditions). Here u = (uy,---,ug) is an
unknown vector-valued function, D := (d; j)f." j=1 is a given constant diffusion matrix
and f(u) := (fi(m), -, fr(w)) and g := (g1, -, gr) are given nonlinearity and
external forces respectively.

Equations of the form (1.1) model various classical phenomena in modern science
(e.g., heat conduction, chemical kinetics, various quantum effects (Ginzburg-Landau
equations), mathematical biology (Fitz-Hugh-Nagumo or Keller-Segel equations (if
we allow the nonlinearity to depend also on V,u), etc.) and have been intensively
studied from both mathematical and applied points of view, see [3,8,10,15,24,30,34,39,
41,43] and references therein. In a sense, this is the most studied and somehow simplest
model example of an evolutionary PDE which may generate non-trivial dynamics.

Since the analytic properties of the linear system (1.1) are completely understood,
the analogous properties for the nonlinear equation depend strongly on whether or not
we are able to treat the term f(u) as a perturbation. As usual, if we want to have global
existence of a solution, we need to find the proper a priori estimates, usually with the
help of energy functionals or some "wisely" chosen Lyapunov type functionals. This,
in turn, requires some restrictions on the function f and matrix D (to prevent the finite-
time blow up of solutions). Then, if the found a priori estimates are strong enough
to treat the nonlinearity as a perturbation (the so-called subcritical case), the analytic
properties of the nonlinear equation is usually the same as for the dominating linear one
and more or less complete theory is available. In contrast to this, in the supercritical
case, the nonlinearity is strong enough to destroy the nice properties of the underlying
linear equation, for instance, to produce the finite-time blow up of initially smooth
solutions (despite the fact that the "energy" remains bounded and dissipative, see
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Reaction-diffusion systems with supercritical... 3

[6] for such a phenomena in complex Ginzburg-Landau equation, [36] for chemical
kinetics equations or [25] for chemotaxis models). Usually, the sub/super criticality
of the considered equation is determined by the growth rate of the nonlinearity f(u)
which depends on a priori estimates available (through the choice of the phase space
for the problem) and the space dimension (through Sobolev embedding theorems).
Thus, the typical picture for equation (1.1) is the following: we have the so-called
critical growth exponent p = p.i; > 1 and an extra condition

[fw)] < C(1 + ul?), u € R 1.2)

on the nonlinearity and the equation is subcritical if p < p¢,iy, critical if p = periy
and supercritical if p > p.rir, see [3,8,39,41] for more details.

Note that in the scalar case k = 1, equation (1.1) possesses the maxi-
mum/comparison principle as well as a global Lyapunov functional (which can be
obtained by formal multiplication of the equation by d,u and integration in x) and
these two properties simplify greatly the study of the equation. Indeed, one can take
L*°(£2) as a natural phase space and compare the solution u of (1.1) with the corre-
sponding solutions of ODEs

Vi@ = —fe®) £lglre, y(0) = £[|u(0)] .

This gives the global existence of the solution u(¢) under the following Osgood type
conditions which are somehow close to the optimal ones, namely, the global solvability
holds if there exists a positive smooth function i such that

o V@

)

f(u)sgn(u) > —y(Ju|), Yu € R and

see [26,38] and references therein. Moreover, the dissipativity (in, say, LZ(Q) as well
as in L°°(2)) will hold if we take ¢ = C, i.e.,

f)sgn(m) > —C, Vu e R, (1.3)

see, e.g., [3,39,41]. The natural class of nonlinearities are the polynomials f(u) =
a2n+1u2”+1 + -+ +ap, n € N, with the "right" sign of the leading order coefficient:
azn+1 > 0. In this case, the restriction (1.2) on the growth rate of f is not necessary
and we have well-posedness and dissipativity of the considered scalar equation no
matter how fast the growth of the non-linearity is.

In contrast to this, in the case of "wrong sign" az,+1 < 0, we always have blow up
in finite time at least for some initial data and the properties of solutions u(#) strongly
depend on the growth exponent p in (1.2). Since this case is out of the scope of our
paper, we will not discuss it here and refer the interested reader to [38] (see also
reference therein) for more details.

Unfortunately, the universal conditions on f and D which would allow to avoid the
finite-time blow up and give the dissipativity in nice phase spaces are known in the
scalar case k = 1 only, so many different classes of sufficient conditions are suggested
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4 A. Kostianko et al.

for the case of systems strongly depending on the area of science where the considered
system comes from. For instance, from the point of view of chemical kinetics, it is
natural to assume that D is diagonal with non-negative entries and f(u) satisfies the
balance law

k
Y fiw =<0 (1.4)
i=1

which mimics the mass conservation law for the concentrations u; of reagents (which
usually belong to the non-negative cone in R¥). The natural energy here is the L'-
norm of the solution u(z) (the total mass is conserved or at least non-increasing),
see [12,22,34,37,38] and the references therein for more details. We note that in the
supercritical case the solutions may blow up in finite time despite the conservation of
total mass, see [36].

Alternatively, the so-called invariant region technique is often used in order to get
the global existence of solutions of (1.1). The idea of this technique is to find a bounded
invariant region R in the phase space of the problem and consider only the solutions
u(z) satisfying u(0) € R. Since the trajectory cannot leave the invariant region, this
gives the global existence of solutions for such initial data and their boundedness.
Usually this method is applied for the case where R is a segment

RZ{UELOO(Q)ﬂ aiS“iSbiv i=1,"',k}, aiﬂbiER

and D is a diagonal matrix. Necessary and sufficient conditions for such a region to
be invariant can be found, e.g., in [40].

Clearly, assumptions (1.4) are not appropriate for many other types of equations of
the form (1.1), for instance, for complex Ginzburg Landau or Fitz-Hugh-Nagumo
equations (and the invariant region technique is hardly applicable for the non-
diagonal matrices D), so other types of assumptions should be used instead. The
most widespread (especially in the literature related with the attractor theory, see
[3,8,39,41]) is the following dissipativity condition:

f(u.u>—C, uelkF (1.5)

which is a straightforward extension of (1.3) to the case of systems and which is
usually accompanied by the assumption that D has a positive symmetric part. These
assumptions are related with the so-called L2-energy identity

1d
EEIIU(I)IIiz + (DViu, Veu(n) + (E(u(@), u@)) = (g, u(r)) (1.6)

which can be formally obtained by multiplying equation (1.1) by u and integrating over
x and which gives (due to these assumptions) the dissipative control of the L2-norm
of u(z), see Lemma 3.1. Here and below (u, v) := fQ u(x).v(x) dx and

d
(DV,u, Vi) := > (D u, du).

i=1
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Reaction-diffusion systems with supercritical... 5

As one can see from (1.6), assumption (1.5) may be slightly weakened by adding
the term —k|u|? with a sufficiently small k (depending on the first eigenvalue of the
Laplacian in € and matrix D) to the right-hand side. This term may be essential, e.g.,
when the non-linearities with sub-linear growth rate are considered, since in this paper
we mainly concentrate on fast growing non-linearities, we restrict ourselves to the case
k = 0 only.

More important is that the critical exponent which corresponds to this energy control
(and the choice H = L%(Q) as a phase space):

s 1 4
p(,‘rlt L + d
is rather restrictive (the most natural cubic nonlinearity is supercritical in 3D case) and
not much can be said in general about the supercritical case where the uniqueness of
solutions may be lost and finite-time blow up of the L°°-norm may occur (see [6] for
the numerical blow up evidence in 3D complex Ginzburg-Landau equation, see also
[8,35] and references therein for study the long-time behavior of solutions without
uniqueness using the multi-valued or trajectory approaches). We also mention here
the so-called anisotropic dissipativity assumption:

k
> fiwuiful = —C,
i=1
wherel = (I1, - - - , Iy) is a sufficiently large vector, introduced in [19]. This restriction
accompanied by the assumption that D is diagonal gives p.,i; = coifl = I(d) is large

enough.
A natural alternative is to use the so-called monotonicity assumption:

VofWE.E > —K[£]?, V&, u e R (1.7)
for some K € R. Here and below
Vuf(u) = f/(u) = (au/ﬁ(u)){(,]zl

is the Frechet derivative (=Jacobi matrix) of the function f (u). This assumption is also
very widespread in the literature related with attractors and is naturally related with
the H'-energy identity:

1d
5 77 V@7, + DA @), Au) +
+ (Vaf (@) Veu(r), Veu(t)) = —(g. Acu(r)) (1.8)

which is obtained by formal multiplication of (1.1) by —Au and integration over x.
Together with (1.7) this gives the dissipative control of the H!-norm of the solution,
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6 A. Kostianko et al.

see Lemma 3.2 for the details. The critical growth exponent associated with this H!-
energy control is

~ 4

Pcrit=1+_d_2, d>?2 (1.9)
can be found in many works, see [3,8] and references therein. However, as pointed
out in [46], the monotonicity assumption (1.7) gives for free the control of H 2_norm
of the solution u(#) together with the L?-norm of f(u(r)), namely, we have a priori
estimates for the solutions in the nonlinear space

D :={ue H*(Q) N Hi(Q), f(u) € L*(Q)},

due to the control of the L?-norm of d;u(t), see Lemma 3.3 and Corollary 3.4 below,
and this gives us much better value of the critical exponent:

pcm_l—f-d_4, d>4. (1.10)

As far as we know, up to the moment, this is the best growth restriction which
guarantees (of course, under the monotonicity assumption (1.7)) the global existence
of smooth solutions and which is widely used nowadays not only for reaction-diffusion
equations, but for many other related problems (like Cahn-Hilliard equations, see [35]
and references therein; strongly damped wave equations, see [11,27] and reference
therein, etc.). By these reasons, we will use formula (1.10) throughout the paper as a
definition of the critical exponent for the considered case.

We also note that the monotonicity assumption (1.7) gives the uniqueness of weak
solutions (= solutions in the energy phase space H = L?(2), see Sect. 5 below) even
in the supercritical case which, in turn, allows to get a lot of information about the
solutions and their long-time behavior in the supercritical case as well. The theory of
equations (1.1) in the critical or supercritical cases is of a great current interest, see
for instance [8-10,14,35,47,48] and references therein. However, in most cases rather
essential extra restrictions on the nonlinearity f are posed like the following two sided
estimate:

C(u”~'=1) > Vuf(u) > —K +aju/’~!, ueRr, C,a>0 (1.11)

which really simplifies the situation, but automatically excludes some interesting new
phenomena which may appear in a general case.

The aim of the present paper is to give a comprehensive study of weak and
strong solutions (=solutions in the phase space D) of problem (1.1) as well as their
long-time behavior in the supercritical case p > p¢ri; with dissipative (assumption
(1.5) is fulfilled) and monotone (assumption (1.7) is satisfied) nonlinearities trying to
avoid/minimize further restrictions on f.

Strong and weak solutions of problem (1.1) have been constructed in [46] (see also
Theorem 4.3 of Section 4 and Theorem 5.2 of Sect. 5). The construction of strong solu-
tions is more or less standard. However, in contrast to the usual case where two sided
conditions like (1.11) are posed, the phase space D is non-linear and it not clear even
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Reaction-diffusion systems with supercritical... 7

whether or not smooth functions are dense in it, so some accuracy is required. In [46]
this difficulty has been overcome using Galerkin approximations and the monotone
operators theory, in the present paper, we prefer to give more explicit approximation
scheme which does not use at least in a straightforward way the monotone operators
technique and which is more convenient for what follows, see Sect. 5 for the details.

The absence of any two-sided control for the growth of the nonlinearity f also leads
to extra difficulties on the level of weak solutions. Indeed, since we cannot guarantee
thatf(u) € L', we cannot treat the equation in the sense of distributions and have to use
variational inequalities, see Definition 5.1. In addition, even the parabolic smoothing
property (whether or not a weak solution becomes strong at the next time moment)
becomes non-trivial and has been posed in [46] as an open problem.

Our first main result gives the positive answer on this question in the case where
the nonlinearity has a polynomial growth rate.

Theorem 1.1 Let the nonlinearity f satisfy the assumptions (1.2) (for some p > 0),
(1.5) and (1.7), the diffusion matrix have positive symmetric part and g € L*().
Then any weak solution u(t) starting from w(0) € H = L*(Q) belongs to D for any
t > 0. In addition, the strong solutions of (1.1) are dissipative in D-norm as well.

The proof of this theorem is based on estimation of f(u) in Lebesgue spaces L7(£2)
with 0 < ¢ < 1 and is given in Sect. 6.
Our next result shows that the critical growth exponent can be slightly improved.

Theorem 1.2 Let the assumptions of Theorem 1.1 hold and let, in addition, the growth
exponent p of the nonlinearity satisfy

p<pcrit+8=1+%+8, d>4
for some small positive ¢ = &(D). Then any weak solution u(t) of problem (1.1)
starting from u(0) € L*(Q2) belongs to L>®(Q) for any t > 0. In particular, finite-
time blow up of smooth solutions is impossible and the actual regularity of a solution
u(?) is restricted by the regularity of Q, f and g only. In the case where this data is
C®°-smooth, the corresponding solution u(t) will be also C* for any t > 0.

We now turn to the attractors. The existence of a global attractor for problem (1.1) in
H has been verified in [46], however, the question about strong attraction in D has
been remained open. Our next result gives a positive answer on this question under
the extra restriction

|Vof(w)| < C(fw)| + 1 + [u]), ueRk (1.12)

Theorem 1.3 Let the assumptions of Theorem 1.1 hold and let, in addition, £ satisfy
(1.12). Then the solution semigroup S(t) associated with problem (1.1) possesses a
compact global attractor A in the phase space D.

The proof of this theorem is given in Sect. 7 and is based on the energy type arguments.
We expect that assumption (1.12) is technical and can be removed, but it is strongly
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8 A. Kostianko et al.

related with the validity of the integration by parts formula
(), Ayu) = —(Vuf(W)Viu, Vau), ueb,

see the discussion in Sect. 9 below.

Finally, we study the finite-dimensionality of the constructed global attractor A in
D and the existence of the so-called exponential attractor (see [16—18,35] and also
Sect. 8 for more details).

Theorem 1.4 Let the assumptions of Theorem 1.3 hold and let, in addition, some extra
convexity assumptions on the function u — |f(u)| be posed (see formula (8.3)). Then
the solution semigroup S(t) associated with equation (1.1) possesses an exponential
attractor M in H and, in particular, the fractal dimension of the global attractor A
in H is finite.

The finite-dimensionality of the global attractor A has been established in [46] under
the similar assumptions using the so-called method of /-trajectories developed in [32,
33]. In Sect. 8 we suggest an alternative more transparent method for constructing of
an exponential attractor which does not utilize /-trajectories and works directly in the
phase space.

Note that the results of the paper are heavily based on the monotonicity arguments,
so we cannot consider more or less general non-linearities f(u, V,u) which contain
on the spatial gradient of u. However, there is an important particular case where our
theory works with very minor changes, namely, where

f(u, Viu) :=f(u) + LV, u

and L is a linear map (a mild dependence of L on u is also allowed). Some results
in this direction are obtained in [47]. We also note that many of our results can be
extended to the case of quasilinear systems where the Laplacian A, u is replaced, for
instance, by the so-called p-Laplacian for which the theory of monotone operators is
applicable, see [3,5,43,45] and references therein. We return to this type of problems
somewhere else.

The paper is organized as follows.

Notation and spaces which will be used throughout the paper are introduced in
Sect. 2 and the standard a priori estimates for the solutions u(¢) of problem (1.1) are
recalled in Sect. 3.

The existence of strong solutions for problem (1.1) is verified in Sect. 4 based
on special approximations of the nonlinearity f. The definition of a weak solution of
problem (1.1) in the sense of variational inequalities as well as the proof of its global
existence and uniqueness is given in Sect. 5. Moreover, the existence of a global
attractor 4 for the solution semigroup S(7) is also verified there.

The weak to strong smoothing property, see Theorem 1.1, is verified in Sect. 6. The
further regularity of strong solutions is obtained in Sect. 7. In particular, the proofs of
Theorems 1.2 and 1.3 are given there. Some results about the partial regularity of the
elliptic problem associated with equations (1.1) which have an independent interest are
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Reaction-diffusion systems with supercritical... 9

obtained in Appendix A. The existence of an exponential attractor M, see Theorem
1.4, is given in Sect. 8.

Finally, Sect. 9 discusses natural extensions of the developed theory to other classes
of dissipative PDEs, in particular, to fractional reaction-diffusion systems and (frac-
tional) Cahn-Hilliard type equations. At the end of this section we also discuss some
important (at least from our point of view) open problems for further investigation.

2 Assumptions and preliminaries

Throughout the paper we consider the following reaction-diffusion system in a
bounded domain Q c R¢:

du=DAu—f)+g ul,,=0 u_,=up. 2.1)

Hereu = (uy, - - - , uy) is an unknown vector-valued function, D is a constant diffusion
matrix satisfying

D+ D* > 0, 2.2)

g € L?(Q) is a given external force and the nonlinearity f is assumed to satisfy the
following conditions:
1.f e C'(RF RV,
2.f(w.u > —C, ueRK (2.3)
3. Vuf(u) > —K, u e Rk,

where C and K are some fixed constants, u.v stands for the standard inner product in
R¥ and Vuf(u) > —K means Vof(n)é.& > —K|£|* for all £ € RK.

Forany /! € Nand any | < p < oo we denote by W/ () the Sobolev space
of distributions u € D’(2) such that u and all its partial derivatives up to order [
inclusively belong to the Lebesgue space L”(£2). As usual, for non-integer values of
1, we define W-P(Q) = Bﬁ,,p(Q) using real interpolation (Bﬁ,,p is a classical Besov

space, see e.g., [42]). Moreover, the symbol Wé’p (€2) stands for the closure of Cgo (2)
in W5P (Q) and the space W7 () is defined as a dual space to W([)’q (Q), % + % =1,

with respect to the standard inner product in H = L?(2). To simplify the notation,
we will write H! () instead of W/2(2). We will also systematically use the Sobolev
spaces WP (2, R¥) of vector-valued functions u : € — R¥ and will write for brevity
WEP(Q) instead of W5P(Q, R¥) if this does not lead to misunderstandings.

In a sequel, we will also use the space L?(£2) with 0 < p < 1 and use the standard

notation
1/p
lallzr (@) = </ Iu(X)Ide>
Q

simply ignoring the fact that it is not a norm. Recall that the topology in this space is
defined by the metric dp(u, v) := |jlu — V||Z,,.
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10 A. Kostianko et al.

We say that the function u(t, x) is a strong solution of (2.1) if
ue Cy(0,T; H*(Q) N HL(R)), fu) € Cw(0, T; LX(RQ)) (2.4)

and equation (2.1) is satisfied in the sense of distributions (here and below C (a, b; X)
means the space of X-valued functions defined and continuous on a closed interval
[a, b] and the lower index "w" stands for the continuity in weak topology). In particular,
for strong solutions we require that the initial data uy € D, where

D = {u € HX(Q) N H} (Q), f(u) € L*(Q)},
lulld = [l + If@]7.. (2.5)

Note that in general D is not a linear space and this causes a lot of extra difficulties in
comparison with the case of linear phase space. We define the topology in the space
D using the embedding

j D — [H*(Q)NHH(Q)] x L}(Q), j) = {u, fw))}.

In particular, the sequence u,, — u strongly in D ifu,, — uin H 2(Q) and f(u,) —
f(u) in L2(Q). Analogously, we say that u,—u weakly in D if u, — u weakly in
H?(Q)andf(u,) — f(u) weakly in L>(2). We will also write for brevity Cy, (0, T'; D)
instead of (2.4).

3 A priori estimates

In this section, we give a number of more or less standard estimates for strong solutions
of problem (2.1) which will be justified later. We start with the dissipative estimate in
the space H = L3(Q).

Lemma 3.1 Letg € H, assumptions (2.2)—(2.3) hold and let u be a sufficiently smooth
solution of (2.1). Then, the following estimate is valid:

T+1 T+1

ha(r) 2, + /T lu)I2,, dr + /T £yl dr <

< Ce™Tlugll7, + CCligl72 + ).
3.1

where the positive constants C and o are independent of t and uy.

Proof We multiply equation (2.1) by u and integrate over x. This gives

1d
Eallulliz + (DViu, Viu) + (f(), w) = (g, ),
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Reaction-diffusion systems with supercritical... 1

where (u, v) := fQ u(x).v(x) dx is a standard inner product in H and

d

(DVyu, Vi) := Y (D u, dyu) = f

i=1 e

Tr(DV,u(Vyu)*) dx.
Q

Using the dissipativity assumption f (u).u > —C and positivity of the matrix D together
with the Friedrichs (Poincare) inequality, we arrive at

1d 2 2 2 2

5 g7 ulze + elullps + o Vaully, + (fw.ul, 1) = Cigll;. + D
for some positive constants C and «. The Gronwall inequality applied to this relation
gives (3.1) and finishes the proof of the lemma. O

The next lemma gives the analogous dissipative estimate for the H!-norm of the
solution.

Lemma 3.2 Let the assumptions of Lemma 3.1 hold and w be a sufficiently regular
solution of (2.1). Then, the following estimate is valid:

T+1
Ju(m), + / la(0)]12,, di +
T

T+1
+ / (IVaf @ Vu(@).Vou)l, D de < Ce ™7 Jlugll, + C(ligl?, + D),
T
(3.2)

where the positive constants C and o are independent of t and uy.

Proof We multiply equation (2.1) by —A,u and integrate over x to get
EE”VXHHLZ + (DAyu, Ayu) + (Vuf () Viu, Viu) = —(g, Au).
Using the inequality V,f(u) > —K and positivity of matrix D again, we arrive at

d 2 2 2
TIVsul} + el Vil + Al +

+ (IVofWVeuVeul, 1) < C(llgll2 + [IVeul7,). 3.3)

Applying the Gronwall inequality to this relation and using (3.1) in order to control

the integral of || qu”i” we end up with (3.2) and finish the proof of the lemma. O

Let now @ = 0,u. Then this function solves

90 =DA0 — Vuf (W8, 60| _, =DAug—f(ug) + g, =0. (34

0o

The next lemma gives the L?-estimate for the time derivative 6.
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12 A. Kostianko et al.

Lemma 3.3 Let the assumptions of Lemma 3.1 hold and let u be a sufficiently regular
solution of equation (2.1). Then the following estimate is valid:

T+1
10712, +/ 102, dr +
T

T+1
+/ (IVuf @O (1).0(0)], 1) dt < ClluglFeX' " + CeX1 T (Jlgl* + 1), (3.5)
T

where positive constants C and K are independent of t and uy.

Proof We multiply equation (3.4) by 6 and use assumption Vyf(u) > —K and posi-
tivity of matrix D to get

d
10152 + @l VO3 + (Vuf @061, 1) < 2K(1017,.

Applying the Gronwall inequality to this relation, we get the desired estimate and
finish the proof of the lemma. O

As a corollary of this lemma, we get the key control for the norm of the solution in
the space D.

Corollary 3.4 Let the assumptions of Lemma 3.1 hold and let u be a sufficiently regular
solution of (2.1). Then the following estimate is valid:

()5 < CeX1 T uglIf, + CeX1 T (1 + J1gl17.), (3.6)

where the positive constants C and K are independent of T and uy.

Proof We rewrite equation (2.1) as an elliptic problem
DA w(T) —f(u(T)) =g(T) :=0(T) — g (3.7
for every fixed T. Multiplying then this equation by A,u(7T) (without integration
in time!) and using the control for @ (7) obtained above (together with the elliptic
regularity estimate for the Laplacian and the assumption V,f(u) > —K), we arrive at
the estimate
(DI < CAiglz> + 16172 + IVau(DIIZ).
Expressing the L2-norm of f(u) from equation (3.7), we get
Iu(T)IE, < Cligl72 + 10172 + [Veu(T)]|72).
Estimating the right-hand side of this inequality by (3.5) and (3.2) and using that
0(0) = 9/u(0) = DA u(0) — f(u(0)) + g,

we arrive at the desired estimate and finish the proof of the corollary. O
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Reaction-diffusion systems with supercritical... 13

Remark 3.5 Note that, in contrast to estimates for the L2 and H! norms of the solu-
tion u(z), the obtained estimate for the ID-norm of u(¢) is not dissipative and even
grows exponentially in time. We will remove this drawback later (under some extra
assumptions on f).

We conclude this section by establishing the global Lipschitz continuity with respect
to the initial data which plays a crucial role in constructing weak solutions for (2.1).

Lemma 3.6 Let the assumptions of Lemma 3.1 hold and let u|(t) and uy(t) be two
sufficiently regular solutions of equation (2.1). Then the following estimate is valid:

lui(T) —wa (D)3, +

T
+ /0 lur(®) — wa ()13, dr < CeX17 |[u (0) — w2017, (3.8)

where the positive constants C and K are independent of T, u; and u;.

Proof Indeed, let v(¢) = u;(¢) — up(¢). Then this function solves
0,v=DAv—[f(u) —f(w)]. 3.9

Multiplying this equation by v, using that, due to the monotonicity assumption
Vuf(w) > —K,

[f(u;) — f(u)].[u; —up] > —K|v|?,

and arguing as in the proof of Lemma 3.3, we arrive at the desired estimate. O

4 Existence of strong solutions

Although the construction of a solution from a priori estimates obtained above is more
or less standard, it is a bit delicate here since the phase space D is in general nonlinear
and, particularly, it is not clear whether or not smooth functions are dense in . By
this reason, we sketch the proof here.

We expect that the existence result can be also obtained using the monotone oper-
ators theory (e.g., the standard Yosida approximations), but we prefer to give an
alternative, a bit more transparent proof. Our idea is to approximate the nonlinear-
ity f by a sequence f,, of functions of which are globally Lipschitz continuous without
destroying assumptions (2.3). Then, on the one hand, the existence of solutions for
such f,, is well-known and, on the other hand, as not difficult to see, all estimates
obtained above will be uniform with respect to n. Thus, it will only remain to pass to
the limit n — oco. We start with the approximation of f.

Lemma 4.1 Let the function £ satisfy assumptions (2.3). Then, there exists a sequence
of functions £, € C'(R¥, R¥) such that

1. f,(w)u>—-C, 2. Vyf(u) > —K 4.1
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14 A. Kostianko et al.

uniformly with respect to n. Moreover,
f, — f (4.2)

in Croe (R, R¥) and
|Vaf,(w)| < C,, ueRK, (4.3)

where the constant C,, may depend on n.

Sketch of the proof Let us first introduce a smooth scalar convex function W (z) (we
may also require that W/(s) > 0 as s > 0) in such a way that VuW(Ju|?) grows
faster than |f(u)| as [u] — oo. Then, for every fixed ¢ > 0, we consider the function
f}; (u) =f(u) +£Vulll(|u|2). Since the second term will dominate the first one if |u|2 is
large enough, introducing the first smooth cut-off function Og (Ju|?) such that g = 1
is [u| < R and zero if |u| > 2R, we may find R = R, > é such that the function

fo(u) 1= O, (uPHf (W) + eV ¥ (ul?)
satisfies assumptions (2.3) uniformly with respect to u € RX. Note that f.(u) =
eVaW(Ju)?) = 2e¥ (Jul®)u for [ul> > 2R, and we may make it linear for [u|? > 3R,
by cutting-off W” on the interval 2R, < |u|?> < 3R,. For instance, we may introduce

another smooth cut-off function §R€ (t) = last < 2R, and zero if T > 3R, and
define

W, () 1=/ br, (D)W ()dT 4 V' (0).
0
This gives
f.(u) = 0g, (JulHf () + Vo Vg, (lu]?).

Taking finally ¢ = ¢, = %, we get the desired approximating sequence. O
We now introduce the approximating system for (2.1)

du=DAu—f,w)+g uf_,=uj ul,,=0, (4.4)
where the functions f,, are constructed in Lemma 4.1. However, the choice of the
approximating initial data ug requires some accuracy. Indeed, we cannot just fix ug =
ug since [|f,; (wp)|| ;2 will not be uniformly bounded and, as a result, we may lose the

estimate of the ID-norm of the limit solution. Instead, we define ug as a solution of the
following auxiliary elliptic problem:

DAyv —f£,(v) = Kv =G :=DAug + f(ug) — Kug, v|,, =0. 4.5)
The next lemma gives useful properties of the solutions of this auxiliary problem.
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Reaction-diffusion systems with supercritical... 15

Lemma 4.2 Let the functions f, be as above and uy € D. Then, for every fixed n,
problem (4.5) has a unique solution v = wg. Moreover, ||ugll g2 and ||f, (ug) |l 2 are
uniformly bounded as n — oo and

ug—ug, f,(ug)—f(ug) (4.6)

in the spaces H? and L> respectively.

Proof Indeed, the existence and uniqueness of a solution for (4.5) is obvious since
f, (u) + Ku are monotone and globally Lipschitz continuous. Let us prove uniform
bounds. Indeed, multiplying (4.5) by A,v = A,uj and using the monotonicity, we
get the estimate

2 2 2
lugllz2 = ClIGI;> = Clluollp,

so ug is uniformly bounded in H 2. Expressing f, (v) from equation (4.5), we see that
f,, (ug)) are also uniformly bounded.

Let us verify the convergence. Since uj is uniformly bounded, passing to a subse-
quence if necessary, we may assume that ug—w asn — oo and ug — w strongly to w
in H'. Then, we have the convergence ug(x) — w(x) almost everywhere. Moreover,
from this convergence and Lemma 4.1, we may conclude that f, (ug (x)) — f(w(x))
almost everywhere. Since f;, (uj;) are uniformly bounded in L?, passing to a subse-
quence again, we infer that f,, (u)—f(w). Passing after that to the weak limitn — oo
in equations (4.5), we see that the limit function w solves

DA, w — f(w) — Kw = G = DA, ug — f(up) — Kug, =0. %))

wo0
Finally, since the solution w € ID of equation (4.7) is unique (again due to the mono-
tonicity of f(u) + Ku), we conclude that w = ug. The uniqueness also gives that
passing to a subsequence was not necessary and the whole sequence ug converges to
ug. O

We are now ready to state and prove the main result of this section.

Theorem 4.3 Let the nonlinearity £ and matrix D satisfy assumptions (2.3) and (2.2),
gec L? and ug € D. Then, problem (2.1) possesses a unique strong solution u(t) € D
which satisfies all estimates formally obtained in Section 3.

Proof We approximate the desired solution u by the approximate solutions u, () of
problems (4.4), where f,, and ug are chosen as in Lemmas 4.1 and 4.2. Then, since
f, is globally Lipschitz continuous, the existence and uniqueness of a solution u,, ()
of (4.4) is straightforward. At the next step, we need to check that all estimates of
Section 3 are indeed uniform with respect to n (the justification of all these estimates
for the case of sublinear growth rate is also obvious). This is obvious for Lemmas
3.1 and 3.2 (as well as for Lemma 3.6) since u; — ug strongly in H I"and £, satisfy
(2.3) uniformly with respect to n. Thus, we only need to look on the estimates related
with time differentiation and D norms. The key role in these estimates is played by the
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16 A. Kostianko et al.

L2-norm of time derivative 8,,(r) := 9,u,(¢) and the L%-norm of it at time moment 7
is estimated by its L?-norm at time r = 0. But due to our construction

0,(0) = DA uj — £, (ug) + g =DAug — f(ug) + g+ K (ug — up). (4.8)
Therefore, according to Lemma 4.2,
10,0117, < C(lluollf, + lIgl7. + D. (4.9)
By this reason, the analogue of estimate (3.6) on the level of approximations reads
10un (1172 + 1 (O117,2 + £ a ()72 < CeX Y (luollfy + gl + D, (4.10)

where positive constants C and K are independent of ¢, ugy and n.

When the uniform estimates are obtained, we may pass to the limit » — o0 in
equations (4.4) and construct the desired strong solution u(#) of the limit problem
(2.1) (the passage to the limit in the nonlinear term is done exactly as in Lemma 4.2).
The uniqueness of a solution is an immediate corollary of Lemma 3.6 (which does not
require justification on the level of strong solutions). Finally, passing to the limit in the
corresponding estimates for u,, we prove that the limit solution u(z) satisfies indeed
all of the estimates of Section 3. The only non-immediate thing is the passage to the
limit in the terms like (Vyuf, (u,)Vyu,, V,u,) (and in the analogous term containing
dyu,) since we do not have any control of the integral norms of Vf, (u,). However,
the passage to the limit could be performed here using the condition V,fy (u,) > —K,
the fact that Vyuf, (u, (¢, x)) — Vuf(u(z, x)) almost everywhere and the convexity
arguments. Namely, under these conditions, we may establish that

T+1
/ (Vuf (u(0)) Veu(t), Veu(t)) dt <
T

T+1
< lim inf/ (Vuf, (0, (1)) Viw, (1), Viu, (1)) dt, (4.11)
n— oo T
see e.g [4], Theorem 5.4. Thus, the theorem is proved. O

5 Weak solutions, dissipativity and attractors

In the last section, we have proved the global existence and uniqueness of strong
solutions of (2.1). Thus, the solution semigroup

S :D—D, S(tug:=u() 5.1

is well-defined. Moreover, according to Lemma 3.6, this semigroup is globally Lips-
chitz continuous in the L?-metric:

IS(Huy — SOUGl7, < CeX ' lug —ugl?,. vy, uf € D. (5.2)
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Reaction-diffusion systems with supercritical... 17

Thus, we can extend this semigroup by continuity from I to its closure in L? which
obviously coincides with the whole L? (since C* C ). Thus, the semigroup

S(Hug = lim S(uj, uj €D, uo= lim uf (5.3)

is well-defined. Moreover, the limit in (5.3) can be considered in the space
C(0, T; L%()), so the trajectories u(t) := §(t)u0 automatically belong to the space
C(0,T; L*()) forall T > 0.

Our next step is to understand in what sense the trajectory u(z) thus constructed
satisfies the initial equation (2.1). Note that, for the general ug € L2, we do not know
whether or not f(u) € L 1 so we cannot treat it in the distributional sense. Indeed, the
only control related with f (u) which we have up to now follows from estimate (3.1) and
claims that f(u).u € L' (being pedantic, this is proved for the strong solutions only,
but it can be easily extended to weak solutions using the Fatou lemma). Unfortunately,
this is not enough to control the L!'-norm of the function f itself, so we cannot treat
the term f(u) in a distributional sense.

Instead, we use the ideas from the monotone operator theory and variational inequal-
ities, see e.g., [5]. Namely, following [21], we take an arbitrary test function

veCy(0,T;D)NCLO, T; L>(RQ), VT € R4, (5.4)

and multiply formally equation (2.1) by u(#) — v(¢) and integrate over [0, T]. Then,
integrating by parts and using that

—DAu—-DA,v,u—-v) >0, (f(u) —f(v),u—-v)>—-K|u— V||i2,

we end up with
! 2 1 2
(@) = (D72 = 1) = vO)llz. +
T
+f (@:v(0), u(r) — (1)) dt <
0

T T
5/ DAv(E) —£(v()) + 8, U(t)—V(t))dt+K/ lu() = v()7, dt.
0 0
(5.5)

The advantage of this approach is that the variational inequality (5.5) makes sense for
allu € C(0, T; L*(S2)) and, therefore, can be used to define a weak solution u(z) of
problem (2.1).

Definition 5.1 A functionu € C(0, T; L?>(2)), T € R, is a weak solution of problem
(2.1) if u(0) = vy and the variational inequality (5.5) holds for every T € Ry and
every test function v satisfying (5.4).

We are now ready to state the key result of this section.
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18 A. Kostianko et al.

Theorem 5.2 Let g € L*(R), the diffusion matrix D enjoy D + D* > 0 and f satisfy
assumptions (2.3). Then, for every ug € L*(R), there exists a unique weak solution
u(?) of problem (2.1) and this solution has the formu(t) = §(t)u0, where the extension
§(t) of the solution semigroup S(t) is defined by (5.3).

Proof Indeed, any strong solution is a weak solution of (2.1) (since all manipulations
used in the derivation of the variational inequality (5.5) are justified on the level of
strong solutions). Let now u(¢) = lim,— oo U, (¢), where u, (¢) are the strong solutions
u,(t) =S (t)ug, ug e Dand ug — wg in L2. The variational inequality for u,, reads

1 2 1 2
S (T) = V(D72 = Sl (0) = vl +

T
+/ @V (), u, (1) — V(1)) dt <
0

T T
= / DAv(E) —£(v(1) + g, up (1) — V(1)) dr + K/ lu, (1) — V(t)||iz dt.
0 0

(5.6)

Using that u, — win C(0, T; L?(R2)) and passing to the limit n — 00 in (5.6), we
see that u(z) satisfies (5.5) and, therefore, u(¢) := g(t)uo is the desired weak solution
of (2.1).

Vice versa, let ui(¢) be a weak solution of (2.1) and letu(z) := §(t)ﬁ(0). Then, there
exists a sequence uy € DD such that ugj — w(0) and the sequence of strong solutions
u, (1) = S(¢)uy which converges as n — oo to the weak solution u(). We need to
show that u(¢) = u(z).

Indeed, by the definition of a strong solution, u,, (¢) satisfies the assumptions of (5.4)
and therefore can be used as a test function v = u,, in the variational inequality (5.5)
for the weak solution u. Taking v = u, in it and using that d,u,, = DA u, —f(u,)+g,
we get

1 r 1
Sl - u, (1[5, <K /0 la() — w, ()17, dt + 5180 — u, (0)[|7>.

Passing to the limit » — oo in this inequality, we get

T
10(T) —u(T)|7, < 2K /0 1a(r) — u(o)|7, dt

and, since 7 is arbitrary, the Gronwall inequality gives thatu(¢) = u(z) for all ¢. Thus,
the theorem is proved. O

Remark 5.3 There is an alternative possibility to relate a weak solution u(¢) with
equation (2.1), namely, for every ¥ € C{° (R, R¥), the identity

(Y () = Vy¥ (W)DA u — Vyy (wf(a) + Vy¥ (n)g (5.7
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should be satisfied in the sense of distributions, see [46]. It is not difficult to verify

that, indeed, any weak solution u(z) should satisfy this identity. The drawback of this

approach is that it is unclear whether or not (5.7) is enough for the uniqueness.
Using identity (5.7) it is not difficult to show that under the additional restriction

[f(w)| < C(lf(u).uf + [uf+ 1) (5.8)

which guarantees that f(u) € L'([0, T] x Q), any weak solution satisfies equation
(2.1) in a sense of distributions. However, in contrast to the scalar case k = 1, in the
case of systems (5.8) is an extra restriction which we prefer to avoid.

As a next step, we note that the weak solutions are dissipative. Indeed, passing to
the limit in the estimate of Lemma 3.1 for strong solutions, we derive that

N T+1
IS(Tuoll7 + fT ISMuol3, dt < Ce T lugll7, + C(1+ligll7.)  (5.9)

which is a standard dissipative estimate for the semigroup E(t). Analogously, passing
to the limit in the estimate of Lemma 3.2, we get the dissipative estimate in H I for
weak solutions

N r+1
IS(Twol7,: + / IStuol3,. dt < Ce T lugll3, + C(1 + [igl72).  (5.10)
T

In addition, estimates (5.9) and (5.10) give in a standard way the L*-H' smoothing
property for the semigroup S(¢), namely, the following estimate holds:

ISl < (e ol + 1+ g3, ) (5.11)

t+1

t
These estimates ensure us that the ball Bz := {u € HO, lul[g1 < R} will be a
compact (in L?) absorbing ball for the semigroup S(t) if R = R(||gll;2) is large
enough. Remind that the latter means that for every bounded set B of L? there exists
atime T = T (B) such that

S()B C Bg

forallt > T. This fact, in turn, allows us to establish the existence of a global attractor
for the solution semigroup §(t) in the phase space H = L*($2). We recall that, by
definition, a set A C H is a global attractor for a semigroup §(t) : H — H if the
following conditions are satisfied:

(1) Ais a compact subset of H;

(2) A is strictly invariant: S(t)A = A, forall t > 0;

(3) Itattracts the images of bounded sets as + — 0o, namely, for any bounded B C H
and any neighbourhood O(A), there exists T = T (B, O) such that

S(t)B C O(A)
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forallt > T.
The next theorem may be considered as the second key result of this section.

Theorem 5. A Let the assumptions of Theorem 5.2 be satisfied. Then the weak solution
sengroup S (t) possesses a global attractor A in H = L*>(Q2) which is a bounded set
of H'(Q) and possesses the following description:

A=K]| (5.12)

=0’

where /Ig C Cp(R, L*(R)) is the set of all complete bounded trajectories of the semi-
group S(t):

={ueCyR, LX), u(t +h) =SHuh), heR, t € R4} (5.13)
Proof According to the abstract attractor existence theorem, see e.g., [3], we need to

verify two assumptions:

(1) The operators §(t) : H — H are continuous for every fixed ¢;
(2) The semigroup S(t) possesses a compact absorbing set in H.

The first assumption is guaranteed by Lemma 3.6 and the second one follows from
estimate (5.11). Thus, the global attractor A exists. The fact that A is a bounded subset
of H' follows from the fact that the attractor is always a subset of an absorbing set
and the representation formula (5.12) is a standard corollary of the attractor existence
theorem. Thus, the theorem is proved. O

6 Weak to strong smoothing property

In this section, we establish that any weak solution u(#) of problem (2.1) becomes
strong for ¢ > 0. The main difficulty here is the fact that we cannot in general estimate
|f (u)| through f(u).u and, by this reason, we do not know whether or not f (u) and d,u

are distributions. This makes the situation with the parabolic smoothing property a bit
more delicate than usual. We overcome this difficulty under the extra assumption that

If(w)| < C(1 + [ul?) (6.1)
for some p > 1 by using the L7-spaces with ¢ < 1. Namely, we will use the fact that
£ ll27p < C(lull}, + 1), (6.2)

where, for ¢ < 1, we denote by ||v|/zs exactly the same expression as for the case
q > 1 (simply ignoring the fact that it is no more a norm). Thus, at least on the level
of approximations, we may expect that, for § = o;u,

10N 220,1:2(@)+L%0,1:L2/7()) = C(”“O”Zl + ||g||122 +1 (6.3)
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and this can be used in order to establish the smoothing property for #. Namely, the
following theorem holds.

Theorem 6.1 Let d > 3, the assumptions of Theorem 5.2 and (6.1) hold, and let uy €
H' and u(t) be the corresponding weak solution of equation (2.1). Then, u(t) € D
forallt > 0 and the following estimate is valid:

19172 + luIiE < N (Qlwoll 1) + QCligllz2)) . ¢ € (0,11, (6.4)

where the exponent N = N(d, p), positive constant C and the monotone increasing
function Q are independent of uy and t. Moreover, the function Q(z) can be chosen
as a polynomial of z.

Proof We first note thatitis enough to verify (6.4) forug € D only when u(¢) is a strong
solution. Moreover, it is enough to obtain the estimate for d,u only since the estimate
for |ju(r)||p will follow from the elliptic problem (3.7). Second, we approximate
the strong solution u(¢) by the solutions u,(¢) of auxiliary problems (4.4). Finally,
analyzing the proof of Lemma 4.1, we see that assumption (6.1) allows us to pose the
extra assumption

If,(w)| < C(1 + [u|”") (6.5)

for some p; > p > 1 and constant C independent of n (e.g., by taking ¥ (u) :=
[uj71+h,

Let 6,,(t) := 9d;u, (¢). Then, this function solves the equation
0;0,, = DA,0,, — Vyf,(u,)0,. (6.6)

Multiplying this equation by tV@,,(t) where N > 1 is a sufficiently big number, we
end up with

d
@18, O + etV 18,171 -

=2K (V10,1172 < CEN 0,017 (6.7)

We need to estimate the integral in the right-hand side. To this end, we fix some
s € (0, 2) which will be specified below and write

16,12, = (10,17, 1) = (18,1°, 18,>) <
< COAL, 18,27 + CIgl. 18a27°) + C(Ufa (a1 10,17),
(6.8)

where we have used equation (4.4) in order to express ,, through u,,. Let us estimate

every term in the RHS separately. Applying the Holder and Young inequalities to the
first term, we get
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N-1 2- s (4= :
NLA L 18,270) = ClAw I, (175 184012) <

N

—1
< ClAcu, |3, + 275 (18,112, (6.9)

This gives us a good estimate if NV is chosen in such a way that 2% > N.The second
term in the RHS of (6.8) can be estimated analogously to have

N—-1

NT(gl 10177 < Cligl?s + 1725 (10,4113, (6.10)

Letus now estimate the most complicated third term. To this end, we use the embedding
theorem H' C L" where } = % - 5 together with the Holder inequality with exponents

g1 and g2, ql—l + qiz =1, with (2 — s)g2 = r to get

(fa ) 105177°) < 182 ) [0y 10217
Moreover, due to assumption (6.5), we have
6 () [l 270 < Cllupll2 + 1DP < Clluoll2 + 1+ gl 2)",

where C is independent of n. We may also fix sq; = % to get

(£, ()l 10,1°7°) < C(lugliz2 + 1+ liglz2) P 10,15, (6.11)

and end up with the following system for the exponents g;, g2 and s

11 1 spr 1 11
—t—=1, — ==L ——2-9(=--]).
n e-9(3-7)

Solving this system, we get

s 4 q dip1—D+2
= . < A 1= 5
dipr—1+2 2py

and we see that 0 < s < 2and 1 < g1 < oo, so all of the exponents are in the
prescribed range and (6.11) holds indeed. Applying the Young inequality, we arrive at

N—

N—1 s 2—s PR 2
(6 )7, 10, 1777) < Qe(lluollp2) + Qe(ligllp2) + 172 1045, (6.12)

where ¢ > 0 is arbitrary small and the polynomial monotone function Q; is indepen-
dent of ug. Combining estimates (6.8), (6.9), (6.10) and (6.12) for estimating the RHS
of (6.7) and fixing ¢ > 0 to be small enough and N satisfying 2% > N, we arrive
at

d N 2 N 2 2
T (M10,012:) = K1 (10,0132) + ClAw 012,
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+ Oluglig) + Odlglz2), ¢ <1 (6.13)

Applying the Gronwall inequality to this relation and using (5.10) for estimating the
integral of the H 2_norm of the solution, we end up with

N0.ONI72 < QUG lg) + Olgl2), £ € (0, 1] (6.14)

and passing to the limit n — oo, we derive the desired estimate for d,u(¢). Thus, the
theorem is proved. O

Combining this result with the L? to H'! smoothing property (5.11), we get the
following result.

Eorollary 6.2 Under the assumptions of Theorem 6.1, the weak solution semigroup
S(t) possesses the following smoothing property:

ISHuoll3 < Cr=™M (Q(luoll2) + Q(ligll 2) . 1 € (0,11, (6.15)

where the positive constants C and M = M(d, p) and monotone polynomial function
Q are independent of t and ug € L*(R).

Thus, under the assumption (6.1), any weak solution indeed becomes strong for ¢ > 0
(the extra assumption d > 3 is not essential since for d < 2 the equation is subcritical
and the smoothing property is obvious). This, in particular, gives the following result
on the regularity of the global attractor.

Corollary 6.3 Let the assumptions of Theorem 6.1 hold. Then the global attractor A
of the solution semigroup S(t) constructed in Theorem 5.4 is a bounded subset of D:

Alp = Olgliz2) (6.16)

for some monotone increasing function Q.

Indeed, this assertion is an immediate corollary of (6.15) and the strict invariance
of the global attractor.

7 Further regularity and strong attraction

In this section we study the problem whether or not the constructed strong solution u
is actually more regular (than u € Cy, (0, T; D)). We start with some partial result on
the regularity of d,u which does not require any extra assumptions on f and g.

Proposition 7.1 Let the assumptions of Theorem 4.3 hold. Then, there exists a positive
number r > 0 depending only on the matrix D such that, for any strong solution
u(t) € D, the following estimate holds:

r

! +2
tlau)7 + /0 sIVe(au] )12, ds < ClauOr32, @)
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where 0 <t < 1 and the constant C is independent of t and u.
Proof Let @ := 9;u. Then this function satisfies equation (3.4). Let us multiply this

equation by #]6|" and integrate in x. This gives

1 d
g g 10O — DA 0161 + (Vuf )6, 616]") = 0.

Integrating by parts in the second term, we get

—(DA,6,010") >
> DV, V.010]") — Cr(IV,01%,18]") = (@ — Cr)(IV,8*, 18]")

for some positive «v. Fixing now r > 0 small enough and estimating the term containing
f using Vyf(u) > —K, we arrive at

1 d o
mano(nn;ﬁz + (V02 1601 < KIOOI2.

Multiplying this estimate by ¢ and integrating in time, we arrive at

t t
O + /0 S(V8()2, 10()" ) ds < C /O 16() I} 2, ds (72)

for 0 < ¢ < 1. To estimate the right-hand side of this inequality, we use estimate (3.5)
and Sobolev embedding theorem together with the Holder inequality which gives that,
for sufficiently small r = r(d) > 0,

t
2
/ 1072 ds < C (101l .22 + 181 200.0:1) - < CIOO)7S?
0

and finishes the proof of the proposition. O

The obtained extra regularity in time can be transformed to extra regularity in space
assuming that the right-hand side g is slightly more regular.

Corollary 7.2 Let the assumptions of Proposition 7.1 hold and let, in addition,
gec L1(Q) (7.3)
for some q > 2. Then, there exists r = r(D, q) > 0 such that

HIVaa® |t < C (uOllp + gl (7.4)
L d-2

or 0 <t < 1. In particular, if the attractor A is a bounded set in D then it is also
=r= p L
d(r+2)

bounded in W' "2 (Q).
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Indeed, due to Proposition 7.1, we control the L™ t2-norm of 3;u. Rewriting problem
(2.1) as an elliptic boundary value problem

DA u(t) —f(u@)) = g) := du@) — g,

we get also the control for the L"+2-norm of g(¢) (point-wisely in time). Applying the
elliptic regularity result proved in Appendix (see Theorem A.1) to this equation, we
arrive at the desired estimate (7.4).

The obtained partial regularity results allow us to establish the crucial L°°-estimates
for critical and slightly supercritical growth rate of the nonlinearity f. Namely, the
following result holds.

Theorem 7.3 Let the assumptions of Proposition 7.1 hold and d > 4. Then there exists
a constant ¢ = ¢(D) > 0 such that, for every nonlinearity f satisfying in addition
(6.1) with the exponent p restricted by the assumption

4
P < Perit + &, Perit =1+ my (7.5)

and the external forces g satisfying (7.3) for some q > %, any weak solution u(t) of
problem (2.1) possesses the following smoothing property:

@z = Qr(lu(0)llz2 + ligllze), € (0,1] (7.6)
for some monotone function Q; which depends on t, but is independent of u and g.

Proof Note that, due to estimate (6.15) we may assume from the very beginning that
up € D and work with strong solutions only. The derivation of (7.6) can be done by the
standard bootstrapping arguments by iterating the classical interior regularity result
for the linear parabolic equation

oru —DAyu =h(z) 7.7)

which we state in the following lemma. O

Lemma 7.4 Let u be a weak solution of (7.7). Then the following interior regularity
holds:

lall oo 74 1:w2-nsy < Crosp (Il 20,74 1:22) + Il zoo0,741:25)) - (7.8)
where u > 0 is arbitrarily small, 1 <s <ooand T > 0.

Sketch of the proof This estimate, in turn, can be easily deduced from the fact that
this linear equation generates an analytic semigroup in L%(€2) (since the operator
A = —DA, is sectorial in L*($2) with the domain W25(2) N WOI’S(Q), see e.g.,
[42]) or, alternatively, from the anisotropic maximal L4 (L*)-regularity estimate for
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parabolic equations. Let us sketch the first approach. Using the variation of constants
formula

t
u(t) = e 4y +/ e AU"Dh(r)ds
0

together with the estimate

<

—A(t—1) Cs
“ . 2—p = 2—
LISDAT2) T (p )2

_A(t—
lle (t r)”[:(LS’WZ*I‘nS) = e

)

we get that the solution of (7.7) with ug(0) = 0 satisfies

”u(t)”WZ*M =< Cu,s,q,T”h”L‘?(O,T;LS)’ te [O» T]
forany 1 < 5,9 < ocoand 0 < u < 2 satisfying (Zq__"l)q < 1. The desired interior
estimate is a standard corollary of this estimate. Indeed, applying the last estimate to
the function tNu(r) (where N = N(d, s, q) > 11is big enough), we get

N N-—1
2™ all poo o 741:w2-nsy < ClE" " allLa0,741;L5) + Cllhl[ Lo, 741:L%)

and using the Sobolev embedding theorem and the Holder inequality, we arrive at

1
N—-1 N
1™ allLa,741;L5) < %Ilf ull oo, 741, w2y + CllWl 20, 741, 12)-
Finally, inserting the last estimate to the previous one, we have
N <C h :
leMull oo 0,74 1. w2y < C (10l 20 74122y + Il 0. 711:25))

which gives (7.8) and finishes the proof of the lemma. O

We are now ready to continue the proof of the theorem. From the interior estimate
(7.8) and Sobolev embedding theorem, we derive the iterative estimate

Il oo 7y 191y < Cr (Il 20,1522 + Bl Loz 1:25%)) 5 (1.9)

where Ty4+1 > Ti and

)
k4l :=min {00, —— ¢ .
e d— 52— )

In our situation h(t) = g — f(u(¢)) and, due to our growth restriction (6.1), we have
Il < Clglze + 14 lullfy,),
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where s; := min{q, g p’l}. Thus, in order to prove the theorem, it is sufficient to
verify that the sequence ¢, defined via

q dr +2) q i n<<l1
0= 57 >» k+1 — (>
d—r—4 "7 pd —q2— )

will become larger than g > % in finitely many steps (we have used here estimate

d(r+2)
(7.4) and the embedding Wl C L% toinitialize the iterations and the embedding
W?2~H4 < L which holds for sufficiently small 1« due to the condition ¢ > %).
Obviously this sequence will be monotone increasing if (and only if)

q0
- Z0o- 1.
p d( n) <

Then it must converge to +00, so we only need to verify the last inequality. Using
assumption (7.5) and the explicit formula for g, we only need the inequality

AP S s S
—+e—-Q2—p— <0.

d—4 R p——
It remains to note that the last inequality is satisfied if © < 1 and ¢ < g9 = ¢o(r) for
some positive gq if 7 > 0. This finishes the proof of the theorem.

Remark 7.5 The growth rate of the nonlinearity is no more important if the L°°-
estimate for the solutions is obtained, so further regularity can be obtained by
bootstrapping exactly as in the subcritical case. Thus, under the growth restriction
(7.5), the actual regularity of a solution is determined by the smoothness of €2, f and g
only (if all of them are C*°-smooth, the solutions will be also C°°-smooth). In other
words, we may say that the critical growth exponent for f in our problem (2.1) is
slightly larger than p..i; = 1 + d4T4' We also note that the value ¢ = &(D) some-
how measures how far the matrix D is from the scalar matrix. It is easy to show that
e(D) = oo if D is scalar.

We now turn to the question of whether or not the attraction to .4 holds in the space
D. Since in this case we at least need the dissipativity of our semigroup in D, we assume
that f has a polynomial growth rate (i.e., that (6.1) is satisfied for some p € R;). Of
course, the most interesting here is the supercritical case when the assumption (7.5) is
not satisfied. Unfortunately, we do not know the answer on this question in general and
have to pose some extra restrictions which however look natural. Namely, we assume
that the nonlinearity also satisfies

|Vaf ()| < C(1 + [E(w)| + [u]), ueRF. (7.10)

Then, the following result holds.

Theorem 7.6 Let the assumptions of Proposition 7.1 hold and let also assumptions
(2.3) and (7.10) be satisfied. Then the image S(1) Bg of any closed ball Bg of radius
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R in H is a compact set in D. In particular the global attractor A is compact in D
and attracts in the strong topology of D as well.

Proof We only need to prove the compactness of S(1)Bg, the rest is a corollary of the
standard attractor’s existence theorem. The fact that this set is closed is also standard
and we left it to the reader. So, we will only check pre-compactness below.

The proof of this fact is a combination of parabolic regularity estimates which gives
the pre-compactness of the set

Bg := {3,u(l), u(t) = S(t)ug, ug € Bg}

in L2(£2) and energy type estimates for the elliptic equation which then give the desired
compactness in H 2(Q).

Step 1. By is compact in L*>(2). We already know that By is a bounded set in
L>*7(Q), due to Proposition 7.1 and Corollary 6.2. In order to get the desired com-
pactness we will use the standard interpolation embedding:

Wl_K’l(Q) ) LV+2(Q) C H(lik)ﬁ(g), (711)

see [42]. This embedding together with the compactness of the embedding H C L?
will give the desired result if we prove boundedness of Bg in W!~! for some 0 <
k < 1. To this end, we note that according to Corollary 6.2, u(z) € D for ¢t € [1/2, 1]
and is uniformly bounded there if ug € Bpg. Thus, according to assumption (7.10),
[[Vuf(u(?))|l;2 is uniformly bounded. Since the L% -norm of d,u(z) is also bounded
due to Proposition 7.1, we have the estimate

1 1 1
Vuf(0)o s < CRg, t 1/2,1], — == .
(Vuf(@)osullrs < Cg, t €[1/2,1] g 2+r+2

Thus, applying the maximal L*-regularity estimate (with s > 1, see e.g., [29]) to
equation

90 — DA, 0 = —Vyf(u(r))ou(t), 0 := o,
using the anisotropic Sobolev embedding
W0, 1; L) N L0, 1; W™*) € €0, 1; WA=,
and arguing as at the end of the proof of Lemma 7.4, we arrive at

IOCON o0-1)s = CUBONL /4,115 + 18201 L5 G3/a,1:0) =

< C(IVuf @)dullLs1/2,1,L5) + 18rull 121 2:1:12) < Ci-
(7.12)

This estimate gives the desired boundedness of By in wl=%1(Q) and completes the
first step of the proof.
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Step 2. Compactness in H?. Let us consider a sequence of solutions u,(¢), u, (0) €
Bp, and find a subsequence which is convergent strongly in H> to some solution u(z).
Due to the result of Step 1, we may assume without loss of generality thatu, (1) — u(1)
weakly in H? and 9;u,(1) — d;u(l) strongly in L?. In other words, we need to pass
to the limit n — oo in the semilinear elliptic equation

DA u, (1) — f(u,(1)) = h, := du, (1) — g. (7.13)

Without loss of generality we may assume also that Vyf(u) > 0. We will utilize
the so-called energy method. Assume at this moment that we are able to integrate by
parts and get

(f(w), Ayu) = —(Vuf(w)Viu, Viu), ue D, (7.14)

this formula will be verified later at the end of the proof. Then, multiplying (7.13) by
Ayu, and integrating over x, we get the energy identity

DA u,, Axuy) + (Vuf (u,)Viu,, Viu,) = (hy, Ayuy,). (7.15)

Our aim here is to pass to the limit » — oo in this equality and compare it with the
energy equality for the limit solution. Indeed, using the convexity arguments (similarly
to (4.11)), we get

(DA u), Ayu(l) = liminf(DAu, (1), Acu, (1)),
n—
(Vuf (@) Vyu, Viu) < liminf (Vyf(u,)Viu,, Veu,) (7.16)
n—0o0

and due to the strong convergence h, — h, we have
(h, Ayu(l)) = lim (h,, Ayu,(1)).
n—0oo

Then, the comparison with the limit energy identity
(DAyu, Ayu) + (Vuf(w) Vi, Viu) = (h, Ayu(l))
shows that we must have

Jim (DAu, (D), Ayu, (D) = (DAu(l), Ayu(l)).

Together with the weak convergence A, u, (1) — Axu(l) this gives the strong conver-
gence A,u, (1) - Ayu(l)in L? and, therefore, the strong convergence u, (1) — u(1)
in H2. From the equation (7.13) we finally establish that f(u, (1)) — f(u(l)) also
strongly. Thus, the compactness of S(1)Bg inDis proved. Thus, the theorem is proved
by modulo of the integration by parts formula (7.14) which we prove in the following
lemma. O

Lemma 7.7 Let the nonlinearity f satisfy the assumptions of Theorem 7.6. Then inte-
gration by parts (7.14) is valid for every u € D.
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Proof of the lemma We first establish the identity
(f(u), div W) = —(Vuf(w)Vyu, W) (7.17)

for all vector fields W e C°°(Q). Due to our assumption (7.10) both parts of this
equality make sense. The identity may be proved by approximating the function f by
"good" functions f,, as in Lemma 4.1. Since f has a polynomial growth, we may take,
say,

W) =Vt

and this allows us to keep also assumption (7.10) uniformly in n. Let u, be the
corresponding approximating functions for u constructed as in (4.5). Then, we first
verify the integration by parts for f,, and u,, (which is trivial since everything is smooth)
and after that pass to the limitn — oo (which is also straightforward since as in Lemma
4.2, we have weak convergence f,, (u,) — f(u) in L? and, due to our assumption (7.10),
we also have weak convergence Vyf (u,)Viu, to Vyf(u)Vyuin L 1+¢ for small positive
¢. Thus, the integration by parts (7.17) is verified for smooth vector fields W.

Note that the C*° smoothness assumption on the vector field W can be relaxed till

W e H'(Q)NLYQ)

(where ¢ is large enough that % + 11? < 1) by density arguments.

We now construct a sequence of Lipschitz continuous cut-off functions

I, z<n,
¢n(z) =1 —=In%, z€[n, en], (7.18)
0, z > ne.

Then, the sequence ¢, (z) is monotone increasing in n and is convergent point-wise to
one. Moreover, the following estimate holds:

lg'(2)z] <1, zeR (7.19)

(there are no problems to construct similar smooth sequence, but we prefer to give
relatively simple explicit expression). Then, we define a vector field W = W, as
follows:

Wy (x) := @(|Vxu[*) V.
Then, as simple calculation shows, W € L (£2) and, due to condition (7.19),
IVeWallz2 < ClIVull,
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where the constant C is independent of n. Thus, we may conclude thatdiv W, — A u
weakly in L?(€2). Moreover, we may put W,, to the integration by parts formula (7.17)
and get

(f(m), divW,) = _(‘Pn(|vxu|2)vuf(u)vxua V).

It only remains to pass to the limit n — oo here. Passing to the limit in the left-
hand side is immediate and to pass to the limit # — oo in the right-hand side, it is
enough to note that (Vyf(u) + K)V,u.V,u is non-negative and belongs to LY(Q).
The monotonicity of ¢, in n and its point-wise convergence to one allow us to apply
the Levy monotone convergence theorem and get the desired result. Thus, the lemma
is proved and the theorem is also proved. O

Remark 7.8 We expect that the integration by parts formula (7.14) holds without the
extra assumption (7.10), however, it is not clear how to verify it. Key difficulty here
is that D is a nonlinear set and it is not easy to construct good smooth approximations
for functions u € D.

The first step in the proof of Theorem 7.6 can be also done using the energy type
arguments. To this end one just needs to verify the energy identity

d
Eallﬂ(t)lliz + (DV.0(1), V0 (1)) + (Vuf (u(1))6 (1), 0(1)) =0 (7.20)
which can be verified similarly to the proof of Lemma 7.7. In the case of reaction
diffusion system (2.1) this is not necessary since Proposition 7.1 gives a simpler way
to verify the compactness. However, it may be useful in the case of higher order
equations where the technique of Proposition 7.1 may not work.

8 Finite dimensionality and exponential attractors

In this section we discuss the finite-dimensionality of the global attractor for problem
(2.1) and the existence of the so-called exponential attractor. We recall that a set
M C H is called an exponential attractor of the semigroup §(t) : H — H if the
following conditions are satisfied:

1. M is compactin H;

2. M is semi-invariant: S(r)M C M;

3. It has a finite fractal dimension in H: dimg (A, H) < o0;

4. Tt attracts the images of bounded in H sets exponentially as time tends to infinity,
i.e., for every bounded set B,

dist(S(1)B, M) < Q(|| B||g)e ™

for some positive @ and monotone function Q which are independent of B.

It is well-known that the exponential attractor if exists always contains a global
attractor, so the existence of M automatically implies the finite-dimensionality of a
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global attractor. In contrast to global attractors, exponential attractors usually more
robust with respect to perturbations and allow us to control the rate of attraction in
terms of physical parameters of the system considered, but as a price to pay for that,
an exponential attractor is not unique, see [16,18,35] for more details.

The existence of an exponential attractor is usually verified using the following
abstract result for discrete semigroups Sm)y:=8":H—>H generated by the map
S:H— H.

Proposition 8.1 Let H, V be two Banach spaces such that V is compactly embedded
in H. Assume that there exists a bounded closed set B C H andamap S : B — B
such that

IS — SEIlv < Kl&r — &llm, &1,& € B. (8.1)

Then the corresponding discrete semigroup S(n): B — B possesses an exponential
attractor M C B.

For the proof of this proposition, see [17,18].

In applications usually B is an absorbing ball of the considered continuous semi-
group S(t) H — H, S:=9 (T) for some properly chosen T and (8.1) is verified
using the proper parabolic smoothing property for the equation on differences of two
solutions. If the existence of a discrete exponential attractor My is established, the
exponential attractor for the continuous semigroup can be constructed by the standard
formula:

M := Ui 2r1S () My

and in order to get its finite-dimensionality, we need to assume in addition that the
semigroup is also Holder continuous in time:

ISt — S)&Nn < L (16 — &l + 10— 0]*), (8.2)

forsome «a € (0, 1] and all #; € [T, 2T] and &; € B, see [18] for the details.
The main result of this section is the following theorem.

Theorem 8.2 Let the nonlinearity f satisfy assumptions (2.3), (6.1) for some p € Ry,
(7.10) and the following convexity property: there exist a convex function ¥ : R¥ —
R such that

Cy(Wm) — 1 —[u?) < [f]> < C1(¥@) + |uf’> + 1), ueRF, (8.3)

for some positive constants Cy and Cs. Let also g € L*>(2) and D satisfy (2.2). Then
problem (2.1) possesses an exponential attractor M in the space H := L*(S2) which
is a compact set in D.

Proof According to Corollary 6.2 aball B = By in D of a sufficiently large radius R is
an absorbing set for the solution semigroup S(1) : H — H associated with equation
(2.1). Let us fix T > 0 big enough that S(T)B C B and set S := S(T). Then,
according to estimate (3.8), the semigroup S() is Lipschitz continuous with respect
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to the initial data for every fixed . Moreover, since d;,u(t) is bounded in the L2-norm
if u(0) € D, this semigroup is also Lipschitz continuous in time, so condition (8.2)
is satisfied with o = 1. Therefore, in order to verify the existence of an exponential
attractor, it is enough to check the smoothing property (8.1) for the properly chosen
space V. To this end, we need to establish a number of smoothing estimates for the
difference of solutions of equation (2.1).

Let uy(¢) and uy(¢) be two solutions of (2.1) starting from the absorbing ball B.
Then their difference 0(¢) := u;(t) — uy(¢) solves the equation

1
90 =DA,0 —L1)0, L(t) := f Vuf(sup () + (1 — s)ua(r)) ds. 8.4)
0

We recall that, due to the assumption V,f(u) > — K, multiplication of this equation
on @ gives the basic Lipschitz continuity estimate:

T
10(T)II3 > + fo IV8)II2, dt < CXT18(0))12,. (8.5)

see Lemma 3.6. Moreover, multiplying (8.4) by #]6|" and arguing exactly as in the
proof of Proposition 7.1, we get the estimate

10T r+2 < CeXTT10(0)1,2 (8.6)

for some sufficiently small positive » depending only on the matrix D.
In order to get smoothing estimate for @, we argue as in Step 1 of the proof of
Theorem 7.6. Namely, from (7.10) and (8.3), we conclude that

IVaf (sup + (1 — s)u)[* <
< C(f(suy + (1 — 9w > + 1+ [uy > + [up?) <
< C'(W(sup + (1 =) + 1+ [u* + Ju?) <
< C'(W(up) + W) + 1+ [w > + [wpf?) <
< C"(If () + [fu2)* + [wi > + [w|* + 1), 5 € (0, 1) (8.7)

and, therefore, since f(u(z)) is uniformly bounded in L2-norm for our solutions u;
and up, we have
L2 <C, t€][0,T]. (8.8)

This estimate, in turn, implies (together with (8.5), Sobolev embedding theorem and
Holder inequality) that

L0 rso,1;15) < C1

for some 1 < s < 2. Applying now the L* interior regularity estimate to equation
(8.4) and arguing as in the proof of Theorem 7.6, we get

10CTN 201, = CTIOO)] 2
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which together with the embedding (7.11) gives
10(T) | ge < Crll60)]l 2

for some positive exponent ¢. Setting finally V = H?(2) we get the desired smoothing
property (8.1) and finish the proof of the theorem. O

Remark 8.3 The finite-dimensionality of the global attractor .4 has been established
under similar assumptions on f in [46] using the so-called method of /-trajectories, see
also [32,33]. In the present work we suggest the simplified version of the proof which
is based on multiplication of equation (8.4) on the quantities like #]6|". Although the
proof becomes more transparent, it is slightly less general than the one suggested in
[46] since this multiplication is suitable for reaction-diffusion systems and may not
work for more general ones (e.g., higher order equations). In such cases one should
return back to the method of /-trajectories.

9 Generalizations and concluding remarks

In this concluding section we briefly consider other types of equations for which the
technique developed above works (with some minor changes which we will discuss)
and state some interesting open problems. We start with the case of fractional Lapla-
cians and the corresponding reaction-diffusion equations which are becoming more
and more popular nowadays, see [1,2,23,31] and references therein for more details.

9.1 Fractional reaction-diffusion systems

Let us define A := (—A;)%, 0 < o < 1, in the domain  endowed with Dirichlet
boundary conditions. In other words, we define A as a fractional power of the Laplacian
— A, in the domain 2 endowed with Dirichlet boundary conditions:

. 1Axy,
Au = F_ oc)f (e )1+a

where I (z) is the standard Euler I"-function, see [7,42] for more details, although we
believe that similar results can be obtained for other types of fractional Laplacians.
Let us consider the following fractional reaction-diffusion system:

du+D(—A)u+fu) =g, =0, ©.1)

“|asz

where the function f and the matrix D satisfy assumptions (2.3) and (2.2) respectively.
In this case, the definition of the phase space ID should be transformed as follows:

Dy = {u e Hy", f(u) e L*(Q)}, 9.2)
where H3* := D((—=A,)%).
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All of the estimates and results stated above for the case &« = 1 can be extended in
a straightforward way to a general case 0 < o < 1. The only non-trivial place is the
estimates of the terms like ((—A,)*u, f(u)) or ((—A,)%u, uju|”). In the case when
Q = R? (or in the case of periodic BC), we have a nice explicit formula for such inner
products which trivializes the required estimates (see e.g., [42]), namely,

(Auv) = C, /Rd /Rd (u(x) —u(y)).(v(x) — v(y)) dx dy. ©3)

|x _ y|d+2a

In particular, it gives the positivity of (Au, f(u)) if Vuf(u) > 0. Fortunately, there
is an extension of this formula to the case of bounded domains (see [7]), namely,

(Au, v) = /Q /Q (@) — u()-(v(x) — V() Kara(r, v dx dy +
-I—/ u(x).v(x)BQ,a(x)dx 9.4)
Q

for some non-negative functions Kq o and Bg . This formula allows us to get the
same type of estimates as for the local case @ = 1.

Namely, analogously to Theorem 4.3, we have the existence and uniqueness of
strong solutions u € Cy, (0, T; Dy) for any ug € D, and g € L2(Q) (we always
assume in this section that assumptions (2.2) and (2.3) are satisfied), so the solution
semigroup

S() : Dy — Dy

is well-defined and globally Lipschitz continuous in L2(2). Moreover, exactly as in
§5, this semigroup can be extended by continuity to the semigroup §(t) acting on
whole phase space L?(£2). The corresponding trajectory u(t) := §(t)uo belongs to
C(0, T; L*(£2)) and can be interpreted as a unique weak solution of problem (9.1) ina
sense of Definition 5.1 where I is replaced by D, and A, by —(—A,)% respectively.
Furthermore, exactly as in §5, this semigroup possesses a global attractor A in L2(2).

For the convenience of the reader, we state below the analogues of two key results
for the fractional case which can be obtained analogously to the case « = 1. The
comprehensive study of this case out of the scope of this paper, so we leave the details
to the reader. We return to this problem somewhere else.

Theorem 9.1 Let the matrix D and the nonlinearity £ satisfy (2.2) and (2.3) respectively
and let, in addition, the nonlinearity £ satisfy (6.1) with the exponent p restricted by

the assumption
4o

d —4a

P < Perit(@), perir(@) =1+ 9.5)
ifd > 4a and the external forces g € L1(S2) for some q > %. Then any weak solution
u(t) of problem (9.1) starting from u(0) € H possesses the following smoothing
property:

lu@®lize = Qr(lwO) |2 + llglize), 7 € (0,1] 9.6)
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for some monotone function Q; depending on t, but independent of u and g.

Remark 9.2 Note that this result is not very helpful if 0 < o < % since the direct

H'-estimate which is obtained by multiplication of the equation by —A ,u gives the
control of the H '-norm (of course, assuming in addition thatg € H'!~%)whichis better

than H2%-control finally obtained from u € D,. However, it is useful for « > % In

particular, in the case 0 < o < %, we may have the supercritical growth rate in the
case of physical dimension d = 3 as well. So, main results become applicable for
d = 3 as well. Note also that many of the results of our paper may be extended also
to the case o > 1 (e.g., to the Swift-Hohenberg type equations where o = 2), but in
this case we will not be able to multiply the equation by Au since the term (Au, f(u))
will be out of control, so we may multiply it only on A u and this gives the control

I+a
of the H 2 -norm of u(s) (not H* as before).
We now state the result about exponential attractors for the supercritical case.

Theorem 9.3 Let the nonlinearity f satisfy assumptions (2.3), (6.1) for some p € R,
(7.10) and the following convexity property: there exist a convex function ¥ : R* — R
such that

C(W@) —1—u?) < |f@<C(¥@) +u?+1), ueRk, 9.7)

for some positive constants C1 and Cy. Let also 0 < o < 1, g € L%(Q) and D
satisfy (2.2). Then problem (9.1) possesses an exponential attractor M in the space
H := L*(2) which is a boumded set in D,.

Remark 9.4 We expect that we may add sufficiently small & > O to the critical exponent
Perir iIn(9.5) (exactly as in the case of classical diffusion, see (7.5)) as well as to prove
that the exponential attractor M is not only bounded, but also compact in D, . However,
to get these results, we need to verify the analogue of Theorem A.1 for the fractional
Laplacian and this requires extra efforts in comparison with the local case « = 1, so
we prefer not to state these results here.

9.2 Cahn-Hilliard type systems
Let us consider the following fractional Cahn-Hilliard system in € C R?:
du+ (—A)PD(=A)u+f(w) —g) =0 9-8)

endowed by the Dirichlet boundary conditions. We assume here that 0 < 8 < 1,
0 < o < 1. Note that « = B = 1 corresponds to the classical Cahn-Hilliard system
and 8 = 0, = 1 to the reaction-diffusion system considered above. See [1,35,41] and
references therein for more details concerning classical and fractional CH-equations.
Itis natural to take Dy, as the phase space for this problem and rewrite it in the following
form:

(=20 PutD(=A0)u+fw) =g ©.9)
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Then we may utilize the monotonicity of the function f and apply the developed
above theory to this equation (see also [35] for the case « = f = 1). In this case,
weak solutions are naturally defined in the space H := H~#(Q) and strong solutions
live in D, .

The key result on the existence of exponential attractors now reads.

Theorem 9.5 Let the nonlinearity £ satisfy assumptions (2.3), (6.1) for some p € Ry,
(7.10) and the following convexity property: there exist a convex function ¥ : R¥ — R
such that

Co(W@m) — 1 —[uf) < [f@* < Ci(¥@) +[u® + 1), ueRk, (9.10)

for some positive constants Cy and Cy. Let also g € L*(2) and D satisfy (2.2). Then
problem (9.8) possesses an exponential attractor M in the space H := HP(Q)
which is a bounded set in Dy.

We leave the rigorous proof of this theorem to the reader.

9.3 Open problems

We conclude this section by a discussion of some open questions and possible further
improvements of the above developed theory.

Problem 1. We start with the already posed question about the validity of the integra-
tion by parts formula

(f(m), Ayu) = —(Vyuf(w)Viu, Viu) 9.11)

for every u € ID. We know that both parts of this equality are well-defined for any
u € . However, since we do not know the density of smooth functions in D, we
cannot verify the identity in a standard way, so we need to use something else. We
have proved this identity under the extra assumption (7.10) which allows us to control
the Lebesgue norm of V,f(u) V,u and simplifies the situation. Clarifying the situation
with this integration by parts in general would be very useful for establishing energy
equalities for many other equations containing monotone nonlinearities which, in turn,
may give compactness of the corresponding global attractors. We were sure that (7.10)
is technical, but surprisingly are unable to remove it (or find the proper reference).

Problem 2. Next problem is related with smoothness of weak/strong solutions of
problem (2.1). We have established that under the assumption (6.1) that f has a poly-
nomial growth rate, the problem possesses H to D smoothing property. It would be
interesting to understand whether or not this polynomial growth restriction is really
necessary for the smoothing (ideally, to construct a non-smoothing weak solution for
problem (2.1)), say, with exponential or stronger nonlinearities. A natural idea here
is to extend the proof of Theorem 6.1 to the case where d;u belongs to some weaker
spaces than L? (2) with p < 1 using the technique of Orlich spaces. But more detailed
analysis shows that this does not work already when In(1 + [f(u)]) € L, sowe may

@ Springer



38 A. Kostianko et al.

expect the existence of such exotic non-smoothing weak solutions for fast growing
nonlinearities.

The phenomenon of delayed regularization is well-known in the class of nonlinear
diffusion problems, see [44] and reference therein. For example, the equation

duldul? = Ayu, ul,e, =0, p=0

is well-posed in a natural energy phase space & = WOl ’Z(Q). However, the solutions of
this equation do not possess the standard parabolic smoothing property if, say, p > 4
and d = 3. Indeed, the energy identity for this equation reads

T
2
V(T2 + /0 181755 di = |V, (©)]12.

so if u(0) ¢ LPT2(Q), we have u(T) ¢ LP1?(Q) for any finite T > 0. However,
if we start from more regular phase space W := WOI’Z(Q) N L*°(2), we will have
instantaneous further regularization, see [20]. The open question is whether or not
something similar happens in the case of system (1.1) of reaction-diffusion equations
with fast growing nonlinearity f satisfying (2.3).

Another related question is about generating singularities in finite time in equations
like (2.1). It is known that general reaction-diffusion systems may generate singulari-
ties in higher norms even if the natural energy norm remains finite and dissipative, see
e.g., [36] for RDS satisfying balance law (=mass conservation law), [25] for the case
of reaction-diffusion with chemotaxis or [6] for Ginzburg-Landau equations in R3
(see also references therein). However, to the best of our knowledge, there are no such
examples in the class of equation (2.1) with nonlinearities satisfying Vyf(u) > —K.
As we know, in this case the H2-norm cannot blow up, so this is the question of
possible blow up of higher norms and high space dimension d > 4.

Problem 3. Finally, about the finite-dimensionality of global attractors. The most
popular scheme for proving this result is related with volume contraction technique, see
[3,41] and references therein. Using this technique, we need to estimate / dimensional
traces Tr; £,,, where

Luv=DA,v— Vyf(u)v

is the linearized operator on the trajectory u(¢) of the equation (2.1) lying on the
attractor. Formal estimates of this quantity depend only on K (if the assumption
Vuf(u) > —K is posed) and are independent of the norm of u(#) and any norms of
f(u).

However, to justify this method we need to verify the differentiability of the
semigroup S(T) with respect to the initial data (at least the so-called uniform quasi-
differentiability on the attractor, see [41]) and such a differentiability usually does not
hold in supercritical cases.

This was the main reason to use the alternative scheme based on Proposition 8.1 for
verifying the finite-dimensionality. In this scheme the differentiability is not required,
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but as the price to pay, we get essentially worse estimates than expected since now the
norm of |Vyf(u)]| is involved into all dimension estimates.

It would be interesting to remove this drawback and remove the dependence on
|Vuf (u)| from these estimates, e.g., by finding a "clever" choice of spaces H and V in
Proposition 8.1. Up to the moment we know how to do this in a scalar case only, due
to the possibility to multiply (8.4) by sgn v and using the Kato inequality. This in turn
gives the estimate of the L'-norm of L(7)6 through quantities depending only on K.
To the best of our knowledge, nothing similar is known for the vector case.
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Appendix A. Nonlinear localization and elliptic regularity
In this appendix we consider the following semi-linear elliptic problem:
DAyu—f(u) =g, (A.1)

where the matrix D satisfies assumption (2.2) and f enjoys assumptions (2.3). Then,
arguing as before, we get the H2-elliptic regularity

lall 2 + I @2 < C (14 ligll2) - (A.2)

The question addressed here concerns an additional regularity under the extra assump-
tion
ge L1(Q), g >2. (A.3)

A partial answer on this question is given in the following theorem.

Theorem A.1 Let the above assumptions hold. Then there exists k = k(D) > 0 such

that, foranyd > 2 and?2 < g <d — d(Kd; dz), the following estimate holds:
lID3ul- [Vl 21 + Vw5 ) < € (14 1g177) . (A4
L d—2
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wherer := % € (0,k) and D)%u stands for the collection of all second derivatives
of the function u.

Proof We give below only the formal derivation of estimate (A.4) which can be justified
in a standard way (e.g., by cutting off the nonlinearity as explained in Section 4,
mollifying g and using the corresponding smooth solutions of the cut off equation to
approximate the initial solution u).

Step 1. We start with the simplest case of periodic boundary conditions where no
difficult terms related with the boundary arise and we may integrate by parts freely.
Without loss of generality, we may also assume that Vf(u) > 0 and £(0) = 0.

Let us multiply equation (A.1) by 9y, (3x;u|Vyu|") and integrate over x. This gives

(DA u, 07 u|Veul) + (Vaf ()30, 0 u[Veu|) <
< (g, 3y, 3y, u|Veul")) + Cr(| DX, |Veul"). (A.5)

Integrating by parts twice in the first term in the left-hand side and using the posi-
tivity of D and V,f(u), we arrive at

a(|V, (3, w) %, [Voul") < (g, 3y, (35,u|Vyul) + Cr(D2ul?, |Veul").  (A6)

Due to Sobolev embedding theorem, we have

2 r
IVaul ™8 ) < CIVe(IVaul )2, < C'(1D2uf?, [Veul). (A7)
L a7
Taking now a sum in (A.6) with respect toi = 1,--- ,d and assuming that r <

k = k(«) is small enough, we end up with

o ((|D,%u|2, |Veul") + ||qu||’+‘,%,~+2)> <

L d=2

< Cl(g, |D2u||V a2V, ul 7). (A.8)

Finally, using the Holder inequality with the exponents ¢, 2 and i‘ﬁgfzz)), we get

(g, |D2ul?|V,u|"/?|Veu|/?)| <

o
<z ((|D§u|2, IVaul") + ||qu||rt%,+2)) + Collgllyh? (A.9)

L d=2

and finish the proof of the theorem in the case of periodic BC.

The case of Dirichlet BC is more delicate since hardly controllable boundary terms
will appear if we try to integrate by parts in the first term of (A.5). To avoid them,
we will use the nonlinear localization technique suggested in [27] (see also [28]) for
more details.

Step 2. Interior estimates. We introduce a cut-off function 6 € C?(R?) which
vanishes near the boundary and equals to one in the §-interior of the domain (6 < 1
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is small positive) and satisfies
V2000 < CO)'2,

such a function exists and at least C!-smooth since the domain is smooth. Then,
multiplying equation (A.1) by V, - (V,u|V,u|") and arguing as in Step 1, we arrive
at

61D7ul*, |V,ul") < G (||g||’;;2 + | Veull} 2 ) : (A.10)

Lr+2

Indeed, integration by parts is now allowed due to the factor 6 vanishing near the
boundary. Of course this will produce the extra terms containing V,6 at every step,
but these terms are all under the control due to obvious estimate:

|(ID?u| |Vyul, |V,6] [V,ul)|
<e(@|Diul?, |Veul") +
+Co (V01707 |V, u 1)
< e@|D2ul, |Veu") + Co||Veul|l 2 (A.11)

Lr+2°
where ¢ > 0 is arbitrary.

Step 3. Boundary estimates: tangential derivatives. To treat the neighbour-
hood of the boundary, we introduce an x-dependent smooth orthonormal base
(t1(x), -+, Tg—1(x), n(x)) near the boundary such that, when x € 9%, t; corre-
spond to fangential directions and n(x) is outer normal. We also assume that these
vector fields are cut-off outside a small neighbourhood of the boundary similarly to
Step 2. Note also that in general such smooth vector fields exist near the boundary
only locally, but we will ignore this fact assuming that they exist globally (one more
localization is necessary in general). We also define the corresponding directional
derivatives

0¢, == T;.Vy, 0On:=n.V,.

i

Then, as follows from the orthogonality conditions,

IVeu| = [Vemul, [97,. 9,1 =L.0.T., 8} =—d; +L.O.T.

T

where "L.O.T." means "lower order terms" and also we have analogous commutator
formulas for normal derivative as well. In addition,

d—1
Ayu = 8§u + Zafiu +L.0.T.,
i=1

Vi - (Veu|Veu|") = Ve - (V(,,n)u|V(1,n)u|r) + L.0.T. (A.12)

Since all "L.O.T." are under the control analogously to estimate (A.11), we may
replace x-derivatives by (t, m)-derivatives and do calculations simply assuming that

@ Springer



42 A. Kostianko et al.

they commute. At this step we multiply equation (A.1) by —97, (37, u|V(z nyu|") and
integrate over x. Analogously to Step 1, this gives

d—1
Ddgu+DY 97 u, 07 u|Ve mul) +
j=1
+(Vllf(u)a‘[ius 8riu|vxu|r) =

< (D3l IVaul) + G (gl + 1Vaulfi2) . (A13)

Lr+2
The advantage of separating tangential and normal derivatives is the fact that

8ft“|asz = 83,-“|3sz =0,

due to the Dirichlet boundary conditions, so we again may integrate by parts the

expression in the left-hand side of (A.13) freely and, analogously to Step 1, get the
following estimate (using also that V,f(u) > 0):
(D7 cul® + D5 pul’, |Veul') <

< (D3l IVaul) + . (g2 + IVaulffs) . (A4

where D2 and D2 are the collections of all tangential second derivatives 9z, dz , ;
and the second derlvatlves of the form 9,0, respectively.

Step 4. Boundary estimates: normal derivatives. To estimate normal derivatives
we multiply (A.1) by 9;(dqu|V,u|") and use that £(0) = 0 in order to kill boundary
terms related with nonlinearity. Together with the already obtained estimate (A.14)
this gives

(82u, 82u|V,u|")
= e(ID3ul%, [Vaul)+Ce (ligli? + IVoul )
+(ID cul, |35ul|Vul")]
< (D2 1V.ul) + C (ligl4? + 1Vl (A.15)
where the constant ¢ > 0 can be chosen arbitrarily small.
Step 5. Combining all together. Combining the interior estimates obtained at Step

2 with the tangential and normal boundary estimates (A.14) and (A.15) (e.g., with the
help of the proper partition of unity), we finally arrive at

(ID2ul?, |Veul") < Ce(llgl"F2, + IVeul”t2) 4+ Ce(|D?ul, |[Viul")

Lr+2 Lr+2

and after fixing ¢ > 0 small enough, we end up with

(ID2ul?, |V,ul") < C(lgl" 2, + IVoul" ).

Lr+2 Lr+2
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So, it only remains to estimate the L™t2_norm of the gradient V,u. To this end, it is
enough to use (A.7) together with the obvious estimate

+2 +2 +2
IViull’, 75 < el Vaull ga + CellVaulls
L d—2

and estimate (A.2). This completes the proof of the theorem. O

Remark A.2 As we see, the nonlinear localization uses the general strategy of the
classical (linear) localization technique. However, it is more delicate since we need
also to treat the nonlinear term f(u) which is now not subordinated to the linear ones,
so we can multiply the equation only on the terms which can be estimated using the
monotonicity assumption Vyf(u) > 0. Fortunately, the amount of such multipliers is
enough to get the estimates similar to the linear case.
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