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Abstract
A cone structure on a complex manifold M is a closed submanifold C ⊂ PT M of
the projectivized tangent bundle which is submersive over M . A conic connection
on C specifies a distinguished family of curves on M in the directions specified by C.
There are two common sources of cone structures and conic connections, one in differ-
ential geometry and another in algebraic geometry. In differential geometry, we have
cone structures induced by the geometric structures underlying holomorphic parabolic
geometries, a classical example of which is the null cone bundle of a holomorphic
conformal structure. In algebraic geometry, we have the cone structures consisting of
varieties of minimal rational tangents (VMRT) given by minimal rational curves on
uniruled projective manifolds. The local invariants of the cone structures in parabolic
geometries are given by the curvature of the parabolic geometries, the nature of which
depend on the type of the parabolic geometry, i.e., the type of the fibers of C → M .
For the VMRT-structures, more intrinsic invariants of the conic connections which do
not depend on the type of the fiber play important roles. We study the relation between
these two different aspects for the cone structures induced by parabolic geometries
associated with a long simple root of a complex simple Lie algebra. As an applica-
tion, we obtain a local differential-geometric version of the global algebraic-geometric
recognition theorem due to Mok and Hong–Hwang. In our local version, the role of
rational curves is completely replaced by appropriate torsion conditions on the conic
connection.
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Introduction

Throughout this article we work in the holomorphic category: manifolds are complex
andmapsbetween themare holomorphic. For a complexmanifoldM wedenote byT M
and T ∗M the holomorphic tangent respectively co-tangent bundle. For a holomorphic
vector bundle E over M we write O(E) for its sheaf of local (holomorphic) sections.
For readability and aesthetic reasonswe also sometimes simply identify a vector bundle
with its sheaf of local sections and omit O(−).

A cone structure on a manifold M is a closed submanifold C ⊂ PT M in the pro-
jectivized tangent bundle which is submersive over M (see Definition 1.6). It specifies
a set of distinguished tangent directions on M . When it arises in natural geometric
problems, it is usually equipped with a conic connection (see Definition 1.15), a line
subbundle F ⊂ TC, which specifies a set of distinguished curves on M in direction
of C.

As classical examples of cone structures and conic connections, we have those
given by geodesics in Riemannian geometry or null-geodesics in Lorentzian geom-
etry. The geometric picture becomes more elegant and easier to handle when we
consider them in the holomorphic setting. A prototypical example is LeBrun’s work
[16] on null-geodesics in holomorphic conformal geometry. Conformal geometry is a
special example of parabolic geometries (see [2]), a large class of geometric structures
where the methods of natural connections and their curvatures are well-established. In
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Cone structures and parabolic geometries 717

this regard, it is natural to extend LeBrun’s study to the analogues of null-geodesics
associated to other holomorphic parabolic geometries, which is worked out to some
extent in the current paper. It turns out that the cone structure and the conic connec-
tion naturally associated with a parabolic geometry can be viewed as another type of
parabolic geometry. In particular, this cone structure can be studied as a special case of
the theory of correspondence spaces developed in [1], as explained in Sect. 4.3. This
illustrates the advantage of considering the different types of geometric structures
underlying parabolic geometries together in a uniform way as presented in [2].

There is a completely different source of cone structures and conic connections
arising from algebraic geometry. On a uniruled projective manifold X , one can select
a distinguished class of curves called minimal rational curves. The set Cx ⊂ PTx X of
tangent directions at x of minimal rational curves through a general point x ∈ X is
called the variety of minimal rational tangents (VMRT) at x , which is often a closed
submanifold. Then the union of Cx as x varies on a suitable Zariski open subset
M ⊂ X determines a cone structure on M , called a VMRT-structure. It is equipped
with a natural conic connection given by the minimal rational curves. The theory of
VMRT-structures has numerous applications in algebraic geometry as surveyed in
[6–8].

Classical examples of uniruled projective manifolds are rational homogeneous
spaces G/P. When P < G is a maximal parabolic subgroup determined by a long
simple root of a complex simiple Lie group G, the VMRT CG/P

o ⊂ PToG/P at the
base point o ∈ G/P turns out to be the unique closed orbit of the P-action onPToG/P
and the VMRT-structure CG/P ⊂ PTG/P is defined on the whole projective manifold
G/P via the G-action. This is precisely the natural cone structure associated with the
flat parabolic geometry of G/P . (On the other hand, the VMRT-structure is different
from the natural cone structure of the flat parabolic geometry, if P is determined by a
short simple root.) In this setting, we have the following result, which can be used to
characterize G/P with P associated to a long simple root among uniruled projective
manifolds of second Betti number 1 in terms of VMRT.

Theorem 0.1 Let P < G be the maximal parabolic subgroup of a complex simple Lie
group G determined by a long simple root. Let C ⊂ PT M be a VMRT-structure on
a Zariski open subset M ⊂ X of a uniruled projective manifold X with b2(X) = 1.
Assume that the fiber Cx ⊂ PTxM at each x ∈ M is isomorphic to CG/P

o by a projective
isomorphism from PTxM to PToG/P. Then the cone structure C is locally isomorphic
to CG/P .

This was proved by Mok [14] when G/P is of symmetric type or contact type
(see Definition 2.8). His method was extended to cover the remaining cases in [5].
As this is a nice rigidity result on VMRT-structures with important applications in
algebraic geometry, one would like to find a similar result, replacing CG/P

o by some
other projective submanifold. So it is natural to ask what special properties of CG/P

o
have been used in the proof of Theorem 0.1. With some simplification, we can say
that the following two properties of CG/P

o were crucial.

(I) CG/P
o ⊂ PToG/P is essentially determined by its projective fundamental forms.
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718 J.-M. Hwang, K. Neusser

(II) CG/P
o is the fiber of the natural cone structure of the parabolic geometry of type

G/P .

Here, we state (I) somewhat vaguely to avoid technicalities. It suffices to know that
(I) is a condition coming from the projective differential geometry of CG/P

o . The key
idea of Mok’s proof of Theorem 0.1 is to use (I) to prove that M is covered by minimal
rational curves of X . On the other hand, (II) implies that the manifold M in Theorem
0.1 is equipped with a natural regular normal parabolic geometry with the associated
harmonic curvature. By restricting the harmonic curvature to the minimal rational
curves on M , it is easy to show that the harmonic curvature must vanish, proving the
theorem.

Are there projective submanifolds having similar properties? If we consider general
Cartan geometries other than parabolic geometries, then (II) can be formulated for any
projective submanifold. So it is likely that there aremany submanifolds satisfying some
version of (II). The trouble is (I). Projective submanifolds satisfying an analog of (I)
are very rare. In fact, for a uniruled projective manifold X , the Zariski open subset
M ⊂ X where the VMRT-structure is defined is usually not covered by minimal
rational curves of X .

One of the motivations of this paper is to give a different proof of Theorem 0.1
where the property (I) is not used at all. This is given in Theorem 0.4 below (also see
Theorem 4.41), which is obtained as a byproduct of the following line of investigation.

For the VMRT-structure C ⊂ PT M on the open subset M of a uniruled projec-
tive manifold, the fibers Cx and Cy at two distinct points x �= y ∈ M are usually
not isomorphic. This is very different from geometric structures commonly studied
in differential geometry. Such flexibility of choices of fibers in VMRT-structures is
actually one of the strong points of the theory of VMRT-structures. To study cone
structures with potentially varying fibers such as VMRT-structures, it is important to
use invariants of the structures which can be defined in a uniform way for arbitrary
cone structures and conic connections, not depending on specific types of the fibers Cx .
In Sect. 1, we explain two such invariants, the characteristic torsion of a conic connec-
tion and the cubic torsion defined for a conic connection with vanishing characteristic
torsion. These invariants certainly make sense for the cone structures with conic con-
nections coming from parabolic geometries. The latter cone structures, however, have
also invariants coming from their description as parabolic geometries of type G/P ,
namely, their harmonic curvatures. These are tensors on M which describe certain
torsion and curvature components of a distinguished class of affine connections of M
of which the parabolic geometry is built.

A natural question is the relation between these two different classes of invariants
for cone structures associated with parabolic geometries. Our main results describe
the relations between these two classes of invariants for the cone structure associated
with a parabolic geometry of type G/P in Theorem 0.1:

Theorem 0.2 Let (G → M, ω) be a regular normal parabolic geometry of type G/P
given by a long simple root and let C be the associated CG/P

o -isotrivial cone structure
with the induced conic connection F . Then the induced normal parabolic geometry
on C is regular if and only if the characteristic torsion τF of F vanishes.

123



Cone structures and parabolic geometries 719

Theorem 0.3 In Theorem 0.2, assume that dim M ≥ 4. If τF = 0, then the cubic
torsionχF is exactly the harmonic curvature of the inducednormal parabolic geometry
on C .

Theorem 0.2 (see also Theorem 4.25) is proved by examining the harmonic cur-
vatures in the relative setting of the correspondence space and the proof of Theorem
0.3 (see also Theorem 4.39 ) employs the machinery of Weyl structures in parabolic
geometry as developed in [3]. These two theorems yield the following local version
of Theorem 0.1 (see also Theorem 4.41), which implies Theorem 0.1 by the Cartan–
Fubini type extension theorem in [9].

Theorem 0.4 Let G/P be as in Theorem 0.1 and assume dimG/P ≥ 4. Suppose
M is a complex manifold of dimension equal to dimG/P with a bracket-generating
distribution H ⊂ T M, whose rank equals the rank of the natural G-invariant distri-
bution T−1G/P on G/P. Further, suppose we have a CG/P

o -isotrivial cone structure
C ⊂ PH subordinate toH with a conic connectionF ⊂ TC satisfying τF = χF = 0.
Then the cone structure is locally isomorphic to that of G/P.

The paper is organized as follows. In Sect. 1, we define conic connections on
cone structures and explain the two invariants, the characteristic torsion and the cubic
torsion. In Sect. 2, we review the basic theory of parabolic subalgebras and rational
homogeneous spaces, with special regard to the natural cone structure on a rational
homogeneous space givenby a long simple root,which lead to a nested pair of parabolic
subalgebras. In Sect. 3, we give a brief overview of VMRT-structures and explain
the vanishing of the characteristic torsions and cubic torsions of the natural conic
connections on VMRT-structures. In Sect. 4, we study the cone structures associated
with parabolic geometries and prove the main results, Theorems 4.25, 4.39 and 4.41,
which are more precise versions of Theorems 0.2, 0.3 and 0.4, respectively. A brief
review of Weyl structures which is needed for the proof of Theorem 4.39 is given in
Sect. 4.4. In the appendix, Sect. 5, we list key geometric data for some classes of G/P
for the convenience of the reader.

1 Cone structures and conic connections

We review the notion of conic connections on cone structures and introduce two funda-
mental invariants of a conic connection, its characteristic torsion and its cubic torsion.
We start by reviewing some terminology on distributions and filtered manifolds.

1.1 Filteredmanifolds and distributions

Definition 1.1 Suppose M is a complex manifold.

1. A tangential filtration ofM is a nested sequence of vector subbundles of the tangent
bundle T M :

T M = T−kM ⊃ · · · ⊃ T−1M, (1.1)
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720 J.-M. Hwang, K. Neusser

with the convention that T−i M = T M for i ≥ k and T−i M = {0} for i ≤ 0.
2. The associated graded bundle of the filtration (1.1) is the vector bundle on M

given by

gr(T M) := gr−k(T M) ⊕ · · · ⊕ gr−1(T M),

where gr−i (T M) := T−i M/T−i+1M for each i . We write q−i : T−i M →
gr−i (T M) for the natural projections.

3. A complexmanifoldM equippedwith a filtration (1.1) is called a filteredmanifold,
if the filtration is compatible with the Lie bracket of vector fields, that is,

[O(T−i M),O(T− j M)] ⊂ O(T−(i+ j)M) for all i, j > 0.

4. A (local) isomorphism between filtered manifolds (M, {T−i M}) and (M ′,
{T−i M ′}) is a (local) biholomorphism φ : M → M ′ whose tangent map sends
T−i M to T−i M ′ for each i .

Definition 1.2 Given a filtered manifold (M, {T−i M}), the Lie bracket induces the
vector bundle map L : gr(T M) ⊗ gr(T M) → gr(T M) whose restriction on the
component

L : gr−i (T M) ⊗ gr− j (T M) → gr−(i+ j)(T M), (1.2)

is defined by L(q−i (ξ), q− j (η)) = q−(i+ j)([ξ, η]) for sections ξ and η of T−i M and
T− j M respectively. The bundlemap (1.2) is called theLevi bracket of the filteredman-
ifold (M, {T−i M}). For each x ∈ M , the graded nilpotent Lie algebra (gr(TxM),Lx )

is called the symbol algebra of (M, {T−i M}) at x ∈ M .

The significance of the notion of filtered manifolds emerges from the study of
distributions:

Definition 1.3 Suppose M is a complex manifold andH ⊂ T M a distribution on M ,
by which we mean a (holomorphic) vector subbundle H of T M . The weak derived
flag of H is the sequence of subsheaves of O(T M) given by

H−1 ⊂ H−2 · · · ⊂ O(T M), (1.3)

where H−1 := O(H) and H−i is defined inductively as the saturated subsheaf of
O(T M) generated by H−i+1 and [H−1,H−i+1]. Replacing M by an open dense
subset of M if necessary, (1.3) induces the structure of a filtered manifold on M given
by

T−1M ⊂ · · · ⊂ T−kM ⊂ T−(k+1)M := T M, (1.4)

where k > 0 is the smallest integer such that H−i = H−k for all i ≥ k and T−i M ⊂
T M is the vector subbundle such that O(T−i M) = H−i for i ≤ k. We say that
H is bracket-generating, if H−k = O(T M), or equivalently, gr−1(TxM) = T−1

x M
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Cone structures and parabolic geometries 721

generates gr(TxM) as a Lie algebra for a general point x ∈ M . If T−kM � T M , then
T−kM is involutive and M is foliated by manifolds equipped with bracket generating
distributions.

We will be mainly interested in filtered manifolds with constant symbol:

Definition 1.4 Let n be a nilpotent graded Lie algebra and let Autgr(n) be the group
of graded Lie algebra automorphisms of n.

1. A filtered manifold (M, {T−i M}) has constant symbol of type n, if its symbol
algebra at each point x ∈ M is isomorphic to n.

2. In (1), denote by Fr(gr(TxM)) the set of graded Lie algebra isomorphisms n →
gr(TxM) and define

Fr(gr(T M)) :=
⊔

x∈M
Fr(gr(TxM)),

which is a principalAutgr(n)-bundle onM called the framebundleof (M, {T−i M}).
The principal right action of Autgr(n) on the fibers Fr(gr(TxM)) is given by pre-
composition of maps.

3. If T−1M = T M , then Fr(gr(T M)) is the usual frame bundle Fr(T M) of M .

1.2 Cone structures

We use the following terminology from projective differential geometry.

Notation 1.5 Let PV be the projectivization of a vector space V. Denote by [v] ∈
PV the point corresponding to a nonzero vector v ∈ V. Let Z ⊂ PV be a closed
submanifold.

1. The affine cone of Z is denoted by

Ẑ := {0 �= v ∈ V : [v] ∈ Z} ∪ {0}.

In particular, the 1-dimensional subspace of V corresponding to a point w ∈ PV

is ŵ ⊂ V.
2. The linear automorphism group of Ẑ , denoted by Aut(Ẑ), is the group of linear

automorphisms of V preserving Ẑ .
3. The affine tangent space of Z at z ∈ Z is

T̂z Z := Tv Ẑ for some 0 �= v ∈ ẑ ⊂ V.

Definition 1.6 Let M be a complex manifold of dimension n + 1 and let PT M its
projectivized tangent bundle.

1. A cone structure on M is a closed complex submanifold C ⊂ P(T M) such that
the natural projection p : C → M is a submersion in the sense that Tu p : TuC →
Tp(u)M is surjective for every u ∈ C. In particular, every fiber Cx = p−1(x) is a
closed submanifold of the n-dimensional projective space PTxM .
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722 J.-M. Hwang, K. Neusser

2. Suppose C ⊂ P(T M) and C′ ⊂ P(T M ′) are two cone structures on manifolds M
and M ′ respectively. Then C is locally isomorphic to C′, if there exist nonempty
connected open subsets U ⊂ M and U ′ ⊂ M ′ equipped with a biholomorphic
map φ : U → U ′ such that P(Tφ) : P(TU ) → P(TU ′) induces a biholomorphic
map from C ∩ P(TU ) to C′ ∩ P(TU ′).

In this article we are particularly interested in cone structures whose fibers are all
isomorphic as projective submanifolds:

Definition 1.7 Let V be a vector space of dimension n + 1 and Z ⊂ PV a closed
submanifold. A cone structure C ⊂ P(T M) on a complex manifold M is called Z -
isotrivial, if C is a locally trivial fiber subbundle with standard fiber Z ⊂ PV. Note
that any Z -isotrivial cone structure C defines a reduction of the structure group of the
frame bundle of M to Aut(Ẑ) corresponding to the group inclusion Aut(Ẑ) ⊂ GL(V).

Example 1.8 Let V be a vector space and Z ⊂ PV be a closed submanifold. Then
C := V × Z ⊂ V × PV = P(TV) is a cone structure on V. It is called the flat cone
structure on V with fiber Z ⊂ PV.

Example 1.9 Suppose M is a complex manifold of dimension n + 1. A (holomorphic)
conformal structure on M is a CO(n + 1)-structure on M , where CO(n + 1) denotes
the group of linear conformal transformations of complex Euclidean space C

n+1.
To any conformal structure we can associate its bundle of null cones C ⊂ PT M ,
which is a Z -isotrivial cone structure, where Z ⊂ CP

n is the standard nonsingular
quadric. Conversely, the reduction of Fr(T M) associated to any Z -isotrivial cone
structure C ⊂ P(T M) defines a conformal structure, since Aut(Ẑ) ∼= CO(n + 1).
These assignments are evidently inverse to each other.

Definition 1.10 A cone structure C ⊂ PT M on a filtered manifold (M, {T−i M}) is
called subordinate to the tangential filtration {T−i M}, if C ⊂ P(T−1M). Note, if C is
Z -isotrivial for some Z ⊂ PW ⊂ PV with dimW = rank(T−1M), then C defines a
reduction of the structure group of the frame bundle Fr(T−1M) of the vector bundle
T−1M corresponding to the inclusion Aut(Ẑ) ⊂ GL(W).

Definition 1.11 Suppose C ⊂ PT M is a cone structure on a complex manifold M .

1. For each u ∈ C, define

D−1
u := (T p)−1(û) and D−2

u := (T p)−1(T̂uCp(u)).

They determine vector subbundles

D−1 ⊂ D−2 ⊂ TC, (1.5)

where, by construction, D−1 contains the vertical subbundle V of p : C → M .
Note that, if r is the dimension of the fibers of p : C → M , then V has rank r ,
D−1 has rank r + 1, and D−2 has rank 2r + 1.
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Cone structures and parabolic geometries 723

2. Inductively define saturated subsheaves

D−i = [V,D−i+1] + D−i+1

of T M for any i ≥ 3. They are not necessarily locally free.

The following can be proved by a direct generalization of the proof of Proposition
2 of [11].

Lemma 1.12 In Definition 1.11, if Cx ⊂ PTxM is linearly non-degenerate (that is, it
is not contained in a hyperplane) for a general point x ∈ M, then D−i = TC for
sufficiently large i on a Zariski open subset of C.

The next proposition was proved in Proposition 1 of [11].

Proposition 1.13 Suppose C ⊂ P(T M) is a cone structure on a complex manifold M.
Then D−2 coincides with the first derived system of D−1 (that is, D−2 is generated
by the sheaf of local sections of D−1 and its Lie brackets) and hence (1.5) gives C the
structure of a filtered manifold.

Remark 1.14 The filtration {D−i } of TC is in general not compatible with the Lie
bracket of vector fields, as we see in Sect. 4.3.

1.3 Conic connections and their characteristic torsion

Definition 1.15 A conic connection on a cone structure C ⊂ PT M is a splitting of the
short exact sequence of vector bundles arising from Definition 1.11 (1)

0 → V → D−1 → D−1/V → 0,

equivalently, a line subbundle F ⊂ D−1 such that D−1 = F ⊕ V .
Note that the projections of the integral curves of a conic connection F ⊂ D−1 ⊂

TC to M give rise to a family of complex curves on M , with exactly one curve through
any point x ∈ M in any direction belonging to Cx . Conversely, any such family lifting
to a holomorphic foliation of rank 1 on C defines a conic connection on C.
Example 1.16 If C = PT M , then TC = D−2 and a conic connection is classically
called a path geometry on M . In the holomorphic category the curves in M of any path
geometry can be realized locally as the geodesics of a holomorphic torsion-free affine
connection [15, Prop. 1.2.1] and hence a path geometry is also known to be equivalent
to a projective structure on M .

Note that an immediate consequence of Proposition 1.13 and the integrability of V
is:

Corollary 1.17 Suppose C ⊂ PT M is a cone structure on a complex manifold M
equipped with a conic connection F . Then the Levi bracket of (1.5) induces an iso-
morphism

F ⊗ V ∼= gr−2(D). (1.6)
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724 J.-M. Hwang, K. Neusser

Definition 1.18 Let F be a conic connection on a cone structure C ⊂ PT M . The
characteristic torsion of F is the section τF of the vector bundle F∗ ⊗ gr−2(D)∗ ⊗
TC/D−2, which is the negative of the corresponding component of the Levi bracket
L of (1.5):

F ⊗ gr−2(D)
τF−→ TC/D−2

∩ ‖
D−1 ⊗ gr−2(D)

−L−→ TC/D−2.

A conic connection is said to be characteristic, if τF = 0. Equivalently, a conic
connection is characteristic if and only if

[F ,D−2] ⊂ D−2.

Lemma 1.19 For a cone structure C ⊂ PT M with a characteristic conic connection
F , one has [F ,D−3] ⊂ D−3 and [D−2,D−2] ⊂ D−3.

Proof Recall D−2 = [V,F] + D−1 and D−3 = [V,D−2] + D−2. Let f be a local
section of F , and let v,w be local sections of V . The Jacobi identity implies that

[ f , [v, [w, f ]]] = −[v, [[w, f ], f ]] − [[w, f ], [ f , v]].

SinceF is characteristic, the first term on the right-hand side lies inD−3, which shows
that [F ,D−3] ⊂ D−3 if and only if [D−2,D−2] ⊂ D−3. Applying the Jacobi identity
to [[w, f ], [ f , v]] shows that

[[w, f ], [ f , v]] = −[[ f , [ f , v]], w] + [ f , [[ f , v], w]]
= −[[ f , [ f , v]], w] − [ f , [[v,w], f ]] + [ f , [v, [w, f ]]].

Inserting this identity into the previous one, we obtain

2[ f , [v, [w, f ]]] = −[v, [[w, f ], f ]] + [[ f , [ f , v]], w] + [ f , [[v,w], f ]].

Since F is characteristic and the vertical bundle V integrable (hence [V,V] ⊂ V),
every term on the right-hand side is a section of D−3. Hence, [F ,D−3] ⊂ D−3 as
claimed. ��
Definition 1.20 Suppose C ⊂ P(T M) is a cone structure and denote by

II : V → gr−2(D)∗ ⊗ TC/D−2

the appropriate component of the Levi bracket of (1.5). Consider the component
L : D−1 ⊗ gr−2(D) → TC/D−2 of the Levi bracket of (1.5). Then the following
composition of maps, where the second map denotes the natural projection,

D−1 −L→ gr−2(D)∗ ⊗ TC/D−2 → (gr−2(D)∗ ⊗ TC/D−2)/Im(II), (1.7)
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Cone structures and parabolic geometries 725

descends to a section τC of

(D−1/V)∗ ⊗ (gr−2(D)∗ ⊗ TC/D−2))/Im(II), (1.8)

which we call the characteristic torsion of C.
The significance of τC is the following:

Proposition 1.21 For a cone structure C ⊂ P(T M), assume that II : V → gr−2(D)∗
⊗ TC/D−2 is injective at general points of C.
1. Then C admits at most one characteristic conic connection.
2. Assume C admits a conic connection. Then τC = 0 if and only if C admits a

characteristic conic connection (that is, a conic connection F with τF = 0).

Proof For (1), we can translate the proof of Proposition 3 in [11] into our terminology.
Suppose f and f ′ are local sections of two conic connections F and F ′ respectively.
Then f = h f ′ + v for a unique local section v of V and a holomorphic function h.
If both connections are characteristic, then one must have [v,D−2] ⊂ D−2. Hence,
II(v) = 0 and injectivity of II implies v = 0.

For (2), if C admits a characteristic conic connection, then clearly τC = 0. Con-
versely, assume now that τC = 0 and let F be any conic connection, which exists by
assumption. Then for any local section f of F there exists a unique (by injectivity of
II) local section v of V such that L( f , q−2(ξ)) = L(v, q−2(ξ)) for all section ξ of
D−2. Hence, f − v defines locally a characteristic conic connection on C. By (1), the
so constructed local characteristic conic connections patch together to a global one,
which completes the proof. ��
Lemma 1.22 For a cone structure C ⊂ P(T M), assume that each component of
the fiber Cx ⊂ P(TxM) is different from a linear subspace for each x ∈ M. Then
II : V → gr−2(D)∗ ⊗ TC/D−2 in Proposition 1.21 is injective at general points of C.
Proof Wemay assume that Cx is connected. Suppose the kernel of II has positive rank
at general points of C. By Proposition 2 of [11], this means that the Gauss map of
Cx for general x ∈ M has positive-dimensional fiber. This implies that Cx is a linear
subspace by Theorem 4.3.2 of [12]. ��
Example 1.23 If C ⊂ PT M is the bundle of null cones of a conformal structure as in
Example 1.9, then a conic connection on C is also called a conformal connection in
[16, p. 216]. Then there exists a unique characteristic conic connection defined by the
null geodesics of the conformal structure.

A consequence of the existence of a characteristic conic connection is the following
result from Theorem 6.2 of [6].

Proposition 1.24 Let (M, {T−i M}) be a filtered manifold and C ⊂ PT−1M be a cone
structure subordinate to the filtration. If C admits a characteristic conic connection
(i.e. τC = 0), then the Levi bracket L : T−1M ⊗ T−1M → T−2M/T−1M satisfies
L(u, v) = 0 for any u, v ∈ T−1

x M, x ∈ M, with u ∈ Ĉx and v ∈ T̂uCx .
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1.4 Cubic torsion of a characteristic conic connection

To a characteristic connection F on a cone structure C ⊂ PT M , one can associate a
local invariant χF , which is a section of

S3F∗ ⊗ Hom0(V, gr−2(D)),

where Hom0(V, gr−2(D)) denotes the subbundle of Hom(V, gr−2(D)) of homomor-
phisms which become trace-free after choosing an isomorphism of gr−2(D)with V by
the composition of L : F ⊗V → gr−2(D) in Corollary 1.17 and a local trivialization
of F . To define it, we need some auxiliary definitions as follows.

Definition 1.25 Suppose f is a local non-vanishing section of a characteristic connec-
tion F on a cone structure C ⊂ PT M . Since F is assumed to be characteristic, for
any section v of V there exists a unique local section w( f , v) of V such that

L( f , w( f , v)) = 1

2
q−2([ f , [ f , v]]), (1.9)

where q−2 : D−2 → gr−2(D) is the projection in Definition 1.1 (2). Let us define
χ̃( f ) : O(V) → O(gr−2(D)) by

χ̃( f )(v) := −q−2

(
[ f , [ f , [ f , v] − 3

2
w( f , v)]]

)
. (1.10)

Lemma 1.26 In Definition 1.25, for a local non-vanishing holomorphic function h on
C and a local section v of V , the local section w( f , v) of V and the map χ̃( f ) have
the following properties.

1. w( f , hv) = hw( f , v) + ( f · h)v.

2. χ̃ ( f )(hv) = hχ̃ ( f )(v), which implies that χ̃( f ) is a tensor, that is, it defines a
section of Hom(V, gr−2(D)).

3. w(h f , v) = hw( f , v) + 1
2 ( f · h)v.

4. χ̃ (h f ) ≡ h3χ̃( f ) mod L( f ,− ).

Proof (1) follows from

[ f , [ f , hv]] = h[ f , [ f , v]] + 2( f · h)[ f , v] + f · ( f · h)v.

Bracketing this expression again with f shows that

q−2([ f , [ f , [ f , hv]]])
= q−2(h[ f , [ f , [ f , v]]] + 3( f · h)[ f , [ f , v]] + 3 f · ( f · h)[ f , v]).
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Then (1) implies that

q−2([ f , [ f , w( f , hv)]])
= q−2(h[ f , [ f , w( f , v)]] + 2( f · h)[ f , w( f , v)]

+ ( f · h)[ f , [ f , v]] + 2 f · ( f · h)[ f , v])
= q−2(h[ f , [ f , w( f , v)]] + 2( f · h)[ f , [ f , v]] + 2 f · ( f · h)[ f , v]),

which proves (2). Moreover, one computes straightforwardly that

1

2
q−2([h f , [h f , v]]) = 1

2
q−2(h

2[ f , [ f , v]] + h( f · h)[ f , v])

= L
(
h f , hw( f , v) + 1

2
( f · h)v

)
,

which proves (3). Using this shows that

q−2([h f , [h f , w(h f , v)]]) ≡
h3q−2([ f , [ f , w( f , v)]]) + 2h2( f · h)q−2([ f , [ f , v]]) mod L( f , v),

and hence

q−2([h f , [h f , [h f , v]]]) ≡ h3q−2([ f , [ f , [ f , v]]])
+3h2( f · h)q−2([ f , [ f , v]]) mod L( f , v)

implies (4). ��

Definition 1.27 Let C ⊂ PT M be a cone structure with a characteristic conic connec-
tion F . In Definition 1.25, let

χF ( f ) := χ̃ ( f ) mod L( f , ·)

be the trace-free part of χ̃ ( f ). By Lemma 1.26, the association f ⊗ f ⊗ f �→ χF ( f )
determines a section χF of S3F∗ ⊗Hom0(V, gr−2(D)). We call χF the cubic torsion
of the characteristic connection F .

We shall see in Sect. 3 that there are many natural examples arising from algebraic
geometry of cone structures with conic connections F with vanishing τF and χF .
On the other hand, we shall see in Sect. 4 that for a certain class of isotrivial cone
structures the existence of a conic connectionF with vanishing τF and χF determines
the local isomorphism type of the cone structure.
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2 Parabolic subalgebras and rational homogeneous spaces

2.1 Parabolic subalgebras and their homology groups

Recall that a subalgebrapof a complex semisimpleLie algebrag is said to beparabolic,
if it contains a maximal solvable subalgebra (called Borel subalgebra) of g. Then the
following is well-known, see e.g. [2, Theorem 3.2.1]:

Proposition 2.1 Let g be a complex semisimple Lie algebra. Fix a Cartan subalgebra
h of g and let �0 be a subset of simple roots in the set of roots � of g with respect to
h. For any subset 	 ⊂ �0 and α ∈ �, write ht	(α) for the sum of all the coefficients
of elements in 	 in the expression of α as a linear combination of simple roots.

1. Any subset 	 ⊂ �0 gives rise to a graded Lie algebra structure on g

g = p−k ⊕ · · · ⊕ p0 ⊕ · · · ⊕ pk [pi , p j ] ⊂ pi+ j , (2.1)

where pi := ⊕ht	(α)=i gα for i �= 0, p0 := h ⊕ ⊕
ht	(α)=0 gα , and p−1 generates

the subalgebra p− := ⊕
i≥1 p−i .

2. The subalgebra p = p	 := p0 ⊕ p+ of g is parabolic, where p+ := ⊕
i≥1 pi is its

nilradical and p0 ≤ p, called its Levi subalgebra, is reductive. The largest integer
k with pk �= 0 is called the depth of p (of 	).

Conversely, any parabolic subalgebra of g is conjugate to p	 for some 	 ⊂ �0.

Notation 2.2 A parabolic subalgebra p = p	 ≤ g as in Proposition 2.1 (or its con-
jugacy class) is denoted by the Dynkin diagram of g with vertices corresponding to
roots in 	 replaced by crosses.

Notation 2.3 Suppose p = p	 is parabolic subalgebra of a semisimple Lie algebra.

• We write pss0 for the semisimple part of its Levi subalgebra p0 and z(p0) for the
center of p0.

• We denote the filtered Lie algebra structure on g induced by p = p	 by

g = p−k ⊃ · · · ⊃ p−1 ⊃ p0 ⊃ p1 ⊃ · · · ⊃ pk [pi , p j ] ⊆ pi+ j (2.2)

where p j is a p-module defined by p j := ⊕i≥ jpi .

Lemma 2.4 (see e.g. [2, Prop. 3.1.2]) In Proposition 2.1, the Killing form of g induces:

• p0-module isomorphisms p∗−i
∼= pi and hence p∗− ∼= p+;

• a p-module isomorphism (g/p)∗ ∼= p+.

Definition 2.5 Regarding g as a p+-module by the adjoint representation, there is
complex by boundary operators

· · · ∧�−1p+ ⊗ g
∂∗← ∧�p+ ⊗ g

∂∗← ∧�+1p+ ⊗ g · · · (2.3)
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computing the Lie algebra homology H�(p+, g) of p+ with coeffiecients in g. By
Lemma 2.4, as p0-modules ∧�p∗− ⊗g ∼= ∧�p+ ⊗g and hence the complex computing
the cohomology of p− with coefficients in the p−-module g gives rise to a complex of
coboundary operators of the form

· · · ∧�−1p+ ⊗ g
∂→ ∧�p+ ⊗ g

∂→ ∧�+1p+ ⊗ g · · · .

The formulae for these operators can be found in Sections 2.1.9 and 3.3.1 of [2].

Kostant showed in [13, Theorem 5.14] (see also [2, Corollary 3.1.11]) that the
operators in Definition 2.5 give rise to an algebraic Hodge decomposition of∧∗p+ ⊗g
as follows.

Proposition 2.6 In Definition 2.5, let G be the adjoint group of g and let P ⊂ G (resp.
P+, P0) be the connected subgroup corresponding to the subalgebra p ⊂ g (resp.
p+, p0).

1. The boundary operators ∂∗ are P-equivariant and the homology group H�(p+, g)
is a completely reducible P-module. In particular, P+ acts trivially on H�(p+, g)
and so the P-action factors to an action of P/P+ ∼= P0.

2. The coboundary operator ∂ is P0-equivariant and there is a natural P0-module
decomposition

∧∗p+ ⊗ g = im(∂) ⊕ ker(�) ⊕ im(∂∗) = im(∂) ⊕ ker(∂∗) = ker(∂) ⊕ im(∂∗)
(2.4)

where � = ∂∂∗ + ∂∗∂ .
3. In particular, as a P0-module, we may identify H∗(p+, g) via (2.4) with the sub-

module ker(�) of ∧∗p+ ⊗ g.

Notation 2.7 Both ∂∗ and ∂ are compatible with the natural gradings on the spaces
∧�p+ ⊗ g induced by (2.1). Hence, the homology groups H�(p+, g) are graded. We
write H�,r (p+, g) for the r -th grading component of H�(p+, g), sitting inside the r -th
grading component of∧�p+ ⊗g under the identification of H�(p+, g)with a subspace
of ∧�p+ ⊗ g via Proposition 2.6. Note that our convention for the gradation differs
from the one used by Yamaguchi in [18] by a shift of +1.

Definition 2.8 It is convenient to introduce the following two distinguished classes of
the pairs (g, 	) in Proposition 2.1.

1. We say that (g, 	) is of symmetric type if 	 is a single long root and has depth 1.
2. We say that (g, 	) is of contact type if	 is a single long root and has depth 2 with

dim(p±2) = 1.

The choices of (g, α) corresponding to these cases are listed in Tables 1 and 3 of
Sect. 5.

Remark 2.9 The terminology in Definition 2.8 reflects the fact that the homogeneous
space corresponding to (g, 	) of symmetric type (resp. contact type) is a Hermitian
symmetric space (resp. a homogeneous contact manifold).
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The following results are deduced from [13, Theorem 5.14].

Proposition 2.10 Let (g, αi ) be a simple Lie algebra with a long simple root of g
and let p be the associated parabolic subalgebra. Identify

⊕
r≥1 H2,r (p+, g) with

a p0-submodule of ∧2p+ ⊗ g via Proposition 2.6. If H2,r (p+, g) �= 0 for r ≥ 1,
then any lowest weight space generating an irreducible component of the p0-module
H2,r (p+, g) is of the form

gαi ∧ gαi+α j ⊗ gβi j ∈ ∧2p1 ⊗ pr−2, (2.5)

where α j is a simple root connected to αi in the Dynkin diagram of g and βi j is a lowest
weight of the p0-module pr−2 (which is unique if pr−2 is irreducible). Furthermore,
the following holds.

1. H2,r (p+, g) = 0 for r ≥ 1, unless (g, αi ) is of symmetric or contact type, or equal
to (Bn/Dn+1, α3) for n ≥ 4.

2. If (g, αi ) is of type of any of the exceptions in (1), but is not equal to (An, α1 or αn),
or to (An, α2 or αn−1) for n ≥ 4, or to (Bn/Dn, α1), then H2,r (p+, g) = 0 for
r ≥ 2 and H2,1(p+, g) �= 0.

3. If (g, αi ) equals (Bn/Dn, α1) or (An, α1 or αn) for n ≥ 3, then H2(p+, g) =
H2,2(p+, g), which is irreducible, except for (D3, α1), in which case it has two
irreducible components.

4. If (g, αi ) equals (B2, α1) or (A2, α1 or α2), then H2(p+, g) = H2,3(p+, g) is
irreducible.

5. If (g, αi )=(An, α2 or αn−1) for n≥4, then H2(p+, g)=H2,1(p+, g)⊕H2,2(p+, g).

Proof Recall that Theorem 5.14 of [13] (see [2, Theorem 3.3.5] for a formulation in the
notation we use here) says that the irreducible components of H2(p+, g) ⊂ ∧2p+ ⊗ g
are in bijection with elements in the set Wp(2) consisting of the elements of length 2
in the Hasse diagram Wp of p (see [2, Def. 3.2.1]). We write sk for the root reflection
corresponding to a simple root αk . For a maximal parabolic subalgebra corresponding
to a simple root αi the algorithm in Section 3.2.14 of [2] gives

Wp(2) = {si s j : α j is connected to αi in the Dynkin diagram of g}.

Moreover, by [2, Proposition 3.2.16,(2)], for any si s j ∈ Wp(2) the subset of positive
roots �si s j appearing in [2, Theorem 3.3.5] (for a definition see also Section 3.2.14,
p. 321, of [2]) is given by �si s j = {αi , si (α j )}. Hence �si s j = {αi , αi + α j } if αi is
a long root. For a maximal parabolic subalgebra corresponding to a long simple root
αi , Theorem 3.3.5 of [2] implies that the irreducible components of H2(p+, g) are
generated by the lowest weight spaces

gαi ∧ gαi+α j ⊗ g−si s j (θ) ∈ ∧2p1 ⊗ g, for si s j ∈ Wp(2), (2.6)

where θ is the highest root of g, which proves the first claim. For (1), note that
Yamaguchi’s list in [18, Proposition 6.2] shows that any of the subspaces in (2.6) lies
in non-positive homogeneities (that is, g−si s j (θ) ∈ pr−2 for r ≤ 0) except for the cases
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mentioned in (1). Statements (2)-(5) can be also directly read off from [18, Proposition
6.2] or verified directly from (2.6). ��

2.2 Cone structures on rational homogeneous spaces

Suppose g is a semisimple Lie algebra and p = p	 ⊂ g a parabolic subalgebra. Let P
be the subgroup of the automorphism group Aut(g) of g that preserves the filtration
(2.2) and setG = Aut0(g)P , where Aut0(g) denotes the adjoint group of g. We denote
by P0 and P+ the Levi subgroup and the unipotent radical of P respectively.

Remark 2.11 Note that the homogeneous spaceG/P equals the quotient of the adjoint
group of g by the connected parabolic subgroup of Aut0(g) corresponding to p.

There is a natural isomorphism TG/P ∼= G ×P g/p (via the left Maurer–Cartan
form) and the filtration (2.2) induces a tangential filtration

T−i G/P ∼= G ×P p−i/p, i > 0,

on the rational homogenous space G/P . The following is elementary.

Lemma 2.12 In the Notation 2.3, since P+ acts trivially on p−i/p−i+1 and p−i/p−i+1

∼= p−i as P0-modules, one has gr−i (TG/P) ∼= G/P+ ×P0 p−i , where the natural pro-
jection G/P+ → G/P is viewed as a P0-principal bundle. The filtration {T−i G/P}
gives G/P the structure of a filtered manifold with symbol algebra isomorphic to
p− := p−k ⊕ · · · ⊕ p−1. In particular, the distribution

T−1G/P ∼= G ×P p−1/p ∼= G/P+ ×P0 p−1 ⊂ TG/P

is bracket generating and {T−i G/P} is its weak derived flag.

Notation 2.13 Assume that	 consists of a single simple root α of a simple Lie algebra
g. Then p−1/p is an irreducible p-module and p−1/p ∼= p−1 has highest weight −α

as an irreducible p0-module by Proposition 2.1. The space of highest weight vectors
g−α ⊂ p−1 determines a point z0 ∈ P(p−1) = P(p−1/p). We denote the P-orbit
through z0 by

CG/P
o := P · z0 = P0 · z0 = Pss

0 · z0 ⊂ P(p−1/p) = P(p−1),

where Pss
0 denotes the semisimple part of P0.

Basic theory on parabolic subgroups and rational homogeneous spaces implies:

Lemma 2.14 In Notation 2.13, the stabilizer in P of z0 is again a parabolic subgroup
Q of G and the stabilizer Pss

0 ∩Q in Pss
0 of z0 is a parabolic subgroup of Pss

0 . Hence,

CG/P
o

∼= P/Q = P0/P0 ∩ Q = Pss
0 /Pss

0 ∩ Q
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is again a rational homogeneous space. The parabolic subalgebra q < p < g corre-
sponding to Q is associated to the subset of simple roots consisting of α and the roots∑

q that are connected to α in the Dynkin diagram of g.

Definition 2.15 In the setting of Notation 2.13, the cone of highest weight vectors
CG/P
o ⊂ P(p−1/p) of the irreducible P-module p−1/p induces a CG/P

o -isotrivial cone
structure on G/P given by

CG/P := G ×P CG/P
0

∼= G/P+ ×P0 CG/P
0 ⊂ P(T−1G/P) ⊂ P(TG/P)

and we denote by p : CG/P → G/P the natural projection. Note that, by Lemma
2.14, CG/P ∼= G ×P P/Q ∼= G/Q and hence, under this isomorphism, the tangent
map T p of p is given by the natural projection

TG/Q ∼= G ×Q g/q → G ×P g/p ∼= TG/P. (2.7)

To analyze the projection (2.7), we compare the two filtrations (2.2) (and gradings)
on g induced by p and q respectively. The following lemma, which holds for any nested
pair of parabolic subalgebras q < p < g in a semisimple Lie algebra, follows directly
from Proposition 2.1:

Lemma 2.16 Suppose q < p < g be a nested pair of parabolic subalgebras of a
semisimple Lie algebra g. The two gradings of g corresponding to p and q,

g = ⊕i∈Zpi = ⊕i∈Zq j ,

satisfy the following.

1. p± � q±, q0 < p0 and their centers satisfy z(p0) < z(q0).
2. As a vector space g decomposes into the following direct sum of subalgebras of

g:

g = p− ⊕ (p0 ∩ q−) ⊕ q0 ⊕ (p0 ∩ q+) ⊕ p+,

where p0 = (p0∩q−)⊕q0⊕(p0∩q+) and q± = (p0∩q±)⊕p±. In particular, the
parabolic subalgebra p0 ∩q of the reductive Lie algebra p0 equals q0 ⊕ (p0 ∩q+),
where q0 is its Levi subalgebra and p0 ∩ q+ its nilradical.

Proposition 2.17 Suppose g is a simple Lie algebra and p is a maximal parabolic
subalgebra corresponding to a long simple root α. Let P ≤ G be as above and let
Q be as in Lemma 2.14. Consider the cone structure CG/P ∼= G/Q ⊂ P(TG/P) on
G/P as defined in Definition 2.15. Then one has:

1. CG/P
o

∼= P0/P0 ∩ Q is a compact Hermitian symmetric space (equivalently, p0 ∩
q± < p0 is an abelian subalgebra).

2. The subbundles T−i G/Q ∼= G ×Q q−i/q ⊂ TG/Q coincide with D−i as in
Definition 1.11 for i = 1, 2, 3, 4.
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3. The line subbundle F ⊂ D−1 defined by qF−1 := g−α ⊂ q−1 is a characteristic
conic connection on CG/P (that is, [F ,D−2] ⊂ D−2). Consequently, [F ,D−3] ⊂
D−3 by Lemma 1.19.

4. D−4 = (T p)−1(T−1G/P).

Proof The Dynkin diagram of the parabolic subalgebra pss0 ∩q of pss0 arise from that of
q by removing the cross corresponding to α and the edges emanating from α. Hence,
(1) can be checked from the classification of irreducible compact Hermitian symmetric
spaces given in Table 1 of Sect. 5 which uses the convention in Notation 2.2.

Next, let us prove T−1G/Q = D−1 in (2). Note that we have the vector space
decomposition

q−1/q = q−1 = q−1 ∩ p− ⊕ q−1 ∩ p0.

Since q corresponds to the subset of simple roots consisting of α and any roots con-
nected toα in theDynkin diagramof g, wemust have q−1∩p− = qF−1, defined as in (3).
Hence, (2.7) shows that T−1G/Q ⊂ D−1. To show the equality T−1G/Q = D−1,
it suffices to prove that T−1G/Q contains the vertical bundle V ∼= G ×Q p/q of
p. This is the case if and only if p/q = p0 ∩ q− equals p0 ∩ q−1 =: qV−1. This in
turn holds if and only if p0 ∩ q− ≤ p0 is abelian, which is satisfied by (1). Hence,
T−1G/Q = D−1 = F ⊕ V. As a byproduct, we have shown that F defines a conic
connection on CG/P . By Proposition 1.13 and T−1G/Q = D−1, we see that also
T−2G/Q = D−2, since T−2G/Q is the first derived system of T−1G/Q.

Next, we prove that F is a characteristic conic connection. We have to show that
the Lie bracket qF−1 ⊗ q−2 → q−3 is zero. In other words, we need to show that β −α

is not a root for any root β corresponding to q−2. Since qF−1 ⊗ qV−1
∼= q−2 via the Lie

bracket from Corollary 1.17, a root β corresponding to q−2 satisfies

(i) htα(β) = ht	q\{α}(β) = −1;
(ii) β + α is a root corresponding to qV−1; and
(iii) β + kα is not a root for k > 1.

It follows that 2〈α,β〉
〈α,α〉 = −2+1 = −1, because α is a long root. This shows that β −α

is not a root and F is a characteristic conic connection.
Next, we check (2) for i = 3, 4. We have

T−3G/Q = [T−2G/Q, T−1G/Q] + T−2G/Q = [D−2,V] + D−2 = D−3,

where the second equality follows from F being characteristic andD−2 = T−2G/Q.
By Lemma 1.19, we also have T−4G/Q = D−4.

To prove (4), the inclusion T−4G/Q ⊂ (T p)−1(T−1G/P) is immediate from
T−4G/Q = D−4. To check that this inclusion is an equality, note that any root β

corresponding to p−1 can be written in terms of the simple roots �0 = {α1, . . . , αn}
as

β = −αi −
∑

i �= j

n jα j
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for some integers n j ≥ 0 and α = αi . Since αi is a long root,

2
〈β, αi 〉
〈αi , αi 〉 = −2 + ni−1 + ni+1

is an integer between −2 and 1. Hence, 0 ≤ ni−1 + ni+1 ≤ 3, which shows that
(T p)−1(T−1G/P) ⊂ T−4G/Q. ��
Remark 2.18 When α is a short simple root, we can still define the conic connection
F of Proposition 2.17. It turns out, however, that F is not a characteristic connection
in this case. In fact, one can check using Proposition 1.24 that CG/P does not admit a
characteristic conic connection.

Since we are interested in cone structures admitting characteristic connections, we
fix for later the following notation.

Notation 2.19 Suppose that (g, α) is a simple Lie algebra with a choice of long simple
root. Let q < p < g be the parabolic subalgebras defined in Lemma 2.14. Then we
set

qF±1 := g±α = p± ∩ q±1 and qV±1 := p0 ∩ q±1 = p0 ∩ q±

such that q±1 = qF±1 ⊕ qV±1, which gives rise to the decomposition D−1 = F ⊕ V .
An immediate consequence of Proposition 2.17 is:

Corollary 2.20 Assume the setting of Proposition 2.17. Then the Lie bracket qF±1 ⊗
qV±1 → q±2 defines an isomorphism.

Recall that, if p	 is any parabolic subalgebra of a simple Lie algebra g, then the
depth of 	 equals ht	(θ), where θ is the highest root of g. Hence, Lemma 2.14 and
Tables 1, 2 and 3 of Sect. 5 imply the following.

Proposition 2.21 Suppose (g, α) is a simple Lie algebra with a long simple root with
corresponding parabolic subalgebra p and let q be as in Lemma 2.14.

1. If (g, α) �= (An, α1/αn) is of symmetric type, then the depth of q is 3. If (g, α) =
(An, α1/αn), then it is 2.

2. If (g, α) is of contact type, then the depth of q is 5.
3. If (g, α) is (Bn/Dn+1, α3) for n ≥ 4, then the depth of p is 2, while the depth of q

is 6.

In cases (2) and (3), Proposition 2.17 implies p±1 = q±4.

2.3 Nested pair of parabolic subalgebras and their homology groups

Suppose (g, α) is a simple Lie algebra with a choice of long simple root and let
q < p < g be the parabolic subalgebras defined in Lemma 2.14. Let Q < P < G be
as in Sect. 2.2. Denote by P+ < Q+ the unipotent radicals and by Q0 < P0 the Levi
subgroups of Q < P . The following lemma is immediate (cf. Proposition 2.3 of [1]).
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Lemma 2.22 Let ι : ∧∗(g/p)∗ ⊗g ∼= ∧∗p+ ⊗g ↪→ ∧∗(g/q)∗ ⊗g ∼= ∧∗q+ ⊗g be the
natural inclusion. Then ι intertwines the boundary operators for the homology groups
H∗(p+, g) and H∗(q+, g).

From Lemma 2.22 one sees that the complete reducible Q-module H2(q+, g) must
contain a component isomorphic to a completely reducible quotient of the Q-module
H2(p+, g).

Proposition 2.23 In Notation 2.19 we have:

1. The largest completely reducible quotient of H2(p+, g) as a Q-module equals

H2(p+, g)/q+H2(p+, g) = H2(p+, g)/qV1 H2(p+, g) = H0(q
V
1 , H2(p+, g)).

and is contained in H2(q+, g).
2. Under the identification (2.4) of H2(q+, g) with a Q0-submodule of∧2q+ ⊗g one

has

H0(q
V
1 , H2(p+, g)) ⊂ ∧2p+ ⊗ g ⊂ ∧2q+ ⊗ g (2.8)

and the irreducible components of the q0-module H0(q
V
1 , H2(p+, g)) ⊂ ∧2p+ ⊗g

are generated by the lowest weight vectors of the irreducible components of the
p0-module H2(p+, g).

Proof On a completely reducible quotient of the Q-module H2(p+, g) the unipo-
tent radical Q+ of Q must act trivially and hence the largest such quotient equals
H2(p+, g)/q+H2(p+, g). Since p+ acts trivially on H2(p+, g), that quotient equals
H2(p+, g)/qV1 H2(p+, g), which by definition is the 0-th Lie algebra homology group
of the abelian Lie algebra qV1 with values in the representation H2(p+, g). Recall
that q0 ⊕ qV1 is a parabolic subalgebra of the reductive Lie algebra p0 with nilradical
qV1 . Hence, H0(q

V
1 , H2(p+, g)) and H2(q+, g) are both subject to Kostant’s Theorem

[13, Theorem 5.14], which implies that H0(q
V
1 , H2(p+, g)) ⊂ H2(q+, g) and also the

statements in (2) (cf. also [4, Theorem 2.7]). ��
In the following proposition, the subspace H0(q

V
1 , H2(p+, g)) ⊂ H2(q+, g) is

identified with a Q0-submodule of ∧2p+ ⊗ g ⊂ ∧2q+ ⊗ g according to (2.8).

Proposition 2.24 In Notation 2.19 the following holds.

1. Assume (g, α) is of symmetric type.

(i) Assume (g, α) �= (An, α1 or αn). Then H0(q
V
1 , H2,1(p+, g)) ⊂ qF1 ⊗q2 ⊗q−3

and the Hodge decomposition (2.4) of ∧2q+ ⊗ g restricted to qF1 ⊗ q2 ⊗ q−3
reads as

qF1 ⊗ q2 ⊗ q−3 = ker(∂∗) ⊕ im(∂) = H0(q
V
1 , H2,1(p+, g)) ⊕ im(∂).(2.9)

Moreover, under the identification qF1 ⊗ q∗−2 ⊗ q−3 ∼= qF1 ⊗ q2 ⊗ q−3 via the
Killing form, im(∂) coincides with the image of the inclusion

Id ⊗ ad(−)|q−2 : qF1 ⊗ qV−1 ↪→ qF1 ⊗ q∗−2 ⊗ q−3.
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(ii) H0(q
V
1 , H2,2(p+, g)) ⊂ qF1 ⊗ q2 ⊗ qV−1. Moreover, the isomorphism qF±1 ⊗

qV±1
∼= q±2 of Corollary 2.20 and the Killing form induce isomorphisms

qF1 ⊗ q2 ⊗ qV−1
∼= S2qF1 ⊗ End(qV−1)

∼= S3qF1 ⊗ Hom(qV−1, q−2). (2.10)

Under these isomorphisms, the kernel ker(∂∗) of ∂∗ restricted to qF1 ⊗q2⊗qV−1
corresponds to

ker(∂∗) = H0(q
V
1 , H2,2(p+, g)) ⊕ im(∂∗)

∼= S2qF1 ⊗ End0(q
V−1)

∼= S3qF1 ⊗ Hom0(q
V−1, q−2),

where End0(qV−1) ⊂ End(qV−1) and Hom0(q
V−1, q−2) ⊂ Hom(qV−1, q−2)

denote the subspaces of trace-free maps, and im(∂∗) the component in
qF1 ⊗ q2 ⊗ qV−1 of the image of ∂

∗.

2. Assume (g, α) is of contact type or equal to (Bn/Dn+1, α3) for n ≥ 4, then one has
H0(q

V
1 ,⊕r≥1H2,r (p+, g)) = H0(q

V
1 , H2,1(p+, g)) and the Hodge decomposition

(2.4) of ∧2q+ ⊗ g restricted to qF1 ⊗ q2 ⊗ q−4 reads as

qF1 ⊗ q2 ⊗ q−4 = ker(∂∗) = H0(q
V
1 , H2,1(p+, g)) ⊕ im(∂∗).

Proof By (2) of Proposition 2.23, the description of the lowest weight vectors of the
p0-module H2,r (p+, g) in (2.5) and the description of q in terms of roots in Lemma
2.14 imply that:

• H0(q
V
1 , H2,1(p+, g)) is contained in qF1 ⊗ q2 ⊗ q−3 in the symmetric case for

(g, α) �= (An, α1 or αn) and in qF1 ⊗ q2 ⊗ q−4 in the cases in (2), since any lowest
weight vector of the irreducible p0-module p−1 lies in q−3 in the first case and in
q−4 in the latter cases;

• H0(q
V
1 , H2,2(p+, g)) is contained in qF1 ⊗q2⊗qV−1, since any lowest weight vector

of the adjoint representation of p0 = qV−1 ⊕ q0 ⊕ qV1 lies in qV−1.

Next let us prove the remaining statements in (i). Given (2.4), the decomposition (2.9)
is equivalent to im(∂∗) ∩ qF1 ⊗ q2 ⊗ q−3 = 0. Since ∂∗ preserves the grading on
∧∗q+ ⊗ g, the formula of ∂∗ implies that only the image of the restriction of ∂∗ to

∧2qV1 ⊗ qF1 ⊗ q−3 ⊂ ∧3q1 ⊗ q−3 ⊂ ∧3q+ ⊗ g

can possibly have a non-zero intersection with qF1 ⊗ q2 ⊗ q−3. Since [qV1 , qV1 ] = 0,
this is however not the case, which proves (2.9). For the last claim in (i), recall that ∂
also preserves the grading on∧∗q+ ⊗g and so the definition of ∂ implies that the only
component in q+ ⊗ g that is mapped to qF1 ⊗ q2 ⊗ q−3 is the component qF1 ⊗ qV−1
of degree 0, since [qF−1, q−2] = 0 by (3) of Proposition 2.17. Under the isomorphism
qF1 ⊗ qV−1

∼= Hom(qF−1, q
V−1) via the Killing form, we have

∂φ(X ,Y ) = −ad(φ(X))(Y ) for X ∈ qF−1,Y ∈ q−2 and φ ∈ Hom(qF−1, q
V−1).
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This proves the last claim of (i), where injectivity follows from Lemma 1.22 and Table
1 of Sect. 5.

Now we prove the remaining claims in (ii). The statement about the isomorphisms
in (2.10) is clear. For the last statement of (ii), note that ∂∗ restricted to qF1 ⊗ q2 ⊗ qV−1
is given by

∂∗ : qF1 ⊗ q2 ⊗ qV−1 → qF1 ⊗ qF1

∂∗(X ⊗ Y ⊗ V ) = −X ⊗ [Y , V ],

since [qF1 , qV−1] = 0 and [qF1 , q2] = 0. Hence, under the first isomorphism in (2.10),
the operator ∂∗ is just given by the natural contraction S2qF1 ⊗End(qV−1) → S2qF1 (in
the endomorphism factor), which finishes the proof of (ii).

Now let us prove (2). We already observed that H0(q
V
1 , H2,1(p+, g)) ⊂ qF1 ⊗ q2 ⊗

q−4 and by Proposition 2.10, we have

H0(q
V
1 ,⊕r≥1H2,r (p+, g)) = H0(q

V
1 , H2,1(p+, g)).

So it remains to show that ker(∂∗) = qF1 ⊗ q2 ⊗ q−4. Since [qF1 , q2] = 0, it suffices
to show

[q2, q−4] = 0 and [qF1 , q−4] = 0. (2.11)

From (the proof of) Proposition 2.17, we know that q±i is contained in p±1 for i =
1, 2, 3, 4 and hence one must have

[q2, q−4] ⊂ q−2 ∩ [p1, p−1] and [qF1 , q−4] ⊂ q−3 ∩ [p1, p−1].

But [p1, p−1] ⊂ p0, while p0 ∩q− = p0 ∩q−1 = qV−1 by Proposition 2.17. This shows
(2.11), and the proof of (2) is completed. ��

3 Cone structures given by varieties of minimal rational tangents

In this section, we give a brief survey of results on varieties of minimal rational
tangents, which provide many examples of cone structures with characteristic conic
connections arising from algebraic geometry. Although these results have been the
motivation to investigate the questions we study in the next section, they are logically
independent. As the nature of the results in this section and the methods used to prove
them are quite different from those in the rest of the paper, we give a minimal presenta-
tionwhichwe believe is sufficient for readers outside algebraic geometry to understand
at least the statements of the three results, Theorems 3.2, 3.7 and Proposition 3.5.

Firstly, recall the following facts on vector bundles on the Riemann sphere P
1. We

have the tautological line bundle O(−1) and its dual line bundle O(1) on P
1. Any

holomorphic line bundle is of the form O(�) for an integer � where O(�) := O(1)⊗�

if � ≥ 0 andO(�) := O(−1)⊗−� if � < 0. The line bundleO(�) has no nonzero global
holomorphic sections on P

1 if � < 0. Moreover, any holomorphic vector bundle on
P
1 is isomorphic to a direct sum of holomorphic line bundles.
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Definition 3.1 The image of a nonconstant holomorphic map f : P
1 → X from the

Riemann sphere to a complex manifold is called a rational curve on X .

1. Given a rational curve C ⊂ X , we can always choose f such that it is injective on
a dense open subset of P

1. Such f is called a normalization of C .
2. The anti-canonical degree of C ⊂ X is the integer � such that the line bundle

det( f ∗T X) on P
1 under a normalization f is isomorphic to O(�).

3. A rational curve C ⊂ X is an immersed rational curve on X if its normalization
is a holomorphic immersion. An immersed rational curve C ⊂ X is called an
unbendable rational curve if its normal bundle NC = f ∗T X/TC is isomorphic
toO(1)⊕r ⊕O⊕(n−r) as vector bundles on P

1 for some nonnegative integer r and
n = dim X − 1. The number r + 2 is the anti-canonical degree of C .

The following theorem summarizesmain results onminimal rational curves on unir-
uled projective manifolds, the key points of which are the bend-and-break argument
going back to Mori and the study of singularities of minimal rational curves due to
Kebekus. Interested readers can consult [6–8] for more details and further references.

Theorem 3.2 Let X be a projective manifold, i.e., a compact complex manifold that
can be embedded in the complex projective space P

N for some N > 0. Assume that
X is uniruled, which means that for any x ∈ X, there exists a rational curve C ⊂ X
containing x. Then there exist complex manifolds U and K with holomorphic maps
ρ : U → K and μ : U → X with the following properties.

1. ρ is a P
1-bundle and there exists a closed analytic subset Eρ � K such that

for any z ∈ K\Eρ , the holomorphic map μ|ρ−1(z) : ρ−1(z) ∼= P
1 → X is a

normalization of an unbendable rational curve in X the anti-canonical degree of
which is 2 + dim U − dim X.

2. There exists a closed analytic subset Eμ � X such that for any x ∈ X\Eμ, the
fiber μ−1(x) is a compact complex manifold and at every point y ∈ μ−1(x),

Ker(Tyμ) ∩ Ker(Tyρ) = 0.

Such a double-fibration K ρ← U μ→ X is called a family of minimal rational curves
on X.

Example 3.3 Let X be a closed complex submanifold of P
m . We say that X is covered

by lines of P
m if for each point x ∈ X , there exists a line of P

m lying on X passing
through x . In this case, there exists a family of minimal rational curves on X whose
members are lines of P

m . There are two well-known examples of such X : any non-
singular hypersurface X ⊂ P

n+2 of degree < n + 2 and a minimal G-equivariant
embedding G/P ⊂ P

m of the homogeneous space of a complex simple Lie group G
modulo a maximal parabolic subgroup P.

Definition 3.4 Given a family of minimal rational curves on X as in Theorem 3.2,
the condition Ker(Tyμ) ∩ Ker(Tyρ) = 0 in (2) implies that Tμ(Ker(Tyρ)) is a 1-
dimensional subspace in Tx X for any x ∈ X\Eμ and y ∈ μ−1(x). Define the tangent
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map

τ : U\μ−1(Eμ) → PT X

by τ(y) := [Tμ(Ker(Tyρ))]. The image τ(μ−1(x)) for x ∈ X\Eμ is called the
variety of minimal rational tangents at x of the family of minimal rational curves.

Proposition 3.5 In Definition 3.4, assume that τ is an embedding such that the image
of τ defines a cone structure C on X\Eμ. Then T τ(Ker(Tρ)) gives a characteristic
conic connection on this cone structure, whose cubic torsion is identically zero.

Proof That F := T τ(Ker(Tρ)) gives a characteristic conic connection is proved in
Proposition 8 of [11]. We give a slightly different proof here. By assumption, the
line bundle F and the vector bundle V are defined on μ−1(X\Eμ). Pick a point
z ∈ (K\Eρ) ∩ ρ(μ−1(X\Eμ)) and let C ⊂ X be the unbendable rational curve given
by μ(ρ−1(z)) ⊂ X . Denote by N+

C the O(1)⊕r -component of NC in Definition 3.1.
The line bundle F restricted to ρ−1(z) ∩ μ−1(X\Eμ) can be extended to the tangent
bundle TC ∼= O(2). The vertical bundle V restricted to ρ−1(z) ∩ μ−1(X\Eμ) can be
extended to the vector bundle Hom(TC, N+

C ) ∼= O(−1)⊕r on ρ−1(z). By Corollary
1.17, gr−2(D) restricted to ρ−1(z) ∩ μ−1(X\Eμ) can be extended to a vector bundle
on ρ−1(z) isomorphic to O(1)⊕r . On the other hand, the vector bundle TC/D−2

restricted to ρ−1(z) ∩ μ−1(X\Eμ) can be extended to a vector bundle on ρ−1(z)
isomorphic to O⊕(n−r). It follows that the characteristic torsion of F restricted to
ρ−1(z) ∩ μ−1(X\Eμ) can be extended to a section of

F∗ ⊗ gr−2(D)∗ ⊗ TC/D−2|ρ−1(z)
∼= O(−3)⊕r(n−r),

which cannot have nonzero holomorphic sections. Thus the characteristic torsion is
identically zero. The cubic torsion restricted to ρ−1(z)∩μ−1(X\Eμ) can be extended
to a section of

S3F∗ ⊗ Hom(V,V ⊗ F))|ρ−1(z)
∼= O(−4)⊕r2 ,

which cannot have nonzero holomorphic sections. Thus the cubic torsion is identically
zero. ��
Example 3.6 The fact that lines on P

m are determined by their tangent vector at one
point implies that the family of minimal rational curves consisting of lines in Example
3.3 satisfy the assumption of Proposition 3.5. When X = G/P is a rational homo-
geneous space defined by (g, α) for a long simple root α, one can check (see [10,
Proposition 1]) that the cone structure CG/P = G ×P CG/P

o is exactly the one given
by varieties of minimal rational tangents as in Proposition 3.5.

The following result is a slightly modified version of Theorem 0.1. In fact, Theorem
0.1 can be derived from it by the Cartan–Fubini type extension theorem [9, Main
Theorem]. As discussed in the introduction, the proof due to Mok [14] combines
methods of algebraic geometry and parabolic geometry. In the next section, we give
an alternative proof of a stronger result, which was one of the motivation of this paper.
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Theorem 3.7 In Proposition 3.5, assume that τ(μ−1(x)) ⊂ PTx X for a general x ∈
X\Eμ is projectively isomorphic to CG/P

o ⊂ PToG/P for G/P associated to (g, α)

for a long simple root α and the distribution on X\Eμ determined by the linear span
of the cone structure C ⊂ PT (X\Eμ) is bracket-generating. Then the cone structure
in Proposition 3.5 is locally isomorphic to the cone structure CG/P on G/P.

4 Cone structures of parabolic geometries

4.1 Cartan geometries

We recall some background on Cartan connections; we refer the reader to [2,17] for
detailed introductions.

Definition 4.1 Let G be a complex Lie group and P ≤ G a complex Lie subgroup and
denote by g and p their respective Lie algebras. A (holomorphic) Cartan geometry of
type (G, P) on a complex manifold M is given by:

• a (holomorphic) principal P-bundle G → M , and
• a Cartan connection, that is a g-valued 1-form ω ∈ �1(G, g) with the following
properties:

(a) ω induces a trivialization TG ∼= G × g of the tangent bundle of G;
(b) ω reproduces the generators of the fundamental vector fields of the P-action

on G: ω(ζX ) = X for all X ∈ p; and
(c) ω is P-equivariant: (r p)∗ω = Ad(p−1) ◦ ω for all p ∈ P ,

where r p : G → G denotes the principal right-action by p ∈ P on G and ζX the
fundamental vector field on G generated by X ∈ p.

The homogeneous model of a Cartan geometry of type (G, P) is the homogeneous
space G/P with its natural Cartan geometry given by the projection G → G/P and
the (left) Maurer–Cartan form ωG ∈ �1(G, g) on G.

Definition 4.2 A morphism (resp. isomorphism) of Cartan geometries (G → M, ω)

and (G′ → M ′, ω) of type (G, P) is a principal bundle morphism � : G → G′ (resp.
isomorphism) such that�∗ω′ = ω (the latter implies that� and its basemapM → M ′
are local biholomorphisms).

A Cartan connection ω induces an isomorphism of vector bundles

T M ∼= G ×P g/p, (4.1)

where the action of P on g/p is induced from the adjoint representation of G. In
view of (4.1) a Cartan geometry of type (G, P) on a manifold M may be viewed as
a geometric structure that makes M look infinitesimally like G/P . The integrability
conditions for a Cartan geometry to be locally isomorphic (not just infinitesimally) to
G/P is given by the vanishing of the curvature of the Cartan connection.

123



Cone structures and parabolic geometries 741

Definition 4.3 Suppose (G → M, ω) is a Cartan geometry. Then its curvature K ∈
�2(G, g) is given by K (ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)] for vector fields ξ, η on
G. The defining properties of the Cartan connection imply that its curvature K is
horizontal and P-equivariant. Thus we can view the curvature as a section κ of

∧2T ∗M ⊗ (G ×P g) ∼= G ×P (∧2(g/p)∗ ⊗ g).

Byan abuse of notation,wewill alsowriteκ : G → ∧2(g/p)∗⊗g for the corresponding
P-equivariant function such that

κ(X + p,Y + p) = K (ω−1(X), ω−1(Y )) = [X ,Y ] − ω([ω−1(X), ω−1(Y )]).

The torsion of the Cartan geometry is the element of �2(G, g/p) given by the com-
position of the projection g → g/p with K . The geometry (G → M, ω) is said to be
torsion-free if K has values in p, and flat if K vanishes identically.

For a proof of the following result, see [2, Proposition 1.5.2] or [17, Theorem 5.1]:

Proposition 4.4 A Cartan geometry of type (G, P) is flat if and only if it is locally
isomorphic to its homogeneous model (G → G/P, ωG).

4.2 Parabolic geometries

We will be particularly interested in Cartan geometries infinitesimally modelled on
rational homogeneous spaces, called parabolic geometries.We recall here briefly some
basics on the theory of parabolic geometries; for details we refer to [2].

Definition 4.5 A (holomorphic) parabolic geometry on a complex manifold M is a
(holomorphic) Cartan geometry (G → M, ω) on M of type (G, P), where G is a
complex semisimple Lie group and P ≤ G is a parabolic subgroup. The tangent
bundle of M is filtered by vector subbundles according to (2.2) as follows:

T M = T−kM ⊃ · · · ⊃ T−1M with T−i M ∼= G ×P p−i/p for i < 0, (4.2)

and one obtains induced filtration on all tensor bundles.

Definition 4.6 In Definition 4.5, the vector bundleAM := G×P g is called the adjoint
bundle of the parabolic geometry (G → M, ω). We write

AM = A−kM ⊃ · · · ⊃ A0M ⊃ · · · ⊃ AkM . (4.3)

for the filtration by vector subbundles induced by (2.2). Note that, sinceAM/A0M ∼=
T M and T ∗M ∼= A1M by Lemma 2.4, one has a natural projectionAM → T M and a
natural inclusion T ∗M ↪→ AM .Wewrite gr(AM) = gr(T ∗M)⊕gr0(AM)⊕gr(T M)

for the associated graded vector of the filtered bundle AM .
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Notation 4.7 Given a parabolic geometry, we write P0 := G/P+ → M for the P0-
principal bundle given by the natural projection, where P0 is the Levi subgroup of P
and P+ its unipotent radical. Since P+ acts trivially on the subsequent quotients of
(2.2), the Cartan connection induces isomorphisms

gri (AM) ∼= P0 ×P0 pi for all − k ≤ i ≤ k. (4.4)

In particular, we also have

gr(T M) ∼= P0 ×P0 p− and gr(T ∗M) ∼= P0 ×P0 p+. (4.5)

Since the Lie bracket on g is P0-invariant, it induces a vector bundle homomorphism

{·, ·} : gr(AM) × gr(AM) → gr(AM) (4.6)

making gr(AM) into a bundle of graded Lie algebras. We write {·, ·} also for its
restriction to gr(T M) × gr(T M) → gr(T M).

Definition 4.8 A parabolic geometry is called regular, if the filtration (4.2) makes M
into a filtered manifold and the Levi-bracket L of (4.2) coincides with {·, ·} (that is,
the symbol algebra coincides with p−.)

Notation 4.9 Recall that the curvature κ of a parabolic geometry (as a special case of
a Cartan geometry) is a section of the vector bundle

∧2T ∗M ⊗ AM ∼= G ×P (∧2(g/p)∗ ⊗ g) ∼= G ×P (∧2p+ ⊗ g),

which is equipped with a filtration (by homogeneity of maps between filtered spaces)
induced by (4.2) and (4.3). If κ is of homogeneity ≥ � (that is, κ is a section of the
�-th filtration component of ∧2T ∗M ⊗AM), then we write gr�(κ) for the projection
of κ to the �-th grading component gr�(∧

2T ∗M ⊗ AM) of the associated graded
gr(∧2T ∗M ⊗ AM) of ∧2T ∗M ⊗ AM .

The next proposition follows easily from the definition of the curvature:

Proposition 4.10 [2, Corollary 3.1.8] Suppose (G → M, ω) is a parabolic geometry.
Then M equipped with the filtration (4.2) is a filtered manifold if and only if κ is of
homogeneity ≥ 0. If this is the case, then gr0(κ) = {·, ·} − L. Hence, the geometry is
regular if and only if κ is of homogeneity ≥ 1.

Notation 4.11 By Proposition 2.6 the boundary operators (2.3) induce bundle maps

∂∗ : ∧�T ∗M ⊗ AM → ∧�−1T ∗M ⊗ AM

∂∗ : ∧�gr(T ∗M) ⊗ gr(AM) → ∧�−1gr(T ∗M) ⊗ gr(AM).
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Definition 4.12 A parabolic geometry is called normal, if ∂∗κ = 0. The harmonic
curvature κ̂ of a normal parabolic geometry is the image of the projection of κ to
Ker(∂∗)/Im(∂∗) = G ×P H2(p+, g). By Proposition 2.6, we can identify the vector
bundle G ×P H∗(p+, g) ∼= P0 ×P0 H∗(p+, g) with a subbundle of ∧∗gr(T ∗M) ⊗
gr(AM) and consider the harmonic curvature as a section of the latter vector bundle
on M .

Usually when parabolic geometries arise from geometric problems, we can make
choices such that they are normal in the sense of Definition 4.12. If the parabolic
geometry is regular and normal the harmonic curvature is still a complete obstruction
to flatness due to Bianchi-identities for κ:

Proposition 4.13 [2, Theorem 3.1.12] Suppose that (G → M, ω) is a regular normal
parabolic geometry. Then κ vanishes on an open set U ⊂ M if and only if κ̂ vanishes
on U.

4.3 Cone structures and conic connections associated to parabolic geometries

From now on, we assume that p is a maximal parabolic subalgebra of a simple Lie
algebra g determined by a long simple root α and let P ⊂ G be as in Sect. 2.2.

Definition 4.14 Given a regular parabolic geometry (πM : G → M, ω)of type (G, P),
we have a natural structure of a filtered manifold on M with the constant symbol p−
by (4.2) and an CG/P

o -isotrivial cone structure subordinate to it:

C := G ×P CG/P
o

∼= P0 ×P0 CG/P
o ⊂ P(T−1M) ⊂ P(T M).

This is called the cone structure associated to the parabolic geometry.

Conversely, we have:

Theorem 4.15 Suppose (g, α) �= (An, α1/αn). Let (M, {T−i M}) be a filtered man-
ifold of dimension dim(G/P) with symbol algebra p− equipped with a subordinate
CG/P
o -isotrivial cone structure C such that

L(u, v) = 0 for any u, v ∈ T−1
x M, x ∈ M, with u ∈ Ĉx and v ∈ T̂uCx , (4.7)

where L : T−1M ⊗ T−1M → T−2M/T−1M is the Levi bracket. Then there exists
a unique regular normal parabolic geometry (G → M, ω) of type (G, P) inducing
{T−i M} via (4.2) such that C = G ×P CG/P

o . Moreover, this association gives rise
to an equivalence of categories between such cone structures (M, {T−i M}, C) and
regular normal parabolic geometries of type (G, P).

Proof The Levi subgroup P0 of P equals the group Autgr(g) of grading preserving
Lie algebra automorphisms of g. Hence, via restriction, we have group inclusions

P0 = Autgr(g)
i

↪→ Autgr(p−)
j

↪→ GL(p−1),
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where j is an inclusion, since p−1 generates the Lie algebra p−. Suppose now
(M, {T−i M}) is a filtered manifold with symbol algebra p− and consider its frame
bundle Fr(gr(T M)), which, by dint of j , can be also viewed a subbundle of the frame
bundle Fr(T−1M) of T−1M .

We show first that reductions of structure group of the frame bundle Fr(gr(T M))

corresponding to i are equivalent to subordinate CG/P
o -isotrivial cone structures satis-

fying (4.7). Given a reduction of Fr(gr(T M)) to P0 ≤ Autgr(p−), that is, a principal

P0-subbundleP0 ≤ Fr(gr(T M)), then C = P0×P0 CG/P
o defines a subordinate CG/P

o -
isotrivial cone structure. Moreover, for 0 �= w ∈ gα = qF−1 one has, by Lemma 2.16
and Corollary 2.20,

TwĈG/P
o = ad(p0)(w) = qF−1 ⊕

[
qV−1, q

F−1

]
= qF−1 ⊕ q−2.

By (3) of Proposition 2.17, we have [qF−1, q−2] = 0 and hence C in particular satisfies

(4.7). Conversely, suppose C is a subordinate CG/P
o -isotrivial cone structures satisfying

(4.7). As a subgroup of GL(p−1), one has P0 ∼= Aut(ĈG/P
o ) and hence C gives rise to

a reduction of structure group P0 ≤ Fr(T−1M) corresponding to P0 ≤ GL(p−1). By
[10, Proposition 6 and 7], the property (4.7) implies that for any x ∈ M the group of
grading preserving Lie algebra automorphism of gr(TxM) that in addition preserve Ĉx
is isomorphic to P0 ≤ Autgr(p−). Hence P0 can be naturally viewed as a P0-principal
subbundle of Fr(gr(T M)) ≤ Fr(T−1M). The claim of the theorem now follows from
Theorem 3.1.14 and Observation 3.1.7 of [2]. ��

Recall that, by Proposition 4.13, the cone structure (M, {T−i M}, C) associated to a
regular normal parabolic geometry is locally isomorphic to (G/P, {T−i G/P}, CG/P )

if and only if the harmonic curvature (viewed as a P-equivariant function) κ̂ : G →
H2(p+, g) of the corresponding normal parabolic geometry vanishes. Regularity of ω

(a vacuous condition in the symmetric case) implies that κ̂ has actually values in the
subspace

⊕
r≥1 H2,r (p+, g). Thuswehave the following as an immediate consequence

of Proposition 2.10.

Corollary 4.16 Assume that (g, α) does not belong to the following three classes:

• symmetric type
• contact type
• (Bn/Dn+1, α3) for n ≥ 4.

Then a regular normal parabolic geometry (G → M, ω) of type (G, P) is flat. In
particular, the associated CG/P

o -isotrivial cone structure is locally isomorphic to CG/P

on G/P.

In the three cases excluded in Corollary 4.16, we would like to characterize flat
parabolic geometries in terms of the invariants of the associated cone structures. To
start with, the following is straightforward.

Proposition 4.17 In Definition 4.14, we can write

C = G ×P CG/P
o

∼= G ×P P/Q ∼= G/Q,
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where Q is defined as in Lemma 2.14, and the natural projection πC : G → G/Q
defines a Q-principal bundle over C ∼= G/Q.

1. We can viewω as a Cartan connection of type (G, Q) on G. Thus (πC : G → C, ω)

is a parabolic geometry of type (G, Q) on C.
2. The Cartan connection ω induces isomorphisms

T M ∼= G ×P g/p and TC ∼= G ×Q g/q,

and the filtrations {T−i M} on T M and T−iC ∼= G ×Q q−i/q on TC.
3. The tangentmap T p : TC → T M of p : C → M is given by the natural projection

T p : G ×Q g/q → G ×P g/p,

which implies V ∼= G ×Q p/q for the vertical bundle of p.

Remark 4.18 In the terminology of [1], we say that (πC : G → C, ω) in Proposition
4.17 is the correspondence space of the parabolic geometry (πM : G → M, ω) with
respect to Q ≤ P .

Proposition 4.19 In Proposition 4.17, consider the filtration {D−i } of Definition 1.11
on TC. Then ω yields

1. an identification ofD−i with T−iC for each1 ≤ i ≤ 4 such that (T p)−1(T−1M) =
T−4C (in the symmetric case, TC = T−4C = T−3C);

2. an identification of {·, ·} : V × gr−i (TC) → gr−i−1(TC) with the corresponding
Levi brackets L; and

3. a conic connection F ∼= G ×Q (qF−1 ⊕ q)/q ⊂ T−1C on C.

Proof Since Q is the stabilizer in P of qF−1, it follows (similarly as in Proposition
2.17) that D−1 = T−1C. Since V ∼= G ×Q p/q, this also shows that F defines
a conic connection on C, thus (3) holds. As in Proposition 2.17, we also have
(T p)−1(T−1M) = T−4C. For the remaining claims in (1) and (2) note that the
preimages under TπC : TG → TC of the distributions T−iC are the distributions
ω−1(q−i ) ⊂ TG on G and locally any section of T−iC lifts to a section of ω−1(q−i ).
Recall fromDefinition 4.3 that the curvature of aCartan connection is horizontal. Since
ω is a Cartan connection of type (G, P) over M , its curvature K ∈ �2(G, g) must
therefore vanish upon insertion of sections of ω−1(p) (corresponding to V ⊂ TC).
Hence, for sections ξ of ω−1(p) and η of ω−1(q−i ) we have

0 = K (ξ, η) = ξ · ω(η) − η · ω(ξ) − ω([ξ, η]) + [ω(ξ), ω(η)].

Since [p, q−i ] = q−i−1 for i = 1, 2, 3 by Proposition 2.17, this implies that T−i−1C =
[V, T−iC] + T−iC for 1 ≤ i ≤ 3 and claim (2). Since T−1C = D−1, we have
D−i = T−iC for 2 ≤ i ≤ 4, which establishes (1). ��

We note that [15, Prop. 1.2.1] (see Ex. 1.16), and [2, Thm. 3.1.16 and Prop. 4.1.5]
imply:
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Proposition 4.20 Assume (g, α) = (An, α1 or αn). Associating to a regular normal
parabolic geometry of type (G, P) the conic connection F of Proposition 4.19 on
its associated cone structure C = P(T M) gives rise to an equivalence of categories
between regular normal parabolic geometries of type (G, P) on a complex manifold
M and conic connections on P(T M).

Notation 4.21 In Proposition 4.17, the curvature ofω as a function κ : G → ∧2g∗ ⊗g
is the same for the parabolic geometries of type (G, P) on M and type (G, Q) on C. It
gives rise to a function G → ∧2(g/p)∗ ⊗ g. This function viewed as a P-equivariant
function can be identified with a section of ∧2T ∗M ⊗AM , which we denote by κM .

On the other hand, when viewed as a Q-equivariant function, it can be identified with
a section of ∧2(TC/V)∗ ⊗ AC, which we denote by κC .

As a consequence of Lemma 2.22 and Proposition 2.23 we have:

Proposition 4.22 In the Notation 4.21 we have:

1. κC = ι ◦ κM as functions on G, where ι is as in Lemma 2.22, and the normality of
(πM : G → M, ω) implies the normality of (πC : G → C, ω).

2. If we write κ̂M : G → H2(p+, g) and κ̂C : G → H2(g+, g) for the harmonic
curvatures of the normal parabolic geometries (πM : G → M, ω) and (πC : G →
C, ω) respectively, then they are related as

κ̂C = proj ◦ κ̂M : G → H0(q
V
1 , H2(p+, g)) ⊂ H2(q+, g), (4.8)

where proj : H2(p+, g) → H2(p+, g)/qV1 H2(p+, g) = H0(q
V
1 , H2(p+, g)) is the

natural projection.

Remark 4.23 In contrast to (G → M, ω) the induced parabolic geometry (G → C, ω)

onC is in general not regular: byProposition2.24, the subspaceH0(q
V
1 , H2,1(p+, g)) ⊂

∧2q+ ⊗ g is contained in grading components of non-positive degree (namely, 0 or
−1 (with respect to the grading induced by q on ∧2q+ ⊗ g)). Hence, κ̂C and thus also
κC have in general values in non-positive grading components of ∧2q+ ⊗ g, which
implies that (G → C, ω) is (in general) not regular by Proposition 4.10. We shall see
below that its regularity is equivalent to the existence of a characteristic connection
on C.

Notation 4.24 Recall that the natural projectionQ0 := G/Q+ → C is a Q0-principal
bundle over C and that the Cartan connection ω induces an isomorphism

∧2gr(TC)∗ ⊗ gr(AC) ∼= Q0 ×Q0 ∧2q+ ⊗ g.

Hence the Q0-module H0(q
V
1 , H2(p+, g)) ⊂ ∧2p+ ⊗ g ⊂ ∧2p+ ⊗ g defines

a subbundle of ∧2gr(TC/V)∗ ⊗ gr(AC). In the sequel, we view κ̂C alternately
as a Q0-equivariant function Q0 → H0(q

V
1 , H2(p+, g)) as well as a section of

∧2gr(TC/V)∗ ⊗ gr(AC).
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Theorem 4.25 Suppose (g, α) is a simple Lie algebra with a choice of long simple
root. Let (G → M, ω) be a regular normal parabolic geometry of type (G, P) and let
(M, {T−i M}, C) be the associated filtered manifold with symbol algebra p− equipped
with a subordinate CG/P

o -isotrivial cone structure. Let (G → C, ω) be the normal
parabolic geometry on C and let F be the conic connection on C of Proposition 4.19.
Then the following statements are equivalent.

1. (G → C, ω) is regular.
2. F is characteristic (i.e. τF = 0).
3. C admits a characteristic conic connection (i.e. τC = 0).

Assume furthermore that (g, α) is different from (Bn/Dn+1, α1) for n ≥ 2 or
(An, α2/αn−1) for n ≥ 3 or (An, α1/αn) for n ≥ 2. Then under the equivalent
conditions (1)–(3), the parabolic geometry (G → M, ω) is flat and (M, {T−i M}, C)

is locally isomorphic to (G/P, {T−i G/P}, CG/P ).

Proof Note first that conditions (1)–(3) are trivially satisfied for (An, α1/αn) for n ≥ 2.
ByCorollary 4.16, wemay therefore assume that (g, α) belongs to one of the following
two cases, which we handle separately.

Case I: When (g, α) �= (An, α1/αn) is of symmetric type. By Proposition 2.21,
the depth of q equals 3. Recall that κC is a section of ∧2(TC/V)∗ ⊗ AC. The lowest
filtration component of ∧2(TC/V)∗ ⊗ AC is of degree 0 and the grading component
of degree 0 of the associated graded is given by

gr0(∧
2(TC/V)∗ ⊗ AC) = F∗ ⊗ gr−2(TC)∗ ⊗ gr−3(TC).

Hence, κC is of homogeneity ≥ 0 and, by Proposition 4.10, we have

gr0(κ
C) = {·, ·} − L = −L|F×gr−2(TC) = τF ,

where the second equality follows from (3) of Proposition 2.17. By Proposition 4.10,
it follows that (1) is equivalent to (2). Evidently, (2) implies (3). To see that (3) implies
(2), note that by (i) of Proposition 2.24 and Proposition 4.19 we have the following
decomposition

F∗ ⊗ gr−2(TC)∗ ⊗ gr−3(TC) = Ker(∂∗) ⊕ Im(∂) = H ⊕ F∗ ⊗ II(V), (4.9)

whereH = Q0 ×Q0 H0(q
V
1 , H2,1(p+, g)), II as in Definition 1.20, and where ker(∂∗)

and Im(∂) are the vector bundles associated to the corresponding modules in (2.9). By
normality, gr0(κ

C) = τF is a section of Ker(∂∗). Hence, (4.9) shows that under the
natural identification of the quotient (1.8) with Ker(∂∗) one also has gr0(κ

C) = τC .
Therefore, by Proposition 1.21, (3) implies (2), which completes the proof that (1)–(3)
are equivalent.

Now let us prove the last statement of the theorem in (Case I). The decomposition
(4.9) shows also that gr0(κ

C) equals the homogeneous component of degree 0 of the
harmonic curvature κC , which, by (2) of Proposition 2.10, equals the entire harmonic
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curvature κC except for (g, α) = (Bn/Dn+1, α1) for n ≥ 2 or (An, α2/αn−1) for
n ≥ 3 or the excluded case (An, α1/αn). Hence, except for these cases, the parabolic
geometry is flat under the equivalent assumptions (1)–(3).

Case II: When (g, α) is of contact type or equal to (Bn/Dn+1, α3) for n ≥ 4.
By Proposition 2.21, the depth of q is 5 in the contact case (resp. 6 in the case of
(Bn/Dn+1, α3)) with p±1 = q±4.

Let us consider κM and κC = ι ◦ κM as functions on G with valued in ∧2p+ ⊗ g ⊂
∧2q+ ⊗g. Recall that, when we say κM or κC is of homogeneity≥ � (i.e has values in
the �-th filtration component of ∧2p+ ⊗g), we mean with respect to the filtration on g
induced by p in the first case and by q in the second case. Sinceω is regular as a Cartan
connection of type (G, P), Proposition 4.10 shows that κM is of homogeneity ≥ 1
and, by Theorem 3.1.12 of [2], gr1(κ

M ) coincides with the homogeneous component
κ̂M
1 of degree 1 of κ̂M . By Proposition 2.10, we have κ̂M = κ̂M

1 and the function has
values in the subspace H2,1(p+, g) of ∧2p1 ⊗ p−1/p ∼= ∧2p1 ⊗ p−1. It follows that
κC is of homogeneity ≥ −1 and that

gr−1(κ
C) = proj ◦ gr1(κ

M ) = proj ◦ κ̂M = κ̂C,

where proj : ∧2p1⊗p−1/p → (∧2p1⊗p−1/p)/qV1 (∧2p1⊗p−1/p) ∼= qF1 ⊗q2⊗q−4 is
the natural projection. Let us nowview κ̂C = gr−1(κ

C) as a section ofF∗⊗gr∗−2(TC)⊗
gr−4(TC). By Proposition 4.10, (see also the proof of Proposition 4.10 in [2, Cor.
3.1.8]), the fact that κC is of homogeneity ≥ −1 implies that [F , T−2C] ⊂ T−4C and
gr−1(κ

C) equals the negative of the map

F × gr−2(TC) → gr−4(TC)

induced by the Lie bracket of vector fields. Hence, the parabolic geometry is flat if
and only if κ̂C = gr−1(κ

C) = 0, which is the case if and only if [F , T−2C] ⊂ T−3C.
By Proposition 2.17, the previous equivalent conditions are also equivalent toF being
characteristic (that is, [F , T−2C] ⊂ T−2C) and by Proposition 4.10 also to regularity
of (G → C, ω).

Since (2) evidently implies (3), to finish the proof it remains to show that (3) implies
κ̂C = 0. To see this, assume that C admits a characteristic conic connection, say F ′.
Then T−1C = F ′ ⊕V and, by Proposition 4.19, this implies [T−1C, T−2C] ⊂ T−3C.
In particular, also [F , T−2C] ⊂ T−3C, which implies κ̂C = 0. ��

By Proposition 1.21 and Lemma 1.22, Theorem 4.25 implies:

Corollary 4.26 Assume the setting of Theorem 4.25 and that (g, α) �= (An, α1/αn). If
C admits a characteristic conic connection F ′, then the conic connection F on C of
Proposition 4.19 is characteristic and F ′ = F .

In the three cases excluded in Theorem 4.25 with the exception of (A2, α1/α2) and
(B2, α1), we shall prove that, under the assumption that F is characteristic, the cubic
torsion χF equals κ̂C . To do so we need to compute the harmonic curvature κ̂C . An
effective way to compute the harmonic curvature of a normal parabolic geometry is
in terms of a Weyl structure. Hence, we will make now a short digression on Weyl
structures.
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4.4 Digression onWeyl structures

We record some facts about the theory ofWeyl structures for parabolic geometries and
refer for more details to [3] and Sections 5.1 and 5.2 of [2]. Throughout this section
we assume that N is a complex manifold equipped with a regular normal parabolic
geometry (G → N , ω) of type (G, Q), where the groups are as in Lemma 2.14. Setting
Q0 := G/Q+, the natural projections G → Q0 and Q0 → N define a Q+-principal
bundle over Q0 and a Q0-principal bundle over N , respectively.

Definition 4.27 (cf. [2, Def. 5.1.1]) Any (local) Q0-equivariant section σ of G → Q0
is called a (local) Weyl structure for (G → N , ω).

Remark 4.28 In contrast to parabolic geometries in the smooth category, in the holo-
morphic category only local Weyl structures in general exist. For readability we
nevertheless write a Weyl structure, by abuse of notation, as a map σ : Q0 → G.
All objects associated to it should be understood as being only locally defined.

The freedom in the choice of a Weyl structure is as follows:

Proposition 4.29 [2, Proposition 5.1.1] Suppose σ : Q0 → G is a localWeyl structure.
Then any other local Weyl structure σ̂ : Q0 → G is of the form

σ̂ = σ · exp(ϒ1)... exp(ϒk)

for unique local Q0-equivariant functionsϒi : Q0 → qi for i = 1, ...k (defining local
sections of gri (T

∗N ) ∼= Q0 ×Q0 qi ), where exp : q+ → Q+ is the usual Lie algebra
exponential. Here, k is the depth of q.

Moreover, a choice of Weyl structure gives rise to the following data:

Proposition 4.30 [2, Proposition and Definition 5.1.2] Let σ : Q0 → G be a local
Weyl structure of (G → N , ω). Then σ ∗ω ∈ �1(Q0, g) is Q0-equivariant and hence
decomposes according to g = q−k ⊕ · · · ⊕ q0 ⊕ · · · ⊕ qk as

σ ∗ω = σ ∗ω−k + · · · + σ ∗ω0 + · · · + σ ∗ωk . (4.10)

The components have the following interpretation:

1. For i < 0 the form σ ∗ωi descends to a bundle map T N → gri (T N ) ∼= Q0×Q0 qi
whose restriction to T i N equals the natural projection qi : T i N → gri (T N ).
Hence, �i := σ ∗ωi = qi ◦ πi for a unique projection πi : T N → T i N that
restricts to the identity on T i N and

� := �−1 + · · · + �−k : T N → gr−1(T N ) ⊕ · · · ⊕ gr−k(T N )

�(ξ) = π−1(ξ) + q−2(π−2(ξ)) + · · · + q−k(ξ) (4.11)

defines an isomorphism T N ∼= gr(T N ), called the soldering form associated to
σ .
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2. The form γ := σ ∗ω0 ∈ �1(Q0, q0) defines a principal connection on Q0, called
the Weyl connection associated to σ . As such it induces linear connections ∇ on
all vector bundles associated to Q0. In particular, it induces a linear connection
on gr−i (T N ) ∼= Q0 ×Q0 q−i and hence on T N via �.

3. The form σ ∗ω1 + ... + σ ∗ωk descends to an element P ∈ �1(T N , gr(T ∗N )),
called the Schouten tensor associated to σ . Via�, we may view P also as a section
of gr(T ∗N ) ⊗ gr(T ∗N ).

Since Q0 acts by grading preserving Lie algebra automorphism on g, Proposition
4.30 implies:

Corollary 4.31 Let σ be a Weyl structure for (G → N , ω) and consider gr(AN ) ∼=
Q0 ×Q0 g. Then the section {·, ·} of ∧2gr(AN )∗ ⊗ gr(AN ) defined as in (4.6) is
parallel with respect to ∇. In particular, by Proposition 4.10, we also have ∇L = 0
for the Levi-bracket L of the filtered manifold (N , {T−i N }).
Notation 4.32 Having fixed a local Weyl structure σ , we can consider the pull-
back σ ∗K ∈ �2(Q0, g) of the curvature K of (G → N , ω). Since σ ∗K (−,− ) =
dσ ∗ω(−,− ) + [σ ∗ω(−), σ ∗ω(−)] is Q0-equivariant and horizontal, σ ∗K descends
to a 2-form κσ on N with values in

gr(AN ) = gr(T N ) ⊕ gr0(AN ) ⊕ gr(T ∗N ), (4.12)

which, via � : T N ∼= gr(T N ), can be also viewed as a section of

∧2gr(T N )∗ ⊗ gr(AN ) ∼= Q0 ×Q0 ∧2q+ ⊗ g = Im(∂) ⊕ Ker(�) ⊕ Im(∂∗),
(4.13)

where the three bundles on the right-hand side are induced from the corresponding
Q0-modules in the Hodge decompsotion (2.4) of ∧2q+ ⊗ g. By assumption, κσ is a
section of the subbundle Ker(∂∗) = Ker(�) ⊕ Im(∂∗) ⊂ ∧2gr(T N )∗ ⊗ gr(AN ).

Recall that the action of q+ on ∧2q+ ⊗ g maps ker(∂∗) ⊂ ∧2q+ ⊗ g to im(∂∗) ⊂
∧2q+ ⊗g, implying that q+ acts trivially on H2(q+, g) = ker(∂∗)/im(∂∗). Therefore,
Proposition 4.29 implies that the part of κσ in Ker(�) is independent of the choice
of σ and evidently must equal the harmonic curvature κ̂ of (G → N , ω). Thus we
conclude:

Proposition 4.33 If the Ker(�)-part of κσ is zero for some Weyl structure σ , then κ̂ is
zero.

Note that �+γ ∈ �2(Q0, q− ⊕q0) (for a fixedWeyl structure σ ) defines a Cartan
connection of type (exp(q−) � Q0, Q0) on Q0 → N . The individual components
of κσ according to the decomposition (4.12) can be described as certain curvature
quantities associated to the Cartan connection � + γ and the harmonic curvature as
the Ker(�)-part of these quantities, see Theorem 5.2.9 of [2] for a precise formulation.
In particular, [2, Theorem 5.2.9] shows:
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Proposition 4.34 Let σ be a local Weyl structure of (G → N , ω). Then the component
of κσ in ∧2gr(T N )∗ ⊗ gr(T N ) ∼= ∧2T ∗N ⊗ gr(T N ) is given by

T + (∂P ∩ ∧2gr(T N )∗ ⊗ gr(T N )) ∈ Ker(∂∗) ∩ ∧2gr(T N )∗ ⊗ gr(T N ), (4.14)

where

1. T ∈ ∧2gr(T N )∗ ⊗ gr(T N ) is the torsion of the Cartan connection � + γ as
defined in Definition 4.3;

2. ∂ : gr(T N )∗ ⊗ gr(AN ) → ∧2gr(T N )∗ ⊗ gr(AN ) is the bundle map induced
from ∂ as in (2.4); and

3. ∂P ∩ ∧2gr(T N )∗ ⊗ gr(T N ) denotes the component of ∂P belonging to
∧2gr(T N )∗ ⊗ gr(T N ).

In particular, in view of (4.13), the component of κ̂ inside ∧2gr(T N )∗ ⊗ gr(T N )

equals the Ker(�)-component of T.

The formula for T ∈ ∧2T ∗N ⊗ gr(T N ) ∼= ∧2gr(T N )∗ ⊗ gr(T N ) can be easily
computed:

Lemma 4.35 [2, Lemma 5.1.2 ] Let σ be a local Weyl structure of (G → N , ω) and
� the corresponding soldering form. Using (4.6), one has

T(ξ, η) = ∇ξ�(η) − ∇η�(ξ) − �([ξ, η]) + {�(ξ),�(η)} (4.15)

for local vector fields ξ and η on N. In particular, the component of T inside
�2(N , gr−i (T N )) is given by

∇ξ�−i (η) − ∇η�−i (ξ) − �−i ([ξ, η]) +
∑

a,b<0,a+b=−i

{�a(ξ),�b(η)}. (4.16)

It will be convenient to use a particular class of Weyl structures:

Proposition 4.36 Suppose (G → N , ω) is a regular normal parabolic geometry of
type (G, Q) and consider the line bundle F = G ×Q (qF−1 ⊕ q)/q ∼= Q0 ×Q0 q

F−1.
For any non-vanishing local section f ofF there exists a (non-unique) Weyl structure
such that the induced linear connection ∇ on F has the property that ∇ξ f = 0 for
any section ξ of T−2N.

Proof Let α ∈ �0 be the long simple root such that qF−1 = g−α and denote by B the
Killing form of g. Let Hα be the unique element in the Cartan subalgebra h such that
−α = −B(Hα,− ), which we view as a functional on q0 (defining the 1-dimensional
representation of q0 on qF−1 ). From the description of q in terms of simple roots in
Lemma 2.14 and the fact that the Lie bracket induces an isomorphism qF1 ⊗ qV1

∼= q2

we conclude that 2〈α,β〉
〈α,α〉 = 2β(Hα)

〈α,α〉 equals −1 (resp. 1) for any root β corresponding to

a roots space in qV1 (resp. q2) as in the proof of Proposition 2.17. Hence, the restriction
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of ad(Hα) to q1 ⊕ q2 is injective. Therefore, for i = 1, 2 and a fixed nonzero element
F ∈ qF−1 ,the map

qi × q−i → qF−1

(Z , X) �→ −α([Z , X ])F = −B(Hα, [Z , X ])F = B(X , [Z , Hα])F (4.17)

is non-degenerate, since so is B : qi×q−i → C byLemma2.4. Hence, for i = 1, 2 and
any local non-vanishing section f of F , the corresponding bundle map gri (T

∗N ) ×
gr−i (T N ) → F , given by (ϒi , ξ−i ) �→ −{{ϒi , , ξ−i }, f }, must be non-degenerate
as well. Suppose now σ : Q0 → G is a local Weyl structure and f a local non-
vanishing section of F . Then there exists a unique local section ϒ1 of gr1(T

∗N ) such
that ∇ξ−1 f = {{ϒ1, ξ−1}, f } for all local sections ξ−1 of T−1N = gr−1(T N ). By
Proposition 5.1.6 of [2], for the Weyl structure σ̂ = σ exp(ϒ1), we then have

∇̂ξ−1 f = ∇ξ−1 f − {{ϒ1, ξ−1}, f } = 0,

for all local sections ξ−1 of T−1N . Via the soldering form �̂ corresponding to σ̂ ,
we may identify T−2N ∼= gr−1(T N ) ⊕ gr−2(T N ) and write any local section ξ of
T−2N as ξ = ξ−1 + ξ−2 accordingly. Then there exists a unique local section ϒ2 of
gr2(T

∗N ) such that

∇̂ξ f = ∇̂ξ−2 f = {{ϒ2, ξ−2}, f }

for all local sections ξ of T−2N . By Proposition 5.1.6 of [2], for the Weyl structure
σ̃ = σ̂exp(ϒ2), we then have ∇̃ξ f = ∇̂ξ f −{{ϒ2, ξ−2}, f } = 0 for all local sections
ξ of T−2N . Hence, σ̃ is a Weyl structure with the desired property. ��
Remark 4.37 The line bundle F of the previous proposition is not a bundle of scales
in the sense of Definition 5.1.4 of [2] (except for (g, α) = (An, α1/αn)), since ad(Hα)

is only injective on q1 ⊕ q2 and not on q+.Hence, having fixed a local non-vanishing
section f of F , Corollary 5.1.6 of [2] can not be applied to ensure the existence of a
(unique) Weyl structure such that ∇ξ f = 0 for all vector fields ξ .

We end this digression by fixing some more notation.

Notation 4.38 Suppose (G → N , ω) is a parabolic geometry of type (G, Q) as above
and let σ : Q0 → G be a local Weyl structure. Then, via the isomorphism � : T N ∼=
gr(T N ), we can identify κσ with a section of the graded vector bundle

∧2gr(T N )∗ ⊗ gr(AN ) = ∧2gr(T ∗N ) ⊗ gr(AN ).

We write κσ
i for the i-th grading component of κσ . Similarly, we can identify T and

P with sections of the graded vector bundles ∧2gr(T ∗N ) ⊗ gr(T N ) and gr(T ∗N ) ⊗
gr(T ∗N ) respectively. We write Ti and Pi for their i-th grading component. Note that
Pi = 0 for i ≤ 1, since all grading components of gr(T ∗N ) are positive
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4.5 Cubic torsion of the conic connection associated to a parabolic geometry

In the setting of Theorem 4.25, if the conic connection F has vanishing characteristic
torsion, we can expresses the cubic torsion as the harmonic curvature κ̂C of (G →
C, ω).

Theorem 4.39 In the setting of Theorem 4.25 assume that (g, α) does not equal
(B2, α1) or (A2, α1/α2). Furthermore, assume that F is characteristic (i.e. τF = 0).
Then κ̂C = χF .

Proof By Theorem 4.25, we may assume that (g, α) belongs to the cases (3) and (5)
of Proposition 2.10. We write κ = κC for the curvature and κ̂ = κ̂C for the harmonic
curvature of (G → C, ω). Since the vanishing of τF implies that (G → C, ω) is regular
by Theorem 4.25, we see that κ̂ is of positive homogeneity. By Proposition 2.24, and
(3) and (5) of Proposition 2.10, this implies that κ̂ is a section of the bundle

Ker(�) ∩ F∗ ⊗ gr−2(TC)∗ ⊗ V ⊂ gr−1(TC)∗ ⊗ gr−2(TC)∗ ⊗ T−1C.

In particular, κ̂ is of homogeneous degree 2 (as a section of the graded vector bundle
∧2gr(TC)∗ ⊗ gr(AC)). Hence, Theorem 3.1.12 of [2] implies that κ ∈ ∧2T ∗C ⊗AC
is of homogeneity ≥ 2 and that gr2(κ) = κ̂ .

For any localWeyl structure σ of (G → C, ω) one has gr2(κ) = κσ
2 (by Proposition

4.29 and the fact that the action of q+ on∧2q+ ⊗g is of homogeneity≥ 1). Therefore,
we have by Proposition 4.34

κ̂ = gr2(κ
C) = κσ

2 = T2 + ∂P2 ∈ Ker(�) ∩ F∗ ⊗ gr−2(TC)∗ ⊗ V. (4.18)

We will compute κ̂ = κσ
2 in terms of a local Weyl structure σ as in Proposition 4.36.

To do so fix a local non-vanishing section f ofF ∼= Q0×Q0 q
F−1 and assume that σ is a

local Weyl structure such that ∇ξ f = 0 for the correspondingWeyl connection ∇ and
all sections ξ of T−2C. Then the formula in Lemma 4.35 restricted to the component
of T2 inside F∗ ⊗ gr−2(TC)∗ ⊗ T−1C shows

(T2 + ∂P2)( f , q−2(ξ)) = ∇ f π−1(ξ) − π−1([ f , ξ ]) + ∂P2( f , q−2(ξ)) (4.19)

for any local section ξ of T−2C. Since the curvature is of homogeneity ≥ 2, we have
moreover κσ

1 = 0. Hence, Proposition 4.34 shows that T1 = 0, since Pi = 0 for i ≤ 1
and ∂ is grading-preserving. In particular, the components of T1 insideF∗⊗V∗⊗T−1C
and F∗ ⊗ gr−2(TC)∗ ⊗ gr−2(TC) vanish. By Lemma 4.35 this gives the following
identities

0 = T1( f , v) = ∇ f v − π−1([ f , v]), (4.20)

0 = T1( f , q−2(ξ)) = ∇ f q−2(ξ) − q−2π−2([ f , ξ ]) + { f , π−1(ξ)}, (4.21)

for any section v of V and ξ of T−2C. Recall that gr−2(TC) ∼= F ⊗ V via the Levi
bracket L. For any section ξ of T−2C let us write vξ for the unique section of V such

123



754 J.-M. Hwang, K. Neusser

that q−2(ξ) = L( f , vξ ), then (4.20) implies that

π−1(ξ) = ξ − [ f , vξ ] + π−1([ f , vξ ]) = ξ − [ f , vξ ] + ∇ f vξ . (4.22)

If we insert ξ = [ f , v] for some v ∈ V into (4.21), then (4.20) and Corollary 4.31
imply

0 = ∇ f L( f , v) − q−2π−2([ f , [ f , v]) + { f , π−1([ f , v])}
= L( f ,∇ f v) − q−2π−2([ f , [ f , v]) + L( f ,∇ f v).

Since F is characteristic, [ f , [ f , v]] is a section of T−2C and we can drop the projec-
tion π−2 in the second term, which implies

L( f ,∇ f v) = 1

2
q−2([ f , [ f , v]]). (4.23)

To compare the expression (4.19) with χF , we need to compute (4.19) under the
isomorphism

F∗ ⊗ gr−2(TC)∗ ⊗ V ∼= S3F∗ ⊗ End(V, gr−2(TC))

induced by (2.10). To do that we insert ξ = [ f , v] for some v ∈ V into (4.19) and
take the Levi-bracket with f . By (4.20) and (4.23) this leads for the first term in (4.19)
that:

L( f ,∇ f π−1([ f , v])) = L( f ,∇ f ∇ f v) = 1

2
q−2([ f , [ f ,∇ f v]]). (4.24)

For the second term in (4.19) note that for η = [ f , [ f , v]] we have vη = 2∇ f v by
(4.23) and hence (4.22) and the identity (4.24) imply

L( f , π−1([ f , [ f , v]]))
= q−2([ f , π−1([ f , [ f , v]])])
= q−2([ f , [ f , [ f , v]]]) − 2q−2([ f , [ f ,∇ f v]]) + 2q−2([ f ,∇ f ∇ f v])
= q−2([ f , [ f , [ f , v]]]) − q−2([ f , [ f ,∇ f v]]). (4.25)

Subtracting (4.25) form (4.24) gives χ̃F as defined in (1.10), since w( f , v) as in
(1.9) equals ∇ f v. In view of (4.18) and (4.13), κ̂ hence equals the part of χ̃F in
Ker(∂∗) (which automatically lies in Ker(�) by (4.18)). By (ii) of Proposition 2.24
we have

Ker(∂∗) ∩ F∗ ⊗ gr−2(TC)∗ ⊗ V ∼= S3F∗ ⊗ Hom0(V, gr−2(D)),

which shows that κ̂ = χF . ��
Combining Theorems 4.25 and 4.39, we obtain the following.
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Corollary 4.40 Assume (g, α) is a simple Lie algebrawith a long simple root, excluding
(B2, α1) and (A2, α1/α2), and denote by p the corresponding parabolic subalgebra.
Let (G → M, ω) be a regular normal parabolic geometry of type (G, P). Assume
that the natural conic connection F on the associated cone structure C has vanishing
characteristic torsion, or equivalently, the parabolic geometry (G → C, ω) is regular.
Then (G → M, ω) is flat if and only if χF = 0.

As an application, we have the following result, which is a stronger version of
Theorem 3.7.

Theorem 4.41 Let (g, p) be as in Corollary 4.40 and let G/P be the corresponding
rational homogeneous space. Let M be a complex manifold of dimension equal to
dimG/P with a bracket-generating distributionH ⊂ T M of rank dim(p−1). Suppose
we have a CG/P

o -isotrivial cone structure C ⊂ PH subordinate to H with a conic
connection F ⊂ TC satisfying τF = χF = 0. Then the cone structure is locally
isomorphic to the cone structure CG/P of G/P.

Proof If (g, α) = (An, α1/αn) for n ≥ 3, then the theorem follows directly from
Proposition 4.20 and Corollary 4.40. Now assume (g, α) �= (An, α1/αn). Then the
assumption τF = 0 and the bracket-generating assumption on H imply that the tan-
gential filtration {T−i M} onM given by theweak derived system ofH has the constant
symbol of type p−, by Proposition 5 of [10] and Proposition 1.24. Moreover, Propo-
sition 1.24 and Theorem 4.15 imply that ({T−i M}, C) gives rise to a regular normal
parabolic geometry of type (G, P) on M inducing ({T−i M}, C). By Corollary 4.26,
F equals the conic connection on C of Proposition 4.19 and hence Corollary 4.40
completes the proof. ��
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5 Appendix

In the following tables Gr(p, q) denotes the Grassmannian variety of p-planes in
C

p+q and LGr(n, n) the Langrange–Grassmanian variety of Langrangean subspaces
of the symplectic vector space C

2n .
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