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Abstract
We compute the p-torsion and p-adic étale cohomologies with compact support of
period domains over local fields in the case of basic isocrystals for quasi-split reductive
groups. As in the cases of �-torsion or �-adic coefficients, � �= p, considered by
Orlik, the results involve generalized Steinberg representations. For the p-torsion
case, we follow the method used by Orlik in his computations of the �-torsion étale
cohomology using as a key new ingredient the computation of Ext groups between
mod p generalized Steinberg representations of p-adic groups. For the p-adic case,
we do not use Huber’s definition of étale cohomology with compact support as Orlik
did since it seems to give spaces that are much too big; instead we use continuous
étale cohomology with compact support.
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1 Introduction

Let p be a prime number. One of the main results of [12,13] is the computation
of the geometric p-adic étale cohomology of Drinfeld p-adic symmetric spaces in
arbitrary dimension. The final result is analogous to the one in the case of �-adic étale
cohomology with � �= p, which was known by the work of Schneider and Stuhler
[62]. The Drinfeld symmetric spaces are among the most classical examples of p-adic
period domains but it is well-known that they are very special1. In fact, the proofs
in [12,13] use these unique properties of Drinfeld spaces hence it was not clear to us
whether the results of loc. cit. would extend to more general p-adic period domains.

The purpose of this paper is to show that, for compactly supported p-torsion étale
cohomology, it is possible to treat fairly general p-adic period domains. Moreover,
the result is similar to the one for �-torsion, � �= p, cohomology with compact support
obtained2 by Dat [16] (for the Drinfeld spaces) and by Orlik [51] (in general). That
this is the case is a little surprising since, as we will explain below, the p-adic étale
cohomology with compact support (in the sense of Huber [37]) of p-adic period
domains is not at all similar to its �-adic counterpart, � �= p, computed by Orlik
[53], and seems to produce not very useful objects. On the other hand, the continuous
compactly supported cohomology that we define gives reasonable objects (at least in
the situation we consider or in the case of the complement of a subvariety in a proper
analytic variety as considered3 in [45]).

While the arguments in [12,13] are based on p-adic Hodge theory (via the syntomic
method) and its integral versions [4,5,9], this paper combines a beautiful geometric
construction due to Orlik [51] with a vanishing result for extensions between mod p
representations of p-adic reductive groups. The proof of the second result is the main

1 See [57, Sec. 3] for a list of such properties.
2 The Euler characteristic of period domains was known before, thanks to Kottwitz and Rapoport, see [17]
for a beautiful presentation.
3 In both cases this continuous compactly supported cohomology coincides with the naive one.
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difference with the � �= p case. We are not able to recover the results of [12,13] using
the methods used here, and conversely the methods in loc. cit. do not seem to give
the results obtained in this paper for Drinfeld spaces (Poincaré duality with p-torsion
coefficients holds for “almost proper” analytic varieties [45], but probably does not
hold for general analytic varieties, at least in a naive sense). Orlik did recover in [54]
the computation of p-adic pro-étale cohomology of Drinfeld spaces from [12] using
his method—which is the one of this paper as well—but one encounters considerable
technical difficulties4 whenworkingwith the étale cohomology instead of the pro-étale
one.

1.1 Notation

In order to state the main results of this paper we need to introduce some notation.
Let C be the completion of an algebraic closure of Qp and let (G, [b], {μ}) be a
local Shtuka datum over Qp. Here G is a connected reductive group over Qp, [b]
is an element of the Kottwitz set B(G) of σ -conjugacy classes in5 G(Q̆p), i.e., an
isomorphism class Nb of isocrystals with G-structure over Q̆p, and {μ} is a conjugacy
class of geometric cocharacters of G. Moreover, we ask that [b] lies in the Kottwitz
set6 B(G, μ), a certain finite subset of B(G) defined roughly by a comparison between
the Hodge polygon attached to μ and the Newton polygon attached to Nb (see [43,
Ch. 6] for the precise definition of the set B(G, μ)). This assumption is made so that
the period spaces whose cohomology we want to compute are not empty.

The pair (G, {μ}) gives rise to a generalized flag variety7 F = F (G, {μ}) defined
over the field of definition E of {μ}, a finite extension of Qp and a local analogue
of the reflex field in the theory of Shimura varieties. We will consider F as an adic
space over Spa(E,OE ). Letting Ĕ = EQ̆p, the p-adic period domain introduced by
Rapoport and Zink [60]

Fwa = Fwa(G, [b], {μ})
is a partially proper open subset of F ⊗E Ĕ , classifying the weakly admissible fil-
trations of type {μ} on the isocrystal Nb. Basic examples of p-adic period domains
are the adic affine spaces, the projective spaces, and the Drinfeld symmetric spaces
(complements of the union of all Qp-rational hyperplanes in the projective spaces).

As we have already mentioned, Orlik computed in [51] the �-adic compactly sup-
ported étale cohomology of these period domains when G is quasi-split over Qp, [b]
is a basic class, and � �= p is a sufficiently generic prime number. We will also assume

4 For example, the rational p-adic pro-étale cohomology of an open ball has a simple description in terms
of differential forms [14], but the integrality conditions coming from the p-adic étale cohomology make
the computations subtler.
5 Q̆p is the completion of the maximal unramified extension of Qp in C .
6 For the main result of the paper it would be enough to assume that [b] belongs to the larger set A(G, μ),
since all we need is that the period domain is nonempty, which is equivalent to [b] ∈ A(G, μ) by a result
of Fontaine and Rapoport [25].
7 If G is quasi-split over Qp , which will be the case in our main result, we can choose μ ∈ {μ} defined
over E and thenF = F (G, {μ}) is the quotient of GE by the parabolic subgroup P(μ) associated to μ.
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that G is quasi-split over Qp and that b ∈ G(Q̆p) is basic and s-decent8. We refer the
reader to the main body of the article for these notions, introduced by Kottwitz (for
the first one) and Rapoport–Zink (for the second one). This implies, for instance, that
b ∈ G(Qps ) and that the period domain Fwa = Fwa(G, [b], {μ}) has a canonical
model (still denoted Fwa) over Es = EQps ⊂ Qp. Let Jb be the automorphism
group of Nb. It is a connected reductive group over Qp, which is an inner form of
G (this is equivalent to b being basic). The natural action of G(Q̆p) on the flag vari-
ety F ⊗E Ĕ induces an action of Jb(Qp) on the period domain Fwa. In particular,
we obtain an action of Jb(Qp) × GEs , GEs = Gal(Qp/Es), on H∗ét,c(F

wa
C ,Z/�n)

and H∗ét,c(F
wa
C ,Z�), for any prime �. The main theorem of this paper gives a simple

description of these representations in the case � = p.
Let T be a maximal torus ofG such thatμ factors through T , and letW = N (T )/T

be the (absolute) Weyl group of G with respect to T , which acts naturally on X∗(T ).
Let Wμ be the set of Kostant representatives with respect to W/Stab(μ), i.e., the
representatives of shortest length in their cosets. ThegroupGEs acts onW andpreserves
Wμ since μ is defined over Es . One can associate to each GEs -orbit [w] ∈ Wμ/GEs

the following objects:
• An integer l[w], the length of any element of [w].
• For any prime �, a Z/�n[GEs ]-module ρ[w](Z/�n), which is simply the Z/�n-

module of Z/�n-valued functions on [w], with the obvious GEs -action twisted (à la
Tate) by −l[w].

Wewill simplywrite J instead of Jb from now on. Choose amaximalQp-split torus
S of Jder contained in T and a minimal Qp-parabolic subgroup P0 of J containing
S. Let � ⊂ X∗(S) be the associated set of relative simple roots. For each subset I of
�, we denote by PI the corresponding standard Qp-parabolic subgroup of J , so that
P∅ = P0 and P� = J . Consider the compact p-adic manifold

XI = J (Qp)/PI (Qp).

If R is an abelian group, let

v J
PI (R) = i JPI (R)/

∑

I�I ′
i JPI (R), i JPI (R) = LC(XI , R),

be the corresponding generalized Steinberg representation of J (Qp), with coefficients
in R (here LC(?, R) is the space of locally constant functions on ? with values in R).

Finally, choose an invariant inner product (−,−) on G, i.e., an inner product on
X∗(T ′) ⊗ Q, for all maximal tori T ′ of G, compatible with the adjoint action of
G(Qp) and the natural action of GQp on maximal tori of G. It induces an invariant
inner product on J as well. For each GEs -orbit [w] of w ∈ Wμ, define (ν := νb, the
Newton map of b)

8 The hypothesis that b is decent is harmless, since any σ -conjugacy class in G(Q̆p) contains an s-decent
element for some positive integer s ≥ 1.
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110 P. Colmez et al.

I[w] = {α ∈ � | (wμ− ν, ωα) ≤ 0}, P[w] := PI[w] ,

where ωα ∈ X∗(S)⊗Q, α ∈ �, form the dual basis of �.

1.2 Themain result

Recall that, for � �= p, we have the following computation of Orlik.

Theorem 1.1 (Orlik [51,53]) Let (G, [b], {μ}) be a local Shtuka datum with G/Qp

quasi-split, b ∈ G(Q̆p) basic and s-decent. Let � �= p be sufficiently generic9 with
respect to G.

There are isomorphisms of GEs × J (Qp)-modules

H∗ét,c(F
wa
C ,Z/�n) 


⊕

[w]∈Wμ/GEs

v J
P[w](Z/�n)⊗ ρ[w](Z/�n)[−n[w]],

H∗ét,c,Hu(F
wa
C ,Z�) 


⊕

[w]∈Wμ/GEs

v J
P[w](Z�)⊗ ρ[w](Z�)[−n[w]],

where n[w] = 2l[w] + |�\I[w]| and H∗ét,c,Hu denotes Huber’s compactly supported
cohomology. In particular, the action of J (Qp) on H∗ét,c,Hu(F

wa
C ,Z�) is smooth.

Our main result is the following computation.

Theorem 1.2 Let (G, [b], {μ}) be a local Shtuka datum with G/Qp quasi-split, b ∈
G(Q̆p) basic and s-decent. Assume that p �= 2.

There are isomorphisms of GEs × J (Qp)-modules

H∗ét,c(F
wa
C ,Z/pn) 


⊕

[w]∈Wμ/GEs

v J
P[w](Z/pn)⊗ ρ[w](Z/pn)[−n[w]],

H∗ét,c(F
wa
C ,Zp) 


⊕

[w]∈Wμ/GEs

v
J ,cont
P[w] (Zp)⊗ ρ[w](Zp)[−n[w]],

where H∗ét,c denotes the continuous compactly supported cohomology, v
J ,cont
PI

(Zp) =
lim←−n

v J
PI

(Z/pn) denotes continuous Steinberg representations, and ρ[w](Zp) =
lim←−n

ρ[w](Z/pn).

Remark 1.3 The result for torsion coefficients in Theorem 1.2 is analogous to the one
ofOrlik quoted above. The analog ofOrlik’s second isomorphism is false: in the case of
the adic affine spaceA1

Qp
, which is a period domain for the groupG = Gm,Qp×Gm,Qp ,

we obtain (in the appendix) the isomorphism

H2
ét,c,Hu(A

1
C ,Zp(1)) 
 (O

P
1
C ,∞/C)⊕ Zp ,

9 See [51, Sec. 1] for the definition.
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where O
P
1
C ,∞ is the stalk of analytic functions at ∞. This result is to be compared

with the isomorphism H2
ét,c,Hu(A

1
C ,Z�(1)) 
 Z�, for � �= p. Note, moreover, that the

action of G(Qp) on H2
ét,c,Hu(A

1
C ,Zp(1)) is not smooth.

Remark 1.4 The case of A1
Qp

suggests that Huber’s definition is not the right one for
p-adic coefficients. On the other hand, the continuous compactly supported cohomol-
ogy10

R
ét,c(X ,Zp) := R lim←−
n

R
ét,c(X ,Z/pn),

gives sensible results, as Theorem 1.2 shows. In this particular case, we have an
isomorphism

Hi
ét,c(F

wa
C ,Zp) 
 Hi

ét,c,naive(F
wa
C ,Zp) := lim←−

n

Hi
ét,c(F

wa
C ,Z/pn), i ≥ 0,

with the naive version of compactly supported cohomology. We note that in a recent
preprint [45], Lan–Liu–Zhu prove a rational Poincaré duality for p-adic étale coho-
mology of “almost proper” adic spaces and the compactly supported cohomology
that they use is the naive one, which is equal to the continuous one in their setting
because their torsion cohomology groups are finite (hence satisfy the Mittag–Leffler
condition).

Note that one could use also the continuous compactly supported cohomology
in the �-adic case, � �= p, instead of Huber’s version. One would get continuous
generalized Steinberg representations instead of smooth ones in Theorem 1.1, which
would fit better with the objects appearing in the p-adic Langlands program such as
Emerton’s completed cohomology. That would also make a (topological) Poincaré
duality possible for the spaces that we consider.

Remark 1.5 Moreover:

(1) We expect that the hypothesis p �= 2 in Theorem 1.2 is not needed. This hypothesis
is made so that we can use Theorem 1.6 below. When G = GLd+1,Qp , Theorem
1.2 holds true for p = 2 as well (see Remark 1.7 below).

(2) Let Hd
Qp

be the Drinfeld symmetric space of dimension d over Qp. Recall that

Hd
Qp
= Pd

Qp
\ ∪H∈H H , where H is the set of Qp-rational hyperplanes. Set

G := GLd+1,Qp . Theorem 1.2 yields an isomorphism of GQp × G(Qp)-modules

Hi
ét,c(H

d
C ,Z/pn) 
 Sp2d−i (Z/pn)(d − i),

where the generalized Steinberg representations Sp j (Z/pn) are as defined in Sect.
6.1.3. Comparing this isomorphism with that of [13]:

Hi
ét(H

d
C ,Z/pn) 
 Spi (Z/pn)∗(−i)

10 Instead of requiring a proper support for a compatible sequence of global sections we just take sequences
of properly supported global sections.
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one finds an abstract duality of GLd+1(Qp)× GQp -representations:

Hi
ét,c(H

d
C ,Z/pn)(d) 
 H2d−i

ét (Hd
C ,Z/pn)∗.

It seems likely that this abstract duality is induced by the cup-product with values
in H2d

ét,c(H
d
C ,Z/pn(d)) 
 Z/pn but we did not verify this.

This suggests that Poincaré duality holds for Fwa
C and that one can deduce from

Theorem 1.2 a description of the étale cohomology H∗ét(F
wa
C ,Z/pn) as J (Qp)×

GQp -modules.
(3) Suppose moreover that μ is minuscule. Thanks to the work of Fargues–Fontaine

[24], Kedlaya–Liu [38], and Scholze [63], we can define the admissible locus
F a ⊂ Fwa, a partially proper open subset of F having the same classi-
cal points as Fwa, and a p-adic local system over it interpolating the Galois
representations associated to these classical points by the theorem of Colmez-
Fontaine. In some remarkable situations (which can be completely classified
thanks to the work of Chen–Fargues–Shen [10] and Goertz–He–Nie [27]) we
have Fwa = F a and so the above theorem describes the p-adic étale cohomol-
ogy with compact support of the admissible locus. For instance, this is the case for
the quasi-split group G = SO(V , q), where V = Qn

p endowed with the quadratic
form q(x1, . . . , xn) = x1xn + x2xn−1 + · · · + xnx1, the minuscule cocharacter
μ(z) = diag(z, 1, . . . , 1, z−1), and the basic class [b] = [1] ∈ B(G, μ), for which
J = G. The flag variety is then the quadricF over Q̆p with equation q(x) = 0 in
projective space and we have Fwa = F a = F\G(Qp)S, where S is the Schu-
bert variety with equations x�n/2�+1 = · · · = xn = 0 inside F (we learnt this
example from Fargues). For n = 21, we obtain a very concrete description of the
p-adic period domain for polarized K3 surfaces with supersingular reduction and
the previous theorem yields its p-adic étale cohomology with compact support.
In general, we do not know how to describe the �-adic étale cohomology (with
compact support) ofF a , even for � �= p.

1.3 The proof of themain result

We will sketch the proof of Theorem 1.2 in the torsion case; the continuous case
follows by taking limits.

1.3.1 The geometric part

As we have already mentioned, the geometric part of the proof (which, however, does
use representation theory as well) is analogous to Orlik’s proof of the corresponding
result with �-torsion coefficients, for � �= p. Our contribution here lies solely in the
verification that all �-torsion statements in Orlik’s proof work in the p-torsion setting
as well. That this was not guaranteed is shown by the fact that it fails in the �-adic
setting: Orlik’s �-adic proof for � �= p breaks down p-adically (as we have already
seen in Remark 1.3, Huber’s compactly supported l-adic cohomology behaves rather
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badly for l = p, while it behaves as expected for l �= p, and this is crucial for Orlik’s
argument to work).

The argument goes as follows. One starts with the distinguished triangle (associated
to the triple (Fwa,F , ∂Fwa), ∂Fwa := F\Fwa)

R
ét,c(F
wa
C ,Z/pn) −→ R
ét(FC ,Z/pn) −→ R
ét(∂F

wa
C ,Z/pn).

This reduces the computation of H∗ét,c(F
wa
C ,Z/pn) to that of H∗ét(∂F

wa
C ,Z/pn) and

the boundary map ∂ : H∗ét(∂Fwa
C ,Z/pn)→ H∗+1ét,c (Fwa

C ,Z/pn): one needs to prove
an isomorphism (we omit the coefficients Z/pn in the formula):

H∗ét(∂F
wa
C ) 


⎧
⎪⎨

⎪⎩

⊕
|�\I[w]|=1

(
i JP[w] ⊗ ρ[w][−2l[w]]

)
⊕
⊕
|�\I[w]|>1

(
ρ[w][−2l[w]]⊕

(
v J
P[w]⊗ρ[w][−2l[w]−|�\I[w]| + 1]))

(1.1)
To do it, one stratifies the complement ∂Fwa by Schubert varieties whose cohomology
is easy to compute. More precisely, one uses the Faltings and Totaro description
of weak admissibility as a semistability condition: the period domain Fwa is the
locus of semistability in F and the complement ∂Fwa is the locus in F , where
semistability fails. To test semistability one applies the Hilbert–Mumford criterion:
for a field extension K/Ě , x ∈ F (K ) is semistable (hence x ∈ Fwa(K )) if and only
if μ(x, λ) ≥ 0, for all λ ∈ X∗(J )GF . Here μ(−,−) is the slope function associated
to a linearization of the action of J .

The slope function, a priori convex on each chamber of the spherical building
B(Jder), is actually affine. This implies that, in the Hilbert–Mumford criterion, it is
enough to test the 1-parameter subgroups associated to the relative simple roots and
their conjugates. This leads to the stratification

∂Fwa = Z1 ⊃ · · · ⊃ Zi−1 ⊃ Zi ⊃ Zi+1 ⊃ · · ·

that is defined in the following way. For λ ∈ X∗(J )Q, let Yλ be the locus in F ,
where λ damages the semistability condition. For I ⊂ �, let YI := ∩α/∈I Yωα be the
associated Schubert variety. Then the locus Zi of ∂Fwa, where the semistability fails
to the degree at least i , can be described as

Zi =
⋃

|�\I |=i
Z I , ZI := J (Qp) · Y ad

I .

Wenote that ZI is a closed pseudo-adic subspace of ∂Fwa. In particular, so is ∂Fwa =
Z1 =⋃

|�\I |=1 ZI .

Having this stratification, by a procedure akin to a closed Mayer–Vietoris, one
obtains an acyclic complex of sheaves on ∂Fwa

C , called the fundamental complex,

0→ Z/pn →
⊕

|�\I |=1
(Z/pn)I →

⊕

|�\I |=2
(Z/pn)I → · · · →

⊕

|�\I |=|�|−1
(Z/pn)I → (Z/pn)∅ → 0,
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where (Z/pn)I denotes the constant sheaf Z/pn evaluated11 on ZI ,C . This complex
yields a spectral sequence

Ei, j
1 =

⊕

|�\I |=i+1
Hi
ét(∂F

wa
C , (Z/pn)I )⇒ Hi+ j

ét (∂Fwa
C ,Z/pn). (1.2)

Using the fact that PI (Qp) is the stabilizer of YI in J (Qp) and XI = J (Qp)/PI (Qp)

one computes that

Hi
ét(∂F

wa
C , (Z/pn)I ) 
 LC(XI , H

i
ét(YI ,C ,Z/pn)) 
 i JPI (Z/pn)⊗ Hi

ét(YI ,C ,Z/pn)


 i JPI (Z/pn)⊗ (
⊕

[w]∈I

ρ[w](Z/pn)[−2l[w]]).

Here I is a subset of Wμ/GEs (see Sect. 5.5). The third isomorphism is obtained
by the classical computation of the cohomology of Schubert varieties. Via a simple
Galois-theoretic weight argument, this computation implies that the above spectral
sequence degenerates at E2. Using results of Grosse–Klönne [28], Herzig [35], and
Ly [46] on generalized Steinberg representations mod p, one can also compute the E2
terms: they are equal to the terms on the right hand side of the formula (1.1).

1.3.2 The group-theoretic part

It follows from the above section that the grading of H∗ét(∂F
wa
C ,Z/pn) associated to

the filtration induced by the spectral sequence (1.2) is isomorphic to the right hand
side of (1.1). It remains to show that this filtration splits. And this is where things
get much harder for p-torsion coefficients than for the �-torsion ones. Splitting this
filtration essentially comes down to understanding Ext groups between generalized
Steinberg representations with p-torsion coefficients. Fortunately, it suffices to deal
with Ext1’s, which are the only ones we can handle, contrary to the usual theory with
complex coefficients (adapted to the �-adic setting by Orlik [52] and Dat [16]). It is
indeed a well-known phenomenon in the theory of smooth mod p representations of
p-adic reductive groups that Ext groups can be very hard to compute, since most of
the techniques for complex or �-adic coefficients fail.

Before stating the key result that allows us to split the filtration, let us briefly
explain the argument for complex or �-torsion coefficients and point out the difficulties
occurring for p-torsion coefficients. Let R be one of the ringsC,Z/�n,Z/pn (� being
sufficiently generic with respect to J ). One can construct an acyclic complex

0→ i J�(R)→
⊕

I⊂I ′⊂�
|�\I ′|=1

i JPI ′ (R)→ · · · →
⊕

I⊂I ′⊂�
|I ′\I |=1

i JPI ′ → i JPI (R)→ v J
PI (R)→ 0.

For R = C or Z/�n this is a rather standard result, and it also works for Z/pn thanks
to the above-mentioned work of Grosse-Klönne, Herzig, and Ly (the acyclicity of this

11 We simplify for the sake of the introduction; see Sect. 6.2.1 for details.
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complex is also crucial in computing the E2 terms of the above spectral sequence).
Suppose that R �= Z/pn . A spectral sequence argument reduces the computation
of Ext∗J (Qp)

(v J
PI

(R), v J
PI ′ (R)) to the computation of Ext∗J (Qp)

(i JPI (R), i JPI ′ (R)) for all

I , I ′ ⊂ �. The exactness of the Jacquet functor (which fails when R = Z/pn) reduces
the problem to understanding extensions between the Jacquetmodule of i JPI (R) (which
can be understood by theBernstein-Zelevinsky geometric lemma) and the trivial repre-
sentation. After several other relatively standard but technical arguments one reduces
everything to the computation of H∗(J (Qp), i JPI (R)) = H∗(MI (Qp), R), where MI

is the Levi quotient of the standard parabolic PI . Thus we are reduced to comput-
ing H∗(G(Qp), R) for a reductive group G over Qp, which can be done using the
contractibility of the Bruhat-Tits building of G and the fact that iGK (1) is injective
as smooth representation whenever K is a compact open subgroup of G (since pas-
sage to K -coinvariants is exact). This again fails when R = Z/pn . Actually, it is an
interesting problem to compute H∗(G(Qp),Z/pn) for a reductive group G over Qp.
Unfortunately we do not have much to say about this except to mention that the com-
putation of H∗(GLn(Zp),Z/p) seems rather complicated: Lazard’s theory allows one
to compute H∗(1+ pMn(Zp),Z/p) (at least when 1+ pMn(Zp) is a uniform pro-p
group, i.e. p �= 2), so one is reduced to the computation of H∗(GLn(Z/p),Z/p), a
well-known open problem.

The previous paragraph makes it clear that a new idea is needed in order to compute
extensions between generalized Steinberg representations modulo p. We will only
focus on the computation of Ext1’s, which is enough for our needs. All Ext groups
below are computed in the category of smooth J (Qp)-representationswith coefficients
in Z/pn . The key result needed to split the abutment filtration of the spectral sequence
(1.2) is then:

Theorem 1.6 Assume that p ≥ 5 and let I , I ′ ⊂ �. If |(I ∪ I ′)\(I ∩ I ′)| ≥ 2, then

Ext1J (Qp)
(v J

PI (Z/pn), v J
PI ′ (Z/pn)) = 0.

The result holds true when p = 3 under the stronger assumption ||I | − |I ′|| ≥ 2.

Remark 1.7 The result also holds true when p = 2 and J is an inner form ofGLd+1,Qp

under the stronger assumption ||I | − |I ′|| ≥ 2.

We refer the reader to Sect. 2.3 for an overview of the rather technical proof of the
theorem. (Actually we compute the Ext1’s between generalized Steinberg represen-
tations, with coefficients in an artinian commutative ring in which p is nilpotent, for
any reductive group over a local field of residue characteristic p.) The most difficult
part is to compute H1(G(Qp),St), where St denotes the ordinary Steinberg repre-
sentation, for a reductive group G over Qp and one can actually reduce the theorem
to this computation by rather painful devissage arguments involving Emerton’s ordi-
nary parts functor and its derived functors. The computation of higher Ext groups
seems much more involved: extending our method would require at least to compute
H∗(G(Qp),St) and to prove a conjecture of Emerton on the higher ordinary parts
functors (see [20, Conj. 3.7.2]).
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2 Extensions between generalized Steinberg representations

Let F be a local field of residue characteristic p, G be the group of F-points of a
connected reductive algebraic F-group, and R be an artinian commutative ring in
which p is nilpotent. We compute the Ext1 groups between generalized Steinberg
representations in the category of smooth G-representations with coefficients in R. In
particular, we will prove Theorem 1.6 from the introduction.

2.1 Notation

Let us fix the notation for this section. We fix a separable closure F of F and let
GF = Gal(F/F). Let ε : Q∗p → Z∗p denote the p-adic cyclotomic character and
let ε̄ : Q∗p → F∗p denote its reduction mod p. We let D denote a finite-dimensional
central division algebra over F .

2.1.1 Linear algebraic F-groups

A linear algebraic F-group will be written with a boldface letter like H and its group
of F-points will be denoted by the corresponding ordinary letter H = H(F). We
will write H1(F, H) for the set of isomorphism classes of H-torsors over F . If H
is smooth (this is always the case when char(F) = 0 by Cartier’s theorem), then
H1(F, H) is isomorphic to the Galois cohomology group H1(GF , H(F)). We will
write ZH for the center of H .

Let G be a connected reductive algebraic F-group. We fix a maximal split torus
S ⊂ G and a minimal parabolic subgroup B ⊂ G containing S. Let Z be the
centralizer of S in G, that is the Levi factor of B containing S, and U be the unipotent
radical of B, so that B = ZU . We write B = ZU for the opposite minimal parabolic
subgroup. Let N be the normalizer of S in G and let

W =N /Z = N /Z

be the relative Weyl group of G. For w ∈ W , we let

Uw = U ∩ w−1Uw and Bw = ZUw.

Let X∗(S) be the group of characters of S, let X∗(S) be the group of cocharacters
of S, and let 〈−,−〉 : X∗(S)× X∗(S)→ Z denote the natural pairing. Let

� ⊃ �+ ⊃ �

be the subsets of relative roots, positive roots, simple roots in X∗(S). We let �− =
−�+ = �\�+. For α ∈ �, we let α∨ ∈ X∗(S) be the corresponding coroot,
sα ∈ W be the corresponding simple reflection, and Uα ⊂ U be the corresponding
root subgroup. If Uα is one-dimensional, then α extends to a character of Z which
will be denoted α̃.
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For I ⊂ �, we let P I = M I N I be the corresponding parabolic subgroup of G
containing B, where M I is the Levi factor of P I containing S and N I is the unipotent
radical of P I , and we let B I = M I ∩ B and U I = M I ∩U , so that B I = ZU I , and
we let Z I denote the center of M I .12 We write P I = M I N I and B I = ZU I for the
opposite parabolic subgroups. We letN I be the normalizer of S in M I and we let

WI =N I /Z = NI /Z

be the relative Weyl group of M I . We let W̃I ⊂ W be the set of representatives of
minimal length of the right cosets WI \W , we let wI ,0 ∈ WI be the longest element,
and we let

ŴI = wI ,0W̃I \
⋃

J�I

wJ ,0W̃J .

For wI ∈ WI , we let

U I ,wI = U I ∩ w−1I U IwI and B I ,wI = ZU I ,wI

When I = {α} (resp. I = �\{α}), we rather write Pα , Mα , Nα , etc. (resp. Pα , Mα ,
Nα , etc.).

2.1.2 Smooth representations

All representations will be smooth with coefficients in R and all maps between R-
modules will be R-linear.

Given a locally profinite space X , we let LC(X) be the R-module of locally constant
functions on X with coefficients in R, we let supp( f ) = X\ f −1({0}) denote the (open
and closed) support of a function f ∈ LC(X), and we let LCc(X) ⊂ LC(X) be the
R-submodule consisting of those functions with compact support.

Given a closed subgroup H of G and a smooth H -representation σ , we define a
smooth G-representation by letting G act by right translation on the R-module

IndGH (σ ) = { f : G → σ | ∃K f ⊂ G open subgroup s.t. f (hgk) = h · f (g)∀h ∈ H , g ∈ G, k ∈ K f }.

Let 1 be the trivial representation of any locally profinite group. For any subset I ⊂ �,
let

iGPI = IndGPI (1) 
 LC(PI \G).

If J ⊃ I is another subset, then there is an injection iGPJ ↪→ iGPI which is induced
by the natural surjection PI \G →→ PJ\G. The generalized Steinberg representation
with respect to I is the quotient

vGPI = iGPI /
∑

J�I

iGPJ .

12 In the case I = ∅ we have P I = B, M I = Z , N I = U , B I = Z , U I = 1, and Z I = ZZ . In the
case I = � we have P I = G, M I = G, N I = 1, B I = B, U I = U , and Z I = ZG .
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In the case I = ∅ we obtain the ordinary Steinberg representation denoted St. In the
case I = � we obtain the trivial representation 1.

Given a closed subgroup U ′ ⊂ U stable under conjugation by Z , we endow the
R-module LCc(U ′) with a smooth action of the group B ′ = ZU ′ defined by

(zū · f )(ū′) = f (z−1ū′zū)

for z ∈ Z , ū, ū′ ∈ U ′, and f ∈ LCc(U ′).

2.2 Themain results

We prove the following result (cf. Theorem 1.6 in the introduction).

Theorem 2.1 Assume that p ≥ 5 and let I , J ⊂ �. If |(I ∪ J )\(I ∩ J )| ≥ 2, then
Ext1G(vGPI

, vGPJ
) = 0. The result holds true when p = 3 under the stronger assumption

||I | − |J || ≥ 2.

Remark 2.2 We expect Theorem 2.1 to hold true for all p. Actually, we prove the result
in almost all cases when p = 3 and in some cases when p = 2. Moreover, it follows
from our computations that the above Ext1 is 3-torsion when p = 3 and 8-torsion
when p = 2 (see Remarks 2.8 and 2.30). In particular, if char(F) = 0 and E/F
is a finite extension, then the analogous Ext1 in the category of admissible unitary
continuous G-representations on E-Banach spaces vanishes for all p (see [31, Prop.
5.3.1] and [30, Lemme 3.3.3]).

When I = J , the R-module Ext1G(vGPI
, vGPJ

) has been computed in [34] without
any assumption (see Proposition 8 in loc. cit.). In the course of the proof of Theorem
2.1, we also treat the case J = I � {α} under a very mild assumption (which is always
satisfied if p ≥ 5) and we reduce the remaining case I = J � {α} to the special case
where � = {α}. We treat the latter case under some assumption on G. In particular,
we obtain the following result.

Theorem 2.3 Assume that G = GLn(D) with D �= Q2. Let I , J ⊂ �.

(1) If J = I � {α}, then the R-module Ext1G(vGPI
, vGPJ

) is free of rank 1.
(2) If I = J � {α}, then there is an R-linear isomorphism

Ext1G(vGPI , v
G
PJ ) 
 Hom(F∗, R).

(3) If |(I ∪ J )\(I ∩ J )| ≥ 2, then Ext1G(vGPI
, vGPJ

) = 0.

In contrast, we do not know how to compute the R-module Ext1G(St, 1) when
G = GL2(Q2), or Ext1G(vGP1 , v

G
P2

) when G = GL3(Q2) and P1, P2 denote the two
maximal proper standard parabolic subgroups of G.

Remark 2.4 A locally analytic version of part (2) of Theorem 2.3 (when D = F and
char(F) = 0) is established in the work of Ding [18] and generalized to split reductive
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groups by Gehrmann [26]. Higher Ext groups are computed by Orlik and Strauch [55],
for split reductive groups and in a suitable category of locally analytic representations
(but not in the category of admissible locally analytic representations). We note that a
vanishing result for Ext1 in the locally analytic world gives a corresponding vanish-
ing result in the context of admissible Banach representations, since the continuous
generalized Steinberg representations are the universal unitary completions of their
locally analytic vectors. We thank Lennart Gehrmann for pointing out the references
above. Let us mention though that the vanishing mod p in Theorem 1.6 is crucial for
the proof of Theorem 1.2: the corresponding result for Banach representations is not
sufficient for our needs.

2.3 The proof of themain results

We fix two subsets I , J ⊂ �. First, we recall the computation of the R-module
HomG(vGPI

, vGPJ
).

Proposition 2.5 (Grosse-Klönne, Herzig, Ly) There is an R-linear isomorphism

HomG(vGPI , v
G
PJ ) 


{
R if I = J ,

0 otherwise.

Proof If I = J , then the result is a special case of [34, Cor. 5]. If I �= J , then by
devissage the result reduces to the case where R is a field of characteristic p, which
is proved by Grosse-Klönne [28], Herzig [35], and Ly [46].

Now, using the results of the next sections,we compute the R-moduleExt1G(vGPI
, vGPJ

)

when I �= J . In particular, we prove Theorems 2.1 and 2.3. We treat the cases J �⊂ I
and J � I separately.

2.3.1 The case J �⊂ I

In this case we can compute directly the R-module Ext1G(vGPI
, vGPJ

) using the results

of Sect. 2.4. Let α ∈ (�\I ) ∩ J . If F = Qp, dimUα = 1, and J\{α} = I ∩ {α}⊥
assume that ε̄ ◦ α̃ �= 1. This assumption is satisfied in the following cases: p ≥ 5;
p = 3 and ||I | − |J || ≥ 2; p = 2, ||I | − |J || ≥ 2, and G = GLn(D) (see Remark
2.6). Then there is an R-linear isomorphism (see (2.5))

Ext1G(vGPI , v
G
PJ ) 


{
R if J = I � {α},
0 otherwise.

In the case J = I � {α} the R-module Ext1G(vGPI
, vGPJ

) is generated by the class of

IndGPα (v
Mα

Mα∩PI ) (see (2.4)). This proves Theorem 2.1 and part (3) of Theorem 2.3 in
the case J �⊂ I , as well as part (1) of Theorem 2.3.
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2.3.2 The case J � I

In this case we can reduce the computation of the R-module Ext1G(vGPI
, vGPJ

) to the

computation of the R-modules Ext1MK
(1,StMK ) for certain subsets K ⊂ �, where

StMK denotes the Steinberg representation of MK , using the results of Sect. 2.4: for
all α ∈ �\I there is an exact sequence of R-modules (see (2.6))

0→ Ext1G(vGPI , v
G
PJ )→ Ext1Mα (vMα

Mα∩PI , v
Mα

Mα∩PJ )→ Ext1G(vGPI�{α}, v
G
PJ ),

and for all α ∈ J there is an exact sequence of R-modules (see (2.9))

0→ Ext1G(1, vGPJ )→ Ext1Mα (1, vMα

Mα∩PJ\{α})→ Ext1G(1, vGPJ\{α}).

Using these exact sequences recursively (i.e. for G and its Levi subgroups MK ) yields
an R-linear injection

Ext1G(vGPI , v
G
PJ ) ↪→ Ext1MI\J (1,StMI\J ). (2.1)

Moreover, in the case I = J � {α} the above injection is an R-linear isomorphism

Ext1G(vGPI , v
G
PJ )

∼→ Ext1Mα
(1,StMα ) (2.2)

provided that Ext1M{α,β}(1,StM{α,β}) = 0 for all β ∈ �\{α}.
In Sect. 2.8, using the results of Sects. 2.5, 2.6, and 2.7, we compute the R-module

Ext1G(1,St). Replacing G by its Levi subgroups MK we obtain the following results.
Assume that p �= 2.

• If K = {α} and the adjoint action of Z on Uα\{1} is transitive, then there is an
R-linear isomorphism (see Proposition 2.27)

Ext1Mα
(1,StMα )

∼→ Ext1Z (1, 1)sα=−1. (2.3)

(HereExt1Z (1, 1)sα=−1 denotes the R-submodule of Ext1Z (1, 1) consisting of those
extensions on which sα acts by multiplication by −1.)
• If |K | ≥ 2, then Ext1MK

(1,StMK ) = 0 (see Proposition 2.29).

When G = GLn(D), these results hold true for p = 2 as well, and (2.3) induces an
R-linear isomorphism

Ext1Mα
(1,StMα ) 
 Hom(F∗, R).

(see Remarks 2.28 and 2.30).
Finally, we can compute the R-module Ext1G(vGPI

, vGPJ
). Assume that either p �= 2

or G = GLn(D). If I = J � {α}, then Ext1M{α,β}(1,StM{α,β}) = 0 for all β ∈ �\{α},
so that composing (2.2) and (2.3) yields an R-linear isomorphism

Ext1G(vGPI , v
G
PJ ) 
 Ext1Z (1, 1)sα=−1.
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When G = GLn(D), this isomorphism induces an R-linear isomorphism

Ext1G(vGPI , v
G
PJ ) 
 Hom(F∗, R).

This proves part (2) of Theorem 2.3. If |I\J | ≥ 2, then Ext1MI\J (1,StMI\J ) = 0,

so that (2.1) yields Ext1G(vGPI
, vGPJ

) = 0. This proves Theorem 2.1 and part (3) of
Theorem 2.3 in the case J � I .

2.4 Reduction to the case I = 1 and J = ∅

First we recall some results on the parabolic induction functor and its right adjoint. The
parabolic induction functor IndGPI , from the category of smooth MI -representations to
the category of smooth G-representations, is exact and preserves admissibility. When
char(F) = 0, Emerton [19] constructed a functor OrdP I

(the ordinary part), from the
category of smooth G-representations to the category of smooth MI -representations,
which is left-exact, preserves admissibility, and is the right adjoint of IndGPI when
restricted to admissible representations. His construction was generalized by Vignéras
[67] to include the case char(F) = p. When char(F) = 0, Emerton [20] extended
the functor OrdP I

(which is not exact as soon as I �= �) to a sequence of func-
tors HnOrdP I

which preserve admissibility and form a δ-functor when restricted to
admissible representations. When char(F) = p, the restriction of the functor OrdP I
to admissible representations is exact (this is due to one of us, see [32, Th. 1]) and we
let HnOrdP I

= 0 for n ≥ 1.

2.4.1 Reduction to the case I = 1

Assume that I �= � and let α ∈ �\I . By exactness and transitivity of parabolic
induction, there is a short exact sequence of G-representations

0→ vGPI�{α} → IndGPα (vMα

Mα∩PI )→ vGPI → 0 (2.4)

which induces an exact sequence

0→ HomG(vGPI , v
G
PJ )→ HomG(IndGPα (vMα

Mα∩PI ), v
G
PJ )→ HomG(vGPI�{α}, v

G
PJ )

→ Ext1G(vGPI , v
G
PJ )→ Ext1G(IndGPα (vMα

Mα∩PI ), v
G
PJ )→ Ext1G(vGPI�{α}, v

G
PJ ).

The adjunction between IndGPα and OrdPα yields an isomorphism

HomG(IndGPα (vMα

Mα∩PI ), v
G
PJ ) 
 HomMα (vMα

Mα∩PI ,OrdPα (vGPJ )).

Moreover, there is a short exact sequence

0→ Ext1Mα (vMα

Mα∩PI ,OrdPα (vGPJ ))→ Ext1G(IndGPα (vMα

Mα∩PI ), v
G
PJ )
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→ HomMα (vMα

Mα∩PI , H
1OrdPα (vGPJ ))

(see [20, (3.7.6)] if char(F) = 0 and [32, Cor. 2] if char(F) = p). By [2, Th. 6.1(ii)],
there is an Mα-equivariant isomorphism

OrdPα (vGPJ ) 

{

vMα

Mα∩PJ if α /∈ J ,

0 otherwise.

Using Proposition 2.5 and Lemma 2.7 below, we obtain the following results.

• Assume that α ∈ J . If F = Qp, dimUα = 1, and J\{α} = I ∩ {α}⊥ assume
moreover that ε̄ ◦ α̃ �= 1. Then there is an isomorphism

Ext1G(vGPI , v
G
PJ ) 


{
R if J = I � {α},
0 otherwise.

(2.5)

In the case J = I � {α} the R-module Ext1G(vGPI
, vGPJ

) is generated by the class of
(2.4).
• Assume that α /∈ J . Then there is an exact sequence

0→ Ext1G(vGPI , v
G
PJ )→ Ext1Mα (vMα

Mα∩PI , v
Mα

Mα∩PJ )→ Ext1G(vGPI�{α}, v
G
PJ ). (2.6)

Remark 2.6 Let us discuss the assumption in the case α ∈ J .

(1) Assume that F = Qp and dimUα = 1. We have ε̄ ◦ α̃ �= 1 if p ≥ 5. More
precisely, ε̄ ◦α = 1 if and only if either p = 3 and α ∈ 2X∗(S), in which case the
irreducible component of � containing α must be of type A1 or Cn (n ≥ 2) with
α being the long root, or p = 2.13

(2) Assume that α ∈ J and J\{α} = I ∩ {α}⊥, i.e. J\I = {α}, I\J ⊂ �\{α}⊥,
and I ∩ J ⊂ {α}⊥. Then either J = I � {α} with I ⊂ {α}⊥, or 0 ≤ |I | −
|J | ≤ |�\{α}⊥| − 1. In particular, we have ||I | − |J || ≤ 1 unless the irreducible
component of � containing α is of type Dn (n ≥ 4), E6, E7, or E8 with α being
the root with 3 neighbors.

Now we turn to the key computation of this section.

Lemma 2.7 (1) We have H1OrdPα (vGPJ
) �= 0 if and only if F = Qp, dimUα = 1,

α ∈ J , and J\{α} ⊂ {α}⊥.
(2) Assume that F = Qp, dimUα = 1, α ∈ J , and J\{α} ⊂ {α}⊥. Then

HomMα (vMα

Mα∩PI , H
1OrdPα (vGPJ )) �= 0

only if J\{α} = I ∩ {α}⊥ and ε̄ ◦ α̃ = 1.

13 Indeed: if p ≥ 5 then ε̄ ◦ α ◦ α∨ = ε̄2 �= 1; if p = 3 and α /∈ 2X∗(S) then there exists ωα ∈ X∗(S)

such that 〈α, ωα〉 = 1 hence ε̄ ◦ α ◦ωα = ε̄ �= 1; if p = 3 and α ∈ 2X∗(S) then ε̄ ◦ α = ε̄2 ◦ ( 12α) = 1; if
p = 2 then ε̄ = 1.
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Proof First, we review a filtration on vGPJ
. As explained in [29, Sec. 2.1]14, the Bruhat

decomposition
G =

⊔

w∈W
BwB

induces a filtration on iGB by B-subrepresentations with graded pieces Iw indexed by
W , and there is a Bw-equivariant isomorphism Iw 
 LCc(Uw) for all w ∈ W . Using
the G-equivariant morphisms

iGB ←↩ iGPJ →→ vGPJ ,

the filtration on iGB induces a filtration on vGPJ
by B-subrepresentations whose graded

pieces are the B-representations IŵJ for ŵJ ∈ ŴJ (see the proof of [30, Prop. 2.3.6]).
Now, the filtration on vGPJ

induces a filtration on H1OrdPα (vGPJ
) by B

α
-

subrepresentations whose graded pieces are exactly the B
α
-representations

H1OrdPα (IŵJ ) for all ŵJ ∈ ŴJ (see the proofs of [30, Prop. 2.3.6, Th. 2.3.7]). We
partially compute the latter using [33, Th. 2.6]15. If F = Qp and dimUα = 1, then
for any ŵJ ∈ ŴJ , which we write ŵJ = (w̃α)−1wα with w̃α ∈ W̃α and wα ∈ Wα ,
there is a B

α

wα -equivariant isomorphism

H1OrdPα (IŵJ ) 

{
LCc(U

α

wα )⊗ (ε ◦ α̃) if w̃α = sα,

0 otherwise.
(2.7)

In particular, H1OrdPα (vGPJ
) �= 0 if and only if ŴJ ∩ sαWα �= ∅, and the latter

condition is equivalent to α ∈ J and J\{α} ⊂ {α}⊥ by Lemma 2.9(1) below. If
either F �= Qp or dimUα �= 1, then H1OrdPα (IŵJ ) = 0 for all ŵJ ∈ ŴJ so that
H1OrdPα (vGPJ

) = 0. This proves (1).

We turn to (2). Assume that F = Qp, dimUα = 1, α ∈ J , and J\{α} ⊂ {α}⊥.
The G-equivariant surjection i M

α

Mα∩PI →→ vMα

Mα∩PI induces an injection

HomMα (vMα

Mα∩PI , H
1OrdPα (vGPJ )) ↪→ HomMα (i M

α

Mα∩PI , H
1OrdPα (vGPJ ))

and the adjunction between IndM
α

Mα∩PI and OrdMα∩P I
yields an isomorphism

HomMα (i M
α

Mα∩PI , H
1OrdPα (vGPJ )) 
 HomMI (1,OrdMα∩P I

(H1OrdPα (vGPJ ))).

We partially compute the BI -representation OrdMα∩P I
(H1OrdPα (IŵJ )) using the

isomorphism (2.7) and, once again, [33, Th. 2.6]. For any ŵJ ∈ ŴJ such that ŵJ =
14 In loc. cit. G is split but the results extend verbatim to any G.
15 In loc. cit. G is split but the results extend to any G if one replaces �(w) by dim(U/Uw). Alternatively,
these results can be recovered from [31, Th. 3.3.3].

123



124 P. Colmez et al.

sαwα with wα ∈ Wα , which we write wα = w̃−1I wI with w̃I ∈ W̃I and wI ∈ WI ,
there is a BI ,wI -equivariant isomorphism

OrdMα∩P I
(H1OrdPα (IŵJ )) 


{
LCc(U I ,wI )⊗ (ε ◦ α̃) if w̃I = 1,

0 otherwise.

For any wI ∈ WI , we have LCc(U I ,wI )
U I ,wI �= 0 if and only if U I ,wI = {1}, i.e.

wI = wI ,0, hence an isomorphism

HomBI ,wI
(1,LCc(U I ,wI ))⊗ (ε ◦ α̃)) 


{
HomZ (1, ε ◦ α̃) if wI = wI ,0,

0 otherwise.

Since OrdMα∩P I
and HomMI (1,−) are left-exact, we deduce that

HomMα (vMα

Mα∩PI , H
1OrdPα (vGPJ )) �= 0

only if sαwI ,0 ∈ ŴJ , and the latter condition is equivalent to α ∈ J and J\{α} =
I ∩ {α}⊥ by Lemma 2.9(2) below. In this case, there is an injection

HomMα (vMα

Mα∩PI , H
1OrdPα (vGPJ )) ↪→ HomZ (1, ε ◦ α̃). (2.8)

Finally, we see by devissage that HomZ (1, ε ◦ α̃) �= 0 if and only if ε̄ ◦ α̃ �= 1. This
proves (2).

Remark 2.8 Assume that F = Qp, dimUα = 1, and ε̄ ◦ α̃ = 1.

(1) We expect the R-module

HomMα (vMα

Mα∩PI , H
1OrdPα (vGPJ ))

to be non-zero if and only if J\I = {α}, I\J = �\{α}⊥, and I ∩ J ⊂ {α}⊥.
(2) In general, this R-module is killed by (ε ◦ α̃)(Z) − 1 (see (2.8)), hence by (ε ◦

α)(S)− 1, which is equal to Z∗p− 1 if α /∈ 2X∗(S) and to Z∗p2− 1 if α ∈ 2X∗(S).
We deduce that it is 2-torsion when p = 2 and α /∈ 2X∗(S), 8-torsion when p = 2
and α ∈ 2X∗(S), 3-torsion when p = 3 and α ∈ 2X∗(S), and 0 otherwise.

Lemma 2.9 (1) ŴJ ∩ sαWα �= ∅ if and only if α ∈ J and J\{α} ⊂ {α}⊥.
(2) sαwI ,0 ∈ ŴJ if and only if α ∈ J and J\{α} = I ∩ {α}⊥.

Proof We will use the following characterization:

ŴJ = {w ∈ W | w−1(J ) ⊂ �− and w−1(�\J ) ⊂ �+}.
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Let wα ∈ Wα . For β ∈ �, we have

(sαwα)−1(β) =

⎧
⎪⎨

⎪⎩

(wα)−1(−α) if β = α,

(wα)−1(β) if β ⊥ α,

(wα)−1(β − 〈β, α∨〉α) with 〈β, α∨〉 < 0 otherwise.

Since (wα)−1(α) ∈ �+, we deduce that

(sαwα)−1(β) ∈ �− ⇔ β = α or β ∈ (� ∩ wα(�−)) ∩ {α}⊥.

Therefore, sαwα ∈ ŴJ if and only if α ∈ J and J\{α} = (� ∩ wα(�−)) ∩ {α}⊥.
We deduce that ŴJ ∩ sαWα �= ∅ only if α ∈ J and J\{α} ⊂ {α}⊥. Conversely, if
α ∈ J and J\{α} ⊂ {α}⊥, then wJ ,0 = sαwJ\{α},0 ∈ ŴJ ∩ sαWα . This proves (1).
Now wI ,0 ∈ Wα since α /∈ I , and � ∩ wI ,0(�

−) = I , hence (2).

2.4.2 Reduction to the case J = ∅

Assume that J �= ∅ and let α ∈ J . Taking into account Proposition 2.5, the short
exact sequence (2.4) with J\{α} instead of I induces an exact sequence

0→ Ext1G(1, vGPJ )→ Ext1G(1, IndGPα (vMα

Mα∩PJ\{α}))→ Ext1G(1, vGPJ\{α}).

Using Lemma 2.10 below with π = vMα

Mα∩PJ\{α} , we obtain an exact sequence

0→ Ext1G(1, vGPJ )→ Ext1Mα (1, vMα

Mα∩PJ\{α})→ Ext1G(1, vGPJ\{α}). (2.9)

Lemma 2.10 Let π be a smooth Mα-representation. There is an isomorphism

Ext1Mα (1, π) 
 Ext1G(1, IndGPα (π)).

Proof By a straightforward generalization (to any G) of a special case of [20, Lemma
4.3.3], there is an isomorphism

Ext1Pα (1, π) 
 Ext1G(1, IndGPα (π))

where Pα acts on π by inflation. Thus it remains to prove that there is an isomorphism

Ext1Mα (1, π) 
 Ext1Pα (1, π).

By [20, Prop. 2.2.2], such an isomorphism can be rewritten in terms of group coho-
mology, computed using continuous cochains, as follows:

H1(Mα, π) 
 H1(Pα, π).
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Using the fact that Nα acts trivially on π , the inflation–restriction exact sequence for
continuous group cohomology yields an exact sequence

0→ H1(Mα, π)→ H1(Pα, π)→ Hom(Nα, π)M
α

.

We prove that the last term is zero. Let φ : Nα → π be a continuous group homomor-
phism. The action of m ∈ Mα on φ is given by m · φ : n !→ m · φ(m−1nm). Since φ

is continuous, ker(φ) is open in Nα . If φ is Mα-invariant, then ker(φ) = ker(m ·φ) =
m ker(φ)m−1 for all m ∈ Mα , hence ker(φ) = Nα , i.e. φ = 0.

We assume from now on that I = �, J = ∅, and � �= ∅. The goal of the next
sections is to compute the R-module Ext1G(1,St). Using [20, Prop. 2.2.2], the latter
can be expressed in terms of group cohomology, computed using continuous cochains,
as follows:

Ext1G(1,St) 
 H1(G,St).

2.5 Vanishing and isogenies

In this section we give two technical lemmas.

Lemma 2.11 Assume that G = G1 × G2 for some connected reductive algebraic
F-groups G1 and G2 such that G1 has positive relative semisimple rank.

(1) If G2 also has positive relative semisimple rank, then Ext1G(1,St) = 0.
(2) If G2 has relative semisimple rank 0, then St is isomorphic to the Steinberg rep-

resentation of G1, with G2 acting trivially on it, and there is an isomorphism

Ext1G(1,St)
∼→ Ext1G1

(1,St).

Proof Let Sti denote the Steinberg representation of Gi for i ∈ {1, 2}. We write
B = B1×B2. There is aG-equivariant isomorphism iGB 
 iG1

B1
⊗R i

G2
B2

which induces
a G-equivariant isomorphism St 
 St1⊗R St2. Note that the R-module St2 is free by
[46, Cor. 5.6]. Thus StG1 
 (St1)G1 ⊗R St2 = 0 by Proposition 2.5. Therefore, since
the R-module St1 is also free, the inflation–restriction exact sequence for continuous
group cohomology yields an isomorphism

H1(G,St)
∼→ H1(G1,St1 ⊗R (St2)

G2).

If G2 has positive semisimple rank, then (St2)G2 = 0 by Proposition 2.5, hence (1). If
G2 has relative semisimple rank 0, then St2 = 1 so that St1 ⊗R (St2)G2 
 St1, hence
(2).

Lemma 2.12 Let ϕ : G′ → G be a central isogeny of connected reductive algebraic
F-groups. Let St′ denote the Steinberg representation of G ′.

(1) If Ext1G ′(1,St
′) = 0, then Ext1G(1,St) = 0.

(2) The converse holds true if |�| ≥ 2.
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Proof Proceeding as in the proof of [1, II.8 Lemma], we see that the R-module St
endowed with the action of G ′ via ϕ is isomorphic to St′. In particular, Stϕ(G ′) 

(St′)G ′ = 0 by Proposition 2.5 and ϕ induces an isomorphism

H1(ϕ(G ′),St) ∼→ H1(G ′,St′). (2.10)

(Here we also use the fact that ϕ is central and that the center ofG ′ acts trivially on St′.)
Therefore, the inflation–restriction exact sequence for continuous group cohomology
yields an isomorphism

H1(G,St)
∼→ H1(ϕ(G ′),St)G/ϕ(G ′),

hence (1). For (2), it is enough to show that the action of G on H1(ϕ(G ′),St) is trivial
when |�| ≥ 2. We defer the proof of this fact to the end of Sect. 2.6.2.

2.6 Comparison of Ext1 for G and for B

In this section we construct a map Ext1G(1,St)→ Ext1Z (1, 1) which factors through
Ext1

B
(1,St); under some assumptions, we prove that it is injective and we identify its

image.

2.6.1 Construction of a map

We construct a map
Ext1G(1,St)→ Ext1Z (1, 1). (2.11)

Recall that the R-module LCc(U ) is endowed with a smooth action of B defined by

(zū · f )(ū′) = f (z−1ū′zū) (2.12)

for z ∈ Z , ū, ū′ ∈ U , and f ∈ LCc(U ). We deduce from the Bruhat filtration that
there is a B-equivariant isomorphism j : LCc(U )

∼→ St (see the proof of Lemma 2.7
and use the fact that Ŵ∅ = {1}), which is the composite

LCc(U ) ↪→ iGB →→ St (2.13)

where the first map is induced by the open immersion U ↪→ B\G and the second
map is the G-equivariant surjection. The evaluation at 1 ∈ U yields a Z-equivariant
surjection ev1 : LCc(U ) →→ 1. The Z-equivariant surjection ev1 ◦j−1 : St →→ 1
induces a map

Ext1
B
(1,St)→ Ext1Z (1, 1). (2.14)

Finally, we define (2.11) as the map obtained by composing (2.14) with the restriction
map

Ext1G(1,St)→ Ext1
B
(1,St). (2.15)
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In terms of group cohomology, (2.11) corresponds to the map

H1(G,St)→ H1(Z, 1) 
 Hom(Z, R) (2.16)

defined by φ !→ ev1 ◦j−1 ◦ φ|Z .

2.6.2 Injectivity of the map

First, the map (2.15) is injective by a straightforward generalization (to any G) of
a special case of [20, Lemma 4.3.5]. In order to prove that the map (2.14) is also
injective, we generalize the results of [20, Sec. A.2].

We define an action of B on LC(U ) using the formula (2.12). This action is not
smooth and we let LCu(U ) ⊂ LC(U ) denote the R-submodule consisting of those
functions on which the action of B is smooth. We keep the notation LCu(U ) from [20,
Sec. A.2] although it is not the R-module of uniformly locally constant functions on
U .16 The homeomorphism U

∼→ Z\B induces a B-equivariant isomorphism

LCu(U ) 
 IndBZ (1). (2.17)

We consider the long exact sequence

0→ HomB(1,LCc(U ))→ HomB(1,LCu(U ))→ HomB(1,LCu(U )/LCc(U ))

→ Ext1
B
(1,LCc(U ))→ Ext1

B
(1,LCu(U )).

Clearly HomB(1,LCc(U )) = 0, while Frobenius reciprocity and (2.17) induce iso-
morphisms

HomB(1,LCu(U )) 
 HomZ (1, 1),

Ext1
B
(1,LCu(U )) 
 Ext1Z (1, 1).

(For the latter see the proof of [20, Lemma 4.3.3].) By a straightforward generalization
(to any G) of a special case of [20, Lemma 4.3.4], there is an isomorphism

HomB(1,LCu(U )/LCc(U )) 
 HomZ (1,LCu(U )/LCc(U )).

Finally, the B-equivariant injection LCc(U ) ↪→ IndBZ (1) induced by the inclusion
LCc(U ) ⊂ LCu(U ) and (2.17) corresponds via Frobenius reciprocity to the Z-
equivariant surjection ev1 : LCc(U ) →→ 1. Therefore, using the isomorphism j

(which is the composite (2.13)), the above long exact sequence can be rewritten as

0→HomZ (1, 1)→HomZ (1,LCu(U )/LCc(U ))→ Ext1
B
(1,St)

(2.14)−−−→ Ext1Z (1, 1).
(2.18)

16 A function f ∈ LC(U ) is uniformly locally constant if and only if the action of U on f is smooth, but,
contrary to what is claimed in [20, Sec. A.2], the action of Z on such a function is not necessarily smooth.
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Lemma 2.13 Assume that the adjoint actionofZ onU\{1} is transitive or that |�| ≥ 2.
Then the R-module HomZ (1,LCu(U )/LCc(U )) is free of rank 1.

Proof Let f ∈ LCu(U ) such that z · f − f ∈ LCc(U ) for all z ∈ Z . We will prove that
f ∈ R + LCc(U ), where we identify R with the R-submodule of LCu(U ) consisting
of the constant functions.

We fix a compact open subgroup U 0 ⊂ U and an element z+ ∈ ZZ strictly con-
tractingU 0, i.e. such that z+U0z

−1+ ⊂ U0 and
⋂

i≥1 zi+U 0z
−i+ = {1}, or equivalently,⋃

i≥1 z
−i+ U0zi+ = U . We have a decomposition of U into a disjoint union of open

subsets
U = U0 �

⊔

i≥1
z−i+ (U 0\z+U 0z

−1+ )zi+.

Correspondingly, we can write

f = f0 +
∑

i≥1
z−i+ · fi

with supp( f0) ⊂ U 0 and supp( fi ) ⊂ U 0\z+U 0z
−1+ for all i ≥ 1. We have

z+ · f − f = z+ · f0 − f0 + f1 +
∑

i≥1
z−i+ · ( fi+1 − fi ).

Since z+ · f − f ∈ LCc(U ), there exists j ≥ 1 such that fi+1 = fi for all i ≥ j .
Thus we can rewrite

f = f0 +
∑

i≥1
z−i+ · f∞

for some f0, f∞ ∈ LCc(U ) with supp( f∞) ⊂ U 0\z+U 0z
−1+ . Note that f ∈ R +

LCc(U ) if and only if f∞ is constant on U 0\z+U 0z
−1+ .

We prove a key identity. Let ū ∈ U 0\z+U 0z
−1+ and z ∈ Z such that zūz−1 ∈

U 0\z+U0z
−1+ . For any j ≥ 1 large enough so that z− j

+ ūz j+ /∈ supp(z−1 · f − f ) and

z− j
+ ūz j+ /∈ supp(z−1 · f0 − f0), we have

0 = (z−1 · f − f )(z− j
+ ūz j+)

= (z−1 · f0 − f0)(z
− j
+ ūz j+)+

∑

i≥1
(z−1 · f∞ − f∞)(zi− j

+ ūz j−i+ )

=
∑

i≥1
f∞(zi− j

+ (zūz−1)z j−i+ )−
∑

i≥1
f∞(zi− j

+ ūz j−i+ )

= f∞(zūz−1)− f∞(ū),

the last equality resulting from the fact that ū ∈ U 0\z+U 0z
−1+ and zūz−1 ∈

U 0\z+U0z
−1+ whereas supp( f∞) ⊂ U 0\z+U 0z

−1+ , so that f∞(zi− j
+ (zūz−1)z j−i+ ) =
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f∞(zi− j
+ ūz j−i+ ) = 0 if j �= i . Therefore,

f∞(zūz−1) = f∞(ū). (2.19)

In particular, we deduce that f∞ is constant on U 0\z+U 0z
−1+ if the adjoint action of

Z on U\{1} is transitive.
Now let α ∈ �. We let Uα,0 = Uα ∩ U 0 and Nα,0 = Nα ∩ U 0. Replac-

ing U 0 by Uα,0Nα,0, we can assume that U 0 = Uα,0Nα,0, hence z+U 0z
−1+ =

(z+Uα,0z
−1+ )(z+Nα,0z

−1+ ), and we fix an element zα,+ ∈ Zα strictly contracting Nα,0.
Let ū ∈ U0\z+U0z

−1+ . We write ū = ūα n̄α with ūα ∈ Uα,0 and n̄α ∈ Nα,0. Let
i ≥ 0 such that z−i+ ūαzi+ ∈ Uα,0\z+Uα,0z

−1+ . For any j ≥ 0 large enough so that

z jα,+z−i+ n̄αzi+z
− j
α,+ ∈ Nα,0, we have

z jα,+z−i+ ūzi+z
− j
α,+ = (z−i+ ūαz

i+)(z jα,+z−i+ n̄αz
i+z
− j
α,+) ∈ U 0\z+U 0z

−1+ ,

hence using (2.19) we obtain

f∞(ū) = f∞((z−i+ ūαz
i+)(z jα,+z−i+ n̄αz

i+z
− j
α,+)).

Since f∞ is locally constant, we deduce by passing to the limit as j →+∞ that

f∞(ū) = f∞(z−i+ ūαz
i+). (2.20)

Therefore, f∞ is constant on U 0\z+U 0z
−1+ if and only if it is constant on

Uα,0\z+Uα,0z
−1+ .

Finally, assume that |�| ≥ 2. Let n̄α ∈ Nα,0\z+Nα,0z
−1+ . For any ūα ∈

Uα,0\z+Uα,0z
−1+ and for any i ≥ 0, we have zi+ūαz

−i+ n̄α ∈ U0\z+U0z
−1+ , hence

using (2.20) we obtain
f∞(zi+ūαz

−i+ n̄α) = f∞(ūα).

Since f∞ is locally constant, we deduce by passing to the limit as i →+∞ that

f∞(n̄α) = f∞(ūα).

Therefore, f∞ is constant on Uα,0\z+Uα,0z
−1+ .

Using the exact sequence (2.18), we deduce from Lemma 2.13 the following result.

Proposition 2.14 Assume that the adjoint action of Z on U\{1} is transitive or that
|�| ≥ 2. Then (2.11) is injective.

Remark 2.15 If � = {α} and the adjoint action of Z on U\{1} is not transitive, then
(2.14) need not be injective. For example, if G = SL2(F), then the R-module in
Lemma 2.13 is free of rank |F∗/F∗2| ≥ 4 so that (2.14) is not injective. However, we
do not know whether (2.11) remains injective in general.
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Using Proposition 2.14, we can now complete the proof of Lemma 2.12.

Proof (End of the proof of Lemma 2.12) Assume that |�| ≥ 2. It remains to show that
the action ofG/ϕ(G ′) on H1(ϕ(G ′),St) is trivial. Note thatG = Zϕ(G ′) (sinceϕ(G ′)
contains U and U ) and that Z ∩ ϕ(G ′) = ϕ(Z ′), hence an isomorphism Z/ϕ(Z ′) ∼→
G/ϕ(G ′). Now (2.10) composed with (2.16) with G′ instead of G induces a map

H1(ϕ(G ′),St)→ H1(ϕ(Z ′), 1) 
 Hom(ϕ(Z ′), R) (2.21)

which is injective by Proposition 2.14 with G′ instead of G. The R-module
Hom(ϕ(Z ′), R) is endowed with the action of Z/ϕ(Z ′) given by z · φ : z′ !→
φ(z−1z′z) and (2.21) commutes with the action of Z/ϕ(Z ′) on its source and tar-
get. Therefore, it is enough to prove that the action of Z/ϕ(Z ′) on Hom(ϕ(Z ′), R) is
trivial, i.e. that any continuous group homomorphism φ : ϕ(Z ′)→ R is trivial on the
commutator subgroup [Z, ϕ(Z ′)].

Let Zsc denote the simply connected covering of the derived subgroup Zder of
Z and ι denote the natural homomorphism Zsc → Z . Then [Z,Z] ⊂ ι(Zsc)

(this holds true for any connected reductive algebraic F-group). Moreover, ι factors
through Z ′der →→ Zder by the universal property of the simply connected covering,
hence ι(Zsc) ⊂ ϕ(Z ′der) ⊂ ϕ(Z ′). In conclusion, we have inclusions of subgroups
[Z, ϕ(Z ′)] ⊂ [Z,Z] ⊂ ι(Zsc) ⊂ ϕ(Z ′). Finally, the abelianization of Zsc is a finite
group of prime-to-p order (this will be explained in detail in Sect. 2.7.1) so that any
group homomorphism Zsc→ R is trivial. In particular, any continuous group homo-
morphism φ : ϕ(Z ′)→ R is trivial on ι(Zsc), hence on [Z, ϕ(Z ′)].

2.6.3 Image of the map

We begin with a preliminary result on the image of (2.14).

Lemma 2.16 (1) Any extension in the image of (2.14) is trivial on Zα for all α ∈ �.
(2) If |�| ≥ 3 or � = {α, β} with α ⊥ β, then (2.14) is zero.

Proof Let I ⊂ � be non-empty and StMI denote the Steinberg representation of MI .
Since ev1 factors through the BI -equivariant surjection LCc(U )→→ LCc(U I ) given
by the restriction to U I , (2.14) factors through the map

Ext1
BI

(1,StMI )→ Ext1Z (1, 1) (2.22)

induced by the BI -equivariant isomorphism StMI

∼→ LCc(U I ) and theZ-equivariant
surjectionLCc(U I )→→ 1givenby the evaluation at 1 ∈ U I . SinceHomBI

(1,StMI ) =
0 (as can be seen from the previous isomorphism), any extension in the source of (2.22)
is trivial on ZI , hence (1) by taking I = {α}. Now assume that there exist α, β ∈ �

such that α ⊥ β (e.g. |�| ≥ 3). Proceeding as in the proofs of Lemmas 2.11(1) and
2.12(1), we see that the source of (2.22) with I = {α, β} is zero, hence (2).

Now we turn to the image of (2.11). The R-module Ext1Z (1, 1) is endowed with
the action of W induced by the action of N on Z by conjugation. The corresponding
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action of W on the R-module Hom(Z, R) is given by w · φ : z !→ φ(n−1zn), where
n ∈ N is any representative of w. We also write φw = w−1 · φ. When w = sα for
some α ∈ �, we rather write φα . We let ε : W → {±1} be the character defined by
ε(w) = (−1)lw , where lw denotes the length ofw, and we write Ext1Z (1, 1)ε for the ε-
isotypic component of Ext1Z (1, 1), that is the R-submodule consisting of those φ such
that w · φ = ε(w)φ for all w ∈ W . When � = {α}, we rather write Ext1Z (1, 1)sα=−1.

Lemma 2.17 The image of (2.11) lies in Ext1Z (1, 1)ε .

Proof Recall the explicit description (2.16) of the map (2.11) in terms of continuous
cochains. It is enough to prove that sα acts by multiplication by −1 on the image of
(2.16) for all α ∈ �.

Let α ∈ � and nα ∈ N be a representative of sα . If φ : G → St is a continuous
cochain, thenφ and nα ·φ : g !→ nα ·φ(n−1α gnα) are cohomologous since nα ∈ G, thus
their images in Hom(Z, R) are equal, i.e. j−1(φ(z))(1) = j−1(nα · φ(n−1α znα))(1)
for all z ∈ Z , where j is the composite (2.13). Therefore, it is enough to prove that
j−1(nα · v)(1) = −j−1(v)(1) for all v ∈ St.

Let v ∈ St. We let f = j−1(v) and fα = j−1(nα · v); that is, f (resp. fα) is the
unique lift of v (resp. nα · v) in iGB with support in BU . Since fα and nα · f have the
same image in St (which is nα ·v), we have fα−nα · f ∈∑

I �=∅
iGPI . Moreover, since

nα ∈ Pα , we have supp( fα − nα · f ) ⊂ BPα = PαB. We let c-i BPα

B (resp. c-i PαB
Pα

)

denote the Pα-subrepresentation of iGB (resp. iGPα
) consisting of those functions with

support in BPα = PαB, so that fα − nα · f ∈ c-i BPα

B . By [2, Lemma 7.8], we have

⎛

⎝
∑

I �=∅

iGPI

⎞

⎠ ∩ c-i BPα

B =
∑

I �=∅

(iGPI ∩ c-i BPα

B )

and we deduce from [2, Prop. 7.11] that for I �= ∅, we have

iGPI ∩ c-i BPα

B =
{
c-i PαB

Pα
if I = {α},

0 otherwise.

Therefore, fα − nα · f ∈ c-i PαB
Pα

. Now we compute:

j−1(nα · v)(1) = fα(1) = ( fα − nα · f )(1) = ( fα − nα · f )(n−1α ) = − f (1) = −j−1(v)(1).

(The first and last equalities follow from the definition of f and fα , the second
and next to last ones result from the fact that nα /∈ BU and n−1α /∈ BU whereas
supp( f ) ⊂ BU and supp( fα) ⊂ BU , and the middle equality is a consequence of the
fact that n−1α ∈ Pα and fα − nα · f ∈ iGPα

.)
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In order to determine the image of (2.11) in the case � = {α}, we generalize the
proof of [20, Prop. 4.3.22(2)]. We consider the composite

Ext1Z (1, 1) ↪→ Ext1G(iGB , iGB )→ Ext1G(1,St)
(2.11)−−−→ Ext1Z (1, 1)ε (2.23)

where the first map is induced by the exact functor IndGB , the second map is induced
by the G-equivariant injection 1 ↪→ iGB and the G-equivariant surjection iGB →→ St,
and the third map is (2.11) (which takes values in Ext1Z (1, 1)ε by Lemma 2.17).

Lemma 2.18 Assume that � = {α}. Then (2.23) is given by φ !→ φ − φα .

Proof First, we consider the Z-equivariant surjection

π : iGB →→ St
j−1−−→ LCc(U )

ev1−→→ 1

where thefirstmap is theG-equivariant surjection, the secondmap is theG-equivariant
isomorphism j−1 (which is the inverse of the composite (2.13)), and the third map is
the evaluation at 1 ∈ U (which is Z-equivariant). Let nα ∈ N be a representative of
sα . For any f ∈ iGB , the function f − f (nα) ∈ iGB has the same image as f in St and
supp( f − f (nα)) ⊂ BU , hence π( f ) = f (1)− f (nα).

Now, using π , we give an explicit description of the map (2.23) in terms of con-
tinuous cochains. Let φ : Z → R be a continuous group homomorphism. We let
E be the corresponding extension of 1 by 1, i.e. E = Re1 ⊕ Re2 as an R-module
and the smooth action of Z is given by z · e1 = e1 and z · e2 = e2 + φ(z)e1.
We consider the G-representation IndGB (E), which is an extension of iGB by iGB . Any
f ∈ IndGB (E) can be uniquely written f = f1e1 + f2e2 with f1, f2 ∈ LC(G) sat-
isfying f1(zug) = f1(g) + φ(z) f2(g) and f2(zug) = f2(g) for all z ∈ Z , u ∈ U ,
and g ∈ G. We let I denote the extension of 1 by iGB obtained from IndGB (E) by
pullback along the G-equivariant injection 1 ↪→ iGB , i.e. I is the G-subrepresentation
of IndGB (E) consisting of those functions f = f1e1 + f2e2 with f2 constant. The
image of E under (2.23) is the extension E ′ of 1 by 1 obtained from I by pushforward
along the Z-equivariant surjection π . We fix f ∈ I such that f = f1e1 + e2, so that
f1(zug) = f1(g)+ φ(z) for all z ∈ Z , u ∈ U , and g ∈ G. Therefore, the continuous
group homomorphism φ′ : Z → R corresponding to E ′ is given by

φ′(z) = π(z · f1 − f1)

= (z · f1 − f1)(1)− (z · f1 − f1)(nα)

= ( f1(z)− f1(1))− ( f1((nαzn
−1
α )nα)− f1(nα))

= φ(z)− φ(nαzn
−1
α ),

hence φ′ = φ − φα .

Remark 2.19 In general, one can prove that π( f ) = ∑
w∈W ε(w) f (nw) for all f ∈

iGB , where nw ∈ N is any representative of w. Therefore, (2.23) is given by φ !→∑
w∈W ε(w)φw.
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We deduce from Lemma 2.18 that (2.23) is surjective if � = {α} and p �= 2. Since
(2.23) factors through (2.11), we obtain the following result.

Proposition 2.20 Assume that � = {α} and p �= 2. Then the image of (2.11) is
Ext1Z (1, 1)sα=−1.

Remark 2.21 Assume that� = {α} and p = 2. Using Lemma 2.18, we see that (2.23)
is surjective if G = GL2(D), so that the result holds true in this case too. On the other
hand, we see that (2.23) is zero if G = SL2(F) and char(R) = 2.

2.7 A vanishing result

This section is devoted to the fairly technical proof of the following vanishing result.

Proposition 2.22 Assume that G is absolutely almost-simple, |�| = 2, and p �= 2. If
p � |ZG |, then (2.11) is zero.

Thanks to Lemma 2.17, this result is a consequence of the short exact sequence
(2.27) and of Lemmas 2.23 and 2.25 below.

2.7.1 Devissage

Let Zsc be the simply connected covering of the derived subgroup Zder of Z . The
action ofN onZ by conjugation stabilizesZder and ZZ . The induced action ofN on
Zder lifts uniquely toZsc by the universal property of the simply connected covering,
and stabilizes ZZsc . Moreover, the morphisms of the canonical short exact sequence
of algebraic F-groups

1→ ZZsc → Zsc × ZZ → Z → 1 (2.24)

areN -equivariant. Note that the action of N on ZZ and ZZsc factors through W .
Recall that Zsc is the direct product of its almost-simple factors, each of which is

an anisotropic simply connected almost-simple algebraic F-groups, hence

Zsc 
 SL1(D1)× · · · × SL1(Dr )

for some finite-dimensional division algebras D1, . . . , Dr over F and H1(F,Zsc) =
1. These results are due to Kneser [40,41] when char(F) = 0 and Bruhat-Tits [8] in
general. Thus passing to F-points in (2.24) yields an exact sequence of topological
N -modules

1→ ZZsc → Zsc × ZZ → Z → H1(F, ZZsc)→ H1(F, ZZ ). (2.25)

By a result of Riehm [61], the abelianization of SL1(Di ) is a finite group of prime-
to-p order (see the corollary to Theorem 21 and Theorem 7(iii) in loc. cit.), hence
Hom(Zsc, R) = 0. Therefore, (2.25) induces an exact sequence

0→ Hom(HZ , R)→ Hom(Z, R)→ Hom(ZZ , R) (2.26)
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Table 1 Tits indices of relative rank 2 over a non-archimedean local field

where HZ is the topological abelian group defined by

HZ = ker(H1(F, ZZsc)→ H1(F, ZZ )).

Note that ZZ and HZ are both topologicalW -modules. Taking the ε-isotypic compo-
nents in (2.26) yields an exact sequence

0→ Hom(HZ , R)ε → Hom(Z, R)ε → Hom(ZZ , R)ε. (2.27)

2.7.2 Vanishing

From now on we assume that G is absolutely almost-simple, |�| = 2, and p �= 2.
Moreover, we will write� = {α, β}. In Table 1 below, we list the possible Tits indices
[65] for G (extracted from Table 2 in loc. cit.) with the corresponding groups (ZGsc)F
and (ZZsc)F .

Lemma 2.23 Assume that p � |ZG |. Then Hom(ZZ , R)ε = 0.

Proof We claim that there is a short exact sequence of algebraic F-groups of multi-
plicative type

1→ ZG → Zα × Zβ → ZZ → 1. (2.28)
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Let X be the group of characters of a maximal torus of GF containing SF and �abs

be the set of absolute simple roots in X relative to a Borel subgroup of GF contained
in BF . The restriction map

r : X → X∗(SF ) 
 X∗(S)

induces a map
r : �abs→ {α, β, 0}.

We let �abs
α = r−1({α, 0}), �abs

β = r−1({β, 0}), and �abs
0 = r−1({0}). These are

the subsets of absolute simple roots corresponding to the Levi subgroups (Mα)F ,
(Mβ)F , and ZF respectively. We let Xα = Z[�abs

α ] and Xβ = Z[�abs
β ]. Note that

Xα ∩ Xβ = Z[�abs
0 ] and Xα + Xβ = Z[�abs]. Therefore, (2.28) corresponds to the

short exact sequence of GF -modules

0→ X/(Xα ∩ Xβ)→ (X/Xα)⊕ (X/Xβ)→ X/(Xα + Xβ)→ 0

via the duality between algebraic F-groups ofmultiplicative type andfinitely generated
abelian groups endowed with a continuous action of GF (see [47, 12g]).

Now let φ : ZZ → R be a continuous group homomorphism such that sα · φ =
sβ · φ = −φ. Passing to F-points in (2.28) yields an exact sequence of topological
abelian groups

1→ ZG → Zα × Zβ → ZZ → H1(F, ZG)→ H1(F, Zα)× H1(F, Zβ). (2.29)

The actions of sα and sβ on Zα and Zβ respectively are trivial. Since p �= 2, we deduce
that φ is trivial on Zα and Zβ . Therefore, φ factors through ker(H1(F, ZG) →
H1(F, Zα) × H1(F, Zβ)), which is |ZG |-torsion. We conclude that φ = 0 since
p � |ZG |.
Remark 2.24 Assume thatG = SL3(D) and let d denote the reduced degree of D over
F . Then ZZ 
 {(x, y, z) ∈ (F∗)3 | (xyz)d = 1}. A simple computation shows that
this isomorphism composed with the map (F∗)3 → F∗ given by (x, y, z) !→ xz−1
induces an isomorphism ZZ/ZαZβ 
 F∗/μd F∗3.

Lemma 2.25 If p = 3 and G is of type 1A(d)
3d−1,2 assume that 3 � |ZG |. Then

Hom(HZ , R)ε = 0.

Proof Since HZ is |ZZsc |-torsion (as HZ ⊂ H1(F, ZZsc)), we have Hom(HZ , R) =
0 if p � |ZZsc |. Looking at Table 1, we see that p | |ZZsc | if and only if either G is of

type 1A(d)
3d−1,r with p | d, or G is of type 1E16

6,2 and p = 3 (recall that p �= 2).

(a) Assume that G = SL3(D) and let d denote the reduced degree of D over F . Then

ZZsc 
 (µd)
3 and ZZ 
 ker((Gm)3

∏

−→ Gm
(−)d−−→ Gm), with W acting via the

isomorphism W 
 S3. We let T = ker((Gm)3
∏

−→ Gm) be the maximal subtorus
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of ZZ . There is a short exact sequence of algebraic F-groups of multiplicative
type

1→ T → ZZ
∏

−→ µd → 1.

Since T is a split torus, the product map induces a W -equivariant isomorphism

H1(F, ZZ )
∼→ H1(F,µd).

We deduce that the action of W is trivial on H1(F, ZZ ) and we obtain a W -
equivariant isomorphism

HZ 
 {(x, y, z) ∈ (F∗/F∗d)3 | xyz = 1} (2.30)

with W acting via the isomorphism W 
 S3. Now there is an isomorphism

Hom(HZ , R)ε 
 Hom(HZ/H ε
Z , R)

where H ε
Z is the subgroup of HZ generated by the elements of the form h(sα · h)

and h(sβ · h) with h ∈ HZ . The subgroup of (F∗/F∗d)3 corresponding to H ε
Z via

(2.30) is generated by the elements of the form (x, x, x−2) and (x−2, x, x) with
x ∈ F∗/F∗d . A simple computation shows that (2.30) composed with the map
(F∗/F∗d)3→ F∗/F∗d given by (x, y, z) !→ xz−1 induces an isomorphism

HZ/H ε
Z 
 (F∗/F∗d)/(F∗3/F∗3d) 


{
F∗/F∗3 if 3 | d,

1 otherwise.

Therefore, Hom(HZ , R)ε = 0 if 3 � d or p �= 3.
(b) Assume that G is of type 1A(d)

3d−1,2, i.e. Gsc = SL3(D) with D of reduced degree
d over F . LetZ ′ denote the inverse image ofZ in Gsc. Since the homomorphism
Zsc → Z factors through Z ′, there is an inclusion HZ ′ ⊂ HZ , hence an exact
sequence

0→ Hom(HZ/HZ ′ , R)ε → Hom(HZ , R)ε → Hom(HZ ′ , R)ε.

By (a), we know that Hom(HZ ′ , R)ε = 0 if 3 � d or p �= 3, and that W acts
trivially on H1(F, ZZ ′), so that W acts trivially on the subquotient HZ/HZ ′ ,
hence Hom(HZ/HZ ′ , R)ε = 0 since p �= 2. Therefore, Hom(HZ , R)ε = 0 if
3 � d or p �= 3.

(c) Assume now that p = 3 andwrite d = 3r d ′with 3 � d ′, so that ZGsc 
 µ3r+1×µd ′ .
Since 3 � |ZG | by assumption, the homomorphism Gsc → G factors through
Gsc/µ3r+1 . Let Z ′′ denote the inverse image of Z in Gsc/µ3r+1 . There are inclu-
sions HZ ′ ⊂ HZ ′′ ⊂ HZ , hence an exact sequence

0→ Hom(HZ/HZ ′′ , R)ε → Hom(HZ , R)ε → Hom(HZ ′′ , R)ε.
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By (a), we know thatW acts trivially on H1(F, ZZ ′). ThusW acts trivially on the
subquotient HZ/HZ ′′ , hence Hom(HZ/HZ ′′ , R)ε = 0 since p �= 2. Let T ′ (resp.
T ′′) denote the maximal subtorus of ZZ ′ (resp. ZZ ′′ ). There is a commutative
diagram of algebraic F-groups of multiplicative type

µ3 µ3r+1 µ3r

T ′ ZZ ′ µd

T ′′ ZZ ′′ µd ′

whose rows and columns are exact. SinceT ′′ is a split torus, the surjection ZZ ′′ →→
µd ′ induces an isomorphism

H1(F, ZZ ′′)
∼→ H1(F,µd ′).

Thus H1(F, ZZ ′′) is 3-torsion-free. We deduce that the 3-torsion subgroup
HZ ′′ [3∞] of HZ ′′ is equal to that of H1(F, ZZsc), hence a W -equivariant iso-
morphism

HZ ′′ [3∞] 
 (F∗/F∗3
r
)3

with W acting on the right-hand side via the isomorphism W 
 S3. A simple
computation as in (a) shows that Hom(HZ ′′ [3∞], R)ε = 0 (using the fact that
p �= 2). Since HZ ′′/HZ ′′ [3∞] is d ′-torsion, we deduce that Hom(HZ ′′ , R)ε = 0.
Therefore, Hom(HZ , R)ε = 0.

(d) Assume that G is of type 1E16
6,2 and p = 3. Let α denote the relative simple root

corresponding to the distinguished vertex of the Tits index of G with 3 neighbors
and let β denote the other relative simple root (see Table 1). Then ZZsc 
 µ3×µ3
and the action of sα permutes the two copies of µ3 whereas sβ acts trivially. Thus
sβ acts trivially on HZ so that Hom(HZ , R)ε = 0 since p �= 2.

"�
Remark 2.26 Keep the assumptions on G but assume that p = 2.

(1) The image of (2.11) is zero in the following cases: G = SL3(D); G is quasi-split
and 2 � |ZG |; and G is of type 1E16

6,2. Indeed, we see that any extension in the
image of (2.11) is trivial on ZZ using Lemma 2.16(1) and the fact that ZZ/ZαZβ

is 2-torsion-free (see Remark 2.24 in the caseG = SL3(D) and use (2.29) together
with the fact that 2 � |ZG | in the other cases), and we have Hom(HZ , R)ε = 0
(see (a) in the proof of Lemma 2.25 in the case G = SL3(D) and use the fact that
HZ is 2-torsion-free since 2 � |ZZsc | in the other cases).

(2) In general, we deduce from (2.27) and the proofs of Lemmas 2.23 and 2.25 that
the image of (2.11) is killed by the highest power of 2 dividing the product of the
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exponents of the groups ZG and ZZsc . Looking at Table 1, we see that if G is not

of type 1A(d)
3d−1,2, then this power is at most 16 (and even 4 if G is adjoint).

2.8 Conclusion

Finally, we compute the R-module Ext1G(1,St).

Proposition 2.27 Assume that � = {α} and p �= 2. If the adjoint action of Z on
U\{1} is transitive, then there is an isomorphism

Ext1G(1,St)
∼→ Ext1Z (1, 1)sα=−1.

Proof This follows from Propositions 2.14 and 2.20.

Remark 2.28 If G = GL2(D), then the assumptions of Proposition 2.27 are satisfied
when p �= 2, but the result holds true when p = 2 (see Remark 2.21). Since the
derived subgroup of D∗ is SL1(D), the reduced norm Nrd : D∗ →→ F∗ induces an
isomorphismHom(F∗, R)

∼→ Hom(D∗, R). Using Lemma 2.11(2), we conclude that
if G 
 GL2(D)× (D∗)r , then there is an isomorphism

Ext1G(1,St) 
 Hom(F∗, R).

When D = Qp, this result is originally due to one of us (see [11, Th. VII.4.18]).

Proposition 2.29 Assume that |�| ≥ 2 and p �= 2. Then Ext1G(1,St) = 0.

Proof If |�| ≥ 3 or� = {α, β}with α ⊥ β, then (2.11) is zero by Lemma 2.16(2) and
the result follows from Proposition 2.14. Assume that � = {α, β} with α and β non-
orthogonal. Let Gsc be the simply connected covering of the derived subgroup Gder
of G. Recall that Gsc is the direct product of its almost-simple factors. Thus Gsc =
Gis×Gan where Gis (resp. Gan) is the direct product of the isotropic (resp. anisotropic)
almost-simple factors of Gsc. By assumption, Gis is almost-simple of relative rank 2.
Using Lemmas 2.11(2) and 2.12(1) with the canonical isogeny Gis×Gan×ZG →→ G,
we can reduce to the casewhere G = Gis. Thuswe can assume that G is almost-simple
of relative rank 2. Replacing F by a finite separable extension, we can assume that G
is absolutely almost-simple of relative rank 2. Finally, using Lemma 2.12(2) with the
canonical isogeny G→→ Gad, we can assume that G is adjoint, i.e. ZG = 1. Then the
result follows from Propositions 2.14 and 2.22.

Remark 2.30 Assume that |�| ≥ 2 and p = 2. Proceeding as in the proof of Proposi-
tion 2.29 and using Remark 2.26, we see that Ext1G(1,St) = 0 if G is a Levi subgroup
of GLn(D) or G is quasi-split. Moreover, we see that Ext1G(1,St) is 4-torsion in
general.
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3 The Kottwitz set B(G)

This section is devoted to a brief review of basic facts concerning the theory of σ -
conjugacy classes, due to Kottwitz. We fix in the sequel a finite extension F of Qp

and an algebraic closure F of F . Let C be the completion of F , let Fnr ⊂ F be the

maximal unramified extension of F and finally let F̆ 
 F̆ ⊗Fnr F be the algebraic
closure of F̆ inside C . Let σ be the (relative to F) Frobenius automorphism on Fnr

and F̆ . Let GF = Gal(F/F), with inertia subgroup IF = GFnr 
 GF̆ := Gal(F̆/F̆)

and Weil subgroupWF . Finally, let G be a connected reductive group defined over F .

3.1 Various incarnations of B(G)

In [42,43] Kottwitz attached to G a pointed set B(G). This set has now several incar-
nations which nicely complement each other. We will review them briefly.

3.1.1 Via Galois cohomology

The first definition is a cohomological one [42, 1.7], [43, 1.1–1.5]:

B(G) := H1(σZ,G(F̆))

is the (pointed) set ofσ -equivalence classes inG(F̆), two elements b, b′ ∈ G(F̆) being
in the same equivalence class if b′ = gbσ(g)−1 for some g ∈ G(F̆), or equivalently
if the elements bσ, b′σ ∈ G(F̆) � 〈σ 〉 are conjugate under G(F̆). We will write
[b] = {gbσ(g)−1| g ∈ G(F̆)} ∈ B(G) for the σ -equivalence class of b ∈ G(F̆).

We have a natural isomorphism17

B(G)
∼→ H1(WF ,G(F̆))

induced by the inflation–restriction sequence associated to the exact sequence of topo-
logical groups 1 → IF → WF → σZ → 1 and the vanishing H1(F̆,G) = 0, the
latter being a consequence of Steinberg’s theorem [64, Th. 1.9], since G is connected
and F̆ has cohomological dimension 1. The natural map, obtained using the restriction

WF → GF and the inclusion G(F) ⊂ G(F̆),

H1(F,G)→ H1(WF ,G(F̆))
∼← B(G)

is injective.

Example 3.1 (Torus) A fundamental result of Kottwitz [42, Sec. 2] gives a functorial
isomorphism X∗(T )GF

∼→ B(T ) for F-tori T , uniquely pinned down by the require-
ment that in the induced isomorphism B(Gm) 
 Z the element 1 ∈ Z corresponds

17 Here and below, to simplify the notation, we will write H1(F̆,G) etc. for the Galois cohomology

H1(GF̆ ,G(F̆)).
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to the σ -conjugacy class in F̆∗ consisting of elements with normalized valuation 1.
Concretely, the isomorphism X∗(T )GF

∼→ B(T ) sends the class of μ ∈ X∗(T ) to
[NE/E0(μ(πE ))], where E is a finite Galois extension of F inside F splitting T , πE

is a uniformizer of E , E0 is the maximal subfield of E unramified over F and finally
NE/E0 : T (E)→ T (E0) is the norm map.

3.1.2 Via G-isocrystals

The second incarnation (see [42, Sec. 3]) of B(G) is as the set of isomorphism
classes of G-isocrystals (relative to F̆/F), i.e., exact, faithful F-linear tensor func-
tors18 RepF (G)→ Mod F̆ (ϕ), where RepF (G) is the category of finite dimensional
algebraic F-representations of G and Mod F̆ (ϕ) is the category of isocrystals relative
to F̆/F .

There is an equivalence (even an isomorphism) of categories between the groupoid
ofG-isocrystals and the groupoid having as objects the setG(F̆), the set of morphisms
b→ b′ being the set of g ∈ G(F̆) with gbσ(g)−1 = b′. Specifically, every b ∈ G(F̆)

yields a G-isocrystal Nb:

Nb : RepF (G)→ Mod F̆ (ϕ), (V , ρ) !→ (V ⊗F F̆, bσ := ρ(b)(idV ⊗ σ)),

whose isomorphism class depends only on [b]. Sending [b] to the isomorphism class
of Nb yields a bijection between B(G) and the set of isomorphism classes of G-
isocrystals. For instance, B(GLn) is identified with the set of isomorphism classes of
n-dimensional isocrystals [58, Rem. 3.4 (ii)].

3.1.3 Via the Fargues–Fontaine curve

This incarnation of B(G), due to Fargues [23], will not be used in the rest of the paper,
but is particularly appealing and we feel that it gives a better understanding of many
of the constructions to come. We fix an embedding of the residue field Fq of F into
the residue field Fp of C and consider the Fargues-Fontaine curve X = XF,Fp

over

Spec(F) attached to F and Fp. There exists an exact, faithful, F-linear tensor functor

E : Mod F̆ (ϕ)→ BunX ,

where BunX is the category of vector bundles on X . While not fully faithful, this
functor is essentially surjective and induces an equivalence of categories between the
isoclinic isocrystals and the semistable vector bundles on X as well as a bijection

E : |Mod F̆ (ϕ)| 
 |BunX |

18 G-isocrystals can be defined for any linear algebraic groupG over F . In that case one adds an assumption
that the defining functor is strictly compatible with the fiber functors. If the group G is connected, as it is
the case in this paper, this assumption is not necessary by the vanishing theorem of Steinberg [17, Lemma
9.1.5].
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between the sets of isomorphism classes of the corresponding objects19. Every b ∈
G(F̆) yields therefore an exact, faithful, F-linear tensor functor

Eb = E ◦ Nb : RepF (G)→ BunX ,

i.e., a G-bundle on X in the Tannakian sense20 and we have the following beautiful
result:

Theorem 3.2 (Fargues, [23, Th. 5.1]) The construction b → Eb yields bijections of
pointed sets

B(G) 
 |BunG | 
 H1
ét(X ,G),

where |BunG | is the set of isomorphism classes of G-bundles on X.

3.2 The structure of B(G)

In order to describe B(G) Kottwitz defined two rather technical but very important
maps, which we briefly review.

3.2.1 The Newtonmap

Let b ∈ G(F̆) and let Nb be the associated G-isocrystal. If D is the pro-torus over F
with character group Q (the “slope torus”) there is a unique morphism

νb : DF̆ → GF̆

such that for all (V , ρ) ∈ RepF (G) the composition ρ ◦ νb : DF̆ → GL(V ⊗F F̆)

corresponds to the (Dieudonné–Manin) slope decomposition of Nb(V ), considered as
aQ-grading on V ⊗F F̆ . The homomorphism νb is the Newton or slope map attached
to b [42, Sec. 4]. It satisfies

νσ(b) = σ(νb), νb = Int(b) ◦ σ(νb), νgbσ(g)−1 = Int(g) ◦ νb = gνbg
−1,

hence the G(F̆)-conjugacy class [νb] of νb depends only on [b] ∈ B(G) and is σ -
invariant, thus

[νb] ∈ N (G) := [Hom F̆ (DF̆ ,GF̆ )/IntG(F̆)]σ=1.

The elements of N (G) are called Newton vectors.

19 Despite its innocuous-looking character, this is one of the most difficult results in the book of Fargues
and Fontaine [24].
20 There is a natural equivalence between the category of G-bundles on X and the category of G-torsors
on X locally trivial for the étale topology: if Y is G-torsor étale locally trivial, we obtain a G-bundle by
sending (V , ρ) ∈ RepF (G) to Y ×G,ρ V ; conversely, each G-bundle ω yields a locally trivial G-torsor
Isom⊗(ωcan, ω), where ωcan(V , ρ) = V ⊗F OX .
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Remark 3.3 By choosing a maximal torus T of G defined over F , we obtain a more
concrete descriptionN (G) 
 (X∗(T )Q/W )GF , whereW is the absolute Weyl group
ofG with respect to T . If we also choose a basis� for the root system, each element of
N (G) has a unique representative in X∗(T )+Q := {ν ∈ X∗(T )Q| 〈ν, α〉 ≥ 0 ∀α ∈ �}.
One infers from this a partial order on N (G), induced from the natural partial order
on X∗(T )+Q (for which ν1 ≤ ν2 if ν2 − ν1 ∈ ∑

α∈� Q≥0α∨). Pulling back along the
Newton map we deduce a partial order on B(G).

Sending [b] ∈ B(G) to [νb] ∈ N (G) yields the Newton map

ν : B(G)→ N (G).

Kottwitz proves [42, 4.5] that νb is trivial if and only if [b] ∈ H1(F,G) ⊂ B(G).

Example 3.4 If G = T is an F-torus thenN (T ) 
 HomF (D, T ) 
 X∗(T )
GF
Q and νb

(for b ∈ T (F̆)) is the unique element of X∗(T )
GF
Q such that 〈λ, νb〉 = vF (λ(b)) for

λ ∈ X∗(T )GF , where vF is the normalized valuation on F̆ . The composite map21

X∗(T )→ X∗(T )GF

∼→ B(T )
ν→ X∗(T )

GF
Q

sends μ ∈ X∗(T ) to its Galois average μ#. We have an exact sequence 0 →
H1(F,G)→ B(T )

ν→ X∗(T )
GF
Q .

Example 3.5 For G = GLn the partially ordered set N (G) is naturally in bijection
with

(Qn)+ := {(x1, . . . , xn) ∈ Qn| x1 ≥ · · · ≥ xn},

endowed with the usual dominance order, for which (y1, . . . , yn) ≤ (x1, . . . , xn) if
and only if x1+ · · ·+ xi ≥ y1+ · · ·+ yi for all i , with equality for i = n. An element
x = (x (n1)

1 , . . . , x (nr )
r ) ∈ N (G) is thus given by rational numbers x1 > x2 > · · · > xr

and multiplicities n1, . . . , nr ∈ Z>0 such that
∑r

i=1 ni = n. If [b] ∈ B(G) and
x1, . . . , xr are the slopes of the isocrystal Nb (in decreasing order), then ν([b]) =
(x (n1)

1 , . . . , x (nr )
r ), where ni are the dimensions of the isotypic parts of Nb. TheNewton

map ν is injective with image consisting of those x = (x (n1)
1 , . . . , x (nr )

r ) ∈ (Qn)+ such
that ni xi ∈ Z, i = 1, . . . , r (see [58, Ex. 1.19]).

3.2.2 The Kottwitz map �

Let π1(G) be the (Borovoi) algebraic fundamental group of G [7], [58, 1.13]. It is a
finitely generated discrete GF -module, functorial and exact in G, and isomorphic (as
abelian group) to X∗(T )/

∑
α∈�(G,T ) Zα∨, where T is a maximal torus of GF and

�(G, T ) is the set of roots of T , α∨ being the co-root corresponding to α ∈ �(G, T ).

21 Cf. Example 3.1 for the isomorphism in the displayed formula.
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For example, π1(GLn) 
 Z and π1(T ) 
 X∗(T ) for an F-torus T . We also note [58,
1.14] that π1(G) 
 π1(G ′) for any inner form G ′ of G, and that π1(G)

∼→ π1(Gab :=
G/Gder) whenever Gder is simply connected.

By a theorem of Kottwitz (see [43, Sec. 6]), [58, Th. 1.15]) there is a unique natural
map22

κ : B(G)→ π1(G)GF

making the following diagram commute:

F̆∗ vF Z

B(Gm)
κ

π1(Gm)GF .

For instance for G = GLn the map κ sends [b] ∈ B(G) to vF (det b). In general,
the induced map (ν, κ) : B(G)→ N (G) × π1(G)GF is injective and there exists a
natural map of exact sequences

H1(F,G)

κ$

B(G)
ν

κ

N (G)

δ

π1(G)GF ,tors π1(G)GF

μ!→μ#
π1(G)

GF
Q

Fargues [23, Sec. 8], inspired by Labesse’s [44] reinterpretation of the constructions
of Kottwitz, also gave a geometric interpretation of the Kottwitz map κ using the
Fargues–Fontaine curve X :

(1) Using cohomology theory of crossed modules [44], he defined a map κF :
H1
ét(X ,G) → π1(G)GF which agrees with the Kottwitz map κ after the iden-

tification B(G)
∼→ H1

ét(X ,G).
(2) Then, using the universal G-torsor and cohomology of cross modules again, he

defined a Chern class map cG1 : H1
ét(X ,G)→ π̂1(G)GF

(the profinite completion)
and showed that

κF (b) = −cG1 (Eb), b ∈ G(F̆).

3.2.3 Automorphism groups

Let b ∈ G(F̆) and let Jb be the automorphism group of the G-isocrystal Nb, i.e., the
connected reductive group over F such that for any F-algebra R

Jb(R) := {g ∈ G(F̆ ⊗F R)| gbσ(g)−1 = b}.
22 Kottwitz formulated his theorem in [42,43] in terms of the center Z(Ĝ) of the Langlands dual group.
The formulation we present here in terms of the algebraic fundamental group is due to Rapoport–Richartz
[58]. It has better functoriality properties than the original one.
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Clearly, if b = 1 then Jb = G. Suppose that G is quasi-split and let Mb be the
centralizer of νb, a Levi component of an F-parabolic of G. By results of Kottwitz
[42, Sec. 6] the group Jb is an inner form of Mb.

3.2.4 Basic and decent elements

The subset B(G)basic of basic elements of B(G) consists of those [b] ∈ B(G) forwhich
νb factors through ZF̆ , where Z is the center of G. If [b] ∈ B(G)basic the Newton map
νb : DF̆ → ZF̆ is defined over F , since its conjugacy class is σ -invariant. It follows
from results of Kottwitz (see [42,58]) that an element [b] ∈ B(G) is in B(G)basic if
and only if it satisfies one of the following equivalent conditions:
• The automorphism group Jb is an inner form of G.
• [b] is a minimal element for the partial order on B(G).
• The associated G-bundle Eb on the Fargues-Fontaine curve X is semistable (i.e.,

Eb(Lie(G),Ad) is a semistable vector bundle on X , or equivalently23 Eb(V , ρ) is
semistable for any homogeneous representation ρ of G). For G = GLn the set
B(G)basic corresponds to that of isoclinic isocrystals of dimension n.

Kottwitz [42, Ch. 5] proved that the Kottwitz map κ induces a bijection

κ : B(G)basic 
 π1(G)GF .

Since κ identifies H1(F,G) and π1(G)GF ,tors, it follows that H1(F,G) ⊂ B(G)basic.
It also follows that when Gder is simply connected the map G → Gab := G/Gder

induces a bijection B(G)basic
∼→ B(Gab). In particular, B(G)basic is trivial if G is

semisimple and simply connected.
Let now F = Qp and let s be a positive integer. We say that b ∈ G(Q̆p) is s-

decent if sνb factors through the quotient GmQ̆p
of DQ̆p

and we have an equality in

G(Q̆p) � σZ:

(bσ)s = (sνb)(p)σ
s .

By [60, Cor. 1.9] this implies that νb is defined overQps and b ∈ G(Qps ). We say that
[b] ∈ B(G) is decent if it contains an s-decent element for some positive integer s.
Since G is connected and the residue field of Q̆p is algebraically closed [17, Lemma
9.1.33] implies that any [b] ∈ B(G) is decent (see also [42]). Moreover, by [17,
Lemma 9.6.19], if G is quasi-split each [b] ∈ B(G) contains an element b which is
s-decent for some s and such that νb is defined over Qps .

4 Period domains

The period domains we are interested in classify weakly admissible filtrations on
isocrystals. We briefly review here the relevant facts. A beautiful reference for every-
thing that follows is [17, Ch. I, IV, V, VI, VIII].

23 This uses the deep fact that semistable vector bundles on X are stable under tensor product.
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4.1 Filtrations

We start by reviewing some basic facts concerning filtrations of Tannaka fiber functors,
following [17].

4.1.1 Filtrations on vector spaces

If K is a field we denote by VecK the category of finite dimensional K -vector spaces.
An R-filtration FV on V ∈ VecK is a decreasing, exhaustive, separated filtration
(FxV )x∈R by K -vector subspaces of V , such that FxVK = ∩y<x F yVK for all x .
We denote by grx (FV ) = FxV /

∑
y>x F

yV and gr(FV ) = ⊕x∈Rgrx (FV ) the
associated R-graded vector space. The type of FV is the nonincreasing sequence
ν(FV ) = (x (n1)

1 , . . . , x (nr )
r ) ∈ Rn , where x1 > · · · > xr are the jumps of the filtration

(i.e., those x for which grx (FV ) �= 0) and xi is repeated ni := dim grxi (FV ) times.
We say that FV is a Q-filtration if ν(FV ) ∈ Qn .

Let K/k be a field extension and let FilKk be the category of pairs (V , FVK ), where
V ∈ Veck and FVK is an R-filtration on the K -vector space VK := V ⊗k K . This is
a quasi-abelian category endowed with the degree, rank and slope functions, defined,
for V := (V , FVK ), by

deg(V ) =
∑

x

x dimK grx (VK ), rk(V ) = dimk V , μ(V ) = deg(V )

rk(V )
, V �= 0.

One has a good Harder–Narasimhan formalism with respect to this slope function.
In particular, there is a notion of semistability for objects of FilKk and the tensor product
of semistable objects is semistable when K/k is separable, thanks to the theorems of
Faltings [21] and Totaro [66] (this fails when K/k is not separable). Moreover, one
can characterize the semistable objects in terms of the inner product (this will be a
recurrent theme in the sequel) as follows. Recall that, if FV , F ′V are R-filtrations on
V ∈ VecK , their inner product is defined by

〈FV , F ′V 〉 :=
∑

x,y∈R
xy dimK grxFV (gryF ′V ),

where grxFV (gryF ′V ) is the x th graded piece of the K -vector space gry(F ′V ) endowed
with the filtration induced by FV . The semistability criterion is then:

Proposition 4.1 [17, Cor. 1.2.6] The pair (V , FVK ) is semistable if and only if

〈FVK , F ′VK 〉 ≤ μ(V , FVK ) deg(V , F ′VK )

for all Z-filtrations F ′VK of VK . Moreover, it suffices to check this inequality when
deg(V , F ′VK ) = 0.

Let Q − FilKk be the full subcategory of those (V , FVK ) for which FVK is a Q-
filtration on VK and let Q − GradK be the category of Q-graded finite dimensional
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K -vector spaces. There are natural functors, the first being (V , FV )→ gr(FV ) and
the second being the forgetful functor

Q− FilKk → Q− GradK → VecK ,

as well as a functor Q− GradK → Q − FilKk sending V = ⊕a∈QVa to the filtration
FVK such that FxVK =∑

a≥x Va .

4.1.2 Filtrations on Repk(G)

Let K/k be a field extension and let G be a linear algebraic group over k. Let ωG :
Repk(G) → Veck be the standard fiber functor, sending (V , ρ) to V . Recall that
DK is the pro-torus over K with character group Q. The functor sending (V , ρ) ∈
RepK (DK ) to V = ⊕a∈QVa , where Va is the weight space of V corresponding to
a ∈ Q = X∗(DK ), induces an equivalence of neutral Tannakian categories over K

RepK (DK ) 
 Q− GradK .

Any morphism of K -group schemes DK → GK induces therefore aQ-grading of ωG

over K , i.e., a tensor functor F : Repk(G)→ Q−GradK whose composition with the
forgetful functor Q − GradK → VecK is (V , ρ)→ V ⊗k K . All Q-gradings of ωG

over K are thus obtained, thanks to the Tannakian formalism. If G = GL(V ) with
V ∈ Veck , giving F comes down to giving a Q-grading of V ⊗k K .

A Q-filtration of ωG over K is a tensor functor F : Repk(G)→ Q− FilKk whose
composition with Q − FilKk → Q − GradK is exact24 and whose composition with
the forgetful functor Q − FilKk → Veck is ωG . When G = GL(V ) with V ∈ Veck ,
giving F comes down to giving a Q-filtration of V ⊗k K [17, Rem. 4.2.11].

Let GradK (ωG) (resp. FilK (ωG)) be the set of Q-gradings (reps. Q-filtrations) of
ωG over K . Composition with the natural functor Q− GradK → Q− FilKk yields a
natural map

HomK (DK ,GK ) 
 GradK (ωG)→ FilK (ωG),

which is surjective when G is reductive or k has characteristic 0 (see [17, Th. 4.2.13]).
We assume in the sequel that G is reductive. Two morphisms λ, λ′ : DK → GK

are in the same fiber of the map HomK (DK ,GK )→ FilK (ωG) (in which case we say
that they are par-equivalent) if and only if λ′ = Int(g)λ for some g ∈ P(λ)(K ), where
P(λ) is the parabolic subgroup of G defined over K consisting of those g ∈ G for
which limt→0 Int(λ(t))g exists. If U (λ) is the unipotent radical of P(λ), λ and λ′ are
par-equivalent if and only if there is a unique g ∈ U (λ)(K ) such that λ′ = Int(g)λ,
and then P(λ′) = P(λ) (however the latter equality does not imply that λ, λ′ are
par-equivalent). To summarize, we obtain maps

24 The exactness condition is imposed so that filtrations can be described using gradings.
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HomK (DK ,GK )/par − equivalence 
 FilK (ωG)→→ K − Par(G),

where K − Par(G) is the set of parabolic subgroups of G defined over K .

4.1.3 Filtrations on isocrystals

Consider the setup described in the introduction to Sect. 3: F is a finite extension of
Qp, etc. Let K be an extension of F̆ . An object of the category of filtered isocrystals
over K (relative to F̆/F) consists of an isocrystal (V , ϕ) over F̆ together with a Q-
filtration FVK on VK . This category has a good Harder–Narasimhan formalism for
the slope function

μ(V , ϕ, FVK ) = 1

dim V

(
∑

i∈Z
i dimK griF (VK )− vF (det ϕ)

)
,

and its semistable objects of slope 0 are the weakly admissible filtered isocrystals
introduced by Fontaine, and they are stable under tensor products by the theorem of
Faltings and Totaro.

The above slope function can also be described as

μ(V , ϕ, FVK ) = μ(V , FVK )+ μ(V , F0V ),

where F0V is the slope filtration (defined by Fx
0 V =

⊕
α≤−x Vα) associated to the

slope decomposition (V , ϕ) =⊕
α∈Q Vα of the isocrystal (V , ϕ).

4.2 Period domains

We will define now the period domains we will be working with. Let the notation be
as at the beginning of Sect. 3.

4.2.1 Flag varieties and period domains

Consider a triple (G, b, {μ}), where G is a connected reductive group over F , b ∈
G(F̆), and {μ} is a conjugacy class of cocharacters ofG over F . Let E = E(G, {μ}) ⊂
F be the associated reflex field25. LetF = F (G, {μ}) be the associated flag variety,
a smooth projective variety over E , homogeneous underGE and whose E = F-points
are the par-equivalence classes of elements in {μ}. If G is quasi-split, which will be
the case in our applications, a result of Kottwitz [43, Lemma 1.1.3] shows that {μ}
contains elements μ defined over E , and thenF = GE/P(μ) (recall that P(μ) is the
associated parabolic subgroup of GE ).

Let μ′ be an element of {μ} defined over an extension K of E . We say that the pair
(b, μ′) is weakly admissible if the filtered isocrystal (Nb(V ), Fρμ′(VK )) is weakly

25 Recall that E is simply the field of definition of {μ}, a finite extension of F .
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admissible for all (V , ρ) ∈ RepF (G). By the tensor product theorem it suffices to
check this for a single faithful representation (V , ρ).

Let Ĕ = E F̆ and let F̆ be the adic space attached to F ⊗E Ĕ . By [60, Prop.
1.36] there is a partially proper open subset F̆wa = F̆ (G, b, {μ})wa of F̆ such
that F̆wa(K ) is the set of weakly admissible points in x ∈ F̆ (K ), i.e., points with
associated cocharacter μx ∈ {μ} defined over K and for which the pair (b, μx ) is
weakly admissible. This is the period domain attached to (G, b, {μ}). We will see in
the next section, and this will be crucial for the computation of its étale cohomology,
that the period domain is of the form

F̆wa = F̆\
⋃

i∈I
Jb(F)Zi ,

where {Zi }i∈I is an explicit finite set of Schubert varieties.
Up to isomorphism, F̆ (G, b, {μ})wa depends only on [b] ∈ B(G) (sending μ to

Int(g)(μ) yields an isomorphism F̆wa
b 
 F̆wa

gbσ(g)−1 ). The group Jb(F) acts naturally

on the flag variety F̆ over Ĕ (via Jb(F) ⊂ G(F̆)) and this action restricts to an action
on F̆wa. Moreover, if F = Qp and b is s-decent, the period domain has a canonical
model Fwa ⊂ F ⊗E Es over Es := EQps .

Example 4.2 Take G = GLn , [b] = [1], and {μ} = (n − 1,−1,−1, . . . ,−1). The
corresponding period domain is Pn−1

F \ ∪H∈H H , where H is the set of F-rational
hyperplanes, i.e., the Drinfeld symmetric space of dimension n − 1.

4.2.2 Existence of weakly admissible filtrations

Fontaine and Rapoport in [25, Th. 3] found a simple criterion for the existence of
weakly admissible filtrations on isocrystals; this result was extended in [17, Th. 9.5.10]
(see also [59, Prop. 3.1]). To present it, we assume, for simplicity, that G is quasi-split
(see [59, Sec. 3] for the general case) and we recall that the set of acceptable elements
for {μ} [59, 2.2] is

A(G, {μ}) := {[b] ∈ B(G)|νb ≤ μ#},

a finite nonempty set, intersecting nontrivially with B(G)basic (see [59, Lemma 2.5]).
Here μ# (denoted μ̄ in [59]) is the average of the cocharacters in the Gal(F̄/F)-orbit
of μ.

The following result is a generalization (and a group-theoretical reformulation) of
Mazur’s “the Hodge polygon lies above the Newton polygon” property of isocrystals.

Theorem 4.3 (Fontaine–Rapoport, [17, Th. 9.5.10]) The space F̆ (G, b, {μ})wa is
nonempty if and only if [b] ∈ A(G, {μ}).

4.2.3 Local Shtuka datum

The following notion will be useful in the rest of the paper. It is a modification of
the notion of a local Shimura datum of Rapoport–Viehmann [59, Def. 5.1], where we
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drop the assumption that μ is minuscule and allow [b] to be just acceptable (instead
of neutral acceptable).

Definition 4.4 A local Shtuka datum over F is a triple (G, [b], {μ}) consisting of a
connected reductive algebraic group G over F , a σ -conjugacy class [b] ∈ B(G), and
a geometric conjugacy class {μ} of cocharacters of G defined over F . We assume that
[b] ∈ A(G, {μ}).
As discussed above, associated to a local Shtuka datum are the following data:

(1) the algebraic group J = Jb over F , for b ∈ [b],
(2) the reflex field E = E(G, {μ}),
(3) the flag variety F = F (G, {μ}) over E ,
(4) the period domain F̆wa = F̆ (G, b, {μ})wa over Ĕ .
Remark 4.5 As explained in [17, Sec. IX.8], assuming F = Qp is not really a restric-
tion since Weil descent allows one to pass from a general F to Qp (this is similar to
the situation for Shimura varieties, where restriction of scalars allows one to reduce
the study to groups defined over Q). In particular, we can get the Drinfeld symmetric
space over general F as a period domain in this context as well (see [17, Example
9.8.9]). For simplicity, we will work from now on with F = Qp.

5 The geometry of complements of period domains

Via the embeddings of period domains into flag varieties, we will reduce the computa-
tion of the cohomology of a period domain to that of its complement in the flag variety.
The period domain is a locus of semistability and its complement can be stratified by
Schubert varieties given by the degree to which this semistability fails26. This section
describes this stratification.

5.1 The Hilbert–Mumford criterion

Suppose that a connected reductive group G over a field k acts on a proper algebraic
variety X over k. The Hilbert–Mumford criterion [48] describes the semistable points
of this action via eigenvalues of 1-parameter subgroups (1-PSs, for short). We will
review it briefly.

Let L ∈ PicG(X) be a G-equivariant line bundle on X . If λ ∈ X∗(G) is defined
over k, Mumford defined the slope of x ∈ X(k) with respect to λ and L , denoted
μL (x, λ) ∈ Z. If x0 = limt→0 λ(t)x (this limit exists since, by properness of X , the
map Gm → X , t → λ(t)x extends to A1), then μ := μL (x, λ) is characterized by
the fact that λ acts by the character t → t−μ on the fiber Lx0 (note that x0 is fixed
under the action of Gm , so this makes sense).

Since

μL1⊗L2(x, λr ) = r(μL1(x, λ)+ μL2(x, λ))

26 This stratification shares many properties with the Harder–Narasimhan stratification of the space of
vector bundles over a Riemann surface.
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for r ∈ Z>0, the previous definition extends to L ∈ PicG(X)Q and λ ∈ X∗(G)Q.
Moreover, we haveμL (gx, λ) = μL (x, g−1λg) for g ∈ G(k) and, most importantly
[48, Prop. 2.7]

μL (αx, λ) = μL (x, λ), α ∈ P(λ)(k).

The construction has good functoriality properties: we have μ f ∗(M )(x, λ) =
μM ( f (x), λ) for a G-morphism f : X → Y of G-varieties and M ∈ PicG(Y )Q.
Moreover, if X = X1 × · · · × Xm is a product of G-varieties and Li ∈ PicG(Xi )Q
then

μL1�···�Lm ((x1, . . . , xm), λ) =
m∑

i=1
μLi (xi , λ).

Let now k be algebraically closed. Recall that the (open) semistable locus X ss(L )

in X can be defined as the set of points x ∈ X(k) having an affine open neighborhood
of the form X f = { f �= 0}with f ∈ 
(X ,L ⊗n)G for some n. We have the following
Hilbert–Mumford numerical criterion:

Theorem 5.1 (Hilbert–Mumford) If k is algebraically closed and L is ample then,
for x ∈ X(k),

x ∈ X ss(L )⇐⇒ μL (x, λ) ≥ 0 for all λ ∈ X∗(G).

5.2 A Hilbert–Mumford criterion for weak admissibility

Since weak admissibility was defined as a semistability condition in Sect. 4.1.3 we
can test it using a Hilbert–Mumford criterion once the right linearization of the group
action is defined. We will now describe it. For the rest of this section G will be a
reductive group over a perfect field k.

5.2.1 Invariant inner products

An invariant inner product on G (IIP for short) is the data of a positive-definite bilinear
form on X∗(T )Q for each maximal torus T of G (defined over k̄), compatible27 with
the action of G(k̄) and Gk . These objects are standard in GIT and they seem to go back
at least to Kempf’s celebrated paper [39].

One can describe IIP’s on G in terms of a fixed maximal torus T0 of G (defined
over k̄) as follows. LetW = W (G, T0) be the associated Weyl group and consider the
L-action28 of Gk on X∗(T0) (if G is quasi-split over k and T0 is defined over k, this is

27 That is, such that the maps Int(g) : X∗(T )Q → X∗(gTg−1)Q and τ : X∗(T )Q → X∗(τ T )Q,
τ T = τT τ−1, induced by any g ∈ G(k̄) and τ ∈ Gk are isometries.
28 Explicitly, pick a Borel subgroup B0 of G defined over k̄ and containing T0; if τ ∈ Gk , one can find
g ∈ G(k̄), unique up to left translation by T0(k̄), such that gτ T0g

−1 = T0 and gτ B0g
−1 = B0, and then

Int(g)σ is an automorphism of X∗(T0) independent of the choice of g and B0 and this defines the L-action.
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the usual action of Gk on X∗(T0)). The conjugacy of maximal tori in G implies that
IIP’s on G correspond to Gk � W -invariant inner products on X∗(T0)Q, hence any G
has an IIP (the action of Gk factors through a finite quotient).

When G is semisimple there is a natural choice of an IIP on G corresponding to
the inner product on X∗(T0)Q given by the Killing form:

P(λ, λ′) =
∑

χ

〈λ, χ〉〈λ′, χ〉,

the sum being taken over the roots of T0. In general, [17, 6.2.4] shows that any IIP on
G is the orthogonal direct sum of IIP’s on the torus Z(G)0 and on Gder. Moreover,
on a k-simple semisimple group any IIP is a positive multiple of the Killing form; on
the other hand, any Gk-invariant inner product on X∗(T )Q is an IIP on the torus T , so
there is no canonical choice in this case.

5.2.2 A Q-linearization of the G-action: the Hodge filtration

We will explain now how to construct the ample equivariant line bundle needed to
apply the Hilbert–Mumford criterion. We start with a simple but crucial case.

Example 5.2 Let G = GLn , with diagonal torus T and the standard IIP P on
X∗(T )Q = Qn . Let μ(t) = (ta1, . . . , ta1 , . . . , tar , . . . , tar ), tai appearing ni times
and a1 > · · · > ar being integers. ThenF (G, {μ}) = G/P , P being the upper trian-
gular parabolic with Levi M = ∏r

i=1 GLni . We define a Gk-equivariant line bundle
onFk by

LG,{μ},P = G ×P Ga,λ,

where λ ∈ X∗(M) = X∗(P) is defined by λ(g1, . . . , gr ) = ∏r
i=1(det gi )−ai for

(g1, . . . , gr ) ∈ M . The minus sign appears here to get an ample line bundle. We can
interpret this geometrically as follows. Let V = kn . Then F := F (G, {μ}) is the
variety (over k) of partial flags of V , of type (n1, n1+n2, . . . , n1+· · ·+nr = n) and so
F is naturally a closed subvarietyF ↪→∏r

i=1 Xi of a product ofGrassmanians Xi :=
Grn1+···+ni (V ). Each Xi has a natural very ample GL(V )-equivariant line bundle
Li obtained from O(1) via the Plücker embedding Xi ↪→ P(∧n1+···+ni (V )). Then
LG,{μ},P is isomorphic (as equivariant line bundle) to the restriction ofL ⊗(a1−a2)

1 �
L ⊗(a2−a3)

2 �· · ·�L ⊗arr . If x ∈ F (K ) is a point corresponding to a filtration Fx of VK ,
then the fiber ofL = LG,{μ},P at x is⊗i det(grai (Fx ))−⊗ai .We deduce immediately

from this (see [17, Lemma 2.2.1, Lemma 2.2.2]) that for any point x ∈ F̆ (K ) (K
being an extension of Ĕ), and any λ ∈ X∗(G)GF with associated filtration Fλ, we
have

μL (x, λ) = −〈Fx , Fλ〉.

In particular the Hilbert–Mumford criterion is nothing but Corollary 4.1 in this special
case.
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Proposition 5.3 Givenaconnected reductive k-groupG, an element {μ} ∈ X∗(G)Q/G
and an IIPP on G, one can naturally construct a Q-line bundle

LG,{μ},P ∈ PicG,ample(F (G, {μ}))Q
defined over the reflex field of (G, {μ}) and such that:

(1) If ι : G → G ′ is a closed immersion defined over k andP is induced by an IIPP ′
on G ′, then LG,{μ},P is the restriction of LG ′,ι{μ},P ′ via the closed immersion
F (G, {μ}) ↪→ F (G ′, ι{μ}) ⊗E ′ E, where E, E ′ are the corresponding reflex
fields.

(2) If G = GLn and P is the standard invariant inner product, LG,{μ},P is the one
in Example 5.2.

Proof This follows from the discussion preceding [17, Th. 6.2.8] (for example, [17,
Lemma 6.2.5]). The key point is that an IIPP on G induces one on the Levi quotient
M of any parabolic subgroup P of G in a natural way (since any maximal torus of M
is an isomorphic image of a maximal torus of G contained in P), which allows one to
associate to any λ ∈ X∗(G) an element λ∗ ∈ X∗(P(λ))Q. The recipe is then induced
by sending λ to Lλ = G ×P Ga,−λ∗ , the G-equivariant Q-line bundle on G/P(λ)

corresponding to −λ∗, the minus sign being chosen to ensure that Lλ is ample. "�
5.2.3 A Q-linearization of the J-action: the Hodge and the slope filtrations

Let now k = Qp and consider a local shtuka datum (G, [b], {μ}) over F = Qp. Fix
an IIPP onG and a decent b ∈ G(Q̆p), with associated automorphism group J = Jb
and slope morphism νb. The element λb := −νb ∈ HomQ̆p

(DQ̆p
,GQ̆p

) gives rise to
an ample GQ̆p

-equivariant Q-line bundle Lb := LG,{λb},P on

F b := F (GQ̆p
, {λb}) = GQ̆p

/P(λb),

which will be considered as a JQ̆p
-equivariant line bundle via the natural map JQ̆p

→
GQ̆p

. By the same token we considerLG,{μ},P as a JĔ -equivariant Q-line bundle on
FĔ and define

LG,[b],{μ},P := i∗(LG,{μ},P ×Lb) ∈ PicJĔ ,ample(FĔ )Q,

the closed embedding i : FĔ ↪→ FĔ ×F b
Ĕ
being given by the identity on the first

factor and by the Ĕ-rational point λb of F b
Ĕ
on the second factor. The construction

enjoys similar properties to the one from Proposition 5.3, concerning functoriality
with respect to closed embeddings ι : G → G ′ (by taking b′ = ι(b), of course).

5.2.4 A Hilbert–Mumford criterion for weak admissibility

Wekeep the notations introduced in the previous paragraph and setL = LG,b,{μ},P ∈
PicJĔ ,ample(F̆ )Q, where F̆ := F (G, {μ})Ĕ .
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Theorem 5.4 (Totaro, [66, Th. 3], [17, Th. 9.7.3]) Let K/Ĕ be a field extension and
let x ∈ F̆ (K ). Then x ∈ F̆ (G, b, {μ})wa(K ) if and only if μL (x, λ) ≥ 0 for all
λ ∈ X∗(J )GF .

Example 5.5 Suppose that G = T is a torus over Qp. We then have J = T and

μL (x, λ) = −(P(λ, λx )+P(λ, νb)),

for any IIP P on T , any λ ∈ X∗(T ), and λx ∈ X∗(T ) attached to x . Hence the
Hilbert–Mumford inequality takes the form: P(λ, λx ) +P(λ, νb) ≤ 0 for all Qp-
rational 1-PS λ of T . Since we may replace λ with −λ this condition is satisfied if
and only if λx + νb is orthogonal to allQp-rational 1-PS of T . Since the inner product
is GQp -invariant, the Qp-rational characters of T correspond to the Qp-rational 1-PS
and the Hilbert–Mumford criterion becomes the familiar criterion: (μ, b) is weakly
admissible if and only if μ+ νb is orthogonal to all Qp-rational characters of T .

Example 5.6 Consider the set-up from Example 5.2. The data of b is equivalent to
that of an isocrystal N = (V , ϕ) of dimension n over Q̆p, with slope decomposition
V = ⊕α∈QVα . Let α1 > · · · > αt be the different slopes and letmi = dim Vαi , so that

theNewton vector of N is ν(N ) = (α
(m1)
1 , . . . , α

(mt )
t ) ∈ (Qn)+. Consider the filtration

F0 defined by F
β
0 = ⊕α≤−βVα (its type is thus ν0 = (−α

(mt )
t , . . . ,−α

(m1)
1 ) ∈ (Qn)+).

An immediate computation [17, Lemma 8.4.2] shows that if K/Q̆p is an extension
and x ∈ F̆ (K ) with corresponding filtration Fx of VK , then for all λ ∈ X∗(J )GF

μL (x, λ) = −(〈Fx , Fλ〉 + 〈F0, Fλ〉).

The Hilbert–Mumford inequality μL (x, λ) ≥ 0 is thus equivalent to 〈Fx , Fλ〉 +
〈F0, Fλ〉 ≤ 0.

The computations in Example 5.6 and the basic properties of the slope function
recalled in Sect. 5.1 yield the first part of the following lemma. The second part is an
immediate calculation.

Lemma 5.7 (Orlik, [51, Lemma 2.2], [50, Lemma 2.2]) Let V be a faithful F-rational
representation of G (defined over F) and consider the IIP P on G induced by the
standard IIP on GL(V ).

(1) Let K/Ĕ be an extension, x ∈ F̆ (K ) and λ ∈ X∗(J )GF . Let Fx , Fλ, and F0
denote the filtrations on VĔ induced by x, λ and λb = −νb, respectively. Then

μL (x, λ) = −(〈Fx , Fλ〉 + 〈F0, Fλ〉).

(2) If T ⊂ G is a maximal torus and λ, λ′ ∈ X∗(T )Q, then 〈Fλ, Fλ′ 〉 =P(λ, λ′).
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5.3 A simplified Hilbert–Mumford criterion

Wewill show here that in the Hilbert–Mumford criterion from Theorem 5.4 it suffices
to test the 1-PS associated to the relative simple roots and their conjugates. This will
follow from the fact that the slope function, a priori just convex on every chamber of
the spherical building, is, in fact, affine.

5.3.1 The criterion

We will assume from now on that (G, [b], {μ}) is a local Shtuka datum over F = Qp

with G quasi-split over Qp and b ∈ [b] basic and s-decent. Let J = Jb, ν = νb, let
E = E(G, {μ}) be the reflex field and let Es = EQps . The associated period domain
has a canonical model over Es ,invariant under the natural action of J (Qp) on F .

Wefix an invariant inner productP onG andwe note that it gives rise to an invariant
inner product on J . Fix amaximalQp-split torus S ⊂ Jder, ofQp-rankd, and aminimal
parabolic subgroup P0 of J defined over Qp. Let � = {α1, . . . , αd} ⊂ X∗(S) be
the corresponding set of relative simple roots. Let ωα1 , . . . , ωαd ∈ X∗(S)Q be the
associated dual basis for the natural pairing between X∗(S)Q and X∗(S)Q. Fix a
maximal torus T of G containing S and such that μ, ν ∈ HomQ̆p

(D, T ) 
 X∗(T )Q.

Proposition 5.8 (Orlik, [50, Cor. 2.4]) Let x ∈ F̆ (K ), for a field extension K of Ĕ.
Then x is not weakly admissible if and only if there exists an element g ∈ J (Qp) and
a simple root α ∈ � such that μL (x, Int(g)ωα) < 0.

5.3.2 The combinatorial and spherical buildings

IfG is a connected reductive group over a field k, one can associate toG two buildings,
as follows.

The combinatorial building �(G) of G. An abstract simplicial complex with
G(k)-action whose simplices are the proper k-parabolic subgroups of G ordered
by the opposite of inclusion (thus vertices are the proper maximal k-parabolics and
(P0, . . . , Pd) is a simplex if and only if P0 ∩ · · · ∩ Pd is a parabolic subgroup). If n
denotes the k-rank of the derived group of G then �(G) has the homotopy type of a
bouquet of (n − 1)-spheres.

The spherical building B(G) of G. Unlike �(G) it takes into account the center
of G. If m is the k-rank of G the setB(G) is, in a G(k)-equivariant way, the (m− n)-
fold suspension of �(G). Thus suitably topologized, it has the homotopy type of a
bouquet of (m − 1)-spheres. The building B(G) is functorial for injective maps of
reductive groups f : G → H over k: we have a natural embedding of topological
spaces B( f ) : B(G)→ B(H).

If G = S is a split k-torus, then B(S) is simply the sphere corresponding to half-
lines in the vector space X∗(S)k,R. In general,B(G) is obtained by gluing the different
spheresB(S) (over all maximal k-split tori S ⊂ G), where we identify b and Int(g)b
for b ∈ B(S) and g ∈ P(b)(k). Here P(b) is a k-parabolic of G naturally attached
to b in a way compatible with the definition of P(λ), for λ ∈ X∗(S)Q. There is a
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natural action of G(k) onB(G) and a natural map b→ P(b) fromB(G) to the set of
k-parabolic subgroups ofG (we note P(b)(k) is the stabilizer of b inG(k)). Moreover,
if S is a maximal k-split torus of G, the mapB(S)→ B(G) is injective and consists
precisely of points b of B(G) for which S ⊂ P(b). We call the image the apartment
attached to S. Any two points of B(G) belong to a common apartment.

Assume that G is semisimple. Then, by a theorem of Curtis, Lehrer and Tits [15,
Prop. 6.1], there is a natural G(k)-equivariant bijection τ : |�(G)| → B(G) between
the geometric realization of�(G) andB(G), such that for b ∈ |�(G)|, the k-parabolic
P(τ (b)) is the one corresponding to the simplex of �(G) containing b in its interior.
Hence the combinatorial building yields a triangulation of the spherical building.

For a k-rational parabolic subgroup P ⊂ G, we set

C (P) := {b ∈ B(G) : P(b) ⊃ P}.

We have C (P) ⊂ B(S), where S is a maximal k-split torus contained in P . We
can think of C (P) as parametrizing dominant 1-PS λ of P up to conjugation and
ramification λ !→ λn . The map τ induces a homeomorphism between the closed
simplex of |�(G)| corresponding to P and C (P). If P is a minimal k-parabolic than
C (P) is called a chamber; if P is a proper maximal k-parabolic subgroup then C (P)

is called a vertex.

5.3.3 The slope function revisited

Wereturn to the notation fromSect. 5.3.1. Let S be amaximalQp-split torus in Jder. Fix
x ∈ F (K ), for a field extension K of Ĕ . We can extend the slope function μL (x, λ)

on X∗(S)Q to a function on X∗(S)R by using its description as an infimum of values
of certain rational linear functionals [56, Sec. 1]. This description also implies that the
slope function μL (x, λ) is convex on the rational points of B(S) [48, Cor. 2.15].

It turns out, as shown byOrlik, that the slope function is, in fact (in a suitable sense),
affine. To state precisely what this means, for a chamber C in B(Jder), we start with
“straightening it”, i.e., we deform it homeomorphically to the simplex

w̃C :=
{

∑

α∈�
rαλα|0 ≤ rα ≤ 1,

∑

α∈�
rα = 1

}
⊂ X∗(w̃S)R,

where the rational 1-PS λα ∈ X∗(w̃S)Q, α ∈ �, for some maximal Qp-split torus
w̃S ⊂ Jder, represent the vertices of C . What we have gained doing this is that the
slope functionμL (x, λ) on X∗(w̃S)R while needing to be normalized to νL (x, λ) :=
μL (x, λ)/|λ| to descend to a function on B(w̃S) (after which it glues to a function
on B(Jder)) is defined on w̃C . We say that μL (x,−) is affine on C if it is affine on
w̃C , i.e., we have:

μL

(
x,

∑

α∈�
rαλα

)
=

∑

α∈�
rαμL (x, λα), for all

∑

α∈�
rαλα ∈ w̃C .
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The following lemma is now a simple consequence of Lemma 5.7 that describes the
slope function via the invariant inner product (which is linear in each variable):

Lemma 5.9 (Orlik, [50, Prop. 2.3]) Let x ∈ F (K ), for a field extension K of Ĕ. The
slope function μL (x,−) is affine on each chamber ofB(Jder).

5.3.4 Proof of Proposition 5.8

Proof Among the chambers of B(Jder) we will distinguish the base chamber C0 :=
C (P0).We note here that�(J ) = �(Jder), henceB(Jder) is homeomorphic to |�(J )|.
The vertices of this chamber are the rational 1-PS ωα , α ∈ �; the corresponding
parabolic subgroups 29 P J (ωα), α ∈ �, are the maximal Qp-rational parabolic sub-
groups that contain P0. IfC = C (P) is a chamber inB(Jder) there exists a g ∈ J (Qp),
unique up to multiplication by an element of P0(Qp) from the right, such that the con-
jugated 1-PS Int(g)ωα , α ∈ �, are the vertices of C .

Proposition 5.8 follows now easily from Lemma 5.9.

5.3.5 Contractibility of a subcomplex of the spherical building

Let

Y := F ⊗E Es\Fwa

be the complement ofFwa. Let x ∈ Y (K ), for a field extension K of Ĕ . Consider the
subcomplex Tx of the spherical buidling B(Jder) corresponding to the following set
of vertices:

{gP(ωα)g−1|g ∈ J (Qp), α ∈ � such that μL (x, Int(g)ωα) < 0}.

We will need to know that this subcomplex is contractible. This follows from two
facts:

(1) Let

Cx := {λ ∈ B(Jder)|νL (x, λ) < 0}.

This set is convex and the intersection of Cx with each chamber in B(Jder) is
convex [48, Cor. 2.16].

(2) Because the slope function μL (x, λ) is affine on every chamber of B(Jder) we
have an inclusion Tx ↪→ Cx . This is a deformation retract [50, Lemma 3.4] (in
fact, we deform to a projection).

29 We have P J (ωα)(Qp) = P(ωα)(Qp) ∩ J (Qp).
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5.4 Stratification of the complement ofFwa

The complement Y ofFwa inFEs can be stratified using Schubert varieties, an essen-
tial result for the computation of its cohomology. In order to describe this stratification
we will fully use the results presented above (we keep the notation from Sect. 5.3.1).

Each λ ∈ X∗(J )Q determines a closed subvariety

Yλ := {x ∈ F |μL (x, λ) < 0}

ofF , defined over Es , consisting of points where λ damages the semistability condi-
tion. In particular, each subset I � � gives rise to a closed subvariety of F , defined
over Es

YI :=
⋂

α/∈I
Yωα

and the properties of the slope function imply that the natural action of J (Qp) onFEs

restricts to an action of PI (Qp) on YI [51, Lemma 3.1], where PI = ∩α/∈I P J (ωα).
For example P� = J and P∅ = P0, a fixed minimal Qp-parabolic subgroup of J
containing S.

Let

XI = J (Qp)/PI (Qp),

a compact p-adic analytic manifold, and let30

Z XI
I =

⋃

t∈XI

tY ad
I ,

a closed pseudo-adic subspace31 of Y (since XI is compact, see [51, Lemma 3.2]).
Now, by Proposition 5.8 and the properties of the slope function μL (−,−) (see Sect.
5.1), we get the decomposition

Y =
⋃

|�\I |=1
Z XI
I .

5.5 The cohomology of Schubert varieties

Orlik used the results from GIT described in the previous sections to show (see [51,
Prop. 4.1], [50, Prop. 4.1]) that the varieties YI are Schubert varieties, hence their
cohomology is not difficult to compute.

More precisely, fix a Borel subgroup B of G contained in all the parabolics P(ωα)

and such that μ belongs to the positive Weyl chamber with respect to B. Let W =
30 The definition makes sense since PI (Qp) preserves YI .
31 We refer the reader to the appendix for the formalism of pseudo-adic spaces, due to Huber [36].
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NG(T )/T be the Weyl group, let Wμ ⊂ W be the stabilizer of μ and let Wμ be the
set of Kostant representatives for W/Wμ, i.e., representatives of shortest length in
their cosets. The action of GEs on W preserves Wμ (since μ is defined over Es). For
w ∈ W , let [w] ∈ Wμ/GEs be its orbit.

Define (ν := νb)

I = {[w] ∈ Wμ/GEs |P(wμ− ν, ωα) > 0, ∀α /∈ I },

where P is the fixed invariant inner product on G. Then I∩J = J ∩ J and
a similar property holds for the varieties YI . The Bruhat decomposition of the flag
variety FEs combined with the fact that, by Lemma 5.7, the semistability criterion
can be expressed using the invariant inner product, yield the decomposition of YI in
terms of the Bruhat cells of G with respect to P(μ):

YI =
⋃

[w]∈I

BwP(μ)/P(μ). (5.1)

To each GEs -orbit [w] ∈ Wμ/GEs we associate the following objects:
• An integer l[w], the length of any element of [w].
• The induced Z/pn[GEs ]-module ρ[w](Z/pn) of Z/pn-valued functions on the

finite set [w], with the natural GEs -action twisted (à la Tate) by −l[w]. Similarly, we
define a Zp[GEs ]-module ρ[w](Zp).
• The set

I[w] = {α ∈ �| P(wμ− ν, ωα) ≤ 0}.

It is the minimal subset of � such that [w] ∈ I[w] , thus we have [ω] ∈ I if and only
if I[w] ⊂ I .

The Bruhat decomposition (5.1) yields the following computation of the étale coho-
mology of the varieties YI .

Corollary 5.10 We have

H∗ét(YI ,C ,Z/pn) 

⊕

[w]∈I

ρ[w](Z/pn)[−2l[w]]. (5.2)

Proof The computation in the �-adic setting in [50, Prop. 4.2] [49, Prop. 7.1] carries
over to the p-adic setting, the key element being the standard form of the compactly
supported cohomology of the affine space.

The computation goes as follows. For 0 ≤ i ≤ mI := max{l[w]|[w] ∈ I }, set

Y i
I :=

⋃

[w]∈I ,l(w)≤i
BwP(μ)/P(μ).

We have a filtration by closed subvarieties

YI = YmI
I ⊃ YmI−1

I ⊃ · · · ⊃ Y 0
I ⊃ Y−1I := ∅
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such that
Y i
I \Y i−1

I =
⊔

[w]∈I ,l(w)=i
BwP(μ)/P(μ). (5.3)

The Bruhat cell BwP(μ)/P(μ) above is isomorphic to the affine space Ai
Es
. Recall

that

H j
ét,c(A

i
C ,Z/pn) 


{
Z/pn(−i) for j = 2i,

0 otherwise.

The corollary follows now easily from the long exact sequences (the induced Galois
representations arise from the Bruhat decomposition (5.3))

· · · → Hi−1
ét,c (Y j−1

I ,C ,Z/pn)→ Hi
ét,c(Y

j
I ,C\Y j−1

I ,C ,Z/pn)→ Hi
ét,c(Y

j
I ,C ,Z/pn)

→ Hi
ét,c(Y

j−1
I ,C ,Z/pn)→ · · ·

"�
Remark 5.11 The following observation will be useful later (see [50, Sec. 4]). For
[w] ∈ Wμ/GEs and I ⊂ �, let H(YI , [w]) denote the part of the direct sum (5.2),
which comes from [w], i.e.,

H(YI , [w]) =
{

ρ[w](Z/pn)[−2l[w]] if [w] ∈ I ,

0 if [w] /∈ I .

We have

H∗ét(YI ,C ,Z/pn) 

⊕

[w]∈Wμ/GEs

H(YI , [w]).

Let I ⊂ J ⊂ �. Consider the projections

pI ,J : H∗ét(YJ ,C ,Z/pn)→ H∗ét(YI ,C ,Z/pn)

induced by the closed embeddings YI ↪→ YJ . The proof of Corollary 5.10 shows that
they decompose into the direct sums:

pI ,J 

⊕

([w],[w′])∈(Wμ/GEs )
2

p[w],[w′] :
⊕

[w]∈Wμ/GEs

H(YJ , [w])→
⊕

[w′]∈Wμ/GEs

H(YI , [w′])

with p[w],[w′] equal to the identity for [w] = [w′] and to zero otherwise.

6 Themain result

We are now ready to formulate and to prove the main result of this paper.
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6.1 The setup

Consider a local Shtuka datum (G, [b], {μ}) over F = Qp, where G is a quasi-split
reductive group over Qp, [b] ∈ B(G) is the σ -conjugacy class of a basic and s-
decent32 element b ∈ G(Q̆p), and {μ} is a conjugacy class of cocharacters of G, with
field of definition E and associated flag variety F = F (G, {μ}) defined over E .

Letting Es = EQps ⊂ Qp, the period domain Fwa = Fwa(G, [b], {μ}) is a
nonempty33 partially proper open subset of the adic spaceFĔ , stable under the natural
action of J (Qp) ⊂ G(Q̆p) on FĔ and having a canonical model over Es . Thus the
compactly supported étale cohomologies H∗ét,c(F

wa
C ,Z/pn) and H∗ét,c(F

wa
C ,Zp) are

naturally J (Qp)× GEs -modules. Our goal is to describe these representations.

6.1.1 Generalized Steinberg representations

Fix a maximal Qp-split torus S in J = Jb and a minimal parabolic subgroup B of J
defined overQp and having Levi component the centralizer of S. This choice induces
a parametrization I !→ PI of the standard parabolic subgroups of J by subsets of �,
the set of simple roots associated to B. In particular P∅ = B and P� = J .

We slightly change the notation introduced in Sect. 2 and write simply

XI = J (Qp)/PI (Qp), i I (A) = LC(XI , A), A = Z/pn,Zp,Qp,

where LC(XI , A) is the space of locally constant (automatically with compact support
since XI is compact) functions on XI with values in A. We also let

icontI (Zp) := C (XI ,Zp) = lim←−
n

i I (Z/pn),

where C (XI ,Zp) is the space of continuous functions on XI with values in Zp. The
associated generalized smooth and continuous Steinberg representations of J (Qp)

will be denoted

vI (A) := i I (A)/
∑

I�I ′
i I ′(A), A = Z/pn,Zp,Qp,

vcontI (Zp) := icontI (Zp)/
∑

I�I ′
icontI ′ (Zp) = lim←−

n

vI (Z/pn),

where the last equality follows from [30, Lemme 3.3.3] (in loc. cit. J is split, but the
results extend verbatim to any J ). Note that i� = v� is simply the trivial representation
of J (Qp).

For two subsets I ⊂ I ′ ⊂ �with |I ′\I | = 1, we let pI ,I ′ : i I ′(Z/pn)→ i I (Z/pn)
be the natural map induced by the surjection XI → XI ′ . For arbitrary subsets I , I ′ ⊂
32 Recall that the hypothesis that b is decent is harmless, since any σ -conjugacy class in G(Q̆p) contains
a decent element.
33 By the definition of a local Shtuka datum!

123



162 P. Colmez et al.

� with |I ′| − |I | = 1, we fix a numbering I ′ = {β1, . . . , βr } and we let

dI ,I ′ =
{

(−1)i pI ,I ′ if I ′ = I ∪ {βi },
0 if I �⊂ I ′.

The following result is standard for complex coefficients.

Proposition 6.1 Let I ⊂ � and consider the complex whose first term is in degree−1

CI (Z/pn) : i�(Z/pn)→
⊕

I⊂K⊂�|�\K |=1

iK (Z/pn)→
⊕

I⊂K⊂�|�\K |=2

iK (Z/pn)→ · · ·

→
⊕

I⊂K⊂�|K\I |=1

iK (Z/pn)→ i I (Z/pn)

with differentials induced by the dK ,K ′ . Then CI (Z/pn) is a resolution of vI (Z/pn)
by J (Qp)-modules.

Proof The proof for complex coefficients goes over in our setup thanks to amultiplicity
one result of Grosse-Klönne [28], Herzig [35], and Ly [46], as we explain below.

Recall first the following simple fact from [62, Sec. 2, Prop. 6]: if (A1, . . . , Am) is
a family of subgroups of an abelian group A such that

(
∑

i∈T
Ai

)
∩

⎛

⎝
⋂

j∈S
A j

⎞

⎠ =
∑

i∈T

⎛

⎝Ai ∩
⎛

⎝
⋂

j∈S
A j

⎞

⎠

⎞

⎠ (6.1)

for all subsets T , S ⊂ {1, . . . ,m}, then the natural complex

· · · →
⊕

1≤i< j<k≤m
Ai ∩ A j ∩ Ak →

⊕

1≤i< j≤m
Ai ∩ A j →

⊕

1≤i≤m
Ai → A

is a resolution of the subgroup
∑

i Ai of A.
Now assume that the abelian group A has finite length and say that a subgroup

A′ ⊂ A is isotypically closed if each irreducible constituent of A′ has the same
multiplicity in A′ and A. Such a subgroup is uniquely determined by its irreducible
constituents. If two subgroups A′, A′′ ⊂ A are isotypically closed, then A′ ∩ A′′ and
A′ + A′′ are isotypically closed too, and their irreducible constituents are, respectively,
the intersection and the union of the irreducible constituents of A′ and A′′. We deduce
that if Ai is isotypically closed for all i , then the left and right sides of (6.1) are
isotypically closed and have the same irreducible constituents (as union distributes
over intersection), hence they are equal.

We apply this fact with A = i∅(Z/pn) and the J (Qp)-submodules iK (Z/pn)
for I ⊂ K ⊂ �, |�\K | = 1. The latter are isotypically closed in i∅(Z/pn) by
Proposition 6.2 below.
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Proposition 6.2 (Grosse-Klönne,Herzig,Ly) The irreducible constituents of iK (Z/pn)
are the representations vI (Z/p) for K ⊂ I ⊂ �, each occurring with multiplicity n.

Proof By devissage, the result reduces to the case n = 1, which is due to Grosse-
Klönne [28] and Herzig [35] when G is split, and to Ly [46] in general.

6.1.2 The main result

The following theorem is the principal result of this paper.

Theorem 6.3 Let (G, [b], {μ}) be a local Shtuka datum with G/Qp reductive and
quasi-split, b ∈ G(Q̆p) basic and s-decent. Suppose that p �= 2.

(1) There is an isomorphism of GEs × J (Qp)-modules

H∗ét,c(F
wa
C ,Z/pn) 


⊕

[w]∈Wμ/GEs

vI[w](Z/pn)⊗ ρ[w](Z/pn)[−n[w]], (6.2)

where n[w] = 2l[w] + |�\I[w]|.
(2) There is an isomorphism of GEs × J (Qp)-modules

H∗ét,c(F
wa
C ,Zp) 


⊕

[w]∈Wμ/GEs

vcontI[w] (Zp)⊗ ρ[w](Zp)[−n[w]]. (6.3)

Remark 6.4 (1) Orlik shows in [51, Th. 1.1] that the isomorphism (6.2) holds for
compactly supported étale cohomology with coefficients Z/�n , � �= p (there are
additional assumptions on � needed, see [51, Sec. 1]). This implies (by the same
argument as we use below) the isomorphism (6.3) for compactly supported étale
cohomology with coefficients Z�.

(2) Just as in [17,Cor. 10.3.7] oneobtains strongvanishing results for H∗ét,c(F
wa
C ,Z/pn)

from the above theorem, as well as a simple description of the top-degree coho-
mology.

6.1.3 The case of the Drinfeld space

Let us discuss an example. Let Hd
Qp

be the Drinfeld symmetric space of dimension

d over Qp. Recall that Hd
Qp
= Pd

Qp
\ ∪H∈H H , where H is the set of Qp-rational

hyperplanes. Set G := GLd+1,Qp (as we will see in the proof, Theorem 6.3 holds true
for p = 2 in this case).

Corollary 6.5 (1) There is an isomorphism of GQp × G(Qp)-modules

H∗ét,c(H
d
C ,Z/pn) 


d⊕

i=0
Spd−i (Z/pn)(−i)[−d − i].
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(2) There is an isomorphism of GQp × G(Qp)-modules

H∗ét,c(H
d
C ,Zp) 


d⊕

i=0
Spcontd−i (Zp)(−i)[−d − i].

Here the generalized Steinberg representations Spd−i (Z/pn) and Spcontd−i (Zp) are
as defined in the proof.

Proof By Example 4.2, Hd
Qp

is the period domain corresponding to b = 1, {μ} =
(d, (−1)d}. We have E = Es = Qp and J = G.

Let B be the upper triangular Borel subgroup of G and let � = {α1, α2, . . . , αd}
be the set of relative simple roots: αi (diag(t1, . . . , td+1)) = ti t

−1
i+1. We identify the

Weyl group W of G with the group of permutations of {1, 2, . . . , d + 1} and with
the subgroup of permutation matrices in G. Then W is generated by the elements
si = (i, i + 1) for 0 ≤ i ≤ d + 1. The set Wμ of Konstant representatives for W/Wμ

consists of:

w0 = 1, w1 = s1, w2 = s2s1, . . . , wd = sdsd−1 · · · s1, l[wi ] = i .

We have �\I[wi ] = {αi+1, . . . , αd}, |�\I[wi ]| = d − i . And ρ[wi ](Z/pn) =
Z/pn(−i), ρ[wi ](Zp) = Zp(−i).

Set Spd−i (Z/pn) := vGI[wi ]
(Z/pn) and Spcontd−i (Zp) := v

G,cont
I[wi ]

(Zp). Then our corol-

lary follows from Theorem 6.3.

We computed that:

Hi
ét,c(H

d
C ,Z/pn) 
 Sp2d−i (Z/pn)(d − i), Hi

ét,c(H
d
C ,Zp) 
 Spcont2d−i (Zp)(d − i).

In particular:

Hi
ét,c(H

d
C ,Z/pn) 
 Hi

ét,c(H
d
C ,Zp) = 0, 0 ≤ i ≤ d − 1,

H2d
ét,c(H

d
C ,Z/pn) 
 Z/pn(−d), H2d

ét,c(H
d
C ,Zp) 
 Zp(−d).

Recall that in [13, Th. 1.1] we have computed that:

Hi
ét(H

d
C ,Z/pn) 
 Spi (Z/pn)∗(−i), Hi

ét(H
d
C ,Zp) 
 Spconti (Zp)

∗(−i).

Hence (∗ denotes the linear dual):

Corollary 6.6 There is a duality isomorphism of GQp × G(Qp)-modules

Hi
ét(H

d
C ,Z/pn)(d) 
 H2d−i

ét,c (Hd
C ,Z/pn)∗, Hi

ét(H
d
C ,Zp)(d) 
 H2d−i

ét,c (Hd
C ,Zp)

∗.
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6.2 Orlik’s fundamental complex

In this section we will define a resolution of the constant sheaf Z/pn on the comple-
ment of the period domain Fwa

C and compute the cohomology of its terms. The key
geometric ideas are due to Orlik, see [51].

6.2.1 Stratification of the constant sheaf

Let Sh(YC,ét) denote the topos of étale sheaves on YC . We refer the reader to the
appendix for the review of the formalism of étale cohomology of pseudo-adic spaces
developed by Huber in [36]. If X is an algebraic variety over C (for instance YI ,C ),
let X ad be the associated adic space over Spa(C,OC ).

If Z is a closed pseudo-adic subspace of YC and i : Z → YC is the inclusion,
define FZ := i∗i∗F ∈ Sh(YC,ét) for any sheaf F ∈ Sh(YC,ét). Fix a subset I ⊂ � =
{α1, . . . , αd}. If T is a compact open subset of XI = J (Qp)/PI (Qp), then

ZT
I ,C :=

⋃

t∈T
tY ad

I ,C

is a closed pseudo-adic subspace ofYC thanks to the compactness of T (see [51, Lemma
3.2]) and for any F ∈ Sh(YC,ét) we have a natural injection FZT

I ,C
⊂ ∏

t∈T FtY ad
I ,C

.

Therefore any partition XI = ∐
a∈A Ta by (nonempty) compact open subsets34

induces an embedding ⊕

a∈A
FZTa

I ,C
⊂

∏

x∈XI

FxY ad
I ,C

.

Definition 6.7 If F ∈ Sh(YC,ét), define FI ∈ Sh(YC,ét) as the subsheaf of locally
constant sections of

∏
x∈XI

FxY ad
I ,C

, i.e.,

FI = lim−→
c∈CI

Fc,

the limit being taken over the (pseudo-filtered) category CI of compact open disjoint
coverings of XI ordered by refinement and Fc for c = {Tj } j∈A ∈ CI being the image
of the natural embedding

⊕
j∈A F

Z
Tj
I ,C

↪→∏
x∈XI

FxY ad
I ,C

.

The following computation will be essential for us later.

Proposition 6.8 (1) If x̄ is a geometric point of YC with support x ∈ YC, then, for all
F ∈ Sh(YC,ét), we have a natural isomorphism

(FI )x̄ 
 LC(XI (x), Fx̄ ), where X I (x) = {g ∈ XI | x ∈ gY ad
I ,C }.

34 Note that A is necessarily finite since XI is compact.
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(2) Let i ∈ N. We have

Hi
ét(YC , (Z/pn)I ) 
 LC(XI , H

i
ét(YI ,C ,Z/pn)) 
 iPI (Z/pn)⊗ Hi

ét(YI ,C ,Z/pn).

Proof The first claim follows from the definition of FI . Orlik’s proof [51, Prop. 4.3]
of the second claim for �-adic sheaves goes through in our case, the key points of
commuting with inductive and projective limits as well as the comparison algebraic-
analytic being also valid p-adically.We describe briefly the essential steps of the proof.
SinceY is quasi-compact andCI is pseudo-filtered, [36, 2.3.13] yields an isomorphism

Hi
ét(YC , (Z/pn)I ) 
 lim−→

c∈CI

H i
ét(YC , (Z/pn)c) 
 lim−→

c∈CI

(
⊕

T∈c
Hi
ét(Z

T
I ,C , (Z/pn))).

We can write Y ad
I ,C =

⋂
s∈N ZTs

I ,C [51, Lemma 4.4], for a family of compact open
neighborhoods of the point [PI ] of XI such that∩s∈NTs = [PI ]. Hence, by [36, 2.4.6],

lim−→
s∈N

Hi
ét(Z

Ts
I ,C ,Z/pn) 
 Hi

ét(Y
ad
I ,C ,Z/pn) 
 Hi

ét(YI ,C ,Z/pn),

the last isomorphism being a consequence of Huber’s comparison Theorem [36, Th.
3.7.2]. Combining the above we get

Hi
ét(YC , FI ) 
 lim−→

c∈CI

(
⊕

T∈c
Hi
ét(Z

T
I ,C ,Z/pn)) 
 LC(XI , H

i
ét(YI ,C ,Z/pn)),

as desired.

6.2.2 Acyclicity of the fundamental complex

We will explain now how to create a complex out of the various FI for I ⊂ �.
Choose an ordering on � and fix F ∈ Sh(YC,ét). We will construct (following Orlik)
maps dI ,I ′ : FI ′ → FI for all subsets I , I ′ of � with |I ′| − |I | = 1, inducing the
fundamental complex35:

C(F) : 0→ F →
⊕

|�\I |=1
FI →

⊕

|�\I |=2
FI → · · · →

⊕

|�\I |=|�|−1
FI → F∅ → 0.

(6.4)
We set dI ,I ′ = 0 when I is not a subset of I ′, so suppose that I ⊂ I ′. We have a natural
surjective map pI ,I ′ : XI → XI ′ (induced by PI ⊂ PI ′ ), and for all x ∈ XI ′ , y ∈ XI

we have a natural map FxYI ′ → FyYI , namely the zero map if pI ,I ′(y) �= x and
the map induced by the closed embedding yYI → xYI ′ otherwise. Unwinding the
definitions of FI and FI ′ , we obtain a natural map pI ,I ′ : FI ′ → FI , and we set
dI ,I ′ = (−1)i pI ,I ′ if I ′ = {α1 < · · · < αr } and I = I ′\{αi }.
35 Check [17, Ch. XI] for a “geometric” construction of this complex.
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Recall that a sheaf F on YC,ét is called overconvergent if the specialization mor-
phism Fξ1 → Fξ2 is an isomorphism for any specialization of geometric points
ξ2 → ξ1. If F is an overconvergent sheaf, then it is easy to see that the terms of
C(F) are overconvergent [51, Lemma 3.4].

Theorem 6.9 If F is an overconvergent sheaf on YC,ét, the fundamental complex C(F)

is acyclic.

Proof The arguments from the proofs of [51, Th. 3.3] and [53, Th. 2.1], for �-adic
sheaves, also work in this setting. We sketch them briefly. By overconvergence, it
suffices to check the acyclicity of the stalk C(Fη) of C(F) at a maximal geometric
point η : Spa(K ,OK )→ FC . If xη ∈ F (K ) is the induced point, the complexC(Fη)

is given, thanks to Proposition 6.8, by

0→ Fxη →
⊕

|�\I |=1
LC(XI (xη), Fxη )→ · · · →

⊕

|�\I |=|�|−1
LC(XI (xη), Fxη )

→ LC(X∅(xη), Fxη )→ 0 (6.5)

where we recall that XI = J (Qp)/PI (Qp), XI (xη) = {g ∈ XI | xη ∈ gYI (K )}, and
P∅ = P0. But this is a complex of locally constant functions (with values in Fxη ) on
a subcomplex of the combinatoral building of J , whose simplices are given by

{gPI g−1|g ∈ J (Qp), xη ∈ gYI (K ), I � �}.

Its geometric realization (via the map τ from Sect. 5.3.2) is the subcomplex Txη of the
spherical buildingB(Jder) from Sect. 5.3.5. Since the complex Txη is contractible, by
[62, Rem. 66], the complex (6.5) is acyclic.

6.3 The key spectral sequence

We will now evaluate the spectral sequence E1 induced by the acyclic complex (6.4)
for F = Z/pn :

Ei, j
1 = H j

ét(YC ,
⊕

|�\I |=i+1
(Z/pn)I )⇒ Hi+ j

ét (YC ,Z/pn).

In order to simplify some of the rather complicated formulae below we introduce the
shorthands:

i I ,n := i I (Z/pn), vI ,n := vI (Z/pn), ρ[w],n := ρ[w](Z/pn).

Lemma 6.10 The above spectral sequence degenerates at E2.

Proof By Proposition 6.8 we have

Ei, j
1 


⊕

|�\I |=i+1
LC(XI , H

j
ét(YI ,C ,Z/pn)) 


⊕

|�\I |=i+1
i I ,n ⊗ H j

ét(YI ,C ,Z/pn).
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From the Bruhat decomposition of H j
ét(YI ,C ,Z/pn) obtained in Corollary 5.10, using

Remark 5.11, we obtain a decomposition of the spectral sequence E1:

E1 =
⊕

[w]∈Wμ/GEs

E1,[w],

where E1,[w] is the complex living just in row 2l[w]:

E1,[w] = (
⊕

I[w]⊂I
|�\I |=1

i I ,n ⊗ ρ[w],n →
⊕

I[w]⊂I
|�\I |=2

i I ,n ⊗ ρ[w],n → · · · → i I[w],n ⊗ ρ[w],n)[−2l[w]].

We get an exact sequence of complexes36

0→ i�,n ⊗ ρ[w],n[−2l[w] + 1] → CI[w](Z/pn)⊗ ρ[w],n[−2l[w]] → E1,[w] → 0.

By Proposition 6.1 and noting that ρ[w],n is a free Z/pn-module, the only nonzero
terms of E2,[w] are given as follows: for |�\I[w]| = 1

E
0,2l[w]
2,[w] 
 i I[w],n ⊗ ρ[w],n

and for |�\I[w]| > 1

E
0,2l[w]
2,[w] 
 i�,n ⊗ ρ[w],n and E

i,2l[w]
2,[w] 
 vI[w],n ⊗ ρ[w],n, i = |�\I[w]| − 1.

To see that E2 = E∞ note that the nontrivial differentials on Ei , i ≥ 2, can only
go from Ei,[w] to Ei,[w′] for [w] �= [w′], l[w] �= l[w′]. But such maps have to be trivial
by a weight argument. Indeed, all the terms of E2 are free modules over Z/pn and
are given by the tensor product of a J (Qp)-module and a GEs -module. We also have
E2(Z/pn) ⊗Z/pn Z/pm 
 E2(Z/pm) for any integer n > m. Thus the nontrivial
differentials of the spectral sequence Ei , i ≥ 2, would yield nontrivial maps between
projective systems (Z/pn(a))n and (Z/pn(b))n , a �= b. And this is not possible (see
[51, Sec. 5] for details).

The next proposition crucially uses the results of Sect. 2.

Proposition 6.11 We have

H∗ét(YC ,Z/pn) 
 ( ⊕

|�\I[w]|=1
i I[w],n ⊗ ρ[w],n[−2l[w]]

) ⊕

⊕

|�\I[w]|>1

(
(i�,n ⊗ ρ[w],n[−2l[w]])⊕ (vI[w],n ⊗ ρ[w],n[−2l[w] − |�\I[w]| + 1])).

36 Recall that the complexes CI (Z/pn) are defined in Proposition 6.1.
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Proof Fix j ∈ N. UsingLemma6.10 and its proofwe can compute the grading induced
by the spectral sequence E1:

gri (H j
ét(YC ,Z/pn)) = Ei, j−i∞ = Ei, j−i

2 

⊕

[w]∈Wμ/GEs

Ei, j−i
2,[w]



{( ⊕

[w]∈T1 i I[w],n ⊗ ρ[w],n
) ⊕(⊕

[w]∈T2 i�,n ⊗ ρ[w],n
)

if i = 0,⊕
[w]∈T3 vI[w],n ⊗ ρ[w],n if i > 0,

where we set

T1 := {[w] ∈ Wμ/GEs ||�\I[w]| = 1, 2l[w] = j},
T2 := {[w] ∈ Wμ/GEs ||�\I[w]| > 1, 2l[w] = j},

T3 := {[w] ∈ Wμ/GEs |2l[w] + |�\I[w]| − 1 = j, i = |�\I[w]| − 1}.

It suffices to show that this grading splits. We start by proving the following:

Lemma 6.12 The cohomology groups Hi
ét(YC ,Z/pn) are smooth J (Qp)-modules.

Proof We start by observing that YC is proper, being quasi-compact and closed in
FC , which is proper (see [36, Lemma 5.3.3]). It follows that R
ét,c(YC ,Z/pn) 

R
ét(YC ,Z/pn) and the distinguished triangle associated to the triple (Fwa,F ,Y )

becomes

R
ét,c(F
wa
C ,Z/pn)−−→R
ét(FC ,Z/pn)

i∗−−→R
ét(YC ,Z/pn). (6.6)

Consider the induced long exact sequence of cohomology groups. By a result of
Berkovich [6, Cor. 7.8], we know that Hi

ét,c(F
wa
C ,Z/pn) is a smooth J (Qp)-module.

We note that one cannot apply this result directly to Y , which is only a pseudo-adic
space. And, of course, Hi

ét(FC ,Z/pn) is a smooth representation of J (Qp), of finite
type over Z/pn . Our lemma follows then by induction on i , using the next lemma.

Lemma 6.13 Let G be a p-adic analytic group and let π be a representation of G over
Z/pn living in an exact sequence

0→ σ → π → τ → 0,

with σ and τ smooth representations of G over Z/pn and σ finitely generated as
Z/pn-module. Then π is a smooth representation of G.

Proof Since σ is finitely generated over Z/pn and smooth, there is an open subgroup
H of G acting trivially on σ . Replacing G by H we may thus assume that G acts
trivially on σ . Let v ∈ π . Since τ is smooth, there is an open subgroup K of G fixing
the image of v in τ . Shrinking K , we may assume that K is a uniform pro-p group.
Since kv − v ∈ σ , for k ∈ K , we have (g − 1)(k − 1)v = 0 for g ∈ G and k ∈ K .
Using the binomial formula and the fact that pn kills π , it follows that k p

n
v = v for

k ∈ K . Since K pn is open in K and thus in G, we are done.
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To show that the filtration for i > 0 splits, consider the equation

2l[w] + |�\I[w]| − 1 = j = 2l[w′] + |�\I[w′]| − 1

with [w], [w′] ∈ Wμ/GEs . If l[w] �= l[w′] this equation implies that |�\I[w]|
and |�\I[w′]| differ by at least two. Hence |I[w]| and |I[w′]| differ by at least

two as well. Since H j
ét(Y ,Z/pn) are smooth J (Qp)-modules and the Ext group

Ext1J (Qp)
(vI[w] , vI[w′]) in the category of smooth representations is trivial by Theo-

rem 1.6 (here we use the hypothesis p �= 2), we have a splitting of J (Qp)-modules.
In the case G = GLn,Qp the result holds true for p = 2 as well (see Remark 1.7).

This splitting is automatically Galois equivariant: call the section s and consider
gs, g ∈ GEs . The map t := s − gs decomposes into a direct sum of maps between
generalized Steinberg representations vI and vI ′ with I and I ′ differing by at least
two elements. Hence, by Proposition 2.5, all these maps are trivial and thus t = 0, as
wanted.

To include i = 0, we start by showing that

Ext1J (Qp)
(i I[w],n, vI[w′],n ) = 0, w ∈ T1, w

′ ∈ T3, (6.7)

Ext1J (Qp)
(i�,n, vI[w′],n ) = 0, w′ ∈ T3. (6.8)

For the first equality, consider the exact sequence (recall that |�\I[w]| = 1)

0→ i�,n → i I[w],n → vI[w],n → 0. (6.9)

It yields the exact sequence

Ext1J (Qp)
(vI[w],n, vI[w′],n )→ Ext1J (Qp)

(i I[w],n, vI[w′],n )→ Ext1J (Qp)
(i�,n, vI[w′],n ).

Since

|�\I[w′]| = −2l[w′] + 1+ j = −2l[w′] + 2l[w] + 1 ≥ 3

and |�\I[w]| = 1, |I[w]| and |I[w′]| differ by at least two and the first term in the above
sequence is zero by Theorem 1.6; similarly, since |�| and |I[w′]| differ by at least two,
the right term of the above sequence is zero by Theorem 1.6. Here we used again the
hypothesis p �= 2 (which is not needed in the case G = GLn,Qp , see Remark 1.7).
Hence we have obtained (6.7) and along the way we have shown (6.8) as well.

Moreover, the J (Qp)-equivariant sections are automatically Galois equivariant:
one argues as above using in addition the exact sequence

HomJ (Qp)(vI[w],n, vI[w′],n )→ HomJ (Qp)(i I[w],n, vI[w′],n )→ HomJ (Qp)(i�,n, vI[w′],n ),

induced by the exact sequence (6.9), which shows that the middle term is trivial since
so are the other two terms (by Proposition 2.5).
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6.4 End of the proof of Theorem 6.3

(1) Torsion compactly supported étale cohomology. In order to prove claim (1), we
use the distinguished triangle (6.6). An argument based on the Bruhat decomposition
of F 
 GEs/P(μ), as in the proof of Corollary 5.10, shows that

R
ét(FC ,Z/pn) 

⊕

[w]∈Wμ/GEs

ρ[w],n[−2l[w]] := Ẽ1.

The map

i∗ : R
ét(FC ,Z/pn)→ R
ét(YC ,Z/pn)

can be represented by the map of complexes Ẽ1→ E1 induced by the canonical maps

ρ[w],n = ι�,n ⊗ ρ[w],n → ιI ,n ⊗ ρ[w],n, I[w] ⊂ I , |�\I | = 1.

By Propositions 6.1 and 6.11,

Cone(i∗)[−1] 

⊕

[w]∈Wμ/GEs

vI[w],n ⊗ ρ[w],n[−2l[w] − |�\I[w]|],

as wanted.
(2) p-adic compactly supported étale cohomology. For claim (2), take the exact

sequence (see Sect. 2):

0→ R1 lim←−
n

Hi−1
ét,c (Fwa

C ,Z/pn)→ Hi
ét,c(F

wa
C ,Zp)→ lim←−

n

Hi
ét,c(F

wa
C ,Z/pn)→ 0.

Since

vI[w],n 
 vI[w],n+1 ⊗Z/pn+1 Z/pn, vcontI[w] (Zp) 
 lim←−
n

vI[w],n,

the pro-system {Hi−1
ét,c (Fwa

C ,Z/pn)}n isMittag-Leffler hence the above exact sequence
and claim (1) yield the isomorphism

Hi
ét,c(F

wa
C ,Zp)

∼→ lim←−
n

Hi
ét,c(F

wa
C ,Z/pn)

and claim (2).

Remark 6.14 In [53] Orlik computed �-adic compactly supported étale cohomology
for � �= p. In the context of Theorem 6.3 and for � sufficiently generic with respect to
G he obtained an isomorphism of GEs × J (Qp)-modules

H∗ét,c,Hu(F
wa
C ,Z�) 


⊕

[w]∈Wμ/GEs

v J
I[w](Z�)⊗ ρ[w](Z�)[−n[w]], (6.10)
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where H∗ét,c,Hu denotes Huber’s compactly supported cohomology. The proof follows
the proof for torsion coefficients with two main differences:

(1) It starts with the distinguished triangle associated to the triple (Fwa,F ,Y ):

R
ét,c,Hu(F
wa
C ,Zp)−−→R
ét(FC ,Zp)

i∗−−→R
ét(YC ,�), � = i∗Rπ∗(Z/pn)n .

(2) It uses the fact (from [16, Appendix B.2]) that the representations

H∗ét,c,Hu(F
wa
C ,Zp),R
ét(YC ,�), . . .

are smooth J (Qp)-modules.

As we havementioned in the introduction the p-adic analog of the isomorphism (6.10)
is false and the smoothness property mentioned above does not hold.
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would like to thank Shanwen Wang and the Fudan University, where parts of the paper were written, for
the wonderful working conditions.

Appendix A: Adic potpourri

We gather here, as a reference, some basic facts concerning pseudo-adic spaces and
compactly supported étale cohomology.

Pseudo-adic spaces

We start with pseudo-adic spaces. Recall that, Huber defines in [36] the category PPA
of pre-pseudo-adic spaces, consisting of pairs X = (X , |X |), where X is an adic space
and |X | a subset of X , morphisms X → Y being morphisms of adic spaces X → Y
that send |X | into |Y |. A morphism f : X → Y induces therefore a morphism of adic
spaces f : X → Y and a map of topological spaces | f | : |X | → |Y | (we endow |X |
with the topology induced from X ). We say that f is étale if f is étale and if |X | is
open in f −1(|Y |) (this implies that | f | is an open map). The étale site X ét of X is
the category of pre-pseudo-adic spaces Y étale over X with the topology such that a
family of morphisms fi : Yi → Y in this category is a covering if |Y | = ∪i | fi |(|Yi |).

We mention the following properties of this construction, which we need, and we
refer the reader to Huber’s book [36] for the proofs and details (see especially Sections
1.10, 2.3):

(1) The category PPA contains (as full subcategory) the category of adic spaces (via
X !→ (X , |X |)) and the étale topoi of X and (X , |X |) are equivalent.

(2) If X is an adic space and S ⊂ T are subsets of X , the natural morphism i :
(X , S) → (X , T ) in PPA satisfies i∗i∗F 
 F , for all F ∈ Sh((X , S)ét), thus
i∗ : Sh((X , S)ét)→ Sh((X , T )ét) is fully faithful. Moreover, if S is closed in T ,
then i∗ is exact and identifiesSh((X , S)ét)with the full subcategoryofSh((X , T )ét)
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consisting of sheaves F whose restriction to (T−S)ét is the final object of Sh((T−
S)ét) ([36, Lemma 2.3.11]).

(3) Let PA be the full subcategory of PPA consisting of pseudo-adic spaces, i.e., those
X for which |X | is convex and locally pro-constructible in X . An object X of PA
is called quasi-compact/quasi-separated if |X | is so, and a map f : X → Y in
PA is called quasi-compact/quasi-separated if | f | is so. If f : X → Y is a quasi-
compact quasi-separated morphism in PA and if f is adic (i.e., f is adic), then
Rn f∗ commuteswith pseudo-filtered inductive limits. If X ∈ PA is quasi-compact
quasi-separated, then Hn

ét(X ,−) commutes with pseudo-filtered inductive limits.
([36, Lemma 2.3.13]).

(4) If x is a point of an adic space X and if K is the henselization of the residue class
field k(x) with respect to the valuation ring k(x)+, there is a natural equivalence
of categories Sh((X , {x})ét) 
 Sh(Spec(K )ét) ([36, Prop. 2.3.10]).

(5) Let P be one of the properties “open, closed, locally closed”. A P-subspace of
X ∈ PPA is an object Y ∈ PPA for which Y is a P-subspace of X and |Y | is a P-
subspace of |X |. The notion of P-embedding in PPA is defined in the obvious way.
If i : X → Y is a locally closed embedding in PPA then i induces an equivalence
Sh(X ét) 
 Sh((Y , i(|X |))ét) ([36, Cor. 2.3.8]). In particular if i : X → Y is a
locally closed embedding of adic spaces then Sh(X ét) 
 Sh((Y , i(|X |))ét).

(6) Amorphism f : X → Y in PPA is finite if f is finite and |X | is closed in f −1(|Y |).
If f : X → Y is a finite morphism in PA, then f∗ : Sh(X ét)→ Sh(Yét) is exact
and commutes with any base change in PA Y ′ → Y ([36, Prop. 2.6.3]).

(7) A geometric point (in the category PPA) is an object S ∈ PA such that S is the
adic spectrum of a separably algebraically closed affinoid field ([36, 1.1.5]) and
|S| = {s}, where s is the closed point of S ([36, 1.1.6]). For a geometric point S,
the functor 
(S,−) induces an equivalence Sh(Sét) 
 Sets. A geometric point
of X ∈ PPA is a morphism u : S → X in PPA, where S is a geometric point.
The stalk of F ∈ Sh(X ét) at S is then FS = 
(S, u∗F). Somewhat more explic-
itly, FS 
 lim−→(V ,v)

F(V ), the limit being over the cofiltered category CS of pairs

(V , v), where V is étale over X and v : S→ V is an X -morphism.

The support of u is by definition u(|S|) ∈ |X |. Two geometric points with the
same support yield isomorphic stalk functors. Moreover, each x ∈ X induces a
geometric point x̄ of X with support x and the family of functors Sh(X ét) →
Sets, F → Fx̄ , for x ∈ |X |, is conservative [36, 2.5.5]. If f : X → Y is a
morphism of analytic pseudo-adic spaces (i.e., X ,Y are analytic adic spaces) and
f is of weakly finite type and quasi-separated, then, for any maximal point y of
|Y | and any F ∈ Sh(X ét), we have a natural isomorphism [36, Th. 2.6.2]

(Rn f∗F)ȳ 
 Hn
ét(X ×Y ȳ, F).

(8) One can define (see [36, Sec. 2.5]), for each geometric point ξ of X ∈ PPA, the
strict localization X(ξ) of X at ξ . It comeswith an X -morphism ξ → X(ξ), and the
isomorphismclass of X(ξ) as X -space depends only on the support of ξ . If X ∈ PA
and ξ, ξ ′ are geometric points of X , a specialization morphism u : ξ → ξ ′ is an
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X -morphism in PA X(ξ)→ X(ξ ′). It induces functorial maps u∗(F) : Fξ ′ → Fξ

for F ∈ Sh(X ét), via the natural isomorphisms 
(X(ξ), F |X(ξ)) 
 Fξ and

(X(ξ ′), F |X(ξ ′)) 
 Fξ ′ .

Compactly supported cohomology

We survey Huber’s compactly supported étale cohomology and introduce continuous
compactly supported étale cohomology.

Huber’s compactly supported étale cohomology

Huber defined compactly supported étale cohomology of analytic pseudo-adic spaces
in [36, Ch. 5]; in [37] he extended this definition to �-adic sheaves. We will briefly
recall its properties.

Fix a prime �. Let X be a taut separated pseudo-adic space locally of +weakly finite
type over C (i.e., over Spa(C,OC )). For i ≥ 0, we set

Hi
ét,c,Hu(X ,Z�) := HiR
c,Hu(X ét, (Z/�n)n), Hi

ét,c,Hu(X ,Q�) := Hi
ét,c,Hu(X ,Z�)⊗Q�,

where the functor R
c,Hu is defined in the following way.
If X is partially proper, then it is the right derived functor of 
c,Hu, i.e., of the left

exact functor


c,Hu : mod(X ét − Z•�)→ mod(Z�), (Fn)n !→ 
c

(
X ét, lim←−

n

Fn

)
.

Here mod(X ét − Z•�) is the category of projective systems (Fn)n of Z�-modules on
X ét such that p

nFn = 0, n ∈ N. Recall that, for an étale sheaf F , 
c(X ét, F) denotes
the abelian group of global sections whose support is proper.

In general one sets

R
c,Hu(X ét, (Fn)n) := R
c,Hu(X ét, (i!Fn)n),

where i : X ↪→ X is a locally closed embedding and X is partially proper. This
definition is, of course, independent of the chosen partially proper compactification.
We have


c,Hu(X ét, (Fn)n) = {(sn)n ∈ lim←−
n


(X ét, Fn)|∪nsupp(sn) is proper}.

We list the following properties:

(1) If X is proper then

R
c,Hu(X ét, (Fn)n) 
 R
(X ét, (Fn)n).
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(2) An isomorphism [37, Lemma 2.3] of exact functors from D+(mod(X ét −Z•�)) to
D+(mod(Z�)):

R
c,Hu = R
! ◦ Rπ∗,

for the discretization functor

π∗ : mod(X ét − Z•�)→ mod(X ét − Z�), (Fn)n !→ lim←−
n

Fn,

and the functor


! : mod(X ét − Z�)→ mod(Z�), F !→ 
c(X ét, F).

(3) If X is quasi-compact, there is an exact sequence [37, Cor. 2.4]

0→ R1 lim←−
n

Hi−1
ét,c (X , Fn)→ Hi

ét,c,Hu(X , (Fn)n)→ lim←−
n

Hi
ét,c(X , Fn)→ 0

(4) Let U be a taut open subspace of X , let Z = X\U , and let i : Z ↪→ X be the
inclusion. Assume that X ,U are partially proper. Then we have a distinguished
triangle

R
c,Hu(Uét, (Fn|U )n)→ R
c,Hu(X ét, (Fn)n)→ R
c(Z ét, i
∗Rπ∗(Fn)n)

(5) Let U be an open covering of X such that every U ∈ U is taut and, for every
U , V ∈ U, there exists a W ∈ U such that U ∪ V ⊂ W . Then, the map

lim−→
U∈U

Hi
ét,c,Hu(U , (Fn|U )n)→ Hi

ét,c,Hu(X , (Fn)n), i ≥ 0,

is an isomorphism [37, Prop. 2.1.].
(6) Let X be adic and partially proper and let G be a locally profinite group acting

continuously on X . Then Hi
ét,c(X ,Z/�n), i ≥ 0, is a smooth G-module [6, Cor.

7.8].

Let us now distinguish two cases.
(i) The case � �= p. We can say more in this case.

(1) If X is as at the beginning of this section and of finite type over C and if (Fn)n is
a quasi-constructible Z•�-module on X ét then the natural map

Hi
ét,c,Hu(X , (Fn)n)→ lim←−

n

Hi
ét,c(X , Fn)

is a bijection. Moreover, the projective system (Hi
ét,c(X , Fn))n is �-adic and every

Hi
ét,c(X , Fn) is a finitely generated Z�-module (hence also Hi

ét,c,Hu(X , (Fn)n) is
a finitely generated Z�-module).
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(2) If X = Y ad, for a separated scheme Y of finite type over C , and if (Fn)n is a
constructible Z•�-module on Yét , there is a natural isomorphism

Hi
ét,c(Y , (Fn)n)

∼→ Hi
ét,c,Hu(X , (Fn)n).

(3) Let X be adic and partially proper and let G be a locally profinite group, with an
open pro-p subgroup, acting continuously on X . Let (Fn)n be a locally constant
overconvergentZ•�-module equipped with a compatible discreteG-action (see [16,
B.1.3] for the definition). Then Hi

ét,c,Hu(X , (Fn)n), i ≥ 0, is a smooth G-module
[16, Prop. B.2.5], [22, 4.1.19].

(ii) The case � = p. In this case cohomology with compact support behaves very
differently. We will discuss an example.

Example 7.1 Let A1
C be the adic affine space of dimension 1; this is a period domain,

with G := Gm,Qp ×Gm,Qp the relevant reductive group [3, 5.3.1, 4.2.2]. We have the
exact sequence

0→ H1
ét(x∞, i∗∞Rπ∗(Z/pn(1))n)→ H2

ét,c,Hu(A
1
C ,Zp(1))→ H2

ét(P
1
C ,Zp(1))

→ H2
ét(x∞, i∗∞Rπ∗(Z/pn(1))n),

where i∞ : x∞ ↪→ P1
C is the point at infinity. Picking the fundamental neighborhoods

of x∞ consisting of closed balls, we compute easily that

i∗∞Riπ∗(Z/pn(1))n 


⎧
⎪⎨

⎪⎩

Zp(1) if i = 0,

lim−→ j
(lim←−n

H1
ét(E( j),Z/pn(1))) if i = 1,

0 if i ≥ 2,

where E( j) is the closed ball centered at x∞ and of radius p− j . We used here the
fact that Hi

ét(E( j),Z/pn(1)) = 0, i ≥ 2. Since Pic(E( j)) = 0, the Kummer exact
sequence implies that

H1
ét(E( j),Z/pn(1)) 
 C{T−1}∗/C{T−1}∗pn .

Hence H2
ét(x∞, i∗∞Rπ∗(Z/pn(1))n) = 0. We also claim that

H1
ét(x∞, i∗∞Rπ∗(Z/pn(1))n) 
 lim−→

j

C{(p j T )−1}∗∧.

Since x∞ is simply a geometric point (thus étale sheaves are acyclic on it), we have
(using the local-global spectral sequence relating Hi

ét(x∞, H j (K )) and Hi+ j
ét (x∞, K )

for a complex of sheaves K , as well as the computation above)

H1
ét(x∞, i∗∞Rπ∗(Z/pn(1))n) 
 H0

ét(x∞, i∗∞R1π∗(Z/pn(1))n) 
 lim−→
j

(lim←−
n

H1
ét(E( j),Z/pn(1)))
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 lim−→
j

(lim←−
n

C{T−1}∗/C{T−1}∗pn ) 
 lim−→
j

C{(p j T )−1}∗∧.

It follows that

H2
ét,c,Hu(A

1
C ,Zp(1)) 
 (lim−→

n

C{(pnT )−1}∗∧)⊕ Zp.

In the case � �= p, the same computation gives Z� as a result since C{(pnT )−1}∗∧
is �-divisible. Note that C{T−1}∗/C∗ = 1+ T−1mC {T−1} and that its image by the
logarithm satisfies

pT−1mC {T−1} ⊂ log
(
1+ T−1mC {T−1}

) ⊂ (pT )−1mC {(pT )−1}.

One gets the same inclusions for the p-adic completion. Hence the above inductive
limit is isomorphic, via the logarithm, to the inductive limit of the (pnT )−1mC {(pnT )−1}
and so

H2
ét,c,Hu(A

1
C ,Zp(1)) 


(
O

P1,∞/C
)⊕ Zp.

Hence the �-adic compactly supported cohomology groups behave very differently
in the cases � = p and � �= p, where H2

ét,c,Hu(A
1
C ,Z�(1)) 
 Z�. Note also that the

action of G(Qp) on H2
ét,c,Hu(A

1
C ,Zp(1)) is not smooth, contrary to the case � �= p.

Continuous compactly supported étale cohomology

We will also study a different version of Huber’s compactly supported cohomology:
For X as in Sect. 1, we define its (continuous) compactly supported cohomology by:

R
c(X ét, (Fn)n) := R lim←−
n

R
c(X ét, Fn).

We have


c(X ét, (Fn)n) =
{

(sn)n ∈ lim←−
n


(X ét, Fn)|supp(sn) is proper
}

.

The following properties are obtained directly from the definition and the corre-
sponding properties for the compactly supported cohomology of Fn’s.

(1) There is an exact sequence

0→ R1 lim←−
n

Hi−1
ét,c (X , Fn)→ Hi

ét,c(X , (Fn)n)→ lim←−
n

Hi
ét,c(X , Fn)→ 0.
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(2) Let U be a taut open subspace of X , let Z = X\U , and let i : Z ↪→ X be the
inclusion. Then we have a distinguished triangle

R
c(Uét, (Fn|U )n)→ R
c(X ét, (Fn)n)→ R
c(Z ét, i
∗(Fn)n).

To lighten the notation, for i ≥ 0, we will set

Hi
ét,c(X ,Zp) := Hi

ét,c(X , (Z/pn)n), Hi
ét,c(X ,Qp) := Hi

ét,c(X ,Zp)⊗Zp Qp.
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