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Abstract
Let g be a Hecke cusp form of half-integral weight, level 4 and belonging to Kohnen’s
plus subspace. Let c(n) denote the nth Fourier coefficient of g, normalized so that
c(n) is real for all n ≥ 1. A theorem of Waldspurger determines the magnitude
of c(n) at fundamental discriminants n by establishing that the square of c(n) is
proportional to the central value of a certain L-function. The signs of the sequence c(n)

however remain mysterious. Conditionally on the Generalized Riemann Hypothesis,
we show that c(n) < 0 and respectively c(n) > 0 holds for a positive proportion of
fundamental discriminants n. Moreover we show that the sequence {c(n)} where n
ranges over fundamental discriminants changes sign a positive proportion of the time.
Unconditionally, it is not known that a positive proportion of these coefficients are
non-zero and we prove results about the sign of c(n) which are of the same quality as
the best known non-vanishing results. Finally we discuss extensions of our result to
general half-integral weight forms g of level 4N with N odd, square-free.

1 Introduction

Let k ≥ 2 be an integer and g be a weight k + 1
2 cusp form for �0(4). Every such g

has a Fourier expansion
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g(z) =
∑

n≥1

c(n)n
(k−1/2)

2 e(nz).

The Fourier coefficients c(n) encode arithmetic information. For instance under cer-
tain hypotheses, Waldspurger’s Theorem shows that for fundamental discriminants d,
the value |c(|d|)|2 is proportional to the central value of an L-function, so that the
magnitude of the L-function essentially determines the size of the coefficient c(n).
However for g with real Fourier coefficients, their signs remain mysterious. In this
article we contribute towards understanding the sign of such coefficients at fundamen-
tal discriminants through examining the number of coefficients which are positive
(respectively negative) as well as the number of sign changes in-between.

Signs of Fourier coefficients of half-integral weight forms have been studied by
many authors following the works of Knopp–Kohnen–Pribitkin [13] and Bruinier–
Kohnen [3], the former of which showed that such forms have infinitely many sign
changes. Subsequent works [9,17,20] showed that the sequence {c(n)} exhibits many
sign changes under suitable conditions (such as the form having real Fourier coeffi-
cients). Notably, Jiang–Lau–Lü–Royer–Wu [11] showed for suitable g that for every
ε > 0 there are more than � X2/9−ε sign changes along square-free integers
n ∈ [1, X ]. They also showed this result can be improved assuming the General-
ized Lindelöf Hypothesis1 with an exponent of 1/4 in place of 2/9.

For an integral weight Hecke cusp form f the second named author and Matomäki
[22] proved a stronger result, establishing a positive proportion of sign changes along
the positive integers. This uses the multiplicativity of the Fourier coefficients of f in a
fundamental way. Fourier coefficients of half-integral weight Hecke cusp forms lack
this property, except at squares. So one may wonder whether the Fourier coefficients
of half-integral weight Hecke cusp forms also exhibit a positive proportion of sign
changes, along the sequence of fundamental discriminants.

In this article we answer this question in the affirmative. We show that under the
assumption of the Generalized Riemann Hypothesis (GRH) there exists a positive
proportion of fundamental discriminants at which the Fourier coefficients of a suitable
half-integral weight form are positive as well as a positive proportion at which the
coefficients are negative. Moreover, we show under GRH that the coefficients exhibit
a positive proportion of sign changes along the sequence of fundamental discriminants.

For simplicity, our results are stated for the Kohnen space S+
k+1/2, which consists of

all weight k + 1/2 modular forms on �0(4) whose nth Fourier coefficient equals
zero whenever (−1)kn ≡ 2, 3 (mod 4). In this space Shimura’s correspondence
between half-integral weight forms and integral weight forms is well understood.
Kohnen proved [14] there exists a Hecke algebra isomorphism between S+

k+1/2 and

the space of level 1 cusp forms of weight 2k. Also, every Hecke2 cusp form g ∈ S+
k+1/2

1 Here the Generalized Lindelöf Hypothesis is assumed for L-functions attached to quadratic twists of level
1 Hecke eigenforms.
2 We call a weight k + 1/2 cusp form on �0(4) a Hecke cusp form if it is an eigenfunction of the Hecke
operator Tp2 (see [27]) for each p > 2.
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can be normalized so that it has real coefficients3 and from here on we assume that g
has been normalized in this way.

Let N� denote the set of fundamental discriminants of the form 8n with n > 0 odd,
square-free. Also, let N�

g(X) = {n ∈ N
� ∩ [1, X ] : c(n) �= 0}.

Theorem 1 Assume the Generalized Riemann Hypothesis. Let k ≥ 2 be an integer
and g ∈ S+

k+1/2 be a Hecke cusp form. Then for all X sufficiently large the number of
sign changes of the sequence {c(n)}

n∈N
�
g(X)

is � X.

In particular, for all X sufficiently large we can find � X integers d ∈ N
� ∩ [1, X ]

such that c(d) < 0, and we can find� X integers d ∈ N
� ∩[1, X ] such that c(d) > 0.

The proof of Theorem 1 uses the explicit form of Waldspurger’s Theorem due to
Kohnen and Zagier [18]. Given a Hecke cusp form g ∈ S+

k+1/2 they show that for each

fundamental discriminant d with (−1)kd > 0 that

|c(|d|)|2 = L
( 1
2 , f ⊗ χd

) · (k − 1)!
πk

· 〈g, g〉
〈 f , f 〉 . (1.1)

Here f is a weight 2k Hecke cusp form of level 1 which corresponds to g as
described above, L(s, f ⊗ χd) is the L-function

L(s, f ⊗ χd) =
∑

n≥1

λ f (n)χd(n)

ns
, Re(s) > 1

where λ f (n) are the Hecke eigenvalues of f , normalized so that λ f (1) = 1 and
|λ f (n)| ≤ d(n) for all n ≥ 1, and χd(·) is the Kronecker symbol. Also,

〈 f , f 〉 =
∫

SL2(Z)\H

y2k | f (z)|2 dxdy
y2

, 〈g, g〉 = 1

6

∫

�0(4)\H

yk+1/2|g(z)|2 dxdy
y2

.

In Theorem 1we assumeGRH for L(s, f ⊗χd) for every fundamental discriminant
d with (−1)kd > 0.

The restriction to d ∈ N
� is important. As the proof of Theorem 3 below will show,

it is easy to produce many positive (resp. negative) coefficients along the integers,
assuming a suitable non-vanishing result.

1.1 Unconditional results

Wealso are able to prove a quantitativelyweaker yet unconditional result. These results
are significantly easier to obtain than our conditional result, Theorem 1.

3 The numbers c(n)n(k−1/2)/2 lie in the field generated overQ by the Fourier coefficients of its Shimura lift,
which is a level 1 Hecke eigenform of weight 2k, so these numbers are real and algebraic (see Proposition
4.2 of [19] and also the remarks before Theorem 1 of [18]).
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Theorem 2 Let k ≥ 2 be an integer and g ∈ S+
k+1/2 be a Hecke cusp form. Then for

any ε > 0 and all X sufficiently large the sequence {c(n)}
n∈N

�
g(X)

has � X1−ε sign

changes.

Theorems 1 and 2 quantitatively match the best known non-vanishing results for
Fourier coefficients of half-integral weight forms that are proved using analytic tech-
niques, conditionally under GRH [8] and unconditionally [25] (resp.). In particular,
Theorem 1 gives a different proof that a positive proportion of these coefficients are
non-zero, for Hecke forms in the Kohnen space. It should be noted that Ono–Skinner
[24] have shown that there exist � X/ log X fundamental discriminants at which
these coefficients are non-zero for such forms.4 However, their result does not give a
quantitative lower bound on the size of the coefficients, whereas the analytic estimates
do provide such information, which is crucial for our argument.

On the other hand, using the result of Ono–Skinner it is not difficult to produce
both many positive Fourier coefficients and many negative ones, at integers.

Theorem 3 Let k ≥ 2 be an integer and g ∈ S+
k+1/2 be a Hecke cusp form. Then, for

all sufficiently large X

#{n ≤ X : c(n) > 0} � X

log X
and #{n ≤ X : c(n) < 0} � X

log X
.

1.2 Extensions beyond the Kohnen plus space

Since by now Shimura’s correspondence is fairly well-understood (see [2]) we show
in the Appendix that the conclusion of Theorems 1 and 2 holds for every half-integral
weight Hecke cusp form on �0(4).5 Additionally, we can prove analogs of Theorems
1 and 2 which hold for weight k + 1

2 (k ≥ 2) cusp forms g of level 4N with N odd
and square-free provided that g corresponds (through Shimura’s correspondence) to
an integral weight newform. The necessary modifications to our argument and precise
statements of the results are in the Appendix.

1.3 Numerical examples

To illustrate our results above with a concrete example consider the following weight
13
2 Hecke cusp form

δ(z) = 60

2π i

(
2G4(4z)θ

′(z) − G ′
4(4z)θ(z)

) =
∑

n≥1
n≡0,1 (mod 4)

αδ(n)e(nz),

4 As discussed above for forms in the Kohnen space the Fourier coefficients are algebraic integers which
lie in a number field [19, Proposition 4.2] so that the Fundamental Lemma of [24] applies.
5 For g /∈ S+

k+1/2 is possible that c(8n)μ2(2n) is zero for each n ∈ N, in this case we detect sign changes

of {c(n)} where n ranges over {n ≤ X : n is even and μ2(n)c(n) �= 0}.
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where

Gk(z) = 1

2
· ζ(1 − k) +

∑

n≥1

σk−1(n)e(nz) and θ(z) =
∑

n∈Z

e(n2z).

The modular form δ(z) corresponds to the modular discriminant 
(z) under the
Shimura lift. Assuming GRH for L( 12 ,
⊗χd) for every fundamental discriminant d,
Theorem 1 implies that there is a positive proportion of sign changes of αδ(n) along
the sequence of fundamental discriminants of the form 8d. In fact numerical evidence
below suggests that the Fourier coefficients of δ(z) change sign approximately one
half of the time. Given a subset L, let Sδ,L(X) denote the number of sign changes of
αδ(n) along n ∈ L∩ [1, X ], and denote byNδ,L(X) the cardinality of L∩ [1, X ]. We
then have the following numerical data.

X 2 × 105 2 × 106 2 × 107 2 × 108 2 × 109

Sδ,N(X) 50291 501163 5000867 50000368 500027782
1

Nδ,N(X)
Sδ,N(X) 0.502915 . . . 0.501163 . . . 0.500086 . . . 0.500003 . . . 0.500027 . . .

If we restrict to N� = {8d : d odd, square-free} then we find the following data.

X 2 × 105 2 × 106 2 × 107 2 × 108 2 × 109

Sδ,N� (X) 5049 50734 506589 5065686 50663938
1

N
δ,N� (X)

Sδ,N� (X) 0.498223 . . . 0.500740 . . . 0.499980 . . . 0.499963 . . . 0.500033 . . .

1.4 Main estimates

The main results follow from the following three propositions. The first two of the
propositions allow us to control the size of c(·) by introducing a mollifier M(·; ·)
which is defined in Sect. 4.2. In our application the specific shape of the mollifier is
crucial to the success of the method. We have constructed this mollifier to counteract
the large values of

exp

⎛

⎝
∑

p≤|d|ε
λ f (p)√

p
χd(p)

⎞

⎠

that contribute to the bulk of themoments of L( 12 , f ⊗χd). Essentially, we aremollify-
ing the L-function through an Euler product, as opposed to traditional methods which
use a Dirichlet series. This approach was sparked by innovations in understanding of
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the moments of L-functions, such as the works of Soundararajan [30], Harper [6], and
Radziwiłł -Soundararajan [26].

Proposition 1.1 Assume GRH. Let g ∈ S+
k+1/2 be a Hecke cusp form. Also, let M(·; ·)

be as defined in Sect. 4.2. Then

∑

n≤X
2n is �-free

|c(8n)|4M
(
(−1)k8n; 1

2

)4 � X .

Proposition 1.2 Let g ∈ S+
k+1/2 be a Hecke cusp form. Also, let M(·; ·) be as defined

in Sect. 4.2. Then

∑

n≤X
2n is �-free

|c(8n)|2M
(
(−1)k8n; 1

2

)2 � X .

The other key ingredient of our results is an estimate for sums of Fourier coefficients
summed against a short Dirichlet polynomial over short intervals. This is proved
through estimates for shifted convolution sums of half-integral weight forms.

Proposition 1.3 Let g be a cusp form of weight k + 1
2 on �0(4). Let (β(n))n≥1 be

complex coefficients such that |β(n)| �ε n
1
2+ε for all ε > 0. Let

M((−1)kn) :=
∑

m≤M

β(m)χ(−1)kn(m)√
m

where χ(−1)kn(m) denotes the Kronecker symbol. Uniformly for 1 ≤ y, M ≤ X
1

1092

∑

X≤x≤2X

∣∣∣∣∣∣∣∣

∑

x≤8n≤x+y
2n is �-free

c(8n)M((−1)k8n)

∣∣∣∣∣∣∣∣

�k X
√
y ·
⎛

⎝ 1

Xk+ 1
2

∑

2n is �-free

|c(8n)M((−1)k8n)|2 · nk− 1
2 e− 4πn

X

⎞

⎠
1/2

+ X1− 1
2184+ε.

In particular, Proposition 1.3 holds for M(·) = M(·; 1
2 ) as defined in Sect. 4.2.
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2 The proof of Theorem 1

The basic method of proof follows a straightforward approach. Observe that since
M((−1)kn; 1

2 ) > 0 (see the discussion before and after (4.18)), if

∣∣∣∣∣∣∣∣

∑

x≤8n≤x+y
2n is �-free

c(8n)M((−1)k8n; 1
2 )

∣∣∣∣∣∣∣∣
<

∑

x≤8n≤x+y
2n is �-free

|c(8n)|M
(
(−1)k8n; 1

2

)

then the sequence {μ2(2n)c(8n)} must have at least one sign change in the interval
[x, x + y]. To analyze the sums above we use a direct approach, which was developed
in [22], where sign changes of integral weight forms was studied. The main inputs are
Propositions 1.1, 1.2 and 1.3.

Lemma 2.1 Let � ≥ 1. There exists δ > 0 such that for 2 ≤ y ≤ X δ we have for all
but at most � X/� integers X ≤ x ≤ 2X that

∣∣∣∣∣∣∣∣

∑

x≤8n≤x+y
2n is �-free

c(8n)M((−1)k8n; 1
2 )

∣∣∣∣∣∣∣∣
≤ �

√
y.

Proof This follows fromMarkov’s inequality combined with Propositions 1.2 and 1.3,
which holds for M(·) = M(·; 1

2 ). ��
Lemma 2.2 Assume GRH. Let 2 ≤ y ≤ X/2. Then for all sufficiently small ε > 0
there exists a subset of integers X ≤ x ≤ 2X which contains� εX integers such that

∑

x≤8n≤x+y
2n is �-free

|c(8n)|M
(
(−1)k8n; 1

2

)
> εy.

Proof For sake of brevity write C(n) = |c(8n)|M((−1)k8n; 1
2 ). By Hölder’s inequal-

ity

∑

X≤8n≤2X
2n is �-free

C(n)2 ≤

⎛

⎜⎜⎝
∑

X≤8n≤2X
2n is �-free

C(n)

⎞

⎟⎟⎠

2/3⎛

⎜⎜⎝
∑

X≤8n≤2X
2n is �-free

C(n)4

⎞

⎟⎟⎠

1/3

. (2.1)

Applying Proposition 1.2 it follows that the LHS is � X . Applying Proposition 1.1
the second sum on the RHS is � X . Hence, we conclude that

∑

X≤8n≤2X
2n is �-free

C(n) � X .
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Also, by Proposition 1.2 we have

∑

X≤8n≤2X
2n is �-free
C(n)>1/ε

C(n) < ε
∑

X≤8n≤2X
2n is �-free

C(n)2 � εX .

So that for ε sufficiently small

∑

X≤8n≤2X
2n is �-free
C(n)≤1/ε

C(n) � X . (2.2)

Let U denote the subset of integers X ≤ x ≤ 2X such that

∑

x≤8n≤x+y
2n is �-free
C(n)≤1/ε

C(n) ≤ εy.

Using (2.2) we get that

X �
∑

X+y≤8n≤2X
2n is �-free
C(n)≤1/ε

C(n) ≤ 1

y

∑

X≤x≤2X

∑

x≤8n≤x+y
2n is �-free
C(n)≤1/ε

C(n) (2.3)

where to get the last inequality note that each C(n) which appears in the sum on the
LHS is counted �y� + 1 times in the sums on the RHS. The RHS equals

= 1

y

⎛

⎜⎝
∑

x∈U
+

∑

X≤x≤2X
x /∈U

⎞

⎟⎠
∑

x≤8n≤x+y
2n is �-free
C(n)≤1/ε

C(n)

� 1

y
·
⎛

⎜⎝(εy)X + y

ε
·
∑

X≤x≤2X
x /∈U

1

⎞

⎟⎠ .

Since the first term above is of size εX and using (2.3) wemust have that the second
term is � X since ε is sufficiently small. So #{X ≤ x ≤ 2X : x /∈ U } � εX . ��
Proof of Theorem 1 In Lemma 2.1 take � = 1

ε2
, y = 1

ε6
so for except at most � ε2X

integers X ≤ x ≤ 2X we have that

∣∣∣∣∣∣∣∣

∑

x≤8n≤x+y
2n is �-free

c(8n)M((−1)k8n; 1
2 )

∣∣∣∣∣∣∣∣
≤ �

√
y = 1

ε5
. (2.4)

123



Signs of Fourier coefficients of half-integral weight… 1561

In Lemma 2.2 take y = 1
ε6

so there are � εX integers X ≤ x ≤ 2X such that

∑

x≤8n≤x+y
2n is �-free

|c(8n)|M
(
(−1)k8n; 1

2

)
> εy = 1

ε5
. (2.5)

Combining (2.4) and (2.5) we get that there are � εX integers X ≤ x ≤ 2X such
that

∑

x≤8n≤x+y
2n is �-free

|c(8n)|M
(
(−1)k8n; 1

2

)
>

∣∣∣∣∣∣∣∣

∑

x≤8n≤x+y
2n is �-free

c(8n)M
(
(−1)k8n; 1

2

)
∣∣∣∣∣∣∣∣
.

SinceM > 0 (see the discussion after (4.18)) this implies there exists at least� εX
integers X ≤ x ≤ 2X such that [x, x + y] contains a sign change of the sequence
{μ2(2n)c(8n)}. Since every sign change of {μ2(2n)c(8n)} on [X , 2X ] yields at most
�y� + 1 intervals [x, x + y] which contain a sign change it follows that there are at
least � ε X

y = ε7X sign changes in [X , 2X ], which completes the proof of Theorem
1. ��

3 The proofs of Theorems 2 and 3

3.1 The proof of Theorem 2

Throughout we will need the following estimate.

Lemma 3.1 We have

∑

X≤n≤2X
2n is �-free

|c(8n)|2 � X .

Proof This follows immediately by applying (1.1) along with Proposition 5.1 below
with u = 1. ��

We are now ready to start the preparations for the proof of Theorem 2, which as it
turns out is considerably easier to prove than Theorem 1.

Lemma 3.2 Let � ≥ 1. There exists δ > 0 such that for all 2 ≤ y ≤ X δ we have for
all but at most � X/� integers X ≤ x ≤ 2X that

∣∣∣∣∣∣∣∣

∑

x≤8n≤x+y
2n is �-free

c(8n)

∣∣∣∣∣∣∣∣
≤ �

√
y.
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Proof This follows from Markov’s inequality combined with Proposition 1.3 (with
the choice β(1) = 1 and β(m) = 0 for all m ≥ 2) and Lemma 3.1. ��

Lemma 3.3 Let ε > 0 and 2 ≤ y ≤ X/2. Then there exist � X1− 3
2 ε integers

X ≤ x ≤ 2X such that

∑

x≤8n≤x+y
2n is �-free

|c(8n)| >
y

Xε
.

Proof Note that using (1.1) and Heath-Brown’s result [7, Theorem 2] we get that

∑

X≤8n≤2X
2n is �-free

|c(8n)|4 � X1+ε.

Hence, using the above estimate alongwith Lemma 3.1we can applyHölder’s inequal-
ity as in (2.1) to get

∑

X≤n≤2X
2n is �-free

|c(8n)| � X1−ε/2. (3.1)

Also, using Lemma 3.1 we have

∑

X≤8n≤2X
2n is �-free|c(8n)|>Xε

|c(8n)| < X−ε
∑

X≤8n≤2X
2n is �-free

|c(8n)|2 � X1−ε.

So combining this along with (3.1) we get

∑

X≤8n≤2X
2n is �-free|c(8n)|≤Xε

|c(8n)| � X1−ε/2. (3.2)

Let U denote the subset of integers X ≤ x ≤ 2X such that

∑

x≤8n≤x+y
2n is �-free|c(8n)|≤Xε

|c(8n)| ≤ y

Xε
.
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Using (3.2) and arguing as in (2.3) we get that

X1−ε/2 �
∑

X+y≤8n≤2X
2n is �-free|c(8n)|≤Xε

|c(8n)| ≤ 1

y

∑

X≤x≤2X

∑

x≤8n≤x+y
2n is �-free|c(8n)|≤Xε

|c(8n)|

= 1

y

⎛

⎜⎝
∑

x∈U
+

∑

X≤x≤2X
x /∈U

⎞

⎟⎠
∑

x≤8n≤x+y
2n is �-free|c(8n)|≤Xε

|c(8n)|

� 1

y
·
⎛

⎜⎝
y

Xε
X + yXε ·

∑

X≤x≤2X
x /∈U

1

⎞

⎟⎠ .

Since the first term is of size X1−ε we must have that the second term is � X1−ε/2

so that #{X ≤ x ≤ 2X : x /∈ U } � X1− 3
2 ε. ��

We are now ready to prove Theorem 2.

Proof of Theorem 2 Let y = X6ε and � = y1/2

Xε . By Lemma 3.2 we have

∣∣∣∣∣∣∣∣

∑

x≤8n≤x+y
2n is �-free

c(8n)

∣∣∣∣∣∣∣∣
≤ y

Xε

for all X ≤ x ≤ 2X with at most X1+ε y−1/2 = X1−2ε exceptions. On the other hand,
by Lemma 3.3 we have

∑

x≤8n≤x+y
2n is �-free

|c(8n)| >
y

Xε

on a subset of cardinality at least X1−3ε/2. Therefore the two subsets intersect on at
least � X1−3ε/2 values of x , and therefore give rise to at least X1−15ε/2 sign changes
in [X , 2X ]. ��

3.2 The proof of Theorem 3

The proof of Theorem 3 is completely elementary and does not depend on any of the
other techniques developed here.

Proof of Theorem 3 Let g ∈ S+
k+1/2 be a Hecke cusp form and f denote the weight 2k

Hecke cusp form of level 1 that corresponds to g. For d a fundamental discriminant
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with (−1)kd > 0

c(n2|d|) = c(|d|)
∑

r |n

μ(r)χd(r)√
r

λ f

(n
r

)
, (3.3)

where λ f (n) denotes the nth Hecke eigenvalue of f (see [18, Eqn (2)]). In particular
if p is prime this becomes

c(|d|p2) = c(|d|)
(

λ f (p) − χd(p)√
p

)
.

Since there exists p which depends at most on k such that6 λ f (p) < −2/
√
p it

follows that if c(|d|) �= 0 then c(|d|) and c(|d|p2) have opposite signs. By Ono and
Skinner’s result there are � X/(p2 log(X/p2)) � X/ log X fundamental discrimi-
nants |d| ≤ X/p2 such that c(|d|) �= 0. So by considering the signs of the Fourier
coefficients c(n) at n = |d| ≤ X/p2 with c(|d|) �= 0 and atm = |d|p2 ≤ X we arrive
at the claimed result. ��

4 Upper bounds for mollifiedmoments

Let f be a level 1, Hecke cusp form of weight 2k. The aim of this section is to compute
an upper bound for mollified moments of L( 12 , f ⊗ χd), conditionally under GRH.
This gives an upper bound for the mean square of the mollified Fourier coefficients of
g ∈ S+

k+1/2.

The second moment L( 12 , f ⊗ χd) has been asymptotically computed assuming
GRH by Soundararajan and Young [31]. However, a direct adaptation of their method
cannot handle the introduction of a mollifier of length � |d|ε. For this reason we
use a different approach, which uses the refinement of Soundararajan’s [30] method
for upper bounds on moments due to Harper [6] as well as the construction of an
appropriate mollifier, which is based on an iterative construction and roughly has the
structure of an Euler product. A similar mollifier and iterative approach was developed
by Soundararajan and Radziwiłł [26].

The main result is

6 To see this, use the zero free regions for L(s, f ), L(s, sym2 f ) and the Hecke relation λ f (p)
2 =

1 + λ f (p
2) to get that for y sufficiently large in terms of k that

∣∣∣∣∣∣∣∣∣

∑

p≤y
|λ f (p)|≥2p−1/2

λ f (p)

∣∣∣∣∣∣∣∣∣

<
∑

p≤y
|λ f (p)|≥2p−1/2

|λ f (p)|,

so the claim follows.
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Proposition 4.1 Assume GRH. Let l, κ > 0 such that l · κ ∈ N and κ · l ≤ C. Also, let
M(·; 1

κ
) = M(·; 1

κ
, x,C) be as in Sect. 4.2. Then

∑�

|d|≤x

L
( 1
2 , f ⊗ χd

)l
M
(
d; 1

κ

)l·κ � x,

where the sum is over fundamental discriminants and the implied constant depends
on f , l, κ .

Note that by Waldspurger’s formula (see (1.1)), we know L( 12 , f ⊗ χd) ≥ 0, so
that L( 12 , f ⊗ χd)

l is unambiguous.
Using the proposition above we can easily deduce Proposition 1.1.

Proof of Proposition 1.1 ] Using (1.1) it follows that

∑

1≤n≤x
2n is �-free

|c(8n)|4M
(
(−1)k8n; 1

2

)4 �
∑�

|d|≤8x

L
( 1
2 , f ⊗ χd

)2
M
(
d; 1

2

)4 � x

where the sum is over all fundamental discriminants. ��

4.1 Preliminary results

In this sectionwe introduce ourmollifier for theFourier coefficients of g at fundamental
discriminants. The shape of the mollifier is motivated by Harper’s refinement [6] of
Soundararajan’s [30] bounds for moments.

Notation. Let λ(n) = (−1)�(n) denote the Liouville function (which should not be
confused with λ f (n)). Denote by ν(n) the multiplicative function with ν(pa) = 1

a!
and write ν j (n) = (ν ∗· · ·∗ν)(n) for the j-fold convolution of ν. A useful observation
is that

ν j (p
a) = ja

a! , (4.1)

which may be proved by induction or otherwise. Also for an interval I , m ∈ Z and
a(·) a real-valued completely multiplicative function let

PI (m; a(·)) =
∑

p∈I

a(p)√
p

(
m

p

)
.

Also, given a statement S we let 1S equal one if S is true and zero otherwise.

An L-function inequality. We now prove an inequality in the spirit of Harper’s work
on sharp upper bounds formoments of L-functions, in the context of quadratic twists of
L-functions attached to Hecke cusp forms. The upshot of the inequality is it essentially
allows us to almost always bound the L-function by a very short Dirichlet polynomial.
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Let us now introduce the following notation, which will be used throughout this
section. Let l, κ > 0 be such that l · κ ∈ N and suppose that 1 ≤ l · κ ≤ C . Also, let
η1, η2 > 0 be sufficiently small in terms of C . For j = 0, . . . , J let

θ j = η1
e j

(log log x)5
and � j = 2�θ−3/4

j �, (4.2)

where J is chosen so that η2 ≤ θJ ≤ eη2 (so J � log log log x). For j = 1, . . . , J let
I j = (xθ j−1 , xθ j ] and set I0 = (c, xθ0 ], where c ≥ 2 is sufficiently large in terms of κ

and C . Note that the choice of parameters θ j , � j depends on C and is independent of
l, κ satisfying 1 ≤ l · κ ≤ C .

For j = 0, . . . , J and t > 0 let

w(t; j) = 1

t1/(θ j log x)

(
1 − log t

θ j log x

)

and define the completely multiplicative function a(·; j) by

a(p; j) = λ f (p)w(p; j), (4.3)

and note |a(p; j)| ≤ 2. The smooth weights w(·; j) appear for technical reasons and
their effect is mild.

Let � be an positive even integer. For t ∈ R, let

E�(t) =
∑

s≤�

t s

s! .

Note E�(t) ≥ 1 if t ≥ 0 and E�(t) > 0 for any t ∈ R since � is even; the latter
inequality may be seen using the Taylor expansion for et . Moreover, using the Taylor
expansion it follows for t ≤ �/e2 that

et ≤ (1 + e−�)E�(t) (4.4)

(see [26, Lemma 1]).
For each j = 0, . . . , J let

Dj (m; l) =
j∏

r=0

(1 + e−� j )E�r (l PIr (m; a(·; j))) (4.5)
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and note Dj (m; l) > 0, since each term in the product is > 0. A useful observation is
that for a positive integer s

PI (m; a(·))s =
∑

p1,...,ps∈I

a(p1 · · · ps)√
p1 · · · ps

(
m

p1 · · · ps
)

=
∑

p|n⇒p∈I
�(n)=s

a(n)√
n

(m
n

) ∑

p1···ps=n

1

= s!
∑

p|n⇒p∈I
�(n)=s

a(n)√
n

(m
n

)
ν(n).

(4.6)

Additionally, for any real number l �= 0

E�(l PI (m; a(·))) =
∑

s≤�

ls

s! PI (m)s

=
∑

p|n⇒p∈I
�(n)≤�

l�(n)a(n)ν(n)√
n

(m
n

)
.

(4.7)

We are now ready to state our main inequality for L( 12 , f ⊗ χd).

Proposition 4.2 Assume GRH. Suppose that 1 ≤ |d| ≤ x is a fundamental discrimi-
nant and l > 0 is a real number. Also let

A(d) = A(d; f ) =
∏

p|d
p>3

(
1 + λ f (p2) − 1

p

)
.

Let � j , θ j , I j and a(·, j) be as in (4.2) and (4.3) (resp.). Then there exists a sufficiently
large real number C1 = C1(l) > 0 such that for each |d| ≤ x either:

|PI0(d; a(·, j))| ≥ �0

le2
(4.8)

for some 0 ≤ j ≤ J or

(A(d) log x)l/2 L( 12 , f ⊗ χd)
l

� DJ (d; l) +
∑

0≤ j≤J−1
j+1≤u≤J

(
1

θ j

)C1

exp

(
3l

θ j

)
Dj (d; l)

×
(
e2l PI j+1(d; a(·, u))

� j+1

)s j+1

,

(4.9)
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for any even integers s1, . . . , sJ , where the implied constant depends on f and l.

Proof Applying Theorem 2.1 of Chandee [4] gives, for any X ≥ 10, that

L
( 1
2 , f ⊗ χd

) ≤ exp

⎛

⎝
∑

pn≤X

χd(pn)(αn
p + βn

p)

npn( 12+ 1
log X )

log X/pn

log X
+ 3 · log |d|

log X
+ O(1)

⎞

⎠ ,

(4.10)

where αp, βp are the Satake parameters (note αn
p +βn

p is real-valued see [21, Remark
2]). In the sum over primes, the contribution from the prime powers with n ≥ 3 is
bounded so that it may be included in the O(1) term. Also, noting that α2

p + β2
p =

λ f (p2) − 1 the squares of primes contribute

1

2
·
∑

p≤X
p�d

(λ f (p2) − 1)

p1+
2

log X

log X/p2

log X
= −1

2
log log X −

∑

p≤X
p|d

(λ f (p2) − 1)

2p
+ O (1)

(4.11)

where the implied constant depends on f .
For r = 0, . . . , J , let Er be the set of fundamental discriminants d such that

maxr≤u≤J |PIr (d; a(·; u))| < �r
le2

. For each d we must have one of the following: (i)
d /∈ E0; (ii) d ∈ Er for each 0 ≤ r ≤ J ; (iii) there exists 0 ≤ j ≤ J − 1 such that
d ∈ Er for 0 ≤ r ≤ j and d /∈ E j+1. Hence, we get for each fundamental discriminant
with |d| ≤ x either:

max
0≤u≤J

|PI0(d; a(·; u))| ≥ �0

le2
; (4.12)

max
j≤u≤J

|PI j (d; a(·; u))| <
� j

le2
for each j = 0, . . . , J ; (4.13)

or for some j = 0, . . . , J − 1

max
r≤u≤J

|PIr (d; a(·; u))| <
�r

le2
for each r ≤ j (4.14)

and

max
j+1≤u≤J

|PI j+1(d; a(·; u))| ≥ � j+1

le2
. (4.15)

Here (4.12), (4.13) correspond to possibilities (i) and (ii) above (resp.), while (4.14)
and (4.15) corresponds to (iii).
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If (4.12) holds for d then we are done. If (4.13) holds, we apply (4.10) with X = xθJ

and so the term 3 · log |d|
log X is � 1. Also, the contribution from (4.11) is

− 1
2 log log x −

∑

p≤X
p|d

(λ f (p2) − 1)

2p
+ O(1).

Hence, applying these estimates along with (4.4) we get that

(A(d) log x)l/2 L( 12 , f ⊗ χd)
l � exp

⎛

⎝l
∑

p≤xθJ

a(p; J )√
p

χd(p)

⎞

⎠

�
J∏

j=0

exp
(
l PI j (d; a(·; J ))

)

≤
J∏

j=0

(1 + e−� j )E� j (l PI j (m; a(·; J ))) = DJ (d; l).

(4.16)

Finally, if (4.14) and (4.15) hold we apply (4.10) with X = xθ j and for each
0 ≤ r ≤ j we argue as above and bound the term exp(l PIr (d; a(·; j))) by (1 +
e−�r )E� j (l PIr (d; a(·, j))). In (4.10) we use the inequality 3 · log |d|

log X ≤ 3
θ j

and note
that the contribution from the squares of primes (4.11) is

− 1
2 log log x −

∑

p|d

(λ f (p2) − 1)

2p
+ O

(
log

1

θ j

)
.

So that applying these estimates, we get that for any non-negative, even integer s j+1

(A(d) log x)l/2 L( 12 , f ⊗ χd)
l

�
(
1

θ j

)C1

exp(3l/θ j )Dj (d; l) max
j+1≤u≤J

(
e2l PI j+1(d; a(·, u))

� j+1

)s j+1

,
(4.17)

where we have included the extra factor

max
j+1≤u≤J

(
e2l PI j+1(d; a(·, u))

� j+1

)s j+1

≥ 1.

Combining (4.16) and (4.17) and using the inequality max(a, b) ≤ a + b for
a, b ≥ 0 gives (4.9). ��
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4.2 The definition of themollifier

With Proposition 4.2 in mind we now choose our mollifier so that it will counteract
the large values of DJ (d; l). For j = 0, . . . , J let

Mj (m; 1
κ
) =

∑

p|n⇒p∈I j
�(n)≤� j

κ−�(n)a(n; J )λ(n)√
n

ν(n)
(m
n

)
,

where � j , θ j and I j are as in (4.2). Let

M(m; 1
κ
) = (log x)1/(2κ)

∏

0≤ j≤J

M j
(
m; 1

κ

)
. (4.18)

A useful observation is that M(m; 1
κ
) > 0, which can be seen by using (4.7)

along with the fact that E�(t) > 0 for even � and t ∈ R. Also, let δ0 = ∑
j≤J � jθ j .

Observe that by construction δ0 � 1 is sufficiently small and the length of the Dirichlet
polynomial M(m; 1

κ
) is xδ0 . Also,

M(m; 1
κ
)l·κ = (log x)l/2

∑

n≤xl·κδ0

h(n)a(n; J )λ(n)

κ�(n)
√
n

(m
n

)
(4.19)

where

h(n) =
∑

n0···nJ=n
p|n0⇒p∈I0,...,p|nJ⇒p∈IJ

�(n0)≤l·κ�0,...,�(nJ )≤l·κ�J

νl·κ(n0; �0) · · · νl·κ(nJ ; �J ). (4.20)

and for n, r , � ∈ N

νr (n; �) =
∑

n1···nr=n
�(n1)≤�,...,�(nr )≤�

ν(n1) · · · ν(nr ). (4.21)

Note that νr (n; �) ≤ νr (n) and if �(n) ≤ � then νr (n; �) = νr (n). Also,

M(m; 1
κ
)l·κ � x (l·κ)δ0(log x)l/2, (4.22)

where the implied constant depends on κ (note that
∑

n≤y κ−�(n) � y(log y)
1
κ
−1

where the implied constant depends on κ , for any y ≥ 3.)

4.3 The proof of Proposition 4.1

We first require the following fairly standard lemma, which follows from Poisson
summation.
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Lemma 4.1 Let F be a Schwartz function such that its Fourier transform F̂ has com-
pact support in (−A, A), for some fixed A > 0. Also, let I0, . . . , IJ ⊂ [1, x] be disjoint
intervals of the form I0 = (c, xθ0 ], I j = (xθ j−1 , xθ j ] where θ0, . . . , θJ ∈ R and c ≥ 1
is fixed. Suppose �0, . . . , �J ≥ 1 are real numbers such that

∑J
j=0 � jθ j < 1/2. Then

for any arithmetic function g we have

∑

m∈Z

∏

0≤ j≤J

∑

p|n⇒p∈I j
�(n)≤� j

g(n)
(m
n

)
√
n

F
(m
x

)
= F̂(0)x

∏

0≤ j≤J

∑

p|n⇒p∈I j
�(n2)≤� j

g(n2)

n

ϕ(n2)

n2
.

(4.23)

Proof The LHS of (4.23) equals

∑

n0,...,nJ∈N

p|n0⇒p∈I0,...,p|nJ⇒p∈I j
�(n0)≤�0,...,�(nJ )≤�J

g(n0) · · · g(nJ )√
n0 · · · nJ

∑

m

(
m

n0 · · · nJ

)
F
(m
x

)
. (4.24)

Using Poisson summation, see Remark 1 of [21], we get that for n ≤ X1/2 if n = �
that

∑

m

(m
n

)
F
(m
x

)
= F̂(0)x

ϕ(n)

n

and forn �= � the above sumequals zero.By assumptionn0 · · · nJ ≤ x�0θ0 · · · x�J θJ <

x1/2. Hence, the inner sum in (4.24) equals zero unless n0 · · · nJ = � and since
(n j , ni ) = 1 for i �= j in this case n0, . . . , nJ = �. We conclude that the inner sum
in (4.24) equals

F̂(0)x
ϕ(n0 · · · nJ )

n0 · · · nJ
= F̂(0)x

ϕ(n0) · · · ϕ(nJ )

n0 · · · nJ

when n0, . . . , nJ = � and is zero otherwise, thereby giving the claim. ��

To prove Proposition 4.1 we will use Proposition 4.2 and then apply Lemma 4.1.
This leaves us with the problem of bounding the resulting sum. This task will be
accomplished in the next two lemmas.
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Lemma 4.2 Let a(·), b(·) be real-valued, completely multiplicative functions with
|a(p)|, |b(p)| ≤ 2. Then for each j = 0, . . . , J

∑

mn=�
p|mn⇒p∈I j

�(m)≤(l·κ)� j ,�(n)≤� j

l�(n)a(m)b(n)λ(m)

κ�(m)
√
mn

νl·κ(m; � j )ν(n)
ϕ(mn)

mn

=
(
1 + O

(
1 j=0 · (log x)O(1) + 1

2� j

))
∏

p∈I j

(
1 + l2

α(p)

2p
+ O

(
1

p2

))
,

(4.25)

where

α(p) = α(p; a(·), b(·)) = (a(p) − b(p))2, (4.26)

and the implied constants depend on κ and l.

Remark 1 Later we will take a(·) = a(·; J ) and b = a(·; j) with j < J (see (4.3)).
Observe that

∑

p≤xθ j

α(p)

p
=

∑

p≤xθ j

λ f (p)2

p
(w(p; J ) − w(p; j))2 �

∑

p≤xθ j

1

p
· log p

θ j log x
� 1.

(4.27)

Proof In the sum over m, n on the LHS of (4.25) write mn = r2 and let

f1(m) = a(m)λ(m)νl·κ(m)

κ�(m)
and f2(n) = l�(n)b(n)ν(n).

We will proceed by estimating the sum on the LHS of (4.25) in terms of an Euler
product. To this end, observe that ifmax{�(n),�(m)} ≥ � j then 2�(m)+�(n)/2� j ≥ 1;
so using this along with the remarks following (4.21) the sum on the LHS of (4.25)
equals

∑

p|r⇒p∈I j

1

r
( f1 ∗ f2)(r

2)
ϕ(r2)

r2
+ O

⎛

⎝ 1

2� j

∑

p|r⇒p∈I j

(| f1| ∗ | f2|)(r2)
r

⎞

⎠ . (4.28)

The error term in (4.28) is

� 1

2� j

∏

p∈I j

(
1 + O

(
1

p

))
�
⎧
⎨

⎩

1
2� j

(
θ j

θ j−1

)O(1) � 1
2� j

if j �= 0,
(log x)O(1)

2�0
if j = 0.

(4.29)
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Recalling (4.1), the main term in (4.28) is

=
∏

p∈I j

(
1 − l2a(p)b(p)

p
+ l2a(p)2

2p
+ l2b(p)2

2p
+ O

(
1

p2

))
.

��

Lemma 4.3 Let a(·), b(·) be real-valued, completely multiplicative functions with
a(p), b(p) � 1. Then for each j = 0, . . . , J and any even integer s ≥ 4(l · κ)� j

∣∣∣∣∣∣∣∣∣∣∣

∑

mn=�
p|mn⇒p∈I j

�(m)≤(l·κ)� j ,�(n)=s

a(m)b(n)λ(m)

κ�(m)
√
mn

νκ·l(m; � j )ν(n)
ϕ(mn)

mn

∣∣∣∣∣∣∣∣∣∣∣

� 1 j=0 · (log x)O(1) + 1

2s/2� 3
8 s�!

⎛

⎝1 +
∑

p∈I j

b(p)2

p

⎞

⎠
s/2

,

(4.30)

where the implied constant depends on κ and l.

Proof In the sum on the LHS of (4.30) writem = gm1, n = gn1 where g = (m, n), so
thatmn = � implies thatm1 = � and n1 = �. Also recall that νκ·l(m; � j ) ≤ νκ·l(m).
Hence, this sum is

�
∑

p|gmn⇒p∈I j
�(g)≤(l·κ)� j ,�(gn2)=s

|a(g)b(g)|a(m)2b(n)2

κ2�(m)+�(g)gmn
νl·κ(g)νl·κ(m2)ν(n2), (4.31)

where we have also used the estimates νr (ab) ≤ νr (a)νr (b) and ν(a) ≤ 1, for
a, b, r ∈ N, which follow from (4.1). The sum over m is

�
∑

p|m⇒p∈I j

a(m)2νl·κ(m2)

κ2�(m)m
�

∏

p∈I j

(
1 + (l · κ)2

2
· a(p)2

κ2 p

)

�
⎧
⎨

⎩

(
θ j

θ j−1

)O(1) � 1 if j �= 0,

(log x)O(1) if j = 0.
(4.32)
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Hence, using (4.32) along with the inequality ν(n2) ≤ ν(n)2−�(n) it follows that
(4.31) is

� (1 j=0(log x)
O(1) + 1)

∑

p|g⇒p∈I j
�(g)≤(l·κ)� j

|a(g)b(g)|
κ�(g)g

νl·κ(g)
∑

p|n⇒p∈I j
�(n)=(s−�(g))/2

b(n)2

2�(n)n
ν(n)

= (1 j=0(log x)
O(1) + 1)

∑

p|g⇒p∈I j
�(g)≤(l·κ)� j

2|�(g)

|a(g)b(g)|
κ�(g)g

νl·κ(g)

[
1

((s − �(g))/2)!

×
⎛

⎝1

2

∑

p∈I j

b(p)2

p

⎞

⎠
(s−�(g))/2

⎤

⎥⎦ ,

(4.33)

by (4.6). Using the assumption that s ≥ 4(l · κ)� j gives s − �(g) ≥ 3
4 s for g with

�(g) ≤ (l ·κ)� j . This allows us to bound the bracketed term on the RHS of (4.33) by

2�(g)/2 · 1

2s/2� 3
8 s�!

⎛

⎝1 +
∑

p∈I j

b(p)2

p

⎞

⎠
s/2

.

Applying this estimate in (4.33) it follows that the RHS of (4.33) is bounded by

� (1 j=0(log x)O(1) + 1)

2s/2� 3
8 s�!

⎛

⎝1 +
∑

p∈I j

b(p)2

p

⎞

⎠
s/2

∑

p|g⇒p∈I j

(4l)�(g)

g

� (1 j=0(log x)O(1) + 1)

2s/2� 3
8 s�!

⎛

⎝1 +
∑

p∈I j

b(p)2

p

⎞

⎠
s/2

.

��
In the next lemma we estimate averages of our mollifier M as defined in Sect. 4.2

against the terms which appear in Proposition 4.2.

Lemma 4.4 For j = 0, . . . , J let s j be an even integer with 4(l · κ)� j ≤ s j ≤ 2
5θ j

.

Then we have the following estimates:

∑�

|d|≤x

DJ (d; l)M(d; 1
κ
)l·κ � x(log x)l/2; (4.34)

∑�

|d|≤X

M(d; 1
κ
)l·κ PI0(d; a(·; u))s0 � x(log x)O(1) s0!

2s0/2� 3
8 s0�!

⎛

⎝
∑

p∈I0

a(p; u)2

p

⎞

⎠
s0/2

;

(4.35)
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∑�

|d|≤X

D j (d; l)PI j+1(d; a(·; u))s j+1M(d; 1
κ
)l·κ

� x(log x)l/2e2l
2(J− j) s j+1!

2s j+1/2� 3
8 s j+1�!

⎛

⎝
∑

p∈I j+1

a(p; u)2

p

⎞

⎠
s j+1/2

(4.36)

for each j = 0, . . . , J − 1. The implied constants depend at most on f , κ, l (and not
on j, u).

Proof We will first prove (4.36), which is the most complicated of the bounds, and at
the end of the proof we will indicate how to modify the argument to establish (4.34)
and (4.35). Recall that Dj and M are positive (see the remarks after (4.5) and (4.18)).
So for any Schwartz function F which majorizes 1[−1,1], such that F̂ has compact
support in (−A, A) the LHS of (4.36) is

≤
∑

m∈Z

Dj (m; l)PI j+1(m; a(·; u))s j+1M(m; 1
κ
)l·κF

(m
x

)
.

The Dirichlet Polynomial above is supported on integers n ≤ xθ where θ = l ·
κ
∑

0≤r≤J θr�r + ∑
0≤r≤ j θr�r + s j+1θ j+1 < 1/2. Hence, using (4.5), (4.6), (4.7),

(4.19), (4.20) and applying Lemma 4.1 the above equation is bounded by

≤ x(log x)l/2 F̂(0)
∏

0≤r≤J

∑

mn=�
p|mn⇒p∈Ir

�(m)≤(l·κ)�r

a(m; J )g(n; u, r)λ(m)

κ�(m)
√
mn

νκ·l(m; �r )ν(n)
ϕ(mn)

mn

(4.37)

where

g(n; u, r) =

⎧
⎪⎨

⎪⎩

1�(n)≤�r · l�(n) · a(n; j)(1 + e−�r ) if 0 ≤ r ≤ j,

1�(n)=s · s! · a(n; u) if r = j + 1,

1n=1 if j + 1 < r ≤ J .

Let α(·) be as in (4.26) and take a(·) = a(·; J ), b(·) = a(·; j). Applying Lemma
4.2, the contribution to (4.37) from the product over 0 ≤ r ≤ j is bounded in absolute
value by

�
∏

0≤r≤ j

(
1 + O

(
1r=0 · (log x)O(1) + 1

2�r

))
∏

p∈I j

(
1 + l2

α(p)

2p
+ O

(
1

p2

))
� 1,

(4.38)
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where in the last step we applied (4.27). Applying Lemma 4.3 with a(·) = a(·; J ) and
b(·) = a(·; u) the term in (4.37) with r = j + 1 contributes

� s j+1!
2s j+1/2� 3

8 s j+1�!

⎛

⎝
∑

p∈I j+1

a(p; u)2

p

⎞

⎠
s j+1/2

. (4.39)

It remains to handle the factors in the product in (4.37) with j + 1 < r ≤ J . For
such factors, m is a square so these terms are bounded by

�
∏

j+1<r≤J

∑

p|m⇒p∈Ir

a(m; J )2

κ2�(m)m
νl·κ(m2)

�
∏

xθ j <p≤xθJ

(
1 + (l · κ)2

2
· λ f (p)2

κ2 p

)
�
(

θJ

θ j

)2l2

= e2l
2(J− j),

(4.40)

where we used (4.1) and the bound |λ f (p)| ≤ 2, in the last steps.
Using (4.38), (4.39) and (4.40) in (4.37) completes the proof of (4.36). To establish

(4.34) we repeat the same argument, the only differences are that in (4.38) the product
is over all 0 ≤ r ≤ J and the terms estimated in (4.39) and (4.40) do not appear. To
establish (4.35) note that the term estimated in (4.38) does not appear and in the bound
(4.40) the only difference is that j = 0, so we bound this term by O((log x)O(1)).
Finally in place of (4.39) we get by using Lemma 4.3 the bound

(log x)O(1) s0!
2s0/2� 3

8 s0�!

⎛

⎝
∑

p∈I0

a(p; u)2

p

⎞

⎠
s0/2

.

From these estimates (4.35) follows. ��

Proof of Proposition 4.1 Let A(d) be as in the statement of Proposition 4.2. In par-
ticular, using |λ f (p2)| ≤ d(p2) = 3 and λ f (p2) = λ f (p)2 − 1 ≥ −1 it follows
that

(
ϕ(d)

d

)2

� A(d) �
(

d

ϕ(d)

)2

.

Using this observation we note that it suffices to prove that

∑�

|d|≤x

(
A(d)1/2L

( 1
2 , f ⊗ χd

))l
M
(
d; 1

κ

)l·κ � x, (4.41)
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for l > 0 (note the definition of M is independent of l, for 1 ≤ l · κ ≤ C), since by
Cauchy–Schwarz (4.41) implies

∑�

|d|≤x

L
( 1
2 , f ⊗ χd

)l
M
(
d; 1

κ

)l·κ

≤
⎛

⎝
∑�

|d|≤x

1

A(d)l

⎞

⎠
1/2⎛

⎝
∑�

|d|≤x

(
A(d)1/2L

( 1
2 , f ⊗ χd

))2l
M
(
d; 1

κ

)2l·κ
⎞

⎠
1/2

� x .

We will now establish (4.41). For j = 0, . . . , J , let s j = 2� 1
5θ j

�. We first divide
the sum over |d| ≤ x into two sums depending on whether

|PI0(d; a(·; u))| ≥ �0/(le
2) (4.42)

for some 0 ≤ u ≤ J . To bound the contribution of the terms to the LHS of (4.41) with
|d| ≤ x for which (4.42) holds, we use the bound A(d) � (log log x)2, Chebyshev’s
inequality and then apply Cauchy–Schwarz to see that

∑�

|d|≤x
|PI0 (d;a(·;u))|≥�0/(le2)

(
A(d)1/2L

( 1
2 , f ⊗ χd

))l
M
(
d; 1

κ

)l·κ

� (log log x)l
∑�

|d|≤x

L
( 1
2 , f ⊗ χd

)l
M
(
d; 1

κ

)l·κ
(
le2PI0 (d; a(·; u)

�0

)s0

≤ (log log x)l

⎛

⎝
∑�

|d|≤x

L
( 1
2 , f ⊗ χd

)2l
⎞

⎠
1/2⎛

⎝ (le2)2s0

�
2s0
0

∑�

|d|≤x

M
(
d; 1

κ

)2l·κ
PI0 (d; a(·; u))2s0

⎞

⎠
1/2

.

On the RHS, the first sum is� x(log x)O(1) by Soundararajan’s [30] method for upper
bounds for moments (see the examples in [30, Section 4]). Using Lemma 4.4, (4.35),
applying Stirling’s formula and recalling the definition of �0, θ0 (see (4.2)) the second
sum on the RHS is

� x(log x)O(1)

(
100l2s5/40

�20

)s0 (∑

p≤x

λ f (p)2

p

)s0

� x(log x)O(1)
(
100l2θ1/40 log log x

)s0 � x(log x)O(1) exp
(
−(log log x)5

)
� x

(log x)A

for any A ≥ 1. Hence, the contribution to (4.41) from |d| ≤ x satisfying (4.42) for
some u ≤ J is � J x

(log x)A
� x

(log x)A
log log log x for any A ≥ 1.
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For the remaining fundamental discriminants |d| ≤ x we apply (4.9) to see that
their contribution to (4.41) is bounded by

� 1

(log x)l/2

⎛

⎝
∑�

|d|≤x

DJ (d; l)M (
d; 1

κ

)l·κ

+
∑

0≤ j≤J−1
j+1≤u≤J

(
1

θ j

)C1

exp

(
3l

θ j

)(
e2l

� j+1

)s j+1 ∑�

|d|≤x

PI j+1 (d; a(·, u))s j+1Dj (d; l)M (
d; 1

κ

)l·κ

⎞

⎟⎟⎠ .

(4.43)

To complete the proof it suffices to show that the expression above is� x . Applying
(4.34) the first term in (4.43) is

1

(log x)l/2
∑�

|d|≤x

DJ (d; l)M (
d; 1

κ

)l·κ � x . (4.44)

Using (4.36) the second term in (4.43) is bounded by

� x
∑

0≤ j≤J−1
j+1≤u≤J

(
1

θ j

)C1

exp

(
3l

θ j

)(
e2l

� j+1

)s j+1

· e2l2(J− j) (s j+1)!
2s j+1/2� 3

8 s j+1�!

⎛

⎝
∑

p∈I j+1

a(p; u)2

p

⎞

⎠
s j+1/2

.

Applying Stirling’s formula and estimating the inner sum over primes trivially as

≤ 5 log( log x
θ j+1

log xθ j
) = 5, we see that the above is

� x
∑

0≤ j≤J−1

(J − j)

(
1

θ j

)C1

e2l
2(J− j) exp

(
3l

θ j

)⎛

⎝ e2l

� j+1
·
(
8

3

)3/8

· s5/8j+1√
2e5/8

· 5
⎞

⎠
s j+1

.

(4.45)

By construction
s5/8j+1

� j+1
� θ

1/8
j+1. Hence, there exists c > 0 (which may depend on l, κ)

such that (4.45) is

� x
∑

0≤ j≤J−1

(J − j)e2l
2(J− j) exp

(
− c

θ j
log

1

θ j
+ O

(
1

θ j

))

� x
∑

1≤ j≤J

je2l
2 j exp

(
− c

2
· je j

θJ

)
� x,

(4.46)

where we used that θJ /θ j = eJ− j in the last step. Combining (4.46) with (4.44), gives
that (4.43) is � x , which completes the proof. ��
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5 The proof of Proposition 1.2

The main input into the proof of Proposition 1.2 is a twisted first moment of L( 12 , f ⊗
χd). Similar moment estimates were established in [26,29,31] and our proof closely
follows themethods developed in those papers.Wewill include a proof of the following
result for completeness.

Proposition 5.1 Let φ be a Schwartz function with compact support in the positive
reals. Also, let u = u1u22, be odd where u1 is square-free. Then

∑

m
2m is �-free

L
( 1
2 , f ⊗ χ8m

)
χ8m(u) φ

(
(−1)k8m

x

)
= C

∫ ∞

0
φ(ξ)dξ · x

u1/21

· ϑ(u)

+ O
(
x7/8+εu3/8+ε

)
(5.1)

where C > 0 depends only on f and ϑ(·) is a multiplicative function with ϑ(p2 j+1) =
λ f (p) + O(1/p) and ϑ(p2 j ) = 1 + O(1/p).

The constant C is explicitly given in the proof below, see (5.30). Before proving
Proposition 5.1, we will use the result to deduce Proposition 1.2.

5.1 The proof of Proposition 1.2

We will only prove the lower bound

∑

n≤x
2n is �-free

|c(8n)|2M
(
(−1)k8n; 1

2

)2 � x

since the proof of the upper bound is similar. Using (1.1) it follows that for a Schwartz
function φ(·) which minorizes 1[1/2,1](·) with φ̂(0) > 0 the sum above is

≥ (k − 1)!
πk

· 〈g, g〉
〈 f , f 〉

∑

m
2m is �-free

L
( 1
2 , f ⊗ χ8m

)
M
(
8m; 1

2

)2
φ

(
(−1)k8m

x

)
.

(5.2)

To proceed we now expand M(8m; 1
2 )

2 and see that it equals

M(8m; 1
2 )

2 = (log x)1/2
∑

n≤x2δ0

h(n)a(n; J )λ(n)

2�(n)
√
n

(
8m

n

)
(5.3)
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where h(n) is as in (4.20) (note that here l · κ = 2). Applying Proposition 5.1 gives
that the RHS of (5.2) equals

C
′
x(log x)1/2

∑

n1n22≤x2δ0
n1 is �-free

h(n1n22)a(n1n22; J )λ(n1)ϑ(n1n22)

2�(n1)+2�(n2)n2n1
+ O(x9/10)

= C
′
x(log x)1/2

∏

0≤ j≤J

∑

p|mn2⇒p∈I j
�(mn2)≤2� j

a(mn2; J )λ(m)ϑ(mn2)μ(m)2

2�(m)+2�(n)mn
ν2(mn2; � j ) + O(x9/10),

(5.4)

where C
′ = C

′
( f , g, k, φ) > 0 and in the last step we used that ϑ is a multiplicative

function.
We will now estimate the inner sum on the RHS of (5.4). First note that ϑ(mn2) �

d(m)( mn2

ϕ(m)ϕ(n2)
)O(1) and recall the remarks after (4.21), so we get that the sum equals

∑

p|mn2⇒p∈I j

a(mn2; J )λ(m)ϑ(mn2)μ(m)2

2�(m)+2�(n)mn
ν2(mn2)

+ O

⎛

⎝ 1

4� j

∑

p|nm⇒p∈I j

a(m; J )a(n; J )2d(m)ν2(m)ν2(n2)

mn
·
(

mn2

ϕ(m)ϕ(n2)

)O(1)
⎞

⎠ .

(5.5)

The error term is

� 1

4� j

∏

p∈I j

(
1 + O

(
1

p

))
� 1 j=0 · (log x)O(1) + 1

4� j
. (5.6)

To estimate the main term in (5.5) consider

s(p; a) =
∑

t≥0

a(p; J )2t

4t pt
ϑ(p2t+a)ν2(p

2t+a).

Recall ϑ(p) = λ f (p) + O(1/p) and ϑ(p2) = 1+ O(1/p). Evaluating the sum over
n in the main term of (5.5) we see that it equals

⎛

⎝
∏

p∈I j
s(p; 0)

⎞

⎠
∑

p|m⇒p∈I j

a(m; J )μ(m)

2�(m)m

∏

pa ||m

s(p; a)

s(p; 0)

=
∏

p∈I j

(
1 + a(p; J )2

2p
− λ f (p)a(p; J )

p
+ O

(
1

p2

))
.

(5.7)
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Using (5.6), (5.7) along with the estimates a(p; J ) = λ f (p) + O
(

log p
θJ log x

)
and

∏

p∈I j

(
1 + a(p; J )2

2p
− λ f (p)a(p; J )

p
+ O

(
1

p2

))−1

� 1 j=0 · (log x)O(1) + 1

we get that the RHS of (5.4) equals

C ′x(log x)1/2
∏

c<p≤xθJ

(
1 − λ f (p)2

2p
+ O

(
1

θJ log x
· log p

p
+ 1

p2

))

×
∏

0≤ j≤J

(
1 + O

(
1 j=0 · (log x)O(1) + 1

4� j

))
.

(5.8)

To estimate the second product above note that

∏

0≤ j≤J

(
1 + O

(
1 j=0 · (log x)O(1) + 1

4� j

))
= 1 + O

(
1

4�J

)
= 1 + O(η2) ≥ 1

2
,

(5.9)

since η2 is sufficiently small. Also, there exists some constant C ′′ > 0 such that the
Euler product over c < p ≤ xθJ in (5.8) is

≥
∏

c<p≤xθJ

(
1 − λ f (p)2

2p
− C ′′

(
1

θJ log x
· log p

p
+ 1

p2

))
� (log x)−1/2,

since c is sufficiently large (so each term in the Euler product is positive). Hence, using
this and (5.9) we get that (5.8) is � x(log x)1/2 · (log x)−1/2 = x , which completes
the proof.

5.2 The proof of Proposition 5.1

Let f be a weight 2k, level 1, Hecke cusp form. For a fundamental discriminant d, let

�(s, f ⊗ χd) =
( |d|
2π

)s

�
(
s + 2k−1

2

)
L(s, f ⊗ χd).

The functional equation for �(s, f ⊗ χd) is given by

�(s, f ⊗ χd) = (−1)k sgn(d)�(1 − s, f ⊗ χd).

Note that the central value vanishes when (−1)kd < 0.
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For c > 0 and x > 0 let

Wz(x) = 1

2π i

∫

(c)

�(z + s + k − 1
2 )

�(z + k − 1
2 )

(2πx)−s ds

s
.

Our starting point in the proof of Proposition 5.1 is the following approximate func-
tional equation for L(s, f ⊗ χd). Also, define W = W1/2.

Lemma 5.1 Let f be a level 1, Hecke cusp form with weight 2k. For s ∈ C with
0 ≤ Re(s) ≤ 1 and d a fundamental discriminant

L(s, f ⊗ χd) =
∑

n≥1

λ f (n)χd(n)

ns
Ws

(
n

|d|
)

+ (−1)k sgn(d)

( |d|
2π

)1−2s
�(1 − s)

�(s)

∑

n≥1

λ f (n)χd(n)

n1−s
W1−s

(
n

|d|
)

.

Moreover, the function W = W1/2 satisfies ξ jW ( j)(ξ) � ξ−A for any A ≥ 1 and
W (ξ) = 1 + O(ξ k−ε) as ξ → 0, for any ε > 0.

Proof See Lemma 5 of [26] and Lemma 2.1 of [31]. ��
Since we will sum over fundamental discriminants we introduce a new parameter Y

with 1 ≤ Y ≤ x to be chosen later. Also, write F(ξ ; x, y) = φ
(

ξ
x

)
W
(
y
ξ

)
. Applying

Lemma 5.1 the LHS of (5.1) equals

2
∑

(m,2)=1

∑

a2|m
μ(a)

∑

n≥1

λ f (n)√
n

(
8m

nu

)
F
(
(−1)k8m; x, n

)

= 2

⎛

⎜⎜⎝
∑

a≤Y
(a,2u)=1

+
∑

a>Y
(a,2u)=1

⎞

⎟⎟⎠μ(a)
∑

(m,2)=1
a2|m

∑

n≥1

λ f (n)√
n

(
8m

nu

)
F
(
(−1)k8m; x, n

)
.

(5.10)

The terms with a > Y . Write m = r2e where e is square-free, and note since in the
sum in (5.10) a2|m it follows that a|r . So the second sum in (5.10) equals

2
∑

(r ,2u)=1

∑

a>Y
a|r

μ(a)
∑

e is �-free
(e,2)=1

∑

(n,r)=1

λ f (n)√
n

(
8e

nu

)
F
(
(−1)k8r2e; x, n

)

�
∑

|r |≤x1/2+ε

∑

a>Y
a|r ,(a,2)=1

∑

1≤(−1)ke≤x1+ε/r2

e is �-free
(e,2)=1

∣∣∣∣∣∣

∑

(n,r)=1

λ f (n)√
n

(
8e

n

)
W

(
n

8r2|e|
)∣∣∣∣∣∣

+ 1

x
,

(5.11)
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where in the second line we have used the rapid decay of W . Using the definition
of W and for Re(s) > 1, writing L(s, f ⊗ χ8e) = ∏

p L p(s) where L p(s) =
(
1 − λ f (p)

(
8e
p

)

ps +
(
8e
p

)2

p2s

)−1

we get for c > 1/2 that

∑

(n,r)=1

λ f (n)√
n

(
8e

n

)
W

(
n

8r2|e|
)

= 1

2π i

∫

(c)

�(s + k)

�(k)

(
8r2e

2π

)s L(s + 1
2 , f ⊗ χ8e)∏

p|r L p
(
s + 1

2

)
ds

s
.

(5.12)

The integrand is holomorphic for 1/ log x ≤ Re(s) ≤ 2 and in this region bounded by
(note r2|e| ≤ x2)

�
∏

p|r

(
1 + O(1)√

p

)
(r2|e|)Re(s)|�(s + k)||L (s + 1

2 , f ⊗ χ8e
) | · 1

|s|
� xε(r2|e|)Re(s) exp(−|s|)|L (s + 1

2 , f ⊗ χ8e
) |.

Hence, shifting contours on the RHS of (5.12) to ε and applying the above estimate
we get that the LHS of (5.12) is bounded by

� xε

∫

(ε)

exp(−|s|) ∣∣L (s + 1
2 , f ⊗ χ8e

)∣∣ |ds|.

Also note, that by Cauchy–Schwarz and Corollary 2.5 of [31] (which follows from
Heath-Brown’s result [7])

∑

1≤(−1)ke≤x1+ε/r2

e is �-free
(e,2)=1

∣∣L
(
s + 1

2 , f ⊗ χ8e
)∣∣ � x1+ε

r2
(1 + | Im(s)|)1/2+ε,

for Re(s) ≥ 0. Applying this estimate in (5.11) it follows that the second sum in (5.10)
is bounded by

� x1+ε
∑

|r |≤x1/2+ε

∑

a>Y
a|r

1

r2
� x1+ε

Y
. (5.13)

The terms with a < Y : preliminary lemmas It remains to estimate the first sum on
the LHS of (5.10). This will be done by applying Poisson summation to the character
sum, as developed in [29].

Let � ∈ Z, n ∈ N. Define

G�(n) =
(
1 − i

2
+
(−1

n

)
1 + i

2

) ∑

a (mod n)

(a
n

)
e

(
a�

n

)
.
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In Lemma 2.3 of [29] it is shown that G� is a multiplicative function. Moreover,
G0(n) = ϕ(n) if n is a square and is identically zero otherwise. Also, for pα||�, � �= 0

G�(p
β) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if β ≤ α is odd,

ϕ(pβ) if β ≤ α is even,

−pα if β = α + 1 is even,(
�p−α

p

)
pα√

p if β = α + 1 is odd,

0 if β ≥ α + 2.

(5.14)

Lemma 5.2 Let F be a Schwartz function. Then for any odd integer n

∑

(d,2)=1

(
d

n

)
F (d) = 1

2n

(
2

n

)∑

�

(−1)�G�(n)F̃

(
�

2n

)
,

where

F̃(λ) =
∫

R

(cos(2πλξ) + sin(2πλξ))F(ξ) dξ.

Proof This is established in the proof of Lemma 2.6 of [29], in particular see the last
equation of the proof. ��

Using Lemma 5.1 it follows that F(·; x, n) is a Schwartz function, since φ and its
derivatives decay rapidly. Hence, applying Lemma 5.2 the first sum on the RHS of
(5.10) equals (note u is odd)

2
∑

a≤Y
(a,2u)=1

μ(a)
∑

(n,a)=1

λ f (n)√
n

(
8

nu

) ∑

(m,2)=1

( m

nu

)
F

(
m; (−1)k x

8a2
,
(−1)kn

8a2

)

= 2
∑

a≤Y
(a,2u)=1

μ(a)
∑

(n,a)=1

λ f (n)√
n

· 1

2nu

(
16

nu

)∑

�∈Z

(−1)�G�(nu)F̃

(
�

2nu
; x

8a2
,

n

8a2

)
,

(5.15)

where

F̃ (λ; x, y) =
∫

R

(cos(2πλξ) + (−1)k sin(2πλξ))F(ξ ; x, y) dξ.

Note that for odd k after applying Lemma 5.2 in (5.15) we also made the change
of variables ξ → −ξ .

Before proceeding we require several estimates for F̃ . The first such result is a basic
estimate on the rate of decay of F̃ .
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Lemma 5.3 Let x, y > 0 and λ ∈ R. We have for any θ ≥ ε > 0 that

F̃(λ; x, y) � x

(
x

y

)θ

where the implied constant depends on ε. Additionally, we have for any integer A ≥ 1
that

F̃(λ; x, y) � x · 1

|yλ|A

where the implied constant depends on A.

Proof Using the definition of W and shifting contours of integration to Re(s) = θ ≥
ε > 0 we have that

W

(
y

xξ

)
�
(
xξ

y

)θ

so that

F̃(λ; x, y) � x

(
x

y

)θ ∫

R

ξθ |φ(ξ)| dξ � x

(
x

y

)θ

.

Let W(ξ) = W (
y
xξ )φ(ξ). For each integer 0 ≤ B ≤ A, we get by shifting the

contour of integration to Re(s) = A and switching the order of differentiation and
integration that

dB

dξ B
W

(
y

xξ

)
�
(
x

y

)A

ξ A−B .

Using this and the fact that φ has compact support it follows that

W(A)(ξ) �
(
x

y

)A

· 1

1 + |ξ |2 .

Hence, integrating by parts and using the above bound it follows that

F̃(λ; x, y) � x · 1

|xλ|A
∫

R

∣∣∣W(A)(ξ)

∣∣∣ dξ � x · 1

|yλ|A .

��
We also require the following information about the Mellin transform of F̃ . Let

�(s) =
∫ ∞

0
φ(t)t−s dt .
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Lemma 5.4 For � ∈ Z with � �= 0, let

F̆(s; �, u, a2) =
∫ ∞

0
F̃

(
�

2tu
; x

8a2
,

t

8a2

)
t s−1 dt .

Then for Re(s) > 0

F̆(s; �, u, a2) = x1+s

8a2
�(−s)

∫ ∞

0
W

(
1

y

)(
cos

(
π y · �

8ua2

)

+(−1)k sin

(
π y · �

8ua2

))
dy

ys+1 . (5.16)

Moreover, the function F̆(s; �, u, a2) extends to an entire function in the half-plane
Re(s) ≥ −1 + ε and in this region

F̆(s; �, u, a2) � x1+Re(s)

a2(1 + |s|)A
(( |�|

ua2

)Re(s)

+ 1

)

for any A ≥ 1.

Proof Changing the order of integration and making a change of variables xξ/t → t
in the integral over t it follows that F̆(s; �, u, a2) equals

x

8a2

∫ ∞

0

∫

R

(
cos

(
π

�

8ua2
· xξ
t

)
+ (−1)k sin

(
π

�

8ua2
· xξ
t

))
W

(
t

xξ

)
φ(ξ)t s−1 dξ dt

= x1+s

8a2

∫

R

∫ ∞

0
φ(ξ)ξ s · W

(
1

t

)(
cos

(
π t · �

8ua2

)
+ (−1)k sin

(
π t · �

8ua2

))
dt

ts+1 dξ,

which establishes the first claim.
The function

w(s) =
∫ ∞

0
W

(
1

y

)(
cos

(
π y · �

8ua2

)
+ (−1)k sin

(
π y · �

8ua2

))
dy

ys+1

is holomorphic in the region Re(s) ≥ ε. Write w(s) = I1(s) + I2(s) where I1 is the
portion of the integral over [0, 8au2

|�| ] and I2 is the rest. Due to the rapid decay of W ,
I1(s) is holomorphic in the region Re(s) ≥ −1 and in this region

I1(s) �
∫ 8ua2

|�|

0
|W (1/y)| y−Re(s)−1dy �

( |�|
ua2

)Re(s)

+ 1. (5.17)

Next, write

I2(s)=
( |�|
8ua2

)s ∫ ∞

1

(
cos (π y)+(−1)k sgn(�) · sin (π y)

) dy

ys+1 + I3(s).(5.18)

123



Signs of Fourier coefficients of half-integral weight… 1587

The integral I3(s) is holomorphic in Re(s) ≥ −1 and uniformly in this region we
have by Lemma 5.1, that W (1/y) = 1 + O(y−k+ε) we get

I3(s) �
∫ ∞

8au2
|�|

∣∣∣∣1 − W

(
1

y

)∣∣∣∣
dy

yRe(s)+1
�
( |�|
ua2

)Re(s)

+ 1.

The first integral on the RHS of (5.18) can be analytically continued to Re(s) > −1
by integrating by parts. This provides the analytic continuation of I2(s) to Re(s) ≥
−1 + ε, and shows that in this region

I2(s) � (|s| + 1)

(( |�|
ua2

)Re(s)

+ 1

)
.

Hence applying this estimate along with (5.17) in (5.16) and noting � decays
rapidly establishes the claim. ��

The terms with a < Y : main term analysis i.e. � = 0 Recall that G0(n) = ϕ(n)

if n = � and is zero otherwise. So using Lemma 5.3 the term with � = 0 in (5.15)
equals

∑

(a,2u)=1

μ(a)
∑

(n,2a)=1
nu=�

λ f (n)√
n

ϕ(nu)

nu
F̃
(
0; x

8a2
,

n

8a2

)
+ O

(
x1+ε

Y

)

= x

8

1

2π i

∫

(c)

( x

2π

)s �(s + k)

�(k)

⎛

⎜⎜⎝
∑

a
(a,2u)=1

μ(a)

a2
∑

(n,2a)=1
nu=�

λ f (n)

ns+1/2

ϕ(nu)

nu

⎞

⎟⎟⎠ �(−s)
ds

s

+ O

(
x1+ε

Y

)
.

(5.19)

We now evaluate the inner sum on the RHS of (5.19) (note Re(s) = c > 0). Since
nu = � write n = e2u1, (recall u = u1u22) so

∑

(a,2u)=1

μ(a)

a2
∑

(n,2a)=1
nu=�

λ f (n)

ns+1/2

ϕ(nu)

nu
=

∑

(e,2)=1

λ f (u1e2)

(u1e2)s+1/2

ϕ(e2u1u)

e2u1u

∑

(a,2eu)=1

μ(a)

a2

= 4

3ζ(2)u
s+ 1

2
1

∑

(e,2)=1

λ f (u1e2)

e2s+1

∏

p|eu

1 − 1
p

1 − 1
p2

. (5.20)
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The sum on the RHS can be expressed as an Euler product as follows. Let r(n) =
∏

p|n
1− 1

p

1− 1
p2
. Also, let

σ̃p(z;α, β) =
∞∑

j=0

λ f (p2 j+α)

p jz
r(p j+β), G(z; u) =

∏

p|u1

σ̃p(z; 1, 1)
σ̃p(z; 0, 0)

∏

p|u2
p�u1

σ̃p(z; 0, 1)
σ̃p(z; 0, 0) ,

and

H(z) =
∏

p

σ̃p(z; 0, 0)
L p(z, sym2 f )

,

where L p(z, sym2 f )−1 = (1 − α2
p

ps )(1 − 1
ps )(1 − β2

p
ps ) and αp, βp are the Satake

parameters of f (i.e. αp + βp = λ f (p) and αpβp = 1). It follows that

∑

(e,2)=1

λ f (u1e2)

e2s+1

∏

p|eu

1 − 1
p

1 − 1
p2

= L(1 + 2s, sym2 f )
G(1 + 2s; u)

σ̃2(1 + 2s; 0, 0)H(1 + 2s).

(5.21)

Note for each prime p that L p(1, sym2 f ) > 0 and 0 < r(p) < 1 so that
σ̃p(1; 0, 0) > 0 for each p.

Also, G(1+2s;u)
σ̃2(1+2s;0,0)H(1 + 2s) � uε for Re(s) ≥ − 1

4 + ε and is analytic in this
region. Hence, applying (5.20) and (5.21) in the RHS of (5.19) then shifting contours
Re(s) = − 1

4 + ε, collecting the residue at s = 0 we see that the RHS of (5.19) equals

x

π2u1/21

· L(1, sym2 f )
G(1; u)

σ̃2(1; 0, 0)H(1) · �(0) + O
(
uεx3/4+ε

)
+ O

(
x1+ε

Y

)
.

(5.22)

Finally, note G(1; ·) is a multiplicative function satisfying G(1; p2 j+1) = λ f (p) +
O(1/p) and G(1; p2 j ) = 1 + O(1/p). Set ϑ(n) = G(1; n).

The terms with a ≤ Y : Off-diagonal analysis i.e. � �= 0 In (5.15) it remains to
bound

∑

� �=0

∑

a≤Y
(a,2u)=1

∣∣∣∣∣∣

∑

(n,2a)=1

λ f (n)

n1/2

(
4

n

)
G�(nu)

nu
F̃

(
�

2nu
; x

8a2
,

n

8a2

)∣∣∣∣∣∣
. (5.23)
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First, note that by Lemma 5.3 the contribution from the terms with |�| ≥ Y 2uxε to
(5.23) is bounded by

�
∑

|�|≥Y 2uxε

∑

a≤Y

x

a2

⎛

⎝
∑

n≤|�|εx

(
a2u

|�|
)A

+
∑

n>|�|εx

( x
n

)θ

⎞

⎠ � 1

x
(5.24)

where A, θ have been chosen sufficiently large with respect to ε.
It remains to estimate the terms in (5.23) with |�| ≤ Y 2uxε. Letψ4�(n) = ( 4�

n

)
and

note that ψ4� is a character of modulus at most 4|�|. Using that G� is a multiplicative
function, and using (5.14) we can write

∑

(n,2a)=1

λ f (n)

ns

(
4

n

)
G�(nu)

u
√
n

= L(s, f ⊗ ψ4�)R(s; �, u, a), Re(s) > 1,

(5.25)

where

R(s; �, u, a) =
∏

p

Rp(s; �, u, a).

It follows that for (p, 4au�) = 1

Rp(s; �, u, a) =
(
1 + λ f (p)

ps

(
4�

p

))
·
(
1 − λ f (p)

ps

(
4�

p

)
+ 1

p2s

)

= 1 + O

(
1

p2Re(s)

)
.

For p|au� and Re(s) ≥ 1
2 + ε, writing pθ ||u, we have that

|Rp(s; �, u, a)| =
∣∣∣∣∣∣

(
1 + O

(
1

p1/2

))
·
⎛

⎝G�(pθ )

pθ
+ O

⎛

⎝
∑

j≥1

p j+θ

p j( 12+ε) p j/2+θ

⎞

⎠

⎞

⎠

∣∣∣∣∣∣

≤
(
1 + O

(
1

pε

))
.

Also R2(s; �, u, a) � 1 for Re(s) ≥ 1
2 . Hence, for 0 < a, u, |�| ≤ x2 and

Re(s) ≥ 1
2 + ε

R(s; �, u, a) �
∏

p|au�

(
1 + O(1)

pε

)
� xε. (5.26)
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So R(·; �, u, a) is an absolutely convergent Euler product and thereby defines a
holomorphic function in the half-plane Re(s) ≥ 1

2 + ε. Hence, applying Mellin inver-
sion and (5.25) we get for c > 0 that

∑

(n,2a)=1

λ f (n)

n

(
4

n

)
G�(nu)

u
√
n

F̃

(
�

2nu
; x

8a2
,

n

8a2

)

= 1

2π i

∫

(c)
F̆(s; �, u, a2)L(1 + s, f ⊗ ψ4�)R(1 + s; �, u, a) ds.

(5.27)

Using Lemma 5.4 and (5.26) we can shift contours in the integral above to Re(s) =
− 1

2 + ε, since the integrand is holomorphic in this region. Using the convexity bound

L( 12 + ε + i t, f ⊗ ψ4�) � (1 + |t |)1/2+ε|�|1/2+ε

along with Lemma 5.4 and (5.26) it follows that for |�|, u, a ≤ x

1

2π i

∫

(− 1
2+ε)

F̆(s; �, u, a2)L(1 + s, f ⊗ ψ4�)R(1 + s; �, u, a) ds

� x
1
2+ε

a2
·
((

ua2

|�|
)1/2

+ 1

)
|�|1/2. (5.28)

Applying (5.27) and (5.28) in (5.23) the terms with |�| ≤ Y 2xεu in (5.23) are
bounded by

x
1
2+ε

∑

1≤|�|≤Y 2xεu

∑

a≤Y

1

a2

((
ua2

|�|
)1/2

+ 1

)
|�|1/2 � x

1
2+εY 3u3/2. (5.29)

Completion of the proof of Proposition 5.1 Applying (5.22), (5.24), (5.29) in (5.15)
and then using the resulting formula along with (5.13) in (5.10) it follows that

∑

m
2m is �-free

L( 12 , f ⊗ χ8m)χ8m(u) φ

(
(−1)k8m

x

)

= x

π2u1/21

· L(1, sym2 f )
G(1; u)

σ̃2(1; 0, 0)H(1) · �(0) + O

(
x1+ε

Y
+ x

1
2+εY 3u3/2

)
.

(5.30)

Choosing Y = x1/8u−3/8 and recalling the estimates given for G(1; ·) after (5.22)
completes the proof with C = 1

π2 · L(1, sym2 f ) H(1)
σ̃2(1;0,0) . By the comment directly

after (5.21) it follows that C > 0.
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6 The proof of Proposition 1.3

In order to establish Proposition 1.3 we will need the following variant of the shifted
convolution problem for coefficients of half-integral weight forms.

Proposition 6.1 Uniformly in 1 ≤ 
 ≤ X
1
52 , 0 < |h| < X

1
2 and (v,
) = 1, we have

for every ε > 0

1

Xk−1/2

∣∣∣∣∣
∑

n

c(n)n
k−1/2

2 e
(nv




)
e− 2πn

X c(n + h)(n + h)
k−1/2

2 e− 2π(n+h)
X

∣∣∣∣∣ � X1− 1
104+ε.

(6.1)

6.1 The shifted convolution problem

We begin with a proof of Proposition 6.1. The proof is based on the by now standard
combination of the circle method and modularity. Recall that a weight k + 1

2 modular
form (with trivial character) transforms under �0(4) in the following way

g(γ z) = ν(γ ) jγ (z)k+
1
2 g(z), ∀γ ∈ �0(4), (6.2)

where for γ =
(
a b
c d

)
we set jγ (z) = cz + d and ν(γ ) = ( c

d

)
εd , where

( ·
·
)
denotes

the quadratic residue symbol in the sense of Shimura [27] (see Notation 3) and

εd :=
{
1 if d ≡ 1 (mod 4),

i2k+1 if d ≡ −1 (mod 4).

Also, we record the following estimate for the Fourier coefficients of g

∑

n≤X

|c(n)|2 � X (6.3)

(see [10, Theorem 5.1] and use partial summation). This implies that

|c(n)| � n1/2+ε. (6.4)

We record below a few standard lemmas.

Lemma 6.1 Let η ∈ (0, 1] and Q ≥ 1 be given. Let Qη/2 ≥ 
 ≥ 1 be an integer. Let
Id/q(·) denote the indicator function of the interval [d/q − Q−2+η; d/q + Q−2+η].
Let Q denote the set of integers n ∈ [Q, 2Q] that can be written as 4
r with r ≡ 1
(mod 4) prime. For α ∈ R, put

Ĩ (α) = Q2−η

2L

∑

q∈Q

∑∗

d (mod q)

Id/q(α) and L =
∑

q∈Q
ϕ(q).
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Finally let I (·) denote the indicator function of the interval [0, 1]. Then, for every
ε > 0

∫

R

(I (α) − Ĩ (α))2dα �ε Q−η/2+ε.

Proof This is a consequence of a result of Jutila (see [12] or [5, Proposition 2]).
In the notation of [5, Proposition 2] we specialize to δ = Q−2+η and notice that

L � ϕ(4
)


2 · Q2

log Q . ��
Crucial to our analysis is the following consequence of the modularity of g.

Lemma 6.2 Let g be a cusp form of weight k+ 1
2 of level 4where k ≥ 2 is an integer. Let

(d, q) = 1 and (v,
) = 1 be two pairs of co-prime integers. Suppose that q = 4
r
with r > 4
 a prime congruent to 1 (mod 4). Write d = rb+ 4
� with (b, 4
) = 1
and (�, r) = 1. Let 
� = 
/(4v + b,
) and (4v + b)� = (4v + b)/(4v + b,
).
Then, for any β ∈ R and any real X ≥ 1

g

(
d

q
+ v



+ β + i

X

)
= ε(4v+b)�χ4
�((4v + b)�r)χr (4


��)

×
(

X

4
�r

)k+ 1
2
(

i

1 − iβX

)k+ 1
2

g

(
−r2(4v + b)�

4
�
− 16(
�)2�

r
+ i

(4
�r)2( 1
X − iβ)

)
,

where χt (·) denotes a real Dirichlet character of modulus t . Finally whenever we write
a
q we denote by a an integer such that aa ≡ 1 (mod q).

Remark 2 By inspection of the proof below, the conclusion of the lemma also holds
when v = 0 and we will use this later.

Proof Since q = 4
r we can write

d

q
+ v



= d + 4vr

4
r
.

Notice that (d+4vr , 4
r) = (d+4vr ,
) since (d, 4r) = 1 by assumption. Therefore
the above is equal to

(4v + b)�r + 4
��

4
�r
. (6.5)

Throughout set w := (4v + b)�r + 4
��. We now consider

z = − w

4
�r
+ i

(4
�r)2( 1
X − iβ)

and the matrix

γ =
(

w �

4
�r w

)
∈ �0(4)
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where � is uniquely determined by the choice ofw ∈ Z. A slightly tedious computation
using (6.5) reveals that

γ z =
(
d

q
+ β

)
+ v



+ i

X
. (6.6)

We also find that

jγ (z) = i
4
�r
X − i(4
�r)β

= 1

4
�r
· i X

1 − i Xβ
(6.7)

and that

ν(γ ) = ε(4v+b)� ·
(
4
�r

w

)
, (6.8)

where
( ·

·
)
denotes the extended quadratic residue symbol in the sense of Shimura

[27, Notation 3]. In particular since 4
�r is divisible by four, this extended quadratic
residue symbol coincides with χ4
�r (w), a real Dirichlet character of modulus 4
�r ,
so that χ4
�r (w) = χ4
�r (w). Moreover by multiplicativity of the Jacobi symbol

χ4
�r (w) =
(
4
�r

w

)
=
(
4
�

w

)( r
w

)
.

Since 4
� is divisible by 4 and r is congruent to 1 (mod 4) both expressions are
Dirichlet characters of modulus 4
� and modulus r respectively. In particular the
above expression is equal to

χ4
�(w)χr (w) = χ4
�((4v + b)�r)χr (

��).

Using the modularity of g, (6.2), and combining this with (6.6), (6.7), (6.8) we
conclude that

g

(
d

q
+ v



+ β + i

X

)
= ε(4v+b)�χ4
�((4v + b)�r)χr (4


��) ·
(

X

4
�r

)k+ 1
2 ·

×
(

i

1 − i Xβ

)k+ 1
2

g

(
− w

4
�r
+ i

(4
�r)2 · ( 1
X − iβ)

)
.

Write (a)b for the inverse of a modulo b. Also, let a1 = (r · (4v + b)�)4
� and
a2 = (4
� · �)r . Observe

(w)4
�r ≡ a1 (mod 4
�) and (w)4
�r ≡ a2 (mod r).

So by the Chinese Remainder Theorem

(w)4
�r ≡ a1(r)4
�r + a2(4
�)r4

� (mod 4
�r).
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It follows that

w

4
�r
≡ r2(4v + b)�

4
�
+ 16(
�)2�

r
(mod 1)

and since g(x + iy) is 1-periodic in x the claim follows. ��
We are now ready to prove the main proposition of this section.

Proof of Proposition 6.1 Using the circle method we can re-write the LHS of (6.1) as

1

Xk− 1
2

∣∣∣∣
∫ 1

0
g

(
α + v



+ i

X

)
g

(
−α + i

X

)
e(−αh)dα

∣∣∣∣ .

Let Q = X1/2+2η and η ∈ (0, 1] to be determined later (we will choose η = 1
13 ). Let

1 ≤ 
 ≤ Xη/4 ≤ Qη/2. By Lemma 6.1 the above expression is equal to

1

Xk− 1
2

Q2−η

2L

∑

q∈Q

∑∗

d (mod q)

e

(
−hd

q

)∫ Q−2+η

−Q−2+η

g

×
(
d

q
+ v



+ β + i

X

)
g

(
−d

q
− β + i

X

)
e(−βh)dβ, (6.9)

plus an error term of size � XQ−η/4 ≤ X1−η/8, where in the estimation of the error

term we have used the bound |g(α + i/X)| � X
k+ 1

2
2 which holds uniformly for all

α ∈ R. This follows from the fact that y(k+ 1
2 )/2|g(z)| is bounded on H since g is a

cusp form.
We now write q = 4
r with r a prime congruent to 1 (mod 4) and just as in

Lemma 6.2 we write, d = (4
)� + rb with (�, r) = 1 and (b, 4
) = 1. Then by
Lemma 6.2 and the triangle inequality, (6.9) is less than

≤ X · Q
2−η

2L

∑∗

b (mod 4
)

∑

Q≤4
r≤2Q
r≡1 (mod 4) prime

( √
X

4
�r

)k+ 1
2

·
(√

X

4
r

)k+ 1
2

· S, (6.10)

where

S =
∣∣∣∣∣∣

∑∗

� (mod r)

e

(
−h�

r

)∫ Q−2+η

−Q−2+η

g

(
−r2(4v + b)�

4
�
− 16(
�)2�

r
+ i

(4
�r)2( 1
X − iβ)

)

×g

(
r2b

4

+ 16
2�

r
+ i

(4
r)2( 1
X + iβ)

)
· e(−hβ)dβ

|1 − iβX |2k+1

∣∣∣∣∣ , (6.11)
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and where we applied Lemma 6.2 with v = 0 in second appearance of g. Notice now
that for any q ≥ 1,

i

q2
( 1
X − iβ

) = i X

q2 · |1 − iβX |2 − X2β

q2|1 − iβX |2 .

Moreover since |βX | ≤ Q−2+ηX ≤ X−η the imaginary part of the above expression
is (1+ o(1))X/q2. Therefore expanding in Fourier coefficients we can write, for any
ε > 0,

g

(
−r2(4v + b)�

4
�
− 16(
�)2�

r
+ i

(4
�r)2( 1
X − iβ)

)

=
∑

n≤Xε(4
�r)2/X

α(n;β)n
k− 1

2
2 e

(
−n16
��

r

)
+ O(X−A) (6.12)

for any A ≥ 1, where the coefficients α(n;β) are independent of � and |α(n;β)| �
|c(m)| �ε n1/2+ε for all ε > 0 and β ∈ R by (6.4). Similarly we have for every ε > 0

g

(
r2b

4

+ 16
2�

r
+ i

(4
r)2
( 1
X + iβ

)
)

=
∑

m≤Xε(4
r)2/X

γ (m;β)m
k− 1

2
2 e

(
m16
2�

r

)
+ O(X−A) (6.13)

for any A ≥ 1, where the coefficients γ (m;β) are independent of � and |γ (m;β)| �
|c(n)| �ε m1/2+ε for all ε > 0 and β ∈ R.

Applying (6.12) and (6.13) in (6.11) it follows that

S �
∫ Q−2+η

−Q−2+η

∑

m≤Xε(4
r)2/X
n≤Xε(4
�r)2/X

∣∣∣∣∣α(n; β)γ (m; β)(mn)
k− 1

2
2 S(m16
2 − n16(
�)2, −h; r)

∣∣∣∣∣ dβ + X−100,

where S(a, b; c) is the standard Kloosterman sum. Since 0 < |h| < r and r is prime

the Weil bound shows that the Kloosterman sum above is always � √
r �

√
Q


.

Therefore, applying Cauchy–Schwarz alongwith (6.3) in the above equation it follows
that

S � Xε · Q−2+η ·
(

(4
r)2

X

) k+ 3
2

2

·
(

(4
r)2

X

) k+ 3
2

2

·
√

Q



.

123



1596 S. Lester, M. Radziwiłł

Also, recall that Q = X
1
2+2η, 
 ≤ Xη/4 and L � Q2


Xε . We conclude that (6.10)
is

� X1+ε

L
· 
 · Q



· Q

2

X
·
√

Q



� X

3
4+ 25η

8 +ε.

We also recall that when using Lemma 6.1 in (6.9) we introduced an error of size

X1−η/8. Picking η = 1
13 gives a total error of size � X1− 1

104+ε and allows 
 to go up

to X
1
52 . ��

6.2 Proof of Proposition 1.3

We are now ready to prove Proposition 1.3. Let h be the indicator function of the
integers that can be written as 8n with n odd and square-free. We find that

h(n) =
∑

2α+3d2|n
d odd

μ(d)μ(2α).

Let

h≤Y (n) =
∑

n=2α+3d2m
d≤Y ,α≤1
d odd

μ(d)μ(2α) , h>Y (n) =
∑

n=2α+3d2m
d>Y ,α≤1
d odd

μ(d)μ(2α).

By the triangle inequality,

∑

X≤x≤2X

∣∣∣∣∣∣

∑

x≤n≤x+y

c(n)M((−1)kn)h>Y (n)

∣∣∣∣∣∣
≤ y

∑

n≤4X

|c(n)M((−1)kn)h>Y (n)|

and by the definition of h>Y (n) this is

� y
∑

d>Y
d odd

∑

n≤4X
d2|n

|c(n)M((−1)kn)|. (6.14)

A trivial bound gives M((−1)kn) �ε MXε. By Shimura’s result (3.3) and
Deligne’s bound, |c(d2n)| �ε dε|c(n)| for all ε > 0. Hence, we conclude after
an application of Cauchy–Schwarz and (6.3) that

∑

n≤X
d2|n

|c(n)| �ε dε
∑

n≤X/d2

|c(n)| �ε dε ·
⌊
X

d2

⌋
.
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Therefore (6.14) is bounded by

�ε y

(
X

Y
+ 1

)
MXε.

This contributes � X1−δ+ε provided that Y ≥ X δMy.
Therefore after an application of Cauchy–Schwarz, it remains to obtain a non-trivial

upper bound for

∑

X≤x≤2X

∣∣∣∣∣∣

∑

x≤n≤x+y

c(n)M((−1)kn)h≤Y (n)

∣∣∣∣∣∣

2

.

We introduce an auxiliary smoothing, and bound the above by

�
∑

x≥1

∣∣∣∣∣∣

∑

x≤n≤x+y

c(n)M((−1)kn)h≤Y (n)

∣∣∣∣∣∣

2

f
( x

X

)2

where

f (u) = exp(−2πu)u
k−1/2

2 .

We note that the implicit constant is allowed to depend on the weight k + 1
2 .

Let α(n) = c(n)M((−1)kn)h≤Y (n). Expanding the square we re-write the above
expression as

∑

0≤h1,h2≤y

∑

n≥1

α(n + h1)α(n + h2) f
( n
X

)2
.

Grouping terms together and using a Taylor expansion we can re-write the above as

∑

|h|≤y

∑

n≥1

α(n) f
( n
X

)
α(n + h) f

(
n + h

X

) ∑

0≤h1,h2≤y
h1−h2=h

(
1 + O

( y
n

+ y

X

))
+ O(1)

=
∑

|h|≤y

(y + 1 − |h|)
∑

n≥1

α(n) f
( n
X

)
α(n + h) f

(
n + h

X

)
+ O

(
y3M2Xε

)(6.15)

where we set α(n) := 0 for n ≤ 0 and where we used (6.3) in the estimation of the
error term. The term h = 0 contributes

� y
∑

n≥1

|c(n)h≤Y (n)M((−1)kn)|2 · f
( n
X

)2
(6.16)
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Repeating the same argument as before we see that

y
∑

n≥1

|c(n)h>Y (n)M((−1)kn)|2 · f
( n
X

)2 �ε y

(
X

Y
+ 1

)
XεM2.

This gives a total contribution of � X1−δ+ε provided that Y > X δM2y. It follows
that (6.16) is bounded by

� y
∑

n odd

μ2(n)|c(8n)M((−1)k8n)|2 · f
( n
X

)2 + X1−δ+ε

as needed.
We now focus on the terms with h �= 0 in (6.15). Opening h≤Y and M((−1)kn) we

see that the RHS of (6.15) restricted to h �= 0 is bounded by

�ε y2M2Y 2Xε

× sup
0<|h|≤y
d1,d2≤Y

α1,α2∈{0,1}
m1,m2≤M

∣∣∣∣∣∣∣∣∣∣

∑

d21 2
α1+3|n

d22 2
α2+3|n+h

c(n)χ(−1)kn(m1) f
( n
X

)
c(n + h)χ(−1)k (n+h)(m2) f

(
n + h

X

)

∣∣∣∣∣∣∣∣∣∣

.

By the Chinese Remainder Theorem the condition 2α1+3d21 |n and 2α2+3d22 |n + h
can be re-written as a single congruence condition to a modulus of size ≤ 4Y 4.
Moreoverχ(−1)kn(m1) is 4m1-periodic in n, where-asχ(−1)k (n+h)(m2) is 4m2-periodic
in n. Therefore fixing the congruence class of n modulo 4[m1,m2] fixes the value of
χ(−1)kn(m1)χ(−1)k(n+h)(m2). Therefore we can bound the above supremum by

sup
0<|h|≤y

1≤
≤4Y 4M2

γ (mod 
)

∣∣∣∣∣∣

∑

n≡γ (mod 
)

c(n) f
( n
X

)
c(n + h) f

(
n + h

X

)∣∣∣∣∣∣
. (6.17)

Finally, we can write

1n≡γ (mod 
) = 1




∑

0≤v<


e
(vn




)
e
(
−vγ




)
.

Plugging this into (6.17) we see that it is

≤ sup
0<|h|≤y

1≤
≤4Y 4M2

v (mod 
)

∣∣∣∣∣∣

∑

n≥1

c(n)e
(nv




)
f
( n
X

)
c(n + h) f

(
n + h

X

)∣∣∣∣∣∣
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and without loss of generality we can also assume that (v,
) = 1. It follows that the
RHS of (6.15) restricted to h �= 0 is bounded by

�ε Xε · y2M2Y 2 sup
0<|h|≤y

1≤
≤4Y 4M2

(v,
)=1

∣∣∣∣∣∣

∑

n≥1

c(n)e
(nv




)
f
( n
X

)
c(n + h) f

(
n + h

X

)∣∣∣∣∣∣
.

According to Proposition 6.1 the above expression is �ε y2M2Y 2X1− 1
104+ε pro-

vided that 4Y 4M2 ≤ X
1
52 . Moreover we introduced earlier error terms that were

�ε X1−δ/2+ε as long as Y ≥ yX δM . Choosing Y = yX δM we obtain the restric-

tion y4X4δM6 ≤ X
1
52 . We also decide to require that y2M2Y 2X1− 1

104 ≤ X1−δ/2

which gives y2M2Y 2X δ/2 ≤ X
1

104 and in particular y4X5δ/2M4 ≤ X
1

104 . We posit
(somewhat arbitrarily) that we will require y, M ≤ X δ . In that case the previous

two conditions are verified if X21δ/2 ≤ X
1

104 and if X14δ ≤ X
1
52 . This leads to the

choice of δ = 1
1092 , implying the restriction y, M ≤ X

1
1092 and giving an error term

of � X1− 1
2148 .
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7 Appendix

7.1 The structure of the space of half-integral weight forms

Due to recent work of Baruch–Purkait [2], Shimura’s correspondence between half-
integralweight forms and integralweight forms is better understood.Let A+

k+1/2 denote

the conjugate plus space, which is defined asW4S
+
k+1/2, whereW4 : Sk+1/2 → Sk+1/2

is given by

(W4 f )(z) = (−2i z)−k−1/2 f

(−1

4z

)
.

Baruch–Purkait proved that A+
k+1/2

⋂
S+
k+1/2 = {0}. Letting S−

k+1/2 denote the orthog-

onal complement of A+
k+1/2 ⊕ S+

k+1/2 (w.r.t. the Petersson inner product) they proved
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that Niwa’s isomorphism (see the main theorem in [23]) induces a Hecke algebra iso-
morphism between S−

k+1/2 and Snew2k (2) (the space of weight 2k newforms on �0(2)).
Also, let Um be the operator, which acts on power series as follows

Um

⎛

⎝
∑

n≥1

anq
n

⎞

⎠ =
∑

n≥1

amnq
n .

Niwa proved thatU4W4 is Hermitian on Sk+1/2 and that (U4W4−α1)(U4W4−α2) = 0

where α1 = 2k
(

2
2k+1

)
and α2 = − 1

2 · α1. The Kohnen plus space S+
k+1/2 is the

subspace of cusp forms in Sk+1/2 with U4W4-eigenvalue equal to α1 (Kohnen [14,
Proposition 2]).

7.2 Results

Recall that N� = {n ∈ N : n = 8m and μ2(2m) = 1} and N
�
g(X) = {n ≤ X :

n ∈ N
� and c(n) �= 0}. Also, let S2k(N ) denote the space of weight 2k cusp forms on

�0(N ).

Theorem 4 Let k ≥ 2 be an integer and g be a Hecke cusp form of weight k + 1
2 on

�0(4). Then it is possible to normalize g so that its nth Fourier coefficient is real for
n ∈ N

b.
In addition, suppose that c(n) �= 0 for some n ∈ N

�. Then for every ε > 0 the
sequence {c(n)}

n∈N
�
g(X)

has � X1−ε sign changes. Assuming GRH the sequence

{c(n)}
n∈N

�
g(X)

has � X sign changes.

Remark 3 We will see that if g is of the form

g(z) = aG(z) + b(W4G)(z) (7.1)

withG ∈ S+
k+1/2, and a, b ∈ Cwith a

b = − 1
α2

λF (2), where F ∈ S2k(1) is the Shimura

lift of G, then c(8n)μ2(2n) = 0 for each n ∈ N. Otherwise, for a Hecke cusp form
g ∈ Sk+1/2 not as above, the proof below and Lemma 3.1 imply c(8n)μ2(2n) �= 0 for
some n so that the conclusion of Theorem 4 holds for g.

Moreover, for g as in (7.1) with b �= 0 the subsequent argument shows that
c(2n)μ2(2n) = b

α2
cG(8n)μ2(2n), where cG(n) denotes the nth Fourier coefficient

of G. Hence in this case we conclude that after suitable normalization, the sequence
{c(2n)μ2(2n)}n∈N has � X sign changes as n ranges over [1, X ] under GRH and
� X1−ε such sign changes unconditionally.

Proof Niwa (see the main theorem of [23]) proved that there is a Hecke algebra
isomorphism between Sk+1/2 and S2k(2). Denoting Niwa’s isomorphism by ψ , write
f = ψ(g) ∈ S2k(2). By Atkin–Lehner [1, Theorem 5] either f ∈ Snew2k (2) or f is an
oldform, i.e. f (z) = αF(z) + βF(2z) with F ∈ S2k(1), α, β ∈ C.
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We first consider the case ψ(g) = f ∈ Snew2k (2). Here we can apply Shimura’s
explicit version of Waldspurger’s Theorem, which for a fundamental discriminant of
the form (−1)kd = 8n > 0 with 2n square-free gives

|c(2n)|2 = L
( 1
2 , f ⊗ χd

) (k − 1)!
2πk

· 〈g, g〉
〈 f , f 〉

(see [28, Theorem 3B.4]). The Fourier coefficients can also be normalized so that
they are real (this immediately follows from [28, Corollary 3B.5]). Also, in this case
c(8n) = λ2 · c(2n) where λ2 ∈ {±1} and is independent of n (this follows from [27,
MainTheorem],Niwa’s isomorphism, andAtkin–Lehner [1, Theorem3]; see the proof
of Theorem 5 of [2]). Hence, our argument proceeds just as before and {c(n)}

N
�
g(X)

has � X1−ε sign changes unconditionally and � X under GRH.
Let us now suppose f ∈ S2k(2) is an oldform. Then by Kohnen [14, Theorem 1]

and Baruch–Purkait [2, Theorem 5, Corollary 6.1], there exist G1,G2 ∈ S+
k+1/2 and

a, b ∈ C such that g(z) = a ·G1(z) + b · (W4G2)(z). Since g is a Hecke cusp form it
follows from multiplicity one for S+

k+1/2 (see [14, lemma, p. 256]) that G1 is a scalar
multiple ofG2. Hence, we can write g(z) = a ·G(z)+b ·(W4G)(z) for some a, b ∈ C

and G ∈ S+
k+1/2. If W4G = 0 then g ∈ S+

k+1/2, so we are done. Suppose W4G �= 0,

since S+
k+1/2 ∩ A+

k+1/2 = {0}, W4G /∈ S+
k+1/2 so U4G = U4W4(W4G) = α2W4G

since W4 is an involution. Hence,

g(z) =
∑

n≥1

(
a · cG(n) + b

α2
· cG (4n)

)
e(nz).

For n ∈ N
� write n = 8m where 2m is square-free then by (3.3)

cg(8m) = a · cG(8m) + b

α2
· cG(22 · 8m) = cG(8m) ·

(
a + b

α2
· λF (2)

)
,

where λF (·) denotes the Hecke eigenvalues of the level 1 modular form which
corresponds to G under ψ . By assumption a + b

α2
· λF (2) �= 0, since otherwise

cg(8m)μ2(2m) = 0 for every m ∈ N. Moreover, since G ∈ S+
k+1/2 we know

{cG(n)}
n∈N

�
G (X)

has � X sign changes under GRH and � X1−ε unconditionally,

so the result follows. ��
Additionally, it is possible to extend our result to level 4N with N square-free and

odd if we also restrict to fundamental discriminants that lie in a suitable progression.
For each prime divisor of p|N we require that χd(p) = wp wherewp is the eigenvalue
of the Atkin–Lehner operatorWp. So by the Chinese Remainder Theorem there exists

η (mod N ) such that for d ≡ η (mod N ) we have χd(p) = wp. Let N
�
N = {n ∈ N :

n = 8m, μ2(2m) = 1, and (−1)kn ≡ η (mod N )} and N
�
N ,g(X) = {n ≤ X : n ∈

N
�
N and c(n) �= 0}. Note that for n ∈ N

�
N by construction (N , n) = 1.
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Let Sk+1/2(4N ) denote the space of weight k + 1/2 cusp forms of level 4N , with
N odd and square-free. Also, let S−

k+1/2(4N ) be as defined by Baruch–Purkait (see [2,
Section 6.3]), who showed that this space is isomorphic to Snew2k (2N ). This comple-
ments Kohnen’s result [15] that Snewk+1/2(4N ) is isomorphic to Snew2k (N ).

We can also prove the following result.

Theorem 5 Let k ≥ 2 and N be odd and square-free. Suppose g ∈ S+
k+1/2(4N )

or g ∈ S−
k+1/2(4N ), is a Hecke cusp form. Then it is possible to normalize g so

that its nth Fourier coefficient is real for n ∈ N
�
N . Moreover, for every ε > 0 the

sequence {c(n)}
n∈N

�
N ,g(X)

has � X1−ε sign changes. Assuming GRH the sequence

{c(n)}
n∈N

�
N ,g(X)

has � X sign changes.

Proof We will only sketch the argument, since our main propositions need to be
modified when N �= 1. First, suppose g ∈ S−

k+1/2(4N ). Then by [2, Theorem 8] g ∈
S−
k+1/2(4N ) andmultiplicity one holds in S−

k+1/2(4N ) in thewhole space Sk+1/2(4N )7.

Hence for (−1)kd ∈ N
�
N we can apply Shimura’s result [28, Theorem 3B.4] to get

that

|c(2n)|2 = 2ω(N ) (k − 1)!
2πk

〈g, g〉
〈 f , f 〉 L

( 1
2 , f ⊗ χd

)
(7.2)

whereω(N ) = ∑
p|N 1. Here we have used the condition d ≡ η (mod N ) to estimate

the Euler product present in the statement of the theorem along with [1, Theorem 3].
Using [28, Corollary 3B.5] it also follows that the Fourier coefficients of g can be
normalized so that they are real. Also, in this case just as before we have c(8n) =
λ2 · c(2n) with λ2 ∈ {±1}.

Next, suppose g(z) ∈ S+
k+1/2(4N ) and without loss of generality assume g ∈

S+,new
k+1/2(4N ). Kohnen [15] proved S+,new

k+1/2(4N ) and Snew2k (N ) are isomorphic as Hecke
algebras. In this setting we can apply Proposition 4.2 of Kumar and Purkait [19] and it
follows g ∈ S+,new

k+1/2(4N ) can be normalized so that it has real (and algebraic) Fourier

coefficients. Moreover, for discriminants (−1)kd ∈ N
�
N Corollary 1 of [16] implies

|c(8n)|2 = 2ω(N ) �(k)

πk

〈g, g〉
〈 f , f 〉 L

( 1
2 , f ⊗ χd

)
. (7.3)

Using the formulas (7.2) and (7.3) we have in each case above that

∑

n∈N
�
g,N (X)

|c(8n)|4M
(
(−1)k8n; 1

2

)4 �
∑�

|d|≤X

L
( 1
2 , f ⊗ χd

)
M(d; 1

2 )
4.

To bound this mollified moment, the only modification needed in the proof of Proposi-
tion 4.1 is to change the definition of I0 so that I0 = (c, X θ0 ]where c is also sufficiently
7 Multiplicity one also holds in the space S+

k+1/2, but fails in the entire space Sk+1/2 (consider g ∈ S+
k+1/2

and W4g).
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large in terms of N . Repeating the argument (with no further modifications) we arrive
at

∑�

|d|≤X

L
( 1
2 , f ⊗ χd

)
M
(
d; 1

2

)4 � X .

We also need to prove

∑

n∈N
�
g,N (X)

|c(8n)|2M
(
(−1)k8n; 1

2

)2 � X .

This follows in the same way as before once we have established an analog of Propo-
sition 5.1 for f ∈ Snew2k (M) with M = N or M = 2N , where we average over

discriminants (−1)kd ∈ N
�
N . The necessary modifications for this computation have

already been worked out in the paper of Radziwiłł and Soundararajan [26]. Finally,
we need to establish the estimate

∑

X≤x≤2X

∣∣∣∣∣∣∣∣∣∣∣

∑

x≤8n≤x+y
n odd

(−1)k8n≡γ (mod N )

μ2(n)c(8n)M((−1)k8n)

∣∣∣∣∣∣∣∣∣∣∣

� X
√
y + X1− 1

2148+ε.

To do this we first need to modify the proof of Lemma 6.2 in a straightforward
way. From here we arrive at the analog of Proposition 6.1, for any g ∈ Sk+1/2(4N ).
To establish the above bound we repeat the argument used in the proof of Proposition
1.3. The only modification necessary is that the range of 
 in (6.17) will now be
1 ≤ 
 ≤ 16NY 4M2 to account for the progression (−1)k8n ≡ η (mod N ).

Combining the three estimates above we argue as in the proof of Theorem 1 thereby
finishing the proof. ��

References

1. Atkin, A.O.L., Lehner, J.: Hecke operators on �0(m). Math. Ann. 185, 134–160 (1970)
2. Baruch, E.M., Purkait, S.: Newforms of half-integral weight: the minus space counterpart. Can. J.

Math. 72(2), 326–372 (2020)
3. Bruinier, J.-H., Kohnen, W.: Sign Changes of Coefficients of Half Integral Weight Modular Forms,

Modular Forms on Schiermonnikoog, pp. 57–65. Cambridge University Press, Cambridge (2008)
4. Chandee, V.: Explicit upper bounds for L-functions on the critical line. Proc. Am. Math. Soc. 137(12),

4049–4063 (2009)
5. Harcos, G.: An additive problem in the Fourier coefficients of cusp forms.Math. Ann. 326(2), 347–365

(2003)
6. Harper, A.: Sharp conditional bounds for moments of the Riemann zeta function. arXiv:1305.4618

(2013)
7. Heath-Brown, D.R.: Amean value estimate for real character sums. Acta Arith. 72(3), 235–275 (1995)
8. Heath-Brown,D.R.: The average analytic rank of elliptic curves. DukeMath. J. 122(3), 591–623 (2004)

123

http://arxiv.org/abs/1305.4618


1604 S. Lester, M. Radziwiłł

9. Hulse, T.A., Kiral, E.M., Kuan, C.I., Lim, L.-M.: The sign of Fourier coefficients of half-integral weight
cusp forms. Int. J. Number Theory 8(3), 749–762 (2012)

10. Iwaniec, H.: Topics in Classical Automorphic Forms, Graduate Studies inMathematics, vol. 17. Amer-
ican Mathematical Society, Providence (1997)

11. Jiang, Y.J., Lau, Y.K., Lü, G.S., Royer, E., Wu, J.: Sign changes of Fourier coefficients of modular
forms of half integral weight, 2. arXiv:1602.08922 (2016)

12. Jutila, M.: Transformations of exponential sums. In: Proceedings of the Amalfi Conference onAnalytic
Number Theory (Maiori, 1989), Univ. Salerno, Salerno, pp. 263–270 (1992)

13. Knopp, M., Kohnen, W., Pribitkin, W.: On the signs of Fourier coefficients of cusp forms. Ramanujan
J. 7(1–3), 269–277 (2003). Rankin memorial issues

14. Kohnen, W.: Modular forms of half-integral weight on �0(4). Math. Ann. 248(3), 249–266 (1980)
15. Kohnen, W.: Newforms of half-integral weight. J. Reine Angew. Math. 333, 32–72 (1982)
16. Kohnen,W.: Fourier coefficients ofmodular forms of half-integral weight.Math. Ann. 271(2), 237–268

(1985)
17. Kohnen, W., Lau, Y.-K., Wu, J.: Fourier coefficients of cusp forms of half-integral weight. Math. Z.

273(1), 29–41 (2013)
18. Kohnen, W., Zagier, D.: Values of L-series of modular forms at the center of the critical strip. Invent.

Math. 64(2), 175–198 (1981)
19. Kumar, N., Purkait, S.: A note on the Fourier coefficients of half-integral weight modular forms. Arch.

Math. (Basel) 102(4), 369–378 (2014)
20. Lau, Y.-K., Royer, E., Wu, J.: Sign of Fourier coefficients of modular forms of half-integral weight.

Mathematika 62(3), 866–883 (2016)
21. Lester, Stephen, Radziwiłł, Maksym: Quantum unique ergodicity for half-integral weight automorphic

forms. Duke Math. J. 169(2), 279–351 (2020)
22. Matomäki, K., Radziwiłł, M.: Sign changes of Hecke eigenvalues. Geom. Funct. Anal. 25(6), 1937–

1955 (2015)
23. Niwa, S.: On Shimura’s trace formula. Nagoya Math. J. 66, 183–202 (1977)
24. Ono, K., Skinner, C.: Non-vanishing of quadratic twists of modular L-functions. Invent. Math. 134(3),

651–660 (1998)
25. Perelli, A., Pomykała, J.: Averages of twisted elliptic L-functions. Acta Arith. 80(2), 149–163 (1997)
26. Radziwiłł, M., Soundararajan, K.: Moments and distribution of central L-values of quadratic twists of

elliptic curves. Invent. Math. 202(3), 1029–1068 (2015)
27. Shimura, G.: On modular forms of half integral weight. Ann. Math. (2) 97, 440–481 (1973)
28. Shimura, G.: On Hilbert modular forms of half-integral weight. Duke Math. J. 55(4), 765–838 (1987)
29. Soundararajan, K.: Nonvanishing of quadratic Dirichlet L-functions at s = 1

2 . Ann. Math. (2) 152(2),
447–488 (2000)

30. Soundararajan, K.: Moments of the Riemann zeta function. Ann. Math. (2) 170(2), 981–993 (2009)
31. Soundararajan, K., Young, M.P.: The second moment of quadratic twists of modular L-functions. J.

Eur. Math. Soc. (JEMS) 12(5), 1097–1116 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1602.08922

	Signs of Fourier coefficients of half-integral weight modular forms
	Abstract
	1 Introduction
	1.1 Unconditional results
	1.2 Extensions beyond the Kohnen plus space
	1.3 Numerical examples
	1.4 Main estimates

	2 The proof of Theorem 1
	3 The proofs of Theorems 2 and 3
	3.1 The proof of Theorem 2
	3.2 The proof of Theorem 3

	4 Upper bounds for mollified moments
	4.1 Preliminary results
	4.2 The definition of the mollifier
	4.3 The proof of Proposition 4.1

	5 The proof of Proposition 1.2
	5.1 The proof of Proposition 1.2
	5.2 The proof of Proposition 5.1

	6 The proof of Proposition 1.3
	6.1 The shifted convolution problem
	6.2 Proof of Proposition 1.3

	Acknowledgements
	7 Appendix
	7.1 The structure of the space of half-integral weight forms
	7.2 Results

	References




