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Abstract

We initiate the study of affine Deligne—Lusztig varieties with arbitrarily deep level
structure for general reductive groups over local fields. We prove that for GL,, and
its inner forms, Lusztig’s semi-infinite Deligne—Lusztig construction is isomorphic
to an affine Deligne—Lusztig variety at infinite level. We prove that their homology
groups give geometric realizations of the local Langlands and Jacquet-Langlands
correspondences in the setting that the Weil parameter is induced from a character of
an unramified field extension. In particular, we resolve Lusztig’s 1979 conjecture in
this setting for minimal admissible characters.
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1 Introduction

In their fundamental paper [13], Deligne and Lusztig gave a powerful geometric
approach to the construction of representations of finite reductive groups. To a reduc-
tive group G over a finite field F; and a maximal F,-torus 7 C G, they attach a
variety given by the set of Borel subgroups of G lying in a fixed relative position
(depending on T') to their Frobenius translate. This variety has a T-torsor called the
Deligne—Lusztig variety. The Deligne-Lusztig variety has commuting actions of G
and T, and its £-adic étale cohomology realizes a natural correspondence between
characters of T (F,) and representations of G(IF).
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Affine Deligne-Lusztig varieties at infinite level 1803

Two possible ways of generalizing this construction to reductive groups over local
fields are to consider subsets cut out by Deligne—Lusztig conditions in the semi-infinite
flag manifold (in the sense of Feigin—Frenkel [15]) or in affine flag manifolds of
increasing level. The first approach is driven by an outstanding conjecture of Lusztig
[25] that the semi-infinite Deligne—Lusztig set has an algebro-geometric structure,
one can define its £-adic homology groups, and the resulting representations should
be irreducible supercuspidal. This conjecture was studied in detail in the case of divi-
sion algebras by Boyarchenko and the first named author in [5,10,11], and ultimately
resolved in this setting in [12]. Prior to the present paper, Lusztig’s conjecture was
completely open outside the setting of division algebras.

The second approach is based on Rapoport’s affine Deligne—Lusztig varieties [29],
which are closely related to the reduction of (integral models of) Shimura varieties.
Affine Deligne—Lusztig varieties for arbitrarily deep level structure were introduced
and then studied in detail for GL; by the second named author in [21-23], where
it was shown that their £-adic cohomology realizes many irreducible supercuspidal
representations for this group.

The goals of the present paper are to show that these constructions

(A) are isomorphic for all inner forms of GL,, and their maximal unramified elliptic
torus

(B) realize the local Langlands and Jacquet-Langlands correspondences for super-
cuspidal representations coming from unramified field extensions

The first goal is achieved by computing both sides and defining an explicit isomor-
phism between Lusztig’s semi-infinite construction and an inverse limit of coverings of
affine Deligne—Lusztig varieties. In particular, this allows us to use the known scheme
structure of affine Deligne—Lusztig varieties to define a natural scheme structure on the
semi-infinite side, which was previously only known in the case of division algebras.
This resolves the algebro-geometric conjectures of [25] for all inner forms of GL,,.

To attain the second goal, we study the cohomology of this infinite-dimensional
variety using a wide range of techniques. To show irreducibility of certain eigenspaces
under the torus action, we generalize a method of Lusztig [26,31] to quotients of para-
horic subgroups which do not come from reductive groups over finite rings. We study
the geometry and its behavior under certain group actions to prove an analogue of
cuspidality for representations of such quotients. To obtain a comparison to the local
Langlands correspondence, we use the Deligne—Lusztig fixed-point formula to deter-
mine the character on the maximal unramified elliptic torus and use characterizations
of automorphic induction due to Henniart [ 19,20]. In particular, for minimal admissible
characters, we resolve the remaining part of Lusztig’s conjecture (supercuspidality)
for all inner forms of GL,,.

We now give a more detailed overview. Let K be a non-archimedean local field with
finite residue field 'y, let K be the completion of the maximal unramified extension of
K and let o denote the Frobenius automorphism of K /K. For any algebro-geometric
object X over K, we write X := X(K) for the set of its K - -points. Let G be a connected
reductive group over K. For simplicity assume that G is split. For b € G, let J, be the
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1804 C. Chan, A. lvanov

o -stabilizer of b
Jp(R):=1{g € G(R®k K): g 'bo(g) = b}

for any K-algebra R. Then Jj, is an inner form of a Levi subgroup of G, and if b is
basic, Jp is an inner form of G. Let 7 be a maximal split torus in G. For an element w
in the Weyl group of (G, 7), let

To(R):={t € T(RQk K): t "o (1) = )}

for any K-algebra R, where w is a lift of w to G.
The semi-infinite Deligne-Lusztig set X 3 L(b) is the set of all Borel subgroups of

G in relative position w to their bo -translate. It has a cover
XPH(b):={gU € G/U : g"'bo(g) e UwU} € G/U

with a natural action by J,(K) x Ty, (K), and this set coincides with Lusztig’s con-
struction [25]. On the other hand, for arbitrarily deep congruence subgroups J C G,
one can define affine Deligne—Lusztig sets of higher level J,

X} (b):={gJ €G/I: g7 'bo(g) € IxI} S G/J.

where x is a J-double coset in G. Under some technical conditions on x, we prove
that these sets can be endowed with a structure of an [F;-scheme (Theorem 4.9). We

remark that when K has mixed characteristic, é /J is aind-(perfect scheme), so X ){ (b)
will also carry the structure of a perfect scheme.

We now specialize to the following setting. Consider G= GL, (k Yand G = Jp(K)
for some basic b € GL,, (k ) so that G is an inner form of GL,,(K). Let w be a Coxeter
element so that T :=T,,(K) = L* for the degree-n unramified extension L of K. Let
G 0 be a maximal compact subgroup of G andlet To = TNGo = O . We consider a
particular tower of affine Deligne—Lusztig varieties X Z}lr (b) for congruence subgroups
of G indexed by m, where the image of each w, in the Weyl group is w. We form the

inverse limit X o(b) =1lim X"™ (b), which carries a natural action of G x T.
<—r>m>0" Wr

Theorem (6.9) There is a (G x T)-equivariant map of sets
Xphb) — X ®).
In particular, this gives X 5 L(b) the structure of a scheme over Fq.

We completely determine the higher level affine Deligne—Lusztig varieties X gr (b).
They are (Or/ p'Z‘H) X -torsors over the schemes X ﬁ (b), which are interesting in their

own right. In particular, X Ow, (b) provide examples of explicitly described Iwahori-level
affine Deligne—Lusztig varieties. We prove the following.
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Affine Deligne-Lusztig varieties at infinite level 1805

Theorem (6.17) The scheme mer (b) is a disjoint union, indexed by G/Gp, of
classical Deligne—Lusztig varieties for the reductive quotient of G o x Tp times finite-
dimensional affine space.

The disjoint union decomposition is deduced from Viehmann [32]. We point out the
similarity between the Iwahori level varieties X 8}, (b) and those considered by Gortz
and He [16, e.g. Proposition 2.2.1], though in our setting, the elements 1, can have
arbitrarily large length in the extended affine Weyl group.

One of the key insights throughout our paper is the flexibility of working with
different representatives b of a o -conjugacy class. For example, when G = GL, (K),
switching between b = 1 and b being a Coxeter element allows us to use techniques
that are otherwise inaccessible.

Having established the isomorphism X 5 L(p) = X o (b), the main objective in
the rest of the paper is to study the virtual G-representation

RE©):= (=D Hi (X3 (b), Q6]

for smooth characters 6: T — @Z , where [0] denotes the subspace where T acts by
6. We write |R$ (0)| to denote the genuine representation when one of j:R? 0) is
genuine.

One could try to calculate R? (6) by calculating the cohomology of the affine
Deligne—Lusztig varieties X Zfr (b). These finite-level varieties have somewhat strange
descriptions (see the equivalence relation ~p, ,,, - in Sect. 6.2), though it is conceivable
that one could use the results of Part 4 to study the cohomology of these higher-level
affine Deligne-Lusztig varieties.

Instead of passing through affine Deligne—Lusztig varieties, we approximate our
infinite-level object X DL (p) by using an analogue of Deligne-Lusztig varieties for
parahoric subgroups, which are easier to explicitly describe than affine Deligne—
Lusztig varieties. Using the decomposition of X o> (b) into G-translates of G -stable
components (as in Theorem 6.17), the computation of the cohomology of Xgo(b)
reduces to the computation for one such component, which can in turn be written as
an inverse limit l(ith X, of finite-dimensional varieties Xj, each endowed with an

action of level-h quotients G, x Ty, of Gp x Tp. We write R%” (0) for the virtual

Gp-representation corresponding to 0: T, — @Z . We note that X is a classical
Deligne-Lusztig variety for the reductive subquotient of 7 in the reductive quotient
of Gp.

However, the infinite-level object X o°(b) has a very natural description, so we pro-
ceed by defining another tower of finite-dimensional objects X}, which are analogues
of Deligne-Lusztig varieties for parahoric subgroups. Using the Deligne-Lusztig
fixed-point formula, we compute (part of) the character of Rgh "(6) on Tj,, which when
combined with Henniart’s characterizations [19,20] of automorphic induction yields:

Theorem (11.3) Let 6: T — @Z be a smooth character. If |R7q(0)| is irreducible
supercuspidal, then the assignment 6 +—> |R¥ (0)] is a geometric realization of auto-
morphic induction and the Jacquet—Langlands correspondence.
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1806 C. Chan, A. lvanov

Proving that |R$ ()] is irreducible supercuspidal involves two main steps: proving
that |R gl” (0)] is irreducible and proving its induction to G (after extending by the cen-

ter) is irreducible. In [26], Lusztig studies the irreducibility of Rglh (0) for reductive
groups over finite rings under a regularity assumption on 6. In our setting, this reg-
ularity assumption corresponds to 6 being minimal admissible. We extend Lusztig’s
arguments to the non-reductive setting to handle the non-quasi-split inner forms of
GL,(K) and prove that quh "(#) is irreducible under the same regularity assumption
on 6 (Theorem 8.1). In this context, we prove a cuspidality result (Theorem 9.1)
for |Rghh (6)], which allows us to emulate the arguments from [27, Proposition 6.6]
that inducing classical Deligne—Lusztig representations gives (depth zero) irreducible
supercuspidal representations of p-adic groups. This approach was carried out in the
GL, case for arbitrary depth in [21, Propositions 4.10, 4.22]. Note that the |R? )]
can have arbitrarily large depth, depending on the level of the smooth character 6.

Theorem (12.5) If6: T — @Z is minimal admissible, then |R$ (0)] is irreducible
supercuspidal.

1.1 Outline

This paper is divided into four parts. The first part of the article is devoted to purely geo-
metric properties of the Deligne-Lusztig constructions for arbitrary reductive groups
over local fields. In Sects. 3 and 4, we define and recall the two types of Deligne—
Lusztig constructions. The main result of this part is Theorem 4.9, where we prove
that, under a technical hypothesis, affine Deligne—Lusztig sets of arbitrarily deep level
can be endowed with a scheme structure. After Part 1, we work only in the context of
the inner forms of GL, (K).

We begin Part 2 with a discussion of the group-theoretic constructions we will use
at length throughout the rest of the paper (Sect. 5). We emphasize the importance of
the seemingly innocuous Sect. 5.2, where we define two representatives b for each
basic o-conjugacy class of GL, (K). In Sect. 6, we define the affine Deligne-Lusztig
varieties Xzfr (b), construct an isomorphism between X o (b) and X 5 L(b) using the

isocrystal (k " bo), and explicate the scheme structure of ij)o (b). In Sect. 7, we
introduce a family of smooth finite-type schemes X; whose limit is a component of
X o (b) corresponding to G ¢ and study its geometry. This plays the role of a Deligne—
Lusztig variety for subquotients of G (see Proposition 7.12).

In Part 3, we calculate the cohomology R% "(9) under a certain regularity assump-
tion on €. We prove irreducibility (Theorem 8.1) using a generalization of [26,31]
discussed in Sect. 8.4. We prove a result about the restriction of R?h "(9) to the “deep-
est part” of unipotent subgroups (Theorem 9.1) which can be viewed as an analogue
of cuspidality for Gj-representations. This is a long calculation using fixed-point
formulas.

Finally, in Part 4, we combine the results of the preceding two parts to deduce our
main theorems about R]q (0), the homology of the affine Deligne—Lusztig variety at
infinite level X o°(b). We review the methods of Henniart [19,20] in Sect. 10, define
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Affine Deligne-Lusztig varieties at infinite level 1807

and discuss some first properties of the homology of X o2(b) in Sect. 11, and prove
the irreducible supercuspidality of R? (6) for minimal admissible 8 in Sect. 12.

2 Notation

Throughout the paper we will use the following notation. Let K be a non-archimedean
local field with residue field I, of prime characteristic p, and let K denote the com-
pletion of a maximal unramlﬁed extension of K. We denote by Ok, px (resp O,p)
the integers and the maximal ideal of K (resp. of K). The residue field of K is an
algebraic closure ]F of IF,. We write o for the Frobenius automorphism of K, which
is the unique K —automorphism of K, lifting the F,-automorphism x +— x9 of Fq.
Finally, we denote by & a uniformizer of K (and hence of K)and by ord = ordy the
valuation of K, normalized such that ord(w) = 1.

If K has positive characteristic, we let W denote the ring scheme over IF, where
for any IF,-algebra A, W(A) = A[[z]. If K has mixed characteristic, we let W denote
the K -ramified Witt ring scheme over F, so that W(IF,) = Ok and W(Fq) = (. Let
W), = W/V"W be the truncated ring scheme, where V : W — W is the Verschiebung
morphism. For any 1 < r < h, we write WZ to denote the kernel of the natural
projection Wy, — W,. As the Witt vectors are only well behaved on perfect F,-
algebras, algebro-geometric considerations when K has mixed characteristic are taken
up to perfection. We fix the following convention.

Convention If K has mixed characteristic, whenever we speak of a scheme (resp.
ind-scheme) over its residue field Iy, we mean a perfect scheme (resp. ind-(perfect
scheme)), that is a set-valued functor on perfect [F,-algebras, representable by the
perfection of a scheme (resp. ind-scheme).

For results on perfect schemes we refer to [2,34]. Note that passing to perfection
does not affect the £-adic étale cohomology; thus for purposes of this paper, we could
in principle pass to perfection in all cases. However, in the equal characteristic case
working on non-perfect rings does not introduce complications, and we prefer to work
in this slightly greater generality.

Fix a prime £ # p and an algebraic closure Q, of Q. The field of coefficients of
all representations is assumed to be Q, and all cohomology groups throughout are
compactly supported £-adic étale cohomology groups.

2.1 List of terminology

Our paper introduces some notions for a general group G (Part 1) and then studies
these notions for G an inner form of GL,, (Parts 2 through 4). The investigations for
G an inner form of GL, involve many different methods. For the reader’s reference,
we give a brief summary of the most important notation introduced and used in Parts
2 through 4.
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(0]
K
F
G

T
g5 (x)

XDL(b)
X (b)
X (b)

X5 (b) 4=

Gy

T
Xy

Rgf ©)

R%(6)

Z

%min

The degree-n unramified extension of K. Its ring of integers O has a unique
maximal ideal p;, and its residue field is O /p; = Fyn. Forany h > 1, we
write Uf =1+ pg

Fixed basic o -conjugacy class of GL,, (K). Typically we take representatives
b of [b] to be either the Coxeter-type or special representative (Sect. 5.2)
kaL, ([p]), where kgL, is the Kottwitz map. We assume that 0 <« <n — 1
and set n’ = ged(n, k), ng = n/n’, ko = «/n’

Twisted Frobenius morphism F': GLn(k ) - GL, (I% ) given by F(g) =
bo (g)b™!

= Jp(K) = GL,(K)F = GL,;/(Dgq/n, ), where Dy n, is the division alge-
bra with Hasse invariant kg /ng

= L*, an unramified elliptic torus in G

(n x n)-matrix whose ith column is o ~Li=Dko/no] (bo) "l (x) withx € V
(Eq. (6.5))

a semi-infinite Deligne—Lusztig variety, with a natural action of G x T
(Sect. 3)

an affine Deligne—Lusztig variety with a natural action of G x T (Sect. 6.2)
=lim X1 (b) = VM0 x I gy @ v det g, (x) €
K>} an afﬁne Deligne-Lusztig variety at the infinite level, with a natural
G x (’) -action (Corollary 6.18)

Lo adt . o o~ =2 adm.rat _ vy ¢ % det gred (x) € Og} is the union of
connected components of X5°(b) associated to the lattlce 2 (Definition
6.10)
= Gu(Fy) = (Gx.0/Gx.i—1y+)" where F(g) = ba(g)b~" for b the
Coxeter-type or special representative. G, is a subquotient of G (Sect. 5.3)
=Ty(F,) = O) /U
A quotient of Xﬁ' (b) 4, forany r > m > 0 (Sect. 7.6). It has a (G, x Tp)-
action and is a finite-ring analogue of a Deligne—Lusztig variety (Proposition
7.12)
= >, (=D'H:(Xp, Qp)[0], where H:(Xp, Q)01 C H.(Xp, Q) is the
subspace where Tj, acts by 0: Tj, — @;
= Y (D HA(X P (), Q0] = 3 (— 1) Hy (X DL (b), Q,)[6], where the
homology groups of the scheme X o°(b) are defined in Sect. 11 and where
[6] denotes the subspace where T actsby 0: T — @;

The set of all smooth characters of L that are in general position; i.e., they
have trivial stabilizer in Gal(L/K) (Part 4)
The set of all characters of L™ that are minimal admissible (Sect. 12)

The action of G x T on each of the schemes Xgr (b), X°(b), XPL(b) is given by

X = gxt.
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Part 1. Deligne-Lusztig constructions for p-adic groups

In this part we discuss two analogues of Deligne—Lusztig constructions attached to a
reductive group over K : semi-infinite Deligne—Lusztig sets and affine Deligne—Lusztig
varieties at higher level. We begin by fixing some notation.

Let G be a connected reductive group over K. Let S be a maximal K -split torus in
G. By [8, 5.1.12] it can be chosen to be defined over K. Let T = Z5(S) and A5(S)
be the centralizer and normalizer of S, respectively. By Steinberg’s theorem, G ¢ is
quasi-split, hence 7 is a maximal torus. The Weyl group W of S in G is the quotient
W = A5(S)/T of the normalizer of S by its centralizer. By [3, Theorem 21.2], every
connected component of .45 (S) meets G,soW = Ji/G(S)(k )/ T.1In particular, the
action of the absolute Galois group of K on W factors through a Gal(K /K )-action.

For a scheme X over K, the loop space LX of X is the functor on F,-algebras
given by LX(R) = X(W(R)[w ~1)). For a scheme ¥ over O, the space of positive
loops Lt X of X is the functor on IF,-algebras given by LTX(R) = X(W(R)), and
the functor L; of truncated positive loops is given by L}T.’{(R) = X(Wj,(R)).

For any algebro-geometric object X over K, we write X for the set of its K -rational
points.

3 Semi-infinite Deligne-Lusztig sets in G/B

Assume that G is quasi-split. Pick a K-rational Borel B € G containing 7 and let
U be the unipotent radical of B. We have the following direct analogue of classical
Deligne—Lusztig varieties [13].

Definition 3.1 Let w € W, i € A5 (S)(K) alift of w, and b € G. The semi-infinite
Deligne—Lusztig sets X£L (b), XgL (b) are

XPLpy = {g € G/B: g 'bo(g) € BwB),
XPLby ={g € G/U : g 'bo(g) € UwU).
There is a natural map X2L(b) — XDPL(b), gU +> gB.
For b € G, we denote by Jp the o -stabilizer of b, which is the K -group defined by
Jp(R):={g € G(R®x K) : g~ 'bo(g) = b}
for any K-algebra R (cf. [30, 1.12]). Then J} is an inner form of the centralizer of
the Newton point b (which is a Levi subgroup of G). In particular, if b is basic, i.e.,
the Newton point of b is central, then Jp is an inner form of G. Let w € W and let

(S J%(S)(k) be a lift. We denote by 7, the o-stabilizer of w in T, which is the
K -group defined by

To(R):={t € T(R®k K) : t "o (t) = ).
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1810 C. Chan, A. lvanov

for any K-algebra R. As T is commutative, this only depends on w, not on w.

Lemma3.2 Letb € G and let w € W with lift w € N5(S)(K).

(i) Let g € G. The map xB — gx1§ defines a bijection XfU)L S
Xt (g™ bo(g)).
(i) Let g € Gandt € T. The map xU — gxtU defines a bijection XgL(b) >
X2 (800 (9)).
(iii) There are actions of Jp(K) on X L(b) gtven by (g, xB) — ng and of Jp(K) X
Tw(K) on XDL(b) given by (g,t xU) — gxtU They are compatible with

XuD}L b) —> Xw (b), and if this map is surjective, then XSL (b)isaright Ty, (K)-
torsor over XgL (D).

Proof (i) and (ii) follow from the definitions by immediate computations. (iii) follows
from (i) and (ii). ]

Remark 3.3 (i) Whereas the classical Deligne-Lusztig varieties are always non-
empty, XPL(b) is non-empty if and only if the o-conjugacy class [b] of b in
G(k ) intersects the double coset BwB. For example, if G = GL, (n > 2) and b
is superbasic, then XX (b) = @, as was observed by E. Viehmann.

(i) L. Fargues pointed out the following way to endow the semi-infinite Deligne—
Lusztig set XX (1) (and X2 (b) if T, is elliptic) with a scheme structure: assume
that G (and B) come from a reductive group over Ok (again denoted G), such
that G/B is a projective Ok -scheme. Then

(G/B)(K) = (G/B)(0) = lim(G/B)(O/p").

r

Now (G/B)(O/p") = L;"(G/B)(Fq) is a finite dimensional IF,-scheme via L.
For a given element w in the finite Weyl group, the corresponding Deligne—Lusztig
condition is given by a finite set of open and closed conditions in G/B which
involve o. The closed conditions cut a closed, hence projective, subscheme of
G /B, and replacing G/ B by this closed subscheme Z, we may assume that there
are only open conditions. These define an open subscheme Y, in each L} Z. Set
Xgl‘(l)r = prr_l(Yr), where pr,: LTZ — L} Z is the projection. This gives
XDL(1), the structure of an open subscheme of L+ Z and X, (1) = [ J°2, XL (1),
is now an (ascending) union of open subschemes of L*Z. Note that since the
transition morphisms are not closed immersions, this union does not define an
ind-scheme. Now if w is such that T,, is elliptic, then T;,(K) is compact modulo
Z(K), where Z is the center of G, and XﬁL(l)—being a T, (K)-torsor over
Xgl‘(l)—is a scheme.

However, this scheme structure appears to be the “correct” one only on the sub-
scheme X2 (1)y, as the action of G(K) = J;1(K) on X2L(1) cannot in general
be an action by algebraic morphisms (whereas the action of G(Og) on X u[)’ Ly,
is). This will become clear from the SL;-example discussed in Sect. 6.5 below. ¢
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Finally we investigate the relation of X fb) L(b) with Lusztig’s constructions from

[25,26]. In fact, consider the map F : G— G, 8 bo(g)b~!. Assuming that (w, b)
satisfies wB = bo (B), so that wBb~! = F(B),

XPLby={gB e G/B:g 'bo(g) € BwB)
={gBeG/B:g 'F(g) € BF(B))
={geG:¢'F(g) e F(B)})/(BNF(B))

Similarly, assuming that (w, b) satisfies Wl = bo(f]), so that wUbh ™! = F(f]),
XDt ) =1{g € G:g"'F(g) € F(U)}/(U N F)).

This is precisely the definition of the semi-infinite Deligne-Lusztig set in [25]. It
was studied by Boyarchenko [5] and the first named author [10-12] in the case when
G = GL, and b superbasic, i.e., J,(K) are the units of a division algebra over K,
where it admits an ad hoc scheme structure.

In the setting of Part 2 of this paper (see Theorem 6.5), it will turn out that
Xphb) = (g € G: g 'F(g) € FY/(TF(UNF©)) = X (b)/T". This
is quite nontrivial. In the finite field setting [13, Definition 1.17(i)], this is true because
the Lang map g — g~ ! F(g) is surjective. In the setting of p-adic groups (even in
our GL,, setting), the Lang map is no longer surjective. However, a corollary of The-
orem 6.5 is that for any x € XD (b), there exists a representative g € G such that
g 'F(g)=tuce F(é) with ¢ in the image of the Lang map on T.

4 Affine Deligne-Lusztig varieties and covers

Let the notation be as in the beginning of part 1. In this section we recall from [21]
the definition of affine Deligne—Lusztig varieties of higher level, and prove that they
are locally closed in the affine Grassmannian (Theorem 4.9 and Corollary 4.10).

4.1 Affine Grassmannian

We will use representability results on affine Grassmannians attached to G, which
were proven by Pappas—Rapoport [28] in the equal characteristic case, and by Zhu
[34] and Bhatt—Scholze [2] in the mixed characteristic case. Let G be a smooth affine
Ok -scheme with generic fiber G and with connected special fiber. The functor L*G
is represented by an (infinite-dimensional) affine group scheme over IF,;. The functor
LG is represented by a strict ind-scheme of ind-finite type; that is, LG can be written
as a direct limit of schemes of finite type, with transition morphisms being closed
immersions.
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1812 C. Chan, A. lvanov

The affine Grassmannian associated with G is the fpqc-sheaf LG/ L*G, which is
the sheafification for the fpgc-topology of the functor on I, -algebras given by

R+ LG(R)/LTG(R).

It possesses the following representability properties.

Theorem 4.1 (cf. [28, Theorem 1.4], [34, Theorem 1.4] and [2, Corollary 9.6]) The
fpqc-sheaf LG/L™G on Fy-algebras is represented by a strict ind-scheme. The quo-
tient morphism LG — LG/L%G has sections locally for the étale topology (i.e.,
Spec(R) X 1.G/1+g LG = Spec(R) Xspec(r,) L*G for each point of LG /L*G with
values in a strictly henselian ring R).

Moreover, if G is parahoric, then LG/L™G is ind-proper, but we will not use
this in the following. In general, the affine Grassmannian is not reduced. We have

LG/LYG([Fy) = G/G(O).

4.2 Level subgroups

Let ® = ®(G, S) denote the set of roots of § in G and let U, denote the root
subgroup foro € . Put Up:=T.

Let x be a point in the apartment of S inside the Bruhat-Tits building of the adjoint
group of G over K. Attached to it, there is a valuation of the root datum of G in
the sense of Bruhat-Tits [8]. In particulag, for each o € @, it induces a descending
filtration lja ,on Uy with r € R, where R:=R U {r+:r € R} U{oo} is the ordered
monoid as in [8, 6.4.1]. Further, a choice of an admissible schematic filtration on tori
(in the sense of [33, §4]) also defines a descending filtration U() , o= Uo , on UO
(If G is either simply connected or adjoint, or split over a tamely ramified extension,
this filtration coincides with the Moy—Prasad filtration, and hence is independent on
the choice.) For any concave function f: ® U {0} — R>0 N {oo}, let G r denote the
subgroup of G (depending on x) generated by Uy, (o) (@ € ®U{0}). In [33, Theorem
8.3] it is shown that there exists a smooth affine group scheme Gy over O with generic
fiber G, satisfying G (O) = éf. Moreover, assume that X is stable under the action
of o on the adjoint building. Then Gy descends to a smooth affine group scheme over
Ok, again denoted G ¢ [33, §9.1].

Proposition4.2 Let f,g: ® U {0} — @30 ~ {00} be two concave functions with
g=f

(i) L*Gy is a closed subgroup scheme of L*G.

Assume that Gq is normal in Gy, and that LG, is pro-unipotent.

(ii) The fpgc quotient sheaf LYGy/L* G, is representable by a smooth affine F-
group scheme. The morphism L+gf — L+gf/L+gg splits Zariski-locally on
the target.

(iii) The fpqc sheaf morphism LG/LTG, — LG/LTGy is represented in the
category of ind-schemes. It is thus an LY Gy /LT Gg-torsor in the category of
ind-schemes. It admits sections locally for the étale topology on LG /LT Gy.
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Proof When G,, G are parahoric models of G, part (i) is shown in [28, Proposition
8.7(a)]. In the general case, (i) follows by the same argument. To see (ii), first observe
that L*G, < LTG is a monomorphism of sheaves (although G, — Gy is not
an immersion if f # g), as G, is obtained from G by a series of dilatations (see

[4, §3]) of closed subschemes in the special fiber. Put Q(O) Grand for h > 1,
let Q}h) be the dilatation of Q ¥ along the unit section of the special fiber. Then
L+g}’” = ker(LYG; — L} Gy) (cf. [34, p. 414]). We can find an h > 1, such
that the natural morphism g}”) — Gy factors through G, — G. This gives closed

immersions L+g}h) < L*G, < L*Gy. Applying the natural morphism of functors

LT — L to the arrow G, — Gy, and using that LT — L, is surjective when
evaluated at a flat O -scheme, we thus obtain the following commutative diagram of
fpqc-sheaves on I, -algebras, with exact rows and columns:

L+g(h)

-

0 —> LTG, » LYGy —— LTGs/LTG, —> 0

" 4 4

LG, —%= LfGy — L;Gy/im(@) — 0

Now a diagram chase shows that the right vertical map is a monomorphism. Hence
it is an isomorphism. We have presented L*G/L"G, as a quotient of two finite
dimensional smooth affine group schemes. The last claim of (ii) follows as in the
proof of [28, Proposition 8.7(b)].

Finally, we prove (iii). It is clear that the morphism of fpqc sheaves p: LG /LG, —
LG/L*Gyisan LTGs/LtG,-torsor. A (sheaf-)torsor under an affine group scheme
is always relatively representable, so we deduce from (ii) that for any scheme 7 and
any morphism #: T — LG/L*Gy, the pullback p:: T x16/1+g, LG/LTGy — T
is a morphism of schemes. This implies that LG/L*G, — LG/L* Gy is amorphism
of ind-schemes. The last claim follows from Theorem 4.1. O

4.3 Affine Deligne-Lusztig varieties of higher level

Until the end of Sect. 4, we fix a o-stable x as above, and a o-stable Iwahori sub-
group I C G, whose corresponding alcove in the building contains x. There is a
function f;: ® U {0} — R>0 \ {oo} satisfying Gx f; = I, and we have the corre-
spondlng 1ntegral model 7 := Gy r,. The extended affine Weyl group of S in G is
W = A (S)(F)/ANG(S)(F) N 1.

In [29] Rapoport introduced an affine Deligne—Lusztig variety attached to elements
weWandb e G,

Xy () ={gl € G/I : g7 'bo(g) € Iwl} € G/I = (LG/LYT)(F,).
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It is a locally closed subset of LG/L™Z, hence it inherits the reduced induced
sub-ind-scheme structure (see also Theorem 4.9 below). It is even a scheme locally
of finite type over . Covers of X,,(b) were introduced by the second named author
in [21]. We recall the definition (cf. [22, Sections 2.1-2.2] for a discussion in a more
general setup).

Definition 43 Letb € G. Let f:@U{0} — Ezo . {00} be a concave function
such that G ¢ is o-stable. Let x € G y\G/G s be a double coset. Then we define the
corresponding affine Deligne—Lusztig set of level f,

X[ (b):={gG; e G/Gs:g'bo(g) € GpxG s} € G/Gr = (LG/LTG)(F,).

IfJ=G 7 satisfies the assumptions in the definition, we sometimes also write
X ){ (b) for X ){ (b). We will prove that X I (b) is in certain cases a locally closed subset
of LG/LYG r (Theorem 4.9). There is a natural J, (K )-action by left multiplication on
X[ (b) forall fandall x.1f f' > f and x’ € G ;\G/G ; lies over x € G \G /G ,

then the natural projection G / éf/ - G / G f Testricts to a map X ){,/ b - X ){ ).
Concerning the right action, we have the following lemma.

Lemma4.4 Let J' = éf/ and J = éf be two subgroups as in Definition 4.3, such

that J' is a normal subgroup of J. Let x € J\NG/J' lie over x € J\G/J and let
beG.

(1) Any i € J defines an X){(b)-isomorphism X){,,(b) — XiJ,/lx,g(i)(b) given by
gt +— gil'.
(i) IfX){, b)) —> X){ (D) is surjective, then X}{, (b) is set-theoretically a (J | J') v -torsor

over X ){ (b), where
(J) Iy :={ield: i 'Xo@)=x"})J.

Proof Since J' is normal in J, we see that i J'x’J'o (i)~ = J'ix’c(i)~'J’. This
implies (i). For (ii) we need to show that (J/J'),s acts faithfully and transitively
on the fibers of ¢: X!/ (b) — X](b). By definition, ¢~ (gJ) = {ghJ' : h €
J and (gh)~'bo(gh) € J'x'J'}. The claim follows from normality of J/ in J and
the definition of (J/J'),. O

4.4 Scheme structure

We need some notation. Write ® := & U {0}. Let ®,¢ denote the set of affine roots of
S in G and let 6aff be the disjoint union of ®.¢ with the set of all pairs (0, r) with
r € Roy, for which the filtration step (70 i 170 r+ 18 non-trivial. There is a natural
projection p: D5 — D, mapping an affine root to its vector part and (0, r) to 0. We
extend the action of W on &, d,¢ to an action on <I> Cbaﬁ by letting it act trivially on
0 and all (0, r).

By [33], for any o € dandr e R>o ~ {oo} there is an ( O-scheme U, , satisfying
Uy (0) = Ua » whose generic fibre is U g1 > — ]R>o ~ {00} is concave, the
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schematic closure of Uy in G isUy, f(a). If r < sin R<oo, thereisa umque morphlsm

of group schemes Uy  — Uy, which induces the natural inclusion Ua s > UD, , on
O-points. Let L, s U, be the fpqc quotient sheaf

Liy sUa = L U r /L Uy 5.
It is represented by a finite-dimensional group scheme over Fq.

Lemma4.5 Let f: o — ]Tézo ~ {00} be a concave function such that éf Clisa
normal subgroup. Then there is an isomorphism of Fq -schemes

I1 Lisi@. r@ylUe = LTZ/L*Gy,

aed

which on geometric points is given by (aa)yecd — |1y Ga» Where Gy is any lift of ay
to Uy, f;(a) and the product can be taken in any order.

Proof The conclusion of [8, 6.4.48] also holds for the Iwahori subgroup, i.e., for the
function f; (this follows from the Iwahori decomposition). Thus there is a bijection

[1 LU iy Fp) = 1, (@e)acavioy — [1, das

aed

given by multiplication in any order, and a similar statement for I, f; replaced by
G, f. The statement of the lemma on geometric points follows from these bijections
by normality of G/ in 1. Now, the map (ay) wed — |y do inthe lemma is an algebraic
morphism between smooth varieties that is bijective on geometric points and hence
an isomorphism. O

Let x € W. We give an explicit parametrization of the set of double cosets
G ¢\Ix1/G y in certain cases. For simplicity, we abuse the notation in the follow-

ing few lemmas and write x again for any lift of x to G.We say also that (o, m) € CI>aff
occurs in a subgroup J of G if Ua m 1s contained in J. Then (&, m) occurs in G f if
and only if m > f(«). Let @ aff (J) C <I>aﬁ denote the set C of all palrs (o, m) occurring
inJ.IfJ' C Jis a normal subgroup, let <I>aff(J/J )= <I>aff(J) ~ Cbatf(] ).

Let f: > — R>0 ~ {00} be a concave function such that Gf C [ is a normal
subgroup. For x € W, we can divide the set of all affine roots Dy (1/ G £) into three
disjoint parts Ay, By, Cy:

Ay = {(a,m) € Dyt (1/G f): x.(ct, m) & Bagr (1))
By = {(a,m) € Bt (1/G f): x.(a, m) € Do (1/G )}
Cr = {(@,m) € Dot (I1/G p): x.(at,m) € Dy (G )} (4.1)

Lemma 4.6 Let f: @ — @20 ~ {00} be a concave, such that éf C I is a normal
subgroup. Let x € W. Assume that p(Ay), p(Bx) and p(Cy) are mutually disjoint,
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and that the same is true for p(A,-1), p(B,-1), p(C,-1). Then there is a well-defined
bijective map

[T Lifie. f@)Ua )
aep(A, 1)

[T L. reta®y)
aep(By)

[1 Lin@ rente®y) — Go\IxI/Gy
aep(Ay)

givenby ((aoz)aep(Ax_l)a (ba)aep(Bx)’ (aot)ozep(Ax)) = l_[agp(Axil) &Ol"xll_[o[ep(Bx) by-
I—[aep(A ) o, where aq is any lift of aq to an element of Ua f1(@), and similarly for
ba, by. This endows the set G \xI/ G f with the structure of a reduced IF -scheme
of finite type.

Proof That the claimed map is well-defined follows from Lemma 4.5. We have an
obvious surjective map I /Gy x I1/Gy — Ge\IxI/Gy, givenby (iGy, jGy)
G Fix iG f- By Lemma 4.5, we may write any element of the left // G £ as product
a,-1b,-1c,—1, where a,—1 =[] ) da, etc. Thus any element of éf\lxl/éf
may be written in the form

ozep(Ax_

éf&x—]l;x—lgx—l -X - jéf, 4.2)

for some j € I, where (") denotes an arbitrary lift of an element to the root subgroup.
Bringing b -1C,-1 to the right side of x changes it to x ™ b -1C,—1x, which is a product
of elements of certain filtration steps of root subgroups all of which lie in / by
definition of B, 1, C,1. Thus we may eliminate b, 1,1 from (4.2). Now, by Lemma
4.5, we may write any element of the right 7/ G 7 as the product cybyay, with ¢, =
l_[otep(Cx) ca, etc. That is, any element of éf\lxl/éf may be written as

G a1 - x - Exbyay Gy, (4.3)
for some lifts ¢y, by, dy of cy, by, ay. Bringing ¢, to the left side of x in (4.3), makes it

to x &, x, which is a product of elements of certain filtration steps of root subgroups,
all of which lie in G 7 by definition of C,. By normality of G r, we may eliminate C,

from the (4.3). It finally follows that we may write any element of G \IxI/ G rasa
product
G iyt x - by, Gy 4.4)

with a,-1, by, @y as above. This shows the surjectivity of the map in the lemma. It
remains to show injectivity.
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Suppose there are tuples (a,-1, by, ax) and (a a.) giving the same double

—1> )C’
coset,i.e.,d,-1xbyay = i&;,lxb;&;j forsomei, j € Gf . This equation is equivalent

to
—1,~/ ~—17 1
X (ax_l) ia,1x = bx xja b,

Here, the right hand side lies in 7, hence it follows that (&;,1 )_li&x_l elnxIx~!
We now apply Lemma 4.5: any element of 1/ G £ can be written uniquely as a product
Se-17—1 with s,—1 = ]_[aep(A e and r1 = ]_[aep(B LiuC, ) T With sq, g €

Lifi@, f@) U (Fq) By definition, the affine roots in Ax 1 are precisely those affine
roots in (Daff(l /G ) which do not occur in 7/ N xIx~". Hence we see that the image
of the composed map I NxIx~ ' < I — I/ G r is equal to the set of all elements of
1/Gy with s,-1 = 1 in the above decomposition. Now we have inside 7/G s (so in
particular, the element i G r can be ignored)

1.
1 l=dal - (d ) ia,

which gives two decompositions of the elementa,—1 € I/ G 7~ By uniqueness of such

a decomposition, we must have a; _, = a,—1. Now analogous computations (first done
for a, a, and then for b/, by) show that we also must have @), = a, and b}, = b,.
This finishes the proof of injectivity. O

The Schubert cell attached to x € W is the reduced subscheme of LG/ LTT
whose underlying set of Fq -points is IxI/I < G /1. We denote it by C (x) As
IF -schemes C(x) = A™ where £(x) is the length of the element x in W. We
now consider the reduced subscheme of LG/LTG f» whose underlying set of IF -
points is Ix1/G y € G/G  and we denote it by C 7 (x). The étale L*I/LJ“gf—torsor
LG/LTG¢ — LG/L*T pulls back to the étale LYZ/L*G ¢-torsor Cf(x) — C(x).

Lemma4.7 Let f: P — ]1:@/20 ~ {oo} be a concave function such that éf Clisa
normal subgroup. Let x € W. The étale L+I/L+gf-t0rs0r Cr(x) = C(x) is trivial.
Ifp~! (p(A.-1))N a;aff(l/éf) = A -1, then there is an isomorphism oqu-schemes

[T Lis@ reylte x LYZ/LTGy — Cr(x)
aep(A, 1)

given by ((aa)ae,,(Afl), i) HO{EP(A,C—I) Ay - X - iéf, where a, € lvlanf,(a) is any

lift of aq.

Proof The group L*Z/L*G has a composition series with all subquotients either
G, or Gy,. The cohomology of both vanishes on an affine space. This proves that
Cr(x) — C(x)1is atrivial torsor. The explicit isomorphism is proven in the same way
as in Lemma 4.6. O
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Lemma 4.8 Under the assumptions of Lemma 4.6, the projection p: Cy(x) —»
G \xI/ G f is a geometric quotient in the sense of Mumford for the left multipli-
cation action of LYG ¢ on Cy(x). Here éf\lx I/éf is endowed with the structure of
an [F4-scheme using the parametrization from Lemma 4.6.

Proof Flrstnote that from the assumptlons of Lemma4 61 it follows that p—!( p(A,-1))N
aff(I/Gf) = 1 (as A, - 1UBX 1UC 1= @aff(I/Gf)) so we may use Lemma
4.7. The action of L+Q on C ¢ (x) factors through a finite-dimensional quotient (any
subgroup J € Gy NxG px~! which is normal in G f acts trivially on C 7 (x)). Now,
since p is a surjective orbit map, G \xI/ G r is normal and the irreducible compo-
nents of C, (f) are open. Thus by [3, Proposition 6.6], it remains to show that p is a
separable morphism of varieties. But this is true since, in terms of the parameteriza-
tions given in Lemmas 4.6 and 4.7, itis given by (a,-1, i = cxbxay) = (a,-1, by, ay).
]

Theorem 4.9 Assume G is split. Let f: ® — @20 ~ {00} be a concave function such
that_ G r € I is a normal subgroup. Let x be an G r-double coset in G with image x
in W. Assume that p(Ay), p(By) and p(Cy) are mutually disjoint, and that the same
is true for p(A,-1), p(B,-1), p(C,-1), where A, B, C are as in (4.1). For b € G

arbitrary, X ){ () is locally closed in G / é/

Proof By Lemma 4.8, the theorem is now a special case of [22, Proposition 2.4]. We
recall the proof. It is well known that the Iwahori-level sets Xy L(b) = X, (b) are locally
closed in LG/L*Z. Let X be the pullback of X (b) along LG/L*Qf — LG/L™T.
As Xy, (b) are schemes locally of finite type over IF,,, the same is true for X. By Theorem
4.1,themap B: LG — LG /LG admits sections étale locally. Let U — X be étale
such that there is a section s: U — B~ 1(U) of B. Consider the composition

Y:U— B~ (U)x U — LG/LYGy,

where the first map is g — (s (g_l) bo (g)) and the second map is is the restriction of
the left multiplication action of LG on LG /L™ G r.As U lies over X, this composition
factors through C(x) — LG/L"Gy. Denote the resulting morphism by y: U —
Cr(x).Let p: Cp(x) — G \xI/ G r denote the geometric quotient from Lemma
4.8. The composition p o V¥ is independent of the choice of the section s. It sends an
Fq—point géf to the double coset éfg_lbo (g)éf. Thus étale locally, X){ (b) is just
the preimage of the point x under p o ¥9. The theorem now follows by using étale
descent for closed subschemes. O

Corollary 4.10 Under the assumptions as in Theorem 4.9, X f (b) endowed with the
induced reduced sub-ind-scheme structure is a scheme locally of finite type over Fq.

Proof X,fj (b) is a scheme locally of finite type over Fq. Since p: LG/LTG; —
LG/L"T is a morphism of ind-schemes which is a torsor under the finite-
dimensional affine group scheme L*Z/L* Gy (by Proposition 4.2), it follows that
X = =p! (XL (b)) is also a scheme locally of finite type over ]F Now the proof of

Theorem 4.9 shows that X ){ (b) has the same property. O
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Part 2. Geometry of Deligne-Lusztig varieties for inner forms of GL,,

From now and until the end of the paper, we fix an integer n > 1 and study in detail the
constructions in Part 1 for GL,, (K) and its inner forms. Inner forms of GL,, over K can
be naturally parametrized by %Z/ 7Z. Fix an integer 0 < k < n, put n’ = ged(x, n),
and let ng, ko be the non-negative integers such that

n =n'ng, k =n'ky.

The group of K-points of the inner form corresponding to «/n is isomorphic
to G := GL,/(Dyy/ny), Where Dy, sy, denotes the central division algebra over K
with invariant ko/ng. Let O Dig/ng denote the ring of integers of Dy,/n, and set
Gop:= GLn’(ODkO/n0)~ Note that G is a maximal compact subgroup of G.

We let L denote the unramified extension of K of degree n, and write Oy, for its
integers, py for the maximal ideal in Oy . For & > 1, we write U I{’ =1+ p’lf for the
h-units of L.

Up to conjugacy there is only one maximal unramified elliptic torus 7 € G. We
have T = L*. Moreover, we say a smooth character §: L* — Q has level & > 0, if
6 is trivial on Ui”'l and non-trivial on U ﬁ

We let V be an n-dimensional vector space over K with a fixed K -rational structure
V. Fix abasis {ey, ..., e,} of Vk. This gives an identification of GL(Vx) with GL,,
over K. Set % to be the O-lattice generated by {ey, ..., e,}.

5 Inner forms of GL,,
5.1 Presentation as o-stabilizers of basic elements

For b € GL, (I? ), recall from Sect. 3 the o-stabilizer J, of b. Then Jp, is an inner
form of the centralizer of the Newton point b (which is a Levi subgroup of GL,). In
particular, if b is basic, i.e. the Newton point of b is central, then Jj is an inner form
of GL,, and every inner form of GL,, arises in this way. If

k = kgL, (b) :== ord o det(b),

then Jj, is the inner form corresponding to « /n modulo Z. Note that ki, is the Kottwitz
map

KGL, B(GL,,(I?)) := {o-conj classes in GLn(I?)} — 7
and induces a bijection between the set of basic o -conjugacy classes and Z. Consider
F: GL,(K) > GL,(K), g+ bo(g)b~ .
This is a twisted Frobenius on GL,(K) and Jp is the K -group corresponding to
this Frobenius on GL, (K). In particular, if b is in the basic o -conjugacy class with

kGL, (b) = k, then

@ Springer



1820 C. Chan, A. lvanov

G = GLy (Diyjny) = GLy(K)F = Jp(K).

5.2 Two different choices for b
We will need to choose representatives b of the basic o-conjugacy class [b] with

kGL,(b) = k. Depending on the context, we will work with either a Coxeter-type
representative or a special representative.

5.2.1 Coxeter-type representatives

Set
diag(l,...,1,o,..., @) if (k,n) =1,
———— N——
by := 0 1 and b n—k K
0=\l o) ) diag(tkg g s - - -5 trono) otherwise.
———

n/
Fix an integer e, , such that (e, ,,n) = 1 and e, , = ko mod ng. (It is clear that ¢,
exists.) If « divides n, (i.e. ko = 1), always take e, , = 1.

Definition 5.1 The Coxeter-type representative attached to « is bg“’” “ten.

The main advantage of this choice is that the maximal torus of GL,, (I? ) consisting
of diagonal matrices gives an unramified elliptic torus of J, (as the image of b in the
Weyl group of the diagonal torus is a cycle of length ). Thus when we use the explicit
presentation G = J,(K) for the Coxeter-type b, then our unramified elliptic torus
T C G is the diagonal torus.

5.2.2 Special representatives

Definition 5.2 The special representative attached to « is the block-diagonal matrix

ko
of size n x n with (ng x ng)-blocks of the form (1 0 Zg) .
no—1
Note that the special representative and the Coxeter-type representative agree if
(k,n) = 1 (see the proof of Lemma 5.6), though in general they may differ (for
example, when x = 0, the special representative is the identity and the Coxeter repre-
sentative is bg).

Remark 5.3 1f b is the special representative, bo acts on the standard basis {e;}!_; of
V in the same way as in [32, Section 4.1] the operator F' considered there acts on
the basis {e; ; ;};,i1. To be more precise, in our situation, there is only one j (that is
Jj = 1) as the isocrystal (V, bo) is isoclinic. Then our basis element e; for 1 <i <n
corresponds to Viehmann’s basis element e ;/41 ;, where i = i’ng+1for0 < i’ < n’,
0 <1 < no. O
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Remark 5.4 If (x,n) = 1, the special representative b is a length-0 element of the
extended affine Weyl group of GL,, and therefore is a standard representative in the
sense of [17, Section 7.2]. In general, b is block-diagonal with blocks consisting of
the standard representative of size ng x no and determinant k. O

5.2.3 Properties of the representatives

Lemma5.5 Let Tdiag denote the maximal torus of GL,(K) given by the subgroup
of diagonal matrices. Then the Coxeter-type and special representatives lie in the
normalizer NGLn( ,g)(fdiag)- Moreover, both representatives are basic elements whose
Newton polygon has slope « /n.

Proof The first statement is clear. For b € NGLH( ]?)(Tdiag)a the Newton point can be

computed as Lllv;,a ,wherea € Z. is appropriate such that b* € Tdiag. Thus the second
statement follows from an easy calculation (for the Coxeter type, it uses the condition
on e ). O

Letb, b’ € GL,(K). Wesay b, b’ are integrally o -conjugate if there is g € GL,(O)
such that g~ 'bo (g) = b'.

Lemma 5.6 The Coxeter-type and special representatives attached to k /n are inte-
grally o -conjugate.

Proof If k is coprime ton, then necessarily e, , = k. We have bal diag(1, ..., 1, @)bg
= diag(1, ..., 1, @, 1) and it follows that (by - #1,,)* = b'(; - tc.n, SO the special repre-
sentative and the Coxeter representative agree. Now assume that («,n) = n’ > 1.
For convenience of notation, let b denote the Coxeter-type representative and let

b’ denote the special representative. Recall that b = by™" - 1., = (10, §)™" -
ko
diag(ty.ngs - - - » tho.no) and that b’ is the block-diagonal matrix with (1,1(?71 %’) in

each block. We would like to produce a g € GL,,(O) such that bo (g) = gb’. Write

8i,1
8i2

g= (g1 lg2 ] \gn>,wheregi =| .
gi.,n

Then the first ng columns of the equation bo(g) = gb’ is the equality of n x ng
matrices

(bU(g1)|b0(g2)| o |b0(gno)) = (gko+1|gko+2 |- | gny | g1 | mga]-- \wé'ko)'
In other words, we have

1 . .
-b - fl<i <k,
gi = {w o litol,) =1 = ko G.1)

bo (8li—koluy) ifko +1 <i <no,
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and hence
o g, = @b (g4)) = @O ID? 0% (gug—ky) = - = D00 (gry),  (5.2)

where the exponent of @ changes periodically according to (5.1). Observe that since
-1
by 1 t..nbo 1s the block-diagonal matrix with blocks equal to ( 1n(?_] (1) ) kom0 (1,1(?_I (1) ),

we see that e —%0p"0 ig a permutation matrix of order n'; writing ¢’ := [, yn0]n, We

_ 0 1 .
have & —kopno = (1 ) 6/) and (¢, n) = ng. Write
n—e

X1

X2
8ky = :
X‘n
Then from (5.2) it follows that
X1 o0 (xnfe’+1)
X2 o0 (xnfe’+2)
x."/ = "0 .(xn)
el a0 (xy)
Xn "o ();nfe/)
In particular, the vector gi, is determined by x1, x2, ..., Xp;.
Leta € IF;" be an element such that @, o (@), . .., o~} (@) are linearly independent

over F,. Let @ € O be any lift of @. Let g, be the vector associated to the choice
Xno—ko+1 = o and x; = 0 otherwise. We next show that for this choice of g, , each of
the columns g1, . . ., gx, (all of which are determined by g, by (5.1)) have coefficients
in O and that moreover the entries are either zero or in O*. For any positive integer
J, we know that

bo (e —e. 1) = @ - €lig—e,,(j+D)], 1li0 — €cnjlng = no —ko + 1
o €[io—een(+D]n iffio — ex.njlng < no — ko

where e; denotes the ith elementary column vector. Comparing this to (5.1), we see that
the condition for when the scalar z ~! appears in the equation for gj(j+1) kol COInCides
with the condition for when the scalar @ appears in the equation for bo (efij—e,., j1,)
when [ec n (j+1)]1n, = no+1—[io—ex,njlny- Since e, , = ko modulo ng by definition,
this implies ig = no — ko + 1, and it follows now that the entries of g1, ..., g, are
either zero or in O*.

We may repeat the above argument for the next ng columns of the equation bo (g) =
gb’. We then obtain that for ng + 1 < i < 2ng, the columns g; of g are uniquely
determined by g;,,+«,, and that the vector g+, is uniquely determined by its first ng
entries xi, ..., Xp,. Let g4+, be the vector associated to the choice x,y—x,+1 = o (o)
and x; = O otherwise. Repeating this for the remaining columns of g, with g;, 4,
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being determined by setting Xx,,—ky+1 = Ji(a) for1 <i < n’ — 1, we have now
obtained an n x n matrix g satisfying bo (g) = gb’ whose entries are either 0 or in
O*.

To complete the proof that b, b’ are integrally o-conjugate, it remains to show
that the O-valued n x n matrix g lies in GL,(QO); that is, it remains to show that
det(g) € O*. To see this, observe that by construction, the rows and columns of g
can be permuted so that it is block-diagonal with ith (1 < i < ng) block equal to the
matrix

o o(a) --- o1 (@)
i | @ @«
o .
o”,_.l(a) (;z e U”/_.z(ot)

The reduction-modulo-zo of this matrix is a Vandermonde matrix, and since o is
such that o, o (@), ..., o1 (@) € Fyn are linearly dependent over [y, it has nonzero
determinant. Hence det(g) € O*.

5.3 Integral models

Let B4 := Bd(GL,, K) be the reduced building of GL, over K. For any point x €

B4, the Moy—Prasad filtration is a collection of subgroups G x,r C GLy (K) indexed

by real numbers r > 0 [27, Section 3.2]. We write Gx = U€>,Gx s C GLn(K)
Let A" denote the apartment of B¢ associated to the maximal split torus given

by the subgroup of diagonal matrices in GL,, (K) and let b be the Coxeter-type repre-

sentative so that b acts on 4™ with a unique fixed point x € A", By construction,

each éx,r is stable under the Frobenius F(g) = bo(g)b~! and éio =Go.
We now define G to be the smooth affine group scheme over I, such that

G(F,) = Gxo, G(F,) = GE,
For h € Z~1, we define G to be the smooth affine group scheme over F, such that
Gn([Fy) = Gx0/Gx.h-+-  Gu(Fy) = GEo/GE 1y
We have a well-defined determinant morphism
det: G, — W)

Define T}, to be the subgroup scheme of G, defined over I, given by the diagonal
matrices. Set:

Gp:=Gyp[Fy), Tp:=Tr[y).

Note that G, (F,) is a subquotient of G and Ty, (F,) = ((’)L/zzrh)X = W,f (Fgn)isa
subquotient of the unramified elliptic torus T of G.
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We remark that each Gx,r is also stable under the Frobenius F(g) = bo (g)b~!
for the special representative b and that éf 0 = Gp. Thus we also can regard Gy, as
a group scheme over I, as above with Gy (FF,) a subquotient of J,(K) with b being
the special representative. However, the induced [F; -rational structure on T}, gives that
T,(Fy) = (W; (]quzo))xn/, which is not a subquotient of any elliptic torus in G.

Explicitly, Gp, (Fq) is the group of invertible n x n-matrices, whose ng x ng-blocks
are matrices (a;;j)1<i,j<no With a;; € O/p", ajj € O/p1 Vi > ), ajj € p/p"
(Vi < j). For example, for ng = 3, the ng x ng-blocks are

O/ph p/p"  p/pt
o/ph=t ot ppph ).
O/phfl O/phfl O/ph

The following lemma describes the F-fixed part of the Weyl group of Ty in G
explicitly. Note that 5™ ~%0 is a permutation matrix in GL,, (K).

Lemma 5.7 Let b be the Coxeter-type representative. We have

(i) We have Ng, (T,)/T, = Ng,(T1)/T1 = S x -+ x Sy (ng copies).
(i) Ng,(Ty)/Ty = (NGh(Th)/Th)F = (b k) = Gal(L/K)[n'], the n’-torsion
subgroup of Gal(L/K).

Proof Part (i) is clear by the explicit description of Gy,. To prove (ii), we need to make
the action of F on Ng,, (T,)/ T}y explicit. Indeed, F is an automorphism of order n, it
permutes the copies of S, cyclically, and each of the copies is stabilized by F"*°. We
can think of the first S,/ as permutation matrices with entries 0 and 1 in GL({e;: i = 1
(mod ng))) = GL,,. Then the F™0-action S, comes from the conjugation by 5° on

GL({e;: i = 1 (mod ngp))). But ™ is the order-n’ cycle e; > ejqny H> ... >
€l4ng(n'—1) > e1, and the subgroup of S, stable by it is (b"0 7y —k0y . We can identify
it with Gal(L/K)[n'] by sending b0 to 670 (see also Lemma 5.8). m]

5.4 Twisted polynomial rings

Let L( be the degree-n( unramified extension of K and consider the twisted polynomial
ring Lo(I1p) determined by the commutation relation a - [T = I - ol (a), where [y
is the integer in the range 1 < [y < ng with lpkg = 1 modulo nyg.

On the other hand, consider the Frobenius map Fj: M,,O(I? ) — MnO(I? ) defined

ko —ko .
by Fo(g) = (1,,(())71 %’) o(g) (1)1(?71 %’) . The diagonal matrices in MnO(K)FO

are exactly of the form
Do(a) := diag(a, 6" (a), ..., oD (q)), fora € Ly.
By a direct calculation, we see that we can define an isomorphism
Lo(To)/(TTg° — @) — M,y (K)" = Diyyng
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by sending a € Lo to Dg(a), and sending I1j to <1n((3_1 D ) Note that under this
identification, the ring of integers ODkO 1o of Dyy/ng is Op,y(Io)/ (1'[80 — wkoy,

5.5 Cartan decomposition

Let b be the special representative and let [Ty = ( 1n3_1 3 ) We use the description of

Dy /ng in Sect. 5.4. Let Tdiag be the subgroup of diagonal matrices in GLn(I;' ). Then
the set of F'-fixed points of the cocharacters X *(Tdiag)p is given by

A F .
Xo(Tgiag)” ={v=(1,..., V1,12, ..., V2, .., Uy, V)t v € ZY,

where each v; repeated ng times. Let X*(Tdiag)(fom C X*(Tdiag)F be the subset
consisting of v with v; < v < .-+ < yy. Forv € X*(Tdiag)F, we write TTj
for the n x n block-diagonal matrix whose ith ng x ng-block is HS" . The Cartan
decomposition of G = GL,;(Dy,/n,) With respect to the maximal compact subgroup
Go = GLy(Op,,,) is given by

G= | | Goll}Go

UEX*(Tdiag)F,dom

Note that I1j; normalizes G if and only if all v; are equal, and ITj centralizes G if
and only if all v; are equal and divisible by n¢ so that

Ng(Gp)/ZcGo = Z/noZ.

5.6 Reductive quotient G4

Let b be either the Coxeter-type or the special representative. The group G is equal
to the reductive quotient of G. Recall the O-lattice %y and its basis {e;}7_, from the
beginning of Part 2. The following lemma describes the reductive quotient in terms of
£ Its proof reduces to some elementary explicit calculations, so we omit it.

Lemma5.8 Letc,d € Z with koc + nod = 1.
(i) We have (bo) w4 (L) € %L, and (bo) w? (L) is independent of the choice of
¢, d." The quotient space

Vi=%/(bo) w! (L)

is n’-dimensional Fq—vector space. The images of {€;}i=1 (mod ng) form a basis of

V.

U (o) w (%) coincides with the operator defined in [32, Equation (4.3)].
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(ii) The map (bo )@ 0 induces a o"0-linear automorphism 3, of V, equipping
it with a IFyno-linear structure. If b is the special representative, the c"°-linear
operator &, of V is given by e; — e; for 1 <i <nwithi =1 (mod ng). If b is
Coxeter-type, then it is given by €1 1ngi = €14ng(i+en)-

(iii) We have a canonical identification

Gl = RCSFan /]Fq GL,,/ V

5.7 Isocrystals

We recall that an Fq -isocrystal is an K -vector space together with an o-linear iso-
morphism. For b € GL,,(I?), we have the isocrystal (V, bo). Assume now that b is
basic with kG (b) = k. Then (V, bo) is isomorphic to the direct sum of n’ copies
of the simple isocrystal with slope ko/ng. We observe that (V, bo') up to isomorphy
only depends on the o-conjugacy class [b], and that its group of automorphisms is
G = Jp(K).

6 Comparison in the case GL,,, b basic, w Coxeter

We will compare the two Deligne—Lusztig type constructions from Part 1 in this special
situation and describe both explicitly using the isocrystal (V, bo). In Sects. 6.1 and
6.2, welethb € GLn(I?) be any basic element with xgr, (b) = «. From Sect. 6.3
onwards, we take b to be the special representative defined in Sect. 5.2.2.

6.1 The admissible subset of (V, bo)

We will describe the various Deligne—Lusztig varieties using certain subsets of V,
which we now define. Let x € V. Put

gp(x) = matrix in M, (K) with columns x, bo (x), ..., (bo)" " (x)
VMM — (x e V : det gp(x) € KX}
V;dm,rat ={x €V :detgy(x) € K*}

If g~ 0’0 (g) = b, then the isomorphism of isocrystals (V, ba') — (V,b'o),x — gx,
maps V}f‘dm to Vlf,dm. In particular, J, (K ) acts on Vbadm by left multiplication. Moreover,
L* acts on Vlf1 den, rat by scaling. Note also that x € V lies in Vlf‘dm if and only if the
O-submodule of V generated by x, (bo)(x), ..., (ba)"~!(x) is an O-lattice.

We have the following useful lemma, which essentially follows from basic proper-
ties of Newton polygons. Its simple proof was explained to the authors by E. Viehmann.

Lemma6.1 Let x € Vlf‘dm. The O-lattice generated by {(bcr)i(x)};?;()l is bo-stable,
i.e., there exist unique elements \; € O such that (bo)"(x) = Z?;ol A (bo) (x).
Moreover, ord(Lg) = kg (b).
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Proof The Newton polygon of (V, bo) is the straight line segment connecting the
points (0, 0) and (n, ) in the plane. Now, let K[X] be the non-commutative ring
defined by the relation aX = Xo(a), and let X act on V by bo. Then the Newton
polygon of the characteristic polynomial of x (which is an element of K[X]) is equal to
the Newton polygon of (V, bo) (see e.g. [1]). Observe that any x € Vbadm generates V
as a K[X]-module. Then the point (i, ord(a;)) in the plane, where q; is the coefficient
of X"~/ in the characteristic polynomial, lies over that Newton polygon. This simply
means ord(a;) > % > 0, as k > 0. Hence £"(v) = Y I, a; "1 (x) lies in the
O-lattice generated by x, X (x), ..., ¥~ (x). This proves the first assertion. The
second statement follows as (n, ord(a,)) has necessarily to be the rightmost vertex of
the Newton polygon, which is (n, «). O

Example 6.2 Forb = 1, the set Vf‘dm is just the Drinfeld upper halfspace. If (x, n) = 1,
then Vlfdm = V ~ {0} as (V, bo) has no proper non-trivial sub-isocrystals.

6.2 Set-theoretic description

We need the following notation:

o Let Tgiag denote the diagonal torus of GL, and W its Weyl group.

e Let w be the image in W of the element by from Sect. 5.2.1. Then the form
Ty := Tgiag,w Of Tyiag (as in Sect. 3) is elliptic with T,,(K) = L* and has a
natural model over Ok, again denoted Ty, with T, (Og) = OZ.

e [™ (with m > 0) denotes the preimage under the projection GL,(O) —
GL,(O/@™ 1), of all lower triangular matrices in GL,(O/w™'O) whose
entries under the main diagonal lie in @™ O /w10

e [™ (with m > 0) denotes the subgroup of I” consisting of all elements whose
diagonal entries are congruent 1 modulo &1

e X(D), X " () denote affine Deligne—Lusztig varieties of level 1™, I™ respectively
(for appropriate )

e Forr > 0and x € Vbadm, let gp r(x) € GL, (K ) denote the matrix whose ith
column is "~V (bo) =1 (x). We have g,(x) = gp.0(x).

e Forr,m > 0, define ~p ,, » and ~p p,  ON Vhadm by

X ~bmys Y E Vfdm & yegprx)- (OX P p’")T,

adm

XAy € VMM &y e gy, (x) - (L+pmtpm opm)T.

It follows from Lemma 6.6 that ~p, ,,, - and ~}, ,,, » are equivalence relations.

e Forr > 0, set w, = by 77K H=Dr) ¢ GL(I€) and denote again by w, the
image of w, in all the sets 1™\ GL,l(IE')/Im and 1™\ GL,,(I?)/I"” form > 0. The
image of w, in W is the Coxeter element w.

Furthermore, we define
yRImIbio . _ (y € V : g (det g (x)) = det(tig) det(h) ! det(gp(x))}.  (6.1)
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Observe that det(i)det(h)™! e O, so picking any « € O such that
o(ao(@)o?()- 0" (&) = det(io) det(b) " induces a (J,(K) x L*)-equivariant

adm rat adm,rat,
isomorphism V, -V, wo given by x — ax.

Remark 6.3 We will study the scheme structure on X gr (b), X ’ug'r (b) in detail below
in Sect. 6.4. But we want to point out already here that both are locally closed
in GL,(K) /I, GL, (K )/I™, hence are reduced IF,-schemes locally of finite type.
Indeed, I™ is normal in I and the image of w, in W satisfies the assumptions of The-
orem 4.9 (see Lemma 6.4 below), hence it follows that X gr (b) < Gin / I™is locally
closed. The same argument does not apply to X g)’r (b) as I"™ C [ is not normal. Still
X" (b) € GL,(K)/I™ is locally closed. Indeed, let p: GL,(K)/I" — GL,(K)/I
denote the natural projection. As we will see below in Proposition 6.12, the Iwahori
level variety Xow, ® = Ug /Go g.X gr b) ¢ < GL, (k )/I is the scheme-theoretic
disjoint union of translates of a certain locally closed subset X %r (b) &, It thus suffices
to show that X7 (b) ¢, = X2 (b) N p~ ' (XY (b).4) S p~ (XY, (b).g) is locally
closed. But this follows from the explicit coordinates on X Z)’r (b) &, given in the proof
of Theorem 6.17. O

Lemma 6.4 Let w, denote the image of W, in W. Then wy and I, satisfy the assump-
tions of Theorem 4.9 (with respect to the Iwahori subgroup 1°).

Proof We use the same notation as in Theorem 4.9. We have to show that the subsets
p(Ay,), p(By,), p(Cy,) of ® are disjoint and that the same holds for p(A 71)
p(B 71) p(C 71) Write ® = {ajj: 1 <i#j<n}U{0} where ; ; Corresponds
to the i, j-th entry of a matrix. Let w be the image of w, in the finite Weyl group W.
Then w acts on ® by w.«; j = @j41,j+1, w.0 = 0, where we consider i, j as elements
of Z/nZ. Then CDaff(I/Im) is equal to

{(aj,j, M) jePand 0 <A <m —1(fi > j)resp. 1
<A<m(fi < HIU{O,1):0=<Ar <m}.

Now one computes that w,.(0, A) = (0, 1) and w,.(; j, A) = (41, j+1, A) if either
(n > i > j)or(n > j > i). Further, w,.(an,j, A) = (o1, j+1, A + nr + «) and
Wy (&, &) = (41,1, A — nr — k). Thus we deduce that p(By,) = {a;,j € ®:n >
i>jorn > j>ilU{0}, p(Ay,) ={atip € ®: 1 <i <n—1}and p(Cy,) =
{ay,j € ®:1 < j < n—1}. Similarly, we compute that p(B;r]) ={o,; € P:i >
Jj > I}U{O},p(Awr—]) ={a;,;€ed:1=<j< n—l}andp(er_l) ={o1ed:1<
i <n-—1}. O

Recall from Sect. 3 that G = J,(K) acts on X 5 L(p) and X wp OL (b) by left multipli-
cation. By Theorem 6.5 below, the maps Xgol‘ b) — XﬁL (b) and )'(Zfr b) —> X’u.'fr b)
are both surjective. Hence the former is a T,,(K)-torsor via the right-multiplication
action of T,,(K) on XL (b) (by Lemma 3.2(iii)) and the latter is a (I""/I™),, =
T, (O /@™ 1)-torsor via the right-multiplication action of 1"/ I™on X gr (b).
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Theorem 6.5 (i) There is a commutative diagram of sets

~

dm,rat DL
vy Xl (b)

! [

vadm /g x = XDL(b)

in which horizontal arrows are G x T, (K )-equivariant isomorphisms. Moreover,
the vertical arrows in the diagram are surjective.
(i) Assume thatr > m > 0. There is a commutative diagram of sets

VAR e = X () (Fy)
\L lTw(OK/wm'HOK)
VR ) ey —— X (D) (Fy)
in which horizontal arrows are G x Ty (O /o™ -equivariant isomorphisms.

Moreover, the vertical arrows in the diagram are surjective.

Before proving the theorem, we need some preparations. Observe that by Lemmas
3.2 and 4.4 in the proof of Theorem 6.5, we may replace b by an o -conjugate element
of G.

Lemma 6.6 Letr > 0. Letx,y € Vbadm. Then

X ~pmr Y S 8hr(XOI™ = gp MM, (6.2)
X% mry € &b r)I™ = gp, (NI, (6.3)

Proof Indeed, gp ,(y) € gp.r(x)I™ is equivalent to

y € xOX + @ bg(x)O + - + &= (b )=l (1) O
@’ (bo)(y) € " HxO + @ bo () OX + @ (b0)2 ()0 - + @D (bo) " ()0

m_r(n—l)(bo)n—l o) € w_m-HXO 4ot wm+l+r(n—2) (bo,)n—Z(x)O + w_r(n—l)(ba)n—l (X)OX.
By definition, the first equation is equivalent to x ~p, , - y. But once the first equation
holds, then the (i + 1)th equation must also hold by applying @ (bo)" to the first

equation and using Lemma 6.1. Hence (6.2) follows, and a similar proof gives (6.3).
(]

Lemma6.7 Letr > 0and x € Vbadm. Then
bo (gp,r(x)) = gbr (X)W, A,
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where A € GL,(K) is a matrix, which can differ from the identity matrix only in the
last column. Moreover, the lower right entry of A lies in O, and if r > m > 0, then
Ael™

Proof By definition, we have

bo (gp,r(x)) = (bo (x) @" (o) (x) - - " "D (bo)" "L (x) w" "~V (bo)"(x)),
8h.r (W, = (bo (x) @ (bo)*(x) -+ @ "D (bo )"~ (x) ' "D HKG )y

As the first n — 1 columns of these matrices coincide, it follows that A can at most
differ from the identity matrix in the last column. By Lemma 6.1, we may write

n—1
(bo)"(x) = Y a; - (bo)' (x)
i=0
o n—1
— %0 ri=DkG®) =) i
- w—r(n—l)+/((;(b) x+ 21: r(z D (24 (bo)' (x),
1
where «g, ..., a,—1 € O and ord(¢g) = «. By construction, the last column of A is
r(n—1) r(n=2) r(n—=3) r @0 )T
(w o, @ a, @ o3, ..., Op_1, @

We then see that the lower right entry of A is % € O and that if » > m + 1, then
20 lie in w"tlO andAeIm. O

Proof of Theorem 6.5 (i) As in [13, §1], the sets X 1’3 L(b) do not depend on the choice
of the Borel subgroup, so we may choose B € GL,, to be the Borel subgroup of the
upper triangular matrices and U its unipotent radical. Lemma 6.7 for r = 0 implies
the existence of the map

vim s XPLp), x> gy(x)B.

We claim this map is surjective. Let g B € XPL(b), i.e., g~ 'bo(g) € BiogB. Replac-
ing g by another representative in gBif necessary, we may assume thatbo (g) € g B.
Moreover, this assumption does not change, whenever we replace g by another rep-
resentative g’ = gc with ¢ € BN B (here "B = li)oélb()_ 1. A direct computation
shows that replacing g by gc for an appropriate ¢ € BN ™0 B, wefinda representative g
ofgé with columns g1, g2, . .., gx satisfying g;+1 = bo(g;)fori =1,...,n—1.This
means precisely g = gp(x). All this shows the surjectivity claim. For x, y € V}f‘dm,
one has g, (x)B = gb (y)é if and only if x, y differ by a constant in K *. This shows
the lower horizontal isomorphism in part (i) of the theorem.

We now construct the upper isomorphism. We may write an element of gU €G / U
lying over gb(x)B € XDL(b) as gU = gb(x)tU for some t € T. Using Lemma 6.7
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(and the notation from there) we see that

§7'bo(8) = 17 g (x) " Tho (gp(x))a (1) = t Mg Ac (1)

Now write A = AAg with Ag € U and A = diag(l, ..., 1, A¢) a diagonal matrix with
o € O*. Wethenseethat ¢~ bo () =t~ ngro (1)-" Ag. Hence g (x)t € X DL (b)
if and only if wy 't~ oo (r) = A1, Thus, if we write fo, #1, ..., f,_1 € K* for the

diagonal entries of ¢, then we have #; 1 = o(#;) for 0 < i < n — 2. We may assume
this. In particular, it implies that g5(x)t = gp(xtp). In other words, replacing x by
xty, we may assume that ¢ = g5 (x). It remains to determine all x € V;dm, for which
gr()U € XD (b), ie., gp(x)~'bo (gy(x)) € UriyU. Comparing the determinants
on both sides we deduce that o (det g5(x)) = det(uy) det(b)~! det gp(x) (i.e. that
x € VpImIh0) a5 a necessary condition. Assume this holds. With notations as in
Lemma 6.7, we deduce det(A) = 1. Moreover, since A can differ from the identity
matrix in at most the last column by Lemma 6.7, det(A) = 1 is equivalent to A € U.
All this, together with the fact that V;; dm,rat,ho o Vbadm’rat (see (6.1)) shows the upper
isomorphism in part (i). The commutativity of the diagram and J,(K)-equivariance
of the involved maps are clear from the construction. The surjectivity claim for the
vertical maps is shown in exactly the same way as the analogous claim in part (ii)
below.
(i1) Lemma 6.7 for r > m > 0 implies the existence of the map

Vlfdm — X"ufr(b), x> gp ()™,

We claim it is surjective. Let gI™ € X7 (b), i.e., g 'bo(g) € I, I™. Replacing g
by another representative of g/™ if necessary, we may assume that bo (g) € g, I"™.
Moreover, this assumption does not change, whenever we replace g by another rep-
resentative ¢’ = gj with j € I N ¥ ™ In the rest of the proof, we call such
transformations allowed. We compute

OX prn-i—m .. .. prn—&—m

pm O pm+l L pm+1
movem=| . A :

pm . pm O pm-i—l

(on the main diagonal entries can lie in O, under the main diagonal in p™, in the first
row, beginning from the second entry, in p”**", and above the main diagonal, except
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for the first row, in p’”“). Let g1, ..., g, denote the columns of g, seen as elements
of V. Then gw, € bo(g)I'™ is equivalent to the following n equations:

g € @' bo(g)O* + @ b (g)O0 + -+ + & b0 (g2)O
g3 € @ "o (g)O + & bo (g2)0F + " TMbo(g3)O + -+ + @' T bo (g,)O

gn e @ T po(gNO+ -+ & bo (g, 2)O + @ bo (84— 1) O™ + @' " ba (g,)O

w_rn+m+)(g1 c wr+2m+lba(g1)(9+-~+wr+2m+lba(gn_1)0+wr+’"ba(gn)(9><‘

A linear algebra exercise shows that after some allowed transformations these equa-
tions can be rewritten as

g2 € w'bo(g1)O™
g3 € w'bo(g2)O*

8n € wrba(gn—l)ox
oD e @™ bo ()0 + - + @™o (g4-1)O + bo (g,)O*.

This shows that ¢ = g5 ,(g1), and hence the claimed surjectivity. Lemma 6.6
shows that the lower map in part (ii) is an isomorphism. Exactly as in the proof
of (i), one shows that the claim of (ii) is true if one replaces the upper left entry

m+1
by {x € Vbadm: det(gli”s’éi?dn;(;daw . As x~p . xu forany u € 14 p"t1,

the original claim of (ii) follows from this modified claim along with the surjec-
tivity of the map 1 + p"*' — 1 4 p”"*! u > []/Z) o' (u), and the fact that
detgp(x) € K* < detgp , (x) € K*.

It remains to show that the vertical arrows in the diagram in (ii) are surjective.
It suffices to handle the left arrow. Let x € V9™, By definition of ~}  », for any
A € O* wehave Ax ~p . x. Now we have det gp (Ax) = @ -]_[;-:01 ol (1)-det g (x)
for an appropriate a € Z. Now the map A — ]_[:’;(} al(M): 0% — OX is surjective,
hence by rescaling x with an appropriate . € O* (thus not changing its class in

V}f‘dm/ ~b.m.r) We can arrange that det g, (x) € K, i.e., thatx € V;dm’rat. ]

The natural projection maps X:Z‘:rl(b) — X3 (b) and Xgr‘"](b) — XZfr (b) are
obviously morphisms of schemes. However, Theorem 6.5 implies that there are G-
and G x T, (Og/ wm+1)-equivariant maps of sets (on F,-points)

Xy (b)) — Xp (b),  and Xgm ) > X (b) (6.4)
induced b‘y 8b.r+1(x) = gpr(x). In Sect. 6.4, we explicate the scheme structure on
X gr b), X gr (b) and prove that these maps of sets are actually morphisms of schemes

(Theorem 6.17). Taking Theorem 6.17 for granted at the moment, we have a notion
of an affine Deligne—Lusztig variety at infinite level.
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Definition 6.8 Define the (infinite-dimensional) Fq-scheme

Xy(b):= lm X7 () and X% (b) := lim X2 (b).

r.m:r>m r.m:r>m

Both have actions by G and the natural G-equivariant map X,j‘f’ ) - XX(b)isa
Ty (Ok)-torsor.
Passing to the infinite level in Theorem 6.5 gives the following result.

Theorem 6.9 There is a commutative diagram of sets with G-equivariant maps:

XDL(p) = ypamr > X2 (b)
[EES l o0

XDL(b) <= vpdm/Kx 2o ypm/ox 5 X% (b)

The upper horizontal maps are T (Ok)-equivariant. This extends the natural
T, (Ok)-action on X (b) to a T, (K)-action.

Using the set-theoretic isomorphism in Theorem 6.9, we will see in Sect. 6.4 that
by endowing Vadm with the natural scheme structure over ]F commg from the lat-
tice %, we can v1ew_the semi-infinite Deligne-Lusztig sets Xw (b), xb o L) as
(infinite-dimensional) F,-schemes. Moreover, every isomorphism in Theorem 6.9 is
an isomorphism of Fq-schemes (Corollary 6.19).

6.3 Connected components

To “minimize” powers of the uniformizer, we define

1
grlo)= |

Ty ¢ <v>> (6.5)

bo (v)

b0 (w) | -

1
(” ‘ o ko/no] - L2k0/n0J

to be the n x n matrix whose ith column is m -(bo) 1 (v) forv € V.Observe
that

gr(v) = g (U) Dk n»

where Dy, is the diagonal matrix whose (i, i)th entry is g7 L —Dko/mol,

Definition 6.10 For any basic b (with «gr,,(b) = «) which is integrally o-conjugate
to the special representative as in Sect. 5.2.2, we define

.,?adm = {v c%h: detgred(v) € OX] ,
f(ﬁm’m = {v € % : det gred(v) € O,X(} ,

Fpdmnatio . {v € L : o(det g (v)) = det(irg) det(h) ™! det g (v) € OX} .
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Asin (6.1), note that f(iim’m’ o ~ fﬁm’rat by rescaling appropriately by an element
of O*.

Let now b be the sRecial representative with kg(b) = k. As Gp € GL,(0) =
Stab(.%) inside GL,, (K ), we see that .Z(f im’rat, Zoet‘})m are stable under G x Ty, (Ok).
We have

d
baom— V= Zalel

~aj € Oforl <i <n;{aje; (mod @)}i=1 (mod no)
generate the IF,,-vector space V
(6.6)

where V is as in Sect. 5.6 (compare [32, Lemma 4.8]). For x € 3;%“‘ with reduction-

modulo-w X, define g, (x) € GL, (Fq) to be the matrix from reducing every entry
of g}rfd (x) modulo w and deleting the ith row and jth column for all (i, j) # (1, 1)
modulo ng.

Lemma 6.11 We have a disjoint decomposition

V;ldm — L[ g( adm)

8€G/Go

Proof Letc, d be asin Lemma5.8. On V we have the operators considered in [32, 4.1]:
bo, w(bo)™, wl(bo)¢, w0 (bo)™ = "0 (in [32], these operators are denoted
F,V,m,o; respectively). Forv € Vlf‘dm we may consider the smallest O-submodule
P(v) of V, containing v and stable under these four operators (this is a indeed lattice:
for k > 0 see [32, p. 354, paragraph before Lemma 4.10]; for « = 0, Lemma 6.1
shows that this is the lattice generated by {0 Ol ) Further we have

Z&%m ={ve %G: Pv)=%).

This follows from the explicit description of both sides: (6.6) above and [32, Lemma
4.8 and beginning of §4.4]. Next, the set of lattices in V stable under the four operators
aboveisinbijection withG/Gp viagGp — g-%.Indeed, forx > 0 this follows from
Lemma 4.8 and 4.10 of [32] (note that there Viehmann only considers bi-infinitesimal
p-divisible groups, so that the slope(s) of V must be strictly between 0 and 1); and for
k = 0, this is clear from the description of the affine Grassmannian of GL,, in terms
of lattices.

Any g € G commutes with the four operators above, hence P(gv) = gP(v)
and hence g(f(i%m) ={ve#: Pv) = #}if # = g(L). Finally, | ,{v €
M : P(v) = A} (where .4 runs through all lattices stable under the four operators)
is disjoint and equal to Vbadm. O

Foreach h € G/Go, let X[ (b)y(%, be the subset of X7 (b) consisting of all
points which under the isomorphism X’" b) (IF ) = Vadm / ~b.m.r of Theorem 6.5
correspond to h(.i”&%m).
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The Iwahori level variety X Owr (b) is known to be locally closed in the ind-scheme

GL,(K)/I and locally of finite type over Fq. The following result (as well as the
preceeding lemma) is based on ideas from [32], which were explained to the authors
by E. Viehmann.

Proposition 6.12 Letr > 0. Forany h € G, ngr (D)%) is a closed and open subset
of Xg),. (b). In other words, Xoub,. b)) = ]_[heG/Go Xowr (D)) is a scheme-theoretic
disjoint union decomposition.

Proof The proof follows along the same lines as [32, Lemma 4.16]. First we show
that X 2;, by X %r (D) is closed. To this end, recall that points of GL,(K)/I can

be interpreted as complete chains of O-lattices in K". Let &, = {(H2>AH2---D
L1 2 w.Z} be the standard chain (stabilized by 7). Then g/ corresponds to the
lattice chain g.%, = {g.%; };':_01. We claim that there is an integer C > 0 only depending
on n, k, r such that

XS (b).gy = (Mo = (M)} € X, (b): Mo S Lo and vol(M) = C). (6.7)

Let #, € X S)V (b) #,- By construction, there is some v € ,,%“%m such that .#Z, =

8b,r (V) L. Then My = gb.,(vV)(Z) is the lattice generated by {ar" (bo)! (v)}'=,,
which is contained in .%. Moreover,

vol(Ap) = vol(gp.r(v) (L)) = ord det gp »(v) = C + ord det glrfd(v) =C,

with C > 0 some explicit constant depending on n, «, r. Conversely, let .#Z, € X g}r (b)
be such that .Zy C % and vol(.#() = C with the same C as above. By Theorem 6.5,
there is some v € Vlf‘dm with Ay = gp r(v).Zs. Then Ay = gp.-(v)-Z) is the lattice
generated by {@’! (bo)! (v)}'—, . In particular, we must have v € .#) C .% and

ord det(g/*% (v)) = ord det(gp.,(v)) — C = vol(.#) — C = 0.

This proves claim (6.7). From this claim it follows that X 2» (b) 4, is the intersection
in GL, (k )/I of X g)r (b) with the preimage under

GL,(K)/I — GL,(K)/Stab(-£p) = {O-lattices in K"}, Ms = (M2} > My

of the closed (see [32, Remark 4.15]) subset of lattices with fixed volume and contained
in .%. Hence X 2})_ (b) 4, is closed in ngr D).

Applying the G-action on X,;, (b) we deduce that also Xow, (B)n(») is closed in
Xg)r (b) for each h € G. Now the closed subvarieties onb,. (D)h () form a disjoint
cover of X Ow, (b), as this holds on geometric points by Lemma 6.11 and Theorem

O . . . o e . . . .
6.5. As X (b) is locally of finite type, this disjoint union is locally finite. Hence
X%r (D)n(») is also open. O
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Remark 6.13 We explain the differences between our setting and that of [32, §4].
Viehmann proved a similar decomposition for an open subset S; of some minus-
cule affine Deligne-Lusztig varieties at the hyperspecial level (in particular, in the
bi-infinitesimal case, which in our notation corresponds to x > 0). A point of S
corresponds to a Dieudonné lattice .# in V, that is a lattice stable by the operators
bo and p(bo)~!. Such a lattice also possesses a single generator v € V}f‘dm, but
the difference between vol(.#) and vol(P (.#)) (where P (.#) is the smallest lattice
containing .# and stable under the four operators as in the proof of Lemma 6.11), is
quite inexplicit, and it is a complicated task [32, Theorem 4.11(ii)] to show that this
difference is constant. In our situation the lattice (chain) corresponding to a point of
X Ozb, (b) is completely explicit, and the difference of volumes is immediate to compute.

Note also that we work with the cocharacter (—r, ..., —r, (n — 1)r) for r > 1, and
since this is never minuscule, there is no direct comparison between our setting and
the varieties from [32]. O

Corollary 6.14 Let b € G be integrally o-conjugate to the special representative
attached to k. Then the conclusion of Proposition 6.12 holds for this b.

Proof If h € GL,,(O) is such that b = h_lbs,,a(h), where by, is the special repre-
sentative, then g — h~'g defines an isomorphism X’u-'J'r (bsp) AN Xgr (b). Further,
glrfd(v) =p! giiﬂ (hv) and the corollary follows from the commutativity of the obvi-
ous diagram. O

By Lemma 5.6, Corollary 6.14 applies to the Coxeter-type representatives from
Sect. 5.2.1.

6.4 The structure of X'.L' (b)

Let b be the special representative with xgr, (b) = k. Let X”w’r (b) ¢, be as defined
before Proposition 6.12. The following auxiliary elements of GL,, (K) will be used in
this subsection only. For r > 1, put u, = (1,7,2r, ..., (n — 1)r) € Xy (T4iag). For
an integer a, let 0 < [a],, < no denote its residue modulo ng. Let vy € GLno(k )
be the permutation matrix whose only non-zero entries are concentrated in the entries
(1 + [@ — Dkolny, ) and are all equal to 1. Let v € GL,,(I?) denote the block-
diagonal matrix, whose diagonal ny x ng-blocks are each equal to v;. We begin with
the following key proposition.

Proposition 6.15 For r > 1, the Iwahori level variety X%r(b)% is contained
in the Schubert cell IvDyau,r1/1 < GL,,(I%)/I. In particular, Xgr(b)go -
TvDye i /1™ S GL,(K)/I™.

Proof We have to show that for x € .,%adm one has 1gp ,(x)I = IvDy nurl,i.e., that
by successively multiplying by elements from / on the left and right side we can bring
ghr(x) = g,rfd(x)D,(,nu, to the form vDy ,u,. For 1 < i < n’, we call a matrix in

GL, (15 ) i-nice, if the following two conditions hold:
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(i) each of its n’> blocks of size ng x ng has the following shape: in its £th column
(1 < £ < ny), the entries above the (1 4 [(£ — 1)kol,,, £)th entry lie in p and the
other entries lie in O;

(1) for 1 < £ < ng, the (1 + [(£ — Dkoly,, £)th entry of the (i, i)th (ng x ng)-block
lies in O*.

The inductive algorithm to prove the lemma is as follows: put A := gred (x) and let

1 <i < n'. Assume that by modifying gred (x) Dy ot (by multiplication from left and

right with 7) we have constructed the i-nice matrix A;, such that / glrfd (X)Dyppirl =

I'A; Dy iy I and such that the firsti — 1 rows and i — 1 columns of ng x ng-blocks of

A; Dy iy coincide with vDy , i, up to O*-multiplies of the non-zero entries. Now

we do the following steps:

(1) Annihilate the entries of the(i,i)th ng x ng-block of A; lying over(1 + [(£ —
Dkolny, £)th entry (for eachl < € < nyp).
By assumption, the (1 +[(£ — 1)koly,,, £)th entry lies in O . By multiplying upper
triangular unipotent elements from 7/ (with non-diagonal entries in p) from the left
to A; Dy npir (i.e., performing elementary row operations on matrices), we obtain
anice matrix A} (uniquely determined by A;) whose entries have the same images
in O/p as those of A;. Moreover, [ A; Dy iy = IA;D,(,,,/L,I.

Put A} j:=Aj.For¢ =1,2,...,ng do successively the following step:

(2)¢ Annihilate the (no(i — 1) + £)th column and (no(i — 1) + 1 + [(£ — 1)kolny)th
row of A} ,_.
By assumption, the (no(i — 1) + 1 + [(£ — Dkolny, no(i — 1) + £)th entry of
the i-nice matrix A’ i.¢—1 lies in O*. By multiplying Al ¢—1Dic.nttr successively
from the left by lower triangular matrices from 7 which have 1’s on the main
diagonal and only further non-zero entries in the no(i — 1) + 1 4+ [(£ — 1)ko],,th
column, we can kill all entries of the ng(i — 1) + £th column of A’ ;.01 except for
the (no(i — 1) + 1+ [(€ — Dkoly,, no(i — 1) + £)th entry itself, Wthh remains
unchanged. After this we can, using the (no (i —1)4+1+[(£—1)koln,, no(i—1)+£)th
entry, easily eliminate all entries no(i — 1) + 1 + [(£ — 1)ko],,th row except for
(noi — 1) + 1 4+ [(€ — Dkolyy, no(@ — 1) + £)th entry itself, which remains
unchanged (by multiplying Ag’ ¢—1Di.nitr from the right with unipotent upper
triangular matrices in 7). This does not change the rest of the matrix, because
no(i — 1) + £th column contains precisely one non-zero entry.

As an output we obtain the matrix A; 4 := A;’no which we claimis (i41)-nice. Assume
for now that this is true. Proceeding the described algorithm for all 1 < i < n/, we
obtain the matrix A, 41, which differs from v only by some diagonal matrix with
entries in O, so that I A1 Dy nphr I = TvDy 01 is now clear.

Observe that when looking modulo p, the step (2), in the algorithm for a single £
affects the (1 +[(£ — 1)koln,, O)th entry of the (i + 1, i + 1)th ng x ng-block, but does
not affect the entries (14 [(¢'— 1)koly,, £)th (V€' # £) of the same block. In particular,
the steps (2), can be applied in any order of the £’s, and when the (2),, is applied first
to A’ (tokill its (no(i — 1) + £o)th column and (no(i — 1) 4+ 1+ [(£o — 1)ko]n,)th row)
giving the matrix A;/,Zo’ then the (1 + [(€o — 1)koly,. Lo)th entry of (i + 1,7 + 1)th
ng x no-block of A;’ t already coincides modulo p with the same entry of A; 1.

@ Springer



1838 C. Chan, A. lvanov

We now show that for 1 <i < n, the matrix A; appearing in the algorithm is i -nice.
(By induction we may assume that A;s is i’-nice for 1 < i’ < i, which is sufficient to
run the first i — 1 steps of the algorithm to obtain A;). For1 < j <i’ <n,1 < <n/,
leta;r j o € O/p denote the residue modulo p of the (1 + [(£ — 1)kolyu,, £)th entry of
the (j, j)th ng x no-block of A;. Note that a7 j ¢ = ajr j ¢ forall 1 < j <i’ <i”.
Indeed, if j < i’, this is obvious as the first i’ — 1 diagonal blocks of A;; and A;»
coincide. If j = i’ observe that the (1 + [(£ — 1)ko]n,, £)th entries (forall 1 < € < ng)
of the (i’, i")th ng x ng-block of A;/ can only be affected by step (1) of the algorithm,
which does not change the residue modulo p.

Recall the image ¥ = (¥1,...,%,)” of x in V and the corresponding matrix
gr(x) € GLy (Fq) defined in Sect. 6.3. For 1 < i < n/,let m; € Fq denote the

determinant of the upper left i x i-minor of g,(x). By Lemma 6.16, m; € qu for all
i. We claim that for 1 < £ < ny,

at~Ymy) if j=1
GIET oty if2 < <i 6.8)
j—1

By induction we may assume that this holds for all 1 < i’ < i, from which (6.8)
follows for all j < i. It thus remains to compute «; ; ¢. Note that for 1 < £ < no,
the (1 + [(£ — 1)koln,, £)-entry of A; = g,rf“d(x) is equal to is equal to al_l(xl,o) =
og_l(il). This finishes the case i = 1. Assume i > 2 and fix some 1 < £ < ng. By the
observation above, ; ; ¢ is equal to the residue modulo p of the (1 +[(£ — 1)ko]n,, £)th
entry of the (i, i)th ng x no-block of the matrix A} ¢ obtained from A}_, by directly
applying step (2),.

For X € GLn(I?), let M (X) denote the (ng(i — 1)+ 1) x (ng(i — 1)+ 1)-minor of X
obtained by removing from X all columns with numbers {j: j > no(i — 1) and j #
no(i — 1) 4+ £} and all rows with numbers {s: s > ng(i —1) ands #no(i — 1)+ 1+
[(£ — Dkoly,}. We compute:

no
i ]_[ o Nmi_y) = det M(A]_, ) = det M(A]_,) = det M(gj**(x)) mod p.
A=1

The first equality follows from the explicit form of A}, ¢ and by the induction hypoth-
esisontheo; ; ¢’s. The remaining equalities are true as every operation in the algorithm
does not change the determinant of the matrices. On the other side, a simple calculation
shows that

olm) 5
det M(g®x) = ——2 [To*'mi—1) mod p.
s at(mi-1) El l ’
This finishes the proof of (6.8), and thus of the proposition. O

Lemma6.16 Letr x € .,?Oa‘;)m and let X € V denote its image. For 1 < i < n’, let m;

denote the upper left (i x i)-minor of gp(x) € GLnr(Fq). Then m; € F; foralli.
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Proof Replacing F no by F, we may assume that ng = 1, n’ = n. We have g, (¥) =
()Eiqjil)lfi,jfn and detg,(x) € F;. Clearly, m; = x1 # 0. Let 2 < i < n. By
induction we may assume that m;/ € qu forall 1 < i’ < i.Suppose m; = 0. This
means that the 7 vectors v; = (x?k_l)};:l € F; (1 < j <i)arelinearly Fq—dependent.
Note that the first i — 1 of these vectors are [F,-independent, as already the vectors
(x?k71)2;11 € F;_l l<j<i-—1)are Fq -independent, which in turn follows from
the induction hypothesis m; 1 # 0. This shows that there exist A1, ..., A;—1 € Fy
with Z;_:]l Ajvj = v;. From this we deduce two systems of linear equations which
uniquely determine the A;’s: (1) Z'J_:ll Aj (x?kil);;ll = (x?kil);;ll as well as (2)
Z;_:ll Aj ()c;kai1 );'(:2 = (x? kil)};zz. Note that (2) is obtained from (1) by raising all
coefficients to the gth power. For 1 < j <i—1let m(j ) denote the minor m;_1,1in

k—1
which jth row is replaced by (xiq ) . Then (1) gives A; = m;_ lmf] )1, whereas

(2) gives Aj = (m,_ 1m(’) )4 for each 1 < j =<i—1ThusX; € F,. This gives a

non-trivial IF -relation between the x, ..., x;, and hence also between the first i rows
of gp(x), i.e., det gp(x) = 0, contradicting the assumption. O
Let
Qp ;0‘ =P(V)~ U H (6.9)
HCV

F 40 —rational hyperplane

be n’ — 1-dimensional Drinfeld’s upper half-space over Fyn.

Theorem 6.17 Let b be the special representative with kgr,,(b) = k. Letr > m > 0.
Then we have a decomposition of F,-schemes

~ —1
Xpo = || o
G/Go

where A is a finite dimensional affine space over ¥y (with dimension depending on
r,m). The morphism X”u}l, b) — mer (b) is a finite étale Ty (Ok /™) -torsor. In
particular, all these schemes are smooth.

Proof To prove the first statement of the theorem it suffices, by applying Proposition
6.12, to show that X7 (b) %, is alocally closed subset of GL,(K)/I"™ isomorphic to
Q%;;O x A. By Propos1t10n 6.15, X779 (b)ﬁgf0 C IvDg (@)l /1™, So, it suffices to
show that as a subset of JvDy ()l /1™, Xgr (b) %, is locally closed and with its
induced reduced sub-scheme-structure isomorphic to Q%/;Ol x A. For simplicity, we

q
treat the case thatk = Qor 1, so that v = D, , = 1. The general case is done in exactly
the same way, but is slightly more technical due to the presence of the permutation
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matrix v (the corresponding technical details are very similar to those appearing in the
proof of Proposition 6.15, which we proved in full generality).

First, by Lemma 4.7, I, (@w)I/I™ is isomorphic to an affine space and we fix
the following coordinates on it: let a;; (1 < i # j < n) denote the root of Tyisg
corresponding to (i, j)th matrix entry. Then

n
Y Tu(@)I /1™ S5 Ci= HL[O,(ifl)r)UOl;] X 1_[ L[O,(ifj)r)Ua;_,' xI/I™

i=2 n>i>j>1

A= B:=
(6.10)

(the products can be taken in any fixed order; each factor — including 7/1™ — is
an affine space over ) is a parametrization of I, (zw)I /1™, whose inverse sends
(aiDf,, (@ij)i>j+1, g to [[i— ai1 - [1;ja@ij - 11 (@) - gI™. Tt suffices to show that
there is an open subset U C A, isomorphic to Q%/:Ol x A, such that Xy, (b) ¢ <
q

T, ()l /1™ is the graph of some morphism f: U — B x I/I™. Indeed, then it
follows that X, (b) &, is a locally closed subset of I, (zw)I/I™, which (endowed
with the induced reduced sub-scheme structure) gets isomorphic to U via the projection
p: C=AxBxI/I™ — Ato the first factor. First, we define U. Therefore, consider
the natural projection

n

A= [T LoyUay oy ST €P(V): v =3 vietingi-1y € V, v1 # 0}
=2

(6.11)

where the latter isomorphism is (v,-)l’.’/:2 — [l :wvy:---: vy]and let U be the
preimage of Q%,;Ol, which is a subspace of the right hand side via (6.9). (If n’ = 1, V.
q

is one-dimensional, and the right hand side of (6.11) as well as Q%/;Ol is a point). It is
q

clear that U = Q%/;Ol x A.
q
Next, we determine the image of ngr (b)#, under V. Let gp,(x)I" =
g}rfd(x),u,(w)l’” € Xy, (b) g, e, x € fg‘dm. This point does not change if we
multiply gp -(x) by an element of /™ from the right, or equivalently, if we multiply

g = gzed(x) by an element of

O% pm+l—r pm+1—(n—1)r
* O% pm+1—r pm+1—(n—2)r
M =y (@) " () = | : (6.12)
* % O pm+1—r
* * ox*

from the right (the entries marked with * are uninteresting for us). First, we multiply
g by the diagonal matrix i; = diag(xy, o (x1), ..., o' L(x)~! € #r@) [m (note that
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X1 inve;tible by (6.6); see also Lemma 6.16), achieving that all entries of gi; are of the
form o' (%) resp. wo’ (%) and, in particular, the first column of gi; has the entries

1, ;—f, o % Next, using that » > m, so that all p”T!=" > O in (6.12), we may
eliminate all (1, j)th (2 < j < n) entries of giy, i.e., we find some ii g (@) pm (with
entries different from O and 1 only in the first row), such that gi;i i has the same first
column as gij and 0’s in all entries of the first row except the first one. Also, all entries of
giyi { lie in O and are some functions in o ( %) (as the same is true for gi1). Moreover,
the (2, 2) entry of giji; must now be in O* (otherwise g, (@)I™ ¢ I, (@)1 /1),
and we can iterate the procedure: rescale the second column such that (2, 2)th entry
equals 1, then kill all entries (2, j) with 3 < j < n, etc. At the end we obtain a matrix
g’ = girilizi} .. .in—1i,_,, such that g's, (@)™ = gu,(w)I™ and

1 0 0 1 0 0
; 1 0 . 0 %—f 1 0 0
3 3
) X1 * 1 . 0 o 0 1 0
8 = . = .
xgl 0 X;I 0 1 0
X’l' * 1 ﬁ 0 0 1
1 0
0 0 0
0 =* 1 0
0 =% * 0
0 =« * * 1

where the entries marked by * all lie in O and are functions of ;—2, ey );—" We can
regard the first matrix in the product as an element of A (as in (6.10)), and moreover
from (6.6) it follows that it lies in the open subset U € A. It gets clear now that
with respect to the parametrization in (6.10), ¥ (X gr (b) #,) consists of points of the
form (u, fo(u),1 - I") withu € U € A and fo(u) € B, where fo: U — B
is some morphism (which determines the entries * in terms of f{—f, e, i—’l’). Thus
f:U — B x I/I", defined by u — (fo(u), 1 - I'"") is the required morphism we
wished to construct. This finishes the proof of the first claim of the theorem.

For the second claim in the theorem, we could repeat the above arguments with
Iy (@)1 /1™ replacing I i, (zr) 1 /1™. Alternatively we can argue as follows: by The-
orem 4.9 (see Remark 6.3 and Lemma 6.4), Xﬁr (b) is locally closed in G(I?)/I"”,

and hence a scheme locally of finite type over Fq (Corollary 4.10), and by Proposi-

tion 4.2(iii) the morphism G(K)/i™ — G(K)/I™ is representable and has sections
étale-locally. It thus follows that X Z)l, (b) — Xy, (b) is a honest morphism of schemes

locally of finite type over Fq. Moreover, by the explicit description on geometric points
in Theorem 6.5 it is surjective and a torsor under 7, (O / wmth. O
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Corollary 6.18 Let r' > m’ > 0, r > m > 0 be two pairs of integers withr" > r,
m' > m. Then all maps Xﬁr, b) — X’d’)’r (b), be’r/ b) — ngr (b), X’:b’r, b) — X:}fr b)
ipduced by gp.(x) > gp.r(x) are morphisms of schemes. In particular, X (b) and
X350 (b) are schemes over [Fy.

Proof With respect to the coordinates on X gr b), X Z;l, (b) in the proof of Theorem 6.17,
these maps are simply induced by the natural projections Lo, ,/)Us; ; = L0,1)Ua; ,
for v/ > vand Lo m+1yGm — Lio.m+1)Gm form’ > m. O

We are now ready to endow all objects in the diagram in Theorem 6.9 with scheme
structures and compare them. The set .,2”5‘ ™™ has an obvious scheme structure as
a closed subset of the infinite dimensional affine space %y over [F,. Analogously,
the natural embedding fadm JO* C A/O0* = L+P($0)(Fq) Where LTP(%) is
an infinite-dimensional IF -scheme, endows . adm /% with the structure of an open

subscheme. We endow V,, i a and V29m /O with the scheme structure of a disjoint

union:

Vbadm rat _ I_l ggoajjm,rat and Vbadm/ox — |_| g. ( adm/ox>
geG/Gop geG/Go

Since the action of @ on V}f‘dm /O just permutes the connected components, the quo-
. d b . . d b _ d
tient V2™ / K * inherits the scheme structure V2™ /K> = |_|G/Z(G)GO g. (zoihm/OX).

Corollary 6.19 The maps of sets VZldm S Xb), ypdm 0 = X°(b) from
Theorem 6.9 are isomorphisms of F -schemes. We endow X 5 L(p), X 5 L (b) with the
scheme structure via the isomorphisms in the diagram in Theorem 6.9.

Proof To show the first isomorphism, it suffices to prove that for the special represen-
tative b, we have an isomorphism of schemes ,,S,”(iim’rm 5 X %(b) 4, Rescaling by an
appropriate element of O, we may replace f&%m’rat by f&(})m’mt’wo. With notation
as in the proof of Theorem 6.17, the coordinates on the inverse limit X > (b) g, are
given by ((au; ,)"_,. €1) € LUy, , x L* Gy, and the map £5™™" — X2(b) 4,
is given by (xl)” s ( )] —»»> X1. This is an isomorphism. The second isomorphism
is proven similarly. O

6.5 Example SL,, w Coxeter, b = 1
It is instructive to explicate the scheme structure on X UD] L(1) from Remark 3.3(ii)
and compare it to the one obtained via affine Deligne—Lusztig varieties (a similar

description applies in a number of further cases, in particular for GL,, or GSp,,, and
w Coxeter). We have SL, /B = P! and

XPL(1) = PL(K) P (K).
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It is thus given by the open condition det (; ZE:;) = x0(y) — o (x)y # 0inside

LIP}{(F,]) = LﬂP’é,)K (Fq) =Pl = {[x : y]: x,y € O, at least one of x, y lies in O™}

(where [x : y] = [x’ : y']if and only if there exists a € O* with ax = x’, ay = y')
and

XDH(), = {lx : yl € LYPy, (Fy): 0(x)y —x0(y) £0 mod p}.

It is clear (from the version of Theorem 6.5 for SL,) thatif g € SL,(K) ~. SL,(0),
then g. X DL (1), NXDE(1); = @. Moreover, X2 (1); € XPL(1) is dense open. This
means that g maps a dense open subset of X 5 L(1) onto a subset which lies in its
boundary and hence cannot be dense. Thus g cannot be an automorphism of the
scheme X 113 L(1), and the action of G on X 3 L (1) with the above scheme structure is
not algebraic.

The subsets Y, of L;"IP’}OK (Fq) = P'(O/p") can easily be computed to be

Y1=QFq

Y2 = (Qr, x A') U |_| Q.
rePl(Fy,)

Vo= x Ay u | ] @,

where the last union is taken over all hyperspecial vertices in the Bruhat-Tits building
of SL; over K such that the minimal gallery connecting this vertex to the one stabilized
by SL,(Ok) has length 2r — 1. The unions are disjoint set-theoretically but not scheme-
theoretically, since for example the preimage of Y7 in Y3 is open and not closed.

On the other hand, we can explicate the way in which X 3 L(1) is built from finite-
dimensional pieces as dictated by Theorems 6.5, 6.17. In fact, X 5 L(1) is an inverse
limit of the affine Deligne—Lusztig varieties of increasing level

Xy ()= |_| sszq x A,
SL2(K)/SL2(Ok)

where QIIFq = ]P’]qu P! (IF,) is the Drinfeld upper half-plane over [F, i, are lifts of

w whose length in the affine Weyl group has to grow with m, and A is some finite
dimensional affine space over IF,, whose dimension depends on m and w,, and goes
to co when m — oo.

@ Springer



1844 C. Chan, A. lvanov

7 A family of finite-type varieties X

In this section, we study the geometry of a family of finite-type varieties Xj forkz > 1

which have natural projection maps X, — X,_1. These varieties are more tractable
. . . . °, m

than (componfants of) the. af.ﬁne Dehgne—Lu.s;tlg vgrleu?s X i, (b) &, but we can see

that after passing to the limit, these two families at infinite level are the same:

. : adm,rat, g ~ adm,rat .
lim X7 (b)g = Loy = L5 = lim X 7.1
r,m:r>m h

Our work in this section will prepare us for Part 3, where we will study the cohomology
of X, as representations of G, x Tj,.

We remark that X; will depend on whether we choose b to be the Coxeter-type
representative or the special representative, but they are isomorphic as [F,;»-schemes
for the same reason as in Corollary 6.14. The flexibility of choosing this representative
b allows us to use a wide range of techniques to understand X and its cohomology.
We will see this theme throughout Part 3.

7.1 Ramified Witt vectors

Recall the schemes W, W, from Sect. 2 (see [18, 18.6.13, 25.3.18] for more details
on the construction of ramified Witt vectors). We will need to coordinatize W in order
to make an explicit computations about the variety Xj. If A is a perfect F,-algebra,
the elements of W(A) can be written in the form Zi>0[xi]wi, where [x;] is the
Teichmiiller lift of x; € A if char K = 0 and [x;] = x; if char K > 0. (Note that the
perfectness assumption is only necessary when char K = 0.) We identify W with AZ=0
and identify W), with A’ under this choice of coordinates. We recall the following
lemma about the ring structure of W with respect to these coordinates.

Lemma7.1 Let A be a perfect F,-algebra.
() The coefficient of w' in (Zizo[ai]wi) + (Zizo[bi]wi) is

N N
[a; + b; +ci], where ¢; € A[ajl./q ,b}/q 1 j <i, N e€Zsol

(ii) The coefficient of w' in (Y~ olailw’) (X ;s lbile’) is

i N N
|: ajb,-_j+ci:|, wherec,-eA[aiell/q biezz/q 2+ <, er,ea, N € Z>ol.
j=0

In both cases, we call c; the “minor contribution.” Note that if char K > 0, then the
minor contribution is identically zero. In particular, for any given i, the ith minor
contribution does only depend on aj, bj with j < i.

This lemma says that up to “minor contributions”, working in coordinates with
the Witt vectors is the same as working in coordinates in IF,[[#]. This allows us to
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uniformly perform calculations in the mixed and equal characteristic settings. We will
implicitly use Lemma 7.1 in Sects. 7.4 and 9.

Remark 7.2 Note in particular that by Lemma 7.1(ii), the coefficient of ' in the
product (3";-olai 1) (X~ olbi 1) is of the form [aob; +€;] where €; is independent
of b;. For this reason, the minor contributions never play a role in our formulae as we
study X}, as a subvariety of Xj;_1 X AN (for some N), and so the minor contributions
only contribute to unspecified “constant” terms (see ¢ in Proposition 7.6).

We also point out a case where the minor contribution vanishes (this is used in
Proposition 7.7). Let A be a perfect [F;-algebra and pick an integer 4 > 1. Then the
product (1 + Y,y lai ]’ ) (- olbila’) € [bo] + [bi]lo + - + [bp—1]o" ! +
lan + aobplw" + @t W(A). Indeed, it suffices to compute modulo @+ (that is,
in the (h 4 1)-truncated ramified Witt vectors W1 (A)), where we have

h—1 h—1
(1 +@"ay)) - Z[b o' =3 [bilo’ +@" (by) + [boap)) = Y _[bile’ + [by + boay ]
i=0 i=0 i=0

7.2 The scheme X},

Fix a0 < « < n and let b be either the Coxeter-type or special representative with
kG (b) = k as in Sect. 5.2. Define the O-submodule of %,

h _
30( )= @ " L ® @ o' 1%,
1<i<n 1<i<n
i=1 (mod ng) i#1 (mod ng)

Under the conventions set in Sect. 7.1, any x € .2/ .Zo(h) can be written as

x= Z[x,z]w e+ > Z[x,z]w e (nieeFy.(72)

1<i<n 1<i<n
i=1 (mod no) i#1 (mod no)

This identifies ,fo/ﬁéh) with Ag(i’,_l)“/. Observe that if b is Coxeter-type, then
q

although fo(h) is stable under (bo)"™w %0, the IF o -rational structure given by this

Frobenius on .%/.%" does not agree with the Fu -rational structure on A"(=D+'
given by the standard F o -Frobenius.

Definition 7.3 For & > 1, define

Xy (Fy) = X(ic,l)m’rat/fo(h) = image of Xadm " in% /.,?(h)

and let X; C A"=D+" be the [F4n-subscheme whose IF,»-rational structure comes
from the standard F«-Frobenius on A=+,
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As det(g,rfd(~)) : Xp — (Ok /w")* is amorphism onto a discrete scheme, we have
the scheme-theoretic disjoint decomposition

X, = |_| ga X Jet=1 (7.3)

ae(Og [wh)*

where XgetEl consists of all x € X, with det g{fd(x) =1 (mod w"), and g, € Gy,
is any matrix with determinant a.

Proposition 7.4 X, is a smooth affine scheme of dimension (n — 1)(h — 1) + (n' — 1).

Proof The proof is very similar to that of [12, Proposition 3.10]. Choose b to be the

Coxeter-type or special representative. Write det(g,ﬂed (X1, ..., %) = [8slo<s<h—1-

It is enough to prove the assertions for the open and closed subset Xgetzl, which is
defined by the equations go = 1l and gy =0for1 <s <h — 1.

To prove that X 2"‘51 is a smooth affine scheme of dimension (n —1)(h—1)+n'—1,
it suffices to show that for any point X 2‘*51 , there exists a nonsingular 4 x & submatrix
of the Jacobian matrix J. First let glrfd (xX1,...,xp) € Xgetz]. Then for some x,, the
determinant of the (n — 1) x (n — 1) minor obtained by deleting the 1st column and
the rth row is nonzero modulo @ —denote by d[x; ] the reduction of this determinant.

From (6.5), observe that x, ; only contributes to g, if i <'s,
8s = d[x;]x, s + (terms w/ gth powers of x, ;, and x; ; for (i, j) # (r,s)).

Reorder the rows of J so that the first 2 rows correspond to the coordinates
Xr,0, - .- Xr,h—1 Of x, € Wj,. Since we are working in characteristic p, we have

dix,] 20 ifi=s,

0
i= 0 ifi > s,

0xy,i e
? ifi <s.

This submatrix of J is an upper triangular matrix with nonzero determinant. Hence we
have shown that X 26‘51 is a smooth complete intersection of dimension (n — 1)(h —
+n —1. O

7.3 Relation to classical Deligne-Lusztig varieties

Recall that for V = fo/fo(l) we have that G| = RequnO JF, GL(V) (see Sects. 5.3,
5.6). The scheme X is a classical Deligne—Lusztig variety corresponding to the max-
imal nonsplit torus ]F;‘,, in Gy (Fy) = GL,y (F4n0). We get a commutative diagram

Lo — L)L — V «— V {0} —» P(V)

] ] ] ]

dm,rat
Loy » X » X » Qy
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where Q77 is isomorphic to the Drinfeld upper half-space P(V)~P(V) (Fyno) and X
is a [, -torsor over Q. (If b is the special representative, Qv is literally the Drinfeld
upper half-space.)

For v € V define g(v) to be the (n’ x n’)-matrix whose ith column is 33"~ (v)
(written with respect to the basis {€;};=1 (mod ng) Of V from Lemma 5.8). Then

X1 ={veV:detgy(v) € F;no}.

Example 7.5 If k = 0, then V = %/w. %, 55' ' = bo and X is the Deligne—
Lusztig variety for GL,, (F,) associated to the maximal nonsplit torus IF;”. If k, n are

coprime, then V is one-dimensional and X is a finite set of points and can be identified
with F,.

q
7.4 The projection X, — X,_q and its fibers

Leth > 2. We will actually work with an intermediate scheme: X;, — X ;_1 — Xn_1.

By Sects. 7.1, 7.2, the quotient .% /=1 %) can be identified with the affine space
A"=D Define X/T—l to be the IF;»-subscheme of A=D1 defined by

X Fy) :=$&%m’rat/wh_1$0 = image of Z(iim’rat in%/w" 1 %.
Observe that
X = Xpo1 x A", (7.4)
since the coordinates x; ,_» for i #% 1 (mod ng) do not contribute to det(glrfd(x))
modulo @’ ~!. Furthermore, X}, is a closed subscheme of X ;[_1 X A”/, and under this
embedding
Xp > X x A",

we may write x = (X, X1 h—1, Xng+1.h—1> - - s Xpg'—1)+1,h—1) for x € X, and its
image x € X ;Ll . More precisely, we have the following technical proposition, which
will be used in Sect. 9.

Proposition 7.6 Let h > 2.

(1) Xy, is the closed subscheme of X;Ll x A" cut out by the polynomial
P:=Pl — P,
where [ Py] is the coefficient of w" ! in det(glrfd(')).
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(ii) Let b be the special representative. Then

no—1

Po(x) = c@®) + > PI(x)T

i=0

p— ' . .
where Z?iol qu exactly consists of all terms of Py that depend on the coordi-
nates X1, h—1, Xng4+1,h—1s + - - » Xng(n'—1)+1,h—1 and ¢ is a morphism X}T—l — Al
In particular, Xy, is the closed subscheme of X,':_l x A" cut out by the equation

no
Pl — P =c—cl.

(iii) Let b be the special representative. Explicitly, the polynomial in (ii) is given by

qli=bmo
P = Z MjiX| L poGi=1),h—1°

I<i,j=<n’

where m := (m ;) j ; is the adjoint matrix of gp(X) and X denotes the image of x in
V= .,%0/.,2”0(]). Explicitly, m - gp(xX) = det gy (x) - 1,y and the (j, i)th entry of m
is (=) times the determinant of the (n' — 1) x (n' — 1) matrix obtained from
2»(x) by deleting the ith row and jth column.
Proof An explicit calculation shows that Py = ¢ + Z?ial ol (Py), with Py as claimed
if b is the special representative. Note that in the mixed characteristic setting, we use
Lemma 7.1(ii) to see that minor contributions only appear in the ¢(X) term. From this
the proposition easily follows. O

7.5 Level compatibility on the cohomology of X,

Proposition 7.7 Let h > 2. The action of ker(T, — Tp—1) = WZ_I(Fqn) on Xy, pre-
serves each fiber of the map Xj — Xp—1, the induced morphism X, /V\VZ_1 (Fyn) —
Xp_1 is smooth, and each of its fibers is isomorphic to A",

Proof Letb be the special representative and letx € X, be coordinatized asin Sect. 7.2.
Then x; 9 # 0 fori = 1 (mod ng). By (a slight variant of) Proposition 7.6, X}, is
the closed subscheme of Xj,_; x A" given by P = 0, where A" has the coordinates
{yiti=1...n.wherey; = x; p_1ifi =1 (mod ng) and y; = x; p—2ifi # 1 (mod nyp).
Note that the natural WZ_I(]F 4n)-action on X, extends to the action on X;_;1 x A"
over Xj_1 given by

- Xip—1 > Xip—1 +x; 00 ifi=1 (mod ng),
1+ Wit [Fiht i,h—1 1 Xi0 : ( 0)
Xi h—2 > Xi h—2 otherwise,
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where A € [Fyn. (Note that we use Remark 7.2 here.) Consider the morphism

n

q
Y1 _ N ifi =
) ) (ﬂ,o)_ o ifi =1,
frXnoy X AT = Xy X AT,y gy - SO ifi >1,i=1 (mod ng),

i ifi£1 (mod ng).

This morphism factors through the surjection X, x A" — Xj;_| x A" /szl (Fgn)
so that it is a composition

Xn_1 x A" - X5 x An/WZ_l(Fqn) = Xn_1 x A",

where the second map must in fact be an isomorphism. Since WZ_I(]P‘qn) is a p-

Xp x A"/ WZ_I (Fgn) defined by P’ = 0. We therefore have a commutative diagram

Xp 1 x A" — Xj_ 1 x An/Wzil(]Fqn) — X1 x A"

T ]‘ I (7.5)

Xp ————— Xp/WI Fp) ——— {P' =0},

Since P is a degree-¢" polynomial in x| j—1, we know that P’ must be at most degree
one in y;. A calculation shows that the coefficient of y; is the function on Xj_; given
by x > det g5 (x), where x is the image of x € X;_1 in X (notation as in Sect. 7.3).
This function is constant on connected components of X,_1, taking values in ]F;. In
particular, the coefficient of y; in P’ over any point in Xj_1 is nonzero, so it follows
that each fiber of X}, /W/Z_1 (Fgn) — Xj—1 is isomorphic to An-l O

Corollary 7.8 There is a natural isomorphism

. — h—1 . —
H Xy, Q)W E) = gi20=D(x, 1 Qp)(n — 1),

where (n — 1) denotes the Tate twist.
This corollary allows to define a direct limit of the homology groups for X; (see

Sect. 11).

7.6 Xj, as a subscheme of G,

Let b be a Coxeter-type representative. Let 1 </ < n be aninteger satisfyinge, ,/ = 1
(mod n). Forx = Y_!_, x;e; € % where x; € O, define

n

1

. i1 ,
Alx) = Zm'bl - D(x;),
i=1
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where D(a) = diag(a, o'(a), ..., o™ Dl (a)). Let y be the inverse of the permuta-
tionoftheset{1,2,...,n}definedby 1 — landi = [(i —1)e, ]+ 1for2 <i <n.
Let y € GL,(K) also denote the matrix given by y (¢;) = e, ;).

Lemma 7.9 We have

A =gyt -y

In particular, det L(x) = det glrfd (x). Moreover, we have ybgk’"y_l = by.

Proof This is a direct computation. O

00
Example7.10 (i) Forn =3,k = e,, = 1, wehave b = ((1)(1)Z§> and for x = (%)

x3 o(x) o2(x))

red x1 wo(x3) wo?(x2)
Ax) =g, (X)) =gp(x) = | x2 o(x1) wo?(x3) | .

We have F(A(x)) # A(o(x)). Thus A is not an IF,-morphism.
.. 0w O
(i) Forn =3,k =2, e, =2, we have b = ((1) 8 Lg) and

X1 woln) wol(x3) x1 wol(xn) wo(x3) .
g;,ed(x) =|xn @otz) o and  A(x) =[x o%()) wolxp) | € Gxpo-
x3  o(xy) o2 (x2) x o2(x3) o(xp)
Proposition-Definition 7.11 The assignment X defines an embedding,
g() — Mn’(ODkO/nO)’
which restricts to
A f&%m — éx,O,

Moreover, det(A(x)) € Ok if and only if x € .,?ba’%m’rat. The reduction modulo w" of
A induces an Fyn-rational embedding

L3 L0 = Xy > G

We denote its image again by Xy,. This is an IFyn-subscheme of Gy,

Proof 1t is easy to see that L(e;) € M,,/((’)Dko/no) fori =1, ..., n. This implies that
ML) C Mn’(ODko/no)- By Lemma 7.9 it is immediate that det(A(x)) € O* if and
only if det(g;fd (x)) € O* and similarly det(A(x)) € OIX( if and only if det(glrjed x) e
Ol’é. Finally, note that A is a F;»-morphism since A(0" (x)) = 0" (A (x)) = F"(A(x)).

O
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The natural (G X O7)-actionon .Xadm " induces aleft action of (G, x Tj,)-action

on X; C Gy, given by left multlpllcatlon by G, = G, (F,) and right-multiplication
by T, = Tp(Fy):

(g, 1) - x:=gxt, forg € Gy, t € Ty, x € X

7.7 Relation to Deligne-Lusztig varieties for finite rings

Let b be the Coxeter-type representative. The following proposition gives a descrip-
tion of X reminiscent of Deligne-Lusztig varieties for reductive groups over finite
rings [26,31]. Let Uy, and Uj,, denote the K -subgroups of upper and lower tri-
angular unipotent matrices in J;. Consider the unipotent radicals U := y‘lUupy,

U~ = y~'Ujwy of opposite Borels (over K)in J, containing the diagonal torus
T.Let U and U™ denote the smooth subgroup schemes of G whose F,-points are
U(k) N GX70 and U’(I?) N éx,o, and let U, and U, be the corresponding subgroups
of Gy,.

Proposition 7.12 The subgroup U, N F(Uy) C Gy, consists of matrices with 1’s along
the main diagonal and O’s outside the first column. We have

X,Fp) = {g e GuFy : g7 Fle) € Uy N F(UY)

={ge @ : g7 F@®) e Uy | /W7 P @),
Proof Using ybg”‘y’] = by and yt,,y ' = t,.., from Lemma 7.9, we compute

U NFU) = V_lUlowV N F(V_IUM[))/) = V_IUlowV N b(e)KntK ny~ Uup Knb eKn
= V_I(Ulow N bOUupbo_l)V

and (using y (e;) = ey) the claim about U, N F(Uy) follows easily. For any a €
Wy, (Fq), we have that

F(diag(a, c(a), ..., " D(a))) = diag(c" (a), e (a), ..., s/ D(@a)).

Thus for any v = (v;)/_, with v; € W,(F,) (i =1 (mod no)) and v; € Wj_(F,)
(i #1 (mod nop)),

n

1 i1 -
F((x)) = Z oG] b1 diag(o” (i), o (xy), L ol ()

i=

differs from A (x) in only the first column. Thus for x € %), we see that NEIRIACYED)
can differ from an element of U, N F(Uy) only in the left upper entry, and this entry
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is equal to det(A(x) "' F(L(x))) = det(gi*d(x) "o (g»(x))) (Lemma 7.9). Now for
x € LRI det grd(x) € OF. This proves

X {g e Giy) g7 F(g) € Uy N FUM].

To see the other inclusion, observe that if F(g) = g - u for some u € U, N F(Uy),
then comparing the jth column for j > 2 shows that g must necessarily be of the form
A(v) for some v € Xg‘dm. The determinant condition then follows from det(u) = 1.
The last equality in the proposition follows from Lemma 7.13. O

Lemma 7.13 The morphism
(U, NF7'U,) x (U, NFUR) — U,  (x,8) — x 'gF(x).

is an isomorphism.

—1 —1

Proof We can consider the Fq—scheme yGy ™', whose Fq—points are yG(E)y ,

together with a Frobenius isomorphism

Fo: yGy™' 5 yGy™!, Fo(x) = bo(yteny ™o @) (bo(yteny ™)™

€k.n

By Lemma 7.9, yb, teny ™' = bo(yYtey~!). Thus if ¢y G S yGy L x
yxy~! denotes the conjugation by y, we have ¢y o F = Fy o ¢y, (this in particular
shows that Fy is an isomorphism).

We will first show that (U N F~1U7) x (U"NFU) - U™, (x, ) — x 1gF(x)
is bijective. We have U™ (F,) = y = (Ujow Ny G([F,)y "y and UF,) =y~ (U,pN
)/G(Fq)y_l)y. Applying c,,, we thus have to show that the map

(((jlow N VG(Fq)V_l) N FO([jlow N VG(F(])V_I))
X ((Uow N yGFy)y ™" N Fo(Uup N yGEFy ™))
— Usow NyGEHy ™, (7.6)

(x, g) — x~'gFy(x) is bijective. We first show that the following is an isomorphism:

(0low N balﬁlowbo) X (Ulow N bOﬁupbo_l) - 01011)’ (x,8) — x_lgFo(x).
.7
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To do this, it is equivalent to prove that given any A € Ulow, there exists a unique
element (x, g) € (Uiow N by Uiowbo) X (Uiow NboUupby ') such that xA = g Fy(x).
We now compute explicitly and write

bl (]) g 8 1 0 0 0
21 g 10 0
X = b31 b3 ! g = (&) 0 1
b . b b (1) 0 : 0
nBI,l n.—.¥,2 n—1,n—2 0 X Cni 0 0 1
Let yt,(,,,y_l = diag(#1, t2, . . . , t) so that we have
1 0 0 0 0
0 1 0 0 0
0 a (b /1 1 0 0
—1,-1 _
Potene leanbo = Lo o/ cbp/n 1
: : - . 1
0 on—1,0t-1/1 op—12)tn—1/12 -+ bp—1n-2tn—1/th—2 1
We therefore see that the (i, j)th entry of g Fy(x) is
1 ifi =j,
0 ifi < j,
(8Fo(x))i,j = e . (7.8)
Ci—1 ifi >j=1,
o(bi—1,j-ti-1/tj—1 ifi >j>1.
We also compute the (i, j)th entry of xA when A = (a; j)i,j € Ulow:
1 ifi =j,
0 ifi < j,
(xA)ij = - e (7.9)
" bij‘f‘Z;(:lj_,_]bikakj +a;; ifj<i<n-—1,
Qpj ifj<i=n.

We now have n? equations given by (7.8) = (7.9), viewed as equations in the variables
b;; and c;. First look at the equations corresponding to (n, 2), (1, 3), ..., (n,n — 1).
This gives

U(bn—l,j—l)tn—l/tj—l = apj forl < j < n.

which uniquely determines b, 1,1, bp—1.2, . .., by—1.n—2. Proceeding inductively, let
1 <i < n—1, and suppose that all b ; forall i” > i and 1 < j < i’ are uniquely
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determined. Then look at the equations corresponding to (i —1,2), (i —1,3), ..., (i —
1,7 — 2). This gives

i—1
o(bi—1,j—Dti—1/tj-1=0b; j + Z b kayj + a; forl < j<i, (7.10)
k=j+1

which uniquely determines b;_1 1, b,—2,2, ..., bj—1,;—2. This uniquely determines x.
Finally, by looking at the equations corresponding to (2, 1), (3, 1), ..., (n, 1), it is
immediately clear that the ¢;’s are also uniquely determined, so g is as well. This
shows the isomorphism (7.7).

Now we deduce (7.6) from this. Using the same notation as above, assume that
A€ ﬁlow N yG(Fq)y’].Let 7j :=ord(t;) (1 <i < n)and A; ; denote the minimum
of valuations of all elements of )/(G(Fq)y_l N [jaz,_/ , where (?a,; ; is the root subgroup
corresponding to the (i, j)thentry (1 <i # j <n). Then 7;, A;; € {0, 1} for all i, j.
Moreover, the fact that Fj is an isomorphism shows

Aij=Xi—1,j1+Tio1 —Tj-1. (7.11)

To establish (7.6), we have to show thatforall2 < j <i < n,wehaveord(b;_1,j_1) >
Ai—1,j—1 and ord(c;—1) > Aj—1,1.

We first prove the assertion about the b’s. As in the proof of (7.7) above, we may
proceed inductively on i: assuming that the assertion holds for all i’ > i, we will show
that the assertion holds for i. (The basic induction step i = n follows from the same
argument as below.) Observe that if 7; | = 0 and 7;_; = 1, then we are done by
formula (7.10).

Assume that 7;_1 = 7;_1. If 4;_1 ;1 = 0 then by (7.10) there is again nothing to
show. Thus we may assume A;_1 j—1 = 1. By (7.10) we have to check that A; ; =1
and that foreach j+1 < k <i—1,either; y = 1 or Ay ; = 1. First, A; ; = 1 follows
from (7.11). Second, «; x + ok, j; = o, ; (e, j is the root of the diagonal torus of GL,
corresponding to (i, j)th entry). Thus the fact that J/G(Fq)y_l is a group implies that
Aik + Ak j = A j (forallk),sod;x =1orkg; =1.

Finally, assume that 7;_; = 1, t;_; = 0. Then (7.11) implies A;_; j—1 = 0 and
Ai,j = 1. Then by (7.10) we have to show that A; ; = 1 (which we already know) and
that foreach j +1 <k <i — 1, we have A; y = 1 or At ; = 1 (which holds for the
same reason as above). This completes the proof of the assertion about the b’s.

Analogously, one proves the assertion about the ¢;_;’s. Since (7.10) and the equa-
tions corresponding to (2, 1), (3, 1), ..., (r, 1) uniquely determine the b’s and the ¢’s,
this establishes bijectivity of (7.6).

To finish the proof of the lemma, it suffices to check that if A, A € )/(G(Fq))/_l
differ by some element in the normal subgroup y ker(G (Fq) — Gy, (Fq )y ~1 then the
corresponding pairs (x1, g1) and (x2, g2) with xi_lg,- Fo(x;) = A; (i = 1,2) satisfy
xflxz, gflgz € ker(G(Fq) — Gy, (E)).Letkﬁj € {h—1, h} be the smallest possible
valuation of an element in y ker(G(Fq) — Gy, (Fq,))y_l N (ja,-,f As Fp induces an
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isomorphism of Gy, we again have a formula
h  __ 3h . .
Mg =Moo T -1 Tl

We can once again proceed inductively to deduce that the b;_1 ;_1 and c¢;j_
h
are uniquely determined as elements in p*i-1.j-! /]J)‘i*lvf'*1 by the elements a; ; €

p p o

Part 3. Alternating sum of cohomology of X,

In this part, we study the virtual G-representations

R ©) =Y (=) H(X4. Qp)[0].

i>0

where 6 is a character of T, = (’)Z/Uh =W (Fgn).

In Sect. 8, we prove that if 0 is primitive, then R% "(6) is (up to a sign) an irreducible
Gp-representation (Theorem 8.1). Our strategy is to extend ideas of Lusztig, who
proves the analogous result in the context of division algebras [25] and split groups
[26] (see [31] for the mixed characteristic analogue). This is done in Sect. 8.4. We
note that the main result there, Proposition 8.7, is more general than Theorem 8.1
in that it works for any Frobenius F on G, and the F-fixed points of any F-stable
maximal torus in Gy,. For example, if we take F to be the twisted Frobenius coming
from the Coxeter-type representative, then the F-fixed points of the diagonal torus
forms the group W;; (F4n), which exactly gives Theorem 8.1. On the other hand, if we
take F' to be the twisted Frobenius coming from the special representative, then the
F-fixed points of the diagonal torus forms the n’-fold product of W, (F4n0), which
corresponds to the maximally split unramified torus in Gj,.

In Sect. 8, we also give a character formula for R% "(8) on certain elements of
Ty, (Proposition 8.3) and give a geometric interpretation of determinant-twisting on
the cohomology groups (Lemma 8.4). Keeping in mind the remarks in the preceding
paragraph, the methods in Sect. 8 primarily use the Coxeter-type representative b
(Sect. 5.2).

In Sect. 9, we prove an analogue of a cuspidality result for R?h (@) when @ is
primitive (Theorem 9.1). To do this, we perform a character calculation using the
geometry of Xj. Our approach is a (far-reaching) generalization of the proof in [21]
in the special case G = GL2(K). We use the special representative b (Sect. 5.2) as
F-stable parahoric subgroups are more well-behaved for this choice. We note that
although there is no notion of cuspidality for G-representations, we will see later
that Theorem 9.1 implies the supercuspidality of the corresponding G-representation
(Theorem 12.5).
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8 Deligne-Lusztig varieties for Moy-Prasad quotients for GL,

We say that a character 9: T}, = W; (Fygn) — @Z is primitive if the restriction of
0 to WZ_I (Fgn) does not factor through any nontrivial norm maps WZ_I (Fyn) —
WZ*] (Fyr) forr | n,r <n.

- G,
8.1 Irreducibility of RT: ()]
Theorem 8.1 Let6,6': T;, — @Z be two characters and assume 0 is primitive. Then

1 ifo=0,

G G / _
<RTh ©), Ry, ® )>Gh B {O otherwise.

In particular, the virtual Gp,-representation R% " () is (up to a sign) irreducible.

Let Uy, U, € Gy, be as in Sect. 7.7. Put
Sp:={xe€Gr:x'Fx) € U, }

This has an action of G, x Tj, by (g, t): x — gxt. Recalling from Proposition 7.12
that X = {x € G, : x"'F(x) € U, }/(U; N F(U,)), we immediately have the
following lemma.

Lemma 8.2 The morphism X, x (U, N FU,) = Sy given by (x,h) — xh isa
(G x Ty)-equivariant isomorphism, where the action on the left-hand side is given
by (g,1): (x,h) — (gxt,t~'ht). As U, N FU, is isomorphic to an affine space,
for any character 6 of Ty, we have R%’l ) = Zi(—l)iHCi(Sh, @l)[e] as virtual
G, -representations.

We show how to reduce Theorem 8.1 to a calculation of the cohomology of
Ti={x,x,y) €U, xU; x Gy :xF(y) = yx'},

and postpone the study of X to Sect. 8.4. Taking for granted Proposition 8.7, we give
the proof of the main theorem:

Proof of Theorem 8.1 Let F be the twisted Frobenius given by the Coxeter-type rep-

resentative b of Sect. 5.2. Consider the action of G, x T, x Ty on S, x S}, given by
(g, 11, 12): (x1, x2) = (gx1t1, gxat2). The map

(g.8) > ., X,y x=g""F(9),x =g 'F(g),y=¢""¢
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defines an T, x Th -equivariant isomorphism G\ S, x S, = X. We denote by Hci (S x
Sn)g-1¢ and H.(X)y-1 o the subspace where Tj, x Tj, acts by 6~ ® 6’. We have

(RFM©), RF @G, = Y (—=D* dim(H (X, Q161 ® H] (X, Qp)I6'D"
i,i'€Z
= Y (=) dim(H (S Q01 ® H. (S5, Q)IO'D"  (by Lemma 8.2)
i,i'eZ

=Y (=)' dim H:(G\(Sh x ), Qg1 ¢/

ieZ

= Z(—l)f dim H/ (2, Qg1 o
i€l
=#{y eGal(L/K): 0oy =0} (by Proposition 8.7)

where in the final equality, we use the fact that 6 is primitive if and only if 6 is regular
in the sense of Lusztig [26, 1.5] with respect to the F' coming from the Coxeter-type
representative b. Finally, since the primitivity of 6 implies that the stabilizer of 6 in
Gal(L/K) is trivial, the desired conclusion of Theorem 8.1 now follows. O

8.2 Traces of very regular elements

In Part 4, where we study Rgh " (9) from the perspective of automorphic induction, we

will need to know the trace of very regular elements of O} ; i.e. elements x € Of
whose image in the residue field generates the multiplicative group IF;,.. In fact, we

can explicate the character on elements of O whose image in the residue field has
trivial Gal(Fyn /IF,;)-stabilizer.

Proposition8.3 Ler 0: T, — @; be any character. Then for any element x €
o[ /U Z = Ty in G, whose image in the residue field has trivial Gal(F /IFy)-
stabilizer,

Te (x*; RS (9)) - Y ow.

yeGal(L/K)[n']
where Gal(L/K)[n'] is the unique order n’ subgroup of Gal(L/K).

Proof Let ¢1,¢2 € Ty be (¢" — 1)th roots of unity, let t1, 1 € 7;!, and assume that
the image of ¢; modulo @ has trivial Gal(IF4» /I, )-stabilizer. Note that (¢1¢1, £282) €
Gp x Ty and therefore acts on Xj. By Proposition 7.4, X, is a separated, finite-

type scheme over F . Since ({1, $2) = (4111, §2t2)qn(h71) has order prime-to-p and
(11, 1) = (4111, ar2)N (where N = 1 (mod ¢""*=V) and (¢" — 1) | N) has order a
power of p, by the Deligne-Lusztig fixed-point formula [13, Theorem 3.2],

ST (@i ) B X @) = DD T (100" HLXGT 2, Q)

@ Springer



1858 C. Chan, A. lvanov

By definition, if A(x) € X}, corresponds to x = (X1, ..., X,) € f&%m’rat/fo(h), then
(¢1, &2)x corresponds to the tuple (¢182x7, al(gl)gzxz, e a(”’l)l(gl)fzxn), where [
is the inverse of e, , (mod n). In particular, we see that if ¢; has trivial stabilizer in
Gal(IF4n /F,), then the set X;f' %) is nonzero if and onlyif &, ! is one of the n distinct
elements ¢1, o (¢1), .. ., U"‘l(g“]).

Assume ;“2_1 = o/!(z) with0 < j < n—1,thenthe elements ofX}(fl’Q) correspond
to vectors of the shape x = (0,...,0,x;11,0,...,0). If ng does not divide j, then
det A(x) = 0 (mod @), which contradicts det A(x) € O;é. Thus in this case we
have X% = @. Assume ng divides j. Then x = (0, ..., 0, x;11,0, ..., 0) with
Xj41 € Wy (F,) lies in X, if and only if det A(x) = [[/=g o' (xj41) € (Ok/@")*.
Thus X% = (x = (0,...,0,x11,0,...,0): xj41 € (Op/@")* = T;,} is zero-
dimensional, and the action of (#1, 2) is given by x 41 > aﬂ(tl)tzxjH. Thus

#T), iftg:djl(ﬁ)_l,

Tr((ry. t *, HO X({lﬁﬁ) —
(1, 2)", H (X 7) 0 otherwise.

From this, we see that

1 _
T (G D5 R @) = g 3 3 0@ o) e (000" YOG, )

X 1
{ZEFqn neTy,

= Y oelemeean=" Y oV@mn.
0<j<n-1 y€eGal(L/K)[n']
nolj

8.3 Behavior under twisting of 8

Lemma8.4 Let6: T, — @Z be a character with trivial Gal(L /K )-stabilizer and let
x: We(F,) — @Z be any character. Then as Gp-representations,

H (X3, Q[0 ® (x o Nm)] = H' (X, Q))[0] ® (x odet), foralli > 0.

Proof Let I';, denote the kernel of the natural homomorphism G, x T, — W; Fy)
given by (g, t) +— det(r) Nm(¢). Recall from (7.3) that we have a scheme-theoretic
morphism X, — W, (F,). Write X getzl for the preimage of the identity. First observe
that as G, x Tj-representations,

@ H (X, Qo' = Ind?:xn’ (HZ(Xgetzl,@e)[9|T,f])~
0': Ty—>Qy
0'lro =072
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Since the number of summands on the left-hand side is equal to the index of I'j, in
G x Ty, it follows that as representations of Iy,

HI (X5, Q0] = HL(X=", Q1017 (8.1)
for any 0': Ty, — @ZX with 6’ |T;.° = 9|Tho. In particular, as I';-representations,

H. (X3, Q[0 ® (x o Nm)] = H.(X;,, Qp)[6)].

Now observe that the subgroup of Gj, x Tj, generated by I';, and 1 x T}, is the whole
group. For any g € Gy, lett; € T}, be any element such that det(g) Nm(z,) = 1. Then
(g, 1tg) € I'y, and we have

Tr((g. 1)*; H. (Xn. Q[0 ® (x o Nm)])
= Tr((g. o)™ HL (X5 QIO ® (x o Nm)]) - 6(t; ) - x (Nm(z; "))
=Tr((g, t)*; Hi(Xn, QIOD - 0(15") - x (Nm(z; )
=Tr((g. *; H(Xp. QI0)) - 0(t5) - 07 ") - x Nm(z, 1))
=Tr((g. D*; HJ(Xn. QIO]) - x (det(g)).

O

Observe that by Lemma 8.4, we have that R% " (#) is (up to sign) irreducible if and
only if R?hh (0 ® (x oNm)) is, where x : Wy (F,)* — @; Recall that by Proposition
7.7, if 0 is a character of Tj, that factors through the natural surjection 7, — Ty for
some i’ < h, then R?h ") = R?h */’/ (0). Thus we can strengthen Theorem 8.1 to obtain

that Rgh "0 ® (x oNm)) is (up to sign) irreducible for any primitive 8 : T); — @Z and

any x: W, (Fy)* — @Z . Such characters exactly correspond to minimal admissible
characters of L* of level & (see Part 4). This argument will be appear again in the
proof of Theorem 12.5.

8.4 Lusztig’s theorem

This is a generalization of [26,31] to non-reductive groups over O. The Iwahori case
(which corresponds to the division algebra setting over K) was done in [25] (see also
[12, Section 6.2]) and is a simpler incarnation of these ideas. We keep our notation as
close as possible to that of [26,31] as most of the arguments are the same.

8.4.1 Set-up
Let T, T’ be two maximal F-stable tori of Jp, split over K and let (U,U7) and

(U’, U'™) be two pairs of (possibly not F-stable) unipotent radicals of opposite Borels
containing 7 and T, respectively. (Outside Sect. 8.4 T always denotes a maximal
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elliptic torus of G, but here we want the notation to coincide with [26]). Consider
the intersections of IE—points of T,T',U,U~,U’, U~ with Cv}x,o (Sect. 5.3) and
denote the corresponding subgroup schemes in G;, by Ty, T}, Uy, U, , U}, U}, ~. For
1 <a < h,let GZ := ker(Gj, - G,) be the kernel of the natural projection, and
analogously define T}, U7, and so forth. We set GZ’* =Gy~ GZ“ , and analogously
for Ty, U™, and so forth. We use the shorthand 7 := ']I‘Z_l.

Let N(T,T") = {g € Gxo : g 'Tg = T’} and N(Ty,T}) = {g € Gy :
¢ 'Tyg = T} }, and define

W(T,T'):=T\N(T, T) = Ty\N(Tp. T},).

Observe that W(T, T’) is a principal homogeneous space under the Weyl group of the
torus T in the reductive quotient G| of Gp.

8.4.2 Roots and regularity

Let ® = ®(T, Jp) denote the set of roots of T in Jj. It carries a natural action of
F.Fora € @, let Gj denote the subgroup of G, coming from the root subgroup
of Jb(I?) = GLn(I?) cotresponding toa. Fora € @, let T* C T be the image of
the coroot of T in GL,,(K) corresponding to «. It is an one-dimensional subtorus of
T. We denote by Tj the corresponding subgroup of Gj,. We write 7% C 7 for the
one-dimensional subgroup (']l“g)h_1 of T}.

Following [26, 1.5], a character y : TF > @[X is called regular if for any « € ®
and any m > 1 such that F"™(7%) = 7%, the restriction of x o NIFM ST @ZX to
(7)™ is non-trivial. Here, NE": TF" — TF isthe map t > tF(t)--- F"~ ().
A character x of ’]I‘f is called regular if its restriction x |7~ is regular.

Remark 8.5 In our situation, when b is a Coxeter-type representative and 7 is the
elliptic diagonal torus of Jj, let x be a character of T(K) = L* of level h. Then
the restriction of x to O can be viewed as a character xj, of T,f = (Op/w™*. A
straightforward computation shows: yj, is regular in the above sense if and only if it
is primitive, i.e. the restriction of yj to 7F = WZ_I(Fqn) does not factor through
any of the norm maps WZ_I(]Fqn) — WZ_I (Fyr) forr | n, r < n. We use this in the
proof of Theorem 8.1. O

8.4.3 Bruhat decomposition

For each w € W(T, T’) choose a representative w € N(T, T’). We have the Bruhat
decomposition G; = L]weW(T,T,) G,y of the reductive quotient, where Gy, =
U, u')’]I"1 U/l. Define Gy, to be the pullback of G 4, along the natural projection G, —
Gi. Thus Gy, = | yew .7y Ghow- Let K :=Uy N U, b~ ! and K :=K; N G,

Lemma8.6 Gy, = U,K} wT),U,.
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Proof Indeed, we compute

G = UniTGRU, = Uy} (G N T)(GL NUYIG] N U U,
= Uy T),(GL NUNHU, = Ty, (w(«;}, N U;;)w—l) WT, U,

=0 (U; NG}, N ;") iT{U, = UpK} T, Uy

8.4.4 The scheme X

Define

T ={(x,x",y) € F{Uy) x F(U)) x G: xF(y) = yx'}
Tw ={(x,x",y) € F(Up) x F(Uy) x Gp: xF(y) = yx', y € Gpu} S =,

for w € W(T,T’). Set-theoretically, ¥ is the disjoint union of the locally
closed subschemes X,,. The group ’]I‘}f X ']I‘}lF acts on X by (¢,t"): (x,x",y)
(txt=' /x't’"71 tyt'~1) and %, is stable under this action for any w € W(T, T").

Proposition 8.7 Let 6 and 0’ be characters of ']I‘;lF and ']I‘ZF respectively and assume
that 0 is regular. Then

Z(—nf dim H (2, Qp)g-1 ¢ = #{w € W(T, T : 0 0 Ad(w) = 6'}.
i€’

Proof Using ¥ = | J,, X, itis enough to show that } ;. (— 1) dim H! (2, Q)g-1 4
islifwe W(T,T)F and 6 o Ad(w) = €', and is O otherwise. Fixaw € W(T, T").
Let

S =1, x u,u',z,7") € F(Up) x F(U,) x Uy x U, x K} x T}

xFuzwt'u') = uzwt'u'x'}.

We have the morphism X, — X, (x, x",u,u’,z, ") — x,x’, uzwt’'u’, which by
Lemma 8.6 is surjective. Moreover, this map is T f X ']I‘;f -equivariant, when we endow
T, with the T} x TjF -action

-1 -1 1

1 7 7.—1 't Ltz

Y tur cw T,

(8.2)

@, t): (x,x,u,u,z, 7)) — (txt~

As the projection flw — X is locally trivial fibration, the cohomology does not
change if we pass from X, to X,,. Thus to finish the proof the proposition it is enough

@ Springer



1862 C. Chan, A. lvanov

to show that

1 ifwe W, T)F and 0 o Ad(w) =0,
0  otherwise.

Z(—l)i dim H! (Z, Qg-1,9=
i€Z
(8.3)

We make the change of variables replacing x F () by x and x’F(u’)~! by x’, and
rewrite X, as

Sw = (. x u, ', z,t") € F(Up) x F(U)) x Uy x Up x K} x T2 xF(zivt’) = uzive'u'x'},
and the torus action is still given by (8.2). Define a partition Sw = f,’ﬂ u i’j) by

IE\{U ={(,x u,u',z,7) e Sy z # 1},

21/,3 ={(x,x,u,u,z,7) e Ty: z=1}.

Both subsets are stable under the Tf X TQLF -action. By Sect. 8.4.5,

> (=D dim HL(Z,, Qg1

ieZ
1 ifweW(T,T)F and 6 o Ad(w) = @',
= } (8.4)
0  otherwise,
and by Sect. 8.4.8, under the assumption that 0 is regular,
> (=1 dim HI(Z,,. Qg1 4 = 0. (8.5)
i€eZ
so (8.3) holds. m]

8.4.5 Cohomology of 2,

We prove (8.4). This works exactly as in [26] (see the proof of Lemma 1.9, specifically
the proof of claim (b) in op. cit. beginning on page 8). For convenience of the reader,
we recall the arguments. Consider the closed subgroup

H={t1)eT,xT),: tF@)~' = Fa)/'F@)" ' F™)} € T) x T),.

Noti that H contains ']I‘,’lr xT), F ancl (8.2) containing T f X ']I‘;lF . The action of ']I‘,f X ']I‘;lF
on X extends to an action of H, still given by (8.2). Let Tj . and ']I‘;l, , be the
reductive part of T}, and T}l respectively. Set ﬁ* =HnN (Th,« x T;L ) and let ﬁf be
the connected component of H,. Then ﬁf is a torus acting on i’l’} By [14, 4.5 (and
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11.2) and 10.15] (compare the similar computation in the proof of [31, Theorem 3.1]),
we have

HY
DD dim B Qg = Y1 dim i (ST -
i€Z i€’
Let (x,x",u,u’,1,7) € (E”)H* By Lang’s theorem, H, — Th,« is surjective and
hence (as T}, is connected) also H; HO — T}« is surjective. Similarly, H, HO — ']I"
surjective. Thus for any ¢t € Ty, t' € T;;,*’ we have

txt V=x, X0 =X, T =, Pu T =

This implies x = x’ = u = u’ = 1 since T}, , acts non-trivially on all affine roots
subgroups contained in Uy, (and similarly for T}, U} ). Thus

SO {1111, 1,7): ¢ e T, Fit)) = '},
and we deduce

i g i sn\HY & 1 if F(w) =wandf o Ad(w) =6’,
Z(_l) dim H, ((EJ’)H* ’ Qe)e—l o {

‘ 0  otherwise.
i€

8.4.6 Some preparations

In the next two sections, we make the necessary preparations in order to carry out
Lusztig’s argument for (8.5) in Sect. 8.4.8. Let N, N be unipotent radicals of opposite
Borel subgroups of Jp(K) = GL,(K) containing T, and for 4 > 1, let N, N, be
the corresponding subgroups of Gj. Let @1 = {¢ € ®: G} € N} and <I> =
PN Pt ={a € ®:Gf € N, }. Fora € T let ht(a) denote the largest integer
m > 1,suchthata = > /" o; withey; € O

We call the roots & € ® for which GY # 1 reductive and the other roots non-
reductive. Equivalently, a root o« € ® is reductive if and only if (¢, X) € Z, where X is
as in Sect. 5.3.

To make explicit calculations, we may assume that 7 is the diagonal torus in
GL, (IE' ). For1 <i # j < n, let o ; denote the root corresponding to the (i, j)th
entry of an n x n matrix. For 1 < i < n,let1 < [i],, < np denote its residue
modulo ng. Define hty,(; ;) :=1[ilsy — [jln,- Then a € @ is reductive if and only if
ht,,(«) = 0. If ht,,, (@) > O (resp. hty,(a) < 0), we call @ non-reductive of type 1
(resp. of type 2). Forany o = ; ; € ®and 1 < a < h, we have

(8.6)

(G2 = pe /Tl if ity (@) > 0,
" p/p" if ht,,y (@) <0,
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in the sense that ((G‘;f)a consists of n x n matrices with 1’s on the main diagonal, an
element of the subgroup p¢~! /p~1 (resp. p/p") sitting in the (i, j)th entry, and 0s
everywhere else.

Example 8.8 Let n = 4, k = 2. Then if A is the apartment of Bed(GLy,, K ) corre-
sponding to the diagonal torus, then x is the unique fixed point under the action of
w
b=by-diag(l,w, 1, @) = (1 - > Computing, the matrix of inner products for
1

o j € D is

|
D=
(=}
|
N—=

(i, j, X)1<i,j<a4 =

O Nl= ¥
(ST
NI— % Nl—=
|
=

D=
[}

Hence for i > 1, we have

O/l ppt Ot st \ <

v o P o p * — 9] h—1 10 h O h—1 @) h
Gyo = 8 o 8 (@) - Gy(F,) = /p i /Ph /p i /P}
: p p 0 o i
o0 0 0 /p p/p /p p/p

O/t Ot Ottt O

where the x superscript means the group of invertible matrices, and for 1 < a < h,

I+pa/ph  po/ph p?/ph pd/p"
Z(Fq) _ pzlfl/phfl l+pa/ph pafl/phfl pa/ph
pd/p" p“/p" I+pd/ph  pe/ph

pet/pht o ptyph o ptT T e ph

For two elements z, & € Gy, we write [£, z] = E_lz_léz.

Lemma8.9 Leta € ®. Letl <a<h-—1.

(1) If a is non-reductive, then [GZH, (GZ)}”“] =1
(ii) If « is reductive, then [G, (GZ)h_“] =1

Proof The computation to show (i) and (ii) is nearly the same. We prove (i). It suffices
to check that [T¢*!, (G¢)#~] = 1 and that [(Gf)”“, (G941 =1 for any p € .
This is an immediate computation using the explicit description of Gy, and (8.6). The
only critical case is when «, 8 are both non-reductive of type 1. Here, it suffices to
observe that if & + B is again a root, then it is again non-reductive of type 1. O

Let (N}l)SO denote the subgroup of N }l generated by N%l and all ((Gg )! with g € &+
satisfying ht,, (8) < 0. Obviously N2 € (N})=0 € N}.

Lemma8.10 Letl <a<h—1landz € NZ’*. Write z = l_[ﬂe¢+ xfg withxé IS (Gf)“
for a fixed (but arbitrary) order on ®*. For B € ®T, leta < a(B,z) < h be the
integer such that xé € (Gg)“(ﬂ’o'*.
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(i) Ifz € Ni* N (N))=0, then the set
A;={Bpe® a(f.2) =a)

is independent of the chosen order on ®.
(ii) Ifz € N} \ (N})=0, then the set

A ={B € ot ht,, (B) is minimal among those with ht,, > 0 and a(B, z) = 1}

does not depend on the chosen order on ®.

Proof (i) Firstlet2 < a < h — 1. From the explicit description of the root subgroups
it follows that the quotient N7 / NZH is abelian (for a = 2 one needs to use that
the sum of two non-reductive roots of type 1 is again of type 1 if it is a root), thus

its elements are simply tuples (xp)geo+ With xg € (Gf )4/ (Gf )4*! with entry-wise
multiplication. If 7 = ()Eé) is the image of z in this quotient, then A identifies with
the set of those § for which ié # 1 (which is obviously independent of the order).
Now leta = 1. Then z € (N}l)f0 ~ Nﬁ and the same arguments apply to the abelian
quotient (N})=0/N3.

(i) The group N}1 / (N}l)SO is not abelian, but is generated by its subgroups
(Gg ' (Gf )2 for B € ®* non-reductive of type 1. For m > 1, let H,, be the sub-
group generated by all (Gf )y (Gf )2 with ht,,(B) > m. Since the function ht,, is
additive on ®, the H,, form a filtration of N}l/ (N}l)SO = H; with abelian quotients

Hy/Hyt1 = [T nonred. type 1(G)1/(GF)2. Since z ¢ (N})=0, thereisanm > 1such
htno(ﬁ)=m

that the image of z in N}l/(N,ll)f0 liesin Hy,; ~ Hy;+1.Denoteby 7 = ()Eg)ﬂ non-red. type 1
htno (B)y=m

the image of z in H,,/H;+1. Now A; is the set of all 8 € ®T non-reductive of type

1 with ht,,,(8) = m such that )Eé # 1. This does not depend on the chosen order. 0O

8.4.7 Stratification of K]

Lemma8.11 Let 1 <a <h — 1,z € N"* and A; as in Lemma 8.10.

(1) If A; contains a non-reductive root, let —a € A, be a non-reductive root of
maximal height and o € ®~ its opposite. Then for any & € ((G%)hf“, we have
[£,z21e T (N;)h_l. Moreover, projecting [§, z] into T induces an isomorphism

)\.Z: (Gz)h_a/(Gg)h_a+l :) 7-0[
(ii) If A; contains only reductive roots, let —a € A; be a root of maximal height and
a € &7 its opposite. Then for any & € (G‘;f)h_“_l, we have [§,z] € T (N;)h_l.
Moreover, projecting [, z] into T* induces an isomorphism

bt GG S T
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Proof We first prove (i) when z € (N}l)fo. Assume first that A, contains a non-
reductive root and let —« be such a root of maximal height and @ € ®~ its opposite.
By Lemma 8.9 (applied three times), the commutator map Nj x (G‘;l‘)h_“ — Gy,
induces a pairing of abelian groups,

fNGTL S GG 5 G R E e (B3

(If a = 1, one has to replace NZ/NZH by (N}l)SO/Ni.) This is bilinear in X: if
x1, X2 € N, then

—1.-1_-1 —1.-1_—1
[E,xix2) =& %) x éx1xo =& x| x, &xoxy

=&\ E[E, xolxy = [, 1€, x2],

where the second equality follows from Lemma 8.9 and Nj / NZ'H (resp. (N}l)fo / N%l
if @ = 1) being abelian, and the fourth follows from Lemma 8.9 as [&, x;] € Gz_l.

Now let £ € (GZ‘)”‘“/(G‘,’:)”‘“H and 7 € NZ/NZH be the images of £ and z
respectively. Write

e M5 T %
Bedt red. Be®™T non-red., f#£—«a
ht(8)<ht(—a)

Then [&, z] is the product of [£, X_, ] with all the [&, )Efg] in any order. Let xé be any lift

of )EE to (Gf ). If B is reductive and « is (non-reductive) of type 1, then either &, x5
commute anyway or o+ is again a root (necessarily non-reductive of type 1) and (8.6)
shows that [, xfg'] = 1. If B is reductive and « is (non-reductive) of type 2, then (8.6)

shows that &, xé commute. If 8 # —« is non-reductive, then by assumption ht(8) <
ht(—«). Then [£, xé‘] = 1 unless @ + B is a root, in which case [, xé] € ((G:ZJrﬁ)h’1
by (8.6). But the height condition implies that « + 8 € . Following this case-by-
case examination, the claim about A; in (i) when z € (N},)SO is then established once
we make the following observation: If £ has [y]wh_“ (resp. [y]wh_“_l, ifa =1)
and x*, has [u]w?! (resp. [u]ar?) in their only non-trivial entries, then [§, x* ] is
a diagonal matrix with only two nontrivial entries: 1 = [uy]w" 1.

In (i1), it is automatic that z € (N}l)fo, and this case can be proven in exactly the
same way as above (and is slightly easier) and we omit the details.

It remains to prove (i) in the case that z € N111 ~ (N}l)fo. In particular, & € ((GrZ‘)h_1
since a = 1. By construction, A, consists of non-reductive roots of type 1, so & must
be non-reductive of type 2. Modulo (N}l)50 (which commutes with £) we may write

= II =

yedt BeA; \{—a}
htno (7)>htn0 (—a)

< N
—
>.<N
2

Q
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Recall that A, \ {—«} consists of (necessarily non-reductive, type 1) roots with
ht,,,(8) = ht,,(—«). By construction ht(y), ht(8) < ht(—«), and so in particular,

si=]JE" @ph~1e @t
B
We claim:
tz=¢[]x (];[xg Xy
=[] E(sz X2, (8.7)
B

=(I1x (1‘[25‘1 ()7 | 780 1,
B

= l_[xf/ xﬂ xZ,sE[E, x° (8.8)
¥

= zsE[€, x%,

=z&E[E, xS, s (8.9)

Here (8.7) holds as « + y (if it is a root) must be non-reductive of type 1, and hence &
and xj, commute by (8.6). To justify (8.8), let € A\ {—«}. If « + B is not a root,
then [£, xé] = 1.If « 4 B is aroot, then o 4- B is reductive (since ht,,, (8) = ht,;;(—a))
and [£, x5] € (G PP~ € (N;)~! (since ht(8) < ht(—a) by definition of o). But
every B’ € A, is non-reductive of type 1, so we must also have ht,,(8'+ (¢ +8)) > 0,
and (8.6) shows that [£, xfs'] commute with xé, for all B’ € A,. Finally, (8.9) follows
from the fact that s € (N;)h_1 commutes with & € (N;)h_1 and with [§, x* ] € T7.
But now we have shown [£, z] = [§,x%,]s € T¢ (N;)h’], which finishes the proof
of the last remaining assertion of the lemma. m]

Let Ky = U;” N Np. Let P ={pedt: Gf € Kj}. Let X denote the set of all
non-empty subsets I C @', on which ht: &t — Z.g is constant. To z € K}l ~ {1}
we attach a pair (a;, I;) with 1 < a, < h —1and I, € X. Define a, by z € Kzz’*.
If A, contains a non-reductive root, let I, € A, be the subset of all non-reductive
roots of maximal height. (Note that if ¢ = 1, then I, contains only roots of type 1
if z ¢ (N})=C and only contains roots of type 2 if z € (N})=0.) If A, contains only
reductive roots, let I, C A, be the subset of all roots of maximal height. We have a
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stratification into locally closed subsets

K~ (1) = UKZ’*” where K™ = {z e KL~ (1} (az, I) = (a, D).
a,l

(8.10)

8.4.8 Cohomology of /2\;,
We are now ready to prove (8.5) using the same arguments as in the proof of [26,
Lemma 1.9]. To do this, it is enough to show that H] (E’ )o.or = 0 forall j > 0. For

a 7'F -module M and a character x of 7'F, write M (x) for the x-isotypic component
of M. Note that 7'F acts on £/, by

G x 2, T G, XY due T 7 Y.
Hence ch (i/u) is a 7'F-module. It is enough to show that ch(f{v)(x) = 0 for any
regular character x of 7' . Fix such a x. Define N = wU'~w~!, N~ = wU'w~".

Then with notation as in Sects. 8.4.6 and 8.4.7, the stratification of Kl ~ {1} given in
(8.10) induces a stratification of E’ indexedby 1 <a <h — 1 and I e X:

= |_| Z;’)“’I where E;’f"l ={(x,x" u,u',z,t)e Xz € KZ’*’I}.

Note that each 3,4 is stable under 7'F. Thus to show (8.5), it is enough to show
HI (41, Q) =0  forany fixed a, I. (8.11)

Choose aroot  such that —a € 1. Then G}, € U, N u';[U}lu')’l .Forany z € KZ’*’I,
Lemma 8.11 grants us an isomorphism

Az ((G‘)‘)h_“/(G"‘)h_“Jrl = 7, if o is non-reductive,

1 (G, yh—a- 1/(Ga)h a =, e if o is reductive.
Let = denote the natural projection (GZ)h_“ — ((G}Z)h_“ / (GZ‘)h_‘”‘1 if @ is non-
reductive and the natural projection ((G;Z)h_a_1 — ((G‘;l‘)h_“_l / (G‘;l‘)h_“ if a is
reductive. Let v be a section to ;v such that 74 = 1 and (1) = 1. Let
Ho={t' eT ¢/ 'F') e w ' T}
This is a closed subgroup of 7”. For any 1" € H’ define f;: £,4! — 5:¢-! by

frGo, x uul 2,7y = (xF(€), %, u, F() W F(t'), z, T F(t)),
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where
E=yr WFE) o) e GH'T C Uy N

(((G‘;l‘)h’“’1 should be replaced by (G‘;l‘)h’“ if « is non-reductive), and ¥’ € Gy, is
defined by the condition that

xF(Ezwt' F(t')) € uzwt' F(YF() "W Ft)x'.

To check that this is well-defined one needs to show X' € F(Uj)). This is done with
exactly the same computation as in the proof of [26, Lemma 1.9], and we omit this. It
is clear that f,: £,¢7 — f{b‘l*’ is an isomorphism for any ¢’ € H'. Moreover, since
T'F € 'H’ and since for any ¢’ € T'F the map f, coincides with the action of ¢’ in the
T'F -action on E’ a1 (we use ¥ (1) = 1 here), it follows that we have constructed an
action f of H' on £,% extending the 7' -action.

If a connected group acts on a scheme, the 1nduced action in the cohomology is con-
stant. Thus for any 1" € H', the induced map f}: H/ (Sha ! Q) — HL(ELeT,Qy)
is constant when ¢ varies in H'°. Hence the restriction of the 77 -action on
H (Z,41, Q) to T'F n'H"O is trivial.

Now we can find some m > 1 such that F" (' 7%w) = w~!7%b. Then

{'— FAYFX() - F" ()

defines a morphism w~'7% — H’. Since 7 is connected, its image is also con-
nected and hence contained in H°. If /' € (W' 7%w)f", then N;m (") € T'F and
hence also NE" (') € T'F N 1. Thus the action of N£" (') € 7'F on H! (Z;,%1)
is trivial for any ¢’ € (w_l’T"‘w)Fm

Finally, observe that if Hg (E;f’ I @Z)(x) # 0, then the above shows that ¢’ —
X (N 5 " (¢")) is the trivial character, which contradicts the regularity assumption on .

This establishes (8.11), which establishes (8.5), which was the last outstanding claim
in the proof of Proposition 8.7.

9 Cuspidality

The next theorem (proved in Sect. 9.1) concerns the “cuspidality” of the representa-
tion Rgh " (@) for primitive #. This is the higher-level analogue of Deligne-Lusztig’s
theorem [13, Theorem 8.3] required to prove that the induced representation
c- Indg Go (|RG” (0)]) is irreducible and supercuspidal (Theorem 12.5). A proof that
this induced representatlon is irreducible supercuspidal when 2 = 1 can be found in
[27, Proposition 6.6], and when G = GL,(K) and # arbitrary it was done by the first
author in [21].

We work with a special representative b as in Sect. 5.2.2.

Let N’ be the unipotent radical of any standard parabolic subgroup of GL, and
let N denote the subgroup of GL, (15 ) consisting of unipotent matrices such that
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any (ng X ng)-block consists of a diagonal matrix and the (i, j)th block can have
nonzero entries 1f and only if the (i, ])th entry of an element of N’ is nonzero. For
each h > 1, let Nh denote the image of NN Gx o in Gy, (Fq) Define Nj, := Nh and

N[: - ker(N, — Np_1).

Theorem 9.1 Assume 0: Tj, — @Z is primitive. Then the restriction of |R?h "(@)] to

N ,i' ~! does not contain the trivial representation.

9.1 Proof of Theorem 9.1

9.1.1. We retain notation as in the statement of the Theorem and the set-up
directly proceeding it. Let J:={a = (i, j): Uy C N’} be the set of roots of
the diagonal torus in GL,  occurring in N’. Let [ be the inverse of ky mod-
ulo np and let [a],, denote the residue of ¢ € Z in 1 < [a] < ng. The
elements of N;ll_l consist of n x n-matrices, whose (i, j)th (ng9 x ng)-block
is the identity matrix if i = j, is zero if i # j and (i,j) ¢ J, and is
of the form diag(w " 'u, w"~! oo (), w16 (), ..., wh=1gl00=Dlng (4y))
for some u € Fyno if (i, j) € J. Observe that it is sufﬁment to show that the theo-
rem holds under the assumption that N is the unipotent radical of a maximal proper
parabolic; that is,

J={G,j):1<i<n—t,n—L+1<j<n,} forsomel<{<n

(This will be used only in the proof of Lemma 9.6.)

9.1.2. Our main tool will be a close variant of [5, Lemma 2.12]. The set-up and proof
of Lemma 9.2 is nearly the same as the proof of op. cit. verbatim. Assume that X is
a separated scheme of finite type over F; and we are given an automorphism ¢ of X
and a right action of a finite group A on X that commute with ¢. For each character

X:A—> @Z, we write Hci (X, @e)[X] for the subspace of Hci (X, @5) on which A acts

by x. Note that this subspace is invariant under the action of p*: HC’:(X ,QIx1 3
H (X, Qplx]

Lemma9.2 Let x: A — @Z be a character. Assume that Fry actson Y ;(—1) HI (X,
Qp)lx] by a scalar ,. Then

Tr <¢*; =1, @)[x])

Y x(@) - #lx € X(Fy) : p(Fry(x)) = x - a}.

acA

T A #A

Proof Foreacha € A,let p,: X — X denote the automorphism x — x - a and write
©¥a = @ o pg. Then p, is a finite-order automorphism of X and (as in the proof of [13,
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Proposition 3.3])

S (=1 Tr(Frg o ¢ HA(X, Q) = #{x € X(Fy) : ¢(Frg(x)) = x -a”'}.
l
Hence averaging over x ~!(a), we have

1 _
a1 2 X @ #x € XFy) : pFrg () = x-a”}

acA

= S (1) Tr (Frg o9 HI(X, Qo)lx])

=ATr (go*; Z(—l)iHCi(X, @e)[x]) .

9.1.3. Now fix a character 6 : T, — @KX as in the theorem. Recall from (7.3) that

Xp = I_l ga-XJ=1 where X§et=!

ae(Ok /wh)>

={x € X, :detgx) =1 (mod w")}.
b

Note that 7, transitively permutes the components ga.Xgetzl (a € (Og/w")>)
and let 7)) C T}, denote the stabilizer of a (any) component. Since the composition
HE(X=ND[01701 > HA(Xn)[0]7:1 — HI(Xp)[0] s bijective, it must be an isomor-
phismof NV, ;1’ -1 -representations (see also (8.1)). Hence to show the theorem, itis enough

to show that the trivial character of N} ! does notoccurin Y, (—1)! H (X $=1)[g el
that is,

<triv, > (=D HA (X, @l)[9|Th"]>
1 o -
= 2 (s D HIXEEL Tel) =0 O

#N}]Z— h—1
8EN,

h—1
Nh

We now apply Lemma 9.2 to the Fyn-scheme X{=! with A = T)? and ¢: X{=!

Xget;l given by x +— g - x for some g € N;l‘fl. We see that to show (9.1), we must
show

Z Z O(t) - #Sg, =0,  where Sg,:={x € X{*=\(F,) : g - Fryn(x) = x - 1}.

_ o
gENZIl LteTy

Lemma9.3 Ler g € N~ and t € TP such that Sq; # @. Thent = (—1)"~!
(mod w1y and 6" (x) = (—1)"/*1x (mod @w"=1) forall x € Se.r-
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Proof Anelement y € % lies in .} %m’rat if and only if det g*%(y) € O, or equiva-
lently, ord det g, (y) = ord det(Dy ,) =: c and o (det g5 (y)) = det g5(y). Multiplying
by b on both sides, we see that these conditions are equivalent to

det(ba (y) | (b0)2(y) | ... | (bo)"(y)) = det(b) det(gy(y)) € w T O*.

As b is the special representative, det(b) = ((—1)(”0’1)"‘)@7"")”/ = (=¥ Dgyr
and moreover, b" = w’. Thus the above is equivalent to

@ det(bo () | (b0)* (M) | ... [0" (7)) = (=D~ Ver* det(gy(y) € w0,

An elementary computation shows (—1)"~1=%(0—D — (—1)”,_1, thus the above is
equivalent to

(—1)" " det(a" () |bo () | (B0)2() | ... | (bo)""L(y)) = det(gs(y)) € @ O*.
9.2)

Let now x € Sg; € Xp,. Denote by y € fgdm’ra[ aliftof x. As g =1 (mod w’ 1),
we by assumption have ¢”(y) = yt (mod @w”~!). Thus replacing in (9.2) ¢"(y)
by ty + @ "l for some x € %, using the linearity of the determinant in the first

column, and the fact that each entry of the ith column (2 < i < n) of the matrix on
(i—Dig

the Teft hand side of (9.2) is in O divisible by @l ") (and P L%J _
we deduce that

(=D"" Y%t =1 (mod ="™").
Ifx e X;_l denotes the image of x modulo w1, we obtain 0" (¥) = (—1)",_1i. m|
Thus for g, ¢ as in the lemma, S, ; # & implies
te ()" AT = ()" MU + @ a)): a € By, F s, (@) = O},

so that, after factoring out the constant 6 (— l)"/’l, it remains to show:

h—1
Z Z 9(1 + o [a]) : #Sg,(—l)’l/71(1+w}1’1[a]) =0. (93)

geN,:'_] aeker(Fyn—Fy)

9.1.4. Before we can prove (9.3), we need some preparations. Recall from Sect. 7.4

that one has an intermediate scheme X; —» X;{_ | = Xn—1. Define X;;dletzl to be
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the subscheme of X;l’_ | consisting of x € X;'_l with det(g,r)ed (x)) = 1 modulo w’~1.
Then we have a surjection

. det=1 +,det=1
X, - X,

and by Proposition 7.6, X 2et51 — X ;lr;dletzl x A" is the (relative) hypersurface given
by

no—1

Y ol (P +e=0,

i=0

where c: X, — A! factors through f and P is a polynomial over X;'_l in the
variables x; ,—1 fori =1 (mod nop).

9.1.5.By Lemma 9.3, for g € N/ ' and t € (—1)" ~1(T}"~' N Tp) with S, , # @,
we have S, , C f’l(Sh_l), where

Sy = {)7 c X;;dletzl o"(X) = (—1)”,—1)7} c X];I*;dle[=]

is a finite set of points. Regard S;,—; as a (zero-dimensional, reduced) subscheme of

X,T’d]etzl. Consider the Sj,_1-morphism Sy, x AV S Sh_1 X A”/, which is the linear

change of variables defined by

(X1, =15 Xngb Lh—15 -+ s Xng/—D+Lh—1) T = 86(*)(z1, 22, ..., Zp)T,

where X is the image of X € S,_; in X and g;(X) is as in Sect. 7.3.

Claim X 2et51 is a (relative) hypersurface over X ;{;dletzl defined by an equation
n—1 qi

Y03 =c
It is enough to show that in the new coordinates z, ..., z,/, the polynomial P as

. . 11 g0 .
in Proposition 7.6 takes the form P; = Z?:ol Z(f . We prove this now.

Recall the n’-dimensional F,no-vector space V with its distinguished basis
{€no(i—1)+1 1 <i<n and the F n-linear morphism 3, of V from Lemma 5.8. To sim-
plify notation, we write X; instead of x,,,(j—1)+1,0 forx € X, and1 < j < n’ —1in
what follows (i.e., the image of x € X;, in V is ¥ = ()_ci)l'.’,zl). Recall from Sect. 7.3

that for ¥ € V the ith column of the (n’ x n’)-matrix g5 (¥) is ;' ! (¥). Let m; denote
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the ith row of the adjoint matrix (m;;) of g,(x). Then the above change of variables
gives

_ - ng _ _ 2n() T 110(7!/*1)
P = (my - D)z1 + (my - 5p(@)2] - + (m3-GF@Nz] 4o+ my - @)

o A N o 2n() o ng(n’—1)
+(my - Tp(E)z2 + (my - T2 (D)2 + (m3 - 53 @)+ (my - Gf (D)2

1 o un D ny(n'—1)
oty " T @)z + o T @)L e+ (T @)Y, :

(Here - denotes the matrix product.) But 6" (x) = (—1)”/_132 (where ¢ is applied
entry-wise), and hence from the explicit form of o, we deduce that o," (x) =
(=D"1x. As (m;;) is adjoint to g5, (x) and det(g,(x)) = 1 € F*, we have

55 (%) 1 ifj=i—1,
m; -op’ () =
o 0  otherwise.

This shows that all coefficients are equal to 1 in the first line of the above expression
and vanish in lines 2, ..., n’. This completes the proof of the claim.

9.1.6. Note that N ,i'*l X (Thhf1 NT;) stabilizes S, 1 and acts trivially on it. We describe
the action of N;,‘*l X (Thhf1 N T;) on the new coordinates z1, ..., Z,'.

Letg € N[,‘_l and for (i, j) € J asin Sect. 9.1.1, let [u,-,j]wh’l denote the upper
left entry of the (i, j)th ng x ng-block of g. Recall that the action of g on £~ (S;,_1)
in the old coordinates x1 1, . .., Xug(n'—1)+1,h—1 15 given by

’ -
8- Congi—1)h—1i=) = | XngGi—1).h—1 + D Ui jX;
1<j<n’
(@.)nel i=1
Since det(g,(¥)) = 1 by assumption, the adjoint matrix (m;;);; of g,(x) is in fact
the inverse, so that z; = 27‘:1 M;jXno(j—1)+1,h—1- Thus the action of g on the new
coordinates is given by

zi—=>zi + Z mikukjij.
1<k, j<n’
(k,j)eJ

We now describe the action of (T}flf1 NTY) ={1+ lalah—!: Trr,. /¥, (@) = 0}.
For a € ker(Tr: Fyn — TF,), the action of 1 + [a]e~! on the old coordinates is
given by

XnoGi—1)+1,h—1 = Xngi—1)+1,h—1 + aX;.
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Since ZZ: | MixXk is equal to 1 when i = 1 and equal to O when i > 1, the action of
1 + [alw”~! on the new coordinates is given by

z1+a ifi =1,

Zi o
Zi ifi =2,...,n.

Moreover, x — o"(x) - (—l)"/’1 defines an isomorphism of each fiber f 1),
and one computes that in coordinates z; it is given by z; +— 0" (z;). Thus for t =
(—1)”/_1(1~|—wh_1[a]) € (—1)”,_1(Thh*1ﬂTh"),theassignmentx — 0" (x)-t defines
an isomorphism of f~!(#) which in the coordinates z; is given by z; — o (z1) + a,
zir>o'(zi)for2 <i<n.

9.1.7. We next claim that ¢(X) € F, for ¥ € S,_;. Consider the “extension by
zero” morphism W;,_; — W given by Zf’:—g[ai]w" — Zf.l_z[a,-]wi. It defines

amap L/ 1'% — L,y — [v,0]. To show the claim it is sufficient to
show that [%, 0] lies in .i”é‘im’rat. Obviously, det gi*d([%, 0]) € O. Now, note that

as ¥ € X, there exists some lift z € L. im’rat of X. This gives in particu-
lar det gffd(z) = det glrfd([f, 0]) (mod w"~1). We deduce det gfd([)?, o) € O*.
It remains to show that det g,rfd([i, 0]) € K. To do this, it suffices to prove that
det g»([x,0]) € K, as det glrfd(-) and det g, (-) differ only by a power of w. But
as o"(X) = (=1)"~1(®), we have o"([%,0]) = (—1)"~![X,0]. Using this and
det(b) = (—1)*0~D ek we compute:

(— 1) Derko (det g, ([F, 01))
= detbo (g5 ([%, 01))

= det (ba([i,O]) | (bo)2([7,0])] ... |wk0”([i,0]))

= (=D DD det g (17, 0)).

But as in the proof of Lemma 9.3, we have (—1)<0—1 —= (—1)(”_1)"‘(”/_1). This
shows the claim.

9.1.8.Fix ¥ € Sj_; and t = (—=1)"~1(1 + @ ![a]) with Trg, /F, (@) = 0 (as in
Eq. (9.3)). We see that a point x € f~!(¥) with coordinates (zi)l’.l/:l as in Sect. 9.1.5
lies in S, N f~1(%) if and only if

1

n—1
g-o"(x)-t7'=x and z+zl+-4d =c®.
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By Sect. 9.1.6, the first equation is equivalent to (use that 6" (m; ) = —m; x, 0" (X;) =
(=" %))

n -
3+ Z MikUgjXj =21 +a,
(k. jyeJ

q

along with similar equations for the (z,-)?/:2 (of the form z; " + (sum of terms) = z;).

Since c(X) € I, by Sect. 9.1.7, the second equation implies z; = z({" , which eliminates
z1 from the first equation. Therefore S, , N f ~1(X) # @ if and only if

¥(X, g) = a, where ¥ (X, g) 1= Z(k’j)ej MikUgjX;. (9.4)

Moreover, since the n” — 1 equations for (z,-)l’.’/:2 is a separable polynomial in z;, each
gives precisely g" choices for z;, 2 < i < n’, with no further conditions. Thus

Se NfI@® #0 <= (9.4) holds
— #(Sg,; N f_l(;c‘)) = q”_l( q" )”/—1 — qnn/—l.
— —~—

forzy for z;,2<i<n’
This shows the following lemma.

Lemma9.4 Forg € Ny ™', t = (=1)"~'(1 + @"~'[al) with Trg,, ¥, (a) = 0, and
X e S,

"t iy ¥) =a,
0 otherwise.

#Seu N f7H(E) =
For a € ker(Tr: Fyn — F,), put
Bgo:={X:¥(g,X) =a} C Sp_1.

As Sg.r = Lres, , e N f71(®), Lemma 9.4 implies that

#S LY

& (="l (+ah=1[a) = 4

Thus the left hand side of (9.3) is

qnn/—l . Z Z o0(1 + wh_l[a]) '#Bg,a- 9.5)

aEker(]Fqn —Fy) geN,’:*I
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9.1.9. We have the following lemma.

Lemma 9.5 Lerg € N~ andlett = (—1)" 1 (1 + @"~[a]) with Trg, /v, (@) = 0.
We have S, ; = &, unless TrFq,, /F o (a) =0.

Proof 1t is enough to show that if TI']Fq,, /F o (a) # 0, then S, , N (%) = @ forall

X € Sp—1. By Lemma 9.4, it is enough to show that for all g € N;'_l and x € Sp,_1,
we have ¥ (X, g) € ker(Tr]Fq,,/]Fq,,O ). Fix such g and x and let wh_luk,j ((k, j) e J)
denote the entries of g (as in beginning of Sect. 9.1.6). As uy,; € Fyno, and as k # j
holds for all pairs (k, j) € J, it suffices to show that m; xx; € ker(TrFq,, /Fq"o) if

k # j.Since X € Sy_1, one computes myg ; = mZT] ;- Thus Tr(m xX;) is precisely
the (j, k)th entry of the matrix g5 (x) - m, which is equal 0. m]

By Lemma 9.5 and (9.5), we have reduced showing (9.3) to showing

> > 00 +o" al) #Bga =0 (9.6)

aeker(Fqn _’Fq”o) geN;llfl

9.1.10.For X € Sp—1, consider the T no-vector  subspace
W(X) := (m1,;x;|(i, j) € J) C ker(Fgn — Fyno). The left hand side of (9.6) is

> > 00+ 2" Ma)) #Bga

aeker(]Fqn %]Fqno ) geN,i’fl

= > Y e +a"a) #ge NI y(e. 5) = a)

aeker(IFqn —>Fqno )XeSp—1

Y e+ a) #g e N T y(g. D) = a).
aeker(lﬁ‘qn —>IFan) nger(IFqn —>1Fqno )i W(E)=W

9.7

Now fix some W and X € S,_; such that W(x) = W. Then {m ; X}, j)es span the
IF4no -vector space W, and from the explicit form (9.4) of ¥ (g, a), it is clear that

qn()(#.lfdim W) ifa e W,

#Hege N iy(g. H) =a} =
lgeN, ¥ x)=a} {() otherwise.

Note that #{g € N,/f_l : ¥(g,X) = a} depends only on W (X) and not on X itself.
Thus, if we set Sp—1,w :={X € Sp—1: W(X) = W}, then (9.7) is equal to

Z#Sh—l,W . qno(#lfdim W) . Z 9(1 + w_h*l[a]).
w aeW

But as 6 is assumed to be primitive in the theorem, this expression is equal to 0 once
we show the following lemma:
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Lemma9.6 Let ¥ € Sy_1. Then there is some r | n’, r < n’ such that W(X) =
ker(Tr]Fqn /]Fqnor )

Proof Write W = W (x). Consider the perfect symmetric IFno-bilinear trace pairing
Fyn x Fgn — Fyno, (x,y) — TTIFqn/IFan (xy).

It is an immediate computation that ker(Tr]Fqn /F nor )L = IFynor for any divisor r of n',

so we need to show that W+ is of the form Fynor for some r < n'. For this, it suffices
to show that W is an IF 4o -algebra, which is properly contained in Fgn.
First of all note that W+ contains 1 since forall (i, J)eJ.myix; € ker(Tr]Fq,, /F o )

(as in the proof of Lemma 9.5). Since W is an IFno -vector space and contains 1, it
must contain [Fno . It remains to show that W+ is closed under multiplication. We now
use that J is of the form

J={G,j):l<i<n—t,n—t+1<j<n)

for some 1 < £ < n' (see Sect. 9.1.1). Forafixedn' — £+ 1 < j <n/, let

_ L
: : S
Lj:=spang (miixj:1<i<n' —e).

Observe that the m ; are all IF;n -linearly independent (since b is the special represen-
tative) and hence L ; has dimensionn’ —€.For1 <i <n’—fandn'—€+1 <i’ <n’
we have

Xy _
TCF i /F g (ml,in . Z> = TR /F ng (M1,iXi7) = 0,

as in the proof of Lemma 9.5. This implies the inclusion “2” in the formula

L; = span ﬁzn’—€+l<i’<n/.
i F o ; <i =
The other inclusion follows by dimension reasons. As W is generated by all Lj.-
n —¢+1<j<n'),wehave Wt = ﬂ;f:n_“l Lj. Letv,we W-L. We need to
show that vw € W+, i.e., that forall (ig, jo) € JwehaveTr]Fq,,/]Fq,,O (m1,igXjoow) = 0.

Asv € Lj,, we may write v = Z(a joyes Va ;—‘ with v, € Fyno. Then
’ Jo

- - X
TrE o /F o (M1igXjo VW) = TrFu /F ug | M1ioXjo | 2 Va- 5= |w
(a.jorel

= Z Vg - Tr]Fqn/]Fq"O (ml,ioxaw) = 0’
(a,jo)et

where the last equality holds since w € W+ is orthogonal to each Lj. O
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Part 4. Automorphicinduction and the Jacquet-Langlands correspon-
dence

In this part, we use the results of Parts 2 and 3 to study the £-adic homology groups
of the semi-infinite Deligne—Lusztig variety X g L(b), which by Theorem 6.9 along
with Corollary 6.19 is isomorphic to the affine Deligne-Lusztig variety at infinite
level X o°(b) constructed in Sect. 6. In Sect. 10, we recall methods of Henniart char-
acterizing certain representations by considering the action of very regular elements.
In Sect. 11, we define the homology of X > =X 3 L and give a representation-
theoretic description of

RE©):= > (-D'H(Xy (). QO] forf: T =L* — Q, smooth

i>0

in terms of the cohomology of the finite-type variety X studied in the previous two
parts of the paper. Using methods of Henniart as reviewed in Sect. 10, we prove
Theorem 11.3: if |R$ (0)] is irreducible supercuspidal, then the assignment 6
|R? ()| realizes automorphic induction. To finish, we prove in Sect. 12 that when
6: L% — @Z is minimal admissible, then |R? (0)] is irreducible supercuspidal.

We now give some basic definitions which we will use throughout the next few
sections. Recall that for any smooth character 6: L>* — @gx , there exists an integer
h > 1 such that 6 is trivial on U i’ =1+ wh(’)L. We call the smallest such / the level
of 6. We say that 6 is in general position if its stabilizer in Gal(L/K) is trivial. Let
Z denote the set of such characters.

We say that an element x of L* is very regular if x € OZ and its image in the
residue field Fy» generates its multiplicative group F;,,.

We say that a virtual representation is a genuine representation if it is a nonnegative
linear combination of irreducible representations. If R is a virtual representation that
is £, where 7 is a genuine representation, we write |R| = 7.

10 Results of Henniart on the local Langlands correspondence

In this section, we review the methods of Henniart [19,20] characterizing certain cases
of automorphic induction by considering the action of very regular elements. We give
a generalization of the discussions of [6] to all inner forms of GL, (K). There are no
technical difficulties in doing this, but we provide it for completeness of our paper.
Fix a character € of K* with ker(e) = Nmy g (L>), and let G (n) denote the
set of irreducible n-dimensional representations o of the Weil group Wk such that
c=0Q®(eo rec;l), where recg : K* — Wl“(b is the reciprocity isomorphism from
local class field theory. It is known that every element of G% (n) is of the form Indwi< )
for some character 0 € 2. However, it is also known that automorphic induction is not
compatible with induction on Weil groups in the sense that the Langlands parameter
may have a twist by a rectifying character. Hence the approach we take is via the x-
datum of Langlands—Sheldstad [24, Section 2.5]. Because L/K is unramified, there
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is a canonical choice of x-datum, and this gives rise to a bijection
2 /Gal(L/K) — Gx(n), 6> oy.

See [11, Section 7.2] for an exposition and an explicit discussion of the unramified
setting. Note that oy differs from the notation of [6] by a rectifying character.

Let A% (GL,) denote the set of isomorphism classes of irreducible supercuspidal
representations w of GL,(K) such that 1 = 7m ® (€ o det). There is a canonical
bijection

Gie(m) =5 A (GLy). 0 >

satisfying certain properties. By work of Henniart, the character of 7y is very nicely
behaved on certain elements of GL, (K).

Now let G be an inner form of GL, (K) so that G = GL,;' (D /n,), Where Dy /y, is
the division algebra of dimension ng over K with Hasse invariant ko/ng. Let A% (G)
denote the set of isomorphism classes of irreducible supercuspidal representations 7’
of G such that 7’ = 7’ ® (¢ o det). By the Jacquet-Langlands correspondence, there
is a canonical bijection

< (GLy) I8 AS(G), 7 7= IL(7)

such that the central characters of 7 and 7’ match and such that their characters on
regular semisimple elements differs by (—1)"7".

Remark 10.1 We remark that the notation 77y agrees with the 7 () of [20], but with the
7' () (rather than the 7 (6)) of [19]. When 7 is odd, there is no discrepancy, but when
n is even, our 7y is the representation wg, = 7'(9) in [19], where w is the unique
unramified character of L* of order 2. O

The following theorem can be found in [19, Section 3.14].

Theorem 10.2 (Henniart) For each 6 € 2, there exists a constant cy = 1 such that

TrJL(7tp)(x) = cp - Z 6" (x)

yeGal(L/K)

for every very regular element x € L™ C GL, (K).

As we will see momentarily, one can even go the other direction: the trace of
T E .Aj( (GL,,) on very regular elements of L* characterizes . Furthermore, ¢y can
be pinpointed for GL,(K) by [19, Theorem 3.14] and extended to any inner form of
GL, (K) via the character condition of the Jacquet—-Langlands correspondence. For
each positive integer r and each 6 € 27, consider the subgroup of Gal(L/K) given
by 9%, :={y € Gal(L/K) : a(y) < r}, where a(y) is the level of 6/67.
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Theorem 10.3 (Henniart) The constant cg of Theorem 10.2 satisfies

+1  ifnisodd,
(=1)"eg = +1  ifnisevenands is even,

—1 if n is even and s is odd,

where s is such that Gy s\ %y s—1 contains the unique element of order2 in Gal(L/K).

Lemma 10.4 (Henniart) Let 0 € 2 and suppose that there exists a character 0’ of
L* (a priori, not necessarily in %) such that 0 (w) = 6' (@) and

Z 0¥ (x) = - Z 0" (x) (10.1)

yeGal(L/K) yeGal(L/K)

o

for all very regular elements of x € L*. Assume in addition that c = ¢’ in the special
casen =2,q =3, and@IUi factors through the norm ULl — U}( (i.e. 0 € 2O with
notation from Sect. 12). Then

0’ =0"  forsomey € Gal(L/K).

Proof We provide the proof in the case that 6] 1 has trivial Gal(L/K)-stabilizer,
following [20, Section 5.3] (see also [6, Lemma 1.7]). This is the simplest setting. In
[20, Section 5.3], Henniart proves the lemma for 6 € 2" in the case [L : K] is prime
by essentially the arguments presented here. A significantly more involved incarnation
of these arguments is used in [ 19, Identity (2.5), Sections 2.6-2.12] to prove the lemma
in full generality as stated.

We first show that the conclusion holds on U i Fix a very regular element x € L*.
Since every element of xU g C L* is a very regular element, the assumption implies
that we have an equation of linear dependence between the 2n characters of U 1£ given
by the restrictions of the Gal(L /K )-translates of # and 6’. Explicitly: on U ! we have

0 =o' YooY = Y oW ()07
y€Gal(L/K) 1y eGal(L/K)

Considering the character inner product of 6" with 6" on U i for some fixed y’ €
Gal(L/K), we have:

, .07 ,
@, 07y = LD 0 ()07, 07).
c -0 (x)
1y €Gal(L/K)

If (077, 0?//) = 1 forsome 1 # y € Gal(L/K), then we are done. Otherwise, we must
have ¢’0’(x) = ¢6” (x) and 8’ = 67 on ULl since 6, 0’ agree on K *.
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We have now shown that there exists a y € Gal(L/K) such that 8’(x) = 07 (x)
for any very regular element x € L*. But now it follows that &' = 6" on O} since
any very regular element together with U Ll generate O} . The desired conclusion now
follows by the assumption 6 (;r) = 6'(;) since (w') - (’)2< =L*. O

From Lemma 10.4, we obtain the following result:

Proposition 10.5 (Henniart, Boyarchenko—Weinstein) Let 0 € 2 and let G be any
inner form of GL,,(K). Assume that 7 is an irreducible supercuspidal representation
of G with central character 0| g x satisfying:

(i) m =1 ® (€ odet),

(i) there exists a constant ¢ # 0 satisfying Trm(x) = c- ZyeGal(L/K) 07 (x) for each
very regular element x € L*.

Ifn =2, qg = 3, and QIUi factors through the norm U} — Uj (ie. 0 € 27°

—1 ifG = GLy(K)

+1 fG=Dy),

Then w corresponds to 0 under automorphic induction and the Jacquet—Langlands

correspondence:

with notation from Sect. 12), assume in addition that ¢ =

7w = JL(my).
Proof This is [6, Proposition 1.5] (combined with the remarks of Section 1.4 of op.
cit.)when G Z GL,(K)or G = DIX/ ,,- The proof extends to the general situation with
no complications. O
11 Homology of affine Deligne-Lusztig varieties at infinite level
We explain how the results of Part 3 on the cohomology of the finite-type of Fgn-

schemes X, for &7 > 1 (Proposition-Definition 7.11, Prqposition 7.12) allows one to
define and determine homology groups of the schemes X°(b).

11.1 Definition of the homology groups
Following [25], for any smooth Fq-scheme S of pure dimension d, we set
H;($,Qp) = HZ7(5. Q) (@),
where (d) denotes the dth Tate twist. Recall from Proposition 7.4 that for any & > 1,

the Fyn-scheme X, is smooth of pure dimension (n — 1)(h — 1) + n —-1).
By Proposition 6.12, Corollary 6.19 and (7.1), we have

Xpoy= [ tim g X g =[] tmx.
geG/Gp r>m=0 geG/Go h
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By Proposition 7.7, we have the natural inclusion
9 T AW ) o
Hi(Xp—1, Q) = Hi(Xp, Qo) ™n " C Hi(Xp, Qp).

We may therefore define
H; (Xff,o(b)xo,@o = H; <1<iLnXh,@e) = lim H; (Xh»@e> ,
h h
H (X5 ®).Q) = D Hi(g X214, Q).
G/Go
Recall that in Theorem 6.9 we extended the action of (’)Z on X o°(b) to an action
of T = L*.

Definition 11.1 For any (smooth) character 6: T — @Z, define the virtual G-
representation

RE(0):= Y (=1 H;(X32 (). QpI6],
i>0
where [6] denotes the subspace where T acts by 6.
Let Z denote the center of G.

Theorem11.2 Let0: T = L* — @ZX be a character of level h > 1. Then as G-
representations,

RE(6) = c-IndS. ¢, (R?hh (9)) , (11.1)

where we view the (virtual) Gp-representation R%” (0) as a Gp-representation by
pulling back along the natural surjection G — Gy, and then extend to Z by letting
@ act by (). Furthermore, for any very regular element x € L™,

Tr(x*;R?(@)): Y .

yeGal(L/K)

Proof The stabilizer of X w(b) g < X 2b)in G is Go. Let Tp be the preimage of
O] under T = L*.Itis easy to see that the stabilizer of X°(b) 4, € X°(b)in G x T
is the subgroup I" generated by G x T and (z, = ~!). Hence as representations of

G x T, we have
DD H (), T = eIndFXC (301 Hi (R ()., Q)

Now let T be the subgroup of G x T generated by I' and {1} x T. Note that =
ZG o x T.Theisomorphism (11.1) follows from the above together with the definition
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of the homology groups of X, (b) ¢, in terms of the cohomology of X, (remembering
that 6 has level 4 by assumption).

It remains to determine the character on very regular elements of L*. We use (11.1)
together with the corresponding character formula result for X, (Proposition 8.3). By
Lemma 5.7, we know that for each ¢ € Gal(L/K), there exists an element g, €
Ng(Gp) satisfying gq,xg(;l = ¢(x) for all x € L™ and that if ¢ € Gal(L/K)[n'],
one can choose g, € Go. By Sect. 5.5, we know that Ng(Gp)/Go = Z/n¢Z, and
therefore using the fact that

T (xS RPO) = Y Ogereh)

@eGal(L/K)[n']

by Proposition 8.3, we have:

G _
Tr (x*; R?(@)) = Z Tr (x*; RTh" (0)) = Z 0(8px8, b,
8€G/ZGo ¢eGal(L/K)
gxg  €ZGop

O

Theorem 11.3 Let 60 € 2. If |R? (0)| is irreducible supercuspidal, then the assign-
ment 0 +—> |R§; (0)| is a geometric realization of automorphic induction and the
Jacquet—Langlands correspondence. That is,

IR (6)| = JL(mp),

where JL denotes the Jacquet—Langlands transfer of the GL,, (K )-representation my to
the (possibly split) inner form G of GL, (K). Moreover, writing |R? @) =cy R]q ()]
for ¢ € {£1}, we have ¢ = co.

Remark 11.4 1If |R$ (0)] is irreducible supercuspidal, then RYQ ) = (—1)"%m, where
7 is an irreducible supercuspidal representation occurring in H,, (X >(b), Qy)[6] for
some ry € Z. (There may be other degrees where 7 contributes, but they all cancel
out. In particular, there may be more than one choice of ry, but the parity of ry is
invariant.) Then by Theorem 11.3 implies that ¢y = (—1)"¢, which gives a geometric
interpretation of Henniart’s sign cy in terms of the surviving cohomological degree in
the alternating sum qu ). O

Proof Write |[RY (0)| = ¢, R%(6) for some ¢, = %1. If we can show that [RE (9)|
satisfies the hypotheses of Proposition 10.5, then we are done. By assumption, |R$ (D]
isanirreducible cuspidal representation and by definition of the G x T action on R? @),
the central character of |Rg (0)| must be | g .

To see that (i) of Proposition 10.5 holds, note that since L /K is unramified we have
(@™ O = Nmy x (L*) = ker(€). In particular, we see that € odet is trivial on ZG o
and so by Theorem 11.2, we have |R$ )= |R? 0)| ® (€ odet).
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We now establish (ii) of Proposition 10.5 and the additional assumption in the
special case n = 2 and ¢ = 3. By Theorem 11.2, we have that for any very regular
element x € L™,

Tr(c* REOD =ch- Y 07 ().

yeGal(L/K)
Ifn=2,g=3,and0 € & 0 then by Theorem 12.2, we know in addition that

¢ = 1yt = —1  if G = GLy(K),
+1 i G =D,

We have now established all the conditions required by Proposition 10.5 to conclude
that ¢, = cg and |R¥ (9)| = JL(7p). o

12 A geometric realization of automorphic induction and
Jacquet-Langlands

In this section, we write down the cases in which we can prove Theorem 11.3 uncon-
ditionally. To this end, we consider the following two subsets of 2"

2%=0e2: 9|U£ factors through the norm map Ui — U,1<}

™0 .— (9 € 2 : 6 is minimal admissible}
= {0 € 2 :the 0/67 have the same level for any 1 # y € Gal(L/K)}

Note that 20 € 2™ is the “depth zero” part of .2 ™",

Remark 12.1 Let 0 € L* — @Z be a smooth character with trivial Gal(L/K)-
stabilizer. Then its restriction to OZ must have trivial Gal(L/K)-stabilizer. For the
reader’s convenience, we summarize the relation between minimal admissibility and
similar notions in the literature:

- 0 is minimal admissible if and only if (L/K, #) form a minimal admissible pair,
which happens if and only if 6 has only one “jump” in the sense of Bushnell-
Henniart [9, Section 1.1].

- 0 is minimal admissible if and only if it can be written in the form Opim - (x o
Nm_ k) for some smooth x: K* — @Z, where Oprim is primitive in the sense of
Boyarchenko—Weinstein [7, Section 7.1] (see also Sect. 8 of the present paper).

- Let h be such that 9|U£ = land 9|UZH # 1. Then 6 is primitive if and only if 0 is

regular as a character of O /U f in the sense of Lusztig [26, Section 1.5], when
o[ /U f is the F-fixed points of a maximal torus (see Remark 8.5). O
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12.1 Depth zero representations

In this section we only consider characters § € 2~ O_and give a nonvanishing result
for the individual cohomology groups H; (X3’ (b), Q,)[#]. Since each 6 € 2~ 0 is
of the form 6y - (x o Nmy,g), where 6y € 20 and 90|U£ = 1, determining
when Hi(X (), @@)[9] # 0 can be reduced to the corresponding question for the
cohomology of classical Deligne-Lusztig varieties. Recall from Proposition 7.4 that
dmX,=m—-1)"h-1)+® —-1).

Theorem 12.2 Fix 0 € 20 of level h and write 6 = 6y - (x o Nmyg k) for some
0 € 20 of level 1 and some character x of K* of level h. Then:

(1) the cohomology groups Hé (Xn, Qp)[0] are concentrated in a single degree and
R7" () = HX=DE=DH =1 (X, Qy)[0] = H 7' (X1. Qo)I6o] ® (x o det)

(ii) the homology groups H; ()'(jf (b), Q,)[0] are concentrated in a single degree and

GL,/ (Dky/ng)

IREO)] = Hy—1 (X3 (), Q)[6] = c-Ind, ¢y O

7

(o) (12.1)
10

is an irreducible supercuspidal representation of G. Here py is the extension of the
GLn/((’)Dko/no)—representation H! “I(xy, Qp)[60] ® (x o det) obtained by letting
w €Z = K* act by 6(w).

Moreover, |R7" (0)] = (—=1)" "' R7"(0) and |RE (0)| = (—1)" "' RE (6).

Proof By Lemma 8.4 and Proposition 7.7, we have, as G,-representations

HI(Xn, Q)60 0 (x o Nmy )1 = HL(X;,, Q601 @ (x o dety = HL 2"~ DE=D (x, Gpi6g]

foralli > 2(n — 1)(h — 1). This reduces the cohomology calculation to a statement
about X, which is a classical Deligne—Lusztig variety attached to the maximal torus
. in GL,y (Fgm). By [13, Corollary 9.9],

H(X, Q)1 #0 = i=n—1.

This proves (i). Since dim X, = (n — 1)(h — 1) +n’ — 1 by Proposition 7.4, we now
also see the nonvanishing assertion of (ii) and H, (X o2(b), @Z)[G] has the form
12.1 by Theorem 11.2. It is well known that this representation is irreducible and
supercuspidal (see also Theorem 12.5). For example, one can show by hand (by the
first part of the proof of Theorem 12.5) that the induction to the normalizer of ZG o
is irreducible, and then the conclusion follows from [27, Proposition 6.6]. O

Theorem 12.3 For6 € 20, the assignment 6 — H,_; (ng(b), Q)[0] is a geomet-
ric realization of automorphic induction and the Jacquet—Langlands correspondence.
That is,

Hy_(X2(b), Q0] = (=D 'R (0) = |RE (6)] = IL(7p).
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Proof By Theorem 12.2, we know that |RS (0)| = (—1)" ="' R (8) is an irreducible
supercuspidal representation, and by Theorem 11.2, we know that for any very regular
element x € L™,

T RGO = (D" Y 07 ).

yeGal(L/K)

By definition € is a finite-order character of K> with ker(e) = Nmy /x(K™).
Since L/K is unramified, ker(¢) contains Oy, and therefore € o det is trivial on
Z - GLn’(ODkO/nO)~ Hence |R$(9)| ® (€ o det) = |R§?(9)|. We can now apply Propo-
sition 10.5, noting that in the case n = 2, ¢ = 3, we have the correct sign cg (compare
with Theorem 10.3) as required by the proposition. O

Remark 12.4 Observe that as in Remark 11.4, the nonvanishing degree n’ — 1 of the
homology of X3 (b) gives a geometric interpretation of Henniart’s sign cg from The-
orem 10.3. O

12.2 Representations corresponding to minimal admissible characters

We now prove the supercuspidality of |R7q (0)| for & € 2™ The main technical
inputs are the irreducibility of |R7C-f;l "(9)| (Sect. 8) and a ““cuspidality” result for | R% b))
(Theorem 9.1).

Theorem 12.5 If6 € 2™, then |R? (0)| is irreducible supercuspidal.

Proof We first establish some notation. If w: H — GL(V) is a representation of
a subgroup H C G, then for any y € G, we define Y7: yHy~! — GL(V) by
Yr(g):=n(y~lgy). Assume that 6 is minimal admissible of level /. By definition,
we can write 6 = 0’ ® (x o Nm), where 6’ is a primitive character of L* of level
h' < h, x is any character of K* of level h, and Nm: L* — K* is the usual norm.
Denoting by 6, &, x the corresponding restrictions to the unit groups, by Proposition
7.7 and Lemma 8.4, we have

~ ~ Gy
R7"(8) = R7" (6" ® (x o Nm)) = R7"(6) ® (x 0 det) = R7" (6) @ (x o det).

In particular, by Theorem 11.2, we see that
RE(0) = RE(H) ® (x o det).
Since twists of irreducible supercuspidal representations are again irreducible super-
cuspidal, it suffices to prove the theorem for primitive characters 6.
Assume now that 6 is a primitive character of level 4. By Theorem 8.1, |Rgh ()] is
irreducible. Recall that there is a natural surjection Go — G}, so that we may view

|R?h ()| as a representation of G¢. We extend this to a representation of Z - G =
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(w) - G by letting @ act on |Rgl’1 (6)| by 6 (). We first claim that
po = c-Ind 3519 (IR 9)))

is irreducible. Recall from Sect. 5.5 that #Ng (Gp)/Go = no andlet {1, 2, ..., @u,}
denote a complete set of coset representatives of Gal(L /K)/ Gal(L/K)[n']. By
Lemma 5.7, there exists g, € Ng(G©) such that 8¢, xg(p = @;(x) forall x € (’)z.
By Mackey’s irreducibility criterion, it suffices to show that

Homg,, (|jo ©)], % |RS" (9)|) =0, fori=2....np.  (122)

Fix some i with 2 < i < ng. By Proposition 8.3, for any very regular element
x € Of
L>

Tr (x%: 80 RTM0)) =Tr (8, x8) 5 REO) = Y 607 (@),

yeGal(L/K)[n']

Applying Lemma 10.4 to the case when 8’ = 6% and the base field K is replaced
by the unique subfield of index »n’ in L containing K, we see that

Tr (x*; 8o RO (9)) £ Tr (x*; Ry (9)) .

But now 8¢ R?h "(6) and R?h " (9) are irreducible representations of G whose char-
acters differ from each other, and so necessarily (12.2) holds and pg is irreducible.

We now fix y € G\ Ng(Z - Gp). Once again by Mackey’s criterion, to complete
the proof we must show that

Hom, 7y-1nz6o (1RT @17 RS ©)]) = 0. (12.3)

At this point, let b be a special representative. By Sect. 5.5, we may assume that
y = I3, where v = (v1,..., V1, V2, ..., V2, ..., Uy, ..., V) (each v; repeated ng
times) for 0 = v; < vy < .-+ < vy, and I'I(”) is the block-diagonal matrix whose
Vi o
ith no x n block is given by (1n3_1 %’) . Observe that if (A7 ;)1 ;. j<w € GLy(K),
where each A; ; is a (ng x no)-matrix, then

5" - (A i<isjn - T = (Mg " A TIg ) 10 < (12.4)

For a parabolic subgroup P’ of GL, containing the upper triangular matrices, let
Np: be its unipotent radical. Let Np denote the subgroup of GL, (K) such that each
(ng x ng)-block consists of a diagonal matrix and the (i, j)th block is nonzero if and
only if the (i, j)th entry of an element of N pr is nonzero. Write Np = N FNGo.For
h > 1let Np = Np Nker(Go — Gp).
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We claim that there exists a parabolic P’ C GL, as above, such that
HS”N;‘,AHS C ker(Go — Gyp). Let 1 < iy < n’ be the last v;, = 0 so that
Viy < Vip+1, and let P’ be the minimal parabolic corresponding to the partition
ig + (n' —ip). Let (Ai ji<i,j<n € N;’)_l so that each A; ; is a diagonal ng x ng
matrix whose entries all lie in W/~ ! (F,). By (12.4), we see that the (i, j)th block
of TIy" + (Ai )i<i,j<wTI§ is HaviA,',jl'I;", so that in particular, if 1 < i < iy and
ip+ 1< j <n, then v; —v; > 0. By definition of G, (Sect. 5.3), we now have that
Hau . (Ai,j)lfi,jfn/ . HS € ker(GO — Gh).

The above implies that the restriction of M |R% @) to N f,_l is trivial. On the other

hand, by Theorem 9.1, the restriction of |R?h "@)to N 1’5_1 does not contain the trivial
representation. Therefore:

dim Hom,, 6, -1nz6o (RS )1, 7 RS (6)])
< dim Hom s 1 (IR7" (01, IR ©))

< dim Hom -1 (| R}." (9), triv) = 0.
P

Combining Theorems 11.3 and 12.5 proves:

Theorem 12.6 If0 € 2 ™ then the assignment 6 — |R? (0)] is a geometric real-
ization of automorphic induction and the Jacquet—Langlands correspondence.
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