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Abstract
We initiate the study of affine Deligne–Lusztig varieties with arbitrarily deep level
structure for general reductive groups over local fields. We prove that for GLn and
its inner forms, Lusztig’s semi-infinite Deligne–Lusztig construction is isomorphic
to an affine Deligne–Lusztig variety at infinite level. We prove that their homology
groups give geometric realizations of the local Langlands and Jacquet–Langlands
correspondences in the setting that the Weil parameter is induced from a character of
an unramified field extension. In particular, we resolve Lusztig’s 1979 conjecture in
this setting for minimal admissible characters.
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1 Introduction

In their fundamental paper [13], Deligne and Lusztig gave a powerful geometric
approach to the construction of representations of finite reductive groups. To a reduc-
tive group G over a finite field Fq and a maximal Fq -torus T ⊆ G, they attach a
variety given by the set of Borel subgroups of G lying in a fixed relative position
(depending on T ) to their Frobenius translate. This variety has a T -torsor called the
Deligne–Lusztig variety. The Deligne–Lusztig variety has commuting actions of G
and T , and its �-adic étale cohomology realizes a natural correspondence between
characters of T (Fq) and representations of G(Fq).
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Two possible ways of generalizing this construction to reductive groups over local
fields are to consider subsets cut out byDeligne–Lusztig conditions in the semi-infinite
flag manifold (in the sense of Feigin–Frenkel [15]) or in affine flag manifolds of
increasing level. The first approach is driven by an outstanding conjecture of Lusztig
[25] that the semi-infinite Deligne–Lusztig set has an algebro-geometric structure,
one can define its �-adic homology groups, and the resulting representations should
be irreducible supercuspidal. This conjecture was studied in detail in the case of divi-
sion algebras by Boyarchenko and the first named author in [5,10,11], and ultimately
resolved in this setting in [12]. Prior to the present paper, Lusztig’s conjecture was
completely open outside the setting of division algebras.

The second approach is based on Rapoport’s affine Deligne–Lusztig varieties [29],
which are closely related to the reduction of (integral models of) Shimura varieties.
Affine Deligne–Lusztig varieties for arbitrarily deep level structure were introduced
and then studied in detail for GL2 by the second named author in [21–23], where
it was shown that their �-adic cohomology realizes many irreducible supercuspidal
representations for this group.

The goals of the present paper are to show that these constructions

(A) are isomorphic for all inner forms of GLn and their maximal unramified elliptic
torus

(B) realize the local Langlands and Jacquet–Langlands correspondences for super-
cuspidal representations coming from unramified field extensions

The first goal is achieved by computing both sides and defining an explicit isomor-
phismbetweenLusztig’s semi-infinite construction and an inverse limit of coverings of
affine Deligne–Lusztig varieties. In particular, this allows us to use the known scheme
structure of affineDeligne–Lusztig varieties to define a natural scheme structure on the
semi-infinite side, which was previously only known in the case of division algebras.
This resolves the algebro-geometric conjectures of [25] for all inner forms of GLn .

To attain the second goal, we study the cohomology of this infinite-dimensional
variety using a wide range of techniques. To show irreducibility of certain eigenspaces
under the torus action, we generalize a method of Lusztig [26,31] to quotients of para-
horic subgroups which do not come from reductive groups over finite rings. We study
the geometry and its behavior under certain group actions to prove an analogue of
cuspidality for representations of such quotients. To obtain a comparison to the local
Langlands correspondence, we use the Deligne–Lusztig fixed-point formula to deter-
mine the character on the maximal unramified elliptic torus and use characterizations
of automorphic induction due toHenniart [19,20]. In particular, forminimal admissible
characters, we resolve the remaining part of Lusztig’s conjecture (supercuspidality)
for all inner forms of GLn .

We now give amore detailed overview. Let K be a non-archimedean local field with
finite residue field Fq , let K̆ be the completion of the maximal unramified extension of
K and let σ denote the Frobenius automorphism of K̆/K . For any algebro-geometric
object X over K , we write X̆ := X(K̆ ) for the set of its K̆ -points. Let G be a connected
reductive group over K . For simplicity assume that G is split. For b ∈ Ğ, let Jb be the
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1804 C. Chan, A. Ivanov

σ -stabilizer of b

Jb(R) := {g ∈ G(R ⊗K K̆ ) : g−1bσ(g) = b}

for any K -algebra R. Then Jb is an inner form of a Levi subgroup of G, and if b is
basic, Jb is an inner form of G. Let T be a maximal split torus in G. For an element w
in the Weyl group of (G, T ), let

Tw(R) := {t ∈ T (R ⊗K K̆ ) : t−1ẇσ (t) = ẇ}

for any K -algebra R, where ẇ is a lift of w to Ğ.
The semi-infinite Deligne–Lusztig set X DL

ẇ (b) is the set of all Borel subgroups of
Ğ in relative position w to their bσ -translate. It has a cover

Ẋ DL
ẇ (b) := {gŬ ∈ Ğ/Ŭ : g−1bσ(g) ∈ Ŭ ẇŬ } ⊆ Ğ/Ŭ

with a natural action by Jb(K ) × Tw(K ), and this set coincides with Lusztig’s con-
struction [25]. On the other hand, for arbitrarily deep congruence subgroups J ⊆ Ğ,
one can define affine Deligne–Lusztig sets of higher level J ,

X J
x (b) := {g J ∈ Ğ/J : g−1bσ(g) ∈ J x J } ⊆ Ğ/J ,

where x is a J -double coset in Ğ. Under some technical conditions on x , we prove
that these sets can be endowed with a structure of an Fq -scheme (Theorem 4.9). We
remark that when K has mixed characteristic, Ğ/J is a ind-(perfect scheme), so X J

x (b)

will also carry the structure of a perfect scheme.
We now specialize to the following setting. Consider Ğ = GLn(K̆ ) and G = Jb(K )

for some basic b ∈ GLn(K̆ ) so that G is an inner form of GLn(K ). Letw be a Coxeter
element so that T := Tw(K ) ∼= L× for the degree-n unramified extension L of K . Let
GO be amaximal compact subgroup of G and let TO = T ∩GO ∼= O×L .We consider a
particular tower of affine Deligne–Lusztig varieties Ẋm

ẇr
(b) for congruence subgroups

of Ğ indexed by m, where the image of each ẇr in the Weyl group is w. We form the
inverse limit Ẋ∞w (b) = lim←−r>m≥0 Ẋm

ẇr
(b), which carries a natural action of G × T .

Theorem (6.9) There is a (G × T )-equivariant map of sets

Ẋ DL
w (b)

∼−→ Ẋ∞w (b).

In particular, this gives Ẋ DL
w (b) the structure of a scheme over Fq .

We completely determine the higher level affine Deligne–Lusztig varieties Ẋm
ẇr

(b).

They are (OL/pm+1
L )×-torsors over the schemes Xm

ẇr
(b), which are interesting in their

own right. In particular, X0
ẇr

(b) provide examples of explicitly described Iwahori-level
affine Deligne–Lusztig varieties. We prove the following.
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Affine Deligne–Lusztig varieties at infinite level 1805

Theorem (6.17) The scheme Xm
ẇr

(b) is a disjoint union, indexed by G/GO, of
classical Deligne–Lusztig varieties for the reductive quotient of GO×TO times finite-
dimensional affine space.

The disjoint union decomposition is deduced fromViehmann [32].We point out the
similarity between the Iwahori level varieties X0

ẇr
(b) and those considered by Görtz

and He [16, e.g. Proposition 2.2.1], though in our setting, the elements ẇr can have
arbitrarily large length in the extended affine Weyl group.

One of the key insights throughout our paper is the flexibility of working with
different representatives b of a σ -conjugacy class. For example, when G = GLn(K ),
switching between b = 1 and b being a Coxeter element allows us to use techniques
that are otherwise inaccessible.

Having established the isomorphism Ẋ DL
w (b)

∼−→ Ẋ∞w (b), the main objective in
the rest of the paper is to study the virtual G-representation

RG
T (θ) := ∑

i
(−1)i Hi (Ẋ∞w (b), Q�)[θ ]

for smooth characters θ : T → Q
×
� , where [θ ] denotes the subspace where T acts by

θ . We write |RG
T (θ)| to denote the genuine representation when one of ±RG

T (θ) is
genuine.

One could try to calculate RG
T (θ) by calculating the cohomology of the affine

Deligne–Lusztig varieties Ẋm
ẇr

(b). These finite-level varieties have somewhat strange
descriptions (see the equivalence relation ∼̇b,m,r in Sect. 6.2), though it is conceivable
that one could use the results of Part 4 to study the cohomology of these higher-level
affine Deligne–Lusztig varieties.

Instead of passing through affine Deligne–Lusztig varieties, we approximate our
infinite-level object Ẋ DL

w (b) by using an analogue of Deligne–Lusztig varieties for
parahoric subgroups, which are easier to explicitly describe than affine Deligne–
Lusztig varieties. Using the decomposition of Ẋ∞w (b) into G-translates of GO-stable
components (as in Theorem 6.17), the computation of the cohomology of Ẋ∞b (b)

reduces to the computation for one such component, which can in turn be written as
an inverse limit lim←−h

Xh of finite-dimensional varieties Xh , each endowed with an

action of level-h quotients Gh × Th of GO × TO. We write RGh
Th

(θ) for the virtual

Gh-representation corresponding to θ : Th → Q
×
� . We note that X1 is a classical

Deligne–Lusztig variety for the reductive subquotient of TO in the reductive quotient
of GO.

However, the infinite-level object Ẋ∞w (b) has a very natural description, so we pro-
ceed by defining another tower of finite-dimensional objects Xh , which are analogues
of Deligne–Lusztig varieties for parahoric subgroups. Using the Deligne–Lusztig
fixed-point formula, we compute (part of) the character of RGh

Th
(θ) on Th , which when

combined with Henniart’s characterizations [19,20] of automorphic induction yields:

Theorem (11.3) Let θ : T → Q
×
� be a smooth character. If |RG

T (θ)| is irreducible
supercuspidal, then the assignment θ �→ |RG

T (θ)| is a geometric realization of auto-
morphic induction and the Jacquet–Langlands correspondence.
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Proving that |RG
T (θ)| is irreducible supercuspidal involves two main steps: proving

that |RGh
Th

(θ)| is irreducible and proving its induction to G (after extending by the cen-

ter) is irreducible. In [26], Lusztig studies the irreducibility of RGh
Th

(θ) for reductive
groups over finite rings under a regularity assumption on θ . In our setting, this reg-
ularity assumption corresponds to θ being minimal admissible. We extend Lusztig’s
arguments to the non-reductive setting to handle the non-quasi-split inner forms of
GLn(K ) and prove that RGh

Th
(θ) is irreducible under the same regularity assumption

on θ (Theorem 8.1). In this context, we prove a cuspidality result (Theorem 9.1)
for |RGh

Th
(θ)|, which allows us to emulate the arguments from [27, Proposition 6.6]

that inducing classical Deligne–Lusztig representations gives (depth zero) irreducible
supercuspidal representations of p-adic groups. This approach was carried out in the
GL2 case for arbitrary depth in [21, Propositions 4.10, 4.22]. Note that the |RG

T (θ)|
can have arbitrarily large depth, depending on the level of the smooth character θ .

Theorem (12.5) If θ : T → Q
×
� is minimal admissible, then |RG

T (θ)| is irreducible
supercuspidal.

1.1 Outline

This paper is divided into four parts. The first part of the article is devoted to purely geo-
metric properties of the Deligne–Lusztig constructions for arbitrary reductive groups
over local fields. In Sects. 3 and 4, we define and recall the two types of Deligne–
Lusztig constructions. The main result of this part is Theorem 4.9, where we prove
that, under a technical hypothesis, affine Deligne–Lusztig sets of arbitrarily deep level
can be endowed with a scheme structure. After Part 1, we work only in the context of
the inner forms of GLn(K ).

We begin Part 2 with a discussion of the group-theoretic constructions we will use
at length throughout the rest of the paper (Sect. 5). We emphasize the importance of
the seemingly innocuous Sect. 5.2, where we define two representatives b for each
basic σ -conjugacy class of GLn(K̆ ). In Sect. 6, we define the affine Deligne–Lusztig
varieties Ẋm

ẇr
(b), construct an isomorphism between Ẋ∞w (b) and Ẋ DL

w (b) using the

isocrystal (K̆ n, bσ), and explicate the scheme structure of Ẋ∞w (b). In Sect. 7, we
introduce a family of smooth finite-type schemes Xh whose limit is a component of
Ẋ∞w (b) corresponding to GO and study its geometry. This plays the role of a Deligne–
Lusztig variety for subquotients of G (see Proposition 7.12).

In Part 3, we calculate the cohomology RGh
Th

(θ) under a certain regularity assump-
tion on θ . We prove irreducibility (Theorem 8.1) using a generalization of [26,31]
discussed in Sect. 8.4. We prove a result about the restriction of RGh

Th
(θ) to the “deep-

est part” of unipotent subgroups (Theorem 9.1) which can be viewed as an analogue
of cuspidality for Gh-representations. This is a long calculation using fixed-point
formulas.

Finally, in Part 4, we combine the results of the preceding two parts to deduce our
main theorems about RG

T (θ), the homology of the affine Deligne–Lusztig variety at
infinite level Ẋ∞w (b). We review the methods of Henniart [19,20] in Sect. 10, define
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and discuss some first properties of the homology of Ẋ∞w (b) in Sect. 11, and prove
the irreducible supercuspidality of RG

T (θ) for minimal admissible θ in Sect. 12.

2 Notation

Throughout the paper we will use the following notation. Let K be a non-archimedean
local field with residue field Fq of prime characteristic p, and let K̆ denote the com-
pletion of a maximal unramified extension of K . We denote by OK , pK (resp. O, p)
the integers and the maximal ideal of K (resp. of K̆ ). The residue field of K̆ is an
algebraic closure Fq of Fq . We write σ for the Frobenius automorphism of K̆ , which
is the unique K -automorphism of K̆ , lifting the Fq -automorphism x �→ xq of Fq .
Finally, we denote by � a uniformizer of K (and hence of K̆ ) and by ord = ordK̆ the
valuation of K̆ , normalized such that ord(�) = 1.

If K has positive characteristic, we let W denote the ring scheme over Fq where
for any Fq -algebra A, W(A) = A[[π ]]. If K has mixed characteristic, we let W denote
the K -ramified Witt ring scheme over Fq so that W(Fq) = OK and W(Fq) = O. Let
Wh = W/V h

W be the truncated ring scheme,where V : W → W is theVerschiebung
morphism. For any 1 ≤ r ≤ h, we write W

r
h to denote the kernel of the natural

projection Wh → Wr . As the Witt vectors are only well behaved on perfect Fq -
algebras, algebro-geometric considerations when K hasmixed characteristic are taken
up to perfection. We fix the following convention.

Convention If K has mixed characteristic, whenever we speak of a scheme (resp.
ind-scheme) over its residue field Fq , we mean a perfect scheme (resp. ind-(perfect
scheme)), that is a set-valued functor on perfect Fq -algebras, representable by the
perfection of a scheme (resp. ind-scheme).

For results on perfect schemes we refer to [2,34]. Note that passing to perfection
does not affect the �-adic étale cohomology; thus for purposes of this paper, we could
in principle pass to perfection in all cases. However, in the equal characteristic case
working on non-perfect rings does not introduce complications, and we prefer to work
in this slightly greater generality.

Fix a prime � 
= p and an algebraic closure Q� of Q�. The field of coefficients of
all representations is assumed to be Q� and all cohomology groups throughout are
compactly supported �-adic étale cohomology groups.

2.1 List of terminology

Our paper introduces some notions for a general group G (Part 1) and then studies
these notions for G an inner form of GLn (Parts 2 through 4). The investigations for
G an inner form of GLn involve many different methods. For the reader’s reference,
we give a brief summary of the most important notation introduced and used in Parts
2 through 4.
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1808 C. Chan, A. Ivanov

L The degree-n unramified extension of K . Its ring of integersOL has a unique
maximal ideal pL and its residue field is OL/pL ∼= Fqn . For any h ≥ 1, we
write U h

L = 1+ ph
L

[b] Fixed basicσ -conjugacy class ofGLn(K̆ ). Typicallywe take representatives
b of [b] to be either the Coxeter-type or special representative (Sect. 5.2)

κ κGLn ([b]), where κGLn is the Kottwitz map. We assume that 0 ≤ κ ≤ n− 1
and set n′ = gcd(n, κ), n0 = n/n′, k0 = κ/n′

F Twisted Frobenius morphism F : GLn(K̆ ) → GLn(K̆ ) given by F(g) =
bσ(g)b−1

G = Jb(K ) = GLn(K̆ )F ∼= GLn′(Dk0/n0), where Dk0/n0 is the division alge-
bra with Hasse invariant k0/n0

T = L×, an unramified elliptic torus in G
gred

b (x) (n × n)-matrix whose i th column is �−�(i−1)k0/n0�(bσ)i−1(x) with x ∈ V
(Eq. (6.5))

Ẋ DL
ẇ (b) a semi-infinite Deligne–Lusztig variety, with a natural action of G × T

(Sect. 3)
Ẋm

ẇr
(b) an affine Deligne–Lusztig variety with a natural action of G× T (Sect. 6.2)

Ẋ∞w (b) = lim←−r>m
Ẋm

ẇr
(b) = V adm,rat,ẇ0

b
∼= V adm,rat

b = {x ∈ V adm
b : det gb(x) ∈

K×} an affine Deligne–Lusztig variety at the infinite level, with a natural
G ×O×L -action (Corollary 6.18)

Ẋ∞w (b)L0= L adm,rat,ẇ0
0,b

∼= L adm,rat
0,b = {x ∈ L0 : det gred

b (x) ∈ O×K } is the union of
connected components of X∞w (b) associated to the lattice L0 (Definition
6.10)

Gh = Gh(Fq) = (Ğx,0/Ğx,(h−1)+)F where F(g) = bσ(g)b−1 for b the
Coxeter-type or special representative. Gh is a subquotient of G (Sect. 5.3)

Th = Th(Fq) ∼= O×L /U h
L

Xh A quotient of Ẋm
ẇr

(b)L0 for any r > m ≥ 0 (Sect. 7.6). It has a (Gh × Th)-
action and is a finite-ring analogue of aDeligne–Lusztig variety (Proposition
7.12)

RGh
Th

(θ) = ∑i (−1)i H i
c (Xh, Q�)[θ ], where Hi

c (Xh, Q�)[θ ] ⊂ Hi
c (Xh, Q�) is the

subspace where Th acts by θ : Th → Q
×
�

RG
T (θ) =∑i (−1)i Hi (Ẋ∞w (b), Q�)[θ ] =

∑
i (−1)i Hi (Ẋ DL

w (b), Q�)[θ ], where the
homology groups of the scheme Ẋ∞w (b) are defined in Sect. 11 and where

[θ ] denotes the subspace where T acts by θ : T → Q
×
�

X The set of all smooth characters of L× that are in general position; i.e., they
have trivial stabilizer in Gal(L/K ) (Part 4)

X min The set of all characters of L× that are minimal admissible (Sect. 12)

The action of G × T on each of the schemes Ẋm
ẇr

(b), Ẋ∞w (b), Ẋ DL
w (b) is given by

x �→ gxt . These actions descend to an action of Gh × Th on Xh .
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Affine Deligne–Lusztig varieties at infinite level 1809

Part 1. Deligne–Lusztig constructions for p-adic groups

In this part we discuss two analogues of Deligne–Lusztig constructions attached to a
reductive group over K : semi-infiniteDeligne–Lusztig sets and affineDeligne–Lusztig
varieties at higher level. We begin by fixing some notation.

Let G be a connected reductive group over K . Let S be a maximal K̆ -split torus in
G. By [8, 5.1.12] it can be chosen to be defined over K . Let T = ZG(S) andNG(S)

be the centralizer and normalizer of S, respectively. By Steinberg’s theorem, G K̆ is
quasi-split, hence T is a maximal torus. The Weyl group W of S in G is the quotient
W = NG(S)/T of the normalizer of S by its centralizer. By [3, Theorem 21.2], every
connected component of NG(S) meets Ğ, so W = NG(S)(K̆ )/T̆ . In particular, the
action of the absolute Galois group of K on W factors through a Gal(K̆/K )-action.

For a scheme X over K , the loop space L X of X is the functor on Fq -algebras
given by L X(R) = X(W(R)[�−1]). For a scheme X over O, the space of positive
loops L+X of X is the functor on Fq -algebras given by L+X(R) = X(W(R)), and
the functor L+h of truncated positive loops is given by L+h X(R) = X(Wh(R)).

For any algebro-geometric object X over K , we write X̆ for the set of its K̆ -rational
points.

3 Semi-infinite Deligne–Lusztig sets in G/B

Assume that G is quasi-split. Pick a K -rational Borel B ⊆ G containing T and let
U be the unipotent radical of B. We have the following direct analogue of classical
Deligne–Lusztig varieties [13].

Definition 3.1 Let w ∈ W , ẇ ∈ NG(S)(K̆ ) a lift of w, and b ∈ Ğ. The semi-infinite
Deligne–Lusztig sets X DL

w (b), Ẋ DL
w (b) are

X DL
w (b) = {g ∈ Ğ/B̆ : g−1bσ(g) ∈ B̆w B̆},

Ẋ DL
ẇ (b) = {g ∈ Ğ/Ŭ : g−1bσ(g) ∈ Ŭ ẇŬ }.

There is a natural map Ẋ DL
ẇ (b)→ X DL

w (b), gŬ �→ gB̆.

For b ∈ Ğ, we denote by Jb the σ -stabilizer of b, which is the K -group defined by

Jb(R) := {g ∈ G(R ⊗K K̆ ) : g−1bσ(g) = b}

for any K -algebra R (cf. [30, 1.12]). Then Jb is an inner form of the centralizer of
the Newton point b (which is a Levi subgroup of G). In particular, if b is basic, i.e.,
the Newton point of b is central, then Jb is an inner form of G. Let w ∈ W and let
ẇ ∈ NG(S)(K̆ ) be a lift. We denote by Tw the σ -stabilizer of ẇ in T , which is the
K -group defined by

Tw(R) := {t ∈ T (R ⊗K K̆ ) : t−1ẇσ (t) = ẇ}.
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1810 C. Chan, A. Ivanov

for any K -algebra R. As T is commutative, this only depends on w, not on ẇ.

Lemma 3.2 Let b ∈ Ğ and let w ∈ W with lift ẇ ∈ NG(S)(K̆ ).

(i) Let g ∈ Ğ. The map x B̆ �→ gx B̆ defines a bijection X DL
w (b)

∼→
X DL

w (g−1bσ(g)).

(ii) Let g ∈ Ğ and t ∈ T̆ . The map xŬ �→ gxtŬ defines a bijection Ẋ DL
ẇ (b)

∼→
Ẋ DL

t−1ẇσ (t)
(g−1bσ(g)).

(iii) There are actions of Jb(K ) on X DL
w (b) given by (g, x B̆) �→ gx B̆ and of Jb(K )×

Tw(K ) on Ẋ DL
ẇ (b) given by (g, t, xŬ ) �→ gxtŬ . They are compatible with

Ẋ DL
ẇ (b)→ X DL

w (b), and if this map is surjective, then Ẋ DL
ẇ (b) is a right Tw(K )-

torsor over X DL
w (b).

Proof (i) and (ii) follow from the definitions by immediate computations. (iii) follows
from (i) and (ii). ��

Remark 3.3 (i) Whereas the classical Deligne–Lusztig varieties are always non-
empty, X DL

w (b) is non-empty if and only if the σ -conjugacy class [b] of b in
G(K̆ ) intersects the double coset B̆w B̆. For example, if G = GLn (n ≥ 2) and b
is superbasic, then X DL

1 (b) = ∅, as was observed by E. Viehmann.
(ii) L. Fargues pointed out the following way to endow the semi-infinite Deligne–

Lusztig set X DL
w (1) (and Ẋ DL

ẇ (b) if Tw is elliptic) with a scheme structure: assume
that G (and B) come from a reductive group over OK (again denoted G), such
that G/B is a projective OK -scheme. Then

(G/B)(K̆ ) = (G/B)(O) = lim←−
r

(G/B)(O/pr ).

Now (G/B)(O/pr ) = L+r (G/B)(Fq) is a finite dimensional Fq -scheme via L+r .
For a given elementw in the finiteWeyl group, the correspondingDeligne–Lusztig
condition is given by a finite set of open and closed conditions in G/B which
involve σ . The closed conditions cut a closed, hence projective, subscheme of
G/B, and replacing G/B by this closed subscheme Z , we may assume that there
are only open conditions. These define an open subscheme Yr in each L+r Z . Set
X DL

w (1)r := pr−1r (Yr ), where prr : L+Z → L+r Z is the projection. This gives
X DL

w (1)r the structure of anopen subschemeof L+Z and Xw(1) =⋃∞r=1 X DL
w (1)r

is now an (ascending) union of open subschemes of L+Z . Note that since the
transition morphisms are not closed immersions, this union does not define an
ind-scheme. Now if w is such that Tw is elliptic, then Tw(K ) is compact modulo
Z(K ), where Z is the center of G, and Ẋ DL

w (1)—being a Tw(K )-torsor over
X DL

w (1)—is a scheme.
However, this scheme structure appears to be the “correct” one only on the sub-
scheme X DL

w (1)1, as the action of G(K ) = J1(K ) on X DL
w (1) cannot in general

be an action by algebraic morphisms (whereas the action of G(OK ) on X DL
w (1)1

is). This will become clear from the SL2-example discussed in Sect. 6.5 below. ♦
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Affine Deligne–Lusztig varieties at infinite level 1811

Finally we investigate the relation of Ẋ DL
ẇ (b) with Lusztig’s constructions from

[25,26]. In fact, consider the map F : Ğ → Ğ, g �→ bσ(g)b−1. Assuming that (w, b)

satisfies w B̆ = bσ(B̆), so that w B̆b−1 = F(B̆),

X DL
w (b) = {gB̆ ∈ Ğ/B̆ : g−1bσ(g) ∈ B̆w B̆}

= {gB̆ ∈ Ğ/B̆ : g−1F(g) ∈ B̆ F(B̆)}
= {g ∈ Ğ : g−1F(g) ∈ F(B̆)}/(B̆ ∩ F(B̆))

Similarly, assuming that (ẇ, b) satisfies ẇŬ = bσ(Ŭ ), so that ẇŬb−1 = F(Ŭ ),

Ẋ DL
ẇ (b) = {g ∈ Ğ : g−1F(g) ∈ F(Ŭ )}/(Ŭ ∩ F(Ŭ )).

This is precisely the definition of the semi-infinite Deligne–Lusztig set in [25]. It
was studied by Boyarchenko [5] and the first named author [10–12] in the case when
G = GLn and b superbasic, i.e., Jb(K ) are the units of a division algebra over K ,
where it admits an ad hoc scheme structure.

In the setting of Part 2 of this paper (see Theorem 6.5), it will turn out that
X DL

w (b) = {g ∈ Ğ : g−1F(g) ∈ F(Ŭ )}/(T̆ F (Ŭ ∩ F(Ŭ ))) = Ẋ DL
ẇ (b)/T̆ F . This

is quite nontrivial. In the finite field setting [13, Definition 1.17(i)], this is true because
the Lang map g �→ g−1F(g) is surjective. In the setting of p-adic groups (even in
our GLn setting), the Lang map is no longer surjective. However, a corollary of The-
orem 6.5 is that for any x ∈ X DL

w (b), there exists a representative g ∈ Ğ such that
g−1F(g) = tu ∈ F(B̆) with t in the image of the Lang map on T̆ .

4 Affine Deligne–Lusztig varieties and covers

Let the notation be as in the beginning of part 1. In this section we recall from [21]
the definition of affine Deligne–Lusztig varieties of higher level, and prove that they
are locally closed in the affine Grassmannian (Theorem 4.9 and Corollary 4.10).

4.1 Affine Grassmannian

We will use representability results on affine Grassmannians attached to G, which
were proven by Pappas–Rapoport [28] in the equal characteristic case, and by Zhu
[34] and Bhatt–Scholze [2] in the mixed characteristic case. Let G be a smooth affine
OK -scheme with generic fiber G and with connected special fiber. The functor L+G
is represented by an (infinite-dimensional) affine group scheme over Fq . The functor
LG is represented by a strict ind-scheme of ind-finite type; that is, LG can be written
as a direct limit of schemes of finite type, with transition morphisms being closed
immersions.
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1812 C. Chan, A. Ivanov

The affine Grassmannian associated with G is the fpqc-sheaf LG/L+G, which is
the sheafification for the fpqc-topology of the functor on Fq -algebras given by

R �→ LG(R)/L+G(R).

It possesses the following representability properties.

Theorem 4.1 (cf. [28, Theorem 1.4], [34, Theorem 1.4] and [2, Corollary 9.6]) The
fpqc-sheaf LG/L+G on Fq-algebras is represented by a strict ind-scheme. The quo-
tient morphism LG → LG/L+G has sections locally for the étale topology (i.e.,
Spec(R) ×LG/L+G LG ∼= Spec(R) ×Spec(Fq ) L+G for each point of LG/L+G with
values in a strictly henselian ring R).

Moreover, if G is parahoric, then LG/L+G is ind-proper, but we will not use
this in the following. In general, the affine Grassmannian is not reduced. We have
LG/L+G(Fq) = Ğ/G(O).

4.2 Level subgroups

Let � = �(G K̆ , S) denote the set of roots of S in G K̆ and let Uα denote the root
subgroup for α ∈ �. Put U0 := T .

Let x be a point in the apartment of S inside the Bruhat–Tits building of the adjoint
group of G over K̆ . Attached to it, there is a valuation of the root datum of G in
the sense of Bruhat–Tits [8]. In particular, for each α ∈ �, it induces a descending
filtration Ŭα,r on Ŭα with r ∈ R̃, where R̃ :=R ∪ {r+: r ∈ R} ∪ {∞} is the ordered
monoid as in [8, 6.4.1]. Further, a choice of an admissible schematic filtration on tori
(in the sense of [33, §4]) also defines a descending filtration Ŭ0,r := Ŭ0,r on Ŭ0.
(If G is either simply connected or adjoint, or split over a tamely ramified extension,
this filtration coincides with the Moy–Prasad filtration, and hence is independent on
the choice.) For any concave function f : � ∪ {0} → R̃≥0 � {∞}, let Ğ f denote the
subgroup of Ğ (depending on x) generated by Uα, f (α) (α ∈ �∪{0}). In [33, Theorem
8.3] it is shown that there exists a smooth affine group scheme G f overO with generic
fiber G, satisfying G f (O) = Ğ f . Moreover, assume that x is stable under the action
of σ on the adjoint building. Then G f descends to a smooth affine group scheme over
OK , again denoted G f [33, §9.1].

Proposition 4.2 Let f , g : � ∪ {0} → R̃≥0 � {∞} be two concave functions with
g ≥ f .

(i) L+Gg is a closed subgroup scheme of L+G f .

Assume that Gg is normal in G f , and that L+Gg is pro-unipotent.

(ii) The fpqc quotient sheaf L+G f /L+Gg is representable by a smooth affine Fq-
group scheme. The morphism L+G f → L+G f /L+Gg splits Zariski-locally on
the target.

(iii) The fpqc sheaf morphism LG/L+Gg → LG/L+G f is represented in the
category of ind-schemes. It is thus an L+G f /L+Gg-torsor in the category of
ind-schemes. It admits sections locally for the étale topology on LG/L+G f .
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Affine Deligne–Lusztig varieties at infinite level 1813

Proof When Gg,G f are parahoric models of G, part (i) is shown in [28, Proposition
8.7(a)]. In the general case, (i) follows by the same argument. To see (ii), first observe
that L+Gg ↪→ L+G f is a monomorphism of sheaves (although Gg → G f is not
an immersion if f 
= g), as Gg is obtained from G f by a series of dilatations (see

[4, §3]) of closed subschemes in the special fiber. Put G(0)
f = G f and for h ≥ 1,

let G(h)
f be the dilatation of G(h−1)

f along the unit section of the special fiber. Then

L+G(h)
f = ker(L+G f → L+h G f ) (cf. [34, p. 414]). We can find an h ≥ 1, such

that the natural morphism G(h)
f → G f factors through Gg → G f . This gives closed

immersions L+G(h)
f ↪→ L+Gg ↪→ L+G f . Applying the natural morphism of functors

L+ → L+h to the arrow Gg → G f , and using that L+ → L+h is surjective when
evaluated at a flatOK -scheme, we thus obtain the following commutative diagram of
fpqc-sheaves on Fq -algebras, with exact rows and columns:

L+G(h)
f

0 L+Gg L+G f L+G f /L+Gg 0

L+h Gg L+h G f L+h G f /im(α) 0α

Now a diagram chase shows that the right vertical map is a monomorphism. Hence
it is an isomorphism. We have presented L+G f /L+Gg as a quotient of two finite
dimensional smooth affine group schemes. The last claim of (ii) follows as in the
proof of [28, Proposition 8.7(b)].

Finally,weprove (iii). It is clear that themorphismof fpqc sheaves p : LG/L+Gg →
LG/L+G f is an L+G f /L+Gg-torsor. A (sheaf-)torsor under an affine group scheme
is always relatively representable, so we deduce from (ii) that for any scheme T and
any morphism t : T → LG/L+G f , the pullback pt : T ×LG/L+G f LG/L+Gg → T
is a morphism of schemes. This implies that LG/L+Gg → LG/L+G f is a morphism
of ind-schemes. The last claim follows from Theorem 4.1. ��

4.3 Affine Deligne–Lusztig varieties of higher level

Until the end of Sect. 4, we fix a σ -stable x as above, and a σ -stable Iwahori sub-
group I ⊆ Ğ, whose corresponding alcove in the building contains x. There is a
function f I : � ∪ {0} → R̃≥0 � {∞} satisfying Ğx, f I = I , and we have the corre-
sponding integral model I := Gx, f I . The extended affine Weyl group of S in G is
W̃ = NG(S)(F̆)/NG(S)(F̆) ∩ I .

In [29] Rapoport introduced an affine Deligne–Lusztig variety attached to elements
w ∈ W̃ and b ∈ Ğ,

Xw(b) = {gI ∈ Ğ/I : g−1bσ(g) ∈ Iw I } ⊆ Ğ/I = (LG/L+I)(Fq).
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It is a locally closed subset of LG/L+I, hence it inherits the reduced induced
sub-ind-scheme structure (see also Theorem 4.9 below). It is even a scheme locally
of finite type over Fq . Covers of Xw(b) were introduced by the second named author
in [21]. We recall the definition (cf. [22, Sections 2.1–2.2] for a discussion in a more
general setup).

Definition 4.3 Let b ∈ Ğ. Let f : � ∪ {0} → R̃≥0 � {∞} be a concave function
such that Ğ f is σ -stable. Let x ∈ Ğ f \Ğ/Ğ f be a double coset. Then we define the
corresponding affine Deligne–Lusztig set of level f ,

X f
x (b) := {gĞ f ∈ Ğ/Ğ f : g−1bσ(g) ∈ Ğ f xĞ f } ⊆ Ğ/Ğ f = (LG/L+G f )(Fq).

If J = Ğ f satisfies the assumptions in the definition, we sometimes also write

X J
x (b) for X f

x (b). We will prove that X f
x (b) is in certain cases a locally closed subset

of LG/L+G f (Theorem 4.9). There is a natural Jb(K )-action by left multiplication on

X f
x (b) for all f and all x . If f ′ ≥ f and x ′ ∈ Ğ f ′ \Ğ/Ğ f ′ lies over x ∈ Ğ f \Ğ/Ğ f ,

then the natural projection Ğ/Ğ f ′ � Ğ/Ğ f restricts to a map X f ′
x ′ (b) → X f

x (b).
Concerning the right action, we have the following lemma.

Lemma 4.4 Let J ′ = Ğ f ′ and J = Ğ f be two subgroups as in Definition 4.3, such
that J ′ is a normal subgroup of J . Let x ′ ∈ J ′\Ğ/J ′ lie over x ∈ J\Ğ/J and let
b ∈ Ğ.

(i) Any i ∈ J defines an X J
x (b)-isomorphism X J ′

x ′ (b) → X J ′
i−1x ′σ(i)

(b) given by

g J ′ �→ gi J ′.
(ii) If X J ′

x ′ (b)→ X J
x (b) is surjective, then X J ′

x ′ (b) is set-theoretically a (J/J ′)x ′ -torsor
over X J

x (b), where

(J/J ′)x ′ := {i ∈ J : i−1x ′σ(i) = x ′}/J ′.

Proof Since J ′ is normal in J , we see that i J ′x ′ J ′σ(i)−1 = J ′i x ′σ(i)−1 J ′. This
implies (i). For (ii) we need to show that (J/J ′)x ′ acts faithfully and transitively
on the fibers of ϕ : X J ′

x ′ (b) → X J
x (b). By definition, ϕ−1(g J ) = {gh J ′ : h ∈

J and (gh)−1bσ(gh) ∈ J ′x ′ J ′}. The claim follows from normality of J ′ in J and
the definition of (J/J ′)x ′ . ��

4.4 Scheme structure

We need some notation. Write �̂ :=� ∪ {0}. Let �aff denote the set of affine roots of
S in G and let �̂aff be the disjoint union of �aff with the set of all pairs (0, r) with
r ∈ R̃<∞, for which the filtration step Ŭ0,r/Ŭ0,r+ is non-trivial. There is a natural
projection p : �̂aff � �̂, mapping an affine root to its vector part and (0, r) to 0. We
extend the action of W̃ on �,�aff to an action on �̂, �̂aff by letting it act trivially on
0 and all (0, r).

By [33], for any α ∈ �̂ and r ∈ R̃≥0 � {∞}, there is an O-scheme Uα,r satisfying
Uα,r (O) = Ŭα,r whose generic fibre is U

α,K̆ . If f : �̂ → R̃≥0 � {∞} is concave, the
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Affine Deligne–Lusztig varieties at infinite level 1815

schematic closure ofUα in G f is Uα, f (α). If r < s in R̃<∞, there is a unique morphism
of group schemes Uα,s → Uα,r which induces the natural inclusion Ŭα,s ↪→ Ŭα,r on
O-points. Let L [r ,s)Uα be the fpqc quotient sheaf

L [r ,s)Uα = L+Uα,r/L+Uα,s .

It is represented by a finite-dimensional group scheme over Fq .

Lemma 4.5 Let f : �̂ → R̃≥0 � {∞} be a concave function such that Ğ f ⊆ I is a
normal subgroup. Then there is an isomorphism of Fq-schemes

∏

α∈�̂

L [ f I (α), f (α))Uα → L+I/L+G f ,

which on geometric points is given by (aα)α∈�̂ →
∏

α ãα , where ãα is any lift of aα

to Ŭα, f I (α) and the product can be taken in any order.

Proof The conclusion of [8, 6.4.48] also holds for the Iwahori subgroup, i.e., for the
function f I (this follows from the Iwahori decomposition). Thus there is a bijection

∏

α∈�̂

L+Uα, f I (α)(Fq)→ I , (aα)α∈�∪{0} →∏α aα,

given by multiplication in any order, and a similar statement for I , f I replaced by
Ğ f , f . The statement of the lemma on geometric points follows from these bijections
by normality of Ğ f in I . Now, themap (aα)α∈�̂ →

∏
α ãα in the lemma is an algebraic

morphism between smooth varieties that is bijective on geometric points and hence
an isomorphism. ��

Let x ∈ W̃ . We give an explicit parametrization of the set of double cosets
Ğ f \I x I/Ğ f in certain cases. For simplicity, we abuse the notation in the follow-
ing few lemmas and write x again for any lift of x to Ğ. We say also that (α, m) ∈ �̂aff
occurs in a subgroup J of Ğ, if Ŭα,m is contained in J . Then (α, m) occurs in Ğ f if
and only if m ≥ f (α). Let �̂aff(J ) ⊆ �̂aff denote the set of all pairs (α, m) occurring
in J . If J ′ ⊆ J is a normal subgroup, let �̂aff(J/J ′) := �̂aff(J ) � �̂aff(J ′).

Let f : �̂ → R̃≥0 � {∞} be a concave function such that Ğ f ⊆ I is a normal
subgroup. For x ∈ W̃ , we can divide the set of all affine roots �aff(I/Ğ f ) into three
disjoint parts Ax , Bx , Cx :

Ax = {(α, m) ∈ �̂aff(I/Ğ f ) : x .(α, m) /∈ �̂aff(I )}
Bx = {(α, m) ∈ �̂aff(I/Ğ f ) : x .(α, m) ∈ �̂aff(I/Ğ f )}
Cx = {(α, m) ∈ �̂aff(I/Ğ f ) : x .(α, m) ∈ �̂aff(Ğ f )} (4.1)

Lemma 4.6 Let f : �̂ → R̃≥0 � {∞} be a concave, such that Ğ f ⊆ I is a normal
subgroup. Let x ∈ W̃ . Assume that p(Ax ), p(Bx ) and p(Cx ) are mutually disjoint,
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and that the same is true for p(Ax−1), p(Bx−1), p(Cx−1). Then there is a well-defined
bijective map

∏

α∈p(Ax−1 )

L [ f I (α), f (α))Uα(Fq)

×
∏

α∈p(Bx )

L [ f I (α), f (α))Uα(Fq)

×
∏

α∈p(Ax )

L [ f I (α), f (α))Uα(Fq)→ Ğ f \I x I/Ğ f

given by ((aα)α∈p(Ax−1 ), (bα)α∈p(Bx ), (aα)α∈p(Ax )) �→∏α∈p(Ax−1 ) ãα·x ·∏α∈p(Bx ) b̃α·
∏

α∈p(Ax ) ãα , where ãα is any lift of aα to an element of Ŭα, f I (α), and similarly for

b̃α, bα . This endows the set Ğ f \I x I/Ğ f with the structure of a reduced Fq-scheme
of finite type.

Proof That the claimed map is well-defined follows from Lemma 4.5. We have an
obvious surjective map I/Ğ f × I/Ğ f → Ğ f \I x I/Ğ f , given by (i Ğ f , j Ğ f ) �→
Ğ f i x j Ğ f . By Lemma 4.5, we may write any element of the left I/Ğ f as product
ax−1bx−1cx−1 , where ax−1 =

∏
α∈p(Ax−1 ) aα , etc. Thus any element of Ğ f \I x I/Ğ f

may be written in the form

Ğ f ãx−1 b̃x−1 c̃x−1 · x · j Ğ f , (4.2)

for some j ∈ I , where ˜(·) denotes an arbitrary lift of an element to the root subgroup.
Bringing b̃x−1 c̃x−1 to the right side of x changes it to x−1b̃x−1 c̃x−1x , which is a product
of elements of certain filtration steps of root subgroups, all of which lie in I by
definition of Bx−1 , Cx−1 . Thuswemay eliminate b̃x−1 c̃x−1 from (4.2). Now, by Lemma
4.5, we may write any element of the right I/Ğ f as the product cx bx ax , with cx =∏

α∈p(Cx ) cα , etc. That is, any element of Ğ f \I x I/Ğ f may be written as

Ğ f ãx−1 · x · c̃x b̃x ãx Ğ f , (4.3)

for some lifts c̃x , b̃x , ãx of cx , bx , ax . Bringing c̃x to the left side of x in (4.3), makes it
to x−1c̃x x , which is a product of elements of certain filtration steps of root subgroups,
all of which lie in Ğ f by definition of Cx . By normality of Ğ f , we may eliminate c̃x

from the (4.3). It finally follows that we may write any element of Ğ f \I x I/Ğ f as a
product

Ğ f ãx−1 · x · b̃x ãx Ğ f , (4.4)

with ãx−1 , b̃x , ãx as above. This shows the surjectivity of the map in the lemma. It
remains to show injectivity.
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Suppose there are tuples (ax−1 , bx , ax ) and (a′
x−1 , b′x , a′x ) giving the same double

coset, i.e., ãx−1xb̃x ãx = i ã′
x−1xb̃′x ã′x j for some i, j ∈ Ğ f . This equation is equivalent

to

x−1(ã′x−1)
−1i ãx−1x = b̃′x ã′x j ã−1x b̃−1x .

Here, the right hand side lies in I , hence it follows that (ã′
x−1)

−1i ãx−1 ∈ I ∩x I x−1.
We now apply Lemma 4.5: any element of I/Ğ f can be written uniquely as a product
sx−1rx−1 with sx−1 =

∏
α∈p(Ax−1 ) sα and rx−1 =

∏
α∈p(Bx−1∪Cx−1 ) rα with sα, rα ∈

L [ f I (α), f (α))Uα(Fq). By definition, the affine roots in Ax−1 are precisely those affine
roots in �̂aff(I/Ğ f ) which do not occur in I ∩ x I x−1. Hence we see that the image
of the composed map I ∩ x I x−1 ↪→ I � I/Ğ f is equal to the set of all elements of
I/Ğ f with sx−1 = 1 in the above decomposition. Now we have inside I/Ğ f (so in
particular, the element i ∈ Ğ f can be ignored)

ax−1 = ax−1 · 1 = a′x−1 · (a′x−1)−1iax−1 ,

which gives two decompositions of the element ax−1 ∈ I/Ğ f . By uniqueness of such
a decomposition, we must have a′

x−1 = ax−1 . Now analogous computations (first done
for a′x , ax and then for b′x , bx ) show that we also must have a′x = ax and b′x = bx .
This finishes the proof of injectivity. ��

The Schubert cell attached to x ∈ W̃ is the reduced subscheme of LG/L+I
whose underlying set of Fq -points is I x I/I ⊆ Ğ/I . We denote it by C(x). As
Fq -schemes C(x) ∼= A

�(x), where �(x) is the length of the element x in W̃ . We
now consider the reduced subscheme of LG/L+G f , whose underlying set of Fq -
points is I x I/Ğ f ⊆ Ğ/Ğ f and we denote it by C f (x). The étale L+I/L+G f -torsor
LG/L+G f → LG/L+I pulls back to the étale L+I/L+G f -torsor C f (x)→ C(x).

Lemma 4.7 Let f : �̂ → R̃≥0 � {∞} be a concave function such that Ğ f ⊆ I is a
normal subgroup. Let x ∈ W̃ . The étale L+I/L+G f -torsor C f (x)→ C(x) is trivial.
If p−1(p(Ax−1))∩ �̂aff(I/Ğ f ) = Ax−1 , then there is an isomorphism of Fq-schemes

∏

α∈p(Ax−1 )

L [ f I (α), f (α))Uα × L+I/L+G f → C f (x)

given by ((aα)α∈p(Ax−1 ), i) �→ ∏α∈p(Ax−1 ) ãα · x · i Ğ f , where ãα ∈ Ŭα, f I (α) is any
lift of aα .

Proof The group L+I/L+G f has a composition series with all subquotients either
Ga or Gm . The cohomology of both vanishes on an affine space. This proves that
C f (x)→ C(x) is a trivial torsor. The explicit isomorphism is proven in the same way
as in Lemma 4.6. ��
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Lemma 4.8 Under the assumptions of Lemma 4.6, the projection p : C f (x) �
Ğ f \I x I/Ğ f is a geometric quotient in the sense of Mumford for the left multipli-
cation action of L+G f on C f (x). Here Ğ f \I x I/Ğ f is endowed with the structure of
an Fq -scheme using the parametrization from Lemma 4.6.

Proof First note that from the assumptions ofLemma4.6 it follows that p−1(p(Ax−1))∩
�̂aff(I/Ğ f ) = Ax−1 (as Ax−1 ∪̇Bx−1 ∪̇Cx−1 = �̂aff(I/Ğ f )), so we may use Lemma
4.7. The action of L+G f on C f (x) factors through a finite-dimensional quotient (any
subgroup J ⊆ Ğ f ∩ xĞ f x−1 which is normal in Ğ f acts trivially on C f (x)). Now,
since p is a surjective orbit map, Ğ f \I x I/Ğ f is normal and the irreducible compo-
nents of Cx ( f ) are open. Thus by [3, Proposition 6.6], it remains to show that p is a
separable morphism of varieties. But this is true since, in terms of the parameteriza-
tions given in Lemmas 4.6 and 4.7, it is given by (ax−1 , i = cx bx ax ) �→ (ax−1 , bx , ax ).

��
Theorem 4.9 Assume G is split. Let f : �̂→ R̃≥0 � {∞} be a concave function such
that Ğ f ⊆ I is a normal subgroup. Let ẋ be an Ğ f -double coset in Ğ with image x
in W̃ . Assume that p(Ax ), p(Bx ) and p(Cx ) are mutually disjoint, and that the same
is true for p(Ax−1), p(Bx−1), p(Cx−1), where A, B, C are as in (4.1). For b ∈ Ğ

arbitrary, X f
ẋ (b) is locally closed in Ğ/Ğ f .

Proof By Lemma 4.8, the theorem is now a special case of [22, Proposition 2.4]. We
recall the proof. It is well known that the Iwahori-level sets X I

x (b) = Xx (b) are locally
closed in LG/L+I. Let X̃ be the pullback of X I

x (b) along LG/L+G f → LG/L+I.
As Xw(b) are schemes locally of finite type overFq , the same is true for X̃ . ByTheorem
4.1, the map β : LG → LG/L+G f admits sections étale locally. Let U → X̃ be étale
such that there is a section s : U → β−1(U ) of β. Consider the composition

ψ : U → β−1(U )×U → LG/L+G f ,

where the first map is g �→ (s(g−1), bσ(g)) and the second map is the restriction of
the left multiplication action of LG on LG/L+G f . AsU lies over X̃ , this composition
factors through C f (x) → LG/L+G f . Denote the resulting morphism by ψ0 : U →
C f (x). Let p : C f (x) → Ğ f \I x I/Ğ f denote the geometric quotient from Lemma
4.8. The composition p ◦ψ0 is independent of the choice of the section s. It sends an
Fq -point gĞ f to the double coset Ğ f g−1bσ(g)Ğ f . Thus étale locally, X f

ẋ (b) is just
the preimage of the point ẋ under p ◦ ψ0. The theorem now follows by using étale
descent for closed subschemes. ��
Corollary 4.10 Under the assumptions as in Theorem 4.9, X f

ẋ (b) endowed with the
induced reduced sub-ind-scheme structure is a scheme locally of finite type over Fq .

Proof X I
w(b) is a scheme locally of finite type over Fq . Since p : LG/L+G f →

LG/L+I is a morphism of ind-schemes which is a torsor under the finite-
dimensional affine group scheme L+I/L+G f (by Proposition 4.2), it follows that
X̃ := p−1(X I

w(b)) is also a scheme locally of finite type over Fq . Now the proof of

Theorem 4.9 shows that X f
x (b) has the same property. ��
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Part 2. Geometry of Deligne–Lusztig varieties for inner forms of GLn

From now and until the end of the paper, we fix an integer n ≥ 1 and study in detail the
constructions in Part 1 for GLn(K ) and its inner forms. Inner forms of GLn over K can
be naturally parametrized by 1

n Z/Z. Fix an integer 0 ≤ κ < n, put n′ = gcd(κ, n),

and let n0, k0 be the non-negative integers such that

n = n′n0, κ = n′k0.

The group of K -points of the inner form corresponding to κ/n is isomorphic
to G := GLn′(Dk0/n0), where Dk0/n0 denotes the central division algebra over K
with invariant k0/n0. Let ODk0/n0

denote the ring of integers of Dk0/n0 and set
GO := GLn′(ODk0/n0

). Note that GO is a maximal compact subgroup of G.
We let L denote the unramified extension of K of degree n, and write OL for its

integers, pL for the maximal ideal in OL . For h ≥ 1, we write U h
L = 1 + ph

L for the
h-units of L .

Up to conjugacy there is only one maximal unramified elliptic torus T ⊆ G. We
have T ∼= L×. Moreover, we say a smooth character θ : L× → Q� has level h ≥ 0, if
θ is trivial on U h+1

L and non-trivial on U h
L .

We let V be an n-dimensional vector space over K̆ with a fixed K -rational structure
VK . Fix a basis {e1, . . . , en} of VK . This gives an identification of GL(VK ) with GLn

over K . Set L0 to be the O-lattice generated by {e1, . . . , en}.

5 Inner forms of GLn

5.1 Presentation as�-stabilizers of basic elements

For b ∈ GLn(K̆ ), recall from Sect. 3 the σ -stabilizer Jb of b. Then Jb is an inner
form of the centralizer of the Newton point b (which is a Levi subgroup of GLn). In
particular, if b is basic, i.e. the Newton point of b is central, then Jb is an inner form
of GLn , and every inner form of GLn arises in this way. If

κ = κGLn (b) := ord ◦ det(b),

then Jb is the inner form corresponding to κ/n moduloZ. Note that κGLn is theKottwitz
map

κGLn : B(GLn(K̆ )) := {σ -conj classes in GLn(K̆ )} → Z

and induces a bijection between the set of basic σ -conjugacy classes and Z. Consider

F : GLn(K̆ )→ GLn(K̆ ), g �→ bσ(g)b−1.

This is a twisted Frobenius on GLn(K̆ ) and Jb is the K -group corresponding to
this Frobenius on GLn(K̆ ). In particular, if b is in the basic σ -conjugacy class with
κGLn (b) = κ , then
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G = GLn′(Dk0/n0)
∼= GLn(K̆ )F = Jb(K ).

5.2 Two different choices for b

We will need to choose representatives b of the basic σ -conjugacy class [b] with
κGLn (b) = κ . Depending on the context, we will work with either a Coxeter-type
representative or a special representative.

5.2.1 Coxeter-type representatives

Set

b0 :=
(

0 1
1n−1 0

)

, and tκ,n :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

diag(1, . . . , 1
︸ ︷︷ ︸

n−κ

,�, . . . ,�
︸ ︷︷ ︸

κ

) if (κ, n) = 1,

diag(tk0,n0 , . . . , tk0,n0︸ ︷︷ ︸
n′

) otherwise.

Fix an integer eκ,n such that (eκ,n, n) = 1 and eκ,n ≡ k0 mod n0. (It is clear that eκ,n

exists.) If κ divides n, (i.e. k0 = 1), always take eκ,n = 1.

Definition 5.1 The Coxeter-type representative attached to κ is b
eκ,n
0 · tκ,n .

The main advantage of this choice is that the maximal torus of GLn(K̆ ) consisting
of diagonal matrices gives an unramified elliptic torus of Jb (as the image of b in the
Weyl group of the diagonal torus is a cycle of length n). Thus when we use the explicit
presentation G = Jb(K ) for the Coxeter-type b, then our unramified elliptic torus
T ⊆ G is the diagonal torus.

5.2.2 Special representatives

Definition 5.2 The special representative attached to κ is the block-diagonal matrix

of size n × n with (n0 × n0)-blocks of the form

(
0 �

1n0−1 0

)k0
.

Note that the special representative and the Coxeter-type representative agree if
(κ, n) = 1 (see the proof of Lemma 5.6), though in general they may differ (for
example, when κ = 0, the special representative is the identity and the Coxeter repre-
sentative is b0).

Remark 5.3 If b is the special representative, bσ acts on the standard basis {ei }ni=1 of
V in the same way as in [32, Section 4.1] the operator F considered there acts on
the basis {e j,i,l} j,i,l . To be more precise, in our situation, there is only one j (that is
j = 1) as the isocrystal (V , bσ) is isoclinic. Then our basis element ei for 1 ≤ i ≤ n
corresponds to Viehmann’s basis element e1,i ′+1,l , where i = i ′n0+ l for 0 ≤ i ′ < n′,
0 ≤ l < n0. ♦
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Remark 5.4 If (κ, n) = 1, the special representative b is a length-0 element of the
extended affine Weyl group of GLn and therefore is a standard representative in the
sense of [17, Section 7.2]. In general, b is block-diagonal with blocks consisting of
the standard representative of size n0 × n0 and determinant k0. ♦

5.2.3 Properties of the representatives

Lemma 5.5 Let T̆diag denote the maximal torus of GLn(K̆ ) given by the subgroup
of diagonal matrices. Then the Coxeter-type and special representatives lie in the
normalizer NGLn(K̆ )

(T̆diag). Moreover, both representatives are basic elements whose
Newton polygon has slope κ/n.

Proof The first statement is clear. For b ∈ NGLn(K̆ )
(T̆diag), the Newton point can be

computed as 1
a vba , where a ∈ Z>0 is appropriate such that ba ∈ T̆diag. Thus the second

statement follows from an easy calculation (for the Coxeter type, it uses the condition
on eκ,n). ��

Let b, b′ ∈ GLn(K̆ ).We say b, b′ are integrally σ -conjugate if there is g ∈ GLn(O)

such that g−1bσ(g) = b′.

Lemma 5.6 The Coxeter-type and special representatives attached to κ/n are inte-
grally σ -conjugate.

Proof Ifκ is coprime ton, thennecessarily eκ,n = κ .Wehaveb−10 diag(1, . . . , 1,�)b0
= diag(1, . . . , 1,�, 1) and it follows that (b0 · t1,n)κ = bκ

0 · tκ,n , so the special repre-
sentative and the Coxeter representative agree. Now assume that (κ, n) = n′ > 1.
For convenience of notation, let b denote the Coxeter-type representative and let
b′ denote the special representative. Recall that b = b

eκ,n
0 · tκ,n =

( 0 1
1n−1 0
)eκ,n ·

diag(tk0,n0 , . . . , tk0,n0) and that b′ is the block-diagonal matrix with
(

0 �
1n0−1 0

)k0
in

each block. We would like to produce a g ∈ GLn(O) such that bσ(g) = gb′. Write

g =
(

g1
∣
∣ g2
∣
∣ · · · ∣∣ gn

)
,where gi =

⎛

⎝

gi,1
gi,2

...
gi,n

⎞

⎠ .

Then the first n0 columns of the equation bσ(g) = gb′ is the equality of n × n0
matrices

(
bσ(g1)

∣
∣bσ(g2)

∣
∣ · · · ∣∣bσ(gn0)

)
=
(

gk0+1
∣
∣gk0+2

∣
∣ · · · ∣∣ gn0

∣
∣� g1

∣
∣� g2
∣
∣ · · · ∣∣� gk0

)
.

In other words, we have

gi =
{

�−1 · bσ(g[i−k0]n0 ) if 1 ≤ i ≤ k0,

bσ(g[i−k0]n0 ) if k0 + 1 ≤ i ≤ n0,
(5.1)
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and hence

� k0gk0 = � k0−1bσ(gn0) = � k0−1b2σ 2(gn0−k0) = · · · = bn0σ n0(gk0), (5.2)

where the exponent of � changes periodically according to (5.1). Observe that since

b−10 tκ,nb0 is the block-diagonalmatrixwith blocks equal to
(

0 1
1n0−1 0

)−1
tk0,n0
(

0 1
1n0−1 0

)
,

we see that �−k0bn0 is a permutation matrix of order n′; writing e′ := [eκ,nn0]n , we
have �−k0bn0 =

(
0 1e′

1n−e′ 0

)
and (e′, n) = n0. Write

gk0 =
⎛

⎝

x1
x2
...

xn

⎞

⎠ .

Then from (5.2) it follows that

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1
x2
...

xe′
xe′+1

...
xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ n0 (xn−e′+1)
σ n0 (xn−e′+2)

...
σ n0 (xn)
σ n0 (x1)

...
σ n0 (xn−e′ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In particular, the vector gk0 is determined by x1, x2, . . . , xn0 .
Letα ∈ F

×
qn be an element such thatα, σ (α), . . . , σ n−1(α) are linearly independent

over Fq . Let α ∈ O× be any lift of α. Let gk0 be the vector associated to the choice
xn0−k0+1 = α and xi = 0 otherwise. We next show that for this choice of gk0 , each of
the columns g1, . . . , gn0 (all of which are determined by gk0 by (5.1)) have coefficients
in O and that moreover the entries are either zero or in O×. For any positive integer
j , we know that

bσ(e[i0−eκ,n j]n ) =
{

� · e[i0−eκ,n( j+1)]n if[i0 − eκ,n j]n0 ≥ n0 − k0 + 1

e[i0−eκ,n( j+1)]n if[i0 − eκ,n j]n0 ≤ n0 − k0

where ei denotes the i th elementary column vector. Comparing this to (5.1), we see that
the condition forwhen the scalar�−1 appears in the equation for g[( j+1)k0]n0 coincides
with the condition for when the scalar � appears in the equation for bσ(e[i0−eκ,n j]n )
when [eκ,n( j+1)]n0 = n0+1−[i0−eκ,n j]n0 . Since eκ,n ≡ k0 modulo n0 by definition,
this implies i0 = n0 − k0 + 1, and it follows now that the entries of g1, . . . , gn0 are
either zero or in O×.

Wemay repeat the above argument for the next n0 columns of the equation bσ(g) =
gb′. We then obtain that for n0 + 1 ≤ i ≤ 2n0, the columns gi of g are uniquely
determined by gn0+k0 , and that the vector gn0+k0 is uniquely determined by its first n0
entries x1, . . . , xn0 . Let gn0+k0 be the vector associated to the choice xn0−k0+1 = σ(α)

and xi = 0 otherwise. Repeating this for the remaining columns of g, with gin0+k0
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being determined by setting xn0−k0+1 = σ i (α) for 1 ≤ i ≤ n′ − 1, we have now
obtained an n × n matrix g satisfying bσ(g) = gb′ whose entries are either 0 or in
O×.

To complete the proof that b, b′ are integrally σ -conjugate, it remains to show
that the O-valued n × n matrix g lies in GLn(O); that is, it remains to show that
det(g) ∈ O×. To see this, observe that by construction, the rows and columns of g
can be permuted so that it is block-diagonal with i th (1 ≤ i ≤ n0) block equal to the
matrix

σ (i−1)n′

⎛

⎜
⎜
⎜
⎝

α σ(α) · · · σ n′−1(α)

σ (α) σ 2(α) · · · α
...

...
. . .

...

σ n′−1(α) α · · · σ n′−2(α)

⎞

⎟
⎟
⎟
⎠

.

The reduction-modulo-� of this matrix is a Vandermonde matrix, and since α is
such that α, σ (α), . . . , σ n−1(α) ∈ Fqn are linearly dependent over Fq , it has nonzero
determinant. Hence det(g) ∈ O×.

5.3 Integral models

Let Bred :=Bred(GLn, K̆ ) be the reduced building of GLn over K̆ . For any point x ∈
Bred, the Moy–Prasad filtration is a collection of subgroups Ğx,r ⊂ GLn(K̆ ) indexed
by real numbers r ≥ 0 [27, Section 3.2]. We write Ğx,r+ = ∪s>r Ğx,s ⊂ GLn(K̆ ).

Let Ared denote the apartment of Bred associated to the maximal split torus given
by the subgroup of diagonal matrices in GLn(K̆ ) and let b be the Coxeter-type repre-
sentative so that b acts on Ared with a unique fixed point x ∈ Ared. By construction,
each Ğx,r is stable under the Frobenius F(g) = bσ(g)b−1 and Ğ F

x,0
∼= GO.

We now define G to be the smooth affine group scheme over Fq such that

G(Fq) = Ğx,0, G(Fq) = Ğ F
x,0.

For h ∈ Z≥1, we define Gh to be the smooth affine group scheme over Fq such that

Gh(Fq) = Ğx,0/Ğx,(h−1)+, Gh(Fq) = Ğ F
x,0/Ğ F

x,(h−1)+.

We have a well-defined determinant morphism

det : Gh → W
×
h .

Define Th to be the subgroup scheme of Gh defined over Fq given by the diagonal
matrices. Set:

Gh :=Gh(Fq), Th :=Th(Fq).

Note that Gh(Fq) is a subquotient of G and Th(Fq) ∼= (OL/� h)× ∼= W
×
h (Fqn ) is a

subquotient of the unramified elliptic torus T of G.
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We remark that each Ğx,r is also stable under the Frobenius F(g) = bσ(g)b−1
for the special representative b and that Ğ F

x,0
∼= GO. Thus we also can regard Gh as

a group scheme over Fq as above with Gh(Fq) a subquotient of Jb(K ) with b being
the special representative. However, the induced Fq -rational structure onTh gives that
Th(Fq) ∼= (W×

h (Fqn0 ))×n′ , which is not a subquotient of any elliptic torus in G.
Explicitly, Gh(Fq) is the group of invertible n× n-matrices, whose n0× n0-blocks

are matrices (ai j )1≤i, j≤n0 with aii ∈ O/ph , ai j ∈ O/ph−1 (∀i > j), ai j ∈ p/ph

(∀i < j). For example, for n0 = 3, the n0 × n0-blocks are

(
O/ph p/ph p/ph

O/ph−1 O/ph p/ph

O/ph−1 O/ph−1 O/ph

)

.

The following lemma describes the F-fixed part of the Weyl group of T1 in G1
explicitly. Note that bn0�−k0 is a permutation matrix in GLn(K̆ ).

Lemma 5.7 Let b be the Coxeter-type representative. We have

(i) We have NGh (Th)/Th = NG1(T1)/T1 = Sn′ × · · · × Sn′ (n0 copies).
(ii) NGh (Th)/Th = (NGh (Th)/Th)F = 〈bn0�−k0〉 ∼= Gal(L/K )[n′], the n′-torsion

subgroup of Gal(L/K ).

Proof Part (i) is clear by the explicit description of Gh . To prove (ii), we need to make
the action of F on NGh (Th)/Th explicit. Indeed, F is an automorphism of order n, it
permutes the copies of Sn′ cyclically, and each of the copies is stabilized by Fn0 . We
can think of the first Sn′ as permutation matrices with entries 0 and 1 in GL(〈ei : i ≡ 1
(mod n0)〉) ∼= GLn′ . Then the Fn0 -action Sn′ comes from the conjugation by bn0 on
GL(〈ei : i ≡ 1 (mod n0)〉). But bn0 is the order-n′ cycle e1 �→ e1+n0 �→ . . . �→
e1+n0(n′−1) �→ e1, and the subgroup of Sn′ stable by it is 〈bn0�−k0〉. We can identify
it with Gal(L/K )[n′] by sending bn0�−k0 to σ n0 (see also Lemma 5.8). ��

5.4 Twisted polynomial rings

Let L0 be the degree-n0 unramified extension of K and consider the twisted polynomial
ring L0〈�0〉 determined by the commutation relation a ·�0 = �0 · σ l0(a), where l0
is the integer in the range 1 ≤ l0 ≤ n0 with l0k0 = 1 modulo n0.

On the other hand, consider the Frobenius map F0 : Mn0(K̆ ) → Mn0(K̆ ) defined

by F0(g) =
(

0 �
1n0−1 0

)k0
σ(g)
(

0 �
1n0−1 0

)−k0
. The diagonal matrices in Mn0(K̆ )F0

are exactly of the form

D0(a) := diag(a, σ l0(a), . . . , σ (n0−1)l0(a)), for a ∈ L0.

By a direct calculation, we see that we can define an isomorphism

L0〈�0〉/(�n0
0 −� k0)→ Mn0(K̆ )F0 = Dk0/n0
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by sending a ∈ L0 to D0(a), and sending �0 to
(

0 �
1n0−1 0

)
. Note that under this

identification, the ring of integers ODk0/n0
of Dk0/n0 is OL0〈�0〉/(�n0

0 −� k0).

5.5 Cartan decomposition

Let b be the special representative and let �0 =
(

0 �
1n0−1 0

)
. We use the description of

Dk0/n0 in Sect. 5.4. Let T̆diag be the subgroup of diagonal matrices in GLn(K̆ ). Then
the set of F-fixed points of the cocharacters X∗(T̆diag)F is given by

X∗(T̆diag)F = {ν = (ν1, . . . , ν1, ν2, . . . , ν2, . . . , νn′ , . . . , νn′) : νi ∈ Z},

where each νi repeated n0 times. Let X∗(T̆diag)F
dom ⊂ X∗(T̆diag)F be the subset

consisting of ν with ν1 ≤ ν2 ≤ · · · ≤ νn′ . For ν ∈ X∗(T̆diag)F , we write �ν
0

for the n × n block-diagonal matrix whose i th n0 × n0-block is �
νi
0 . The Cartan

decomposition of G = GLn′(Dk0/n0) with respect to the maximal compact subgroup
GO = GLn′(ODk0/n0

) is given by

G =
⊔

ν∈X∗(T̆diag)F,dom

GO�ν
0GO

Note that �ν
0 normalizes GO if and only if all νi are equal, and �ν

0 centralizes GO if
and only if all νi are equal and divisible by n0 so that

NG(GO)/ZG GO ∼= Z/n0Z.

5.6 Reductive quotientG1

Let b be either the Coxeter-type or the special representative. The group G1 is equal
to the reductive quotient of G. Recall the O-lattice L0 and its basis {ei }ni=1 from the
beginning of Part 2. The following lemma describes the reductive quotient in terms of
L0. Its proof reduces to some elementary explicit calculations, so we omit it.

Lemma 5.8 Let c, d ∈ Z with k0c + n0d = 1.

(i) We have (bσ)c� d(L0) ⊆ L0, and (bσ)c� d(L0) is independent of the choice of
c, d.1 The quotient space

V :=L0/(bσ)c� d(L0)

is n′-dimensional Fq-vector space. The images of {ei }i≡1 (mod n0) form a basis of
V .

1 (bσ)c� d (L0) coincides with the operator defined in [32, Equation (4.3)].
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(ii) The map (bσ)n0�−k0 induces a σ n0 -linear automorphism σb of V , equipping
it with a Fqn0 -linear structure. If b is the special representative, the σ n0 -linear
operator σb of V is given by ei �→ ei for 1 ≤ i ≤ n with i ≡ 1 (mod n0). If b is
Coxeter-type, then it is given by e1+n0i �→ e1+n0(i+eκ,n).

(iii) We have a canonical identification

G1 = ResFqn0 /Fq GLn′ V .

5.7 Isocrystals

We recall that an Fq -isocrystal is an K̆ -vector space together with an σ -linear iso-
morphism. For b ∈ GLn(K̆ ), we have the isocrystal (V , bσ). Assume now that b is
basic with κG(b) = κ . Then (V , bσ) is isomorphic to the direct sum of n′ copies
of the simple isocrystal with slope k0/n0. We observe that (V , bσ) up to isomorphy
only depends on the σ -conjugacy class [b], and that its group of automorphisms is
G = Jb(K ).

6 Comparison in the case GLn, b basic,w Coxeter

Wewill compare the twoDeligne–Lusztig type constructions fromPart 1 in this special
situation and describe both explicitly using the isocrystal (V , bσ). In Sects. 6.1 and
6.2, we let b ∈ GLn(K̆ ) be any basic element with κGLn (b) = κ . From Sect. 6.3
onwards, we take b to be the special representative defined in Sect. 5.2.2.

6.1 The admissible subset of (V, b�)

We will describe the various Deligne–Lusztig varieties using certain subsets of V ,
which we now define. Let x ∈ V . Put

gb(x) = matrix in Mn(K̆ ) with columns x, bσ(x), . . . , (bσ)n−1(x)

V adm
b = {x ∈ V : det gb(x) ∈ K̆×}

V adm,rat
b = {x ∈ V : det gb(x) ∈ K×}

If g−1b′σ(g) = b, then the isomorphism of isocrystals (V , bσ)→ (V , b′σ), x �→ gx ,
mapsV adm

b toV adm
b′ . In particular, Jb(K ) acts onV adm

b by leftmultiplication.Moreover,

L× acts on V adm,rat
b by scaling. Note also that x ∈ V lies in V adm

b if and only if the
O-submodule of V generated by x, (bσ)(x), . . . , (bσ)n−1(x) is an O-lattice.

We have the following useful lemma, which essentially follows from basic proper-
ties ofNewton polygons. Its simple proofwas explained to the authors byE.Viehmann.

Lemma 6.1 Let x ∈ V adm
b . The O-lattice generated by {(bσ)i (x)}n−1i=0 is bσ -stable,

i.e., there exist unique elements λi ∈ O such that (bσ)n(x) = ∑n−1
i=0 λi (bσ)i (x).

Moreover, ord(λ0) = κG(b).
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Proof The Newton polygon of (V , bσ) is the straight line segment connecting the
points (0, 0) and (n, κ) in the plane. Now, let K [�] be the non-commutative ring
defined by the relation a� = �σ(a), and let � act on V by bσ . Then the Newton
polygon of the characteristic polynomial of x (which is an element of K [�]) is equal to
the Newton polygon of (V , bσ) (see e.g. [1]). Observe that any x ∈ V adm

b generates V
as a K [�]-module. Then the point (i, ord(ai )) in the plane, where ai is the coefficient
of �n−i in the characteristic polynomial, lies over that Newton polygon. This simply
means ord(ai ) ≥ iκ

n ≥ 0, as κ ≥ 0. Hence �n(v) = ∑n
i=1 ai�

n−i (x) lies in the
O-lattice generated by x, �(x), . . . , �n−1(x). This proves the first assertion. The
second statement follows as (n, ord(an)) has necessarily to be the rightmost vertex of
the Newton polygon, which is (n, κ). ��

Example 6.2 For b = 1, the set V adm
1 is just the Drinfeld upper halfspace. If (κ, n) = 1,

then V adm
b = V � {0} as (V , bσ) has no proper non-trivial sub-isocrystals.

6.2 Set-theoretic description

We need the following notation:

• Let Tdiag denote the diagonal torus of GLn and W its Weyl group.
• Let w be the image in W of the element b0 from Sect. 5.2.1. Then the form

Tw := Tdiag,w of Tdiag (as in Sect. 3) is elliptic with Tw(K ) ∼= L× and has a
natural model over OK , again denoted Tw, with Tw(OK ) ∼= O×L .• I m (with m ≥ 0) denotes the preimage under the projection GLn(O) �
GLn(O/�m+1O), of all lower triangular matrices in GLn(O/�m+1O) whose
entries under the main diagonal lie in �mO/�m+1O

• İ m (with m ≥ 0) denotes the subgroup of I m consisting of all elements whose
diagonal entries are congruent 1 modulo �m+1

• Xm∗ (b), Ẋm∗ (b) denote affineDeligne–Lusztig varieties of level I m , İ m respectively
(for appropriate ∗)

• For r ≥ 0 and x ∈ V adm
b , let gb,r (x) ∈ GLn(K̆ ) denote the matrix whose i th

column is � r(i−1)(bσ)i−1(x). We have gb(x) = gb,0(x).
• For r , m ≥ 0, define ∼b,m,r and ∼̇b,m,r on V adm

b by

x ∼b,m,r y ∈ V adm
b ⇔ y ∈ gb,r (x) · (O× pm . . . pm

)ᵀ
,

x ∼̇b,m,r y ∈ V adm
b ⇔ y ∈ gb,r (x) · (1+ pm+1 pm . . . pm

)ᵀ
.

It follows from Lemma 6.6 that ∼b,m,r and ∼̇b,m,r are equivalence relations.
• For r ≥ 0, set ẇr = b0�(−r ,...,−r ,κ+(n−1)r) ∈ GL(K̆ ) and denote again by ẇr the
image of ẇr in all the sets I m\GLn(K̆ )/I m and İ m\GLn(K̆ )/ İ m for m ≥ 0. The
image of ẇr in W is the Coxeter element w.

Furthermore, we define

V adm,rat,ẇ0
b := {x ∈ V : σ(det gb(x)) = det(ẇ0) det(b)−1 det(gb(x))}. (6.1)
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Observe that det(ẇ0) det(b)−1 ∈ O×, so picking any α ∈ O× such that
σ(ασ(α)σ 2(α) · · · σ n−1(α)) = det(ẇ0) det(b)−1 induces a (Jb(K )×L×)-equivariant
isomorphism V adm,rat

b → V adm,rat,ẇ0
b given by x �→ αx .

Remark 6.3 We will study the scheme structure on Xm
ẇr

(b), Ẋm
ẇr

(b) in detail below
in Sect. 6.4. But we want to point out already here that both are locally closed
in GLn(K̆ )/I m , GLn(K̆ )/ İ m , hence are reduced Fq -schemes locally of finite type.
Indeed, İ m is normal in I and the image of ẇr in W̃ satisfies the assumptions of The-
orem 4.9 (see Lemma 6.4 below), hence it follows that Ẋm

ẇr
(b) ⊆ ˘GLn/ İ m is locally

closed. The same argument does not apply to Xm
ẇr

(b) as I m ⊆ I is not normal. Still

Xm
ẇr

(b) ⊆ GLn(K̆ )/I m is locally closed. Indeed, let p : GLn(K̆ )/I m → GLn(K̆ )/I
denote the natural projection. As we will see below in Proposition 6.12, the Iwahori
level variety X0

ẇr
(b) = ⊔G/GO g.X0

ẇr
(b)L0 ⊆ GLn(K̆ )/I is the scheme-theoretic

disjoint union of translates of a certain locally closed subset X0
ẇr

(b)L0 . It thus suffices

to show that Xm
ẇr

(b)L0 = Xm
ẇr

(b) ∩ p−1(X0
ẇr

(b)L0) ⊆ p−1(X0
ẇr

(b)L0) is locally
closed. But this follows from the explicit coordinates on Xm

ẇr
(b)L0 given in the proof

of Theorem 6.17. ♦

Lemma 6.4 Let wr denote the image of ẇr in W̃ . Then wr and İm satisfy the assump-
tions of Theorem 4.9 (with respect to the Iwahori subgroup I 0).

Proof We use the same notation as in Theorem 4.9. We have to show that the subsets
p(Awr ), p(Bwr ), p(Cwr ) of �̂ are disjoint and that the same holds for p(A

w−1r
),

p(B
w−1r

), p(C
w−1r

). Write �̂ = {αi, j : 1 ≤ i 
= j ≤ n} ∪ {0} where αi, j corresponds
to the i, j-th entry of a matrix. Let w be the image of wr in the finite Weyl group W .
Thenw acts on� byw.αi, j = αi+1, j+1,w.0 = 0, where we consider i, j as elements
of Z/nZ. Then �̂aff(I/ İ m) is equal to

{(αi, j , λ) : αi, j ∈ � and 0 ≤ λ ≤ m − 1 (if i > j) resp. 1

≤ λ ≤ m (if i < j)} ∪ {(0, λ) : 0 ≤ λ ≤ m}.

Now one computes that wr .(0, λ) = (0, λ) and wr .(αi, j , λ) = (αi+1, j+1, λ) if either
(n > i > j) or (n > j > i). Further, wr .(αn, j , λ) = (α1, j+1, λ + nr + κ) and
wr .(αi,n, λ) = (αi+1,1, λ− nr − κ). Thus we deduce that p(Bwr ) = {αi, j ∈ � : n >

i > j or n > j > i} ∪ {0}, p(Awr ) = {αi,n ∈ � : 1 ≤ i ≤ n − 1} and p(Cwr ) =
{αn, j ∈ � : 1 ≤ j ≤ n − 1}. Similarly, we compute that p(B−1wr

) = {αi, j ∈ � : i >

j > 1}∪{0}, p(A
w−1r

) = {α1, j ∈ � : 1 ≤ j ≤ n−1} and p(C
w−1r

) = {αi,1 ∈ � : 1 ≤
i ≤ n − 1}. ��

Recall from Sect. 3 that G = Jb(K ) acts on X DL
w (b) and Ẋ DL

ẇ0
(b) by left multipli-

cation. By Theorem 6.5 below, the maps Ẋ DL
ẇ0

(b)→ X DL
w (b) and Ẋm

ẇr
(b)→ Xm

ẇr
(b)

are both surjective. Hence the former is a Tw(K )-torsor via the right-multiplication
action of Tw(K ) on Ẋ DL

ẇ0
(b) (by Lemma 3.2(iii)) and the latter is a (I m/ İ m)ẇr

∼=
Tw(OK /�m+1)-torsor via the right-multiplication action of I m/ İ m on Ẋm

ẇr
(b).
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Theorem 6.5 (i) There is a commutative diagram of sets

V adm,rat
b X DL

ẇ0
(b)

V adm
b /K̆× X DL

w (b)

∼

Tw(K )

∼

in which horizontal arrows are G×Tw(K )-equivariant isomorphisms. Moreover,
the vertical arrows in the diagram are surjective.

(ii) Assume that r ≥ m ≥ 0. There is a commutative diagram of sets

V adm,rat
b /∼̇b,m,r Ẋm

ẇr
(b)(Fq)

V adm
b / ∼b,m,r Xm

ẇr
(b)(Fq)

∼

Tw(OK /�m+1OK )

∼

in which horizontal arrows are G × Tw(OK /�m+1)-equivariant isomorphisms.
Moreover, the vertical arrows in the diagram are surjective.

Before proving the theorem, we need some preparations. Observe that by Lemmas
3.2 and 4.4 in the proof of Theorem 6.5, we may replace b by an σ -conjugate element
of Ğ.

Lemma 6.6 Let r > 0. Let x, y ∈ V adm
b . Then

x ∼b,m,r y ⇔ gb,r (x)I m = gb,r (y)I m, (6.2)

x∼̇b,m,r y ⇔ gb,r (x) İ m = gb,r (y) İ m . (6.3)

Proof Indeed, gb,r (y) ∈ gb,r (x)I m is equivalent to

y ∈ xO× +�m+r bσ(x)O + · · · +�m+r(n−1)(bσ)n−1(x)O

� r (bσ)(y) ∈ �m+1xO +� r bσ(x)O× +�m+2r (bσ)2(x)O · · · +�m+(n−1)r (bσ)n−1(x)O
.
.
.

� r(n−1)(bσ)n−1(y) ∈ �m+1xO + · · · +�m+1+r(n−2)(bσ)n−2(x)O +� r(n−1)(bσ)n−1(x)O×.

By definition, the first equation is equivalent to x ∼b,m,r y. But once the first equation
holds, then the (i + 1)th equation must also hold by applying � ri (bσ)i to the first
equation and using Lemma 6.1. Hence (6.2) follows, and a similar proof gives (6.3).

��
Lemma 6.7 Let r ≥ 0 and x ∈ V adm

b . Then

bσ(gb,r (x)) = gb,r (x)ẇr A,
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where A ∈ GLn(K̆ ) is a matrix, which can differ from the identity matrix only in the
last column. Moreover, the lower right entry of A lies in O×, and if r > m ≥ 0, then
A ∈ I m.

Proof By definition, we have

bσ(gb,r (x)) = (bσ(x) � r (bσ)2(x) · · · � r(n−2)(bσ)n−1(x) � r(n−1)(bσ)n(x)
)
,

gb,r (x)ẇr =
(
bσ(x) � r (bσ)2(x) · · · � r(n−2)(bσ)n−1(x) � r(n−1)+κG (b)x

)
,

As the first n − 1 columns of these matrices coincide, it follows that A can at most
differ from the identity matrix in the last column. By Lemma 6.1, we may write

(bσ)n(x) =
n−1∑

i=0
αi · (bσ)i (x)

= α0

� r(n−1)+κG (b)
·� r(n−1)+κG (b)x +

n−1∑

i=1

αi

� r(i−1) ·� r(i−1)(bσ)i (x),

where α0, . . . , αn−1 ∈ O and ord(α0) = κ . By construction, the last column of A is

(
� r(n−1)α1,�

r(n−2)α2,�
r(n−3)α3, . . . , �

rαn−1,
α0

�κG (b)

)ᵀ
.

We then see that the lower right entry of A is α0
�κ ∈ O× and that if r ≥ m + 1, then

all the entries above α0
�κ lie in �m+1O and A ∈ I m . ��

Proof of Theorem 6.5 (i) As in [13, §1], the sets X DL
w (b) do not depend on the choice

of the Borel subgroup, so we may choose B ⊆ GLn to be the Borel subgroup of the
upper triangular matrices and U its unipotent radical. Lemma 6.7 for r = 0 implies
the existence of the map

V adm
b → X DL

w (b), x �→ gb(x)B̆.

We claim this map is surjective. Let gB̆ ∈ X DL
w (b), i.e., g−1bσ(g) ∈ B̆ẇ0 B̆. Replac-

ing g by another representative in gB̆ if necessary,wemay assume thatbσ(g) ∈ gẇ0 B̆.
Moreover, this assumption does not change, whenever we replace g by another rep-
resentative g′ = gc with c ∈ B̆ ∩ ẇ0 B̆ (here ẇ0 B̆ = ẇ0 B̆ẇ−10 ). A direct computation
shows that replacing g by gc for an appropriate c ∈ B∩ẇ0 B̆, we find a representative g
of gB̆ with columns g1, g2, . . . , gn satisfying gi+1 = bσ(gi ) for i = 1, . . . , n−1. This
means precisely g = gb(x). All this shows the surjectivity claim. For x, y ∈ V adm

b ,
one has gb(x)B̆ = gb(y)B̆ if and only if x, y differ by a constant in K̆×. This shows
the lower horizontal isomorphism in part (i) of the theorem.

We now construct the upper isomorphism.Wemay write an element of ġŬ ∈ Ğ/Ŭ
lying over gb(x)B̆ ∈ X DL

w (b) as ġŬ = gb(x)tŬ for some t ∈ T̆ . Using Lemma 6.7
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(and the notation from there) we see that

ġ−1bσ(ġ) = t−1gb(x)−1bσ(gb(x))σ (t) = t−1ẇ0Aσ(t)

Now write A = λA0 with A0 ∈ Ŭ and λ = diag(1, . . . , 1, λ0) a diagonal matrix with
λ0 ∈ O×.We then see that ġ−1bσ(ġ) = t−1ẇ0λσ(t)·σ(t) A0.Hence gb(x)t ∈ X DL

ẇ0
(b)

if and only if ẇ−10 t−1ẇ0σ(t) = λ−1. Thus, if we write t0, t1, . . . , tn−1 ∈ K̆× for the
diagonal entries of t , then we have ti+1 = σ(ti ) for 0 ≤ i ≤ n − 2. We may assume
this. In particular, it implies that gb(x)t = gb(xt0). In other words, replacing x by
xt0, we may assume that ġ = gb(x). It remains to determine all x ∈ V adm

b , for which
gb(x)Ŭ ∈ X DL

ẇ0
(b), i.e., gb(x)−1bσ(gb(x)) ∈ Ŭ ẇ0Ŭ . Comparing the determinants

on both sides we deduce that σ(det gb(x)) = det(ẇ0) det(b)−1 det gb(x) (i.e. that
x ∈ V adm,rat,ẇ0

b ) as a necessary condition. Assume this holds. With notations as in
Lemma 6.7, we deduce det(A) = 1. Moreover, since A can differ from the identity
matrix in at most the last column by Lemma 6.7, det(A) = 1 is equivalent to A ∈ Ŭ .
All this, together with the fact that V adm,rat,ẇ0

b
∼= V adm,rat

b (see (6.1)) shows the upper
isomorphism in part (i). The commutativity of the diagram and Jb(K )-equivariance
of the involved maps are clear from the construction. The surjectivity claim for the
vertical maps is shown in exactly the same way as the analogous claim in part (ii)
below.

(ii) Lemma 6.7 for r > m ≥ 0 implies the existence of the map

V adm
b → Xm

ẇr
(b), x �→ gb,r (x)I m .

We claim it is surjective. Let gI m ∈ Xm
ẇr

(b), i.e., g−1bσ(g) ∈ I mẇr I m . Replacing g
by another representative of gI m if necessary, we may assume that bσ(g) ∈ gẇr I m .
Moreover, this assumption does not change, whenever we replace g by another rep-
resentative g′ = g j with j ∈ I m ∩ ẇr I m . In the rest of the proof, we call such
transformations allowed. We compute

I m ∩ ẇr I m =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

O× prn+m · · · · · · prn+m

pm O× pm+1 · · · pm+1
...

. . .
. . .

. . .
...

pm · · · pm O× pm+1
pm · · · · · · pm O×

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(on the main diagonal entries can lie inO×, under the main diagonal in pm , in the first
row, beginning from the second entry, in prn+m , and above the main diagonal, except
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for the first row, in pm+1). Let g1, . . . , gn denote the columns of g, seen as elements
of V . Then gẇr ∈ bσ(g)I m is equivalent to the following n equations:

g2 ∈ � r bσ(g1)O× +� r+mbσ(g2)O + · · · +� r+mbσ(gn)O

g3 ∈ � r+m+1bσ(g1)O +� r bσ(g2)O× +� r+mbσ(g3)O + · · · +� r+mbσ(gn)O
.
.
.

gn ∈ � r+m+1bσ(g1)O + · · · +� r+m+1bσ(gn−2)O +� r bσ(gn−1)O× +� r+mbσ(gn)O

� rn+m+κ g1 ∈ � r+2m+1bσ(g1)O + · · · +� r+2m+1bσ(gn−1)O +� r+mbσ(gn)O×.

A linear algebra exercise shows that after some allowed transformations these equa-
tions can be rewritten as

g2 ∈ � r bσ(g1)O×

g3 ∈ � r bσ(g2)O×

...

gn ∈ � r bσ(gn−1)O×

� r(n−1)+κ g1 ∈ �m+1bσ(g1)O + · · · +�m+1bσ(gn−1)O + bσ(gn)O×.

This shows that g = gb,r (g1), and hence the claimed surjectivity. Lemma 6.6
shows that the lower map in part (ii) is an isomorphism. Exactly as in the proof
of (i), one shows that the claim of (ii) is true if one replaces the upper left entry

by

{

x ∈ V adm
b : det(gb,r (x))mod�m+1

is fixed by σ

}

. As x ∼̇b,m,r xu for any u ∈ 1 + pm+1,
the original claim of (ii) follows from this modified claim along with the surjec-
tivity of the map 1 + pm+1 → 1 + pm+1, u �→ ∏n−1

i=0 σ i (u), and the fact that
det gb(x) ∈ K× ⇔ det gb,r (x) ∈ K×.

It remains to show that the vertical arrows in the diagram in (ii) are surjective.
It suffices to handle the left arrow. Let x ∈ V adm

b . By definition of ∼b,m,r , for any

λ ∈ O× we have λx ∼b,m,r x . Nowwe have det gb(λx) = � a ·∏n−1
i=0 σ i (λ)·det gb(x)

for an appropriate a ∈ Z. Now the map λ �→ ∏n−1
i=0 σ i (λ) : O× → O× is surjective,

hence by rescaling x with an appropriate λ ∈ O× (thus not changing its class in
V adm

b / ∼b,m,r ) we can arrange that det gb(x) ∈ K×, i.e., that x ∈ V adm,rat
b . ��

The natural projection maps Xm+1
ẇr

(b) → Xm
ẇr

(b) and Ẋm+1
ẇr

(b) → Ẋm
ẇr

(b) are
obviously morphisms of schemes. However, Theorem 6.5 implies that there are G-
and G × Tw(OK /�m+1)-equivariant maps of sets (on Fq -points)

Xm
ẇr+1(b)→ Xm

ẇr
(b), and Ẋm

ẇr+1(b)→ Ẋm
ẇr

(b) (6.4)

induced by gb,r+1(x) �→ gb,r (x). In Sect. 6.4, we explicate the scheme structure on
Xm

ẇr
(b), Ẋm

ẇr
(b) and prove that these maps of sets are actually morphisms of schemes

(Theorem 6.17). Taking Theorem 6.17 for granted at the moment, we have a notion
of an affine Deligne–Lusztig variety at infinite level.
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Definition 6.8 Define the (infinite-dimensional) Fq -scheme

X∞w (b) := lim←−
r ,m : r>m

Xm
ẇr

(b) and Ẋ∞w (b) := lim←−
r ,m : r>m

Ẋm
ẇr

(b).

Both have actions by G and the natural G-equivariant map Ẋ∞w (b) → X∞w (b) is a
Tw(OK )-torsor.

Passing to the infinite level in Theorem 6.5 gives the following result.

Theorem 6.9 There is a commutative diagram of sets with G-equivariant maps:

Ẋ DL
w (b) V adm,rat

b Ẋ∞w (b)

X DL
w (b) V adm

b /K̆× V adm
b /O× X∞w (b)

Tw(K )

∼ ∼

Tw(OK )

∼ ∼Z

The upper horizontal maps are Tw(OK )-equivariant. This extends the natural
Tw(OK )-action on Ẋ∞w (b) to a Tw(K )-action.

Using the set-theoretic isomorphism in Theorem 6.9, we will see in Sect. 6.4 that
by endowing V adm

b with the natural scheme structure over Fq coming from the lat-
tice L0, we can view the semi-infinite Deligne–Lusztig sets X DL

w (b), Ẋ DL
w (b) as

(infinite-dimensional) Fq -schemes. Moreover, every isomorphism in Theorem 6.9 is
an isomorphism of Fq -schemes (Corollary 6.19).

6.3 Connected components

To “minimize” powers of the uniformizer, we define

gredb (v) :=
(

v

∣
∣
∣

1

� �k0/n0� bσ(v)

∣
∣
∣

1

� �2k0/n0� (bσ)2(v)

∣
∣
∣ · · ·
∣
∣
∣

1

� �(n−1)k0/n0� (bσ)n−1(v)

)

(6.5)

to be the n×n matrix whose i th column is 1
� �(i−1)k0/n0� ·(bσ)i−1(v) for v ∈ V . Observe

that

gb(v) = gred
b (v) · Dk,n,

where Dk,n is the diagonal matrix whose (i, i)th entry is � �(i−1)k0/n0�.
Definition 6.10 For any basic b (with κGLn (b) = κ) which is integrally σ -conjugate
to the special representative as in Sect. 5.2.2, we define

L adm
0,b :=

{
v ∈ L0 : det gred

b (v) ∈ O×
}

,

L adm,rat
0,b :=

{
v ∈ L0 : det gred

b (v) ∈ O×K
}

,

L adm,rat,ẇ0
0,b :=

{
v ∈ L0 : σ(det gred

b (v)) = det(ẇ0) det(b)−1 det gred
b (v) ∈ O×

}
.
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As in (6.1), note thatL adm,rat,ẇ0
0,b

∼= L adm,rat
0,b by rescaling appropriately by an element

of O×.

Let now b be the special representative with κG(b) = κ . As GO ⊆ GLn(O) =
Stab(L0) insideGLn(K̆ ), we see thatL adm,rat

0,b , L adm
0,b are stable underGO×Tw(OK ).

We have

L adm
b,0 =

{

v=
n∑

i=1
aiei ∈ L0 :

ai ∈ O for 1 ≤ i ≤ n; {aiei (mod �)}i≡1 (mod n0)

generate the Fq -vector space V

}

,

(6.6)

where V is as in Sect. 5.6 (compare [32, Lemma 4.8]). For x ∈ L adm
b,0 with reduction-

modulo-� x , define gb(x̄) ∈ GLn′(Fq) to be the matrix from reducing every entry
of gred

b (x) modulo � and deleting the i th row and j th column for all (i, j) 
≡ (1, 1)
modulo n0.

Lemma 6.11 We have a disjoint decomposition

V adm
b =

∐

g∈G/GO

g(L adm
0,b )

Proof Let c, d be as in Lemma 5.8. On V we have the operators considered in [32, 4.1]:
bσ , �(bσ)−1, � d(bσ)c, �−κ0(bσ)n0 = σ n0 (in [32], these operators are denoted
F, V , π1, σ1 respectively). For v ∈ V adm

b we may consider the smallestO-submodule
P(v) of V , containing v and stable under these four operators (this is a indeed lattice:
for κ > 0 see [32, p. 354, paragraph before Lemma 4.10]; for κ = 0, Lemma 6.1
shows that this is the lattice generated by {σ i (v)}n−1i=0 ). Further we have

L adm
0,b = {v ∈ L0 : P(v) = L0} .

This follows from the explicit description of both sides: (6.6) above and [32, Lemma
4.8 and beginning of §4.4]. Next, the set of lattices in V stable under the four operators
above is in bijectionwithG/GO via gGO �→ gL0. Indeed, forκ > 0 this follows from
Lemma 4.8 and 4.10 of [32] (note that there Viehmann only considers bi-infinitesimal
p-divisible groups, so that the slope(s) of V must be strictly between 0 and 1); and for
κ = 0, this is clear from the description of the affine Grassmannian of GLn in terms
of lattices.

Any g ∈ G commutes with the four operators above, hence P(gv) = g P(v)

and hence g(L adm
0,b ) = {v ∈ M : P(v) = M } if M = g(L0). Finally,

⋃
M {v ∈

M : P(v) =M } (whereM runs through all lattices stable under the four operators)
is disjoint and equal to V adm

b . ��
For each h ∈ G/GO, let Xm

ẇr
(b)h(L0) be the subset of Xm

ẇr
(b) consisting of all

points which under the isomorphism Xm
ẇr

(b)(Fq) ∼= V adm
b / ∼b,m,r of Theorem 6.5

correspond to h(L adm
0,b ).
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Affine Deligne–Lusztig varieties at infinite level 1835

The Iwahori level variety X0
ẇr

(b) is known to be locally closed in the ind-scheme

GLn(K̆ )/I and locally of finite type over Fq . The following result (as well as the
preceeding lemma) is based on ideas from [32], which were explained to the authors
by E. Viehmann.

Proposition 6.12 Let r > 0. For any h ∈ G, X0
ẇr

(b)h(L0) is a closed and open subset

of X0
ẇr

(b). In other words, X0
ẇr

(b) = ∐h∈G/GO X0
ẇr

(b)h(L0) is a scheme-theoretic
disjoint union decomposition.

Proof The proof follows along the same lines as [32, Lemma 4.16]. First we show
that X0

ẇr
(b)L0 ⊆ X0

ẇr
(b) is closed. To this end, recall that points of GLn(K̆ )/I can

be interpreted as complete chains of O-lattices in K̆ n . Let L• = {L0 ⊇ L1 ⊇ · · · ⊇
Ln−1 ⊇ �L0} be the standard chain (stabilized by I ). Then gI corresponds to the
lattice chain gL• = {gLi }n−1i=0 .We claim that there is an integerC > 0 only depending
on n, κ, r such that

X0
ẇr

(b)L0 = {M• = (Mi )
n−1
i=0 ∈ X0

ẇr
(b) : M0 ⊆ L0 and vol(M0) = C}. (6.7)

Let M• ∈ X0
ẇr

(b)L0 . By construction, there is some v ∈ L adm
0,b such that M• =

gb,r (v)L•. Then M0 = gb,r (v)(L0) is the lattice generated by {� ri (bσ)i (v)}n−1i=0 ,
which is contained inL0. Moreover,

vol(M0) = vol(gb,r (v)(L0)) = ord det gb,r (v) = C + ord det gred
b (v) = C,

withC > 0 some explicit constant depending on n, κ, r . Conversely, letM• ∈ X0
ẇr

(b)

be such thatM0 ⊆ L0 and vol(M0) = C with the same C as above. By Theorem 6.5,
there is some v ∈ V adm

b with M• = gb,r (v)L•. Then M0 = gb,r (v)L0 is the lattice
generated by {� ri (bσ)i (v)}n−1i=0 . In particular, we must have v ∈M0 ⊆ L0 and

ord det(gred
b (v)) = ord det(gb,r (v))− C = vol(M0)− C = 0.

This proves claim (6.7). From this claim it follows that X0
ẇr

(b)L0 is the intersection

in GLn(K̆ )/I of X0
ẇr

(b) with the preimage under

GLn(K̆ )/I → GLn(K̆ )/Stab(L0) ∼= {O-lattices in K̆ n}, M• = {M}n−1i=0 �→M0

of the closed (see [32, Remark 4.15]) subset of latticeswith fixed volume and contained
inL0. Hence X0

ẇr
(b)L0 is closed in X0

ẇr
(b).

Applying the G-action on Xẇr (b) we deduce that also X0
ẇr

(b)h(L0) is closed in

X0
ẇr

(b) for each h ∈ G. Now the closed subvarieties X0
ẇr

(b)h(L0) form a disjoint

cover of X0
ẇr

(b), as this holds on geometric points by Lemma 6.11 and Theorem

6.5. As X0
ẇr

(b) is locally of finite type, this disjoint union is locally finite. Hence

X0
ẇr

(b)h(L0) is also open. ��
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Remark 6.13 We explain the differences between our setting and that of [32, §4].
Viehmann proved a similar decomposition for an open subset S1 of some minus-
cule affine Deligne–Lusztig varieties at the hyperspecial level (in particular, in the
bi-infinitesimal case, which in our notation corresponds to κ > 0). A point of S1
corresponds to a Dieudonné lattice M in V , that is a lattice stable by the operators
bσ and p(bσ)−1. Such a lattice also possesses a single generator v ∈ V adm

b , but
the difference between vol(M ) and vol(P(M )) (where P(M ) is the smallest lattice
containing M and stable under the four operators as in the proof of Lemma 6.11), is
quite inexplicit, and it is a complicated task [32, Theorem 4.11(ii)] to show that this
difference is constant. In our situation the lattice (chain) corresponding to a point of
X0

ẇr
(b) is completely explicit, and the difference of volumes is immediate to compute.

Note also that we work with the cocharacter (−r , . . . ,−r , (n − 1)r) for r ≥ 1, and
since this is never minuscule, there is no direct comparison between our setting and
the varieties from [32]. ♦

Corollary 6.14 Let b ∈ Ğ be integrally σ -conjugate to the special representative
attached to κ . Then the conclusion of Proposition 6.12 holds for this b.

Proof If h ∈ GLn(O) is such that b = h−1bspσ(h), where bsp is the special repre-

sentative, then g �→ h−1g defines an isomorphism Xm
ẇr

(bsp)
∼−→ Xm

ẇr
(b). Further,

gred
b (v) = h−1gred

bsp
(hv) and the corollary follows from the commutativity of the obvi-

ous diagram. ��
By Lemma 5.6, Corollary 6.14 applies to the Coxeter-type representatives from

Sect. 5.2.1.

6.4 The structure of Xmẇ (b)

Let b be the special representative with κGLn (b) = κ . Let Xm
ẇr

(b)L0 be as defined

before Proposition 6.12. The following auxiliary elements of GLn(K̆ ) will be used in
this subsection only. For r ≥ 1, put μr = (1, r , 2r , . . . , (n − 1)r) ∈ X∗(Tdiag). For
an integer a, let 0 ≤ [a]n0 < n0 denote its residue modulo n0. Let v1 ∈ GLn0(K̆ )

be the permutation matrix whose only non-zero entries are concentrated in the entries
(1 + [(i − 1)k0]n0 , i) and are all equal to 1. Let v ∈ GLn(K̆ ) denote the block-
diagonal matrix, whose diagonal n0 × n0-blocks are each equal to v1. We begin with
the following key proposition.

Proposition 6.15 For r ≥ 1, the Iwahori level variety X0
ẇr

(b)L0 is contained

in the Schubert cell IvDκ,nμr I/I ⊆ GLn(K̆ )/I . In particular, Xm
ẇr

(b)L0 ⊆
IvDκ,nμr I/I m ⊆ GLn(K̆ )/I m.

Proof We have to show that for x ∈ L adm
0 one has Igb,r (x)I = IvDκ,nμr I , i.e., that

by successively multiplying by elements from I on the left and right side we can bring
gb,r (x) = gred

b (x)Dκ,nμr to the form vDκ,nμr . For 1 ≤ i ≤ n′, we call a matrix in
GLn(K̆ ) i-nice, if the following two conditions hold:
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(i) each of its n′2 blocks of size n0 × n0 has the following shape: in its �th column
(1 ≤ � ≤ n0), the entries above the (1+ [(�− 1)k0]n0 , �)th entry lie in p and the
other entries lie in O;

(i) for 1 ≤ � ≤ n0, the (1+ [(�− 1)k0]n0 , �)th entry of the (i, i)th (n0 × n0)-block
lies in O×.
The inductive algorithm to prove the lemma is as follows: put A1 := gred

b (x) and let
1 ≤ i ≤ n′. Assume that by modifying gred

b (x)Dκ,nμr (by multiplication from left and
right with I ) we have constructed the i-nice matrix Ai , such that Igred

b (x)Dκ,nμr I =
I Ai Dκ,nμr I and such that the first i − 1 rows and i − 1 columns of n0× n0-blocks of
Ai Dκ,nμr coincide with vDκ,nμr up to O×-multiplies of the non-zero entries. Now
we do the following steps:

(1) Annihilate the entries of the(i, i)th n0 × n0-block of Ai lying over(1 + [(� −
1)k0]n0 , �)th entry (for each1 ≤ � ≤ n0).
By assumption, the (1+[(�−1)k0]n0 , �)th entry lies inO×. By multiplying upper
triangular unipotent elements from I (with non-diagonal entries in p) from the left
to Ai Dκ,nμr (i.e., performing elementary row operations on matrices), we obtain
a nice matrix A′i (uniquely determined by Ai ) whose entries have the same images
in O/p as those of Ai . Moreover, I Ai Dκ,nμr I = I A′i Dκ,nμr I .

Put A′i,0 := A′i . For � = 1, 2, . . . , n0 do successively the following step:

(2)� Annihilate the (n0(i − 1) + �)th column and (n0(i − 1) + 1 + [(� − 1)k0]n0)th
row of A′i,�−1.
By assumption, the (n0(i − 1) + 1 + [(� − 1)k0]n0 , n0(i − 1) + �)th entry of
the i-nice matrix A′i,�−1 lies in O×. By multiplying A′i,�−1Dκ,nμr successively
from the left by lower triangular matrices from I which have 1’s on the main
diagonal and only further non-zero entries in the n0(i − 1)+ 1+ [(�− 1)k0]n0 th
column, we can kill all entries of the n0(i − 1)+ �th column of A′i,�−1 except for
the (n0(i − 1) + 1 + [(� − 1)k0]n0 , n0(i − 1) + �)th entry itself, which remains
unchanged.After thiswe can, using the (n0(i−1)+1+[(�−1)k0]n0 , n0(i−1)+�)th
entry, easily eliminate all entries n0(i − 1) + 1 + [(� − 1)k0]n0 th row except for
(n0(i − 1) + 1 + [(� − 1)k0]n0 , n0(i − 1) + �)th entry itself, which remains
unchanged (by multiplying A′i,�−1Dκ,nμr from the right with unipotent upper
triangular matrices in I ). This does not change the rest of the matrix, because
n0(i − 1)+ �th column contains precisely one non-zero entry.

As anoutputweobtain thematrix Ai+1 := A′i,n0 whichweclaim is (i+1)-nice.Assume
for now that this is true. Proceeding the described algorithm for all 1 ≤ i ≤ n′, we
obtain the matrix An′+1, which differs from v only by some diagonal matrix with
entries in O×, so that I An′+1Dκ,nμr I = IvDκ,nμr I is now clear.

Observe that when looking modulo p, the step (2)� in the algorithm for a single �

affects the (1+[(�−1)k0]n0 , �)th entry of the (i +1, i +1)th n0×n0-block, but does
not affect the entries (1+[(�′−1)k0]n0 , �′)th (∀�′ 
= �) of the same block. In particular,
the steps (2)� can be applied in any order of the �’s, and when the (2)�0 is applied first
to A′i (to kill its (n0(i−1)+�0)th column and (n0(i−1)+1+[(�0−1)k0]n0)th row)
giving the matrix A′′i,�0 , then the (1 + [(�0 − 1)k0]n0 , �0)th entry of (i + 1, i + 1)th
n0 × n0-block of A′′i,�0 already coincides modulo p with the same entry of Ai+1.
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We now show that for 1 ≤ i ≤ n, the matrix Ai appearing in the algorithm is i-nice.
(By induction we may assume that Ai ′ is i ′-nice for 1 ≤ i ′ < i , which is sufficient to
run the first i−1 steps of the algorithm to obtain Ai ). For 1 ≤ j ≤ i ′ ≤ n, 1 ≤ � ≤ n′,
let αi ′, j,� ∈ O/p denote the residue modulo p of the (1+ [(�− 1)k0]n0 , �)th entry of
the ( j, j)th n0 × n0-block of Ai ′ . Note that αi ′, j,� = αi ′′, j,� for all 1 ≤ j ≤ i ′ ≤ i ′′.
Indeed, if j < i ′, this is obvious as the first i ′ − 1 diagonal blocks of Ai ′ and Ai ′′
coincide. If j = i ′ observe that the (1+[(�−1)k0]n0 , �)th entries (for all 1 ≤ � ≤ n0)
of the (i ′, i ′)th n0 × n0-block of Ai ′ can only be affected by step (1) of the algorithm,
which does not change the residue modulo p.

Recall the image x̄ = (x̄1, . . . , x̄n′)T of x in V and the corresponding matrix
gb(x̄) ∈ GLn′(Fq) defined in Sect. 6.3. For 1 ≤ i ≤ n′, let mi ∈ Fq denote the

determinant of the upper left i × i-minor of gb(x̄). By Lemma 6.16, mi ∈ F
×
q for all

i . We claim that for 1 ≤ � ≤ n0,

αi, j,� =
{

σ�−1(m1) if j = 1

σ�−1( m j
m j−1 ) if 2 ≤ j ≤ i

(6.8)

By induction we may assume that this holds for all 1 ≤ i ′ < i , from which (6.8)
follows for all j < i . It thus remains to compute αi,i,�. Note that for 1 ≤ � ≤ n0,
the (1+ [(�− 1)k0]n0 , �)-entry of A1 = gred

b (x) is equal to is equal to σ�−1(x1,0) =
σ�−1(x̄1). This finishes the case i = 1. Assume i ≥ 2 and fix some 1 ≤ � ≤ n0. By the
observation above, αi,i,� is equal to the residue modulo p of the (1+[(�−1)k0]n0 , �)th
entry of the (i, i)th n0×n0-block of the matrix A′′i−1,�, obtained from A′i−1 by directly
applying step (2)�.

For X ∈ GLn(K̆ ), let M(X) denote the (n0(i−1)+1)×(n0(i−1)+1)-minor of X
obtained by removing from X all columns with numbers { j : j > n0(i − 1) and j 
=
n0(i − 1)+ �} and all rows with numbers {s : s > n0(i − 1) and s 
= n0(i − 1)+ 1+
[(�− 1)k0]n0}. We compute:

αi,i,�

n0∏

λ=1
σλ−1(mi−1) ≡ det M(A′′i−1,�) = det M(A′i−1) = det M(gred

b (x)) mod p.

The first equality follows from the explicit form of A′′i−1,� and by the induction hypoth-
esis on theαi, j,�’s. The remaining equalities are true as every operation in the algorithm
does not change the determinant of thematrices. On the other side, a simple calculation
shows that

det M(gred
b (x)) ≡ σ�(mi )

σ �(mi−1)

n0∏

λ=1
σλ−1(mi−1) mod p.

This finishes the proof of (6.8), and thus of the proposition. ��
Lemma 6.16 Let x ∈ L adm

0,b and let x̄ ∈ V denote its image. For 1 ≤ i ≤ n′, let mi

denote the upper left (i × i)-minor of gb(x̄) ∈ GLn′(Fq). Then mi ∈ F
×
q for all i .
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Proof Replacing Fqn0 by Fq we may assume that n0 = 1, n′ = n. We have gb(x̄) =
(x̄q j−1

i )1≤i, j≤n and det gb(x̄) ∈ F
×
q . Clearly, m1 = x̄1 
= 0. Let 2 ≤ i ≤ n. By

induction we may assume that mi ′ ∈ F
×
q for all 1 ≤ i ′ < i . Suppose mi = 0. This

means that the i vectors v j = (xqk−1
j )i

k=1 ∈ F
i
q (1 ≤ j ≤ i) are linearly Fq -dependent.

Note that the first i − 1 of these vectors are Fq -independent, as already the vectors

(xqk−1
j )i−1

k=1 ∈ F
i−1
q (1 ≤ j ≤ i − 1) are Fq -independent, which in turn follows from

the induction hypothesis mi−1 
= 0. This shows that there exist λ1, . . . , λi−1 ∈ Fq

with
∑i−1

j=1 λ jv j = vi . From this we deduce two systems of linear equations which

uniquely determine the λ j ’s: (1)
∑i−1

j=1 λ j (xqk−1
j )i−1

k=1 = (xqk−1
i )i−1

k=1 as well as (2)
∑i−1

j=1 λ j (xqk−1
j )i

k=2 = (xqk−1
i )i

k=2. Note that (2) is obtained from (1) by raising all

coefficients to the qth power. For 1 ≤ j ≤ i − 1 let m( j)
i−1 denote the minor mi−1, in

which j th row is replaced by (xqk−1
i )i−1

k=1. Then (1) gives λ j = m−1i−1m( j)
i−1, whereas

(2) gives λ j = (m−1i−1m( j)
i−1)q for each 1 ≤ j ≤ i − 1. Thus λ j ∈ Fq . This gives a

non-trivial Fq -relation between the x1, . . . , xi , and hence also between the first i rows
of gb(x̄), i.e., det gb(x̄) = 0, contradicting the assumption. ��

Let

�n′−1
Fqn0

:=P(V ) �

⋃

H⊆V
Fqn0−rational hyperplane

H (6.9)

be n′ − 1-dimensional Drinfeld’s upper half-space over Fqn0 .

Theorem 6.17 Let b be the special representative with κGLn (b) = κ . Let r > m ≥ 0.
Then we have a decomposition of Fq-schemes

Xm
ẇr

(b) ∼=
⊔

G/GO

�n′−1
Fqn0

× A,

where A is a finite dimensional affine space over Fq (with dimension depending on
r , m). The morphism Ẋm

ẇr
(b) → Xm

ẇr
(b) is a finite étale Tw(OK /�m+1)-torsor. In

particular, all these schemes are smooth.

Proof To prove the first statement of the theorem it suffices, by applying Proposition
6.12, to show that Xm

ẇr
(b)L0 is a locally closed subset of GLn(K̆ )/I m isomorphic to

�n′−1
Fqn0

× A. By Proposition 6.15, Xm
ẇr

(b)L0 ⊆ IvDκ,nμr (�)I/I m . So, it suffices to

show that as a subset of IvDκ,nμr (�)I/I m , Xm
ẇr

(b)L0 is locally closed and with its

induced reduced sub-scheme-structure isomorphic to �n′−1
Fqn0

× A. For simplicity, we

treat the case that κ = 0 or 1, so that v = Dκ,n = 1. The general case is done in exactly
the same way, but is slightly more technical due to the presence of the permutation
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matrix v (the corresponding technical details are very similar to those appearing in the
proof of Proposition 6.15, which we proved in full generality).

First, by Lemma 4.7, Iμr (�)I/I m is isomorphic to an affine space and we fix
the following coordinates on it: let αi j (1 ≤ i 
= j ≤ n) denote the root of Tdiag
corresponding to (i, j)th matrix entry. Then

ψ : Iμr (�)I/I m ∼→ C :=
n∏

i=2
L [0,(i−1)r)Uαi1

︸ ︷︷ ︸
A:=

×
∏

n≥i> j>1

L [0,(i− j)r)Uαi j

︸ ︷︷ ︸
B:=

×I/I m

(6.10)

(the products can be taken in any fixed order; each factor – including I/I m – is
an affine space over Fq ) is a parametrization of Iμr (�)I/I m , whose inverse sends
(ai1)

n
i=2, (ai j )i> j 
=1, g to

∏n
i=2 ai1 ·∏i, j ai j · μ̇r (�) · gI m . It suffices to show that

there is an open subset U ⊆ A, isomorphic to �n′−1
Fqn0

× A, such that Xẇr (b)L0 ⊆
Iμr (�)I/I m is the graph of some morphism f : U → B × I/I m . Indeed, then it
follows that Xẇr (b)L0 is a locally closed subset of Iμr (�)I/I m , which (endowed
with the induced reduced sub-scheme structure) gets isomorphic toU via the projection
p : C ∼= A× B× I/I m → A to the first factor. First, we defineU . Therefore, consider
the natural projection

A �
n′∏

i=2
L [0,1)Uα1+n0(i−1),1 ∼= {[v] ∈ P(V ) : v =∑i vi e1+n0(i−1) ∈ V , v1 
= 0}

(6.11)

where the latter isomorphism is (vi )
n′
i=2 �→ [1 : v2 : · · · : vn′ ] and let U be the

preimage of �n′−1
Fqn0

, which is a subspace of the right hand side via (6.9). (If n′ = 1, V

is one-dimensional, and the right hand side of (6.11) as well as �n′−1
Fqn0

is a point). It is

clear that U ∼= �n′−1
Fqn0

× A.

Next, we determine the image of Xm
ẇr

(b)L0 under ψ . Let gb,r (x)I m =
gred

b (x)μr (�)I m ∈ Xẇr (b)L0 , i.e., x ∈ L adm
0 . This point does not change if we

multiply gb,r (x) by an element of I m from the right, or equivalently, if we multiply
g := gred

b (x) by an element of

μr (�) I m = μr (�)I mμr (�)−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

O× pm+1−r · · · · · · pm+1−(n−1)r
∗ O× pm+1−r · · · pm+1−(n−2)r
.
.
.

. . .
. . .

. . .
.
.
.

∗ · · · ∗ O× pm+1−r

∗ · · · · · · ∗ O×

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6.12)

from the right (the entries marked with ∗ are uninteresting for us). First, we multiply
g by the diagonal matrix i1 = diag(x1, σ (x1), . . . , σ n−1(x1))−1 ∈ μr (�) I m (note that
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x1 invertible by (6.6); see also Lemma 6.16), achieving that all entries of gi1 are of the
form σ i (

x j
x1

) resp. �σ i (
x j
x1

) and, in particular, the first column of gi1 has the entries

1, x2
x1

, . . . , xn
x1
. Next, using that r > m, so that all pm+1−r ⊇ O in (6.12), we may

eliminate all (1, j)th (2 ≤ j ≤ n) entries of gi1, i.e., we find some i ′1 ∈ μr (�) I m (with
entries different from 0 and 1 only in the first row), such that gi1i ′1 has the same first
columnas gi1 and 0’s in all entries of thefirst rowexcept thefirst one.Also, all entries of
gi1i ′1 lie inO and are some functions in σ i (

x j
x1

) (as the same is true for gi1). Moreover,
the (2, 2) entry of gi1i ′1 must now be inO× (otherwise gμr (�)I m /∈ Iμr (�)I/I m),
and we can iterate the procedure: rescale the second column such that (2, 2)th entry
equals 1, then kill all entries (2, j) with 3 ≤ j ≤ n, etc. At the end we obtain a matrix
g′ = gi1i ′1i2i ′2 . . . in−1i ′n−1, such that g′μr (�)I m = gμr (�)I m and

g′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . . . . . . . 0
x2
x1

1 0 . . . . . . 0
x3
x1

∗ 1 . . . . . . 0
...

. . .
. . .

. . .
. . .

...
xn−1

x1
∗ . . . ∗ 1 0

xn
x1

∗ . . . ∗ ∗ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . . . . . . . 0
x2
x1

1 0 . . . . . . 0
x3
x1

0 1 . . . . . . 0
...

. . .
. . .

. . .
. . .

...
xn−1

x1
0 . . . 0 1 0

xn
x1

0 . . . 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . . . . . . . 0
0 1 0 . . . . . . 0
0 ∗ 1 . . . . . . 0
...

. . .
. . .

. . .
. . .

...

0 ∗ . . . ∗ 1 0
0 ∗ . . . ∗ ∗ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the entries marked by ∗ all lie in O and are functions of x2
x1
, . . . , xn

x1
. We can

regard the first matrix in the product as an element of A (as in (6.10)), and moreover
from (6.6) it follows that it lies in the open subset U ⊆ A. It gets clear now that
with respect to the parametrization in (6.10), ψ(Xm

ẇr
(b)L0) consists of points of the

form (u, f0(u), 1 · I m) with u ∈ U ⊆ A and f0(u) ∈ B, where f0 : U → B
is some morphism (which determines the entries ∗ in terms of x2

x1
, . . . , xn

x1
). Thus

f : U → B × I/I m , defined by u �→ ( f0(u), 1 · I m) is the required morphism we
wished to construct. This finishes the proof of the first claim of the theorem.

For the second claim in the theorem, we could repeat the above arguments with
Iμr (�)I/ İ m replacing Iμr (�)I/I m . Alternatively we can argue as follows: by The-
orem 4.9 (see Remark 6.3 and Lemma 6.4), Ẋm

ẇr
(b) is locally closed in G(K̆ )/ İ m ,

and hence a scheme locally of finite type over Fq (Corollary 4.10), and by Proposi-
tion 4.2(iii) the morphism G(K̆ )/ İ m → G(K̆ )/I m is representable and has sections
étale-locally. It thus follows that Ẋm

ẇr
(b)→ Xm

wr
(b) is a honest morphism of schemes

locally of finite type overFq .Moreover, by the explicit description on geometric points
in Theorem 6.5 it is surjective and a torsor under Tw(OK /�m+1). ��
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Corollary 6.18 Let r ′ > m′ > 0, r > m > 0 be two pairs of integers with r ′ ≥ r ,
m′ ≥ m. Then all maps Xm′

ẇr ′ (b)→ Xm
ẇr

(b), Ẋm′
ẇr ′ (b)→ Ẋm

ẇr
(b), Ẋm′

ẇr ′ (b)→ Xm
ẇr

(b)

induced by gb,r ′(x) �→ gb,r (x) are morphisms of schemes. In particular, X∞w (b) and
Ẋ∞w (b) are schemes over Fq .

Proof With respect to the coordinates on Xm
ẇr

(b), Ẋm
ẇr

(b) in the proof of Theorem6.17,
these maps are simply induced by the natural projections L [0,ν′)Uα j,1 → L [0,ν)Uα j,1

for ν′ ≥ ν and L [0,m′+1)Gm → L [0,m+1)Gm for m′ ≥ m. ��

We are now ready to endow all objects in the diagram in Theorem 6.9 with scheme
structures and compare them. The set L adm,rat

0,b has an obvious scheme structure as
a closed subset of the infinite dimensional affine space L0 over Fq . Analogously,
the natural embedding L adm

0 /O× ⊆ L0/O× = L+P(L0)(Fq), where L+P(L0) is
an infinite-dimensional Fq -scheme, endows L adm

0 /O× with the structure of an open

subscheme. We endow V adm,rat
b and V adm

b /O× with the scheme structure of a disjoint
union:

V adm,rat
b =

⊔

g∈G/GO

g.L adm,rat
0,b and V adm

b /O× =
⊔

g∈G/GO

g.
(
L adm

0,b /O×
)

.

Since the action of� on V adm
b /O× just permutes the connected components, the quo-

tientV adm/K̆× inherits the scheme structureV adm/K̆× =⊔G/Z(G)GO g.
(
L adm

0,b /O×
)
.

Corollary 6.19 The maps of sets V adm,rat
b

∼→ Ẋ∞w (b), V adm
b /O× ∼→ X∞w (b) from

Theorem 6.9 are isomorphisms of Fq-schemes. We endow X DL
w (b), Ẋ DL

w (b) with the
scheme structure via the isomorphisms in the diagram in Theorem 6.9.

Proof To show the first isomorphism, it suffices to prove that for the special represen-
tative b, we have an isomorphism of schemesL adm,rat

0,b
∼→ Ẋ∞w (b)L0 . Rescaling by an

appropriate element of O×, we may replace L adm,rat
0,b by L adm,rat,ẇ0

0,b . With notation

as in the proof of Theorem 6.17, the coordinates on the inverse limit Ẋ∞w (b)L0 are

given by ((aα j,1)
n
j=2, c1) ∈ L+Uα j,1 × L+Gm and the mapL adm,rat,ẇ0

0,b → Ẋ∞w (b)L0

is given by (xi )
n
i=1 �→ (

x j
x1

)n
j=2, x1. This is an isomorphism. The second isomorphism

is proven similarly. ��

6.5 Example SL2,w Coxeter, b = 1

It is instructive to explicate the scheme structure on X DL
w (1) from Remark 3.3(ii)

and compare it to the one obtained via affine Deligne–Lusztig varieties (a similar
description applies in a number of further cases, in particular for GLn or GSp2n and
w Coxeter). We have SL2 /B = P

1 and

X DL
w (1) = P

1(K̆ ) � P
1(K ).
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It is thus given by the open condition det
(

x σ(x)
y σ(y)

)
= xσ(y)− σ(x)y 
= 0 inside

LP
1
K (Fq) = L+P

1
OK

(Fq) = P
1(O) = {[x : y] : x, y ∈ O, at least one of x, y lies in O×}

(where [x : y] = [x ′ : y′] if and only if there exists a ∈ O∗ with ax = x ′, ay = y′)
and

X DL
w (1)r = {[x : y] ∈ L+P

1
OK

(Fq) : σ(x)y − xσ(y) 
≡ 0 mod pr }.

It is clear (from the version of Theorem 6.5 for SL2) that if g ∈ SL2(K ) � SL2(O),
then g.X DL

w (1)1∩ X DL
w (1)1 = ∅. Moreover, X DL

w (1)1 ⊆ X DL
w (1) is dense open. This

means that g maps a dense open subset of X DL
w (1) onto a subset which lies in its

boundary and hence cannot be dense. Thus g cannot be an automorphism of the
scheme X DL

w (1), and the action of G on X DL
w (1) with the above scheme structure is

not algebraic.
The subsets Yr of L+r P

1
OK

(Fq) = P
1(O/pr ) can easily be computed to be

Y1 = �Fq

Y2 = (�Fq × A
1) �

⊔

λ∈P1(Fq )

�Fq ,

...

Yr = (Yr−1 × A
1
Fq

) �
⊔

�Fq ,

where the last union is taken over all hyperspecial vertices in the Bruhat–Tits building
of SL2 over K such that theminimal gallery connecting this vertex to the one stabilized
bySL2(OK ) has length 2r−1. The unions are disjoint set-theoretically but not scheme-
theoretically, since for example the preimage of Y1 in Y2 is open and not closed.

On the other hand, we can explicate the way in which X DL
w (1) is built from finite-

dimensional pieces as dictated by Theorems 6.5, 6.17. In fact, X DL
w (1) is an inverse

limit of the affine Deligne–Lusztig varieties of increasing level

Xm
ẇm

(1) ∼=
⊔

SL2(K )/SL2(OK )

�1
Fq
× A,

where �1
Fq
= P

1
Fq

� P
1(Fq) is the Drinfeld upper half-plane over Fq , ẇm are lifts of

w whose length in the affine Weyl group has to grow with m, and A is some finite
dimensional affine space over Fq , whose dimension depends on m and ẇm and goes
to∞ when m →∞.
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7 A family of finite-type varieties Xh

In this section, we study the geometry of a family of finite-type varieties Xh for h ≥ 1
which have natural projection maps Xh → Xh−1. These varieties are more tractable
than (components of) the affine Deligne–Lusztig varieties Ẋm

ẇr
(b)L0 , but we can see

that after passing to the limit, these two families at infinite level are the same:

lim←−
r ,m : r>m

Ẋm
ẇr

(b)L0 = L adm,rat,ẇ0
0,b

∼= L adm,rat
0,b = lim←−

h

Xh . (7.1)

Ourwork in this sectionwill prepare us for Part 3, wherewewill study the cohomology
of Xh as representations of Gh × Th .

We remark that Xh will depend on whether we choose b to be the Coxeter-type
representative or the special representative, but they are isomorphic as Fqn -schemes
for the same reason as in Corollary 6.14. The flexibility of choosing this representative
b allows us to use a wide range of techniques to understand Xh and its cohomology.
We will see this theme throughout Part 3.

7.1 RamifiedWitt vectors

Recall the schemes W, Wh from Sect. 2 (see [18, 18.6.13, 25.3.18] for more details
on the construction of ramifiedWitt vectors). We will need to coordinatize W in order
to make an explicit computations about the variety Xh . If A is a perfect Fq -algebra,
the elements of W(A) can be written in the form

∑
i≥0[xi ]� i , where [xi ] is the

Teichmüller lift of xi ∈ A if char K = 0 and [xi ] = xi if char K > 0. (Note that the
perfectness assumption is only necessarywhen char K = 0.)We identifyWwithA

Z≥0

and identify Wh with A
h under this choice of coordinates. We recall the following

lemma about the ring structure of W with respect to these coordinates.

Lemma 7.1 Let A be a perfect Fq -algebra.

(i) The coefficient of � i in (
∑

i≥0[ai ]� i )+ (
∑

i≥0[bi ]� i ) is

[ai + bi + ci ], where ci ∈ A[a1/q N

j , b1/q N

j : j < i, N ∈ Z≥0].

(ii) The coefficient of � i in (
∑

i≥0[ai ]� i )(
∑

i≥0[bi ]� i ) is

[
i∑

j=0
a j bi− j + ci

]

, where ci ∈ A[ae1/q N

i1
be2/q N

i2
: i1 + i2 < i, e1, e2, N ∈ Z≥0].

In both cases, we call ci the “minor contribution.” Note that if char K > 0, then the
minor contribution is identically zero. In particular, for any given i , the i th minor
contribution does only depend on a j , b j with j < i .

This lemma says that up to “minor contributions”, working in coordinates with
the Witt vectors is the same as working in coordinates in Fq [[t]]. This allows us to
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uniformly perform calculations in the mixed and equal characteristic settings. We will
implicitly use Lemma 7.1 in Sects. 7.4 and 9.

Remark 7.2 Note in particular that by Lemma 7.1(ii), the coefficient of � i in the
product (

∑
i≥0[ai ]� i )(

∑
i≥0[bi ]� i ) is of the form [a0bi+ei ]where ei is independent

of bi . For this reason, the minor contributions never play a role in our formulae as we
study Xh as a subvariety of Xh−1×A

N (for some N ), and so the minor contributions
only contribute to unspecified “constant” terms (see c in Proposition 7.6).

We also point out a case where the minor contribution vanishes (this is used in
Proposition 7.7). Let A be a perfect Fq -algebra and pick an integer h ≥ 1. Then the
product (1 +∑i≥h[ai ]� i )(

∑
i≥0[bi ]� i ) ∈ [b0] + [b1]� + · · · + [bh−1]� h−1 +

[ah + a0bh]� h +� h+1
W(A). Indeed, it suffices to compute modulo � h+1 (that is,

in the (h + 1)-truncated ramified Witt vectors Wh+1(A)), where we have

(1+� h [ah ]) ·
h∑

i=0
[bi ]� i =

h−1∑

i=0
[bi ]� i +� h([bh ] + [b0ah ]) =

h−1∑

i=0
[bi ]� i + [bh + b0ah ]� h .

7.2 The scheme Xh

Fix a 0 ≤ κ < n and let b be either the Coxeter-type or special representative with
κG(b) = κ as in Sect. 5.2. Define the O-submodule of L0,

L (h)
0 :=

⊕

1≤i≤n
i≡1 (mod n0)

� hL0 ⊕
⊕

1≤i≤n
i 
≡1 (mod n0)

� h−1L0.

Under the conventions set in Sect. 7.1, any x ∈ L0/L
(h)
0 can be written as

x =
∑

1≤i≤n
i≡1 (mod n0)

h−1∑

�=0
[xi,�]��ei +

∑

1≤i≤n
i 
≡1 (mod n0)

h−2∑

�=0
[xi,�]��ei (xi,� ∈ Fq). (7.2)

This identifies L0/L
(h)
0 with A

n(h−1)+n′
Fqn

. Observe that if b is Coxeter-type, then

although L (h)
0 is stable under (bσ)n0�−k0 , the Fqn0 -rational structure given by this

Frobenius onL0/L
(h)
0 does not agree with the Fqn0 -rational structure on A

n(h−1)+n′

given by the standard Fqn0 -Frobenius.

Definition 7.3 For h ≥ 1, define

Xh(Fq) :=L adm,rat
0,b /L (h)

0 = image of L adm,rat
0,b inL0/L

(h)
0

and let Xh ⊂ A
n(h−1)+n′ be the Fqn -subscheme whose Fqn -rational structure comes

from the standard Fqn -Frobenius on A
n(h−1)+n′ .
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As det(gred
b (·)) : Xh → (OK /� h)× is a morphism onto a discrete scheme, we have

the scheme-theoretic disjoint decomposition

Xh =
⊔

a∈(OK /� h)×
ga .Xdet≡1

h , (7.3)

where Xdet≡1
h consists of all x ∈ Xh with det gred

b (x) ≡ 1 (mod � h), and ga ∈ Gh

is any matrix with determinant a.

Proposition 7.4 Xh is a smooth affine scheme of dimension (n−1)(h−1)+ (n′ −1).

Proof The proof is very similar to that of [12, Proposition 3.10]. Choose b to be the
Coxeter-type or special representative. Write det(gred

b (x1, . . . , xn)) = [gs]0≤s≤h−1.
It is enough to prove the assertions for the open and closed subset Xdet≡1

h , which is
defined by the equations g0 = 1 and gs = 0 for 1 ≤ s ≤ h − 1.

To prove that Xdet≡1
h is a smooth affine scheme of dimension (n−1)(h−1)+n′−1,

it suffices to show that for any point Xdet≡1
h , there exists a nonsingular h×h submatrix

of the Jacobian matrix J . First let gred
b (x1, . . . , xn) ∈ Xdet≡1

h . Then for some xr , the
determinant of the (n − 1)× (n − 1) minor obtained by deleting the 1st column and
the r th row is nonzero modulo �—denote by d[xr ] the reduction of this determinant.
From (6.5), observe that xr ,i only contributes to gs if i ≤ s,

gs = d[xr ]xr ,s + (terms w/ qth powers of xr ,s, and xi, j for (i, j) 
= (r , s)).

Reorder the rows of J so that the first h rows correspond to the coordinates
xr ,0, . . . , xr ,h−1 of xr ∈ Wh . Since we are working in characteristic p, we have

∂gs

∂x1,i
=

⎧
⎪⎨

⎪⎩

d[xr ] 
= 0 if i = s,

0 if i > s,

? if i < s.

This submatrix of J is an upper triangular matrix with nonzero determinant. Hence we
have shown that Xdet≡1

h is a smooth complete intersection of dimension (n − 1)(h −
1)+ n′ − 1. ��

7.3 Relation to classical Deligne–Lusztig varieties

Recall that for V = L0/L
(1)
0 we have that G1 = ResFqn0 /Fq GL(V ) (see Sects. 5.3,

5.6). The scheme X1 is a classical Deligne–Lusztig variety corresponding to the max-
imal nonsplit torus F

×
qn in G1(Fq) = GLn′(Fqn0 ). We get a commutative diagram

L0 L0/L
(h)
0 V V � {0} P(V )

L adm,rat
0,b Xh X1 �V
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where�V is isomorphic to the Drinfeld upper half-space P(V ) � P(V )(Fqn0 ) and X1

is a F
×
qn -torsor over �V . (If b is the special representative, �V is literally the Drinfeld

upper half-space.)
For v ∈ V define gb(v) to be the (n′ × n′)-matrix whose i th column is σb

i−1(v)

(written with respect to the basis {ei }i≡1 (mod n0) of V from Lemma 5.8). Then

X1 = {v ∈ V : det gb(v) ∈ F
×
qn0 }.

Example 7.5 If κ = 0, then V = L0/�L0, σb
i−1 = bσ and X1 is the Deligne–

Lusztig variety for GLn(Fq) associated to the maximal nonsplit torus F
×
qn . If κ, n are

coprime, then V is one-dimensional and X1 is a finite set of points and can be identified
with F

×
qn .

7.4 The projection Xh → Xh−1 and its fibers

Let h ≥ 2.Wewill actually work with an intermediate scheme: Xh � X+h−1 � Xh−1.
By Sects. 7.1, 7.2, the quotient L0/�

h−1L0 can be identified with the affine space
A

n(h−1). Define X+h−1 to be the Fqn -subscheme of A
n(h−1) defined by

X+h−1(Fq) :=L adm,rat
0,b /� h−1L0 = image of L adm,rat

0,b inL0/�
h−1L0.

Observe that

X+h−1 = Xh−1 × A
n−n′, (7.4)

since the coordinates xi,h−2 for i 
≡ 1 (mod n0) do not contribute to det(gred
b (x))

modulo � h−1. Furthermore, Xh is a closed subscheme of X+h−1×A
n′ , and under this

embedding

Xh ↪→ X+h−1 × A
n′ ,

we may write x = (̃x, x1,h−1, xn0+1,h−1, . . . , xn0(n′−1)+1,h−1) for x ∈ Xh and its
image x̃ ∈ X+h−1. More precisely, we have the following technical proposition, which
will be used in Sect. 9.

Proposition 7.6 Let h ≥ 2.

(i) Xh is the closed subscheme of X+h−1 × A
n′ cut out by the polynomial

P := Pq
0 − P0,

where [P0] is the coefficient of � h−1 in det(gred
b (·)).

123



1848 C. Chan, A. Ivanov

(ii) Let b be the special representative. Then

P0(x) = c(̃x)+
n0−1∑

i=0
P1(x)qi

where
∑n0−1

i=0 Pqi

1 exactly consists of all terms of P0 that depend on the coordi-
nates x1,h−1, xn0+1,h−1, . . . , xn0(n′−1)+1,h−1 and c is a morphism X+h−1 → A

1.

In particular, Xh is the closed subscheme of X+h−1 × A
n′ cut out by the equation

Pqn0

1 − P1 = c − cq .

(iii) Let b be the special representative. Explicitly, the polynomial in (ii) is given by

P1 =
∑

1≤i, j≤n′
m ji xq( j−1)n0

1+n0(i−1),h−1,

where m := (m ji ) j,i is the adjoint matrix of gb(x̄) and x̄ denotes the image of x in

V = L0/L
(1)
0 . Explicitly, m · gb(x̄) = det gb(x̄) · 1n′ and the ( j, i)th entry of m

is (−1)i+ j times the determinant of the (n′ − 1)× (n′ − 1) matrix obtained from
gb(x̄) by deleting the i th row and jth column.

Proof An explicit calculation shows that P0 = c+∑n0−1
i=0 σ i (P1), with P1 as claimed

if b is the special representative. Note that in the mixed characteristic setting, we use
Lemma 7.1(ii) to see that minor contributions only appear in the c(̃x) term. From this
the proposition easily follows. ��

7.5 Level compatibility on the cohomology of Xh

Proposition 7.7 Let h ≥ 2. The action of ker(Th → Th−1) = W
h−1
h (Fqn ) on Xh pre-

serves each fiber of the map Xh → Xh−1, the induced morphism Xh/W
h−1
h (Fqn )→

Xh−1 is smooth, and each of its fibers is isomorphic to A
n−1.

Proof Letb be the special representative and let x ∈ Xh be coordinatized as inSect. 7.2.
Then xi,0 
= 0 for i ≡ 1 (mod n0). By (a slight variant of) Proposition 7.6, Xh is
the closed subscheme of Xh−1 × A

n given by P = 0, where A
n has the coordinates

{yi }i=1,...,n , where yi = xi,h−1 if i ≡ 1 (mod n0) and yi = xi,h−2 if i 
≡ 1 (mod n0).
Note that the natural W

h−1
h (Fqn )-action on Xh extends to the action on Xh−1 × A

n

over Xh−1 given by

1+ [λ]� h−1 :
{

xi,h−1 �→ xi,h−1 + xi,0λ if i ≡ 1 (mod n0),

xi,h−2 �→ xi,h−2 otherwise,
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where λ ∈ Fqn . (Note that we use Remark 7.2 here.) Consider the morphism

f : Xh−1 × A
n → Xh−1 × A

n , yi �→

⎧
⎪⎪⎨

⎪⎪⎩

(
y1

x1,0

)qn

− y1
x1,0

if i = 1,

yi − xi,0 y1
x1,0

if i > 1, i ≡ 1 (mod n0),

yi if i 
≡ 1 (mod n0).

This morphism factors through the surjection Xh−1×A
n → Xh−1×A

n/W
h−1
h (Fqn )

so that it is a composition

Xh−1 × A
n → Xh−1 × A

n/W
h−1
h (Fqn )

∼→ Xh−1 × A
n,

where the second map must in fact be an isomorphism. Since W
h−1
h (Fqn ) is a p-

group, [11, Proposition 3.6] implies that P((yi )i=1,...,n) = P ′( f (yi )i=1,...,n) for
some P ′ : Xh−1 × A

n → A
1. Now Xh/W

h−1
h (Fqn ) is the closed subscheme of

Xh ×A
n/W

h−1
h (Fqn ) defined by P ′ = 0. We therefore have a commutative diagram

Xh−1 × A
n Xh−1 × A

n/W
h−1
h (Fqn ) Xh−1 × A

n

Xh Xh/W
h−1
h (Fqn ) {P ′ = 0},

∼

∼
(7.5)

Since P is a degree-qn polynomial in x1,h−1, we know that P ′ must be at most degree
one in y1. A calculation shows that the coefficient of y1 is the function on Xh−1 given
by x �→ det gb(x̄), where x̄ is the image of x ∈ Xh−1 in X1 (notation as in Sect. 7.3).
This function is constant on connected components of Xh−1, taking values in F

×
q . In

particular, the coefficient of y1 in P ′ over any point in Xh−1 is nonzero, so it follows
that each fiber of Xh/W

h−1
h (Fqn )→ Xh−1 is isomorphic to A

n−1. ��
Corollary 7.8 There is a natural isomorphism

Hi
c (Xh, Q�)

W
h−1
h (Fqn ) ∼= Hi+2(n−1)

c (Xh−1, Q�)(n − 1),

where (n − 1) denotes the Tate twist.

This corollary allows to define a direct limit of the homology groups for Xh (see
Sect. 11).

7.6 Xh as a subscheme ofGh

Let b be a Coxeter-type representative. Let 1 ≤ l ≤ n be an integer satisfying eκ,nl ≡ 1
(mod n). For x =∑n

i=1 xiei ∈ L0 where xi ∈ O, define

λ(x) :=
n∑

i=1

1

� �k0(i−1)/n0� · b
i−1 · D(xi ),
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where D(a) = diag(a, σ l(a), . . . , σ [(n−1)l](a)). Let γ be the inverse of the permuta-
tion of the set {1, 2, . . . , n} defined by 1 �→ 1 and i �→ [(i−1)eκ,n]+1 for 2 ≤ i ≤ n.
Let γ ∈ GLn(K ) also denote the matrix given by γ (ei ) = eγ (i).

Lemma 7.9 We have

λ(x) = gred
b (γ−1(x)) · γ.

In particular, det λ(x) = det gred
b (x). Moreover, we have γ b

eκ,n
0 γ−1 = b0.

Proof This is a direct computation. ��

Example 7.10 (i) For n = 3, κ = eκ,n = 1, we have b =
(
0 0 �
1 0 0
0 1 0

)
and for x =

( x1
x2
x3

)
,

λ(x) = gred
b (x) = gb(x) =

(
x1 �σ(x3) �σ 2(x2)
x2 σ(x1) �σ 2(x3)
x3 σ(x2) σ 2(x1)

)

.

We have F(λ(x)) 
= λ(σ(x)). Thus λ is not an Fq -morphism.

(ii) For n = 3, κ = 2, eκ,n = 2, we have b =
(
0 � 0
0 0 �
1 0 0

)
and

gredb (x) =
(

x1 �σ(x2) �σ2(x3)
x2 �σ(x3) σ2(x1)
x3 σ(x1) σ2(x2)

)

and λ(x) =
(

x1 �σ2(x2) �σ(x3)
x3 σ2(x1) �σ(x2)
x2 σ2(x3) σ (x1)

)

∈ Ğx,0.

Proposition-Definition 7.11 The assignment λ defines an embedding,

L0 ↪→ Mn′(ODk0/n0
),

which restricts to

λ : L adm
0,b ↪→ Ğx,0,

Moreover, det(λ(x)) ∈ O×K if and only if x ∈ L adm,rat
b,0 . The reduction modulo � h of

λ induces an Fqn -rational embedding

L adm,rat
0,b /L (h)

0 = Xh ↪→ Gh .

We denote its image again by Xh. This is an Fqn -subscheme of Gh.

Proof It is easy to see that λ(ei ) ∈ Mn′(ODk0/n0
) for i = 1, . . . , n. This implies that

λ(L0) ⊆ Mn′(ODk0/n0
). By Lemma 7.9 it is immediate that det(λ(x)) ∈ O× if and

only if det(gred
b (x)) ∈ O× and similarly det(λ(x)) ∈ O×K if and only if det(gred

b (x)) ∈
O×K . Finally, note that λ is a Fqn -morphism since λ(σ n(x)) = σ n(λ(x)) = Fn(λ(x)).

��
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Thenatural (Ğ F
x,0×O×L )-action onL adm,rat

0,b induces a left action of (Gh×Th)-action
on Xh ⊆ Gh , given by left-multiplication by Gh = Gh(Fq) and right-multiplication
by Th = Th(Fq):

(g, t) · x := gxt, for g ∈ Gh, t ∈ Th, x ∈ Xh .

7.7 Relation to Deligne–Lusztig varieties for finite rings

Let b be the Coxeter-type representative. The following proposition gives a descrip-
tion of Xh reminiscent of Deligne–Lusztig varieties for reductive groups over finite
rings [26,31]. Let Uup and Ulow denote the K̆ -subgroups of upper and lower tri-
angular unipotent matrices in Jb. Consider the unipotent radicals U := γ−1Uupγ ,
U− = γ−1Ulowγ of opposite Borels (over K̆ ) in Jb containing the diagonal torus
T . Let U and U

− denote the smooth subgroup schemes of G whose Fq -points are
U (K̆ )∩ Ğx,0 and U−(K̆ )∩ Ğx,0, and let Uh and U

−
h be the corresponding subgroups

of Gh .

Proposition 7.12 The subgroup U
−
h ∩F(Uh) ⊆ Gh consists of matrices with 1’s along

the main diagonal and 0’s outside the first column. We have

Xh(Fq) =
{

g ∈ Gh(Fq) : g−1F(g) ∈ U
−
h ∩ F(Uh)

}

=
{

g ∈ Gh(Fq) : g−1F(g) ∈ U
−
h

}
/(U−h ∩ F−1(U−h )).

Proof Using γ b
eκ,n
0 γ−1 = b0 and γ tκ,nγ

−1 = tκ,n from Lemma 7.9, we compute

U− ∩ F(U ) = γ−1Ulowγ ∩ F(γ−1Uupγ ) = γ−1Ulowγ ∩ b
eκ,n
0 tκ,nγ−1Uupt−1κ,nb

−eκ,n
0 γ

= γ−1(Ulow ∩ b0Uupb−10 )γ

and (using γ (e1) = e1) the claim about U
−
h ∩ F(Uh) follows easily. For any a ∈

Wh(Fq), we have that

F(diag(a, σ [l](a), . . . , σ [(n−1)l](a))) = diag(σ n(a), σ [l](a), . . . , σ [(n−1)l](a)).

Thus for any v = (vi )
n
i=1 with vi ∈ Wh(Fq) (i ≡ 1 (mod n0)) and vi ∈ Wh−1(Fq)

(i 
≡ 1 (mod n0)),

F(λ(x)) =
n∑

i=1

1

� �k0(i−1)/n0� · b
i−1 · diag(σ n(xi ), σ

[l](xi ), . . . , σ
[(n−1)l](xi ))

differs fromλ(x) in only the first column. Thus for x ∈ L0, we see thatλ(x)−1F(λ(x))

can differ from an element of U
−
h ∩ F(Uh) only in the left upper entry, and this entry
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is equal to det(λ(x)−1F(λ(x))) = det(gred
b (x)−1σ(gb(x))) (Lemma 7.9). Now for

x ∈ L adm,rat
0 , det gred

b (x) ∈ O×K . This proves

Xh ⊂
{

g ∈ Gh(Fq) : g−1F(g) ∈ U
−
h ∩ F(Uh)

}
.

To see the other inclusion, observe that if F(g) = g · u for some u ∈ U
−
h ∩ F(Uh),

then comparing the j th column for j ≥ 2 shows that g must necessarily be of the form
λ(v) for some v ∈ L adm

0 . The determinant condition then follows from det(u) = 1.
The last equality in the proposition follows from Lemma 7.13. ��

Lemma 7.13 The morphism

(U−h ∩ F−1U−h )× (U−h ∩ FUh)→ U
−
h , (x, g) �→ x−1gF(x).

is an isomorphism.

Proof We can consider the Fq -scheme γ Gγ−1, whose Fq -points are γ G(Fq)γ−1,
together with a Frobenius isomorphism

F0 : γ Gγ−1 ∼→ γ Gγ−1, F0(x) = b0(γ tκ,nγ
−1)σ (x)(b0(γ tκ,nγ−1))−1

By Lemma 7.9, γ b
eκ,n
0 tκ,nγ−1 = b0(γ tκ,nγ−1). Thus if cγ : G

∼→ γ Gγ−1, x �→
γ xγ−1 denotes the conjugation by γ , we have cγ ◦ F = F0 ◦ cγ (this in particular
shows that F0 is an isomorphism).

We will first show that (U− ∩ F−1U−)× (U− ∩ FU)→ U
−, (x, g) �→ x−1gF(x)

is bijective. We haveU
−(Fq) = γ−1(Ŭlow∩γ G(Fq)γ−1)γ andU(Fq) = γ−1(Ŭup∩

γ G(Fq)γ−1)γ . Applying cγ , we thus have to show that the map

(
(Ŭlow ∩ γ G(Fq)γ−1) ∩ F0(Ŭlow ∩ γ G(Fq)γ−1)

)

× ((Ŭlow ∩ γ G(Fq)γ−1) ∩ F0(Ŭup ∩ γ G(Fq)γ−1)
)

→ Ŭlow ∩ γ G(Fq)γ−1, (7.6)

(x, g) �→ x−1gF0(x) is bijective. We first show that the following is an isomorphism:

(Ŭlow ∩ b−10 Ŭlowb0)× (Ŭlow ∩ b0Ŭupb−10 )→ Ŭlow, (x, g) �→ x−1gF0(x).

(7.7)
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To do this, it is equivalent to prove that given any A ∈ Ŭlow, there exists a unique
element (x, g) ∈ (Ŭlow ∩ b−10 Ŭlowb0)× (Ŭlow ∩ b0Ŭupb−10 ) such that x A = gF0(x).
We now compute explicitly and write

x =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · · · · 0
b21 1 0 · · · · · · 0

b31 b32 1
. . .

.

.

.

.

.

.
. . .

. . . 0
.
.
.

bn−1,1 bn−1,2 · · · bn−1,n−2 1 0
0 · · · · · · 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, g =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
c1 1 0 · · · 0

c2 0 1
. . .

.

.

.

.

.

.
.
.
.

. . .
. . . 0

cn−1 0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let γ tκ,nγ−1 = diag(t1, t2, . . . , tn) so that we have

b0tκ,nσ(x)t−1κ,nb−10 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 σ(b21)t2/t1 1 0 0

0 σ(b31)t3/t1 σ(b32)t3/t2 1
. . .

.

.

.

.

.

.
.
.
.

. . .
. . . 1 0

0 σ(bn−1,1)tn−1/t1 σ(bn−1,2)tn−1/t2 · · · σ(bn−1,n−2)tn−1/tn−2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We therefore see that the (i, j)th entry of gF0(x) is

(gF0(x))i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i = j,

0 if i < j,

ci−1 if i > j = 1,

σ (bi−1, j−1)ti−1/t j−1 if i > j > 1.

. (7.8)

We also compute the (i, j)th entry of x A when A = (ai, j )i, j ∈ Ŭlow:

(x A)i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i = j,

0 if i < j,

bi j +∑i−1
k= j+1 bikak j + ai j if j < i ≤ n − 1,

anj if j < i = n.

(7.9)

We now have n2 equations given by (7.8)= (7.9), viewed as equations in the variables
bi j and ci . First look at the equations corresponding to (n, 2), (n, 3), . . . , (n, n − 1).
This gives

σ(bn−1, j−1)tn−1/t j−1 = anj for 1 < j < n.

which uniquely determines bn−1,1, bn−1,2, . . . , bn−1,n−2. Proceeding inductively, let
1 < i ≤ n − 1, and suppose that all bi ′, j for all i ′ ≥ i and 1 < j ≤ i ′ are uniquely
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determined. Then look at the equations corresponding to (i−1, 2), (i−1, 3), . . . , (i−
1, i − 2). This gives

σ(bi−1, j−1)ti−1/t j−1 = bi, j +
i−1∑

k= j+1
bi,kak j + ai, j for 1 < j < i, (7.10)

which uniquely determines bi−1,1, bn−2,2, . . . , bi−1,i−2. This uniquely determines x .
Finally, by looking at the equations corresponding to (2, 1), (3, 1), . . . , (n, 1), it is
immediately clear that the ci ’s are also uniquely determined, so g is as well. This
shows the isomorphism (7.7).

Now we deduce (7.6) from this. Using the same notation as above, assume that
A ∈ Ŭlow ∩ γ G(Fq)γ−1. Let τi := ord(ti ) (1 ≤ i ≤ n) and λi, j denote the minimum
of valuations of all elements of γ G(Fq)γ−1 ∩ Ŭαi, j , where Ŭαi, j is the root subgroup
corresponding to the (i, j)th entry (1 ≤ i 
= j ≤ n). Then τi , λi j ∈ {0, 1} for all i, j .
Moreover, the fact that F0 is an isomorphism shows

λi, j = λi−1, j−1 + τi−1 − τ j−1. (7.11)

To establish (7.6),wehave to show that for all 2 ≤ j < i ≤ n,wehaveord(bi−1, j−1) ≥
λi−1, j−1 and ord(ci−1) ≥ λi−1,1.

We first prove the assertion about the b’s. As in the proof of (7.7) above, we may
proceed inductively on i : assuming that the assertion holds for all i ′ > i , we will show
that the assertion holds for i . (The basic induction step i = n follows from the same
argument as below.) Observe that if τi−1 = 0 and τ j−1 = 1, then we are done by
formula (7.10).

Assume that τi−1 = τ j−1. If λi−1, j−1 = 0 then by (7.10) there is again nothing to
show. Thus we may assume λi−1, j−1 = 1. By (7.10) we have to check that λi, j = 1
and that for each j+1 ≤ k ≤ i−1, either λi,k = 1 or λk, j = 1. First, λi, j = 1 follows
from (7.11). Second, αi,k + αk, j = αi, j (αi, j is the root of the diagonal torus of GLn

corresponding to (i, j)th entry). Thus the fact that γ G(Fq)γ−1 is a group implies that
λi,k + λk, j ≥ λi, j (for all k), so λi,k = 1 or λk, j = 1.

Finally, assume that τi−1 = 1, τ j−1 = 0. Then (7.11) implies λi−1, j−1 = 0 and
λi, j = 1. Then by (7.10) we have to show that λi, j = 1 (which we already know) and
that for each j + 1 ≤ k ≤ i − 1, we have λi,k = 1 or λk, j = 1 (which holds for the
same reason as above). This completes the proof of the assertion about the b’s.

Analogously, one proves the assertion about the ci−1’s. Since (7.10) and the equa-
tions corresponding to (2, 1), (3, 1), . . . , (n, 1) uniquely determine the b’s and the c’s,
this establishes bijectivity of (7.6).

To finish the proof of the lemma, it suffices to check that if A1, A2 ∈ γ G(Fq)γ−1
differ by some element in the normal subgroup γ ker(G(Fq)→ Gh(Fq))γ−1, then the
corresponding pairs (x1, g1) and (x2, g2) with x−1i gi F0(xi ) = Ai (i = 1, 2) satisfy
x−11 x2, g−11 g2 ∈ ker(G(Fq)→ Gh(Fq)). Letλh

i, j ∈ {h−1, h} be the smallest possible

valuation of an element in γ ker(G(Fq) → Gh(Fq))γ−1 ∩ Ŭαi, j . As F0 induces an
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isomorphism of Gh , we again have a formula

λh
i, j = λh

i−1, j−1 + τi−1 − τ j−1.

We can once again proceed inductively to deduce that the bi−1, j−1 and ci−1
are uniquely determined as elements in pλi−1, j−1/pλh

i−1, j−1 by the elements ai, j ∈
pλi, j /p

λh
i, j . ��

Part 3. Alternating sum of cohomology of Xh

In this part, we study the virtual Gh-representations

RGh
Th

(θ) :=
∑

i≥0
(−1)i H i

c (Xh, Q�)[θ ],

where θ is a character of Th ∼= O×L /U h
L = W

×
h (Fqn ).

In Sect. 8, we prove that if θ is primitive, then RGh
Th

(θ) is (up to a sign) an irreducible
Gh-representation (Theorem 8.1). Our strategy is to extend ideas of Lusztig, who
proves the analogous result in the context of division algebras [25] and split groups
[26] (see [31] for the mixed characteristic analogue). This is done in Sect. 8.4. We
note that the main result there, Proposition 8.7, is more general than Theorem 8.1
in that it works for any Frobenius F on Gh and the F-fixed points of any F-stable
maximal torus in Gh . For example, if we take F to be the twisted Frobenius coming
from the Coxeter-type representative, then the F-fixed points of the diagonal torus
forms the group W

×
h (Fqn ), which exactly gives Theorem 8.1. On the other hand, if we

take F to be the twisted Frobenius coming from the special representative, then the
F-fixed points of the diagonal torus forms the n′-fold product of W

×
h (Fqn0 ), which

corresponds to the maximally split unramified torus in Gh .
In Sect. 8, we also give a character formula for RGh

Th
(θ) on certain elements of

Th (Proposition 8.3) and give a geometric interpretation of determinant-twisting on
the cohomology groups (Lemma 8.4). Keeping in mind the remarks in the preceding
paragraph, the methods in Sect. 8 primarily use the Coxeter-type representative b
(Sect. 5.2).

In Sect. 9, we prove an analogue of a cuspidality result for RGh
Th

(θ) when θ is
primitive (Theorem 9.1). To do this, we perform a character calculation using the
geometry of Xh . Our approach is a (far-reaching) generalization of the proof in [21]
in the special case G = GL2(K ). We use the special representative b (Sect. 5.2) as
F-stable parahoric subgroups are more well-behaved for this choice. We note that
although there is no notion of cuspidality for Gh-representations, we will see later
that Theorem 9.1 implies the supercuspidality of the corresponding G-representation
(Theorem 12.5).
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8 Deligne–Lusztig varieties for Moy–Prasad quotients for GLn

We say that a character θ : Th ∼= W
×
h (Fqn ) → Q

×
� is primitive if the restriction of

θ to W
h−1
h (Fqn ) does not factor through any nontrivial norm maps W

h−1
h (Fqn ) →

W
h−1
h (Fqr ) for r | n, r < n.

8.1 Irreducibility of RGhTh (�)

Theorem 8.1 Let θ, θ ′ : Th → Q
×
� be two characters and assume θ is primitive. Then

〈
RGh

Th
(θ), RGh

Th
(θ ′)
〉

Gh
=
{
1 if θ = θ ′,
0 otherwise.

In particular, the virtual Gh-representation RGh
Th

(θ) is (up to a sign) irreducible.

Let Uh, U
−
h ⊆ Gh be as in Sect. 7.7. Put

Sh := {x ∈ Gh : x−1F(x) ∈ U
−
h }.

This has an action of Gh × Th by (g, t) : x �→ gxt . Recalling from Proposition 7.12
that Xh = {x ∈ Gh : x−1F(x) ∈ U

−
h }/(U−h ∩ F(U−h )), we immediately have the

following lemma.

Lemma 8.2 The morphism Xh × (U−h ∩ FU
−
h )

∼→ Sh given by (x, h) �→ xh is a
(Gh × Th)-equivariant isomorphism, where the action on the left-hand side is given
by (g, t) : (x, h) �→ (gxt, t−1ht). As U

−
h ∩ FU

−
h is isomorphic to an affine space,

for any character θ of Th, we have RGh
Th

(θ) = ∑i (−1)i H i
c (Sh, Q�)[θ ] as virtual

Gh-representations.

We show how to reduce Theorem 8.1 to a calculation of the cohomology of

� := {(x, x ′, y) ∈ U
−
h × U

−
h ×Gh : x F(y) = yx ′},

and postpone the study of � to Sect. 8.4. Taking for granted Proposition 8.7, we give
the proof of the main theorem:

Proof of Theorem 8.1 Let F be the twisted Frobenius given by the Coxeter-type rep-
resentative b of Sect. 5.2. Consider the action of Gh × Th × Th on Sh × Sh given by
(g, t1, t2) : (x1, x2) �→ (gx1t1, gx2t2). The map

(g, g′) �→ (x, x ′, y), x = g−1F(g), x ′ = g′−1F(g′), y = g−1g′
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defines an Th×Th-equivariant isomorphism Gh\Sh×Sh ∼= �. We denote by Hi
c (Sh×

Sh)θ−1,θ ′ and Hi
c (�)θ−1,θ ′ the subspace where Th × Th acts by θ−1 ⊗ θ ′. We have

〈RGh
Th

(θ), RGh
Th

(θ ′)〉Gh =
∑

i,i ′∈Z
(−1)i+i ′ dim(Hi

c (Xh , Q�)[θ−1] ⊗ Hi ′
c (Xh , Q�)[θ ′])Gh

=
∑

i,i ′∈Z
(−1)i+i ′ dim(Hi

c (Sh , Q�)[θ−1] ⊗ Hi ′
c (Sh , Q�)[θ ′])Gh (by Lemma 8.2)

=
∑

i∈Z
(−1)i dim Hi

c (Gh\(Sh × Sh), Q�)θ−1,θ ′

=
∑

i∈Z
(−1)i dim Hi

c (�, Q�)θ−1,θ ′

= #{γ ∈ Gal(L/K ) : θ ◦ γ = θ ′} (by Proposition 8.7)

where in the final equality, we use the fact that θ is primitive if and only if θ is regular
in the sense of Lusztig [26, 1.5] with respect to the F coming from the Coxeter-type
representative b. Finally, since the primitivity of θ implies that the stabilizer of θ in
Gal(L/K ) is trivial, the desired conclusion of Theorem 8.1 now follows. ��

8.2 Traces of very regular elements

In Part 4, where we study RGh
Th

(θ) from the perspective of automorphic induction, we

will need to know the trace of very regular elements of O×L ; i.e. elements x ∈ O×L
whose image in the residue field generates the multiplicative group F

×
qn . In fact, we

can explicate the character on elements of O×L whose image in the residue field has
trivial Gal(Fqn /Fq)-stabilizer.

Proposition 8.3 Let θ : Th → Q
×
� be any character. Then for any element x ∈

O×L /U h
L
∼= Th in Gh whose image in the residue field has trivial Gal(Fqn /Fq)-

stabilizer,

Tr
(

x∗; RGh
Th

(θ)
)
=

∑

γ∈Gal(L/K )[n′]
θγ (x),

where Gal(L/K )[n′] is the unique order n′ subgroup of Gal(L/K ).

Proof Let ζ1, ζ2 ∈ Th be (qn − 1)th roots of unity, let t1, t2 ∈ T 1
h , and assume that

the image of ζ1 modulo � has trivial Gal(Fqn /Fq)-stabilizer. Note that (ζ1t1, ζ2t2) ∈
Gh × Th and therefore acts on Xh . By Proposition 7.4, Xh is a separated, finite-
type scheme over Fqn . Since (ζ1, ζ2) = (ζ1t1, ζ2t2)qn(h−1)

has order prime-to-p and
(t1, t2) = (ζ1t1, ζ2t2)N (where N ≡ 1 (mod qn(h−1)) and (qn − 1) | N ) has order a
power of p, by the Deligne–Lusztig fixed-point formula [13, Theorem 3.2],

∑

i

(−1)i Tr
(
(ζ1t1, ζ2t2)

∗; Hi
c (Xh, Q�)

)
=
∑

i

(−1)i Tr
(
(t1, t2)

∗; Hi
c (X (ζ1,ζ2)

h , Q�)
)

.
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By definition, if λ(x) ∈ Xh corresponds to x = (x1, . . . , xn) ∈ L adm,rat
0,b /L (h)

0 , then

(ζ1, ζ2)x corresponds to the tuple (ζ1ζ2x1, σ l(ζ1)ζ2x2, . . . , σ (n−1)l(ζ1)ζ2xn), where l
is the inverse of eκ,n (mod n). In particular, we see that if ζ1 has trivial stabilizer in
Gal(Fqn /Fq), then the set X (ζ1,ζ2)

h is nonzero if and only if ζ−12 is one of the n distinct
elements ζ1, σ (ζ1), . . . , σ

n−1(ζ1).
Assume ζ−12 = σ jl(ζ1)with 0 ≤ j ≤ n−1, then the elements of X (ζ1,ζ2)

h correspond
to vectors of the shape x = (0, . . . , 0, x j+1, 0, . . . , 0). If n0 does not divide j , then
det λ(x) ≡ 0 (mod �), which contradicts det λ(x) ∈ O×K . Thus in this case we

have X (ζ1,ζ2)
h = ∅. Assume n0 divides j . Then x = (0, . . . , 0, x j+1, 0, . . . , 0) with

x j+1 ∈ Wh(Fq) lies in Xh if and only if det λ(x) = ∏n−1
i=0 σ i (x j+1) ∈ (OK /� h)×.

Thus X (ζ1,ζ2)
h = {x = (0, . . . , 0, x j+1, 0, . . . , 0) : x j+1 ∈ (OL/� h)× = Th} is zero-

dimensional, and the action of (t1, t2) is given by x j+1 �→ σ jl(t1)t2x j+1. Thus

Tr((t1, t2)
∗, H0

c (X (ζ1,ζ2)
h )) =

{
#Th if t2 = σ jl(t1)−1,
0 otherwise.

From this, we see that

Tr
(
(ζ1t1, 1)

∗; R
Gh
Th

(θ)
)
= 1

#Th

∑

ζ2∈F
×
qn

∑

t2∈T 1
h

θ(ζ2)
−1θ(t2)

−1 Tr
(
(t1, t2)

∗; H0
c (X

(ζ1,ζ2)
h , Q�)

)

=
∑

0≤ j≤n−1
n0| j

θ(σ jl (ζ1))θ(σ jl (t1)) =
∑

γ∈Gal(L/K )[n′]
θγ (ζ1t1).

��

8.3 Behavior under twisting of�

Lemma 8.4 Let θ : Th → Q
×
� be a character with trivial Gal(L/K )-stabilizer and let

χ : W
×
h (Fq)→ Q

×
� be any character. Then as Gh-representations,

Hi
c (Xh, Q�)[θ ⊗ (χ ◦ Nm)] ∼= Hi

c (Xh, Q�)[θ ] ⊗ (χ ◦ det), for all i ≥ 0.

Proof Let �h denote the kernel of the natural homomorphism Gh × Th → W
×
h (Fq)

given by (g, t) �→ det(t)Nm(t). Recall from (7.3) that we have a scheme-theoretic
morphism Xh → W

×
h (Fq).Write Xdet≡1

h for the preimage of the identity. First observe
that as Gh × Th-representations,

⊕

θ ′ : Th→Q�

θ ′|T ◦h =θ |T ◦h

Hi
c (Xh, Q�)[θ ′] ∼= IndGh×Th

�h

(
Hi

c (Xdet≡1
h , Q�)[θ |T ◦h ]

)
.
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Since the number of summands on the left-hand side is equal to the index of �h in
Gh × Th , it follows that as representations of �h ,

Hi
c (Xh, Q�)[θ ′] ∼= Hi

c (Xdet≡1
h , Q�)[θ |T ◦h ] (8.1)

for any θ ′ : Th → Q
×
� with θ ′|T ◦h = θ |T ◦h . In particular, as �h-representations,

Hi
c (Xh, Q�)[θ ⊗ (χ ◦ Nm)] ∼= Hi

c (Xh, Q�)[θ ].

Now observe that the subgroup of Gh×Th generated by �h and 1×Th is the whole
group. For any g ∈ Gh , let tg ∈ Th be any element such that det(g)Nm(tg) = 1. Then
(g, tg) ∈ �h , and we have

Tr((g, 1)∗; Hi
c (Xh, Q�)[θ ⊗ (χ ◦ Nm)])

= Tr((g, tg)
∗; Hi

c (Xh, Q�)[θ ⊗ (χ ◦ Nm)]) · θ(t−1g ) · χ(Nm(t−1g ))

= Tr((g, tg)
∗; Hi

c (Xh, Q�)[θ ]) · θ(t−1g ) · χ(Nm(t−1g ))

= Tr((g, 1)∗; Hi
c (Xh, Q�)[θ ]) · θ(tg) · θ(t−1g ) · χ(Nm(t−1g ))

= Tr((g, 1)∗; Hi
c (Xh, Q�)[θ ]) · χ(det(g)).

��
Observe that by Lemma 8.4, we have that RGh

Th
(θ) is (up to sign) irreducible if and

only if RGh
Th

(θ⊗ (χ ◦Nm)) is, where χ : Wh(Fq)× → Q
×
� . Recall that by Proposition

7.7, if θ is a character of Th that factors through the natural surjection Th → Th′ for

some h′ < h, then RGh
Th

(θ) = R
Gh′
Th′ (θ). Thus we can strengthen Theorem 8.1 to obtain

that RGh
Th

(θ⊗ (χ ◦Nm)) is (up to sign) irreducible for any primitive θ : Th′ → Q
×
� and

any χ : Wh(Fq)× → Q
×
� . Such characters exactly correspond to minimal admissible

characters of L× of level h (see Part 4). This argument will be appear again in the
proof of Theorem 12.5.

8.4 Lusztig’s theorem

This is a generalization of [26,31] to non-reductive groups over O. The Iwahori case
(which corresponds to the division algebra setting over K ) was done in [25] (see also
[12, Section 6.2]) and is a simpler incarnation of these ideas. We keep our notation as
close as possible to that of [26,31] as most of the arguments are the same.

8.4.1 Set-up

Let T , T ′ be two maximal F-stable tori of Jb, split over K̆ and let (U , U−) and
(U ′, U ′−) be two pairs of (possibly not F-stable) unipotent radicals of opposite Borels
containing T and T , respectively. (Outside Sect. 8.4 T always denotes a maximal
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elliptic torus of G, but here we want the notation to coincide with [26]). Consider
the intersections of K̆ -points of T , T ′, U , U−, U ′, U

′− with Ğx,0 (Sect. 5.3) and
denote the corresponding subgroup schemes in Gh by Th, T

′
h, Uh, U

−
h , U

′
h, U

′
h
−. For

1 ≤ a ≤ h, let G
a
h := ker(Gh → Ga) be the kernel of the natural projection, and

analogously define T
a
h, U

a
h, and so forth. We set Ga,∗

h = G
a
h � G

a+1
h , and analogously

for T
a,∗
h , U

a,∗
h , and so forth. We use the shorthand T :=T

h−1
h .

Let N (T, T
′) = {g ∈ Ğx,0 : g−1Tg = T

′} and N (Th, T
′
h) = {g ∈ Gh :

g−1Th g = T
′
h}, and define

W (T , T ′) :=T\N (T, T
′) = Th\N (Th, T

′
h).

Observe that W (T , T ′) is a principal homogeneous space under the Weyl group of the
torus T1 in the reductive quotient G1 of GO.

8.4.2 Roots and regularity

Let � = �(T , Jb) denote the set of roots of T in Jb. It carries a natural action of
F . For α ∈ �, let G

α
h denote the subgroup of Gh coming from the root subgroup

of Jb(K̆ ) = GLn(K̆ ) corresponding to α. For α ∈ �, let T α ⊆ T be the image of
the coroot of T in GLn(K̆ ) corresponding to α. It is an one-dimensional subtorus of
T . We denote by T

α
h the corresponding subgroup of Gh . We write T α ⊆ T for the

one-dimensional subgroup (Tα
h )h−1 of T

α
h .

Following [26, 1.5], a character χ : T F → Q
×
� is called regular if for any α ∈ �

and any m ≥ 1 such that Fm(T α) = T α , the restriction of χ ◦ N Fm

F : T Fm → Q
×
� to

(T α)Fm
is non-trivial. Here, N Fm

F : T Fm → T F is the map t �→ t F(t) · · · Fm−1(t).
A character χ of T

F
h is called regular if its restriction χ |T F is regular.

Remark 8.5 In our situation, when b is a Coxeter-type representative and T is the
elliptic diagonal torus of Jb, let χ be a character of T (K ) ∼= L× of level h. Then
the restriction of χ to O×L can be viewed as a character χh of T

F
h
∼= (OL/� h)×. A

straightforward computation shows: χh is regular in the above sense if and only if it
is primitive, i.e. the restriction of χh to T F ∼= W

h−1
h (Fqn ) does not factor through

any of the norm maps W
h−1
h (Fqn )→ W

h−1
h (Fqr ) for r | n, r < n. We use this in the

proof of Theorem 8.1. ♦

8.4.3 Bruhat decomposition

For each w ∈ W (T , T ′) choose a representative ẇ ∈ N (T , T ′). We have the Bruhat
decomposition G1 = ⊔w∈W (T ,T ′) G1,w of the reductive quotient, where G1,w =
U1ẇT

′
1U
′
1. Define Gh,w to be the pullback of G1,w along the natural projection Gh �

G1. Thus Gh =⊔w∈W (T ,T ′) Gh,w. Let Kh :=U
−
h ∩ ẇU

′−
h ẇ−1 and K

1
h :=Kh ∩G

1
h .

Lemma 8.6 Gh,w = UhK
1
hẇT

′
hU
′
h.
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Proof Indeed, we compute

Gh,w = UhẇT
′
hG

1
hU
′
h = UhẇT

′
h

(
(G1

h ∩ T
′
h)(G1

h ∩ U
′−
h )(G1

h ∩ U
′
h)
)

U
′
h

= UhẇT
′
h(G1

h ∩ U
′−
h )U′h = Uh

(
ẇ(G1

h ∩ U
′−
h )ẇ−1

)
ẇT

′
hU
′
h

= Uh

(
U
−
h ∩ ẇ(G1

h ∩ U
′−
h )ẇ−1

)
ẇT

′
hU
′
h = UhK

1
hẇT

′
hU
′
h .

��

8.4.4 The scheme 6

Define

� = {(x, x ′, y) ∈ F(Uh)× F(U′h)×Gh : x F(y) = yx ′}
�w = {(x, x ′, y) ∈ F(Uh)× F(U′h)×Gh : x F(y) = yx ′, y ∈ Gh,w} ⊆ �,

for w ∈ W (T , T ′). Set-theoretically, � is the disjoint union of the locally
closed subschemes �w. The group T

F
h × T

′F
h acts on � by (t, t ′) : (x, x ′, y) �→

(t xt−1, t ′x ′t ′−1, t yt ′−1) and �w is stable under this action for any w ∈ W (T , T ′).

Proposition 8.7 Let θ and θ ′ be characters of T
F
h and T

′F
h respectively and assume

that θ is regular. Then

∑

i∈Z

(−1)i dim Hi
c (�, Q�)θ−1,θ ′ = #{w ∈ W (T , T ′)F : θ ◦ Ad(ẇ) = θ ′}.

Proof Using� =⋃w �w, it is enough to show that
∑

i∈Z
(−1)i dim Hi

c (�, Q�)θ−1,θ ′
is 1 if w ∈ W (T , T ′)F and θ ◦ Ad(ẇ) = θ ′, and is 0 otherwise. Fix a w ∈ W (T , T ′).
Let

�̂w = {(x, x ′, u, u′, z, τ ′) ∈ F(Uh)× F(U′h)× Uh × U
′
h ×K

1
h × T

′
h :

x F(uzẇτ ′u′) = uzẇτ ′u′x ′}.

We have the morphism �̂w → �w, (x, x ′, u, u′, z, τ ′) �→ x, x ′, uzẇτ ′u′, which by
Lemma 8.6 is surjective. Moreover, this map isT

F
h ×T

′F
h -equivariant, when we endow

�̂w with the T
F
h × T

′F
h -action

(t, t ′) : (x, x ′, u, u′, z, τ ′) �→ (t xt−1, t ′x ′t ′−1, tut−1, t ′u′t ′−1, t zt−1, ẇ−1tẇτ ′t ′−1).
(8.2)

As the projection �̂w → �w is locally trivial fibration, the cohomology does not
change if we pass from�w to �̂w. Thus to finish the proof the proposition it is enough
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to show that

∑

i∈Z

(−1)i dim Hi
c (�̂, Q�)θ−1,θ ′=

{
1 if w ∈ W (T , T ′)F and θ ◦ Ad(ẇ) = θ ′,
0 otherwise.

(8.3)

We make the change of variables replacing x F(u) by x and x ′F(u′)−1 by x ′, and
rewrite �̂w as

�̂w = {(x, x ′, u, u′, z, τ ′) ∈ F(Uh)× F(U′h)× Uh × U
′
h ×K

1
h × T

′
h : x F(zẇτ ′) = uzẇτ ′u′x ′},

and the torus action is still given by (8.2). Define a partition �̂w = �̂′w � �̂′′w by

�̂′w = {(x, x ′, u, u′, z, τ ′) ∈ �̂w : z 
= 1},
�̂′′w = {(x, x ′, u, u′, z, τ ′) ∈ �̂w : z = 1}.

Both subsets are stable under the T
F
h × T

′F
h -action. By Sect. 8.4.5,

∑

i∈Z

(−1)i dim Hi
c (�̂

′′
w, Q�)θ−1,θ ′

=
{
1 if w ∈ W (T , T ′)F and θ ◦ Ad(ẇ) = θ ′,
0 otherwise,

(8.4)

and by Sect. 8.4.8, under the assumption that θ is regular,

∑

i∈Z

(−1)i dim Hi
c (�̂

′
w, Q�)θ−1,θ ′ = 0, (8.5)

so (8.3) holds. ��

8.4.5 Cohomology of̂6′′
w

We prove (8.4). This works exactly as in [26] (see the proof of Lemma 1.9, specifically
the proof of claim (b) in op. cit. beginning on page 8). For convenience of the reader,
we recall the arguments. Consider the closed subgroup

H̃ = {(t, t ′) ∈ Th × T
′
h : t F(t)−1 = F(ẇ)t ′F(t ′)−1F(ẇ−1)} ⊆ Th × T

′
h .

Note that H̃ containsT
F
h ×T

′
h

F and (8.2) containingT
F
h ×T

′F
h . The action ofT

F
h ×T

′F
h

on �̂′′w extends to an action of H̃ , still given by (8.2). Let Th,∗ and T
′
h,∗ be the

reductive part of Th and T
′
h respectively. Set H̃∗ := H̃ ∩ (Th,∗ × T

′
h,∗) and let H̃0∗ be

the connected component of H̃∗. Then H̃0∗ is a torus acting on �̂′′w. By [14, 4.5 (and
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11.2) and 10.15] (compare the similar computation in the proof of [31, Theorem 3.1]),
we have

∑

i∈Z

(−1)i dim Hi
c (�̂

′′
w, Q�)θ−1,θ ′ =

∑

i∈Z

(−1)i dim Hi
c

(
(�̂′′w)H̃0∗ , Q�

)

θ−1,θ ′
.

Let (x, x ′, u, u′, 1, τ ′) ∈ (�̂′′w)H̃0∗ . By Lang’s theorem, H̃∗ → Th,∗ is surjective and
hence (as Th,∗ is connected) also H̃0∗ → Th,∗ is surjective. Similarly, H̃0∗ → T

′
h,∗ is

surjective. Thus for any t ∈ Th,∗, t ′ ∈ T
′
h,∗, we have

t xt−1 = x, t ′x ′t ′−1 = x ′, tut−1 = u, t ′u′t ′−1 = u′.

This implies x = x ′ = u = u′ = 1 since Th,∗ acts non-trivially on all affine roots
subgroups contained in Uh (and similarly for T

′
h , U

′
h). Thus

(�̂′′w)H̃0∗ ⊆ {(1, 1, 1, 1, 1, τ ′) : τ ′ ∈ T
′
h, F(ẇτ ′) = ẇτ ′},

and we deduce

∑

i∈Z

(−1)i dim Hi
c

(
(�̂′′w)H̃0∗ , Q�

)

θ−1,θ ′
=
{
1 if F(w) = w and θ ◦ Ad(ẇ) = θ ′,
0 otherwise.

8.4.6 Some preparations

In the next two sections, we make the necessary preparations in order to carry out
Lusztig’s argument for (8.5) in Sect. 8.4.8. Let N , N− be unipotent radicals of opposite
Borel subgroups of Jb(K̆ ) = GLn(K̆ ) containing T , and for h ≥ 1, let Nh , N

−
h be

the corresponding subgroups of Gh . Let �+ = {α ∈ � : G
α
h ⊆ Nh} and �− =

� � �+ = {α ∈ � : G
α
h ⊆ N

−
h }. For α ∈ �+ let ht(α) denote the largest integer

m ≥ 1, such that α =∑m
i=1 αi with αi ∈ �+.

We call the roots α ∈ � for which G
α
1 
= 1 reductive and the other roots non-

reductive. Equivalently, a root α ∈ � is reductive if and only if 〈α, x〉 ∈ Z, where x is
as in Sect. 5.3.

To make explicit calculations, we may assume that T is the diagonal torus in
GLn(K̆ ). For 1 ≤ i 
= j ≤ n, let αi, j denote the root corresponding to the (i, j)th
entry of an n × n matrix. For 1 ≤ i ≤ n, let 1 ≤ [i]n0 ≤ n0 denote its residue
modulo n0. Define htn0(αi, j ) := [i]n0 − [ j]n0 . Then α ∈ � is reductive if and only if
htn0(α) = 0. If htn0(α) > 0 (resp. htn0(α) < 0), we call α non-reductive of type 1
(resp. of type 2). For any α = αi, j ∈ � and 1 ≤ a ≤ h, we have

(
G

α
h

)a ∼=
{
pa−1/ph−1 if htn0(α) > 0,

pa/ph if htn0(α) ≤ 0,
(8.6)
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in the sense that
(
G

α
h

)a consists of n × n matrices with 1’s on the main diagonal, an
element of the subgroup pa−1/ph−1 (resp. pa/ph) sitting in the (i, j)th entry, and 0’s
everywhere else.

Example 8.8 Let n = 4, κ = 2. Then if A is the apartment of Bred(GL4, K̆ ) corre-
sponding to the diagonal torus, then x is the unique fixed point under the action of

b = b0 ·diag(1,�, 1,�) =
(

�
1

�
1

)

. Computing, the matrix of inner products for

αi, j ∈ � is

(〈αi, j , x〉)1≤i, j≤4 =
⎛

⎜
⎝

∗ − 1
2 0 − 1

2
1
2 ∗ 1

2 0

0 − 1
2 ∗ − 1

2
1
2 0 1

2 ∗

⎞

⎟
⎠ .

Hence for h ≥ 1, we have

Ğx,0 =
(O p O p

O O O O
O p O p
O O O O

)×
� Gh(Fq) =

⎛

⎝

O/ph p/ph O/ph p/ph

O/ph−1 O/ph O/ph−1 O/ph

O/ph p/ph O/ph p/ph

O/ph−1 O/ph O/ph−1 O/ph

⎞

⎠

×

,

where the × superscript means the group of invertible matrices, and for 1 ≤ a ≤ h,

G
a
h(Fq) =

⎛

⎝

1+pa/ph pa/ph pa/ph pa/ph

pa−1/ph−1 1+pa/ph pa−1/ph−1 pa/ph

pa/ph pa/ph 1+pa/ph pa/ph

pa−1/ph−1 pa/ph pa−1/ph−1 1+pa/ph

⎞

⎠ .

For two elements z, ξ ∈ Gh , we write [ξ, z] = ξ−1z−1ξ z.

Lemma 8.9 Let α ∈ �. Let 1 ≤ a ≤ h − 1.

(i) If α is non-reductive, then [Ga+1
h , (Gα

h )h−a] = 1.
(ii) If α is reductive, then [Ga

h, (Gα
h )h−a] = 1.

Proof The computation to show (i) and (ii) is nearly the same. We prove (i). It suffices
to check that [Ta+1

h , (Gα
h )h−a] = 1 and that [(Gβ

h )a+1, (Gα
h )h−a] = 1 for any β ∈ �.

This is an immediate computation using the explicit description of Gh and (8.6). The
only critical case is when α, β are both non-reductive of type 1. Here, it suffices to
observe that if α + β is again a root, then it is again non-reductive of type 1. ��

Let (N1
h)≤0 denote the subgroup ofN

1
h generated byN

2
h and all (G

β
h )1 with β ∈ �+

satisfying htn0(β) ≤ 0. Obviously N
2
h ⊆ (N1

h)≤0 ⊆ N
1
h .

Lemma 8.10 Let 1 ≤ a ≤ h−1 and z ∈ N
a,∗
h . Write z =∏β∈�+ xz

β with xz
β ∈ (G

β
h )a

for a fixed (but arbitrary) order on �+. For β ∈ �+, let a ≤ a(β, z) ≤ h be the
integer such that xz

β ∈ (G
β
h )a(β,z),∗.
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(i) If z ∈ N
a,∗
h ∩ (N1

h)≤0, then the set

Az := {β ∈ �+ : a(β, z) = a}

is independent of the chosen order on �+.
(ii) If z ∈ N

1
h � (N1

h)≤0, then the set

Az := {β ∈ �+ : htn0(β) is minimal among those with htn0 > 0 and a(β, z) = 1}

does not depend on the chosen order on �+.

Proof (i) First let 2 ≤ a ≤ h − 1. From the explicit description of the root subgroups
it follows that the quotient N

a
h/N

a+1
h is abelian (for a = 2 one needs to use that

the sum of two non-reductive roots of type 1 is again of type 1 if it is a root), thus
its elements are simply tuples (xβ)β∈�+ with xβ ∈ (G

β
h )a/(G

β
h )a+1 with entry-wise

multiplication. If z̄ = (x̄ z
β) is the image of z in this quotient, then Az identifies with

the set of those β for which x̄ z
β 
= 1 (which is obviously independent of the order).

Now let a = 1. Then z ∈ (N1
h)≤0 � N

2
h and the same arguments apply to the abelian

quotient (N1
h)≤0/N

2
h .

(ii) The group N
1
h/(N1

h)≤0 is not abelian, but is generated by its subgroups

(G
β
h )1/(G

β
h )2 for β ∈ �+ non-reductive of type 1. For m ≥ 1, let Hm be the sub-

group generated by all (G
β
h )1/(G

β
h )2 with htn0(β) ≥ m. Since the function htn0 is

additive on �, the Hm form a filtration of N
1
h/(N1

h)≤0 = H1 with abelian quotients

Hm/Hm+1 ∼=∏β non-red. type 1
htn0 (β)=m

(G
β
h )1/(G

β
h )2. Since z /∈ (N1

h)≤0, there is anm ≥ 1 such

that the image of z inN
1
h/(N1

h)≤0 lies in Hm � Hm+1. Denote by z̄ = (x̄ z
β)β non-red. type 1

htn0 (β)=m

the image of z in Hm/Hm+1. Now Az is the set of all β ∈ �+ non-reductive of type
1 with htn0(β) = m such that x̄ z

β 
= 1. This does not depend on the chosen order. ��

8.4.7 Stratification ofK1
h

Lemma 8.11 Let 1 ≤ a ≤ h − 1, z ∈ N
a,∗
h and Az as in Lemma 8.10.

(i) If Az contains a non-reductive root, let −α ∈ Az be a non-reductive root of
maximal height and α ∈ �− its opposite. Then for any ξ ∈ (Gα

h )h−a, we have
[ξ, z] ∈ T α(N−h )h−1. Moreover, projecting [ξ, z] into T α induces an isomorphism

λz : (Gα
h )h−a/(Gα

h )h−a+1 ∼→ T α

(ii) If Az contains only reductive roots, let −α ∈ Az be a root of maximal height and
α ∈ �− its opposite. Then for any ξ ∈ (Gα

h )h−a−1, we have [ξ, z] ∈ T α(N−h )h−1.
Moreover, projecting [ξ, z] into T α induces an isomorphism

λz : (Gα
h )h−a−1/(Gα

h )h−a ∼→ T α
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Proof We first prove (i) when z ∈ (N1
h)≤0. Assume first that Az contains a non-

reductive root and let −α be such a root of maximal height and α ∈ �− its opposite.
By Lemma 8.9 (applied three times), the commutator map N

a
h × (Gα

h )h−a → Gh

induces a pairing of abelian groups,

N
a
h/N

a+1
h × (Gα

h )h−a/(Gα
h )h−a+1 → G

h−1
h , x̄, ξ̄ �→ [ξ̄ , x̄].

(If a = 1, one has to replace N
a
h/N

a+1
h by (N1

h)≤0/N
2
h .) This is bilinear in x̄ : if

x1, x2 ∈ N
a
h , then

[ξ, x1x2] = ξ−1x−12 x−11 ξ x1x2 = ξ−1x−11 x−12 ξ x2x1

= ξ−1x−11 ξ [ξ, x2]x1 = [ξ, x1][ξ, x2],

where the second equality follows from Lemma 8.9 and N
a
h/N

a+1
h (resp. (N1

h)≤0/N
2
h

if a = 1) being abelian, and the fourth follows from Lemma 8.9 as [ξ, x2] ∈ G
h−1
h .

Now let ξ̄ ∈ (Gα
h )h−a/(Gα

h )h−a+1 and z̄ ∈ N
a
h/N

a+1
h be the images of ξ and z

respectively. Write

z̄ = x̄ z−α

∏

β∈�+ red.

x̄ z
β ·

∏

β∈�+ non-red., β 
=−α
ht(β)≤ht(−α)

x̄ z
β.

Then [ξ, z] is the product of [ξ̄ , x̄−α]with all the [ξ̄ , x̄ z
β ] in any order. Let xz

β be any lift

of x̄ z
β to (G

β
h )a . If β is reductive and α is (non-reductive) of type 1, then either ξ , xz

β

commute anyway orα+β is again a root (necessarily non-reductive of type 1) and (8.6)
shows that [ξ, xz

β ] = 1. If β is reductive and α is (non-reductive) of type 2, then (8.6)
shows that ξ, xz

β commute. If β 
= −α is non-reductive, then by assumption ht(β) ≤
ht(−α). Then [ξ, xz

β ] = 1 unless α + β is a root, in which case [ξ, xz
β ] ∈ (G

α+β
h )h−1

by (8.6). But the height condition implies that α + β ∈ �−. Following this case-by-
case examination, the claim about λz in (i) when z ∈ (N1

h)≤0 is then established once
we make the following observation: If ξ has [y]� h−a (resp. [y]� h−a−1, if a = 1)
and xz−α has [u]� a−1 (resp. [u]� a) in their only non-trivial entries, then [ξ, xz−α] is
a diagonal matrix with only two nontrivial entries: 1± [uy]� h−1.

In (ii), it is automatic that z ∈ (N1
h)≤0, and this case can be proven in exactly the

same way as above (and is slightly easier) and we omit the details.
It remains to prove (i) in the case that z ∈ N

1
h � (N1

h)≤0. In particular, ξ ∈ (Gα
h )h−1

since a = 1. By construction, Az consists of non-reductive roots of type 1, so α must
be non-reductive of type 2. Modulo (N1

h)≤0 (which commutes with ξ ) we may write

z =

⎛

⎜
⎜
⎜
⎝

∏

γ∈�+
htn0 (γ )>htn0 (−α)

xz
γ

⎞

⎟
⎟
⎟
⎠

⎛

⎝
∏

β∈Az � {−α}
xz
β

⎞

⎠ xz−α.
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Recall that Az � {−α} consists of (necessarily non-reductive, type 1) roots with
htn0(β) = htn0(−α). By construction ht(γ ), ht(β) ≤ ht(−α), and so in particular,

s :=
∏

β

[ξ−1, (xz
β)−1] ∈ (N−h )h−1.

We claim:

ξ z = ξ

⎛

⎝
∏

γ

xz
γ

⎞

⎠

⎛

⎝
∏

β

xz
β

⎞

⎠ xz−α

=
⎛

⎝
∏

γ

xz
γ

⎞

⎠ ξ

⎛

⎝
∏

β

xz
β

⎞

⎠ xz−α (8.7)

=
⎛

⎝
∏

γ

xz
γ

⎞

⎠

⎛

⎝
∏

β

[ξ−1, (xz
β)−1]xz

β

⎞

⎠ xz−αξ [ξ, xz−α]

=
⎛

⎝
∏

γ

xz
γ

⎞

⎠

⎛

⎝
∏

β

xz
β

⎞

⎠ xz−αsξ [ξ, xz−α] (8.8)

= zsξ [ξ, xz−α]
= zξ [ξ, xz−α]s (8.9)

Here (8.7) holds as α+ γ (if it is a root) must be non-reductive of type 1, and hence ξ

and xz
γ commute by (8.6). To justify (8.8), let β ∈ Az � {−α}. If α + β is not a root,

then [ξ, xz
β ] = 1. If α+β is a root, then α+β is reductive (since htn0(β) = htn0(−α))

and [ξ, xz
β ] ∈ (G

α+β
h )h−1 ⊆ (N−h )h−1 (since ht(β) ≤ ht(−α) by definition of α). But

every β ′ ∈ Az is non-reductive of type 1, so wemust also have htn0(β
′+(α+β)) > 0,

and (8.6) shows that [ξ, xz
β ] commute with xz

β ′ for all β ′ ∈ Az . Finally, (8.9) follows

from the fact that s ∈ (N−h )h−1 commutes with ξ ∈ (N−h )h−1 and with [ξ, xz−α] ∈ T α .
But now we have shown [ξ, z] = [ξ, xz−α]s ∈ T α(N−h )h−1, which finishes the proof
of the last remaining assertion of the lemma. ��

Let Kh = U
−
h ∩ Nh . Let �′ = {β ∈ �+ : G

β
h ∈ Kh}. Let X denote the set of all

non-empty subsets I ⊆ �′, on which ht : �+ → Z>0 is constant. To z ∈ K
1
h � {1}

we attach a pair (az, Iz) with 1 ≤ az ≤ h − 1 and Iz ∈ X . Define az by z ∈ K
az ,∗
h .

If Az contains a non-reductive root, let Iz ⊆ Az be the subset of all non-reductive
roots of maximal height. (Note that if a = 1, then Iz contains only roots of type 1
if z /∈ (N1

h)≤0 and only contains roots of type 2 if z ∈ (N1
h)≤0.) If Az contains only

reductive roots, let Iz ⊆ Az be the subset of all roots of maximal height. We have a
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stratification into locally closed subsets

K
1
h � {1} =

⊔

a,I

K
a,∗,I
h where K

a,∗,I
h = {z ∈ K

1
h � {1} : (az, Iz) = (a, I )}.

(8.10)

8.4.8 Cohomology of̂6′
w

We are now ready to prove (8.5) using the same arguments as in the proof of [26,
Lemma 1.9]. To do this, it is enough to show that H j

c (�̂′w)θ,θ ′ = 0 for all j ≥ 0. For
a T ′F -module M and a character χ of T ′F , write M(χ) for the χ -isotypic component
of M . Note that T ′F acts on �̂′w by

t ′ : (x, x ′, u, u′, z, τ ′) �→ (x, t ′x ′t ′−1, u, t ′u′t ′−1, z, τ ′t ′−1).

Hence H j
c (�̂′w) is a T ′F -module. It is enough to show that H j

c (�̂′w)(χ) = 0 for any
regular character χ of T ′F . Fix such a χ . Define N = ẇU ′−ẇ−1, N− = ẇU ′ẇ−1.
Then with notation as in Sects. 8.4.6 and 8.4.7, the stratification of K

1
h � {1} given in

(8.10) induces a stratification of �̂′w indexed by 1 ≤ a ≤ h − 1 and I ∈ X :

�̂′w =
⊔

a,I

�̂′,a,I
w where �̂′,a,I

w = {(x, x ′, u, u′, z, τ ′) ∈ �̂′w : z ∈ K
a,∗,I
h }.

Note that each �̂′,a,I
w is stable under T ′F . Thus to show (8.5), it is enough to show

H j
c (�̂′,a,I

w , Q�)(χ) = 0 for any fixed a, I . (8.11)

Choose a root α such that−α ∈ I . Then G
α
h ⊆ Uh ∩ ẇU

′
hẇ−1. For any z ∈ K

a,∗,I
h ,

Lemma 8.11 grants us an isomorphism

λz : (Gα
h )h−a/(Gα

h )h−a+1 ∼−→ T α, if α is non-reductive,

λz : (Gα
h )h−a−1/(Gα

h )h−a ∼−→ T α, if α is reductive.

Let π denote the natural projection (Gα
h )h−a → (Gα

h )h−a/(Gα
h )h−a+1 if α is non-

reductive and the natural projection (Gα
h )h−a−1 → (Gα

h )h−a−1/(Gα
h )h−a if α is

reductive. Let ψ be a section to π such that πψ = 1 and ψ(1) = 1. Let

H′ := {t ′ ∈ T ′ : t ′−1F(t ′) ∈ ẇ−1T αẇ}.

This is a closed subgroup of T ′. For any t ′ ∈ H′ define ft ′ : �̂′,a,I
w → �̂′,a,I

w by

ft ′(x, x ′, u, u′, z, τ ′) = (x F(ξ), x̂ ′, u, F(t ′)−1u′F(t ′), z, τ ′F(t ′)),
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where

ξ = ψλ−1z (ẇF(t ′)−1t ′ẇ−1) ∈ (Gα
h )h−a−1 ⊆ Uh ∩ ẇU

′
hẇ−1

((Gα
h )h−a−1 should be replaced by (Gα

h )h−a if α is non-reductive), and x̂ ′ ∈ Gh is
defined by the condition that

x F(ξ zẇτ ′F(t ′)) ∈ uzẇτ ′F(t ′)F(t ′)−1u′F(t ′)x̂ ′.

To check that this is well-defined one needs to show x̂ ′ ∈ F(U′h). This is done with
exactly the same computation as in the proof of [26, Lemma 1.9], and we omit this. It
is clear that ft ′ : �̂′,a,I

w → �̂′,a,I
w is an isomorphism for any t ′ ∈ H′. Moreover, since

T ′F ⊆ H′ and since for any t ′ ∈ T ′F the map ft ′ coincides with the action of t ′ in the
T ′F -action on �̂′,a,I

w (we use ψ(1) = 1 here), it follows that we have constructed an
action f of H′ on �̂′,a,I

w extending the T ′F -action.
If a connected group acts on a scheme, the induced action in the cohomology is con-

stant. Thus for any t ′ ∈ H′0, the induced map f ∗t ′ : H j
c (�̂′,a,I

w , Q�)→ H j
c (�̂′,a,I

w , Q�)

is constant when t ′ varies in H′0. Hence the restriction of the T ′F -action on
H j

c (�̂′,a,I
w , Q�) to T ′F ∩H′,0 is trivial.

Now we can find some m ≥ 1 such that Fm(ẇ−1T αẇ) = ẇ−1T αẇ. Then

t ′ �→ t ′F(t ′)F2(t ′) · · · Fm−1(t ′)

defines a morphism ẇ−1T αẇ → H′. Since T α is connected, its image is also con-
nected and hence contained in H′0. If t ′ ∈ (ẇ−1T αẇ)Fm

, then N Fm

F (t ′) ∈ T ′F and

hence also N Fm

F (t ′) ∈ T ′F ∩H′0. Thus the action of N Fm

F (t ′) ∈ T ′F on H j
c (�̂′,a,I

w )

is trivial for any t ′ ∈ (ẇ−1T αẇ)Fm
.

Finally, observe that if H j
c (�̂′,a,I

w , Q�)(χ) 
= 0, then the above shows that t ′ �→
χ(N Fm

F (t ′)) is the trivial character, which contradicts the regularity assumption on χ .
This establishes (8.11), which establishes (8.5), which was the last outstanding claim
in the proof of Proposition 8.7.

9 Cuspidality

The next theorem (proved in Sect. 9.1) concerns the “cuspidality” of the representa-
tion RGh

Th
(θ) for primitive θ . This is the higher-level analogue of Deligne–Lusztig’s

theorem [13, Theorem 8.3] required to prove that the induced representation
c-IndG

Z ·GO (|RGh
Th

(θ)|) is irreducible and supercuspidal (Theorem 12.5). A proof that
this induced representation is irreducible supercuspidal when h = 1 can be found in
[27, Proposition 6.6], and when G = GL2(K ) and h arbitrary it was done by the first
author in [21].

We work with a special representative b as in Sect. 5.2.2.
Let N ′ be the unipotent radical of any standard parabolic subgroup of GLn′ and

let N̆ denote the subgroup of GLn(K̆ ) consisting of unipotent matrices such that
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any (n0 × n0)-block consists of a diagonal matrix and the (i, j)th block can have
nonzero entries if and only if the (i, j)th entry of an element of N ′ is nonzero. For
each h ≥ 1, let N̆h denote the image of N̆ ∩ Ğx,0 in Gh(Fq). Define Nh := N̆ F

h and
N h−1

h := ker(Nh → Nh−1).

Theorem 9.1 Assume θ : Th → Q
×
� is primitive. Then the restriction of |RGh

Th
(θ)| to

N h−1
h does not contain the trivial representation.

9.1 Proof of Theorem 9.1

9.1.1.We retain notation as in the statement of the Theorem and the set-up
directly proceeding it. Let J := {α = (i, j) : Uα ⊂ N ′} be the set of roots of
the diagonal torus in GLn′ occurring in N ′. Let l be the inverse of k0 mod-
ulo n0 and let [a]n0 denote the residue of a ∈ Z in 1 ≤ [a] ≤ n0. The
elements of N h−1

h consist of n × n-matrices, whose (i, j)th (n0 × n0)-block
is the identity matrix if i = j , is zero if i 
= j and (i, j) /∈ J , and is
of the form diag(� h−1u,� h−1σ [l]n0 (u),� h−1σ [2l]n0 (u), . . . ,� h−1σ [(n0−1)l]n0 (u))

for some u ∈ Fqn0 if (i, j) ∈ J . Observe that it is sufficient to show that the theo-
rem holds under the assumption that N ′ is the unipotent radical of a maximal proper
parabolic; that is,

J = {(i, j) : 1 ≤ i ≤ n′ − �, n′ − �+ 1 ≤ j ≤ n, } for some 1 ≤ � ≤ n′.

(This will be used only in the proof of Lemma 9.6.)

9.1.2. Our main tool will be a close variant of [5, Lemma 2.12]. The set-up and proof
of Lemma 9.2 is nearly the same as the proof of op. cit. verbatim. Assume that X is
a separated scheme of finite type over Fq and we are given an automorphism ϕ of X
and a right action of a finite group A on X that commute with ϕ. For each character
χ : A → Q

×
� , we write Hi

c (X , Q�)[χ ] for the subspace of Hi
c (X , Q�) on which A acts

by χ . Note that this subspace is invariant under the action of ϕ∗ : Hi
c (X , Q�)[χ ]

∼=→
Hi

c (X , Q�)[χ ].

Lemma 9.2 Let χ : A → Q
×
� be a character. Assume that Frq acts on

∑
i (−1)i H i

c (X ,

Q�)[χ ] by a scalar λ. Then

Tr

(

ϕ∗;∑
i

(−1)i (X , Q�)[χ ]
)

= 1

λ · #A
·
∑

a∈A

χ(a) · #{x ∈ X(Fq) : ϕ(Frq(x)) = x · a}.

Proof For each a ∈ A, let ρa : X → X denote the automorphism x �→ x · a and write
ϕa = ϕ ◦ ρa . Then ρa is a finite-order automorphism of X and (as in the proof of [13,
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Proposition 3.3])

∑

i
(−1)i Tr(Frq ◦ϕ∗a ; Hi

c (X , Q�)) = #{x ∈ X(Fq) : ϕ(Frq(x)) = x · a−1}.

Hence averaging over χ−1(a), we have

1

#A
·
∑

a∈A

χ−1(a) · #{x ∈ X(Fq) : ϕ(Frq(x)) = x · a−1}

=∑
i

(−1)i Tr
(
Frq ◦ϕ∗; Hi

c (X , Q�)[χ ]
)

= λTr

(

ϕ∗;∑
i

(−1)i H i
c (X , Q�)[χ ]

)

.

��
9.1.3. Now fix a character θ : Th → Q

×
� as in the theorem. Recall from (7.3) that

Xh =
⊔

a∈(OK /� h)×
ga .Xdet≡1

h , where Xdet≡1
h

= {x ∈ Xh : det gred
b (x) ≡ 1 (mod � h)}.

Note that Th transitively permutes the components ga .Xdet≡1
h (a ∈ (OK /� h)×)

and let T ◦h ⊆ Th denote the stabilizer of a (any) component. Since the composition
Hi

c (Xdet≡1
h )[θ |T ◦h ] ↪→ Hi

c (Xh)[θ |T ◦h ]� Hi
c (Xh)[θ ] is bijective, it must be an isomor-

phismof N h−1
h -representations (see also (8.1)).Hence to show the theorem, it is enough

to show that the trivial character of N h−1
h does not occur in

∑
i (−1)i H i

c (Xdet≡1
h )[θ |T ◦h ];

that is,

〈
triv,
∑

i (−1)i H i
c (Xdet≡1

h , Q�)[θ |T ◦h ]
〉

N h−1
h

= 1

#N h−1
h

∑

g∈N h−1
h

Tr
(

g;∑i (−1)i H i
c (Xdet≡1

h , Q�)[θ |T ◦h ]
)
= 0. (9.1)

We now apply Lemma 9.2 to the Fqn -scheme Xdet≡1
h with A = T ◦h and ϕ : Xdet≡1

h →
Xdet≡1

h given by x �→ g · x for some g ∈ N h−1
h . We see that to show (9.1), we must

show

∑

g∈N h−1
h

∑

t∈T ◦h

θ(t) · #Sg,t = 0, where Sg,t := {x ∈ Xdet≡1
h (Fq) : g · Frqn (x) = x · t}.

Lemma 9.3 Let g ∈ N h−1
h and t ∈ T ◦h such that Sg,t 
= ∅. Then t ≡ (−1)n′−1

(mod � h−1) and σ n(x) ≡ (−1)n′−1x (mod � h−1) for all x ∈ Sg,t .
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Proof An element y ∈ L0 lies inL
adm,rat
0,b if and only if det gred

b (y) ∈ O×K , or equiva-
lently, ord det gb(y) = ord det(Dκ,n) =: c and σ(det gb(y)) = det gb(y). Multiplying
by b on both sides, we see that these conditions are equivalent to

det(bσ(y) | (bσ)2(y) | . . . | (bσ)n(y)) = det(b) det(gb(y)) ∈ � c+κO×.

As b is the special representative, det(b) = ((−1)(n0−1)k0� k0)n′ = (−1)κ(n0−1)�κ ,
and moreover, bn = �κ . Thus the above is equivalent to

�κ det(bσ(y) | (bσ)2(y) | . . . | σ n(y)) = (−1)κ(n0−1)�κ det(gb(y)) ∈ � c+κO×,

An elementary computation shows (−1)n−1−κ(n0−1) = (−1)n′−1, thus the above is
equivalent to

(−1)n′−1 det(σ n(y) | bσ(y) | (bσ)2(y) | . . . | (bσ)n−1(y)) = det(gb(y)) ∈ � cO×.

(9.2)

Let now x ∈ Sg,t ⊆ Xh . Denote by y ∈ L adm,rat
0 a lift of x . As g ≡ 1 (mod � h−1),

we by assumption have σ n(y) ≡ yt (mod � h−1). Thus replacing in (9.2) σ n(y)

by t y + � h−1∗ for some ∗ ∈ L0, using the linearity of the determinant in the first
column, and the fact that each entry of the i th column (2 ≤ i ≤ n) of the matrix on

the left hand side of (9.2) is in O divisible by �

⌊
(i−1)κ0

n0

⌋

(and
∑n

i=2
⌊

(i−1)κ0
n0

⌋
= c),

we deduce that

(−1)n′−1t ≡ 1 (mod � h−1).

If x̃ ∈ X+h−1 denotes the image of x modulo � h−1, we obtain σ n(x̃) = (−1)n′−1 x̃ . ��

Thus for g, t as in the lemma, Sg,t 
= ∅ implies

t ∈ (−1)n′−1T h−1
h ∩ T ◦h = {(−1)n′−1(1+� h−1[a]) : a ∈ Fqn , trFqn/Fq

(a) = 0}.

so that, after factoring out the constant θ(−1)n′−1, it remains to show:

∑

g∈N h−1
h

∑

a∈ker(Fqn→Fq )

θ(1+� h−1[a]) · #Sg,(−1)n′−1(1+� h−1[a]) = 0. (9.3)

9.1.4. Before we can prove (9.3), we need some preparations. Recall from Sect. 7.4
that one has an intermediate scheme Xh � X+h−1 � Xh−1. Define X+,det≡1

h−1 to be
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the subscheme of X+h−1 consisting of x ∈ X+h−1 with det(gred
b (x)) ≡ 1 modulo � h−1.

Then we have a surjection

f : Xdet≡1
h → X+,det≡1

h−1

and by Proposition 7.6, Xdet≡1
h ↪→ X+,det≡1

h−1 ×A
n′ is the (relative) hypersurface given

by

n0−1∑

i=0
σ i (P1)+ c = 0,

where c : Xh → A
1 factors through f and P1 is a polynomial over X+h−1 in the

variables xi,h−1 for i ≡ 1 (mod n0).

9.1.5. By Lemma 9.3, for g ∈ N h−1
h and t ∈ (−1)n′−1(T h−1

h ∩ T ◦h ) with Sg,t 
= ∅,
we have Sg,t ⊆ f −1(Sh−1), where

Sh−1 :=
{

x̃ ∈ X+,det≡1
h−1 : σ n (̃x) = (−1)n′−1 x̃

}
⊂ X+,det=1

h−1

is a finite set of points. Regard Sh−1 as a (zero-dimensional, reduced) subscheme of
X+,det≡1

h−1 . Consider the Sh−1-morphism Sh−1×A
n′ ∼→ Sh−1×A

n′ , which is the linear
change of variables defined by

(x1,h−1, xn0+1,h−1, . . . , xn0(n′−1)+1,h−1)ᵀ = gb(x̄)(z1, z2, . . . , zn′)
ᵀ,

where x̄ is the image of x̃ ∈ Sh−1 in X1 and gb(x̄) is as in Sect. 7.3.

Claim Xdet≡1
h is a (relative) hypersurface over X+,det≡1

h−1 defined by an equation
∑n−1

i=0 zqi

1 = c.

It is enough to show that in the new coordinates z1, . . . , zn′ , the polynomial P1 as

in Proposition 7.6 takes the form P1 =∑n′−1
i=0 zqn0i

1 . We prove this now.
Recall the n′-dimensional Fqn0 -vector space V with its distinguished basis

{ēn0(i−1)+1}1≤i≤n′ and the Fqn0 -linear morphism σb of V from Lemma 5.8. To sim-
plify notation, we write x̄ j instead of xn0( j−1)+1,0 for x ∈ Xh and 1 ≤ j ≤ n′ − 1 in
what follows (i.e., the image of x ∈ Xh in V is x̄ = (x̄i )

n′
i=1). Recall from Sect. 7.3

that for x̄ ∈ V the i th column of the (n′ ×n′)-matrix gb(x̄) is σb
i−1(x̄). Let mi denote

123



1874 C. Chan, A. Ivanov

the i th row of the adjoint matrix (mi j ) of gb(x̄). Then the above change of variables
gives

P1 = (m1 · x̄)z1 + (m2 · σ̄b(x̄))zqn0
1 + (m3 · σ̄ 2

b (x̄))zq2n0
1 + · · · + (mn′ · σ̄ n′−1

b (x̄))zqn0(n′−1)
1

+ (m1 · σ b(x̄))z2 + (m2 · σb
2(x̄))zqn0

2 + (m3 · σ̄ 3
b (x̄))zq2n0

2 + · · · + (mn′ · σ̄ n′
b (x̄))zqn0(n′−1)

2

+ · · · + (m1 · σb
n′−1(x̄))zn′ + (m2 · σb

n′ (x̄))zqn0

n′ + · · · + (mn · σb
2n′−2(x̄))zqn0(n′−1)

n′ .

(Here · denotes the matrix product.) But σ n(x̄) = (−1)n′−1 x̄ (where σ n is applied
entry-wise), and hence from the explicit form of σb we deduce that σb

n′(x̄) =
(−1)n′−1 x̄ . As (mi j ) is adjoint to gb(x̄) and det(gb(x̄)) = 1 ∈ F

×
q , we have

mi · σb
j (x̄) =

{
1 if j = i − 1,

0 otherwise.

This shows that all coefficients are equal to 1 in the first line of the above expression
and vanish in lines 2, . . . , n′. This completes the proof of the claim.

9.1.6. Note that N h−1
h ×(T h−1

h ∩T ◦h ) stabilizes Sh−1 and acts trivially on it.We describe
the action of N h−1

h × (T h−1
h ∩ T ◦h ) on the new coordinates z1, . . . , zn′ .

Let g ∈ N h−1
h and for (i, j) ∈ J as in Sect. 9.1.1, let [ui, j ]� h−1 denote the upper

left entry of the (i, j)th n0 × n0-block of g. Recall that the action of g on f −1(Sh−1)
in the old coordinates x1,h−1, . . . , xn0(n′−1)+1,h−1 is given by

g.(xn0(i−1),h−1)n′
i=1 =

⎛

⎜
⎝xn0(i−1),h−1 +

∑

1≤ j≤n′
(i, j)∈J

ui, j x̄ j

⎞

⎟
⎠

n′

i=1

.

Since det(gb(x)) = 1 by assumption, the adjoint matrix (mi j )i j of gb(x) is in fact

the inverse, so that zi = ∑n′
j=1 mi j xn0( j−1)+1,h−1. Thus the action of g on the new

coordinates is given by

zi �→ zi + ∑

1≤k, j≤n′
(k, j)∈J

mikuk j x̄ j .

We now describe the action of (T h−1
h ∩ T ◦h ) = {1+ [a]� h−1 : TrFqn /Fq (a) = 0}.

For a ∈ ker(Tr : Fqn → Fq), the action of 1 + [a]� h−1 on the old coordinates is
given by

xn0(i−1)+1,h−1 �→ xn0(i−1)+1,h−1 + ax̄i .
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Since
∑n

k=1 mik x̄k is equal to 1 when i = 1 and equal to 0 when i > 1, the action of
1+ [a]� h−1 on the new coordinates is given by

zi �→
{

z1 + a if i = 1,

zi if i = 2, . . . , n′.

Moreover, x �→ σ n(x) · (−1)n′−1 defines an isomorphism of each fiber f −1(x̃),
and one computes that in coordinates zi it is given by zi �→ σ n(zi ). Thus for t =
(−1)n′−1(1+� h−1[a]) ∈ (−1)n′−1(T h−1

h ∩T ◦h ), the assignment x �→ σ n(x)·t defines
an isomorphism of f −1(x̃) which in the coordinates zi is given by z1 �→ σ n(z1)+ a,
zi �→ σ n(zi ) for 2 ≤ i ≤ n′.

9.1.7.We next claim that c(̃x) ∈ Fq for x̃ ∈ Sh−1. Consider the “extension by
zero” morphism Wh−1 → W given by

∑h−2
i=0 [ai ]� i �→ ∑h−2

i=0 [ai ]� i . It defines
a map L0/�

h−1L0 → L0, y �→ [y, 0]. To show the claim it is sufficient to
show that [x̃, 0] lies in L adm,rat

0,b . Obviously, det gred
b ([x̃, 0]) ∈ O. Now, note that

as x̃ ∈ X+h−1, there exists some lift z ∈ L adm,rat
0,b of x̃ . This gives in particu-

lar det gred
b (z) ≡ det gred

b ([x̃, 0]) (mod � h−1). We deduce det gred
b ([x̃, 0]) ∈ O×.

It remains to show that det gred
b ([x̃, 0]) ∈ K . To do this, it suffices to prove that

det gb([x̃, 0]) ∈ K , as det gred
b (·) and det gb(·) differ only by a power of � . But

as σ n (̃x) = (−1)n′−1(̃x), we have σ n([̃x, 0]) = (−1)n′−1 [̃x, 0]. Using this and
det(b) = (−1)κ(n0−1)� k we compute:

(−1)κ(n0−1)� kσ(det gb([x̃, 0]))
= det bσ(gb([x̃, 0]))
= det

(
bσ([x̃, 0]) | (bσ)2([x̃, 0]) | . . . |� kσ n([x̃, 0])

)

= (−1)(n−1)+(n′−1)�κ det gb([x̃, 0]).

But as in the proof of Lemma 9.3, we have (−1)κ(n0−1) = (−1)(n−1)+(n′−1). This
shows the claim.

9.1.8. Fix x̃ ∈ Sh−1 and t = (−1)n′−1(1 + � h−1[a]) with TrFqn /Fq (a) = 0 (as in

Eq. (9.3)). We see that a point x ∈ f −1(x̃) with coordinates (zi )
n′
i=1 as in Sect. 9.1.5

lies in Sg,t ∩ f −1(̃x) if and only if

g · σ n(x) · t−1 = x and z1 + zq
1 + · · · + zqn−1

1 = c(̃x).
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BySect. 9.1.6, the first equation is equivalent to (use thatσ n(mi,k) = −mi,k ,σ n(x̄ j ) =
(−1)n′−1 x̄ j )

zqn

1 +
∑

(k, j)∈J

m1kuk j x̄ j = z1 + a,

along with similar equations for the (zi )
n′
i=2 (of the form zqn

i + (sum of terms) = zi ).

Since c(̃x) ∈ Fq bySect. 9.1.7, the second equation implies z1 = zqn

1 ,which eliminates
z1 from the first equation. Therefore Sg,t ∩ f −1(̃x) 
= ∅ if and only if

ψ(̃x, g) = a, where ψ(̃x, g) := ∑(k, j)∈J m1kuk j x̄ j . (9.4)

Moreover, since the n′ − 1 equations for (zi )
n′
i=2 is a separable polynomial in zi , each

gives precisely qn choices for zi , 2 ≤ i ≤ n′, with no further conditions. Thus

Sg,t ∩ f −1(̃x) 
= 0 ⇐⇒ (9.4) holds

⇐⇒ #(Sg,t ∩ f −1(̃x)) = qn−1
︸︷︷︸
for z1

( qn
︸︷︷︸

for zi ,2≤i≤n′

)n′−1 = qnn′−1.

This shows the following lemma.

Lemma 9.4 For g ∈ N h−1
h , t = (−1)n′−1(1 +� h−1[a]) with TrFqn /Fq (a) = 0, and

x̃ ∈ Sh−1,

#Sg,t ∩ f −1(x̃) =
{

qnn′−1 if ψ(g, x̃) = a,

0 otherwise.

For a ∈ ker(Tr : Fqn → Fq), put

Bg,a := {x̃ : ψ(g, x̃) = a} ⊆ Sh−1.

As Sg,t =⊔x̃∈Sh−1 Sg,t ∩ f −1(̃x), Lemma 9.4 implies that

#Sg,(−1)n′−1(1+� h−1[a]) = qnn′−1 · #Bg,a .

Thus the left hand side of (9.3) is

qnn′−1 ·
∑

a∈ker(Fqn→Fq )

∑

g∈N h−1
h

θ(1+� h−1[a]) · #Bg,a . (9.5)
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9.1.9.We have the following lemma.

Lemma 9.5 Let g ∈ N h−1
h and let t = (−1)n′−1(1+� h−1[a]) with TrFqn /Fq (a) = 0.

We have Sg,t = ∅, unless TrFqn /Fqn0 (a) = 0.

Proof It is enough to show that if TrFqn /Fqn0 (a) 
= 0, then Sg,t ∩ f −1(x̃) = ∅ for all

x̃ ∈ Sh−1. By Lemma 9.4, it is enough to show that for all g ∈ N h−1
h and x̃ ∈ Sh−1,

we have ψ(x̃, g) ∈ ker(TrFqn /Fqn0 ). Fix such g and x̃ and let � h−1uk, j ((k, j) ∈ J )
denote the entries of g (as in beginning of Sect. 9.1.6). As uk, j ∈ Fqn0 , and as k 
= j
holds for all pairs (k, j) ∈ J , it suffices to show that m1,k x̄ j ∈ ker(TrFqn /Fqn0 ) if

k 
= j . Since x̃ ∈ Sh−1, one computes mk,l = mqn0

k−1,l . Thus Tr(m1,k x̄ j ) is precisely
the ( j, k)th entry of the matrix gb(x̄) · m, which is equal 0. ��

By Lemma 9.5 and (9.5), we have reduced showing (9.3) to showing

∑

a∈ker(Fqn→Fqn0 )

∑

g∈N h−1
h

θ(1+� h−1[a]) · #Bg,a = 0 (9.6)

9.1.10. For x̃ ∈ Sh−1, consider the Fqn0 -vector subspace
W (x̃) := 〈m1,i x̄ j |(i, j) ∈ J 〉 ⊆ ker(Fqn → Fqn0 ). The left hand side of (9.6) is

∑

a∈ker(Fqn→Fqn0 )

∑

g∈N h−1
h

θ(1+� h−1[a]) · #Bg,a

=
∑

a∈ker(Fqn→Fqn0 )

∑

x̃∈Sh−1
θ(1+� h−1[a]) · #{g ∈ N h−1

h : ψ(g, x̃) = a}

=
∑

a∈ker(Fqn→Fqn0 )

∑

W⊆ker(Fqn→Fqn0 )

∑

x̃ : W (x̃)=W

θ(1+� h−1[a]) · #{g ∈ N h−1
h : ψ(g, x̃) = a}.

(9.7)

Now fix some W and x̃ ∈ Sh−1 such that W (x̃) = W . Then {m1,i x̄ j }(i, j)∈J span the
Fqn0 -vector space W , and from the explicit form (9.4) of ψ(g, a), it is clear that

#{g ∈ N h−1
h : ψ(g, x̃) = a} =

{
qn0(#J−dim W ) if a ∈ W ,

0 otherwise.

Note that #{g ∈ N h−1
h : ψ(g, x̃) = a} depends only on W (x̃) and not on x̃ itself.

Thus, if we set Sh−1,W := {x̃ ∈ Sh−1 : W (x̃) = W }, then (9.7) is equal to
∑

W

#Sh−1,W · qn0(#J−dim W ) ·
∑

a∈W

θ(1+� h−1[a]).

But as θ is assumed to be primitive in the theorem, this expression is equal to 0 once
we show the following lemma:
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Lemma 9.6 Let x̃ ∈ Sh−1. Then there is some r | n′, r < n′ such that W (x̃) =
ker(TrFqn /Fqn0r ).

Proof Write W = W (x̃). Consider the perfect symmetric Fqn0 -bilinear trace pairing

Fqn × Fqn → Fqn0 , (x, y) �→ TrFqn /Fqn0 (xy).

It is an immediate computation that ker(TrFqn /Fqn0r )
⊥ = Fqn0r for any divisor r of n′,

so we need to show that W⊥ is of the form Fqn0r for some r < n′. For this, it suffices
to show that W⊥ is an Fqn0 -algebra, which is properly contained in Fqn .

First of all note thatW⊥ contains 1 since for all (i, j) ∈ J ,m1,i x̄ j ∈ ker(TrFqn /Fqn0 )

(as in the proof of Lemma 9.5). Since W⊥ is an Fqn0 -vector space and contains 1, it
must contain Fqn0 . It remains to show that W⊥ is closed under multiplication. We now
use that J is of the form

J = {(i, j) : 1 ≤ i ≤ n′ − �, n′ − �+ 1 ≤ j ≤ n, }

for some 1 ≤ � ≤ n′ (see Sect. 9.1.1). For a fixed n′ − �+ 1 ≤ j ≤ n′, let

L j := spanFqn0

〈
m1,i x̄ j : 1 ≤ i ≤ n′ − �

〉⊥
.

Observe that the m1,i are all Fqn0 -linearly independent (since b is the special represen-
tative) and hence L j has dimension n′ −�. For 1 ≤ i ≤ n′ −� and n′ −�+1 ≤ i ′ ≤ n′
we have

TrFqn /Fqn0

(

m1,i x̄ j · x̄i ′

x̄ j

)

= TrFqn /Fqn0 (m1,i x̄i ′) = 0,

as in the proof of Lemma 9.5. This implies the inclusion “⊇” in the formula

L j = spanFqn0

〈
x̄i ′

x̄ j
: n′ − �+ 1 ≤ i ′ ≤ n′

〉

.

The other inclusion follows by dimension reasons. As W is generated by all L⊥j
(n′ − � + 1 ≤ j ≤ n′), we have W⊥ = ⋂n

j=n−�+1 L j . Let v,w ∈ W⊥. We need to

show that vw ∈ W⊥, i.e., that for all (i0, j0) ∈ J wehaveTrFqn /Fqn0 (m1,i0 x̄ j0vw) = 0.

As v ∈ L j0 , we may write v =∑(a, j0)∈J va · x̄i
x̄ j0

with va ∈ Fqn0 . Then

TrFqn /Fqn0 (m1,i0 x̄ j0vw) = TrFqn /Fqn0

(

m1,i0 x̄ j0

(
∑

(a, j0)∈J
va · x̄a

x̄ j0

)

w

)

= ∑

(a, j0)∈J
va · TrFqn /Fqn0

(
m1,i0 x̄aw

) = 0,

where the last equality holds since w ∈ W⊥ is orthogonal to each L⊥a . ��
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Part 4. Automorphic induction and the Jacquet–Langlands correspon-
dence

In this part, we use the results of Parts 2 and 3 to study the �-adic homology groups
of the semi-infinite Deligne–Lusztig variety Ẋ DL

ẇ (b), which by Theorem 6.9 along
with Corollary 6.19 is isomorphic to the affine Deligne–Lusztig variety at infinite
level Ẋ∞w (b) constructed in Sect. 6. In Sect. 10, we recall methods of Henniart char-
acterizing certain representations by considering the action of very regular elements.
In Sect. 11, we define the homology of Ẋ∞w (b) ∼= X DL

w and give a representation-
theoretic description of

RG
T (θ) :=

∑

i≥0
(−1)i Hi (Ẋ∞w (b), Q�)[θ ] for θ : T = L× → Q

×
� smooth

in terms of the cohomology of the finite-type variety Xh studied in the previous two
parts of the paper. Using methods of Henniart as reviewed in Sect. 10, we prove
Theorem 11.3: if |RG

T (θ)| is irreducible supercuspidal, then the assignment θ �→
|RG

T (θ)| realizes automorphic induction. To finish, we prove in Sect. 12 that when

θ : L× → Q
×
� is minimal admissible, then |RG

T (θ)| is irreducible supercuspidal.
We now give some basic definitions which we will use throughout the next few

sections. Recall that for any smooth character θ : L× → Q
×
� , there exists an integer

h ≥ 1 such that θ is trivial on U h
L = 1+� hOL . We call the smallest such h the level

of θ . We say that θ is in general position if its stabilizer in Gal(L/K ) is trivial. Let
X denote the set of such characters.

We say that an element x of L× is very regular if x ∈ O×L and its image in the
residue field Fqn generates its multiplicative group F

×
qn .

We say that a virtual representation is a genuine representation if it is a nonnegative
linear combination of irreducible representations. If R is a virtual representation that
is ±π , where π is a genuine representation, we write |R| = π .

10 Results of Henniart on the local Langlands correspondence

In this section, we review the methods of Henniart [19,20] characterizing certain cases
of automorphic induction by considering the action of very regular elements. We give
a generalization of the discussions of [6] to all inner forms of GLn(K ). There are no
technical difficulties in doing this, but we provide it for completeness of our paper.

Fix a character ε of K× with ker(ε) = NmL/K (L×), and let Gε
K (n) denote the

set of irreducible n-dimensional representations σ of the Weil group WK such that
σ ∼= σ ⊗ (ε ◦ rec−1K ), where recK : K× →Wab

K is the reciprocity isomorphism from

local class field theory. It is known that every element ofGε
K (n) is of the form IndWK

WL
(θ)

for some character θ ∈X . However, it is also known that automorphic induction is not
compatible with induction on Weil groups in the sense that the Langlands parameter
may have a twist by a rectifying character. Hence the approach we take is via the χ -
datum of Langlands–Sheldstad [24, Section 2.5]. Because L/K is unramified, there
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is a canonical choice of χ -datum, and this gives rise to a bijection

X /Gal(L/K )→ Gε
K (n), θ �→ σθ .

See [11, Section 7.2] for an exposition and an explicit discussion of the unramified
setting. Note that σθ differs from the notation of [6] by a rectifying character.

Let Aε
K (GLn) denote the set of isomorphism classes of irreducible supercuspidal

representations π of GLn(K ) such that π ∼= π ⊗ (ε ◦ det). There is a canonical
bijection

Gε
K (n)

LLC−→ Aε
K (GLn), σθ �→ πθ

satisfying certain properties. By work of Henniart, the character of πθ is very nicely
behaved on certain elements of GLn(K ).

Now let G be an inner form of GLn(K ) so that G ∼= GLn′(Dk0/n0), where Dk0/n0 is
the division algebra of dimension n2

0 over K with Hasse invariant k0/n0. Let Aε
K (G)

denote the set of isomorphism classes of irreducible supercuspidal representations π ′
of G such that π ′ ∼= π ′ ⊗ (ε ◦ det). By the Jacquet–Langlands correspondence, there
is a canonical bijection

Aε
K (GLn)

JLC−→ Aε
K (G), π �→ π ′ := JL(π)

such that the central characters of π and π ′ match and such that their characters on
regular semisimple elements differs by (−1)n−n′ .

Remark 10.1 We remark that the notation πθ agrees with the π(θ) of [20], but with the
π ′(θ) (rather than the π(θ)) of [19]. When n is odd, there is no discrepancy, but when
n is even, our πθ is the representation πθω = π ′(θ) in [19], where ω is the unique
unramified character of L× of order 2. ♦

The following theorem can be found in [19, Section 3.14].

Theorem 10.2 (Henniart) For each θ ∈X , there exists a constant cθ = ±1 such that

Tr JL(πθ )(x) = cθ ·
∑

γ∈Gal(L/K )

θγ (x)

for every very regular element x ∈ L× ⊂ GLn(K ).

As we will see momentarily, one can even go the other direction: the trace of
π ∈ Aε

K (GLn) on very regular elements of L× characterizes π . Furthermore, cθ can
be pinpointed for GLn(K ) by [19, Theorem 3.14] and extended to any inner form of
GLn(K ) via the character condition of the Jacquet–Langlands correspondence. For
each positive integer r and each θ ∈ X , consider the subgroup of Gal(L/K ) given
by Gθ,r := {γ ∈ Gal(L/K ) : a(γ ) ≤ r}, where a(γ ) is the level of θ/θγ .

123



Affine Deligne–Lusztig varieties at infinite level 1881

Theorem 10.3 (Henniart) The constant cθ of Theorem 10.2 satisfies

(−1)n−n′cθ =

⎧
⎪⎨

⎪⎩

+1 if n is odd,

+1 if n is even and s is even,

−1 if n is even and s is odd,

where s is such that Gθ,s �Gθ,s−1 contains the unique element of order 2 inGal(L/K ).

Lemma 10.4 (Henniart) Let θ ∈ X and suppose that there exists a character θ ′ of
L× (a priori, not necessarily in X ) such that θ(�) = θ ′(�) and

c ·
∑

γ∈Gal(L/K )

θγ (x) = c′ ·
∑

γ∈Gal(L/K )

θ ′γ (x) (10.1)

for all very regular elements of x ∈ L×. Assume in addition that c = c′ in the special
case n = 2, q = 3, and θ |U1

L
factors through the norm U 1

L → U 1
K (i.e. θ ∈ X 0 with

notation from Sect. 12). Then

θ ′ = θγ for some γ ∈ Gal(L/K ).

Proof We provide the proof in the case that θ |U1
L
has trivial Gal(L/K )-stabilizer,

following [20, Section 5.3] (see also [6, Lemma 1.7]). This is the simplest setting. In
[20, Section 5.3], Henniart proves the lemma for θ ∈X in the case [L : K ] is prime
by essentially the arguments presented here. A significantly more involved incarnation
of these arguments is used in [19, Identity (2.5), Sections 2.6–2.12] to prove the lemma
in full generality as stated.

We first show that the conclusion holds on U 1
L . Fix a very regular element x ∈ L×.

Since every element of xU 1
L ⊂ L× is a very regular element, the assumption implies

that we have an equation of linear dependence between the 2n characters of U 1
L given

by the restrictions of the Gal(L/K )-translates of θ and θ ′. Explicitly: on U 1
L , we have

θ ′ = c′−1θ ′(x)−1 ·
⎛

⎝
∑

γ∈Gal(L/K )

cθγ (x) · θγ −
∑

1 
=γ∈Gal(L/K )

θ ′(x)−1θ ′γ (x) · θ ′γ
⎞

⎠ .

Considering the character inner product of θ ′ with θγ ′ on U 1
L for some fixed γ ′ ∈

Gal(L/K ), we have:

〈θ ′, θγ ′ 〉 = c · θγ ′(x)

c′ · θ ′(x)
− c′ ·

∑

1 
=γ∈Gal(L/K )

θ ′γ (x)〈θ ′γ , θγ ′ 〉.

If 〈θ ′γ , θγ ′ 〉 = 1 for some 1 
= γ ∈ Gal(L/K ), then we are done. Otherwise, we must
have c′θ ′(x) = cθγ ′(x) and θ ′ = θγ ′ on U 1

L since θ, θ ′ agree on K×.
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We have now shown that there exists a γ ∈ Gal(L/K ) such that θ ′(x) = θγ (x)

for any very regular element x ∈ L×. But now it follows that θ ′ = θγ on O×L since
any very regular element together with U 1

L generateO×L . The desired conclusion now
follows by the assumption θ(π) = θ ′(π) since 〈� 〉 ·O×L = L×. ��

From Lemma 10.4, we obtain the following result:

Proposition 10.5 (Henniart, Boyarchenko–Weinstein) Let θ ∈ X and let G be any
inner form of GLn(K ). Assume that π is an irreducible supercuspidal representation
of G with central character θ |K× satisfying:

(i) π ∼= π ⊗ (ε ◦ det),
(ii) there exists a constant c 
= 0 satisfying Tr π(x) = c ·∑γ∈Gal(L/K ) θγ (x) for each

very regular element x ∈ L×.

If n = 2, q = 3, and θ |U1
L

factors through the norm U 1
L → U 1

K (i.e. θ ∈ X 0

with notation from Sect. 12), assume in addition that c =
{
−1 if G ∼= GL2(K )

+1 if G ∼= D×1/2
.

Then π corresponds to θ under automorphic induction and the Jacquet–Langlands
correspondence:

π ∼= JL(πθ ).

Proof This is [6, Proposition 1.5] (combined with the remarks of Section 1.4 of op.
cit.) when G ∼= GLn(K ) or G ∼= D×1/n . The proof extends to the general situation with
no complications. ��

11 Homology of affine Deligne–Lusztig varieties at infinite level

We explain how the results of Part 3 on the cohomology of the finite-type of Fqn -
schemes Xh for h ≥ 1 (Proposition-Definition 7.11, Proposition 7.12) allows one to
define and determine homology groups of the schemes Ẋ∞w (b).

11.1 Definition of the homology groups

Following [25], for any smooth Fq -scheme S of pure dimension d, we set

Hi (S, Q�) := H2d−i
c (S, Q�)(d),

where (d) denotes the dth Tate twist. Recall from Proposition 7.4 that for any h ≥ 1,
the Fqn -scheme Xh is smooth of pure dimension (n − 1)(h − 1)+ (n′ − 1).

By Proposition 6.12, Corollary 6.19 and (7.1), we have

Ẋ∞w (b) =
⊔

g∈G/GO

lim←−
r>m≥0

g · Ẋm
ẇr

(b)L0 =
⊔

g∈G/GO

lim←−
h

Xh .
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By Proposition 7.7, we have the natural inclusion

Hi (Xh−1, Q�) = Hi (Xh, Q�)
W

h−1
h (Fqn ) ⊆ Hi (Xh, Q�).

We may therefore define

Hi

(
Ẋ∞w (b)L0 , Q�

)
= Hi

(

lim←−
h

Xh, Q�

)

:= lim−→
h

Hi

(
Xh, Q�

)
,

Hi

(
Ẋ∞w (b), Q�

)
=
⊕

G/GO

Hi

(
g · Ẋ∞w (b)L0 , Q�

)
.

Recall that in Theorem 6.9 we extended the action of O×L on Ẋ∞w (b) to an action
of T = L×.

Definition 11.1 For any (smooth) character θ : T → Q
×
� , define the virtual G-

representation

RG
T (θ) :=

∑

i≥0
(−1)i Hi (Ẋ∞w (b), Q�)[θ ],

where [θ ] denotes the subspace where T acts by θ .

Let Z denote the center of G.

Theorem 11.2 Let θ : T = L× → Q
×
� be a character of level h ≥ 1. Then as G-

representations,

RG
T (θ) ∼= c-IndG

Z ·GO

(
RGh

Th
(θ)
)

, (11.1)

where we view the (virtual) Gh-representation RGh
Th

(θ) as a GO-representation by
pulling back along the natural surjection GO → Gh and then extend to Z by letting
� act by θ(�). Furthermore, for any very regular element x ∈ L×,

Tr
(

x∗; RG
T (θ)
)
=
∑

γ∈Gal(L/K )

θγ (x).

Proof The stabilizer of Ẋ∞w (b)L0 ⊆ Ẋ∞w (b) in G is GO. Let TO be the preimage of
O×L under T ∼= L×. It is easy to see that the stabilizer of Ẋ∞w (b)L0 ⊆ Ẋ∞w (b) in G×T
is the subgroup � generated by GO× TO and (�,�−1). Hence as representations of
G × T , we have

∑
(−1)i Hi (Ẋw(b), Q�)

∼= c-IndT×G
�

(∑
(−1)i Hi (Ẋw(b)L0 , Q�)

)
.

Now let �̃ be the subgroup of G × T generated by � and {1} × T . Note that �̃ ∼=
ZGO×T . The isomorphism (11.1) follows from the above together with the definition
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of the homology groups of Ẋw(b)L0 in terms of the cohomology of Xh (remembering
that θ has level h by assumption).

It remains to determine the character on very regular elements of L×.We use (11.1)
together with the corresponding character formula result for Xh (Proposition 8.3). By
Lemma 5.7, we know that for each ϕ ∈ Gal(L/K ), there exists an element gϕ ∈
NG(GO) satisfying gϕxg−1ϕ = ϕ(x) for all x ∈ L× and that if ϕ ∈ Gal(L/K )[n′],
one can choose gϕ ∈ GO. By Sect. 5.5, we know that NG(GO)/GO ∼= Z/n0Z, and
therefore using the fact that

Tr
(

x∗; RGh
Th

(θ)
)
=

∑

ϕ∈Gal(L/K )[n′]
θ(gϕxg−1ϕ )

by Proposition 8.3, we have:

Tr
(

x∗; RG
T (θ)
)
=

∑

g∈G/ZGO
gxg−1∈ZGO

Tr
(

x∗; RGh
Th

(θ)
)
=
∑

ϕ∈Gal(L/K )

θ(gϕxg−1ϕ ).

��
Theorem 11.3 Let θ ∈ X . If |RG

T (θ)| is irreducible supercuspidal, then the assign-
ment θ �→ |RG

T (θ)| is a geometric realization of automorphic induction and the
Jacquet–Langlands correspondence. That is,

|RG
T (θ)| ∼= JL(πθ ),

where JL denotes the Jacquet–Langlands transfer of theGLn(K )-representation πθ to
the (possibly split) inner form G of GLn(K ). Moreover, writing |RG

T (θ)| = c′θ RG
T (θ)

for c′θ ∈ {±1}, we have c′θ = cθ .

Remark 11.4 If |RG
T (θ)| is irreducible supercuspidal, then RG

T (θ) = (−1)rθ π , where
π is an irreducible supercuspidal representation occurring in Hrθ (Ẋ∞w (b), Q�)[θ ] for
some rθ ∈ Z. (There may be other degrees where π contributes, but they all cancel
out. In particular, there may be more than one choice of rθ , but the parity of rθ is
invariant.) Then by Theorem 11.3 implies that cθ = (−1)rθ , which gives a geometric
interpretation of Henniart’s sign cθ in terms of the surviving cohomological degree in
the alternating sum RG

T (θ). ♦

Proof Write |RG
T (θ)| = c′θ RG

T (θ) for some c′θ = ±1. If we can show that |RG
T (θ)|

satisfies the hypotheses of Proposition 10.5, thenwe are done. By assumption, |RG
T (θ)|

is an irreducible cuspidal representation andbydefinition of theG×T actionon RG
T (θ),

the central character of |RG
T (θ)| must be θ |K× .

To see that (i) of Proposition 10.5 holds, note that since L/K is unramified we have
〈� n〉O×K = NmL/K (L×) = ker(ε). In particular, we see that ε ◦det is trivial on ZGO
and so by Theorem 11.2, we have |RG

T (θ)| ∼= |RG
T (θ)| ⊗ (ε ◦ det).
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We now establish (ii) of Proposition 10.5 and the additional assumption in the
special case n = 2 and q = 3. By Theorem 11.2, we have that for any very regular
element x ∈ L×,

Tr(x∗; |RG
T (θ)|) = c′θ ·

∑

γ∈Gal(L/K )

θγ (x).

If n = 2, q = 3, and θ ∈X 0, then by Theorem 12.2, we know in addition that

c′θ = (−1)n′−1 =
{
−1 if G ∼= GL2(K ),

+1 if G ∼= D×1/2.

We have now established all the conditions required by Proposition 10.5 to conclude
that c′θ = cθ and |RG

T (θ)| ∼= JL(πθ ). ��

12 A geometric realization of automorphic induction and
Jacquet–Langlands

In this section, we write down the cases in which we can prove Theorem 11.3 uncon-
ditionally. To this end, we consider the following two subsets ofX :

X 0 := {θ ∈X : θ |U1
L
factors through the norm map U 1

L → U 1
K }

X min := {θ ∈X : θ is minimal admissible}
= {θ ∈X : the θ/θγ have the same level for any 1 
= γ ∈ Gal(L/K )}

Note that X 0 ⊆X min is the “depth zero” part of X min.

Remark 12.1 Let θ ∈ L× → Q
×
� be a smooth character with trivial Gal(L/K )-

stabilizer. Then its restriction to O×L must have trivial Gal(L/K )-stabilizer. For the
reader’s convenience, we summarize the relation between minimal admissibility and
similar notions in the literature:

· θ is minimal admissible if and only if (L/K , θ) form a minimal admissible pair,
which happens if and only if θ has only one “jump” in the sense of Bushnell–
Henniart [9, Section 1.1].
· θ is minimal admissible if and only if it can be written in the form θprim · (χ ◦
NmL/K ) for some smooth χ : K× → Q

×
� , where θprim is primitive in the sense of

Boyarchenko–Weinstein [7, Section 7.1] (see also Sect. 8 of the present paper).
· Let h be such that θ |U h

L
= 1 and θ |U h−1

L

= 1. Then θ is primitive if and only if θ is

regular as a character of O×L /U h
L in the sense of Lusztig [26, Section 1.5], when

O×L /U h
L is the F-fixed points of a maximal torus (see Remark 8.5). ♦
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12.1 Depth zero representations

In this section we only consider characters θ ∈ X 0 and give a nonvanishing result
for the individual cohomology groups Hi (Ẋ∞w (b), Q�)[θ ]. Since each θ ∈ X 0 is
of the form θ0 · (χ ◦ NmL/K ), where θ0 ∈ X 0 and θ0|U1

L
= 1, determining

when Hi (Ẋ∞w (b), Q�)[θ ] 
= 0 can be reduced to the corresponding question for the
cohomology of classical Deligne–Lusztig varieties. Recall from Proposition 7.4 that
dim Xh = (n − 1)(h − 1)+ (n′ − 1).

Theorem 12.2 Fix θ ∈ X 0 of level h and write θ = θ0 · (χ ◦ NmL/K ) for some
θ ∈X 0 of level 1 and some character χ of K× of level h. Then:

(i) the cohomology groups Hi
c (Xh, Q�)[θ ] are concentrated in a single degree and

|RGh
Th

(θ)| = H2(n−1)(h−1)+n′−1
c (Xh, Q�)[θ ] ∼= Hn′−1

c (X1, Q�)[θ0] ⊗ (χ ◦ det)

(ii) the homology groups Hi (Ẋ∞w (b), Q�)[θ ] are concentrated in a single degree and

|RG
T (θ)| = Hn′−1(Ẋ∞w (b), Q�)[θ ] ∼= c-Ind

GLn′ (Dk0/n0 )

Z ·GLn′ (ODk0/n0
)
(ρθ ) (12.1)

is an irreducible supercuspidal representation of G. Here ρθ is the extension of the
GLn′(ODk0/n0

)-representation Hn′−1
c (X1, Q�)[θ0] ⊗ (χ ◦ det) obtained by letting

� ∈ Z = K× act by θ(�).

Moreover, |RGh
Th

(θ)| = (−1)n′−1RGh
Th

(θ) and |RG
T (θ)| = (−1)n′−1RG

T (θ).

Proof By Lemma 8.4 and Proposition 7.7, we have, as Gh-representations

Hi
c (Xh , Q�)[θ0 ◦ (χ ◦ NmL/K )] ∼= Hi

c (Xh , Q�)[θ0] ⊗ (χ ◦ det) ∼= Hi−2(n−1)(h−1)
c (X1, Q�)[θ0]

for all i ≥ 2(n − 1)(h − 1). This reduces the cohomology calculation to a statement
about X1, which is a classical Deligne–Lusztig variety attached to the maximal torus
F
×
qn in GLn′(Fqn0 ). By [13, Corollary 9.9],

Hi
c (X1, Q�)[θ ] 
= 0 ⇐⇒ i = n′ − 1.

This proves (i). Since dim Xh = (n − 1)(h − 1)+ n′ − 1 by Proposition 7.4, we now
also see the nonvanishing assertion of (ii) and Hn′−1(Ẋ∞w (b), Q�)[θ ] has the form
12.1 by Theorem 11.2. It is well known that this representation is irreducible and
supercuspidal (see also Theorem 12.5). For example, one can show by hand (by the
first part of the proof of Theorem 12.5) that the induction to the normalizer of ZGO
is irreducible, and then the conclusion follows from [27, Proposition 6.6]. ��
Theorem 12.3 For θ ∈X 0, the assignment θ �→ Hn′−1(Ẋ∞w (b), Q�)[θ ] is a geomet-
ric realization of automorphic induction and the Jacquet–Langlands correspondence.
That is,

Hn′−1(Ẋ∞w (b), Q�)[θ ] = (−1)n′−1RG
T (θ) = |RG

T (θ)| ∼= JL(πθ ).
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Proof By Theorem 12.2, we know that |RG
T (θ)| = (−1)n′−1RG

T (θ) is an irreducible
supercuspidal representation, and by Theorem 11.2, we know that for any very regular
element x ∈ L×,

Tr(x∗; |RG
T (θ)|) = (−1)n′−1 ·

∑

γ∈Gal(L/K )

θγ (x).

By definition ε is a finite-order character of K× with ker(ε) = NmL/K (K×).
Since L/K is unramified, ker(ε) contains O×K , and therefore ε ◦ det is trivial on
Z ·GLn′(ODk0/n0

). Hence |RG
T (θ)| ⊗ (ε ◦ det) ∼= |RG

T (θ)|. We can now apply Propo-
sition 10.5, noting that in the case n = 2, q = 3, we have the correct sign cθ (compare
with Theorem 10.3) as required by the proposition. ��

Remark 12.4 Observe that as in Remark 11.4, the nonvanishing degree n′ − 1 of the
homology of Ẋ∞w (b) gives a geometric interpretation of Henniart’s sign cθ from The-
orem 10.3. ♦

12.2 Representations corresponding tominimal admissible characters

We now prove the supercuspidality of |RG
T (θ)| for θ ∈ X min. The main technical

inputs are the irreducibility of |RGh
Th

(θ)| (Sect. 8) and a “cuspidality” result for |RGh
Th

(θ)|
(Theorem 9.1).

Theorem 12.5 If θ ∈X min, then |RG
T (θ)| is irreducible supercuspidal.

Proof We first establish some notation. If π : H → GL(V ) is a representation of
a subgroup H ⊂ G, then for any γ ∈ G, we define γ π : γ Hγ−1 → GL(V ) by
γ π(g) :=π(γ−1gγ ). Assume that θ is minimal admissible of level h. By definition,
we can write θ = θ ′ ⊗ (χ ◦ Nm), where θ ′ is a primitive character of L× of level
h′ ≤ h, χ is any character of K× of level h, and Nm : L× → K× is the usual norm.
Denoting by θ, θ ′, χ the corresponding restrictions to the unit groups, by Proposition
7.7 and Lemma 8.4, we have

RGh
Th

(θ) = RGh
Th

(θ ′ ⊗ (χ ◦ Nm)) ∼= RGh
Th

(θ ′)⊗ (χ ◦ det) ∼= R
Gh′
Th′ (θ ′)⊗ (χ ◦ det).

In particular, by Theorem 11.2, we see that

RG
T (θ) ∼= RG

T (θ ′)⊗ (χ ◦ det).

Since twists of irreducible supercuspidal representations are again irreducible super-
cuspidal, it suffices to prove the theorem for primitive characters θ .

Assume now that θ is a primitive character of level h. By Theorem 8.1, |RGh
Th

(θ)| is
irreducible. Recall that there is a natural surjection GO → Gh so that we may view
|RGh

Th
(θ)| as a representation of GO. We extend this to a representation of Z · GO =
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〈� 〉 · GO by letting � act on |RGh
Th

(θ)| by θ(�). We first claim that

ρθ := c-IndZ ·NG (GO)
Z ·GO

(
|RGh

Th
(θ)|
)

is irreducible. Recall from Sect. 5.5 that #NG(GO)/GO = n0 and let {1, ϕ2, . . . , ϕn0}
denote a complete set of coset representatives of Gal(L/K )/Gal(L/K )[n′]. By
Lemma 5.7, there exists gϕi ∈ NG(GO) such that g−1ϕi

xgϕi = ϕi (x) for all x ∈ O×L .
By Mackey’s irreducibility criterion, it suffices to show that

HomGO

(
|RGh

Th
(θ)|, gϕi |RGh

Th
(θ)|
)
= 0, for i = 2, . . . , n0. (12.2)

Fix some i with 2 ≤ i ≤ n0. By Proposition 8.3, for any very regular element
x ∈ O×L ,

Tr
(

x∗; gϕi RGh
Th

(θ)
)
= Tr
(
(g−1ϕi

xgϕi )
∗; RGh

Th
(θ)
)
=

∑

γ∈Gal(L/K )[n′]
θγ (ϕi (x)).

Applying Lemma 10.4 to the case when θ ′ = θϕi and the base field K is replaced
by the unique subfield of index n′ in L containing K , we see that

Tr
(

x∗; gϕi RGh
Th

(θ)
)

= Tr
(

x∗; RGh
Th

(θ)
)

.

But now gϕi RGh
Th

(θ) and RGh
Th

(θ) are irreducible representations of GO whose char-
acters differ from each other, and so necessarily (12.2) holds and ρθ is irreducible.

We now fix γ ∈ G � NG(Z ·GO). Once again by Mackey’s criterion, to complete
the proof we must show that

Homγ ZGOγ−1∩ZGO

(
|RGh

Th
(θ)|, γ |RGh

Th
(θ)|
)
= 0. (12.3)

At this point, let b be a special representative. By Sect. 5.5, we may assume that
γ = �ν

0, where ν = (ν1, . . . , ν1, ν2, . . . , ν2, . . . , νn′ , . . . , νn′) (each νi repeated n0
times) for 0 = ν1 ≤ ν2 ≤ · · · ≤ νn′ , and �ν

0 is the block-diagonal matrix whose

i th n0 × n0 block is given by
(

0 �
1n0−1 0

)νi
. Observe that if (Ai, j )1≤i, j≤n′ ∈ GLn(K̆ ),

where each Ai, j is a (n0 × n0)-matrix, then

�−ν
0 · (Ai, j )1≤i, j≤n′ ·�ν

0 = (�
−νi
0 Ai, j�

ν j
0 )1≤i, j≤n′ . (12.4)

For a parabolic subgroup P ′ of GLn′ containing the upper triangular matrices, let
N̆P ′ be its unipotent radical. Let N̆P denote the subgroup of GLn(K̆ ) such that each
(n0 × n0)-block consists of a diagonal matrix and the (i, j)th block is nonzero if and
only if the (i, j)th entry of an element of N̆P ′ is nonzero. Write NP = N̆ F

P ∩GO. For
h ≥ 1 let N h

P = NP ∩ ker(GO → Gh).
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We claim that there exists a parabolic P ′ ⊆ GLn′ as above, such that
�−ν

0 N h−1
P �ν

0 ⊂ ker(GO → Gh). Let 1 ≤ i0 ≤ n′ be the last νi0 = 0 so that
νi0 < νi0+1, and let P ′ be the minimal parabolic corresponding to the partition
i0 + (n′ − i0). Let (Ai, j )1≤i, j≤n′ ∈ N h−1

P so that each Ai, j is a diagonal n0 × n0

matrix whose entries all lie in W
h−1
h (Fq). By (12.4), we see that the (i, j)th block

of �−ν
0 · (Ai, j )1≤i, j≤n′�ν

0 is �
−νi
0 Ai, j�

ν j
0 , so that in particular, if 1 ≤ i ≤ i0 and

i0 + 1 ≤ j ≤ n′, then ν j − νi > 0. By definition of Gh (Sect. 5.3), we now have that
�−ν

0 · (Ai, j )1≤i, j≤n′ ·�ν
0 ∈ ker(GO → Gh).

The above implies that the restriction of �ν
0 |RGh

Th
(θ)| to N h−1

P is trivial. On the other

hand, by Theorem 9.1, the restriction of |RGh
Th

(θ)| to N h−1
P does not contain the trivial

representation. Therefore:

dim Homγ ZGOγ−1∩ZGO (|RGh
Th

(θ)|, γ |RGh
Th

(θ)|)
≤ dimHomN h−1

P
(|RGh

Th
(θ)|, γ |RGh

Th
(θ)|)

≤ dimHomN h−1
P

(|RGh
Th

(θ)|, triv) = 0.

��
Combining Theorems 11.3 and 12.5 proves:

Theorem 12.6 If θ ∈ X min, then the assignment θ �→ |RG
T (θ)| is a geometric real-

ization of automorphic induction and the Jacquet–Langlands correspondence.
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