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Abstract
Mean curvature flow for isoparametric submanifolds in Euclidean spaces and spheres
was studied in Liu and Terng (Duke Math J 147(1):157–179, 2009). In this paper, we
will show that all these solutions are ancient solutions and study their limits as time
goes to negative infinity. We also discuss rigidity of ancient mean curvature flows for
hypersurfaces in spheres and its relation to the Chern’s conjecture on the norm of the
second fundamental forms of minimal hypersurfaces in spheres.

1 Introduction

The mean curvature flow (abbreviated asMCF) of a submanifold M in a Riemannian
manifold X over an interval I is a map f : I × M −→ X satisfying

∂ f

∂t
= H(t, ·),

where H(t, ·) is the mean curvature vector field of f (t, ·). If a solution to this equation
exists for all t ∈ (−∞, T ) for some T ≥ 0, then it is called an ancient solution. Ancient
solutions are important in studying singularities of MCF. A simple example of ancient
solution to MCF is the shrinking sphere in a Euclidean space. A set of conditions
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which ensure a compact ancient solution to be the shrinking sphere is given in [16].
Other examples of compact convex ancient solutions for MCF of hypersurfaces in
Euclidean spaces can be found in [5,7,14,32,33], etc. Recently an ancient solution
of MCF of hypersurfaces with the topology of S1 × Sn−1 in R

n+1 was given in [6].
A construction of higher codimensional curve shortening flows was given in [3] and
[29]. It was proved in [26] that after reparametrization the family of proper Dupin
submanifolds in sphere constructed in [25] is an ancient solution for the MCF of
submanifolds in spheres.

In this paper, we will give a class of ancient solutions to MCF in Euclidean spaces
and spheres for compact submanifolds. These examples include both hypersurfaces
and higher codimensional submanifolds in spheres and have more complicated topo-
logical types.

A submanifold M of a space form is isoparametric if its normal bundle is flat and
principal curvatures along any parallel normal vector field are constant. The following
results were proved in [30]:

(i) If M is a compact isoparametric submanifold in R
n+k , then M is contained in a

hypersphere.
(ii) The set of parallel submanifolds to M forms a singular foliation, whose top dimen-

sional leaves are also isoparametric and lower dimensional leaves are smooth focal
submanifolds of M . Focal submanifolds are no longer isoparametric.

A submanifold M in R
n+k is full if M is not contained in any hyperplane. The

rank of a full isoparametric submanifold in a Euclidean space is the co-dimension of
the submanifold. Compact rank 2 isoparametric submanifolds in Euclidean spaces are
isoparametric hypersurfaces in spheres. These hypersurfaces have rich topology. For
example, principal orbits of isotropy representations of rank 2 symmetric spaces are
homogeneous examples of isoparametric hypersurfaces in spheres. For each orthog-
onal representation of Clifford algebra, Ferus–Karcher–Münzner constructed in [12]
a family of isoparametric hypersurfaces in spheres. Most of these examples are not
homogeneous. Principal orbits of isotropy representations of higher rank symmetric
spaces are isoparametric submanifolds of higher codimension.

In [18], we studied MCF in both Euclidean spaces and in spheres with initial data
an isoparametric submanifold. We call the MCF in spheres (respectively Euclidean
spaces) the sphericalMCF (respectivelyEuclideanMCF).Although a compact isopar-
metric submanifold Mn in Rn+k is contained in a sphere Sn+k−1 and is isoparametric
in Sn+k−1, the EuclideanMCF and the sphericalMCFwith initial dataM are different.
In fact, they are related by a nice formula (see Eqs. (1.1) and (1.2) below). Let f (t, x)
and F(t, x) denote the spherical and Euclidean MCF with initial data the inclusion
map f0 : M → Sn+k−1 of an n-dimensional isoparametric submanifold M in the unit
sphere Sn+k−1 ⊂ R

n+k . The following results were proved in [18]:

1. f (t, ·) and F(t, ·) are isoparametric and parallel to M .
2. If M is not minimal in Sn+k−1, then the spherical MCF collapses in finite time

T > 0 to a lower dimensional focal submanifold N ⊂ Sn+k−1 and the Euclidean
MCF is

F(t, x) = √
1 − 2nt f (− 1

2n
ln(1 − 2nt), x). (1.1)
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In particular, the Euclidean MCF collapses at T0 = 1−e−2nT

2n to the focal submani-
fold e−nT N . Moreover T0 < 1

2n .
3. If M is a minimal isoparametric submanifold of Sn+k−1, then the spherical MCF

f (t, x) = f0(x) is stationary, and the Euclidean MCF is

F(t, x) = √
1 − 2nt f0(x), (1.2)

which homothetically collapses to a point at T0 = 1
2n .

One of the main results of this paper is to show that the above spherical and
Euclidean MCFs are ancient solutions:

Theorem 1.1 Let M be an isoparametric submanifold in the unit sphere, f (t, x),
F(t, x) the spherical and Euclidean MCF with initial data M. Then we have the
following:

1. f (t, ·) and F(t, ·) exist for all t ∈ (−∞, 0].
2. There is a unique minimal isoparametric submanifold Mmin in Sn+k−1, which is

parallel to M. In fact, there exists a unit parallel normal vector field ζ on M in
Sn+k−1 such that the map h : M → Sn+k−1 defined by

h(x) = (cos r)x + (sin r)ζ(x)

is the embedding of Mmin in Sn+k−1, where r is the spherical distance between M
and Mmin.

3.

lim
t→−∞ ||F(t, x) − √

1 − 2nt h(x)|| = 0, (1.3)

lim
t→−∞ || f (t, x) − h(x)|| = 0. (1.4)

for all x ∈ M.

If M is minimal in the sphere, h is just the identity map. Part (3) of this theorem
means that the MCF of M converges to MCF of Mmin in a suitable sense as t → −∞
. In particular, the spherical MCF of M always converges to a minimal isoparametric
submanifold as t → −∞.

Comparing to higher codimensional cases, MCF of hypersurfaces are expected to
be more rigid and have attracted more attention in the literature. In this paper, we
will give a simple unified explicit solution for MCF of all isoparametric hypersurfaces
in the sphere (see Propositions 4.2 and 4.3). We can use such solutions to obtain
geometric descriptions of MCF for concrete examples of isoparametric hypersurfaces
(see Examples 4.4 and 4.5 for the cases of Clifford tori and flag manifolds).

It is well known (cf. [20,21]) that isoparametric hypersurfaecs in the sphere can have
only g distinct principal curvatures with g = 1, 2, 3, 4, 6. Isoparametric hypersurfaces
with g = 1 are precisely hyperspheres (i.e. codimensional one subspheres). If it is
not totally geodesic, the spherical MCF of a hypersphere collapses to a point in finite
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positive time and tends to a totally geodesic hypersphere as t → −∞. Huisken and
Sinestrari called these ancient flows the shrinking spherical cap in [16] and proved
the following rigidity results (see Theorem 6.1 and Remark 6.2 in [16]): The spherical
MCF Mt for hypersurfaces in Sn+1 is either a shrinking spherical cap or a stationary
solution if one of the following conditions is satisfied for all t < 0:

1. For some constant B < 4n,

||A(t)||2 < e−Bt ||H(t)||2. (1.5)

2. For n ≥ 3 and

||A(t)||2 − 1

n − 1
||H(t)||2 ≤ 2. (1.6)

In above conditions, A(t) and H(t) are the shape operator (or equivalently the
second fundamental form) and mean curvature vector field for Mt respectively. For
the n = 2 case, condition (1.6) can be replaced by a similar condition with different
constants. Higher codimensional rigidity results modeled on shrinking spherical caps
were obtained in [19,27], and [17].

Motivated by above rigidity results as well as results in [2], we give estimates

for ||A(t)||2
||H(t)||2 and ||A(t)||2 − 1

n ||H(t)||2 in Sect. 4 for spherical MCF of isoparametric
hypersurfaces with g disticnt principal curvatures. For g = 1, Huisken-Sinestrari’s
theorem and results in [17] give evidence that these estimates give rigidity of ancient
solutions of MCF. This leads us to conjecture that these estimates will give us the
rigidity results modeled on spherical MCF for isoparametric hypersurfaces with g ≥
2 distinct principal curvatures (see Conjectures 4.16 and 4.18). The rigidity of the
stationary case of the spherical MCF for hypersurfaces is related to Chern’s conjecture
on the norm square of the second fundamental form of minimal hypersurfaces in
spheres. Moreover, we will see that condition (1.5) in Huisken-Sinestrari’s theorem
above is sharp in Remark 4.13. We will also discuss the sharpness of condition (1.6)
in Remark 4.10.

This paper is organized as follows: We prove Theorem 1.1 in Sect. 2, and compute
the norms of shape operators and mean curvature vector fields of isoparametric sub-
manifolds in Sect. 3. In the last section, we give explicit solutions of the sphericalMCF
for isoparametric hypersurfaces, compute formulas for the mean curvature vector and
the norm of the shape operators, and discuss the rigidity question of these ancient
flows and its relation to Chern’s conjecture.

The authors would like to thank Carlo Sinestrari for helpful discussions and Yan
Xu for carefully reading the paper.

2 Proof of Theorem 1.1

Let M be an n-dimensional compact full isoparametric submanifold in a Euclidean
space Rn+k . Without loss of generality, we may assume Mn is contained in the unit
sphere Sn+k−1 centered at the origin. We write down some results in [30] which will
be needed later:
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(i) The tangent bundle of M has the decomposition

T M = ⊕g
i=1Ei

where Ei are called curvature distributions. The curvature normals of M are par-
allel normal vector fields ni such that the shape operator Aξ of M as a submanifold
of Euclidean space is given by

Aξ |Ei = 〈ξ,ni 〉IdEi (2.1)

for all normal vector ξ . The multiplicity of ni is defined to be the dimension of Ei

and is denoted by mi .
(ii) Each Ei is an integrable distribution and its leaves are standard mi dimensional

spheres.
(iii) Fix x0 ∈ M , the group generated by hyperplanes 〈ξ,ni 〉 = 0 in νx0M for 1 ≤ i ≤ g

is a Weyl group W . Let C be the open Weyl chamber of W which contains x0.
Then C is given by

C = {x ∈ νx0M | < x,ni >< 0 f or all i}. (2.2)

Let C be the closure of C and k the dimension of νx0M . C is a simplicial cone
with vertex at the origin.

(iv) Given ξ ∈ C̄ , there exists a unique parallel normal vector field ξ̃ such that ξ̃ (x0) =
ξ − x0 and the submanifold parallel to M defined by ξ̃ is

Mξ = {x + ξ̃ (x)|x ∈ M}.

Moreover, we have the following:

1. If ξ ∈ C , then Mξ is diffeomorphic to M and is also isoparametric.
2. Let ∂C be the boundary ofC . If x ∈ ∂C , thenMξ is a smooth lower dimensional

focal submanifold of M .
3. Mξ ∩ νx0M is the W -orbit at ξ , where W is the Weyl group associated to M .
4. ∪{Mξ |ξ ∈ C̄} is a singular foliation of Rn+k , called isoparametric foliation of

R
n+k .

5. ∪{Mξ |ξ ∈ C̄, ||ξ || = 1} is a singular foliation of Sn+k−1, called isoparametric
foliation of Sn+k−1.

6. Given a unit vector ξ ∈ C and ξ �= x0. There exists a unique unit vector
y0 ∈ νx0M such that (cos r)x0+(sin r)y0 = ξ , where r is the distance between
x0 and ξ in Sn+k−1. Let η denote the unique parallel unit normal vector field
on M satisfying η(x0) = y0. Then

Mξ = {(cos r)x + (sin r)η(x)|x ∈ M}.
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7. If ξ ∈ ∂C and lies in only one reflection hyperplane 〈ξ,ni 〉 = 0, then
dim(Mξ ) = n − mi and the map hξ : M → Mξ defined by

hξ (x) := (cos r)x + (sin r)η(x)

is a fibration with fibers isometric to a roundmi dimensional sphere (fibers are
leaves of Ei ).

(v) All curvature normals n1, . . . ,ng at x0 span νx0M .

Fix x0 ∈ M . It was shown in [18, Theorem 2.2] that MCF of M is through parallel
isoparametric submanifolds and the Euclidean MCF with initial data M becomes the
following ODE for x(t) ∈ νx0M :

x ′(t) = −
g∑

i=1

mini
< x(t),ni >

, x(0) = x0. (2.3)

As in the proof of [18, Theorem 2.4], there is a map

P : C −→ R
k

x �−→ (P1(x), . . . , Pk(x))

where Pi are W -invariant polynomials on νx0M and the map P is a homeomorphism
from C to B := P(C) ⊂ R

k . Under this homeomorphism, the Euclidean MCF (2.3)
becomes a flow equation along a polynomial vector field on Rk . Solution to the latter
equation always exists for all t . In fact such solutions can be recursively constructed
as in [18, Section 3]. Consequently, the solution to Euclidean MCF (2.3) exists for t
as long as x(t) does not hit ∂C .

Since dimensions of leaves through boundary points of C are smaller than n, the n-
dimensional volume of the leaves of the isoparametric foliation are 0 on ∂C . Note that
the MCF decreases volume. For t ≤ 0, x(t) will stay away from ∂C . Consequently,
x(t) exists for all t ∈ (−∞, 0]. It was also proved in [18] that x(t) exists for t ∈ [0, T )

for a positive T < ∞ and x(t) converges to a point in ∂C as t → T . So the maximal
time interval for the existence of solutions ofMCF for M is (−∞, T ) and this solution
is indeed an ancient solution. This proves part (1) of Theorem 1.1 for the Euclidean
MCF.

Let M̃n ⊂ Sn+k−1 be a minimal isoparametric submanifold in the same isopara-
metric foliation as M , and x̃0 the unique point in the intersection of M̃ and C . As
mentioned in (iv) above that there exists a parallel unit normal vector field ζ to M in
Sn+k−1 such that

M̃ = Mx̃0 = {(cos r) x + (sin r) ζ(x)|x ∈ M}.

Here r is the distance between M and Mx̃0 in Sn+1. The map

h(x) = (cos r) x + (sin r) ζ(x)
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defines a diffeomorphism h : M → M̃ . Later we will show that minimal isopara-
metric submanifold is unique in each isoparametric foliation of the sphere and hence
completes the proof of part (2) of Theorem 1.1.

Let x̃(t) ∈ C be the solution to the Euclidean MCF of M̃ with x̃(0) = x̃0. By Eq.
(1.2), x̃(t) is given by

x̃(t) = √
1 − 2nt x̃0. (2.4)

In particular x̃(t) is parallel to x̃0 for all t and

‖x̃(t)‖ = √
1 − 2nt .

Let x(t) be the solution of the EuclideanMCF (2.3) with initial data x0, and x̃(t) the
solution given by (2.4) (i.e., the Euclidean MCF with initial data a minimal isopara-
metric submanifold). To prove (1.3), we compute the derivative of

D(t) := ||x(t) − x̃(t)||2,

to get

1

2

d

dt
D(t) =

g∑

i=1

mi
〈x(t) − x̃(t),ni 〉2
〈x(t),ni 〉〈x̃(t),ni 〉 ≥ 0 (2.5)

(cf. [18, Equation 2.8]). Let

α(t) = x(t) − x̃(t)

||x(t) − x̃(t)|| .

Then α(t) is a unit vector in νx0M since both x(t) and x̃(t) lie in C . By Eq. (1.1),

‖x(t)‖ = √
1 − 2nt .

Hence Eq. (2.5) implies

1

2

d

dt
D(t) ≥ D(t)

g∑

i=1

mi
〈α(t),ni 〉2

‖x(t)‖ · ‖x̃(t)‖ · ‖ni‖2

= D(t)

1 − 2nt

g∑

i=1

mi
〈α(t),ni 〉2

‖ni‖2 .

We claim that the set

{ g∑

i=1

mi
〈β,ni 〉2
‖ni‖2

∣∣∣∣∣ β ∈ νx0M, ||β|| = 1

}
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is bounded from below by a positive constant. Otherwise, by the compactness of the
sphere, there would exist a unit vector in νx0M which is perpendicular to all curvature
normals ni . This would contradict to the assumption that M is full.

Hence there exists a constant b > 0 such that

d

dt
D(t) ≥ b

1 − 2nt
D(t).

Integrating 1
D(t)

d
dt D(t) over an interval [a, 0] with a < 0, we have

D(a) ≤ D(0)(1 − 2na)−
b
2n

for all a < 0. Hence D(a) → 0 as a → −∞. This shows that

lim
t→−∞(x(t) − x̃(t)) = 0. (2.6)

So the Euclidean MCF for M and M̃ are asymptotically the same as t goes to −∞.
This proves Eq. (1.3).

Let y(t) be the solution to the spherical MCF for M with y(0) = x0. By Eq. (1.1),
x(t) and y(t) are related by

x(t) = √
1 − 2nt y

(
− ln(1 − 2nt)

2n

)
. (2.7)

Since x(t) exists for all t ∈ (−∞, 0], so does y(t). Hence the spherical MCF for M
is also an ancient solution. This proves part (1) of Theorem 1.1 for spherical MCF.

Let M1 and M2 be two distinct isoparametric submanifolds in the same isopara-
metric foliation in SN−1, y1(t) ∈ C and y2(t) ∈ C solutions to spherical MCF of M1
and M2 respectively. Define

f (t) := ||y1(t) − y2(t)||2.

By [18, Equation (5.2)],

f ′(t) ≥ 2n f (t)

for all t . Hence

(ln f (t))′ ≥ 2n

for all t . Integrating both sides over an interval [a, 0] with a ≤ 0, we obtain

ln f (0) − ln f (a) ≥ −2na.
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Therefore we have

0 ≤ f (a) ≤ f (0)e2na

for all a ≤ 0. Consequently

lim
a → −∞ f (a) = 0.

If we take M2 to be a minimal isoparametric submanifold in SN−1 (which exists by
a result in [30]) and M1 an arbitrary isoparametric submanifold in SN−1, then y2(t)
is constant and the above arguments imply that

lim
t → −∞ y1(t) = y2(0).

This shows that the spherical MCF of an arbitrary isoparametric submanifold in SN−1

converges to a minimal isoparametric submanifold as t → −∞. This proves Eq. (1.4).
The above arguments also show that minimal isoparametric submanifold is unique

in each isoparametric family in a sphere. If fact, if both M1 and M2 are minimal, then
both y1(t) and y2(t) are constant. The fact that

lim
t → −∞ ‖y1(t) − y2(t)‖2 = 0

shows that M1 and M2 must be the same submanifold. This proves part (2) of Theo-
rem 1.1 and also completes the proof of Theorem 1.1.

3 Norm of shape operators andmean curvature vectors

Squared norms of shape operators and mean curvature vector fields are important geo-
metric quantities in studying ancient solutions of MCF (see, for example, [4,16] and
[19]). In this sectionwewill compute these quantities forMCF of compact isoparamet-
ric submanifolds Mn ⊂ R

N . Without loss of generalities, we assume M is contained
in SN−1(r), the sphere of radius r centered at the origin in R

N , for some r > 0.
SN−1(1) will be abbreviated as SN−1. We will use AE and HE (respectively AS and
HS) denote the shape operator and the mean curvature vector of M as a submanifold
of the Euclidean space RN (respectively of the sphere SN−1(r)). Since MCF of M at
each point x0 ∈ M stays in the Weyl chamber in the normal space νx0M containing
x0, we will compute norm squares of shape operators and mean curvature vectors as
functions on the Weyl chamber.

Fix an arbitrary point x0 ∈ M and let ni , i = 1, . . . , g, be curvature normals of M
at the point x0. The assumption that M is contained in a sphere centered at the origin
implies

〈x0,ni 〉 = −1
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for all i . Let C be the open Weyl chamber in νx0M containing x0. Then C is given
by Eq. (2.2). For any x ∈ C , the parallel translation of x − x0 defines a parallel
normal vector field of M , whose image under the exponential map in R

N gives an
isoparametric submanifold Mx which is parallel to M . Moreover C ∩ Mx = {x} and
νx Mx = νx0M . Curvature normals of Mx at the point x are given by

− ni
〈x,ni 〉 (3.1)

with multiplicity mi which is independent of x for i = 1, . . . , g. Let

αi := − ni
‖ni‖ .

Then {αi | i = 1, . . . , g} is the set of all positive roots of the Coxeter group W with
respect to the choice ofWeyl chamberC in the sense of [13].Note that, unlike curvature
normals, αi are uniquely determined by the Weyl chamber C and are independent of
the choice of points in C . Therefore it will be convenient to describe all geometric
quantities in terms of αi . For example, C is given by

C = {x ∈ νx0M | 〈x, αi 〉 > 0 f or all i}. (3.2)

The Coxeter group W is generated by reflections through hyperplanes perpendicular
to αi for i = 1, . . . , g.

Lemma 3.1 Let AE (x) and H E (x) (respectively AS(x) and HS(x)) be the shape
operator andmean curvature vector of Mx at x when considering Mx as a submanifold
of RN (respectively of SN−1(‖x‖)). Then

H E (x) = −
g∑

i=1

miαi

〈x, αi 〉 ,

HS(x) = −
g∑

i=1

miαi

〈x, αi 〉 + nx

‖x‖2 ,

‖HS(x)‖2 = ‖HE (x)‖2 − n2

‖x‖2 ,

‖AE (x)‖2 =
g∑

i=1

mi

〈x, αi 〉2 ,

‖AS(x)‖2 =
g∑

i=1

mi

〈x, αi 〉2 − n

‖x‖2 .

Proof By formula (3.1), curvature normals of Mx at x is given by

− αi

〈x, αi 〉 (3.3)
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for i = 1, . . . , g. Multiplying this vector by mi and summing over all i , we obtain
HE (x). HS(x) is obtained from HE (x) by subtracting its projection along the radial
direction which is equal to − nx

‖x‖2 . Since

HE (x) = HS(x) − nx

‖x‖2

is an orthogonal decomposition,

‖HE (x)‖2 = ‖HS(x)‖2 + n2

‖x‖2 .

Let {ξ j | j = 1, . . . , N − n} be an orthonormal basis of νx Mx . Then the norm
square of the Euclidean shape operator AE (x) of Mx at x is given by

‖AE (x)‖2 =
N−n∑

j=1

‖AE
ξ j

‖2(x).

By formula (2.1),

‖AE (x)‖2 =
N−n∑

j=1

g∑

i=1

mi
〈ξ j , αi 〉2
〈x, αi 〉2 .

Since αi are unit vectors in νx Mx ,
∑N−n

j=1 〈ξ j , αi 〉2 = 1. Hence

‖AE (x)‖2 =
g∑

i=1

mi

〈x, αi 〉2 . (3.4)

We can take ξ1 = x
‖x‖ . Then {ξ2, . . . , ξN−n} is an orthonormal basis of the normal

space of M in the sphere SN−1(‖x‖) at point x . So the norm square of the spherical
shape operator is given by

‖AS(x)‖2 = ‖AE (x)‖2 −
g∑

i=1

mi
〈ξ1, αi 〉2
〈x, αi 〉2 = ‖AE (x)‖2 − n

‖x‖2 .

The formula for ‖AS(x)‖2 then follows from Eq. (3.4). This completes the proof of
the lemma. ��

Let z ∈ C be a unit vector such that Mz is a minimal isoparametric submanifold in
SN−1. By part (2) of Theorem 1.1, such z is unique. Since HS(z) = 0, we have

HE (z) = −
g∑

i=1

miαi

〈z, αi 〉 = −nz, ‖HE (z)‖ = n.
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Let x0 be an arbitrary unit vector inC and x(t) ∈ C be the solution to the Euclidean
mean curvature flow with x(0) = x0. Then by Eq. (2.6),

lim
t→−∞

x(t)

‖x(t)‖ = z.

By Eq. (1.1), ‖x(t)‖ = √
1 − 2nt . So an immediate consequence of Lemma 3.1 is the

following

Corollary 3.2

lim
t→−∞(1 − 2nt) ‖HE (x(t))‖2 = n2,

lim
t→−∞(1 − 2nt) ‖AE (x(t))‖2 =

g∑

i=1

mi

〈z, αi 〉2 .

Let y(t) be the spherical MCF with y(0) = x0. By Theorem 1.1,

lim
t→−∞ y(t) = z.

So by Lemma 3.1, we have

Corollary 3.3

lim
t→−∞ ‖HS(y(t))‖2 = 0,

lim
t→−∞ ‖AS(y(t))‖2 =

g∑

i=1

mi

〈z, αi 〉2 − n.

4 MCF of rank 2 isoparametric submanifolds

In [18], the authors showed that explicit solutions to MCF of isoparametric submani-
folds can be constructed using invariant polynomials of Coxeter groups. However, in
the rank 2 case, solutions can be solved directly. In this section we write down explicit
solutions for the rank 2 case. We also compute the norms of the shape operators and
mean curvature of these flow solutions, and explain their relations to rigidity problems
and the Chern’s conjecture on the norm of the second fundamental forms of minimal
hypersurfaces in spheres.

Let M be a compact n-dimensional isoparametric hypersurface in the unit sphere
Sn+1 with g distinct principal curvatures. Then M is also a rank 2 isoparametric
submanifold in R

n+2. We refer readers to a survey paper by Q-S Chi [10] on the
classifciation of isoparametric hypersurfaces in spheres.

Fix x0 ∈ M and let νx0M be the normal space of M as a submanifold of Rn+2.
The normal geodesic for M at x0 in Sn+1 is the unit circle in νx0M which is centered
at origin of Rn+2. M has two focal submanifolds, denoted by M+ and M−. We may
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assume dim(M+) ≤ dim(M−). It is known that M+ ∪ M− intersects the normal
geodesic at x0 in exactly 2g points, evenly distributed along the circle. Let x± be the
intersection of M± with the normal geodesic which are closest to x0. We may identify
νx0M with C such that x+ = 1 ∈ C and x− = eiπ/g ∈ C.

The Coxeter groupW of M is the dihedral group of 2g elements acting on νx0M ∼=
C. The open Weyl chamber C containing x0 = eiθ0 is given by

C = {reiθ | r > 0, 0 < θ < π/g}. (4.1)

In fact, W is generated by reflections in the lines θ = 0 and θ = π/g. The set of
positive roots is given by

{αk := eiθk | k = 1, . . . , g}

where

θk := kπ

g
− π

2
.

Note that there is a mistake in [18, Example 3.4] for the formula of positive roots, but
this does not affect the answer if we choose the Weyl chamber C as above.

Letmk be themultiplicity of the curvature normal ofM at x0 which is parallel to αk .
These are exactly the multiplicities of the principal curvatures of M as a hypersurface
in Sn+1. It was proved by Münzner in [20,21] that the number of distinct principal
curvatures of M must be g = 1, 2, 3, 4, or 6, and

mi = mi+2

for all i , where the subscript for mi is understood as i mod g if i > g. Hence there
are only two possible multiplicities m1 and m2. We will call M an isoparametric
hypersurface with g distinct principal curvatures with multiplicity data (m1,m2).
Abresch proved in [1] that if g = 6, then m1 = m2 ∈ {1, 2}. Hence for g = 1, 3, 6,
we must have m1 = m2. For g = 2 or 4, m1 and m2 may or may not be the same. The
assumption dim(M+) ≤ dim(M−) implies that m1 ≤ m2.

Henceforth in this section we assume the following:

(a) Mn is an isoparametric hypersurface in the unit sphere Sn+1 with g distinct prin-
cipal curvatures and multiplicity data (m1,m2) with m1 ≤ m2. Set

δ = δ(m1,m2) :=
{ m2−m1

m2+m1
, if g ≥ 2,

0, if g = 1.
(4.2)

Then 0 ≤ δ < 1, and δ is possibly non-zero only if g = 2 or 4.
(b) Fix x0 ∈ M , we identify νx0M as C so that the focal submanifolds M+ and M−

are parallel to M through 1 and eiπ/g respectively as explained before.
(c) Let C ⊂ νx0M be the Weyl chamber defined by (4.1). Given x ∈ C , let Mx denote

the isoparametric hypersurface parallel to M as submanifolds in R
n+2.
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Lemma 4.1 Let M,C, g,m1,m2, δ = δ(m1,m2) be as above. If x = reiθ ∈ C, then
theEuclidean and sphericalmean curvature vectors for the isoparametric submanifold
Mx parallel to M at x are given by

H E (x) = −n

r
eiθ {1 + i cot gθ + iδ csc gθ} (4.3)

and

HS(x) = −n

r
ieiθ {cot gθ + δ csc gθ} . (4.4)

In particular, let θmin be defined by

cos gθmin = −δ, 0 < θmin <
π

g
. (4.5)

Then the isoparametric hypesurface through eiθmin is minimal.

Proof Note that

〈x, αk〉 = r cos(θ − θk). (4.6)

By Lemma 3.1, the Euclidean mean curvature vector HE for the isoparametric sub-
manifold Mx at x is given by

HE (x) = −
g∑

k=1

mk

r cos(θ − θk)
eiθk

= −eiθ

r

g∑

k=1

mk {1 + i tan(θk − θ)}

= −eiθ

r

{
n − i

g∑

k=1

mk cot(
kπ

g
− θ)

}

= −eiθ

r

{
n − im1�g(θ) − i(m2 − m1)g(θ)

}
. (4.7)

where

�g(θ) :=
g∑

k=1

cot(
kπ

g
− θ), g(θ) :=

�g/2�∑

j=1

cot(
2 jπ

g
− θ).

By an elementary trigonometric identity

g∑

k=1

cot

(
kπ

g
+ β

)
= g cot gβ (4.8)

123



Ancient solutions to mean curvature flow. . . 303

for any angle β and any positive integer g, we have

�g(θ) = −g cot gθ

for all positive integer g and

g(θ) = −g

2
cot

g

2
θ = −g

2
(cot gθ + csc gθ)

if g is an even positive integer.
Since m1 = m2 if g is odd, by Eq. (4.7), we have

HE (x) = −eiθ

r

{
n + im1g cot gθ + i(m2 − m1)

g

2
(cot gθ + csc gθ)

}
.

= −eiθ

r
{n + in cot gθ + inδ csc gθ}

for all g. The last equality follows from the fact that

(m1 + m2)g = 2n. (4.9)

This proves Eq. 4.3. Equation 4.4 then follows from Eq. 4.3 and Lemma 3.1. ��
Next we give explicit solutions to the MCF for rank 2 isoparametric submanifolds.

Proposition 4.2 Let x(t) = r(t)eiθ(t) ∈ C be the solution for the Euclidean MCF of
M with x(0) = eiθ0 . Then

r(t) = √
1 − 2nt, (4.10)

cos gθ(t) = (1 − 2nt)−
g
2 {cos gθ0 + δ} − δ. (4.11)

Proof By Eq. (4.3), the Euclidean MCF x ′(t) = HE (x) written in terms of r and θ

becomes

r ′(t)eiθ + iθ ′reiθ = −n

r
eiθ (1 + i(cot gθ + δ csc gθ)).

Note that eiθ and ieiθ are perpendicular vectors in C, we have

{
r ′ = − n

r ,

θ ′ = − n
r2

(cot gθ + δ csc gθ).

Integrate directly to get the solution. ��
Proposition 4.3 Let y(t) = eiθ(t) ∈ C be the solution for the spherical MCF of M
with y(0) = eiθ0 . Then

cos gθ(t) = egnt {cos gθ0 + δ} − δ. (4.12)
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Proof By Eq. (4.4), we can write the spherical MCF y′(t) = HS(y) in terms of θ and
obtain

θ ′ = −n(cot gθ + δ csc gθ).

Integrate directly to get the solution. ��
ByPropositions 4.2 and 4.3, for both Euclidean and sphericalMCFof isoparametric

hypersurfaces, we have
lim

t→−∞ θ(t) = θmin. (4.13)

Recall that θmin is definedby (4.5) and the isoparametric hypersurface in shpere through
eiθmin is minimal. So the spherical MCF for isoparametric hypersurfaces tends to the
minimal one as t → −∞. Moreover,

1. if θ0 ∈ (0, θmin), then the spherical MCF collapses to the focal submanifold M+
which passes through 1 as t → T+,

2. if θ0 ∈ (θmin,
π
g ), then the spherical MCF collapses to the focal submanifold M−

which passes through eiπ/g as t → T−,

where T± = 1
gn ln

δ±1
δ+cos gθ0

and δ = δ(m1,m2).

Example 4.4 Isoparametric hypersurfaces in Sn+1 with two distinct principal curva-
tures are embedded tori

T (θ) := Sk(cos θ) × Sn−k(sin θ)

with 0 < θ < π
2 . They have principal curvatures − tan θ and cot θ with multiplicities

k and n − k respectively. Let θmin ∈ (0, π
2 ) satisfying

cos 2θmin = −δ = −n − 2k

n
.

Then

cos θmin =
√
k

n
, sin θmin =

√
n − k

n

and T (θmin) is the well-known minimal Clifford torus. The spherical MCF with initial
data T (θ0) is T (θ(t)), where

cos 2θ(t) = e2nt (δ + cos 2θ0) − δ.

Note that:

1. limt→−∞ θ(t) = θmin, so the flow tends to the minimal torus.
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2. If θ0 ∈ (0, θmin), then the flow collapses to Sk(1) × 0 as

t → 1

2n
ln

δ + 1

δ + cos 2θ0
.

3. If θ0 ∈ (θmin,
π
2 ), then the flow collapses to 0 × Sn−k(1) as

t → 1

2n
ln

δ − 1

δ + cos 2θ0
.

Example 4.5 The simplest isoparametric hypersurfaces in the spherewith three distinct
principal curvatures are those with uniform multiplicity 1. They are the embeddings
of manifold of flags of R3 in S4 as principal orbits of the conjugation action of SO(3)
on the space of trace zero real symmetric 3 × 3 matrices. Each such orbit contains a
diagonal matrix c = diag(c1, c2, c3), where c1, c2, c3 are distinct real numbers with

c1 + c2 + c3 = 0, c21 + c22 + c23 = 1.

We denote this orbit by Mc. The minimal isoparametric hypersurface in this family is
the principal orbit Mcmin where

cmin = diag

(
1√
2
, 0,− 1√

2

)
.

Two focal submanifolds are the singular orbits Mc+ and Mc− where

c+ = 1√
6
diag(1, 1,−2), c− = 1√

6
diag(2,−1,−1).

Identify the normal plane of Mc at c asCwith c+ identified as 1 and 1√
2
diag(1,−1, 0)

as i = ei
π
2 . Under this identification cmin is identified with ei

π
6 and c− is identified

with ei
π
3 . By (4.12), the spherical MCF for this family is Mc(t) with

c(t) = cos θ(t)
1√
6
diag(1, 1,−2) + sin θ(t)

1√
2
diag(1,−1, 0),

where

cos 3θ(t) = e3nt cos 3θ(0).

So we have

1. limt→−∞ Mc(t) = Mcmin , the minimal isoparametric hypersurface.
2. If θ(0) ∈ (0, π

6 ), thenMt collapses to the singular orbitMc+ as t → 1
3n ln

1
cos 3θ(0) .

3. If θ(0) ∈ (π
6 , π

3 ), then the flow collapses to the singular orbit Mc− as t →
1
3n ln

−1
cos 3θ(0) .

123



306 X. Liu

Note that both Mc+ and Mc− are embeddings of RP2 in S4, classically known as the
Veronese embeddings of the real projective plane in S4.

Next we compute the norm of shape operators of isoparametric hypersurfaces. First
we need the following elementary identity (we include a proof here for completeness).

Lemma 4.6

g∑

k=1

cot2
(
kπ

g
+ β

)
= g2 csc2(gβ) − g

for any angle β and any positive integer g.

Proof By the well known identity

cot gβ =
∑

k even(−1)k/2
(
g
k

)
cotg−k β

∑
k odd(−1)(k−1)/2

(
g
k

)
cotg−k β

,

we know that yk = cot( kπg + β), k = 1, . . . , g, are solutions of the following degree
g polynomial eqation for y:

∑

k even

(−1)k/2
(
g
k

)
yg−k − cot gβ

∑

k odd

(−1)(k−1)/2
(
g
k

)
yg−k = 0.

Hence the formula in this lemma, as well as formula (4.8), can be proved using
coefficients of yg−1 and yg−2 in the above equation. ��

Lemma 4.7 For x = reiθ ∈ C, the norm square of Euclidean and spherical shape
operators of Mx at x are given by

‖AE (x)‖2 = ng

r2
csc2 gθ (1 + δ cos gθ) , (4.14)

‖AS(x)‖2 = ng

r2
csc2 gθ (1 + δ cos gθ) − n

r2
. (4.15)

Proof By Lemma 3.1 and Eq. (4.6), we have
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‖AE (x)‖2 =
g∑

k=1

mk

r2 cos2(θ − θk)

=
g∑

k=1

mk

r2

{
1 + cot2

(
kπ

g
− θ

)}

= n

r2
+ m1

r2

g∑

k=1

cot2
(
kπ

g
− θ

)
+ m2 − m1

r2

�g/2�∑

j=1

cot2
(
2 jπ

g
− θ

)
.

By Lemma 4.6, we have

‖AE (x)‖2 = n

r2
+ m1

r2

(
g2 csc2 gθ − g

)
+ m2 − m1

r2

(
g2

4
csc2

g

2
θ − g

2

)
.

The Lemma then follows from half angle formula

csc2
g

2
θ = 2 csc2 gθ + 2 cot gθ csc gθ,

equation (4.9), and Lemma 3.1. ��
Corollary 4.8 If Mx is minimal in the sphere, then

‖AE (x)‖2 = ng

r2
, ‖AS(x)‖2 = n

r2
(g − 1) .

Proof By Eq. (4.5), if Mx is minimal in the sphere, then x = reiθ with θ satisfying
the condition

δ = − cos gθ.

So

1 + δ cos gθ = 1 − cos2 gθ = sin2 gθ.

The Corollary then follows from Lemma 4.7. ��
Remark 4.9 It is known (cf. [20,21]) that principal curvatures of an isoparametric
hypersurface Mn in Sn+1 are {cot(θ + (i−1)π

g )|1 ≤ i ≤ g} with multiplicity data

(m1,m2). We can also compute ||AS||2 and ||HS||2 using this result and get the same
result as before (with a suitable assignment ofmultiplicity to each principal curvature).
For example, the formula of ||AS||2 given in Corallary 4.8 was obtained this way in
[23].

Remark 4.10 It was mentioned in the end of [16] that the condition (1.6) is sharp
because for the torus S1(cos θ) × Sn−1(sin θ) ⊂ Sn+1, the quantity ||AS||2 −
1

n−1 ||HS||2 − 2 can be arbitrarily close to 0 as θ → 0. This is the case of g = 2
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isoparametric hypersurfaces with principal curvatures − tan θ , cot θ of multiplicities
1 and (n − 1) respectively. A simple computation implies that

||AS||2 − 1

n − 1
||HS||2 − 2 = n − 2

n − 1
tan2 θ (4.16)

(cf. also [15]). We have seen in Example 4.4 that this ancient solution of spherical
MCF has the following properties: θ(t) → 0 as t → T for some finite T > 0 and
θ(t) → θmin as t → −∞, where cos 2θmin = −δ = − n−2

n . So tan2 θmin = n − 1.
Note that the right hand side of (4.16) is arbitrarily small when t → T , but is not
arbitrarily small (it tends to n − 2) as t → −∞. Hence this example does not justify
the sharpness of condition (1.6) in Huisken-Sinestrari’s Theorem mentioned in the
introduction.

To study the sharpness of condition (1.5) in Huisken-Sinestrari’s Theorem, we need
the following results:

Lemma 4.11 For x = reiθ ∈ C,

‖AS(x)‖2 − g

2n
‖HS(x)‖2

= n

2r2

{
g(1 − δ2) csc2 gθ + (g − 2)

}
. (4.17)

In case that all multiplicities of the isoparametric submanifolds are the same, which
is always true when g = 1, 3, 6, we can get a simpler formula

‖AS(x)‖2 − g

n
‖HS(x)‖2 = n(g − 1)

r2
. (4.18)

Proof By Lemma 4.7 and Eq. (4.4), we have

r2

n

{
‖AS(x)‖2 − g

2n
‖HS(x)‖2

}

= g(1 + δ cos gθ) csc2 gθ − 1 − g

2
(δ + cos gθ)2 csc2 gθ

= g

2
(2 − δ2 − cos2 gθ) csc2 gθ − 1

= g

2
(1 − δ2 + sin2 gθ) csc2 gθ − 1

= g

2
(1 − δ2) csc2 gθ + g

2
− 1.

This proves Eq. (4.17).
If all multiplicities are the same, then δ = 0. By Lemma 4.7,

‖AS(x))‖2 = n

r2
(g cot2 gθ + g − 1)
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for x = reiθ ∈ C . This implies Eq. (4.18) since in this case

cot2 gθ = r2

n2
‖HS(x))‖2

by Eq. (4.4). ��
Corollary 4.12 If y(t) = eiθ(t) ∈ C is a solution to the spherical MCF with θ(0) =
θ0 �= θmin, then

‖AS(y(t))‖2 <
g(1 + δ)

n(cos gθ0 + δ)2
e−2gnt ‖HS(y(t))‖2. (4.19)

Proof If the isoparametric submanifold passing through x is not minimal in the sphere,
then by Eq. (4.17),

‖AS(y(t))‖2
‖HS(y(t))‖2 = g

2n
+ n

2

g(1 − δ2) csc2 gθ(t) + g − 2

‖HS(y(t))‖2 .

By Eq. (4.4), we have

2n

g

‖AS(y(t))‖2
‖HS(y(t))‖2 = 1 + (1 − δ2) csc2 gθ(t) + 1 − 2

g

(cot gθ(t) + δ csc gθ(t))2

= 1 + (1 − δ2) + (1 − 2
g ) sin2 gθ(t)

(cos gθ(t) + δ)2

≤ 1 + (1 − δ2) + sin2 gθ(t)

(cos gθ(t) + δ)2

= 2 + 2δ cos gθ(t)

(cos gθ(t) + δ)2

≤ 2(1 + δ)

(cos gθ(t) + δ)2

= 2(1 + δ)

(cos gθ0 + δ)2
e−2gnt . (4.20)

The last equality follows from Proposition 4.3. Note that in the above estimates, equal-
ity holds only if θ(t) = 0 or π/g, in which cases the corresponding ispoparametric
hypersurface collapses to a lower dimensional focal submanifold and therefore never
occur for all t where theMCF exists. Hence inequality (4.20) implies inequality (4.19).

��
Remark 4.13 Note that cos gθ0 can be arbitrarily close to 1 when θ0 tends to 0. So if
n > g, we can easily choose θ0 such that

g(1 + δ)

n(cos gθ0 + δ)2
< 1.
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In these cases, inequality (4.19) implies

‖AS(t)‖2 < e−2gnt ‖HS(t)‖2 (4.21)

for all t . In particular, when g = 2 and n ≥ 3, we can choose θ0 close to 0 such that
the ancient solutions of the spherical MCF described in Example 4.4 satisfy

‖AS(t)‖2 < e−4nt ‖HS(t)‖2

for all t . Hence Condition (1.5) in Huisken-Sinestrari’s result mentioned in the intro-
duction is sharp in the sense that B can not be replaced by a constant greater than or
equal to 4n.

In the rest part of this paper, we will study rigidity problems of ancient solutions of
spherical MCF modeled on isoparametric hypersurfaces. For simplicity, we will use
A and H denote the shape operator and the mean curvature of a hypersurface in Sn+1.
If Mt is an ancient solution for the spherical MCF of hypersurfaces in the sphere, we
will use A(t) and H(t) to denote the shape operator and mean curvature of Mt .

Theorem 4.14 Let Mt be an ancient MCF for isoparametric hypersurfaces in Sn+1

with g distinct principal curvatures. Then

lim
t→−∞ ||A(t)||2 = (g − 1)n. (4.22)

If M0 is not minimal, then there is a positive constant C0 only depending on M0 such
that

lim
t→−∞ H2(t) e−2gnt = C0. (4.23)

In fact C0 is given by Eq. (4.24).

Proof It follows from (4.13) and Corollary 4.8 that

lim
t→−∞ ||A(t)||2 = ||A(θmin)||2 = (g − 1)n.

By Eqs. (4.4) and (4.12), we have

H2(t) = n2(cos gθ0 + δ)2

sin2 gθ(t)
e2gnt ,

where δ is given by Eq. (4.2). Since

lim
t→−∞ θ(t) = θmin, and cos gθmin = −δ,
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we have

lim
t→−∞ sin2 gθ(t) = 1 − δ2.

This implies Eq. (4.23) with

C0 = n2(cos gθ0 + δ)2

(1 − δ2)
. (4.24)

��
Corollary 4.15 For spherical MCF of isoparametric hypersurfaces, we have the fol-
lowing estimates:

1. For g = 1, we have ||A(t)||2
H2(t)

≡ 1
n .

2. For g ≥ 2, there exist t1 > 0 and positive constants c1 and c2 such that

c2e
−2gnt ≤ ||A(t)||2

H2(t)
≤ c1e

−2gnt . (4.25)

for all t < −t1.

Proof Part (1) follows from Eq. (4.18). Part (2) follows from Theorem 4.14 since

lim
t→−∞

||A(t)||2
H2(t)

e2gnt

is a positive constant when g ≥ 2. ��
The spherical MCF for isoparametric hypersurfaces with g = 1 is the spherical

cap solution. Huisken-Sinestrari’s Theorem is a rigidity result modeled on this exam-
ple. Motivated by condition (1.5) in Huisken-Sinestrari’s Theorem and the estimate in
Corollary 4.15 above, we would like to propose the following rigidity conjecture mod-
eled on spherical MCF of isoparametric hypersurfaces with g ≥ 2 distinct principal
curvatures.

Conjecture 4.16 Let f (t, ·) be an ancient solution to the spherical MCF for smooth
compact hypersurfaces in Sn+1, A(t, ·) and H(t, ·) the shape operator and mean
curvature of f (t, ·). If A(t, ·) and H(t, ·) satisfy the inequality (4.25) for some g ∈
{2, 3, 4, 6}, then f (t, ·) is a spherical MCF for isoparametric hypersurfaces with g
distinct principal curvatures.

To have a rigidity conjecture with condition similar to inequality (1.6), we will
consider the norm square of the traceless part of the shape operator:

φ := ||A − 1

n
H I||2 = ||A||2 − 1

n
H2, (4.26)
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where I is the identity operator. This quantity arises naturally in studying gap theorem
for hypersurfaces in the sphere with constant mean curvature (cf. [2]). We first give
some estimates of φ(t) for the spherical MCF of isoparametric hypersurfaces.

Proposition 4.17 Consider the spherical MCF of isoparametric hypersurfaces with g
distinct principal curvatures and multiplicity data m1 ≤ m2. Let φ(t, ·) be defined by
Eq. (4.26) and δ = δ(m1,m2) defined by Eq. (4.2).

1. If δ = 0, then given any 0 < ε < 1, there exists c0 > 0 such that if θ0 ∈
( π
2g − c0,

π
2g + c0), then

(g − 1)n ≤ φ(t, ·) ≤ (g − 1 + ε)n. (4.27)

Note that in this case θmin = π
2g .

2. If δ > 0 (so g = 2 or 4), then given 0 < ε < 1, there exists c0 > 0 such that

(a) if θ0 ∈ (θmin − c0, θmin) then

(g − 1 − ε)n ≤ φ(t, ·) ≤ (g − 1)n, (4.28)

(b) if θ0 ∈ (θmin, θmin + c0) then (g − 1)n ≤ φ(t, ·) ≤ (g − 1 + ε)n,

where θmin ∈ (0, π
g ) such that cos(gθmin) = −δ.

Proof An immediate consequence of Theorem 4.14 is the following: For g ≥ 2, given
1 > ε > 0, there exists t0 > 0 such that

(g − 1 − ε)n ≤ φ(t) ≤ (g − 1 + ε)n (4.29)

for all t < −t0. For g = 1, φ(t) ≡ 0 by Corollary 4.15.
Using Eqs. (4.4) and (4.15) to compute directly, we have

φ(t) = n csc2 gθ(t)(g − 1 − δ2 + δ(g − 2) cos gθ(t)). (4.30)

If δ = 0, then

φ(t) = (g − 1)n csc2 gθ(t) ≥ (g − 1)n.

Part (1) of this proposition then follows from Eq. (4.29).
If δ > 0 and g = 2, then we have φ(t) = n(1− δ2) csc2(2θ(t)). So part (2) of this

proposition follows for g = 2.
If δ > 0 and g = 4, then we have

φ(t) = n(3 − δ2 + 2δ cos 4θ(t)) csc2 4θ(t).

Write ξ(t) = cos 4θ(t), then φ(t) = f (ξ(t))n, where

f (ξ) = 3 − δ2 + 2δξ

1 − ξ2
.
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Note that f (−δ) = 3 and f ′(−δ) < 0. So there exists ε > 0 such that f is decreasing
on the interval (−δ − ε,−δ + ε). So part (2) follows for g = 4. ��

Based on the above estimates, we would like to propose the following rigidity
conjecture:

Conjecture 4.18 Let f (t, ·) be an ancient solution to the spherical MCF for smooth
compact hypersurfaces in Sn+1. If the shape operator and mean curvature of f (t, ·)
satisfy inequality (4.27) or inequality (4.28) for some g ∈ {2, 3, 4, 6} and ε ∈ [0, 1),
then f (t, ·) is a spherical MCF for isoparametric hypersurfaces with g distinct prin-
cipal curvatures.

Remark 4.19 Otsuki constructed in [22] closed minimal hypersurfaces M ⊂ Sn+1

with two distinct principal curvatures of multiplicities 1 and n − 1 respectively such
that M is not isoparametric and n− c0 < ||A||2 < n+ c0 for arbitrarily small c0 > 0.
This indicates that inequalities (4.27) and (4.28) in Conjecture 4.18 can not be replaced
by inequality (4.29).

Remark 4.20 By Eq. (4.26), ||A||2− 1
n H

2 ≥ 0. Hence the analogue of Conjecture 4.18
for the g = 1 case can be stated as follows: Let f (t, ·) be an ancient MCF for compact
hypersurfaces in Sn+1. If there exists ε > 0 such that

||A(t, ·)||2 − 1

n
H(t, ·)2 ≤ n − ε (4.31)

for t sufficiently negative, then f (t, ·) is a shrinking spherical cap or an equator. In
fact, for n ≥ 2, this statement follows from the following result of Lei-Xu-Zhao (cf.
Theorem 2 in [17]): If

lim sup
t→−∞

max
Mt

(‖A‖2 − κH2) < n (4.32)

where κ = min{ 3
n+2 ,

4(n−1)
n(n+2) }, then f (t, ·) is a shrinking spherical cap or an equator.

Note that κ ≥ 1
n for n ≥ 2. Hence inequality (4.31) implies inequality (4.32) if n ≥ 2.

Next we explain the relation between Conjecture 4.18 and Chern’s Conjecture on
the norm of minimal hypersurfaces in spheres. Using results of J. Simon [28], Chern-
Do Carmo-Kobayashi proved in [9] the following gap theorem: If Mn is a compact
minimal hypersurface in Sn+1 and 0 ≤ ||A(x)||2 ≤ n for all x ∈ M , then either M is
an equator with ||A(x)||2 = 0 or is a Clifford torus with ||A(x)||2 = n.
Chern’s conjecture: The set

S := {S | There exists a compact minimal hypersurface M ⊂ Sn+1

with constant ||A|| such that ||A||2 = S}

is discrete, where A is the shape operator of M .
Belowwe give a brief review of some results concerning Chern’s conjecture: Let M

be a minimal hypersurface in Sn+1, A the shape operator of M , and S(x) := ||A(x)||2
for x ∈ M .
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1. Peng-Terng proved in [23,24] that

(a) if S(x) is a constant and n ≤ S ≤ n + 1
12n, then S = n and M is a Clifford

torus,
(b) if n ≤ 5 then there exists 0 < c < 1 such that n ≤ S(x) ≤ n + cn for all

x ∈ M implies S(x) ≡ n and M is a Clifford torus.

2. Chang proved in [8] that if n = 3 and S > 3 is constant, then M is isoparametric
with three distinct principal curvatures and S = 6 (this minimal hypersurface in
S4 is described in Example 4.5).

3. Ding and Xin proved in [11] that if n ≤ S(x) ≤ n + n
23 , then S(x) ≡ n and M is

a Clifford torus. Xu-Xu in [34] improved the constant 1
23 to 1

22 .

We refer readers to Xu-Xu’s paper [34] on a survey of Chern’s conjecture.
Note that for the stationary spherical MCF of hypersurfaces in Sn+1, Conjec-

ture 4.18 can be stated as follows: Let Mn be a minimal hypersurface of Sn+1,
and S(x) = ||A(x)||2. If S(x) satisfies one of the following inequalities for some
0 < ε < 1,

(g − 1)n ≤ S(x) ≤ (g − 1 + ε)n,

(g − 1 − ε)n ≤ S(x) ≤ (g − 1)n,

for all x ∈ M , then M is isoparametric with g distinct principal curvatures. In particu-
lar, this implies that (g−1)n is a discrete point of the set S. Known results concerning
rigidity of the stationary case are for g = 1, 2 and g = 3 with m1 = m2 = 1. All
these works used estimates obtained from elliptic equations for �II and �∇II, where
II is the second fundamental form. We wonder whether the flow (parabolic) method
may provide new insights and techniques to prove Chern’s conjecture.
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