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Abstract
In this paper, we develop the blow-up analysis and establish the energy quantization
for solutions to super-Liouville type equations on Riemann surfaces with conical
singularities at the boundary. In other problems in geometric analysis, the blow-up
analysis usually strongly utilizes conformal invariance, which yields a Noether current
from which strong estimates can be derived. Here, however, the conical singularities
destroy conformal invariance. Therefore, we develop another, more general, method
that uses the vanishing of the Pohozaev constant for such solutions to deduce the
removability of boundary singularities.

Mathematics Subject Classification 35J60 · 35A20 · 35B44

1 Introduction

Many problems with a noncompact symmetry group, like the conformal group, are
limit cases where the Palais–Smale condition no longer applies, and therefore, solu-
tions may blow up at isolated singularities, see for instance [31]. Therefore, a blow-up
analysis is needed, and this has become one of the fundamental tools in the geometric
calculus of variations. This usually depends on the fact that the invariance yields an
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associated Noether current whose algebraic structure can be turned into estimates.
In the case of conformal invariance this Noether current is a holomorphic quadratic
differential. For harmonic map type problems, finiteness of the energy functional in
question implies that that differential is in L1. This then can be used to obtain fun-
damental estimates. For other problems, however, like (super-) Liouville equations,
finiteness of the energy functional is not sufficient to get the L1 bound of that dif-
ferential and hence this is an extra assumption leading to the removability of local
singularities (Prop 2.6, [23]).

But for (super-) Liouville equations on surfaces with conical singularities, we do
not even have conformal invariance, because the scaling behavior at the singularities is
different from that at regular points, see [27]. It turns out, however, that for an important
class of two-dimensional geometric variational problems, there is a condition that is
weaker than conformal invariance, the vanishing of a so-called Pohozaev constant
(i.e. the Pohozaev identity), that is not only sufficient but also necessary for the blow-
up analysis. This Pohozaev constant on one hand measures the extent to which the
Pohozaev identity fails and on the other hand provides a characterization of the singular
behavior of a solution at an isolated singularity. Such kind of quantity appears also in
other two dimensional geometric variational problems and can be applied to study the
qualitative asymptotic behaviour of solutions defined on degenerating surfaces [20,
40,41]. This vanishing condition is already known to play a crucial role in geometric
analysis (see e.g. [34]), but for super-Liouville equations, as mentioned, this identity
by itself suffices for the blow-up analysis.

In this paper, we shall apply this strategy to the blow-up analysis of the (super-)
Liouville boundary problem on surfaces with conical singularities. To this purpose,
let M be a compact Riemann surface with nonempty boundary ∂M and with a spin
structure. We also denote this compact Riemann surface as (M,A, g), where g is its
Riemannian metric with the conical singularities of divisor

A =
m∑

j=1

α j q j

(for definition ofA, see Sect. 2). Associated to themetric g, one can define the gradient
∇ and the Laplace operator � in the usual way.

We then have our main object of study, the super-Liouville functional that couples
a real-valued function u and a spinor ψ on M

EB (u, ψ) =
∫

M

{
1

2
|∇u|2 + Kgu + 〈

( /D + eu)ψ,ψ
〉
g − e2u

}
dv +

∫

∂M
{hgu − ceu}dσ,

(1)
where Kg is the Gaussian curvature in M , and hg is the geodesic curvature of ∂M and
c is a given positive constant. The Dirac operator /D is defined by /Dψ := ∑2

α=1 eα ·
∇eαψ,where {e1, e2} is an orthonormal basis on T M ,∇ is the Levi–Civita connection
on M with respect to g and · denotes Clifford multiplication in the spinor bundle �M
of M . Finally, 〈·, ·〉g is the natural Hermitian metric on �M induced by g. We also
write | · |2g as 〈·, ·〉g . For the geometric background, see [28] or [19].
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Energy quantization for a singular super-Liouville… 907

The Euler-Lagrange system for EB(u, ψ) with Neumann / chirality boundary con-
ditions is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�gu = 2e2u − eu 〈ψ,ψ〉g − Kg, in Mo \ {q1, q2, . . . , qm},
/Dgψ = −euψ, in Mo \ {q1, q2, . . . , qm},
∂u

∂n
= ceu − hg, on ∂M \ {q1, q2, . . . , qm},

B±ψ = 0, on ∂M \ {q1, q2, · · · , qm}.

(2)

Here B± are the chirality operators (see Sect. 2 for the definition).
When ψ = 0 and (M, g) is a closed smooth Riemann surface, we obtain the

classical Liouville functional

E (u) =
∫

M

{
1

2
|∇u|2 + Kgu − e2u

}
dv.

The Euler-Lagrange equation for E(u) is the Liouville equation

−�gu = 2e2u − Kg.

Liouville [32] studied this equation in the plane, that is, for Kg = 0. The Liouville
equation comes up in many problems of complex analysis and differential geometry
of Riemann surfaces, for instance the prescribing curvature problem. The interplay
between the geometric and analytic aspects makes the Liouville equation mathemati-
cally very interesting.

When ψ �= 0 and (M, g) again is a closed smooth Riemann surface, we obtain the
super-Liouville functional

E (u, ψ) =
∫

M

{
1

2
|∇u|2 + Kgu + 〈

( /D + eu)ψ,ψ
〉
g − e2u

}
dv.

The Euler-Lagrange system for E(u, ψ) is

{
−�gu = 2e2u − eu 〈ψ,ψ〉g − Kg

/Dgψ = −euψ
in M .

The supersymmetric version of the Liouville functional and equation have been
studied extensively in the physics literature, see for instance [1,15,33]. As all super-
symmetric functionals that arise in elementary particle physics, it needs anticommuting
variables.

Motivated by the super-Liouville functional, a mathematical version of this func-
tional that works with commuting variables only, but otherwise preserves the structure
and the invariances of it, was introduced in [21]. That model couples the bosonic scalar
field to a fermionic spinor field. In particular, the super-Liouville functional is confor-
mally invariant, and it possesses a very interesting mathematical structure.
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908 J. Jost et al.

The analysis of classical Liouville type equations was developed in [2,4,29,30] etc,
and the corresponding analysis for super-Liouville equations in [21,23,26]. In particu-
lar, the complete blow-up theory for sequences of solutions was established, including
the energy identity for the spinor part, the blow-up value at blow-up points and the
profile for a sequence of solutions at the blow-up points. For results by physicists
about super-Liouville equations, we refer to [1,15,33] etc.

When (M,A, g) is a closed Riemann surface (without boundary) with conical
singularities of divisor A and with a spin structure, we obtain that

E (u, ψ) =
∫

M

{
1

2
|∇u|2 + Kgu + 〈

( /D + eu)ψ,ψ
〉
g − e2u

}
dvg.

The Euler-Lagrange system for E(u, ψ) is

{−�gu = 2e2u − eu 〈ψ,ψ〉g − Kg

/Dgψ = −euψ
in M\{q1, q2, . . . , qm}. (3)

This system is closely related to the classical Liouville equation, or the prescribing
curvature equation on M with conical singularites (see [12,36]). In addition, [3,4,6–8,
35] studied the blow-up theory of the following Liouville type equations with singular
data:

−�gu = λ
Keu∫

M Keudg
− 4π

⎛

⎝
m∑

j=1

α jδq j − f

⎞

⎠ ,

where (M, g) is a smooth surface and the singular data appear in the equation, which
is the asymptotic behavior associated to the m interior punctures. For system (3), [27]
provides an analytic foundation and the blow-up theory.

For Liouville boundary problems on (M, g) with or without conical singularites,
there are also lots of results on the blow-up analysis, see [9,16,22,43,44]. For super-
Liouville boundary problems on a smooth Riemann surface M , the corresponding
results can be found in [24,25].

In this paper, we aim to provide an analytic foundation and to establish the blow-
up analysis for the system (2). Our main result is the following energy quantization
property for solutions to (2):

Theorem 1.1 Let (un, ψn) be a sequence of solutions of (2) with energy conditions:

∫

M
e2un dg < C,

∫

M
|ψn|4gdg < C .

Define

�1 = {x ∈ M, there is a sequence yn → x such that un(yn) → +∞} .
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Energy quantization for a singular super-Liouville… 909

If �1 �= ∅, then the possible values of

lim
n→∞

{∫

M
2e2un − eun |ψn|2gdvg +

∫

∂M
ceundσg

}

are

4πm1 + 2πm2 +
∑

j∈J1

4π(1 + α j ) +
∑

j∈J1

2π(1 + α j ),

where m1,m2 are nonnegative integers, J1 ⊂ {1, . . . , l} and J2 ⊂ {l + 1, . . . ,m}.
Here {1, . . . , l} and {l + 1, . . . ,m} are the indexing sets of the conical singularities
of M. J1 and J2 could be empty.

From the energy quantization property, one can deduce the concentration properties
of conformal volume and the compactness of solutions. It turns out that understanding
of this property is the key step to study existence from a variational point of view by
a refined Moser–Trudinger inequality, see e.g. [10,11,18].

If we assume that the points q1, q2, . . . , ql are in Mo for 1 ≤ l < m and the
points ql+1, ql+2, . . . , qm are on ∂M for the surface (M,A, g) with the divisor A =
�m

j=1α j q j , α j > 0, we have the following Gauss–Bonnet formula

1

2π

∫

M
Kgdvg + 1

2π

∫

∂M
hgdσg = X (M) + |A|,

where X (M) = 2− 2gM is the topological Euler characteristic of M itself, gM is the
genus of M and

|A| =
l∑

j=1

α j +
m∑

j=l+1

α j

2

is the degree of A, see [36]. From (2) we obtain that

∫

M
2e2un − eun |ψn|2gdvg +

∫

∂M
ceund

∑

g

=
∫

M
Kgdvg +

∫

∂M
hgdσg

= 2π(X (M) + |A|).

Then we can use Theorem 1.1 to get the following:

Theorem 1.2 Let (M,A, g) be as above, and (un, ψn) be as in Theorem 1.1. Then the
value in Theorem 1.1 satisfies

4πm1 + 2πm2 +
∑

j∈J1

4π(1 + α j ) +
∑

j∈J1

2π(1 + α j ) = 4π(1 − gM ) + 2π |A|.

In particular,
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910 J. Jost et al.

(i) If

4π(1 − gM ) + 2π |A| = 2π,

then the blow-up set �1 contains at most one point.
(ii) If

4π(1 − gM ) + 2π |A| < 2π,

then the blow-up set �1 = ∅.
To show Theorem 1.1, a key step is to compute the blow-up value

m(p) = lim
R→0

lim
n→∞

{∫

BM
R (p)

(2e2un − eun |ψn |2g − Kg)dvg +
∫

∂M∩BM
R (p)

(ceun − hg)dσg

}
,

at the blow-up point p ∈ �1 for a blow-up sequence (un, ψn). Here BM
R (p) is a

geodesic ball of (M, g) at p. For this purpose, we need to study the following local
super-Liouville boundary value problem (see Sect. 3):

⎧
⎪⎪⎨

⎪⎪⎩

−�u(x) = 2V 2(x)|x |2αe2u(x) − V (x)|x |αeu(x)|�|2, in D+
r ,

/D� = −V (x)|x |αeu(x)�, in D+
r ,

∂u
∂n = cV (x)|x |αeu(x), on Lr ,

B±� = 0, on Lr .

(4)

Here α ≥ 0, V (x) is in C1
loc(D

+
r ∪ Lr ) and satisfies 0 < a ≤ V (x) ≤ b. Lr and S+

r
here and in the sequel are portions of ∂D+

r , which are defined in section 3. Then we
have the following Brezis–Merle type concentration compactness theorem:

Theorem 1.3 Let (un, �n) be a sequence of regular solutions to (4) satisfying

∫

D+
r

|x |2αe2un + |�n|4dx +
∫

Lr
|x |αeunds < C .

Define

�1 = {
x ∈ D+

r ∪ Lr , there is a sequence yn → x such that un(yn) → +∞}
,

�2 = {
x ∈ D+

r ∪ Lr , there is a sequence yn → x such that |�n(yn)| → +∞}
.

Then, we have �2 ⊂ �1. Moreover, (un, �n) admits a subsequence, still denoted by
(un, �n), that satisfies

a) |�n| is bounded in L∞
loc((D

+
r ∪ Lr )\�2) .

b) For un, one of the following alternatives holds:

i) un is bounded in L∞
loc(D

+
r ∪ Lr ).

ii) un → −∞ uniformly on compact subsets of D+
r ∪ Lr .
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Energy quantization for a singular super-Liouville… 911

iii) �1 is finite, nonempty and either

un is bounded in L∞
loc((D

+
r ∪ Lr )\�1) (5)

or
un → −∞ uniformly on compact subsets of (D+

r ∪ Lr )\�1. (6)

To show the quantization property of the blow-up value, we need to rule out (5) in
the above theorem.When the spinor field is vanishing, namely, in the case of Liouville-
type problems, a technique based on Pohozaev identity was introduced in [7] to prove
the vanishing of the mass in the neck region for blow-up sequences of solutions with
interior conical singularities. In the case of super-Liouville-type problems, we need
to overcome some new difficulties caused by the spinor part. For the case of interior
conical singularities, this was achieved in [27]. In the present paper, we shall handle
the boundary conical singularities case. To this end, the decay estimates of the spinor
part �n , the Pohozaev identity of the local coupled system (4) and the energy identity
of �n , which means there is no energy contribution on the neck domain, play the
essential roles. The corresponding theorem is the following:

Theorem 1.4 Let (un, �n) be a sequence of regular solutions to (4) satisfying

∫

D+
r

|x |2αe2un + |�n|4dx +
∫

Lr
|x |αeunds < C .

Denote by �1 = {x1, x2, . . . , xl} the blow-up set of un. Then there are finitely many
solutions (ui,k, � i,k) that satisfy

⎧
⎨

⎩
−�ui,k = 2|x |αe2ui,k − |x |αeui,k

〈
� i,k, � i,k

〉
− 1, in S2,

/D� i,k = −|x |αeui,k� i,k, in S2,
(7)

for i = 1, 2, . . . , I , and k = 1, 2, . . . , Ki , and α ≥ 0, or there are finitely many
solutions (u j,l , � j,l) that satisfy

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−�u j,l = 2|x |αe2u j,l − |x |αeu j,l
〈
� j,l , � j,l

〉
− 1, in S2c′,

/D� j,l = −|x |αeu j,l
� j,l , in S2c′,

∂u j,l

∂n
= c|x |αeu j,l − c′, on ∂S2c′ ,

B±� j,l = 0, on ∂S2c′ ,

(8)

for j = 1, 2, . . . , J , and l = 1, 2, · · · , L j , and α ≥ 0. Here S2c′ is a portion of the
sphere cut out by a 2-plane with constant geodesic curvature c′. After selection of a
subsequence, �n converges in C∞

loc to � on (B+
r ∪ Lr )\�1 and we have the energy

identity:
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912 J. Jost et al.

lim
n→∞

∫

D+
r

|�n|4dv =
∫

D+
r

|�|4dv +
I∑

i=1

Ki∑

k=1

∫

S2
|� i,k |4dv +

J∑

j=1

L j∑

l=1

∫

S2
c′

|� j,l |4dv.

(9)

A crucial step in proving the above theorem is to show the removability of isolated
singularities at the boundary, which is equivalent to the vanishing of the Pohozaev con-
stant (see Theorem 4.5). Once the energy identity for the spinor part (9) is established,
we can then obtain

Theorem 1.5 Let (un, �n) be solutions as in Theorem 1.3. Assume that (un, �n) blows
up and the blow-up set �1 �= ∅. Then

un → −∞ uniformly on compact subsets of (D+
r ∪ Lr ) \ �1.

Furthermore,

∫

D+
r (0)

[2V (x)|x |2αe2un − V (x)|x |αeun |�n|2]φdx +
∫

Lr
cV (x)|x |αeun

→
∑

xi∈�1

m(xi )φ(xi )

for every φ ∈ C∞
o (D+

r ∪ Lr ) and m(xi ) > 0.

In the end, with the help of the Pohozaev identity (see Proposition 4.1) and the
Green function at some singular points, we have the following:

Theorem 1.6 Let (un, �n) be solutions as in Theorem 1.3. Assume that (un, �n) blows
up and the blow-up set �1 �= ∅. Let p ∈ �1 and assume that p is the only blow-up

point in D+
δ0

(p) for some δ0 > 0. If there exists a positive constant C such that

max
S+
δ0

(p)
un − min

S+
δ0

(p)
un ≤ C,

then the blow-up value m(p) = 4π when p /∈ Lδ0(p), m(p) = 2π when p ∈
Lδ0(p) \ {0}, and m(p) = 2π(1 + α) when p = 0.

2 Preliminaries

In this section, we will first recall the definition of surfaces with conical singularities,
following [36]. Then we shall recall the chirality boundary condition for the Dirac
operator /D, see e.g. [17]. In particular, we will see that under the chirality boundary
conditions B±, the Dirac operator /D is self-adjoint.

A conformal metric g on a Riemannian surface M (possibly with boundary) has a
conical singularity of order α (a real number with α > −1) at a point p ∈ M ∪ ∂M if
in some neighborhood of p

123



Energy quantization for a singular super-Liouville… 913

g = e2u |z − z(p)|2α|dz|2

where z is a coordinate of M defined in this neighborhood and u is smooth away from
p and continuous at p. The point p is then said to be a conical singularity of angle
θ = 2π(α+1) if p /∈ ∂M and a corner of angle θ = π(α+1) if p ∈ ∂M . For example,
a (somewhat idealized) American football has two singularities of equal angle, while
a teardrop has only one singularity. Both these examples correspond to the case −1 <

α < 0; in case α > 0, the angle is larger than 2π , leading to a different geometric
picture. Such singularities also appear in orbifolds and branched coverings. They can
also describe the ends of complete Riemann surfaces with finite total curvature. If
(M, g) has conical singularities of order α1, α2, . . . , αm at q1, q2, . . . , qm , then g is
said to represent the divisorA = �m

j=1α j q j . Importantly, the presence of such conical
singularities destroys conformal invariance, because the conical points are different
from the regular ones.

The chirality boundary condition for the Dirac operator /D is a natural boundary
condition for spinor part ψ . Let M be a compact Riemann surface with ∂M �= ∅ and
with a fixed spin structure, admitting a chirality operatorG, which is an endomorphism
of the spinor bundle �M satisfying:

G2 = I , 〈Gψ,Gϕ〉 = 〈ψ, ϕ〉,

and

y∇X (Gψ) = G∇Xψ, X · Gψ = −G(X · ψ),

for any X ∈ �(T M), ψ, ϕ ∈ �(�M). Here I denotes the identity endomorphism of
�M and �(·) denotes the space of sections of a given bundle.

We usually take G = γ (ω2), which denotes the Clifford multiplication by the
complex volume form ω2 = ie1e2, where e1, e2 is a local orthonormal frame on M .

Denote by

S := �M |∂M
the restricted spinor bundle with induced Hermitian product.

Let −→n be the outward unit normal vector field on ∂M . One can verify that −→n G :
�(S) → �(S) is a self-adjoint endomorphism satisfying

(
−→n G)2 = I , 〈−→n Gψ, ϕ〉 = 〈ψ,

−→n Gϕ〉,

Hence, we can decompose S = V+ ⊕
V−, where V± is the eigensubbundle corre-

sponding to the eigenvalue ±1. One verifies that the orthogonal projection onto the
eigensubbundle V±:

B± : L2(S) → L2(V±)

ψ �→ 1

2
(I ± −→n G)ψ,
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914 J. Jost et al.

defines a local elliptic boundary condition for the Dirac operator /D , see e.g. [17]. We
say that a spinor ψ ∈ L2(�(�M)) satisfies the chirality boundary conditions B± if

B±ψ |∂M = 0.

It iswell known (see e.g. [17]) that ifψ, φ ∈ L2(�(�M)) satisfy the chirality boundary
conditions B± then

〈−→n · ψ, ϕ〉 = 0, on ∂M .

In particular, ∫

∂M
〈−→n · ψ, ϕ〉 = 0. (10)

It follows that the Dirac operator /D is self-adjoint under the chirality boundary con-
ditions B±.

It may be helpful if we recall that on a surface the (usual) Dirac operator /D can
be seen as the (doubled) Cauchy-Riemann operator. Consider R2 with the Euclidean
metric ds2 + dt2. Let e1 = ∂

∂s and e2 = ∂
∂t be the standard orthonormal frame. A

spinor field is simply a map � : R2 → �2 = C2, and the actions of e1 and e2 on
spinor fields can be identified by multiplication with matrices

e1 =
(
0 i
i 0

)
, e2 =

(
0 1

−1 0

)
.

If � :=
(
f
g

)
: R2 → C2 is a spinor field, then the Dirac operator is

/D� =
(
0 i
i 0

)
⎛

⎜⎝

∂ f

∂s
∂g

∂s

⎞

⎟⎠ +
(

0 1
−1 0

)
⎛

⎜⎝

∂ f

∂t
∂g

∂t

⎞

⎟⎠ = 2i

⎛

⎜⎝

∂g

∂z
∂ f

∂ z̄

⎞

⎟⎠ ,

where

∂

∂z
= 1

2

(
∂

∂s
− i

∂

∂t

)
,

∂

∂ z̄
= 1

2

(
∂

∂s
+ i

∂

∂t

)
.

Therefore, the elliptic estimates developed for (anti-) holomorphic functions can be
used to study the Dirac equation.

If M be the upper-half Euclidean space R
2+, then the chirality operator is G =

ie1e2 =
(
1 0
0 −1

)
. Note that −→n = −e2, we get that

B± = 1

2
(I ± −→n · G) = 1

2

(
1 ±1

±1 1

)
.

123



Energy quantization for a singular super-Liouville… 915

By the standard chirality decomposition, we can write ψ =
(

ψ+
ψ−

)
, and then the

boundary condition becomes

ψ+ = ∓ψ− on ∂M .

Without loss of generality, in the sequel, we shall only consider the chirality bound-
ary condition B = B+.

We have the following geometric property:

Proposition 2.1 The functional EB(u, ψ) is invariant under conformal diffeomor-
phisms ϕ : M → M preserving the divisor, that is, be ϕ∗A = A. In other word, if we
write that ϕ∗(g) = λ2g, where λ > 0 is the conformal factor of the conformal map
ϕ, and set

ũ = u ◦ ϕ − lnλ,

ψ̃ = λ− 1
2 ψ ◦ ϕ, (11)

then EB(ũ, ψ̃) = EB(u, ψ). In particular, if (u, ψ) is a solution of (2), so is (ũ, ψ̃).

3 The local singular super-Liouville boundary problem

In this section, we shall first derive the local version of the super-Liouville boundary
problem. Then we shall analyze the regularity of solutions under the small energy
condition.

First we take a point p ∈ Mo, choose a small neighborhoodU (p) ⊂ Mo, and define
an isothermal coordinate system x = (x1, x2) centered at p, such that p corresponds
to x = 0 and g = e2φ |x |2α(dx21 + dx22 ) in Dr (0) = {(x1, x2) ∈ R

2 | x21 + x22 < r2},
where φ is smooth away from p, continuous at p and φ(p) = 0. We can choose
such a neighborhood small enough so that if p is a conical singular point of g, then
U (p) ∩ A = {p} and α > 0, while, if p is a smooth point of g, then U (p) ∩ A = ∅
and α = 0. Consequently, with respect to the isothermal coordinates, we can obtain
the local version of the singular super-Liouville-type equations,

{−�u(x) = 2V 2(x)|x |2αe2u(x) − V (x)|x |αeu(x)|�|2
/D� = −V (x)|x |αeu(x)�

in Dr (0), (12)

which has no boundary condition since p is a interior point of M . Here � =
|x | α

2 e
φ(x)
2 ψ , V (x) is a C1,β function and satisfies 0 < a ≤ V (x) ≤ b. The detailed

arguments can be found in the section 3 of [27]. We also assume that (u, �) satisfy
the energy condition: ∫

Dr (0)
|x |2αe2u + |�|4dx < +∞. (13)
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We put Dr := Dr (0). We say that (u, �) is a weak solution of (12) and (13), if

u ∈ W 1,2(Dr ) and � ∈ W 1, 43 (�(�Dr )) satisfy

∫

Dr

∇u∇φdx =
∫

Dr

(2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2)φdx,
∫

Dr

〈�, /Dξ 〉dx = −
∫

Dr

V (x)|x |αeu〈�, ξ 〉dx,

for any φ ∈ C∞
0 (Dr ) and any spinor ξ ∈ C∞ ∩ W

1, 43
0 (�(�Dr )). A weak solution is

a classical solution by the following:

Proposition 3.1 Let (u, �) be a weak solution of (12) and (13). Then (u, �) ∈
C2(Dr ) × C2(�(�Dr )).

Note that when α = 0 this proposition is proved in [21] (see Proposition 4.1).When
α > 0, this proposition is proved in [27] (see Proposition 3.1).

For p ∈ ∂M , we also can choose a small geodesic ball U (p) ⊂ M and define an
isothermal coordinate system x = (x1, x2) centered at p, such that p corresponds to
x = 0 and g = e2φ |x |2α(dx21 + dx22 ) in D

+
r (0) = {(s, t) ∈ R

2 | s2 + t2 < r2, t ≥ 0},
where φ is smooth away from p and continuous at p. We can choose such a geodesic
ball small enough so that if p is a conical singular point of g, then U (p) ∩ A = {p}
and α > 0, while, if p is a smooth point of g, then U (p) ∩ A = ∅ and α = 0.
Set Lr = ∂D+

r ∩ ∂R2+, and S+
r = ∂D+

r ∩ R
2+. Also in the sequel, we will set

Lr (x0) = ∂D+
r (x0)∩∂R2+, and S+

r (x0) = ∂D+
r (x0)∩R

2+. Consequently, with respect
to the isothermal coordinates, (u, ψ) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−�u(x) = e2φ(x)|x |2α(2e2u(x) − eu(x)|ψ |2(x) − Kg) in D+
r ,

/D
(
e

φ(x)
2 |x | α

2 ψ
)

= −eφ(x)|x |αeu(x)
(
e

φ(x)
2 |x | α

2 ψ
)

in D+
r ,

∂u

∂n
= eφ(x)|x |α(ceu − hg), on Lr ,

B
(
e

φ(x)
2 |x | α

2 ψ
)

= 0, on Lr .

(14)

Here� = ∂2x1x1 +∂2x2x2 is the usual Laplacian, and the Dirac operator /D can be seen as
doubled Cauchy–Riemann operator, B is the chirality boundary operator of spinors.

Note that the relation between the two Gaussian curvatures and between the two
geodesic curvatures are respectively

{−�φ = e2φ |x |2αKg,
∂φ
∂n = eφ |x |αhg.

By standard elliptic regularity we conclude that φ ∈ W 2,p
loc (D+

r ∪ Lr ) for some p > 1
if α ≥ 0 and if the curvature Kg and hg of M is regular enough. Therefore, by Sobolev
embedding, φ ∈ C1

loc(D
+
r ∪ Lr ). If we denote V (x) = eφ , W1(x) = e2φ |x |2αKg and

W2(x) = eφ |x |αhg , then 0 < a ≤ V (x) ≤ b, W1(x) is in L p(D+
r ) and W2(x) is in
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L p(Lr ) for all p > 1 if the curvature Kg and hg of M is regular enough. Therefore,
the Eq. (14) can be rewritten as:

⎧
⎪⎪⎨

⎪⎪⎩

−�u(x) = 2V 2(x)|x |2αe2u(x) − V (x)|x |αeu(x)|�|2 − W1(x), in D+
r ,

/D� = −V (x)|x |αeu(x)�, in D+
r ,

∂u
∂n = cV (x)|x |αeu − W2, on Lr ,

B(�) = 0, on Lr .

Furthermore, let w(x) satisfy

⎧
⎨

⎩

−�w(x) = −W1(x), in D+
r ,

∂u
∂n = −W2(x), on Lr ,

w(x) = 0, on S+
r .

It is easy to see that w(x) is in C2(D+
r )∩C1(D+

r ∪ Lr ). Setting v(x) = u(x)−w(x),
then (v,�) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−�v(x) = 2V 2(x)|x |2αe2v(x) − V (x)|x |αev(x)|�|2, in D+
r ,

/D� = −V (x)|x |αev(x)�, in D+
r ,

∂v
∂n = cV (x)|x |αev(x), on Lr ,

B(�) = 0, on Lr .

Here α ≥ 0, V (x) is in C1
loc(D

+
r ∪ Lr ) and satisfies 0 < a ≤ V (x) ≤ b. Thus we get

the local system (4) of the boundary problem (2).
As the interior case, we can also define (u, �) be a weak solution of (4) if u ∈

W 1,2(D+
r ) and � ∈ W

1, 43
B (�(�D+

r )) satisfy

∫

D+
r

∇u∇φdx =
∫

D+
r

(2V 2(x)|x |2αe2u(x) − V (x)|x |αeu(x)|�|2)φdx

+
∫

Lr
(cV (x)|x |αev(x))φdσ

∫

D+
r

〈�, /Dξ 〉dx = −
∫

D+
r

V (x)|x |αev(x)〈�, ξ 〉dx

for any φ ∈ C∞
0 (D+

r ∪ Lr ) and any spinor ξ ∈ C∞
0 (�(�(D+

r ∪ Lr ))) ∩
W

1, 43
B (�(�D+

r )). Here

W
1, 43
B (�(�D+

r )) = {ψ |ψ ∈ W 1, 43 (�(�D+
r )), Bψ |Lr = 0}.

For weak solutions of (4) we also have the following regularity result.

Proposition 3.2 Let (u, �) be a weak solution of (4) with the energy condition

∫

D+
r

|x |2αe2u + |�|4dv +
∫

Lr
|x |αeudσ < ∞. (15)
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Then u ∈ C2(D+
r ) ∩ C1(D+

r ∪ Lr ) and � ∈ C2(�(�D+
r )) ∩ C1(�(�(D+

r ∪ Lr ))).

Note that when α = 0 this proposition has been proved in [24]. When α > 0, to
get the L1 integral of u+, we need a trick which was introduced in [7] and also was
used in [27]. That is, by using the fact that for some t > 0

∫

D+
r

1

|x |2tα dx ≤ C,

we can choose s = t
t+1 ∈ (0, 1) when α > 0 and s = 1 when α = 0 such that

2s
∫

D+
r

u+dx ≤
∫

D+
r

e2sudx ≤
(∫

D+
r

|x |2αe2udx
)s (∫

D+
r

|x |−2tαdx

)1−s

< ∞.

Once we get the L1 integral of u+, we can get the conclusion of Proposition 3.2 by
use the same argument in [24]. We omit the proof here.

We call (u, ψ) a regular solution to (4) if u ∈ C2(D+
r ) ∩ C1(D+

r ∪ Lr ) and
� ∈ C2(�(�D+

r )) ∩ C1(�(�(D+
r ∪ Lr ))).

Next we consider the convergence of a sequence of regular solutions to (4) under a
smallness condition for the energy. We assume that (un, �n) satisfy that

⎧
⎪⎪⎨

⎪⎪⎩

−�un(x) = 2V 2(x)|x |2αe2un(x) − V (x)|x |αeun(x)|�n|2, in D+
r ,

/D�n = −V (x)|x |αeun(x)�n, in D+
r ,

∂un
∂n = cV (x)|x |αeun(x), on Lr ,

B(�n) = 0, on Lr ,

(16)

with the energy condition

∫

D+
r

|x |2αe2un + |�n|4dv +
∫

Lr
|x |αeundσ < C (17)

for some constant C > 0. First, we study the small energy regularity, i.e. when the
energy

∫
D+
r

|x |2αe2un dx and
∫
Lr

|x |αeundx are small enough, un will be uniformly
bounded from above. Our Lemma is:

Lemma 3.3 For ε1 < π , and ε2 < π . If a sequence of regular solutions (un, �n) to
(16) with

∫

D+
r

2V 2(x)|x |2αe2un dx < ε1, |c|
∫

Lr
V (x)|x |αeundσ < ε2,

∫

D+
r

|�n|4dx < C

for some fixed constant C > 0, we have that ||u+
n ||

L∞(D
+
r
4
)
and ||�n||L∞(D

+
r
8
)
are

uniformly bounded.
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Proof As the same situation as in Proposition 3.2, we can no longer use the inequality
2

∫
u+
n <

∫
e2un to get the uniform bound of the L1-integral of u+

n when α > 0. But
notice that there exists a constant t > 0 such that

∫

D+
r

1

|x |2tα dx ≤ C .

Setting s = t
t+1 ∈ (0, 1), then we obtain

2s
∫

D+
r

u+
n dx ≤

∫

D+
r

e2sun dx ≤
(∫

D+
r

|x |2αe2un dx
)s (∫

D+
r

|x |−2tαdx

)1−s

< C .

Then by a similar argument as in the proof of Lemma 3.5 in [24] we can prove this
Lemma. ��

When the energy
∫
D+
r
2V 2(x)|x |2αe2un + ∫

Lr
V (x)|x |αeunds is large, in general,

blow-up phenomenon may occur, i.e., Theorem 1.3 holds.

Remark 3.4 Let vn = un + α log |x |, then (vn, �n) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−�vn(x) = 2V 2(x)e2vn(x) − V (x)evn(x)|�n|2, in D+
r ,

/D�n = −V (x)evn(x)�n, in D+
r ,

∂vn
∂n = cV (x)evn(x) + παδp=0, on Lr ,

B�n = 0, on Lr ,

with the energy condition

∫

D+
r

e2vn + |�n|4dx +
∫

Lr
evn ds < C .

Then, by using similar arguments as in [7], the two blow-up sets of un and vn are the
same. To show this conclusion, it is sufficient to show the point x = 0 is a blow-up
point for un if and only if it is a blow-up point for vn . In fact, if 0 is the only blow-up
point for vn in a small neighbourhood D+

δ0
∪ Lδ0 , that is, for any δ ∈ (0, δ0), ∃Cδ > 0,

such that
max

D+
δ0

\D+
δ

vn ≤ Cδ, and max
D+

δ0

vn → +∞, (18)

then, it is easy to see that 0 is also the only blow-up point for un in a small neighbour-
hood D+

δ0
∪ Lδ0 , that is, for any δ ∈ (0, δ0), ∃Cδ > 0, such that

max
D+

δ0
\D+

δ

un ≤ Cδ, and max
D+

δ0

un → +∞. (19)

In converse,we assume that 0 is the only blow-up point for un in a small neighbourhood
D+

δ0
∪ Lδ0 such that (19) is holds. We argue by contradiction and suppose that there

exists a uniform constantC , such that vn(x) ≤ C for any x ∈ D
+
δ0
. First, we can obtain
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that there exists a uniform constant C , such that |�n|2(x) ≤ C for any x ∈ D
+
δ0
2
. For

this purpose, we extend (vn, �n) to the lower half disk D−
r . Assume x̄ is the reflection

point of x about ∂R2+, and define

vn(x̄) :=vn(x), x̄ ∈ D−
r ,

�n(x̄) :=ie1 · �n(x), x̄ ∈ D−
r ,

An(x) :=
{
evn(x), x ∈ D+

r ,

evn(x̄), x ∈ D−
r .

Then �n satisfies

/D�n = −An(x)�n, in Dr .

Since An(x) is uniformly bounded in L∞(Dδ0) and
∫
Dδ0

|�n|4dx < C , we have �n

is uniformly bounded in W 1, 43 (�(�D δ0
2
)) and in particular �n is uniformly bounded

Cγ (�(�D
+
δ0
2
)) for some 0 < γ < 1. Further, since

fn(x) := 2V 2
n (x)|x |2αe2un(x) − Vn(x)|x |αeun(x)|�n|2

= 2V 2
n (x)e2vn(x) − Vn(x)e

vn(x)|�n|2

and

gn := −Vn(x)|x |αeun(x)�n = −Vn(x)e
vn(x)�n

are uniformly bounded in D
+
δ0
2
. ThenbyHarnack type inequality ofNeumannboundary

problem (see Lemma A.2 in [24]), it follows that inf
D

+
δ0
2

un → +∞. Thus we get a

contradiction since the blow-up set of un is finite.

4 Removability of local sigularities

The Pohozaev identity is closely related to the removability of singularities. In this
section, we shall first establish the Pohozaev identity for regular solutions to (4). Then
for solutions defined on a domain with isolated singularity, we define a constant which
is called the Pohozaev constant. The most important is that a necessary and sufficient
condition for the removability of local singularities is the vanishing of Pohazaev con-
stant.
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Proposition 4.1 (Pohozaev identity) Let (u, �) be a regular solution of (4), that is
(u, �) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−�u(x) = 2V 2(x)|x |2αe2u(x) − V (x)|x |αeu(x)|�|2, in D+
R ,

/D� = −V (x)|x |αeu(x)�, in D+
R ,

∂u
∂n = cV (x)|x |αeu(x), on LR,

B� = 0, on LR .

Then we have the following Pohozaev identity

R
∫

S+
R

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ

= (1 + α)

{∫

D+
R

(
2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2

)
dv +

∫

LR

cV (x)|x |αeuds
}

−R
∫

S+
R

V 2(x)|x |2αe2udσ +
∫

LR

c
∂V (s, 0)

∂s
|s|αseu(s,0)ds

− cV (s, 0)|s|αseu(s,0)|s=R
s=−R

+
∫

D+
R

x · ∇(V 2(x))|x |2αe2udv −
∫

D+
R

x · ∇V (x)|x |αeu |ψ |2dv

+1

4

∫

S+
R

〈
∂�

∂ν
, (x + x̄) · �

〉
dσ + 1

4

∫

S+
R

〈
(x + x̄) · �,

∂�

∂ν

〉
dσ, (20)

where ν is the outward normal vector to S+
R , and x̄ is the reflection point of x about

∂R2+.

Proof The case of α = 0 and V ≡ 1 has already been treated in [25]. The calculation
of the Pohozaev identity is standard. Since in the sequel we will need to calculate
the Pohozaev identity for different equations, for reader’s convenience, we give the
detailed proof for this general case.

First, we multiply the first equation by x · ∇u and integrate over D+
R to obtain

−
∫

D+
R

�ux · ∇udv =
∫

D+
R

2V 2(x)|x |2αe2ux · ∇udv −
∫

D+
R

V (x)|x |αeu |�|2x · ∇udv.

It follows from direct computations that

∫

D+
R

�ux · ∇udv

= R
∫

S+
R

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ +

∫

LR

∂u

∂n
(x · ∇u)ds

= R
∫

S+
R

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ +

∫

LR

cV (x)|x |αeu(x · ∇u)ds
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= R
∫

S+
R

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ − (α + 1)

∫

LR

cV (x)|x |αeuds

−
∫

LR

c
∂V (s, 0)

∂s
|s|αseu(s,0)ds + cV (s, 0)|s|αseu(s,0)|s=R

s=−R,

∫

D+
R

2V 2(x)|x |2αe2ux · ∇udv

= R
∫

S+
R

V 2(x)|x |2αe2udσ − (2 + 2α)

∫

D+
R

V 2(x)|x |2αe2udv

−
∫

D+
R

x · ∇(V 2(x))|x |2αe2udv,

and

∫

D+
R

V (x)|x |αeu |�|2x · ∇udv

= R
∫

S+
R

V (x)|x |αeu |�|2dσ −
∫

D+
R

|x |αeux · ∇(V (x)|�|2)dv

−(2 + α)

∫

D+
R

V (x)|x |αeu |�|2dv.

Therefore we have

R
∫

S+
R

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ

= (1 + α)

∫

D+
R

2V 2(x)|x |2αe2udv − (2 + α)

∫

D+
R

V (x)|x |αeu |�|2dv

+(α + 1)
∫

LR

cV (x)|x |αeuds

−R
∫

S+
R

V 2(x)|x |2αe2udσ + R
∫

S+
R

V (x)|x |αeu |�|2dσ

+
∫

LR

c
∂V (s, 0)

∂s
|s|αseu(s,0)ds − cV (s, 0)|s|αseu(s,0)|s=R

s=−R

+
∫

D+
R

x · ∇(V 2(x))|x |2αe2udv −
∫

D+
R

|x |αeux · ∇(V (x)|�|2)dv (21)

On the other hand, for x ∈ R
2+, we denote x = x1e1 + x2e2 under the local

orthonormal basis {e1, e2} on R
2+. Using the Clifford multiplication relation

ei · e j + e j · ei = −2δi j , for 1 ≤ i, j ≤ 2
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and

〈ψ, ϕ〉 = 〈ei · ψ, ei · ϕ〉
for any spinors ψ, ϕ ∈ �(�M). We know that

〈ψ, ei · ψ〉 + 〈ei · ψ,ψ〉 = 0 (22)

for any i = 1, 2. Using the chirality boundary condition of �, we extend (u, �) to
the lower half disk D−

R . Assume x̄ is the reflection point of x about ∂R2+, and define

u(x̄) := u(x), x̄ ∈ D−
R , (23)

�(x̄) := ie1 · �(x), x̄ ∈ D−
R . (24)

Then it follows from the argument in Lemma 3.4 of [24] that we obtain

/Dψ = −A(x)ψ in DR .

Here
A(x) =

{
V (x)|x |αeu(x), x ∈ D+

R ,

V (x̄)|x̄ |αeu(x̄), x ∈ D−
R .

Using the Schrödinger–Lichnerowicz formula /D2 = −� + 1
2Kg , we have

− �� = −d A(x) · ψ + A2(x)� in DR . (25)

Then we multiply (25) by x · � (where · denotes the Clifford multiplication) and
integrate over DR to obtain

∫

DR

〈��, x · �〉dv =
∫

BR

〈d A(x) · �, x · �〉dv −
∫

DR

A2(x)〈�, x · �〉dv,

and
∫

DR

〈x · �,��〉dv =
∫

DR

〈x · �, d A(x) · �〉dv −
∫

DR

A2(x)〈x · �,�〉dv.

On the other hand, by partial integration,

∫

DR

〈��, x · �〉dv

=
∫

DR

div〈∇�, x · �〉dv −
∫

DR

2∑

α=1

〈∇eα�, eα · �〉dv −
∫

DR

〈∇�, x · ∇�〉

=
∫

∂DR

〈
∂�

∂ν
, x · �

〉
dσ +

∫

DR

〈 /D�,�〉dv −
∫

DR

〈∇�, x · ∇�〉

=
∫

∂DR

〈
∂�

∂ν
, x · �

〉
dσ −

∫

DR

A(x)|�|2dv −
∫

DR

〈∇�, x · ∇�〉,

123



924 J. Jost et al.

=
∫

∂D+
R∩R2+

〈
∂�

∂ν
, (x + x̄) · �

〉
dσ − 2

∫

D+
R

V (x)|x |αeu |�|2dv

−
∫

DR

〈∇�, x · ∇�〉,

and similarly

∫

DR

〈x · �,��〉 =
∫

∂D+
R∩R2+

〈
(x + x̄) · �,

∂�

∂ν

〉
dσ − 2

∫

D+
R

V (x)|x |αeu |�|2dv

−
∫

DR

〈x · ∇�,∇�〉.

Furthermore we also have

∫

DR

〈d A(x) · �, x · �〉dv +
∫

DR

〈x · �, d A(x) · �〉dv

=
∫

DR

2∑

α,β=1

〈∇eα A(x)eα · �, eβ · �〉xβdv

+
∫

DR

2∑

α,β=1

〈eβ · �,∇eα A(x)eα · �〉xβdv

= 2
∫

DR

2∑

α=1

〈∇eα A(x)eα · �, eα · �〉xαdv

= 2
∫

DR

x · ∇(A(x))|�|2dv

= −2
∫

DR

A(x)x · ∇(|�|2)dv − 4
∫

DR

A(x)|�|2dv + 2R
∫

∂DR

A(x)|�|2dv

= −4
∫

D+
R

V (x)|x |αeux · ∇(|�|2)dv − 8
∫

D+
R

V (x)|x |αeu |�|2dv

+4R
∫

∂D+
R∩R2+

V (x)|x |αeu |�|2dv.

Therefore we obtain

R
∫

∂D+
R∩R2+

V (x)|x |αeu |�|2dσ −
∫

D+
R

V (x)|x |αeux · ∇(|�|2)dv

= 1

4

∫

∂D+
R∩R2+

〈
∂�

∂ν
, (x + x̄) · �

〉
dσ + 1

4

∫

∂D+
R∩R2+

〈
(x + x̄) · �,

∂�

∂ν

〉
dσ

+
∫

D+
R

V (x)|x |αeu |�|2dv. (26)
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Energy quantization for a singular super-Liouville… 925

Putting (21) and (26) together, we obtain our Pohozaev type identity (20). ��
Pohozaev type identity is shown to be closely related to the removability of local

singularities of solutions. For a solution of (12) and (13), we defined in [27] the
following Pohozaev constant:

Definition 4.2 ([27]). Let (u, �) ∈ C2(Dr\{0}) × C2(�(�(Dr\{0}))) be a solution
of (12) and (13). For 0 < R < r , we define the Pohozaev constant with respect to the
Eqs. (12) with the constraint (13) as follows:

C(u, �) := R
∫

∂DR(0)

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ

− (1 + α)

∫

DR(0)
(2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2)dx

+ R
∫

∂DR(0)
V 2(x)|x |2αe2udσ − 1

2

∫

∂DR(0)

〈
∂�

∂ν
, x · �

〉
+

〈
x · �,

∂�

∂ν

〉
dσ

−
∫

DR(0)
(|x |2αe2ux · ∇(V 2(x)) − |x |αeu |�|2x · ∇V (x))dx

where ν is the outward normal vector of ∂DR(0).

It is clear that C(u, �) is independent of R for 0 < R < r . Thus, the vanishing of
the Pohozaev constant C(u, �) is equivalent to the Pohozaev identity

R
∫

∂DR(0)

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ

= (1 + α)

∫

DR(0)
(2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2)dx

−R
∫

∂DR(0)
V 2(x)|x |2αe2udσ + 1

2

∫

∂DR(0)

(〈
∂�

∂ν
, x · �

〉
+

〈
x · �,

∂�

∂ν

〉)
dσ

+
∫

DR(0)
(|x |2αe2ux · ∇(V 2(x)) − |x |αeu |�|2x · ∇V (x))dx (27)

for a solution (u, �) ∈ C2(Dr (0)) × C2(�(�Dr (0))) of (12) and (13).
We also proved in [27] that a local singularity is removable if the Pohozaev identity

(27) holds, that is, iff the Pohozaev constant vanishes.

Theorem 4.3 [27]. Let (u, �) ∈ C2(Dr \ {0}) ×C2(�(�(Dr \ {0}))) be a solution of
(12) and (13). Then there is a constant γ < 2π(1 + α) such that

u(x) = − γ

2π
log|x | + h, near 0,

where h is bounded near 0. The Pohozaev constant C(u, �) and γ satisfy:

C(u, �) = γ 2

4π
.
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926 J. Jost et al.

In particular, (u, �) ∈ C2(Dr ) × C2(�(�Dr )), i.e. the local singularity of (u, �) is
removable, iff C(u, �) = 0.

For the singular boundary problem (4), we can define the Pohozaev constant in a
similar way:

Definition 4.4 Let (u, �) ∈ C2(D+
r ) ∩ C1(D+

r ∪ Lr\{0}) × C2(�(�D+
r )) ∩

C1(�(�(D+
r ∪ Lr\{0}))) be a solution of (4) and (15). For 0 < R < r , we define the

Pohozaev constant with respect to the Eqs. (4) with the constraint (15) as follows:

CB(u, �) := R
∫

∂D+
R∩R2+

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ

−(1 + α)

∫

D+
R

(2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2)dv

−(α + 1)
∫

∂D+
R∩∂R2+

cV (x)|x |αeuds

+R
∫

∂D+
R∩R2+

V 2(x)|x |2αe2udσ −
∫

∂D+
R∩∂R2+

c
∂V (s, 0)

∂s
|s|αseuds

+cV (s, 0)|s|αseu |s=R
s=−R

−
∫

D+
R

x · ∇(V 2(x))|x |2αe2udv +
∫

D+
R

x · ∇V (x)|x |αeu |ψ |2dv

−1

4

∫

∂D+
R∩R2+

〈
∂�

∂ν
, (x + x̄) · �

〉
dσ − 1

4

∫

∂D+
R∩R2+

〈
(x + x̄) · �,

∂�

∂ν

〉
dσ.

The removability theorem of a local singularity at the boundary is following:

Theorem 4.5 (Removability of a local boundary singularity). Let (u, �) ∈ C2(D+
r )∩

C1(D+
r ∪ Lr\{0}) × C2(�(�D+

r )) ∩ C1(�(�(D+
r ∪ Lr\{0}))) be a solution of (4)

and (15), then there is a constant γ < π(1 + α) such that

u(x) = − γ

2π
log|x | + h, near 0,

where h is bounded near 0. The Pohozaev constant C(u, �) and γ satisfy:

C(u, �) = γ 2

2π
.

In particular, (u, �) ∈ C2(D+
r ) ∩ C1(D+

r ∪ Lr ) × C2(�(�D+
r )) ∩ C1(�(�(D+

r ∪
Lr ))), i.e. the local singularity of (u, �) is removable, iff C(u, �) = 0.

To prove Theorem4.5, we need to derive the decay of spinor part� near the singular
point. For the case of α = 0 and V (x) = 1, this is shown in [25]. By using similar
arguments, we can also get the following lemma for the general case:
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Energy quantization for a singular super-Liouville… 927

Lemma 4.6 There are 0 < ε1 < 2π and 0 < ε2 < π such that (v, φ) satisfy

⎧
⎪⎪⎨

⎪⎪⎩

−�v = 2V 2(x)|x |2αe2v − V (x)|x |αev 〈φ, φ〉 , in B+
r0 ,

/Dφ = −V (x)|x |αevφ, in B+
r0 ,

∂v
∂n = cV (x)|x |αev, on Lr0\{0},
Bφ = 0, on Lr0\{0},

with energy conditions

∫

B+
r0

|x |2αe2vdx ≤ ε1 < 2π,

∫

B+
r0

|φ|4dx ≤ C, |c|
∫

Lr0

|x |αevds ≤ ε2 < π.

Then for any x ∈ B
+
r0
2
we have

|φ(x)||x | 12 + |∇φ(x)||x | 32 ≤ C

(∫

B+
2|x |

|φ|4dx
) 1

4

. (28)

Furthermore, if we assume that e2v = O( 1
|x |2(1+α)−ε ), then, for any x ∈ B

+
r0
2
, we have

|φ(x)||x | 12 + |∇φ(x)||x | 32 ≤ C |x | 1
4C

(∫

B+
r0

|φ|4dx
) 1

4

, (29)

for some positive constant C. Here ε is any sufficiently small positive number.

Proof of Theorem 4.5: By the conformal invariance, we assume without loss of gener-
ality that

∫
B+
r

|x |2αe2vdx ≤ ε1 and |c| ∫Lr |x |αevds ≤ ε2 where ε1 and ε2 are as in
Lemma 4.6. By standard potential analysis, it follows that there is a constant γ such
that

lim|x |→0

u

− log |x | = γ

π
.

By
∫
D+
r

|x |2αe2udx < C , we obtain that γ ≤ π(1+α). Furthermore, by using Lemma
4.6 and by a similar argument as in the proof of Proposition 5.4 of [23], we can improve
this to the strict inequality γ < π(1 + α). Next we set

v(x) = − 1

π

∫

B+
r

log |x − y|(2V 2(y)|y|2αe2u − V (y)|y|αeu |�|2)dy

− 1

π

∫

Lr
log |x − y|(cV (y)|y|αeu)dσ
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928 J. Jost et al.

and set w = u − v. Notice that v satisfies that

{−�v = 2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2, in D+
r ,

∂v
∂n = cV (x)|x |αeu, on Lr ,

and w satisfies that {−�w = 0, in D+
r ,

∂v
∂n = 0, on Lr\{0}.

We can check that

lim|x |→0

v(x)

− log |x | = 0.

Since we can extend w to Br\{0} evenly to get a harmonic function w in Br\{0}, then
we obtain that

lim|x |→0

w(x)

− log |x | = lim|x |→0

u − v

− log |x | = γ

π
.

Duo to w is harmonic in B1\{0} we have

w = −γ

π
log |x | + w0

with a smooth harmonic function w0 in Br . Therefore we have

u = −γ

π
log |x | + v + w0 near 0.

To compute the Pohozaev constant of (u, �) we need the decay of the gradient
of u near the singular point. We denote that f1(x) := 2V 2(x)|x |2αe2u(x), f2(x) :=
−V (x)|x |αeu(x)|�|2(x) and f3(x) := cV (x)|x |αeu . Since each fi is L1 integrable,
we can obtain e|v(x)| ∈ L p(D+

r ) for any p ≥ 1 and e|v(x)| ∈ L p(Lr ) for any p ≥ 1.
Since

f1(x) = |x |− 2γ
π

+2α
(
2V 2(x)e2w0(x)+2v(x)

)
,

f2(x) = −|x |− γ
π

+α−1
(
V (x)ew0(x)+v(x)|x ||�|2(x)

)
,

and

f3(x) = |x |− γ
π

+α(cV (x)ew0(x)+v(x)),

we set s1 = 2γ
π

− 2α and s2 = γ
π

− α + 1. Then max{s1, s2} = s2 < 2. Since

|�| ≤ C |x |− 1
2 near 0 and w0(x) is smooth in Br , we have by Hölder’s inequality that

f1 ∈ Lt (D+
r ) for any t ∈ (1, 2

s1
) if s1 > 0, and f1 ∈ Lt (D+

r ) for any t > 1 if s1 ≤ 0.

For f2, we have f2 ∈ Lt (D+
r ) for any t ∈ (1, 2

s2
) if s2 > 0, and f2 ∈ Lt (D+

r ) for
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Energy quantization for a singular super-Liouville… 929

any t > 1 if s2 ≤ 0. For f3, we have f3 ∈ Lt (Lr ) for any t ∈ (1, 2
s1

) if s1 > 0, and
f3 ∈ Lt (Lr ) for any t > 1 if s1 ≤ 0. Putting all together and by standard elliptic
theory, we have v(x) is in L∞(D

+
r ). On the other hand, since v(x) is in L∞(D

+
r ), it

follows from Lemma 4.6 that there exists a small δ0 > 0 such that

|�| ≤ C |x |δ0− 1
2 , near 0,

and

|∇�| ≤ C |x |δ0− 3
2 , near 0.

Next we estimate ∇v(x). If s1 < 0 and s2 < 0, then v(x) is in C1(B
+
r ). If s1 > 0

or s2 > 0, ∇v(x) will have a decay when |x | → 0. Without loss of generality, we
assume that 0 < s1 < 2 and 0 < s2 < 2. For any x ∈ D+

r we hanve

|∇v(x)| ≤ 1

π

∫

D+
r

1

|x − y| (| f1(y)| + | f2(y)|)dy + 1

π

∫

Lr

1

|x − y| | f3(y)|dy

= 1

π

∫

{|x−y|≥ |x |
2 }∩D+

r

1

|x − y| (| f1(y)| + | f2(y)|)dy

+ 1

π

∫

{|x−y|≤ |x |
2 }∩D+

r

1

|x − y| (| f1(y)| + | f2(y)|)dy

+ 1

π

∫

{|x−y|≥ |x |
2 }∩Lr

1

|x − y| | f3(y)|dy + 1

π

∫

{|x−y|≤ |x |
2 }∩Lr

1

|x − y| | f3(y)|dy
= I1 + I2 + I3 + I4.

Fix t ∈ (1, 2
s2

) and choose 0 < τ1 < 1 such that τ1t
t−1 < 2. Hence, we have 0 < τ1 <

2 − s2. Then by Hölder’s inequality we obtain

I1 ≤
(∫

{|x−y|≥ |x |
2 }∩D+

r

1

|x − y| τ1t
t−1

dy

) t−1
t

×
(∫

{|x−y|≥ |x |
2 }∩D+

r

1

|x − y|(1−τ1)t
(| f1| + | f2|)t dy

) 1
t

≤ C

|x |1−τ1
.

For I2, since y ∈ {y||x − y| ≤ |x |
2 } implies that |y| ≥ |x |

2 , we can get that

I2 ≤ C
∫

{|x−y|≤ |x |
2 }∩D+

r

1

|x − y||y|s2 dy ≤ C |x |1−s2 .
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930 J. Jost et al.

Similarly, for I3, we fix t ∈ (1, 2
s1

) and choose τ2 > 0 such that τ2t
t−1 < 1, and hence

we have 0 < τ2 < 1 − s1
2 . By Holder’s inequality we obtain,

|I3| ≤ 1

π

(∫

{|x−y|≥ |x |
2 }∩Lr

1

|x − y| τ2 t
t−1

dy

) t−1
t

(∫

{|x−y|≥ |x |
2 }∩Lr

1

|x − y|t(1−τ2)
| f3(y)|t dy

) 1
t

≤ C

|x |1−τ2
.

For I4 we have

|I4| ≤ C
∫

{|x−y|≤ |x |
2 }∩Lr

1

|x − y|
1

|y| s12
dy ≤ C

|x | s12
∫

{|x−y|≤ |x |
2 }∩Lr

1

|x − y|dy ≤ C

|x |τ3 ,

for some τ3 with 0 < τ3 < 1. In conclusion, for all x ∈ B+
r (0) we have

|∇v(x)| ≤ C

|x |1−τ1
+ C

|x |1−τ2
+ C

|x |τ3 (30)

for suitable constants 0 < τ1 < 2 − s2, 0 < τ2 < 1 − s1
2 and 0 < τ3 < 1.

At this point we are ready to compute the Pohozaev constant C(u, �). We denote

∇u = −γ

π

x

|x |2 + ∇(w0 + v(x)) = −γ

π

x

|x |2 + ∇η(x).

By (30), we have

r
∫

S+
r

(
1

2
|∇u|2 − |∂u

∂ν
|2

)
ds

= r
∫

S+
r

1

2

[( γ

π

)2 1

|x |2 − 2
γ

π

x · ∇η

|x |2 + |∇η|2
]
ds − r

∫

S+
r

(
− γ

π

1

|x | + x · ∇η

|x |
)2

ds

= r
∫

S+
r

[
−1

2

( γ

π

)2 1

|x |2 + γ

π

x · ∇η

|x |2 + 1

2
|∇η|2 −

(
x · ∇η

|x |
)2

]
dσ

= −1

2

( γ

π

)2
π + γ

π
r

∫

S+
r

x · ∇η

|x |2 + r

2

∫

S+
r

|∇η|2 − r
∫

S+
r

(
x · ∇η

|x |
)2

= − γ 2

2π
+ or (1),
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Energy quantization for a singular super-Liouville… 931

where or (1) → 0 as r → 0. We also have

(1 + α)

∫

D+
r

2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2dx = or (1),

and

r
∫

S+
r

V 2(x)|x |2αe2udσ = or (1),

and
∫

D+
r

(|x |2αe2ux · ∇(V 2(x)) − |x |αeu |�|2x · ∇V (x))dx = or (1),

and

(α + 1)
∫

S+
r

cV (x)|x |αeudσ −
∫

Lr
c
∂V (s, 0)

∂s
|s|αseuds + cV (s, 0)|s|αseu |s=r

s=−r = or (1),

and
∫

S+
r

〈
∂�

∂ν
, (x + x̄) · ∇�

〉
dσ +

∫

S+
r

〈
(x + x̄) · ∇�,

∂�

∂ν

〉
dσ = or (1).

Putting all together and letting r → 0, we get

C(u, �) = lim
r→0

C(u, �, r) = γ 2

2π
.

Since C(u, �) = 0 for (u, �), therefore we get γ = 0. This implies that the local
singularity of (u, �) is removable. ��

5 Bubble energy

After a suitable rescaling at a boundary blow-up point, we will obtain a bubble, i.e. an
entire solution on the upper half-plane R2+ with finite energy. In this section, we will
investigate such entire solutions.Wewill first show the asymptotic behavior of an entire
solution and compute the bubble energy, and then show that an entire solution can be
conformally extended to a spherical cap, i.e., the singularity at infinity is removable.

The considered equations are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�u = 2|x |2αe2u − |x |αeu 〈ψ,ψ〉 , in R2+,

/Dψ = −|x |αeuψ, in R2+,

∂u

∂n
= c|x |αeu, on ∂R2+,

Bψ = 0, on ∂R2+.

(31)
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The energy condition is

I (u, ψ) =
∫

R
2+
(|x |2αe2u + |ψ |4)dx +

∫

∂R2+
|x |αeuds < ∞. (32)

First, let us notice that if (u, ψ) is a weak solution of (31) and (32) with u ∈
H1,2
loc (R2+) and ψ ∈ W

1, 43
loc (�(�R

2+)), by using similar arguments as in the proof of

Proposition 3.2, we have u+ ∈ L∞(R
2
+). Consequently, it follows that u ∈ C2

loc(R
2+)∩

C1
loc(R

2
+) and ψ ∈ C2

loc(�(�R
2+)) ∩ C1

loc(�(�R
2
+)).

We call (u, ψ) a regular solution of (31) and (32), if u ∈ C2
loc(R

2+) ∩ C1
loc(R

2
+)

and ψ ∈ C2
loc(�(�R

2+)) ∩ C1
loc(�(�R

2
+)).

Next, we denote by (v, φ) the Kelvin transformation of (u, ψ), i.e.

v(x) = u

(
x

|x |2
)

− 2(1 + α) ln |x |,

φ(x) = |x |−1ψ

(
x

|x |2
)

.

Then (v, φ) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−�v = 2|x |2αe2v − |x |αev 〈φ, φ〉 , in R2+,

/Dφ = −|x |αevφ, in R2+,
∂v
∂n = c|x |αev, on ∂R2+\{0},
Bφ = 0, on ∂R2+\{0}.

(33)

And, by change of variable, we can choose r0 small enough such that (v, φ) satisfies

∫

|x |≤r0
|x |2αe2vdx ≤ ε1 < 2π,

∫

|x |≤r0
|φ|4dx ≤ C, |c|

∫

|s|≤r0
|x |αevds ≤ ε2 < π.

(34)
Applying Lemma 4.6 to (33) and (34), and by the Kelvin transformation, we obtain

the asymptotic estimate of the spinor ψ(x)

|ψ(x)| ≤ C |x |− 1
2−δ0 for |x | near ∞, (35)

and
|∇ψ(x)| ≤ C |x |− 3

2−δ0 for |x | near ∞, (36)

for some positive number δ0 provided that e2v = O( 1
|x |2(1+α)−ε ), where ε is any small

positive number.
Denote

d =
∫

R
2+
2|x |2αe2u − |x |αeu |ψ |2dx +

∫

∂R2+
c|x |αeuds,
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and

ξ0 =
∫

R
2+
euψdx .

Next, we will show that d = 2(1 + α)π and ξ0 is a well-defined constant spinor.

Proposition 5.1 Let (u, ψ) be a regular solution of (31) and (32) and let c be a non-
negative constant. Then we have

u(x) = − d

π
ln |x | + C + O(|x |−1) for |x | near ∞, (37)

ψ(x) = − 1

2π

x

|x |2 (I + ie1) · ξ0 + o(|x |−1) for |x | near ∞, (38)

where · is the Clifford multiplication, C is a positive universal constant, and I is the
identity. In particular we have d = 2(1 + α)π and ξ0 is well defined.

Proof We shall apply standard potential analysis to prove this proposition. Similar
arguments can be found in [13,21,22] and the references therein. The essential facts
used in this case are the Pohozaev identity and the decay estimate for the spinor. For
readers’ convenience, we sketch the proof here.

Step 1. lim|x |→∞ u(x)
ln |x | = − d

π
and d > π(1 + α).

Let

w(x) = 1

2π

∫

R
2+

(log |x − y| + log |x − y| − 2 log |y|)
(
2|y|2αe2u(y) − |y|αeu(y)|ψ(y)|2

)
dy

+ 1

2π

∫

∂R2+
(log |x − y| + log |x − y| − 2 log |y|) c|y|αeu(y)dy.

where x̄ is the reflection point of x about ∂R2+. It is easy to check that w(x) satisfies

{
�w = 2|x |2αe2u − |x |αeu |ψ |2, in R

2+,
∂w
∂n = −c|x |αeu, on ∂R2+.

and

lim|x |→∞
w(x)

ln |x | = d

π
.

Consider v(x) = u + w. Then v(x) satisfies

{
�v = 0, in R

2+,
∂v
∂n = 0, on ∂R2+.

We extend v(x) to R
2 by even reflection such that v(x) is harmonic in R

2. From
Lemma 5.1 we know v(x) ≤ C(1 + ln(|x | + 1)) for some positive constant C . Thus
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934 J. Jost et al.

v(x) is a constant. This completes the proof of Step 1. Since
∫
R
2+ |x |2αe2udx < ∞,

we get that d ≥ π(1+ α). Furthermore, similarly as in the case of the usual Liouville
or super-Liouville equation, we can show that d > π(1 + α).

Step 2. The proof of (37) and d = 2π(1 + α).
Notice that we have shown d > π(1 + α) in Step 2, we then can improve the

estimates of e2u to

e2u ≤ C |x |−2(1+α)−ε for |x | near ∞.

Therefore the asymptotic estimates (35) and (36) of the spinor ψ(x) hold. By using
the standard potential analysis we can obtain that

u(x) = − d

π
ln |x | + C + O(|x |−1) for |x | near ∞

for some constant C > 0. Thus we get the proof of (37).
Furthermore, we can show that d = 2π(1 + α). For sufficiently large R > 0, the

Pohozaev identity for the solution (u, ψ) gives

R
∫

S+
R

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ

= (1 + α)

∫

D+
R

2|x |2αe2u − |x |αeu |�|2dv + (α + 1)
∫

LR

c|x |αeuds

−R
∫

S+
R

|x |2αe2udσ − c|s|αseu |s=R
s=−R

+1

4

∫

S+
R

〈∂�

∂ν
, (x + x̄) · �〉dσ + 1

4

∫

S+
R

〈
(x + x̄) · �,

∂�

∂ν

〉
dσ. (39)

By the asymptotic estimates (35), (36) and (37) of (u, ψ) we have

lim
R→+∞ R

∫

S+
R

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ = d2

2π
,

and

lim
R→+∞ R

∫

S+
R

|x |2αe2udσ + c|s|αseu |s=R
s=−R = 0,

and

lim
R→+∞

∫

S+
R

〈
∂�

∂ν
, (x + x̄) · �

〉
dσ +

∫

S+
R

〈
(x + x̄) · �,

∂�

∂ν

〉
dσ = 0.
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Let R → +∞ in (39), we get that

d2

2π
= (1 + α)d.

It follows that d = 2π(1 + α).
Step 3. The proof of (38).

Since d = 2π(1 + α) by Step 2, we can improve the estimate for e2u to

e2u ≤ C |x |−4(1+π) for |x | near ∞. (40)

This implies that the constant spinor ξ0 is well defined. By using the chirality boundary
condition of spinor, we extend (u, ψ) to the lower half plane R2+(see (23) and (24))
to get

/Dψ = −A(x)ψ, in R2.

Here A(x) is defined by

A(x) =
{|x |αeu(x), x ∈ R

2+,

|x̄ |αeu(x̄), x ∈ R
2−.

Define

ξ1 =
∫

R2
A(x)ψdx .

The constant spinor ξ1 is also well defined. From the asymptotic estimates (35) and
(40) and a similar argument in [27] we obtain

ψ(x) = − 1

2π

x

|x |2 · ξ1 + o(|x |−1) for |x | near ∞. (41)

Since

ξ1 =
∫

R
2+
A(x)ψdx +

∫

R
2−
A(x)ψdx

=
∫

R
2+

|x |αeuψdx +
∫

R
2−

|x̄ |αeu(x̄)ie1 · ψ(x̄)dx

=
∫

R
2+

|x |αeuψdx +
∫

R
2+

|y|αeu(y)ie1 · ψ(y)dy

= (I + ie1) ·
∫

R
2+

|x |αeuψdx

= (I + ie1) · ξ0.
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936 J. Jost et al.

Hence we obtain from (41)

ψ(x) = − 1

2π

x

|x |2 (I + ie1) · ξ0 + o(|x |−1) for |x | near ∞.

Thus we finish the proof of Step 3 and we complete the proof of the Proposition. ��

Proposition 5.1 indicates that the singularity at infinity of regular solutions for (31)
and (32) can be removed as in many other conformally invariant problems.

Theorem 5.2 Let (u, ψ) be a regular solution of (31) and (32). Then (u, ψ) extends
conformally to a regular solution on a spherical cap S

2
c′ , where c′ is the geodesic

curvature of ∂S2c′ .

Proof Let (v, φ) be the Kelvin transformation of (u, ψ) as before. Then (v, φ) satisfies
the system (33). To prove the theorem, by conformal invariance, it is sufficient to show

that (v, φ) is regular on R
2
+. Applying Proposition 5.1, we get

v(x) =
(
d

π
− 2(1 + α)

)
ln |x | + O(1) for |x | near 0. (42)

Since α = 2π(1 + α), it follows that v is bounded near the singularity 0. Recall that
φ is also bounded near 0, we can apply elliptic theory to obtain that (v, φ) is regular

on R
2
+. ��

6 Energy identity for spinors

The energy identity for spinor part of solutions to the super-Liouville equations on
closed Riemann surfaces was derived in [23,27]. In this section, we shall prove an
analogue for the singular super-Liouville boundary problem, i.e. Theorem 1.4. For
harmonic maps in dimension two and J-holomorphic curves as well as for solutions
of certain nonlinear Dirac type equations, similar results are derived in [14,38,39,42]
and the references therein.

To prove Theorem 1.4, we shall derive the local estimate for the spinor part on
an upper half annulus. Since we can extend (u, �) to the lower half disk D−

r by the
chirality boundary condition of �, the proof of this local estimate can be established
by using the result of Lemma 3.1 of [23]. Here we just state the Lemma and omit the
proof.

Lemma 6.1 Let (u, �) satisfies (4) and

∫

D+
r

|x |2αe2u + |�|4dx +
∫

Lr
|x |αeuds < C .
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For 0 < r1 < 2r1 < r2
2 < r2 < r , consider the annulus Ar1,r2 = {x ∈ R

2|r1 ≤ |x | ≤
r2} and the upper half annulus A+

r1,r2 = Ar1,r2 ∩ R
2+. Then we have

⎛

⎝
∫

A+
2r1,

r2
2

|D�| 43
⎞

⎠

3
4

+
⎛

⎝
∫

A+
2r1,

r2
2

|�|4
⎞

⎠

1
4

≤ C0

(∫

A+
r1,r2

|x |2αe2u
) 1

2
(∫

A+
r1,r2

|�|4
) 1

4

+ C

(∫

A+
r1,2r1

|�|4
) 1

4

+C

⎛

⎝
∫

A+
r2
2 ,r2

|�|4
⎞

⎠

1
4

(43)

for a positive constant C0 and some universal positive constant C.

Proof of Theorem 1.4 We will follow closely the argument for the energy identity of
harmonic maps, see [14], or for super-Liouville equations, see [7,23,25,27] . Since
the blow-up set �1 is finite, we can find small disk D+

δi
(xi ), which is centered at each

blow-up point xi , such that D
+
δi

(xi ) ∩ D+
δ j

(x j ) = ∅ for i �= j, i, j = 1, 2, . . . , P , and

on (D+
r ∪ Łr )\ ⋃P

i=1(D
+
δi

(xi ) ∪ Lδi (xi )), �n converges strongly to � in L4. So, we

need to prove that there are (ui,k, ξ i,k), which are solutions of (7), i = 1, 2, . . . , I ; k =
1, 2, . . . , Ki , such that

lim
δi→0

lim
n→∞

∫

D+
δi

(xi )
|�n|4dv =

Li∑

k=1

∫

S2
|ξ i,k |4dv, for i = 1, 2, . . . , I ; (44)

or, we need to prove that there are (u j,l , ξ j,l), which are solutions of (8), j =
1, 2, . . . , J ; l = 1, 2, . . . , L j , such that

lim
δ j→0

lim
n→∞

∫

D+
δ j

(xi )
|�n|4dv =

L j∑

l=1

∫

S2
c′

|ξ j,l |4dv, for j = 1, 2, . . . , J ; (45)

When p ∈ (D+
r )o, from [27], we know that (44) holds. So, without loss of gener-

ality, we assume that p ∈ Lr and there is only one bubble at each blow-up point p.
Furthermore, we may assume that p = 0. The case of p �= 0 can be handled in an
analogous way and in fact this case is simpler, as |x |α is a smooth function near p.
Then what we need to prove is that there exists a bubble (u, ξ) as (7), such that

lim
δ→0

lim
n→∞

∫

D+
δ

|�n|4dv =
∫

S2
|ξ |4dv, (46)
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938 J. Jost et al.

or there exists a bubble (u, ξ) as (8) such that such that

lim
δ→0

lim
n→∞

∫

D+
δ

|�n|4dv =
∫

S2
c′

|ξ |4dv. (47)

Nextwe rescale functions (un, �n) at the blow-up point p = 0 and then try to get the
bubble of (un, �n). To this purpose, we let xn ∈ D

+
δ such that un(xn) = max

D
+
δ
un(x).

Write xn = (sn, tn). It is clear that xn → p and un(xn) → +∞. Define λn = e− un (xn )
α+1 .

We know λn , |xn| and tn converge to 0 as n → 0, but their rates of converging to 0
may be different. Next we will distinguish three cases.
Case I. |xn |

λn
= O(1) as n → +∞.

In this case, we define the rescaling functions

{
ũn(x) = un(λnx) + (1 + α) ln λn

�̃n(x) = λ
1
2
n �n(λnx)

for any x ∈ D
+

δ
2λn

. Then (̃un(x), �̃n(x)) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�ũn(x) = 2V 2(λnx)|x |2αe2ũn(x) − V (λnx)|x |αeũn(x)|�̃n(x)|2, in D+
δ

2λn

,

/D�̃n(x) = −V (λnx)|x |αeũn(x)�̃n(x), in D+
δ

2λn

,

∂ ũn(x)
∂n = cV (λnx)|x |αeũn(x), on L δ

2λn
,

B�̃n(x) = 0, on L δ
2λn

,

with the energy condition

∫

D+
δ

2λn

|x |2αe2ũn(x) + |�̃n(x)|4dv +
∫

L δ
2λn

|x |αeũn(x)dσ < C .

We know that

max
D̄+

δ
2λn

ũn(x) = ũn(
xn
λn

) = un(xn) + (αn + 1) ln λn = 0.

Notice that the maximum point of ũn(x), i.e.
xn
λn
, is bounded, namely | xntn | ≤ C . So by

taking a subsequence, we can assume that xn
tn

→ x0 ∈ R̄
2+ with |x0| ≤ C . Therefore

it follows from Theorem 1.3 that, by passing to a subsequence, (̃un, �̃n) converges in
C2
loc(R

2+) ∩ C1
loc(R̄

2+) × C2
loc(�(�R

2+)) ∩ C1
loc(�(�R̄

2+)) to some (̃u, �̃) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

−�ũ = 2V 2(0)|x |2αe2ũ − V (0)|x |αeũ |�̃|2, in R2+,

/D�̃ = −V (0)|x |αeũ�̃, in R2+,
∂ ũ
∂n = cV (0)|x |αeũ, on ∂R2+,

B�̃ = 0, on ∂R2+

(48)
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with the energy condition
∫
R
2+(|x |2αe2ũ +|�̃|4)dx +∫

∂R2+ |x |αeũdσ < ∞. By Propo-
sition 5.1, there holds

∫

R
2+
(2V 2(0)|x |2αe2ũ − V (0)|x |αeũ |�̃|2)dx +

∫

∂R2+
cV (0)|x |αeũdσ = 2π(1 + α).

By the removability of a global singularity (Theorem 5.2), we get a bubbling solution
on S2c′ .

Case II. |xn |
λn

→ +∞ as n → +∞.
In this case, we must have

un(yn) := un(xn) + (α + 1) ln |xn| = (α + 1) ln |xn| − (α + 1) ln λn → +∞. (49)

Thereforewecan rescale twice to get the bubble. First,wedefine the rescaling functions

{
un(x) = un(|xn|x) + (α + 1) ln |xn|
�n(x) = |xn| 12 �n(|xn|x)

for any x ∈ D
+

δ
2|xn |

. Then (un(x),�n(x)) satisfies that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�un(x) = 2V 2(|xn|x)|x |2αe2un(x) − V (|xn|x)|x |αeun(x)|�n(x)|2, in D+
δ

2|xn |
,

/D�n(x) = −V (|xn|x)|x |αeun(x)�n(x), in D+
δ

2|xn |
,

∂un(x)
∂ν

= cV (|xn|x)|x |αeun(x), on L δ
2|xn |

,

B�n(x) = 0, on L δ
2|xn |

.

Set that yn = xn|xn | . We assume that y0 = limn→∞ xn|xn | . By (49), we know y0 is a

blow-up point of (un, �n). We can set δn = e−un(yn), and ρn = e−un (xn )

|xn |α = λn(
λn|xn | )

α .

It is clear that δn → 0, ρn → 0 and |xn |
ρn

→ +∞ as n → ∞. We define the rescaling
functions

{
ũn(x) = un(δnx + yn) + ln δn = un(xn + ρnx) − un(xn)

�̃n(x) = = δ
1
2
n �n(δnx + yn) = ρ

1
2
n �n(xn + ρnx)

for any x such that yn + δnx ∈ D
+
R (yn) with any R > 1. By a direct computation, we

have

�n = {x ∈ R
2|yn + δnx ∈ D

+
R (yn)} = {x ∈ R

2|xn + ρnx ∈ D
+
R|xn |(xn)}.

123



940 J. Jost et al.

We set Ln = ∂�n ∩ {x ∈ R
2|t = − tn

ρn
}. Then (̃un(x), �̃n(x)) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�ũn(x) = 2V 2(xn + ρnx)| xn|xn | + ρn|xn | x |2αe2ũn(x)−V (xn + ρnx)| xn|xn | + ρn|xn | x |αeũn(x)|�̃n(x)|2, in �n,

/D�̃n(x) = −V (xn + ρnx)| xn|xn | + ρn|xn | x |αeũn(x)�̃n(x), in �n,
∂ ũn(x)

∂n = cV (xn + ρnx)| xn|xn | + ρn|xn | x |αeũn(x), on Ln,

B�̃n(x) = 0, on Ln,

with the energy condition

∫

�n

∣∣∣∣
xn
|xn| + ρn

|xn| x
∣∣∣∣
2α

e2ũn(x) +
∣∣∣∣�̃n(x)|4dv +

∫

Ln

| xn
|xn| + ρn

|xn| x
∣∣∣∣
α

eũn(x)dσ < C .

It is clear that

ũn(x) ≤ max
�n

ũn(x) = ũn(0) = 0.

Now we proceed by distinguishing two subcases.

Case II.1 tn
ρn

→ +∞ as n → ∞.

Notice that | xn|xn | +
ρn|xn | x | → 1 as n → ∞ in C0

loc(R
2). It follows from Theorem 1.3

that, by passing to a subsequence, (̃un, �̃n) converges in C2
loc(R

2) × C2
loc(�(�R

2))

to some (̃u, �̃) satisfying

{−�ũ = 2V 2(0)e2ũ − V (0)eũ |�̃|2, in R2,

/D�̃ = −V (0)eũ�̃, in R2,
(50)

with the energy condition
∫
R2 e2ũ + |�̃|4dx < ∞. By Proposition 6.4 in [21], there

holds
∫

R2
(2V 2(0)e2ũ − V (0)eũ |�̃|2)dx = 4π.

By the removability of a global singularity (Theorem 6.5 in [21]), we get a bubbling
solution on S2.

Case II.2 tn
ρn

→ � as n → ∞.
Similar in the Case II.1, we have from Theorem 1.3 that, by passing to a sub-

sequence, (̃un, �̃n) converges in C2
loc(R

2−�) ∩ C1
loc(R̄

2−�) × C2
loc(�(�R

2−�)) ∩
C1
loc(�R̄

2−�) to some (̃u, �̃) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

−�ũ = 2V 2(0)e2ũ − V (0)eũ |�̃|2, in R2−�,

/D�̃ = −V (0)eũ�̃, in R2−�,
∂ ũ
∂n = cV (0)eũ, on ∂R2−�,

B�̃ = 0, on ∂R2−�,

(51)
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with the energy condition
∫
R
2−�

e2ũ + |�̃|4dx + ∫
∂R2−�

eũdσ < ∞. By Proposition

6.4 in [21], there holds

∫

R
2−�

(2V 2(0)e2ũ − V (0)eũ |�̃|2)dx +
∫

∂R2−�

cV (0)eũdσ = 2π.

By the removability of a global singularity (Theorem 6.5 in [25]), we get a bubbling
solution on S2c′ .

It is well know, in order to prove (46) or (47), we need to prove that there is no any
energy of �n in the neck domain, i.e.

lim
δ→0

lim
R→+∞ lim

n→∞

∫

A+
δ,R,n

|�n|4dv = 0, (52)

where A+
δ,R,n is the neck domain which is defined latter. To this purpose, we shall

proceed separately for Case I, Case II.1 and Case II.2.
For Case I, we define the neck domain is

A+
δ,R,n = {x ∈ R

2+|λn R ≤ |x | ≤ δ}.

We have two claims.
Claim 1 For any ε > 0, there is an N > 1 such that for any n ≥ N , we have

∫

D+
r \D+

e−1r

(|x |2αe2un + |�n|4) +
∫

∂(D+
r \D+

e−1r
)∩∂R2+

|x |αeun < ε; ∀r ∈ [eλn R, δ].

To prove this claim, we note two facts. The first fact is: for any T > 0, there exists
some N (T ) such that for any n ≥ N (T ), we have

∫

D+
δ \D+

δe−T

(|x |2αe2un + |�n|4) +
∫

∂(D+
δ \D+

δe−T )∩∂R2+
|x |αeun < ε. (53)

Actually, since (un, �n) has no blow-up point in D
+
δ \{p}, then |�n| is uniformly

bounded in D+
δ \D+

δe−T , and un will either be uniformly bounded in D+
δ \D+

δe−T or

uniformly tend to −∞ in D+
δ \D+

δe−T . So if un uniformly tends to −∞ in Dδ\Dδe−T ,
it is clear that, for any given T > 0, we have an N (T ) big enough such that when
n ≥ N (T )

∫

D+
δ \D+

δe−T

(|x |2αe2un +
∫

∂(D+
δ \D+

δe−T )∩∂R2+
|x |αeun <

ε

2
.

123



942 J. Jost et al.

Moreover, since �n converges to � in L4
loc((D

+
r ∩ Lr ) \ �1) and hence

∫

D+
δ \D+

δe−T

|�n|4 →
∫

D+
δ \D+

δe−T

|�|4.

For any small ε > 0, we may choose δ > 0 small enough such that
∫
D+

δ
|�|4 < ε

4 ,
then for any given T > 0, we have an N (T ) big enough such that when n ≥ N (T )

∫

D+
δ \D+

δe−T

|�n|4 <
ε

2
.

Consequently, we get (53).

If (un, �n) is uniformly bounded in D+
δ \D+

δe−T , then we know (un, �n) converges

to a weak solution (u, �) strongly on compact sets of D+
δ \ {p}. Therefore, we can

also choose δ > 0 small enough such that, for any given T > 0, there exists an N (T )

big enough, when n ≥ N (T ), (53) holds.
The second fact is: For any small ε > 0, and T > 0, we may choose an N (T ) such

that when n ≥ N (T )

∫

D+
λn ReT

\D+
λn R

(|x |2αe2un + |�n|4) +
∫

∂(D+
λn ReT

\D+
λn R

)∩∂R2+
|x |αeun

=
∫

D+
ReT

\D+
R

(|x |2αe2ũn + |�̃n|4) +
∫

∂(D+
ReT

\D+
R )∩∂R2+

|x |αeũn < ε,

if R is big enough.
Now we can prove the claim. We argue by contradiction by using the above two

facts. If there exists ε0 > 0 and a sequence rn , rn ∈ [eλn R, δ], such that

∫

D+
rn \D+

e−1rn

(|x |2αe2un + |�n|4) +
∫

∂(D+
rn \D+

e−1rn
)∩∂R2+

|x |αeun ≥ ε0.

Then, by the above two facts, we know that δ
rn

→ +∞ and λn R
rn

→ 0, in particular,
rn → 0 as n → +∞. Rescaling again, we set

{
vn(x) = un(rnx) + (1 + α) ln rn,

ϕn(x) = r
1
2
n �(rnx)

for any x ∈ D+
δ
rn

\ D+
λn R
rn

.

It is clear that
∫

D+
1 \D+

e−1

(|x |2αe2vn + |ϕn|4) +
∫

∂(D+
1 \D+

e−1 )∩∂R2+
|x |αevn ≥ ε0. (54)
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And (vn, ϕn) satisfies for any R > 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�vn(x) = 2V 2(rnx)|x |2αe2vn (x) − V (rnx)|x |αevn (x)|ϕn(x)|2, in

(
D+

δ
rn

\ D+
λn R
rn

)
,

/Dϕn(x) = −V (rnx)|x |αevn (x)ϕn(x), in

(
D+

δ
rn

\ D+
λn R
rn

)
,

∂vn (x)
∂n = cV (rnx)|x |αevn (x), on ∂

(
D+

δ
rn

\ D+
λn R
rn

)
∩ ∂R2+,

Bϕn(x) = 0, on ∂

(
D+

δ
rn

\ D+
λn R
rn

)
∩ ∂R2+.

According to Theorem 1.3, there are three possible cases:

1. There exists some q ∈ Qn = (D+
δ
rn

\ D+
λn R
rn

) and energy concentration occurs near

the point q, namely along some subsequence we have

lim
n→∞

∫

Dr (q)∩Qn

(|x |2αe2vn + |ϕn|4) +
∫

Dr (q)∩∂Qn∩{t=0}
|x |αevn ≥ ε0 > 0

for any small r > 0. In such a case, we still obtain the second “bubble” by the
rescaling argument. Thus we get a contradiction.

2. For any R > 0, there is no blow-up point in D+
R \ D+

1
R
and vn → −∞ uniformly

in D+
R \ D+

1
R
. Then, it is clear that ϕn converges to a spinor ϕ in L4

loc(R
2+ \ {0})

which satisfies {
/Dϕ = 0, in R2+,

Bϕ = 0, on ∂R2+ \ {0}.
We translate ϕ to be a harmonic spinor on R

2+ \ {0} satisfying the corresponding
chirality boundary condition and then extend it as in (24) to a harmonic spinor
ϕ on R

2 \ {0} with bounded energy, i.e., ||ϕ||L4(R2) < ∞. As discussed in [23],
ϕ conformally extends to a harmonic spinor on S2. By the well known fact that
there is no nontrivial harmonic spinor on S2, we have that ϕ ≡ 0 and hence ϕn

converges to 0 in L4
loc(R

2+ \ {0}). This will contradict (54)
3. For any R > 0, there is no blow-up point in (D+

R \ D+
1
R
) and (vn, ϕn) is uniformly

bounded in (D+
R \ D+

1
R
). In such a case (vn, ϕn) will converge to (v, ϕ) strongly

on (D+
R \ D+

1
R
) and (v, ϕ) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

−�v = 2V 2(0)|x |2αe2v − V (0)|x |αev|ϕ|2, in R2+,

/Dϕ = −V (0)|x |αevϕ, in R2+,
∂v
∂n = cV (0)|x |αev, on ∂R2+ \ {0},
Bϕ = 0, on ∂R2+ \ {0}

with finite energy. It is clear that (v, ϕ) is regular.

Nextwe need to remove the singularities of (v, ϕ) and then obtain the second bubble
of the system. Consequently we get a contradiction. To this purpose, let us use the
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944 J. Jost et al.

Pohozaev identity of (un, �n) in D+
δ , it follows for any ρ with rnρ < δ

rnρ
∫

S+
rnρ

∣∣∣∣
∂un
∂ν

∣∣∣∣
2

− 1

2
|∇un|2dσ

= (1 + α)

∫

D+
rnρ

2V 2(x)|x |2αe2un − V (x)|x |αeun |�n|2dv

+(α + 1)
∫

Lrnρ

cV (x)|x |αeunds

−rnρ
∫

S+
rnρ

V 2(x)|x |2αe2un dσ

+
∫

Lrnρ

c
∂V (s, 0)

∂s
|s|αseun ds − cV ((s, 0))|s|αseun |s=rnρ

s=−rnρ

+
∫

D+
rnρ

x · ∇(V 2(x))|x |2αe2un dv −
∫

D+
rnρ

x · ∇V (x)|x |αeun |�n|2dv

+1

4

∫

S+
rnρ

〈
∂�n

∂ν
, (x + x̄) · �n

〉
dσ + 1

4

∫

S+
rnρ

〈
(x + x̄) · �n,

∂�n

∂ν

〉
dσ.

Hence for rescaling functions (vn, ϕn) we have

ρ

∫

S+
ρ

∣∣∣∣
∂vn

∂ν
|2 − 1

2
|∇vn

∣∣∣∣
2

dσ

= (1 + α)

∫

D+
ρ

2V 2(rnx)|x |2αe2vn − V (rnx)|x |αevn |ϕn|2dv

+(α + 1)
∫

Lρ

cV (rnx)|x |αevn ds

−ρ

∫

S+
ρ

V 2(rnx)|x |2αe2vn dσ +
∫

Lρ

c
∂V ((rns, 0))

∂s
|s|αsevn ds

−cV ((rns, 0))|s|αsevn |s=ρ
s=−ρ

+
∫

D+
ρ

x · (∇V 2)(rnx)|x |2αe2vn dv −
∫

D+
ρ

x · (∇V )(rnx)|x |αevn |ϕn|2dv

+1

4

∫

S+
ρ

〈
∂ϕn

∂ν
, (x + x̄) · ϕn

〉
dσ + 1

4

∫

S+
ρ

〈
(x + x̄) · ϕn,

∂ϕn

∂ν

〉
dσ.

This implies that the associated Pohozaev constant of (vn, ϕn) satisfies

C(vn, ϕn) = C(vn, ϕn, ρ)

= ρ

∫

S+
ρ

∣∣∣∣
∂vn

∂ν

∣∣∣∣
2

− 1

2
|∇vn|2dσ
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−(1 + α)

∫

D+
ρ

2V 2(rnx)|x |2αe2vn − V (rnx)|x |αevn |ϕn|2dv

−(α + 1)
∫

Lρ

cV (rnx)|x |αevn ds

+ρ

∫

S+
ρ

V 2(rnx)|x |2αe2vn dσ −
∫

Lρ

c
∂V ((rns, 0))

∂s
|s|αsevn ds

+cV ((rns, 0))|s|αsevn |s=ρ
s=−ρ

−
∫

D+
ρ

x · (∇V 2)(rnx)|x |2αe2vn dv +
∫

D+
ρ

x · (∇V )(rnx)|x |αevn |ϕn|2dv

−1

4

∫

S+
ρ

〈
∂ϕn

∂ν
, (x + x̄) · ϕn

〉
dσ − 1

4

∫

S+
ρ

〈
(x + x̄) · ϕn,

∂ϕn

∂ν

〉
dσ

= 0.

Since, for any ρ > 0,
∫
D+

ρ
|x |2αe2vn + |ϕn|4dv + ∫

Lρ
|x |αevn ds < C , it is easy to

check that

lim
ρ→0

lim
n→∞

∫

D+
ρ

x · (∇V 2)(rnx)|x |2αe2vn dv +
∫

D+
ρ

x · (∇V )(rnx)|x |αevn |ϕn|2dv = 0,

and

lim
ρ→0

lim
n→∞

∫

Lρ

c
∂V ((rns, 0))

∂s
|s|αsevn ds = 0.

This implies that

0 = lim
ρ→0

lim
n→∞C(vn, ϕn, ρ)

= lim
ρ→0

C(v, ϕ, ρ) − (1 + α) lim
r→0

lim
n→∞

∫

D+
r

2V 2(rnx)|x |2αe2vn − V (rnx)|x |αevn |ϕn |2dv

−(1 + α) lim
r→0

lim
n→∞

∫

Lr
cV (rnx)|x |αevn ds

= C(v, ϕ) − (1 + α)β.

Here

β = lim
r→0

lim
n→∞

[∫

D+
r

2V 2(rnx)|x |2αe2vn − V (rnx)|x |αevn |ϕn|2dv

+
∫

Lr
cV (rnx)|x |αevn ds

]
,
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946 J. Jost et al.

and C(v, ϕ) = C(v, ϕ, ρ) is the Pohozaev constant of (v, ϕ), i.e.

C(v, ϕ) = ρ

∫

S+
ρ

∣∣∣∣
∂v

∂ν
|2 − 1

2
|∇v

∣∣∣∣
2
dσ

−(1 + α)

[∫

D+
ρ

2V 2(0)|x |2αe2v − V (0)|x |αev |ϕ|2dv +
∫

Lρ

cV (0)|x |αevds
]

+ρ

∫

S+
ρ

V 2(0)|x |2αe2vdσ + cV (0)|s|αsev |s=ρ
s=−ρ

−1

4

∫

S+
ρ

〈
∂ϕ

∂ν
, (x + x̄) · ϕ

〉
dσ − 1

4

∫

S+
ρ

〈
(x + x̄) · ϕ,

∂ϕ

∂ν

〉
dσ.

On the other hand, we use the fact that (vn, ϕn) converges to (v, ϕ) in C2
loc(R

2+) ∩
C1
loc(R

2
+\{0}) × C2

loc(�(�R
2+)) ∩ C1

loc(�(�R
2
+\{0})) again to get

∫

D+
ρ

2V 2(rnx)|x |2αe2vn − V (rnx)|x |αevn |ϕn|2dv +
∫

Lρ

cV (rnx)|x |αevn ds

→
∫

D+
ρ

2V 2(0)|x |2αe2v − V (0)|x |αev|ϕ|2dv +
∫

Lρ

cV (0)|x |αevds + β

as n → ∞. By using Green’s representation formula for un in D+
ρ and then take

n → ∞, we have

v(x) = β

π
ln

1

|x | + φ(x) + γ (x),

where

φ(x) = 1

π

∫

D+
ρ

ln
1

|x − y| (2V
2(0)|y|2αe2v(y) − V (0)|y|αev(y)|ϕ|2(y))dy

+ 1

π

∫

Lr
ln

1

|x − y| (cV (0)|y|αev(y))dy,

and

γ (x) = 1

π

∫

S+
ρ

ln
1

|x − y|
∂v

∂ν
+ (x − y) · ν

|x − y|2 v(y)dy.

It is clear that γ (x) is in C1(D+
ρ ) and φ satisfies

{−�φ = 2V 2(0)|x |2αe2v − V (0)|x |αev|ϕ|2, in D+
ρ ,

∂φ
∂ν

= cV (0)|x |αev, on Lρ.
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By similar arguments as the proof of Proposition 4.5, we can obtain that

C(v, ϕ) = β2

2π
,

This implies that

(1 + α)β = β2

2π
.

Noticing that
∫
D+

ρ
|x |2αe2vdx < ∞, we have β ≤ (1+α)π . Therefore we obtain that

β = 0, i.e. C(v, ϕ) = 0, and the singularity at 0 of (v, ϕ) is removed by Proposition
4.5. Furthermore, the singularity at∞ of (v, ϕ) is also removed by Theorem 5.2. Thus
we get another bubble on S2c′ , and we get a contradiction to the assumption thatm = 1.
Concequently we complete the proof of the claim 1.
Claim 2We can separate A+

δ,R,n into finitely many parts

A+
δ,R,n =

Nk⋃

k=1

A+
k

such that on each part

∫

A+
k

|x |2αe2un ≤ 1

4�2 , k = 1, 2, . . . , Nk .

where Nk ≤ N0 for N0 is a uniform integer for all n large enough, A+
k = D+

rk−1 \ D+
rk
,

r0 = δ, r Nk = λn R, rk < rk−1 for k = 1, 2, . . . , Nk , and C0 is a constant as in
Lemma 6.1.

The proof of this claim is very similar to those in [23,25,41] and the argument is
now standard, so we omit it.

Now we apply Claim 1 and Claim 2 to prove (52). Let ε > 0 be small, and let δ be
small enough, and let R and n be big enough. We apply Lemma 6.1 to each part A+

k
to obtain

(∫

A+
l

|�n |4
) 1

4

≤ C0

(∫

D+
erl−1 \D+

e−1rl

|x |2αe2un
) 1

2
(∫

D+
erl−1 \D+

e−1rl

|�n |4
) 1

4

+C

(∫

D+
erl−1 \D+

rl−1

|�n |4
) 1

4

+ C

(∫

D+
rl

\D+
e−1rl

|�n |4
) 1

4

≤ C0

⎛

⎝
(∫

A+
l

|x |2αe2un
) 1

2

+ ε
1
2 + ε

1
2

⎞

⎠

⎛

⎝
(∫

A+
l

|�n |4
) 1

4

+ ε
1
4 + ε

1
4

⎞

⎠ + Cε
1
4

≤ C0

(∫

A+
l

|x |2αe2un
) 1

2
(∫

A+
l

|�n |4
) 1

4

+ C
(
ε

1
4 + ε

1
2 + ε

3
4

)
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948 J. Jost et al.

≤ 1

2

(∫

A+
l

|�n |4
) 1

4

+ C
(
ε

1
4 + ε

1
2 + ε

3
4

)
.

Therefore we have (∫

A+
l

|�n|4
) 1

4

≤ C
(
ε

1
4 + ε

1
2 + ε

3
4

)
.

Since ε is small, we may assume ε ≤ 1. Then we get

(∫

A+
l

|�n|4
) 1

4

≤ Cε
1
4 . (55)

With similar arguments, and using (55), we have

(∫

A+
l

|∇ψn| 43
) 3

4

≤ Cε
1
4 . (56)

Summing up (55) and (56) on A+
l we get

∫

A+
δ,R,n

|�n|4 +
∫

A+
δ,R,n

|∇ψn| 43 =
N0∑

l=1

∫

A+
l

|�n|4 + |∇ψn| 43 ≤ Cε
1
3 . (57)

Thus we have shown (52) in the first case.
For Case II, according the blow-up process, we define the neck domain is

A+
S,R,n = {x ∈ R

2+|ρn R ≤ |x − xn| ≤ |xn|S}.

Notice that
∫

D+
δ

|�n|4dv =
∫

D+
δ|xn |

|�n|4dv

=
∫

D+
δ|xn |

\D+
R1

(yn)
|�n|4dv +

∫

D+
R1

(yn)\D+
δn R2

(yn)
|�n|4dv +

∫

D+
δn R2

(yn)
|�n|4dv

=
∫

D+
δ|xn |

\D+
R1

(yn)
|�n|4dv +

∫

D+
|xn |R1 (xn)\D+

|xn |δn R2 (xn)
|�n|4dv +

∫

D+
δn R2

(yn)
|�n|4dv.

Duo to the assumption that (un, �n) has only one bubble at the blow-up point p = 0,
(un, �n) also has only one bubble at its blow-up point y0. Therefore, we have

lim
δ→0

lim
R1→∞ lim

n→∞

∫

D+
δ|xn |

\D+
R1

(yn)
|�n|4dv = 0.
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While D+
δn R2

(yn) is a bubble domain, we know to prove (52) it is sufficient to prove
that

lim
S→∞ lim

R→∞ lim
n→∞

∫

A+
S,R,n

|�n|4dv = 0. (58)

To prove (58), by using the similar argument as the case 1, we have the following
facts:

Fact II.1 For any small ε > 0, and T > 0, there exists some N (T ) such that for any
n ≥ N (T ) we have
∫

D+
|xn |S(xn)\D+

|xn |Se−T (xn)

(
|x |2αe2un + |�n |4

)
+

∫

∂(D+
|xn |S(xn)\D+

|xn |Se−T (xn))∩∂R2+
|x |αeun < ε,

for sufficiently large S.

Fact II.2 For any small ε > 0, and T > 0, we may choose an N (T ) such that when
n ≥ N (T )

∫

D+
ρn ReT

(xn)\D+
ρn R

(xn)

(
|x |2αe2un + |�n|4

)
+

∫

∂(D+
ρn ReT

(xn)\D+
ρn R

(xn))∩∂R2+
|x |αeun

=
∫

(DReT \DR)∩{t>− tn
ρn

}

(∣∣∣∣
xn
|xn| + ρn

|xn| x
∣∣∣∣
2α

e2ũn + |�̃n|4
)

+
∫

(DReT \DR)∩{t=− tn
ρn

}

∣∣∣∣
xn
|xn| + ρn

|xn| x
∣∣∣∣
α

eũn

< ε,

if R is large enough.
Buy using the above two facts, we need to prove the following claim:

Claim II.1 For any ε > 0, there is an N > 1 such that for any n ≥ N , we have
∫

D+
r (xn)\D+

e−1r
(xn)

(|x |2αe2un + |�n|4)

+
∫

∂(D+
r (xn)\D+

e−1r
(xn))∩∂R2+

|x |αeun < ε; ∀r ∈ [eρn R, |xn |S].

Proof of Claim II.1 We assume by a contradiction that there exists ε0 > 0 and a
sequence rn , rn ∈ [eρn R, |xn|S], such that
∫

D+
rn (xn)\D+

e−1rn
(xn)

(|x |2αe2un + |�n|4) +
∫

∂(D+
rn (xn)\D+

e−1rn
(xn))∩∂R2+

|x |αeun ≥ ε0.

Then, by Facts II.1 and II.2, we know that |xn |S
rn

→ +∞ and ρn R
rn

→ 0, in particular,

rn → 0 as n → +∞. We assume that� = limn→∞ tn
rn
. Here� is either a nonnegative

real number or +∞. Next we proceed by distinguishing two cases.
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Case II.1 � > 0.
In this case, we note that Drnρ(xn) is inR2+ when n is sufficient small and 0 < ρ <

�. We define the rescaling functions again

{
vn(x) = un(rnx + xn) + ln(rn|xn|α),

ϕn(x) = r
1
2
n �(rnx + xn)

for any rnx + xn ∈ D+
|xn |S(xn) \ D+

ρn R
(xn). Then (vn(x), ϕn(x)) satisfies that

∫

(D1\De−1 )∩{t>− tn
rn

}

(∣∣∣∣
xn
|xn| + rn

|xn| x
∣∣∣∣
2α

e2vn + |ϕn|4
)

+
∫

(D1\De−1 )∩
{
t=− tn

rn

}

∣∣∣∣
xn
|xn| + rn

|xn| x
∣∣∣∣
α

evn ≥ ε0. (59)

Note that (vn, ϕn) satisfies for any R > 0 and S > 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�vn(x) = 2V 2(rnx + xn)| xn|xn | + rn|xn | x |2αe2vn (x)
−V (rnx + xn)| xn|xn | + rn|xn | x |αevn (x)|ϕn(x)|2, in

(
D |xn |S

rn
\ D ρn R

rn

)
∩

{
t > − tn

rn

}
,

/Dϕn(x) = −V (rnx + xn)| xn|xn | + rn|xn | x |αevn (x)ϕn(x), in

(
D |xn |S

rn
\ D ρn R

rn

)
∩

{
t > − tn

rn

}
,

∂vn (x)
∂n = cV (rnx + xn)| xn|xn | + rn|xn | x |αevn (x), on

(
D |xn |S

rn
\ D ρn R

rn

)
∩

{
t = − tn

rn

}
,

Bϕn(x) = 0, on

(
D |xn |S

rn
\ D ρn R

rn

)
∩

{
t = − tn

rn

}
.

According to Theorem 1.3, there are three possible cases. Similar to the Case I,
we can rule out the first and the second possible cases. If the third case happens, then
there is no blow-up point in (DR \ D 1

R
) ∩ {t ≥ −b} for any R > 0 and any b < �.

Furthermore (vn, ϕn) will converge to (v, ϕ) strongly on (DR \ D 1
R
) ∩ {t ≥ −b}. If

� > 0, then (v, ϕ) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−�v = 2V 2(0)e2v − V (0)ev|ϕ|2, in R2
� \ {0},

/Dϕ = −V (0)evϕ, in R2
� \ {0},

∂v
∂n = cV (0)ev, on ∂R2

�( in the case of � < +∞),

Bϕ = 0, on ∂R2
�( in the case of � < +∞)

(60)

with finite energy.
Since Drnρ(xn) contains completely in R2+ when n is sufficient small and 0 < ρ <

�, we know that the origin is actually an interior singular point of (v, ϕ) to (60). Then
this local singular can be removed by using the similar arguments in the case II of [27].
After removing the local singularity 0, we can remove the singularity at ∞ of (v, ϕ)

to (60) by Theorem 5.2. Thus we get another bubble on S2c′ , and we get a contradiction
to the assumption that m = 1. Concequently we complete the proof of the claim II.1.
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Case II.2 � = 0.
In this case, noticing that xn = (sn, tn) and limn→∞ |xn |

rn
= +∞, we have

limn→∞ |sn |
tn

= +∞ and limn→∞ |sn |
rn

= +∞. We set x ′
n = (sn, 0). Then we define

the rescaling functions in this case

{
vn(x) = un(rnx + x ′

n) + ln(rn|sn|α),

ϕn(x) = r
1
2
n �(rnx + x ′

n)

for any rnx + x ′
n ∈ D+

|xn |S(x
′
n) \ D+

ρn R
(x ′

n). Since that

∫

D+
3
2 rn

(x ′
n)\D+

1
2 e

−1rn
(x ′

n)

(|x |2αe2un + |�n|4) +
∫

∂(D+
1
2 rn

(x ′
n)\D+

3
2 e

−1rn
(x ′

n))∩∂R2+
|x |αeun

≥
∫

D+
rn (xn)\D+

e−1rn
(xn)

(|x |2αe2un + |�n|4) +
∫

∂(D+
rn (xn)\D+

e−1rn
(xn))∩∂R2+

|x |αeun

≥ ε0,

we have that (vn(x), ϕn(x)) satisfies that

∫

D+
3
2
\D+

e−1
2

(∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

e2vn + |ϕn|4
)

+
∫

∂

(
D+

3
2
\D+

e−1
2

)
∩{t=0}

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn ≥ ε0. (61)

Note that (vn, ϕn) satisfies for any R > 0 and S > 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�vn(x) = 2V 2(rnx + x ′
n)| x ′

n|sn | + rn|sn | x |2αe2vn(x)
−V (rnx + x ′

n)| x ′
n|sn | + rn|sn | x |αevn(x)|ϕn(x)|2, in

(
D+

|xn |S
rn

\ D+
ρn R
rn

)
,

/Dϕn(x) = −V (rnx + x ′
n)| x ′

n|sn | + rn|sn | x |αevn(x)ϕn(x), in

(
D+

|xn |S
rn

\ D+
ρn R
rn

)
,

∂vn(x)
∂n = cV (rnx + x ′

n)| x ′
n|sn | + rn|sn | x |αevn(x), on ∂

(
D+

|xn |S
rn

\ D+
ρn R
rn

)
∩ ∂R2+,

Bϕn(x) = 0, on ∂

(
D+

|xn |S
rn

\ D+
ρn R
rn

)
∩ ∂R2+.

According to Theorem 1.3, there are three possible cases. From (61), we can rule out
the first and the second possible cases by using the similar arguments of Case I. Next

we assume that the third case happens, i.e. there is no blow-up point in D+
R \ D+

1
R
for

any R > 0. Furthermore (vn, ϕn) will converge to (v, ϕ) strongly on D+
R \ D+

1
R
, and

(v, ϕ) satisfies
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⎧
⎪⎪⎨

⎪⎪⎩

−�v = 2V 2(0)e2v − V (0)ev|ϕ|2, in R2+,

/Dϕ = −V (0)evϕ, in R2+,
∂v
∂n = cV (0)ev, on ∂R2+ \ {0},
Bϕ = 0, on ∂R2+ \ {0}

(62)

with finite energy.
Next we will remove two singular points at 0 and at∞, and consequently we get the

second bubble of the considered system. Thus we get a contradiction. To this purpose,
let us computate the Pohozaev constant of (v, ϕ). Let start with the Pohozaev identity
of (un,�n).Wemultiply all terms in (4) by (x−x ′

n)·∇un and integrate over D+
rnρ(x ′

n).
It follows for any sufficient small ρ that

rnρ
∫

S+
rnρ (x ′

n)

∣∣∣∣
∂un
∂ν

∣∣∣∣
2

− 1

2
|∇un |2dσ

=
∫

D+
rnρ (x ′

n)

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n |2)dv +
∫

Lrnρ (x ′
n)

cV (x)|x |αeun ds

−rnρ
∫

S+
rnρ (x ′

n)

V 2(x)|x |2αe2un dσ +
∫

Lrnρ (x ′
n)

c
∂(V (s, 0)|s|α)

∂s
(s − sn)e

un ds

−cV (s, 0)|s|α(s − sn)e
un |s=x ′

n+rnρ
s=x ′

n−rnρ

+
∫

D+
rnρ (x ′

n)

(x − x ′
n) · ∇(V 2(x)|x |2α)e2un dv

−
∫

D+
rnρ (x ′

n)

(x − x ′
n) · ∇(V (x)|x |α)eun |�n |2dv

+1

4

∫

S+
rnρ (x ′

n)

〈
∂�

∂ν
, (x + x̄ − 2x ′

n) · �

〉
dσ + 1

4

∫

S+
rnρ (x ′

n)

〈
(x + x̄ − 2x ′

n) · �,
∂�

∂ν

〉
dσ

Hence for rescaling functions (vn, ϕn) we have

ρ

∫

S+
ρ

∣∣∣∣
∂vn

∂ν

∣∣∣∣
2

− 1

2
|∇vn|2dσ

=
∫

D+
ρ

2V 2(rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

e2vn

−V (rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn |ϕn|2dv

+
∫

Lρ

cV (rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn ds

−ρ

∫

S+
ρ

V 2(rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

e2vn dσ

+
∫

Lρ

c
∂(V ((rns + sn, 0))

∣∣∣ rn|sn | s + sn|sn |
∣∣∣
α

)

∂s
sevn ds
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−cV ((rns + sn, 0))

∣∣∣∣
rn
|sn| s + sn

|sn|
∣∣∣∣
α

sevn |s=ρ
s=−ρ

+
∫

D+
ρ

x · ∇
(
V 2(rnx + x ′

n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

)
e2vn dv

−
∫

D+
ρ

x · ∇(V (rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

)evn |ϕn|2dv

+1

4

∫

S+
ρ

〈
∂ϕn

∂ν
, (x + x̄) · ϕn

〉
dσ + 1

4

∫

S+
ρ

〈
(x + x̄) · ϕn,

∂ϕn

∂ν

〉
dσ. (63)

Since the associated Pohozaev constant of (vn, ϕn) is

C(vn, ϕn) = C(vn, ϕn, ρ)

= ρ

∫

S+
ρ

∣∣∣∣
∂vn

∂ν

∣∣∣∣
2

− 1

2
|∇vn|2dσ

−
∫

D+
ρ

2V 2(rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

e2vn

−V (rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn |ϕn|2dv

−
∫

Lρ

cV (rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn ds

+ρ

∫

S+
ρ

V 2(rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

e2vn dσ

−
∫

Lρ

c
∂

(
V ((rns + sn, 0))

∣∣∣ rn|sn | s + sn|sn |
∣∣∣
α)

∂s
sevn ds

+cV ((rns + sn, 0))

∣∣∣∣
rn
|sn| s + sn

|sn|
∣∣∣∣
α

sevn |s=ρ
s=−ρ

−
∫

D+
ρ

x · ∇
(
V 2(rnx + x ′

n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

)
e2vn dv

+
∫

D+
ρ

x · ∇
(
V (rnx + x ′

n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α)

evn |ϕn|2dv

−1

4

∫

S+
ρ

〈
∂ϕn

∂ν
, (x + x̄) · ϕn

〉
dσ − 1

4

∫

S+
ρ

〈
(x + x̄) · ϕn,

∂ϕn

∂ν

〉
dσ,

we have from (63) that

C(vn, ϕn) = C(vn, ϕn, ρ) = 0.
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Since | x ′
n|sn | + rn|sn | x |2α is a smooth function in D+

ρ , by the energy condition,

∫

D+
ρ

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

e2vn + |ϕn|4dv +
∫

Lρ

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn ds < C,

we can easily to check that

lim
ρ→0

lim
n→∞

∫

D+
ρ

x · ∇
(
V 2(rnx + x ′

n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

)
e2vn dv

+
∫

D+
ρ

x · ∇
(
V (rnx + x ′

n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α)

evn |ϕn|2dv = 0,

and

lim
ρ→0

lim
n→∞

∫

Lρ

c
∂

(
V ((rns + sn, 0))

∣∣∣ rn|sn | s + sn|sn |
∣∣∣
α)

∂s
sevn ds = 0.

This implies that

0 = lim
ρ→0

lim
n→∞C(vn, ϕn, ρ) = lim

ρ→0
C(v, ϕ, ρ)

− lim
r→0

lim
n→∞

∫

D+
r

2V 2(rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

e2vn

−V (rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn |ϕn|2dv

− lim
r→0

lim
n→∞

∫

Lr
cV (rnx + x ′

n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn ds

= C(v, ϕ) − β.

Here

β = lim
r→0

lim
n→∞

[∫

D+
r

2V 2(rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

e2vn

−V (rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn |ϕn|2dv

]

+ lim
r→0

lim
n→∞

∫

Lr
cV (rnx + x ′

n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn ds.

and C(v, ϕ) = C(v, ϕ, ρ) is the Pohozaev constant of (v, ϕ), i.e.

C(v, ϕ) = ρ

∫

S+
ρ

∣∣∣∣
∂v

∂ν
|2 − 1

2
|∇v

∣∣∣∣
2

dσ
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−
∫

D+
ρ

2V 2(0)e2v − V (0)ev|ϕ|2dv +
∫

Lρ

cV (0)evds

+ρ

∫

S+
ρ

V 2(0)e2vdσ + cV ((0, 0))sev|s=ρ
s=−ρ

−1

4

∫

S+
ρ

〈
∂ϕ

∂ν
, (x + x̄) · ϕ

〉
dσ − 1

4

∫

S+
ρ

〈
(x + x̄) · ϕ,

∂ϕ

∂ν

〉
dσ.

On the other hand, we use the fact that (vn, ϕn) converges to (v, ϕ) in C2
loc(R

2+) ∩
C1
loc(R

2
+\{0}) × C2

loc(�(�R
2+)) ∩ C1

loc(�(�R
2
+\{0})) again to get

∫

D+
r

2V 2(rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
2α

e2vn − V (rnx + x ′
n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn |ϕn|2dv

+
∫

Lr
cV (rnx + x ′

n)

∣∣∣∣
x ′
n

|sn| + rn
|sn| x

∣∣∣∣
α

evn ds

→
∫

D+
ρ

2V 2(0)e2v − V (0)ev|ϕ|2dv +
∫

Lρ

cV (0)evds + β

as n → ∞. By using Green’s representation formula for un in D+
ρ and then take

n → ∞, we have

v(x) = β

π
ln

1

|x | + φ(x) + γ (x),

with φ being a bounded term and γ (x) being a regular term. Consequently, we can
obtain that

C(v, ϕ) = β2

2π
.

This implies that

β = β2

2π
.

Noticing that
∫
D+

ρ
e2vdx < ∞, we have β ≤ π . Therefore we obtain that β = 0,

i.e. C(v, ϕ) = 0, and the singularity at 0 of (v, ϕ) is removed by Propostion 4.5.
Furthermore, the singularity at ∞ of (v, ϕ) is also removed by Theorem 5.2. Thus we
get another bubble on S2c′ , and we get a contradiction to the assumption that m = 1.
Consequently we complete the proof of Claim II.1.

Next , similarly to Case I. we can prove the following:
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Claim II.2We can separate A+
S,R,n(xn) into finitely many parts

A+
S,R,n =

Nk⋃

k=1

A+
k

such that on each part

∫

A+
k

|x |2αe2un ≤ 1

4�2 , k = 1, 2, . . . , Nk .

where Nk ≤ N0 for N0 is a uniform integer for all n large enough, A+
k = D+

rk−1(xn) \
D+
rk

(xn), r0 = δ, r Nk = λn R, rk < rk−1 for k = 1, 2, . . . , Nk , and C0 is a constant
as in Lemma 6.1.

Then, by using Claim II.1 and Claim II.2 we can complete the proof of the result.
��

7 Blow-up behavior

In this section, we will show that un → −∞ uniformly on compact subset of (D+
r ∪

Lr ) \ �1 in means of the energy identity for spinors. Thus we rule out the possibility
that un is uniformly bounded in L∞

loc((D
+
r ∪ Lr ) \�1) in Theorem 1.3. The following

is the proof of Theorem 1.5.

Proof of Theorem 1.5: We prove the results by contradiction. Assume that the con-
clusion of the theorem is false. Then by Theorem 1.3, un is uniformly bounded in
L∞
loc((D

+
r ∪ Lr ) \ �1). Thus we know that (un, �n) converges in C2 on any compact

subset of (D+
r ∪ Lr ) \ �1 to (u, �), which satisfies that

⎧
⎪⎪⎨

⎪⎪⎩

−�u(x) = 2u2(x)|x |2αe2u(x) − V (x)|x |αeu(x)|�|2, in D+
r \ �1,

/D� = −V (x)|x |αeu(x)�, in D+
r \ �1,

∂u
∂n = cV (x)|x |αeu(x), on Lr \ �1,

B(�) = 0, on Lr \ �1.

(64)

with bounded energy

∫

D+
r

(|x |2αe2u + |�|4)dx +
∫

Lr
|x |αeuds < +∞.

Since the blow-up set �1 is not empty, we can take a point p ∈ �1. Choose a
small δ0 > 0 such that p is the only point of �1 in D2δ0(p) ∩ (D+

r ∪ Lr ) = {p}.
If p is the interior point of D+

r , then we can choose δ0 sufficiently small such that
D2δ0(p) ⊂ (D+

r ∪ Lr ). Hence by Theorem 1.3 in [27] we can get a contradiction.
Next we assume that p is on Lr . Without loss of generality, we assume that p = 0.

The case of p �= 0 can be dealed with in an analogous way.
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We shall first show that the limit (u, �) is regular at the isolated singularity p = 0,
i.e. u ∈ C2(D+

r ) ∩C1(D+
r ∪ Lr ) and � ∈ C2(�(�D+

r )) ∩C1(�(�(D+
r ∪ Lr ))) for

some small r > 0. To this end, we shall using Theorem 4.5 for removability of a local
singularity to remove the singularity. We know that the Phohozaev constant, denote
CB(u, �), of (u, �) at p = 0 is

CB(u, �) := CB(u, �, ρ) = ρ

∫

S+
ρ

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− 1

2
|∇u|2dσ

− (1 + α)

∫

D+
ρ

(2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2)dv

− (α + 1)
∫

Lρ

cV (x)|x |αeuds

+ ρ

∫

S+
ρ

V 2(x)|x |2αe2udσ −
∫

Lρ

c
∂V (s, 0)

∂s
|s|αseuds

+ cV (s, 0)|s|αseu |s=ρ
s=−ρ

−
∫

D+
ρ

x · ∇(V 2(x))|x |2αe2udv +
∫

D+
ρ

x · ∇V (x)|x |αeu |ψ |2dv

− 1

4

∫

S+
ρ

〈
∂�

∂ν
, (x + x̄) · �

〉
dσ − 1

4

∫

S+
ρ

〈
(x + x̄) · �,

∂�

∂ν

〉
dσ

for any 0 < ρ < δ0. On the other hand, since (un, �n) are the regular solution, the
Pohozaev constant CB(un, �n) = CB(un, �n, ρ) satisfies

0 = C(un, �n) = C(un, �n, ρ)

= ρ

∫

S+
ρ

∣∣∣∣
∂un
∂ν

∣∣∣∣
2

− 1

2
|∇un |2dσ

−(1 + α)

∫

D+
ρ

2V 2(x)|x |2αe2un − V (x)|x |αeun |�n |2dv

−(α + 1)
∫

Lρ

cV (x)|x |αeun ds

+ρ

∫

S+
ρ

V 2(x)|x |2αe2un dσ −
∫

Lρ

c
∂V (s, 0)

∂s
|s|αseun ds

+cV ((s, 0))|s|αseun |s=ρ
s=−ρ

−
∫

D+
ρ

x · ∇(V 2(x))|x |2αe2un dv +
∫

D+
ρ

x · ∇V (x)|x |αeun |�n |2dv

−1

4

∫

S+
ρ

〈
∂�n

∂ν
, (x + x̄) · �n

〉
dσ − 1

4

∫

S+
ρ

〈
(x + x̄) · �n,

∂�n

∂ν

〉
dσ.
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Let n → ∞ and ρ → 0, by using that (un, �n) converges to (u, �) regularly on any
compact subset of D

+
2δ0 \ {0} and that the energy condition (17), to get

0 = lim
ρ→0

lim
n→∞C(un, �n, ρ) = lim

ρ→0
C(u, �, ρ)

−(1 + α) lim
δ→0

lim
n→∞

{∫

D+
δ

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n|2)dx

+
∫

Lδ

cV (x)|x |αeunds
}

= C(u, �) − (1 + α)β,

where

β = lim
δ→0

lim
n→∞

{∫

D+
δ

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n |2)dx +
∫

Lδ

cV (x)|x |αeun ds
}

.

Moreover, we can also assume that

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n|2)dx + cV (x)|x |αeunds
→ ν = (2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2)dx + cV (x)|x |αeuds + βδp=0

in the sense of distributions in D+
δ ∪ Lδ for any small δ > 0. Then, applying similar

arguments as in the proof of the local singularity removability in Claim I.1, Theorem
1.4, we can show that CB(u, �) = 0, β = 0 and hence (u, �) is a regular solution of
(4) on D+

2δ0
with bounded energy

∫

D+
2δ0

(|x |2αe2u + |�|4)dx +
∫

L2δ

|x |αeuds < +∞.

Hence, we can choose some small δ1 ∈ (0, δ0) such that for any δ ∈ (0, δ1),

∫

D+
δ

(2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2)dx +
∫

Lδ

cV (x)|x |αeuds < min

{
1 + α

10
,
1

10

}
.

(65)
Next, as in the proof of Theorem 1.4, we rescale (un, �n) near p = 0. We let

xn ∈ D
+
δ1
such that un(xn) = max

D
+
δ1
un(x). Write xn = (sn, tn). Then xn → p = 0

and un(xn) → +∞. Define λn = e− un (xn )
α+1 . It is clear that λn , |xn| and tn converge to

0 as n → 0. we will proceed by distinguishing the following three cases:
Case I. |xn |

λn
= O(1) as n → +∞.

In this case, the rescaling functions are

{
ũn(x) = un(λnx) + (1 + α) ln λn

�̃n(x) = λ
1
2
n �n(λnx)
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for any x ∈ D
+
δ1
2λn

. Moreover, by passing to a subsequence, (̃un, �̃n) converges in

C2
loc(R

2+) ∩ C1
loc(R̄

2+) × C2
loc(�(�R

2+)) ∩ C1
loc(�(�R̄

2+)) to some (̃u, �̃) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

−�ũ = 2V 2(0)|x |2αe2ũ − V (0)|x |αeũ |�̃|2, in R2+,

/D�̃ = −V (0)|x |αeũ�̃, in R2+,
∂ ũ
∂n = cV (0)|x |αeũ, on ∂R2+,

B�̃ = 0, on ∂R2+

and
∫

R
2+
(2V 2(0)|x |2αe2ũ − V (0)|x |αeũ |�̃|2)dx +

∫

∂R2+
cV (0)|x |αeũdσ = 2π(1 + α).

Then for δ ∈ (0, δ1) small enough, R > 0 large enough and n large enough, we have

∫

D+
δ

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n |2)dx +
∫

Lδ

cV (x)|x |αeun ds

=
∫

Dλn R

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n |2)dx +
∫

Lλn R

cV (x)|x |αeun ds

+
∫

D+
δ \D+

λn R

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n |2)dx +
∫

Lδ\Lλn R

cV (x)|x |αeun ds

≥
∫

D+
R

(2V 2(λnx)|x |2αe2ũn − V (λnx)|x |αeũn |�̃n |2) +
∫

LR

cV (λnx)|x |αeũn ds

−
∫

D+
δ \D+

tn R

V (x)|x |αeun |�n |2

≥ 2π(1 + α) − 1 + α

10
. (66)

Here in the last step, we use the fact from Theorem 1.4 that the neck energy of the
spinor field�n is converging to zero. We remark that in the above estimate, if there are
multiple bubbles then we need to decompose D+

δ \D+
λn R

further into bubble domains
and neck domains and then apply the no neck energy result in Theorem 1.4 to each of
these neck domains.

On the other hand, we fix some δ ∈ (0, δ1) small such that (66) holds and then let
n → ∞ to conclude that

2π(1 + α) − 1 + α

10
≤

∫

D+
δ

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n|2)dx

+
∫

Lδ

cV (x)|x |αeunds

= −
∫

D+
δ

�un = −
∫

∂Bδ

∂un
∂n

→ −
∫

∂D+
δ

∂u

∂n
= −

∫

D+
δ

�u
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=
∫

D+
δ

(2V 2(x)|x |2αe2u − V (x)|x |αeu |�|2)dx

+
∫

Lδ

cV (x)|x |αeuds <
1 + α

10

Here in the last step, we have used (65). Thus we get a contradiction and finish the
proof of the Theorem in this case.

Case II. |xn |
λn

→ +∞ as n → +∞.
In this case, as in the arguments in Theorem 1.4, we can rescale twice to get the

bubble. First, we define the rescaling functions

{
ūn(x) = un(|xn|x) + (α + 1) ln |xn|
�̄n(x) = |xn| 12 �n(|xn|x)

for any x ∈ D+
δ1

2|xn |
. Set yn := xn|xn | . Due to ūn(yn) → +∞, we set that δn = e−ūn(yn)

and define the rescaling function

{
ũn(x) = ūn(δnx + yn) + ln δn

�̃n(x) = δ
1
2
n �̄n(δnx + yn)

for any δnx + yn ∈ D+
δ1

2|xn |
. Denote that ρn = e−un (xn )

|xn |α = λn(
λn|xn | )

α and xn = (sn, tn).

Case II.1 tn
ρn

→ +∞ as n → ∞.

Then, by passing to a subsequence, (̃un, �̃n) converges inC2
loc(R

2)×C2
loc(�(�R

2))

to some (̃u, �̃) satisfying

{−�ũ = 2V 2(0)e2ũ − V (0)eũ |�̃|2, in R2,

/D�̃ = −V (0)eũ�̃, in R2,

with the bubble energy

∫

R2
(2V 2(0)e2ũ − V (0)eũ |�̃|2)dx = 4π.

Therefore, for δ ∈ (0, δ1) small enough, S, R > 0 large enough and n large enough,
the fact that the neck energy of the spinor field �n is converging to zero, we have

∫

D+
δ

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n|2)dx +
∫

Lδ

cV (x)|x |αeunds

=
∫

D+
δ|xn |

(2V 2(|xn|x)|x |2αe2ūn − V (|xn|x)|x |αeūn |�̄n|2)dx

+
∫

L δ|xn |

cV (|xn|x)|x |αeūn ds
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=
∫

D+
δ|xn |

\D+
S (yn)

(2V 2(|xn|x)|x |2αe2ūn − V (|xn|x)|x |αeūn |�̄n|2)dx

+
∫

D+
S (yn)\D+

ρn|xn | R
(yn)

(2V 2(|xn|x)|x |2αe2ūn − V (|xn|x)|x |αeūn |�̄n|2)dx

+
∫

D+
ρn|xn | R

(yn)
(2V 2(|xn|x)|x |2αe2ūn − V (|xn|x)|x |αeūn |�̄n|2)dx

+
∫

L ρn R|xn |
(yn)

cV (|xn|x)|x |αeūn ds

+
∫

LS(yn)\L ρn R|xn |
(yn)

cV (|xn|x)|x |αeūn ds +
∫

L δ|xn |
\LS(yn)

cV (|xn|x)|x |αeūn ds

≥
∫

DR∩
{
t>− tn

ρn

}

(
2V 2(xn + ρnx)

∣∣∣∣
xn
|xn| + ρn

|xn| x
∣∣∣∣
2α

e2ũn(x)

−V (xn + ρnx)

∣∣∣∣
xn
|xn| + ρn

|xn| x |
αeũn(x)

∣∣∣∣ �̃n|2
)
dx

+
∫

DR∩
{
t=− tn

ρn

}(cV (xn + ρnx)

∣∣∣∣
xn
|xn| + ρn

|xn| x
∣∣∣∣
α

eũn(x)

−
∫

D+
|xn |S(xn)\D+

ρn R
(xn)

V (x)|x |αeun |�n|2 −
∫

D+
δ|xn |

\D+
S (yn)

V (tnx)|x |αeūn |�̄n|2

≥ 4π − 1

10
.

Then, applying similar arguments as in Case I, we get a contradiction, and finish the
proof of the Theorem in this case.

Case II.2 tn
ρn

→ � as n → ∞.

Then, bypassing to a subsequence, (̃un, �̃n) converges inC2
loc(R

2−�)∩C1
loc(R̄

2−�)×
C2
loc(�(�R

2−�)) ∩ C1
loc(�R̄

2−�) to some (̃u, �̃) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

−�ũ = 2V 2(0)e2ũ − V (0)eũ |�̃|2, in R2−�,

/D�̃ = −V (0)eũ�̃, in R2−�,
∂ ũ
∂n = cV (0)eũ, on ∂R2−�,

B�̃ = 0, on ∂R2−�,

with the bubble energy

∫

R
2−�

(2V 2(0)e2ũ − V (0)eũ |�̃|2)dx +
∫

∂R2−�

cV (0)eũdσ = 2π.
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Then, applying similar arguments as in Case II.1, we can get a contradiction, and
finish the proof of the Theorem. ��

8 Blow-up Value

By means of Theorem 1.5, we can further compute the blow-up value at the blow-up
point p, which is defined as

m(p) = lim
δ→0

lim
n→∞

{∫

D+
δ (p)

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n|2)dx

+
∫

Lδ(p)
cV (x)|x |αeunds

}
.

We know from Theorem 1.5 thatm(p) > 0. Now we shall determine the precise value
of m(p) under a boundary condition.

Proof of Theorem 1.6: When p /∈ Lδ0(p), It is clear that we can choose δ0 sufficiently

small such that D+
δ0

(p) = Dδ0(p). Then we have m(p) = 4π according to the
arguments in [27]. Next we assume that p ∈ Lδ0(p). Without loss of generality, we
assume p = 0. The case of p �= 0 can be handled analogously.

By using the boundary condition, it follows that

0 ≤ un − min
S+
δ0

un ≤ C

on S+
δ0
. Let wn be the unique solution of the following problem

⎧
⎪⎨

⎪⎩

−�wn = 0, in D+
δ0

,
∂wn
∂n = 0, on Lδ0 ,

wn = un − minS+
δ0
un, on S+

δ0
.

It follows from the maximum principle and the Hopf Lemma that wn is uniformly

bounded in D+
δ0
, and consequently wn is C2(D+

δ0
) ∩ C1(D+

δ0
∪ Lδ0). Now we set

vn = un − minS+
δ0
un − wn . Then vn satisfies that

⎧
⎨

⎩

−�vn = 2V 2(x)|x |2αe2un − V (x)|x |αeun |�n|2, in D+
δ0

,
∂vn
∂n = cV (x)|x |αeun , on Lδ0 ,

vn = 0, on S+
δ0

,

with the energy condition

∫

D+
δ0

(2V 2(x)|x |2αe2un − V (x)|x |αeun |�n|2)dx +
∫

Lδ0

cV (x)|x |αeunds ≤ C . (67)
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By Green’s representation formula, we have

vn(x) = 1

π

∫

D+
δ0

log
1

|x − y| (2V
2(y)|y|2αe2un − V (y)|y|αeun |�n|2)dy

+ 1

π

∫

Lδ0

log
1

|x − y|cV (y)|y|αeundy + Rn(x) (68)

where Rn(x) ∈ C1(D+
δ0

∪ Lδ0) is a regular term. By using Theorem 1.5, we know

vn(x) → m(p)

π
ln

1

|x | + R(x), in C1
loc((D

+
δ0

∪ Lδ0) \ {0}) (69)

for R(x) ∈ C1(D+
δ0

∪ Lδ0). On the other hand, we observe that (vn, �n) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�vn = 2K 2
n (x)|x |2αe2vn − Kn(x)|x |αevn |�n|2, in D+

δ0
,

/D�n = −Kn(x)evn�n, in D+
δ0

,

∂vn
∂n = cKn(x)|x |αeun , on Lδ0 ,

B(�n) = 0, on Lδ0 ,

where Kn = V (x)e
min

S+
δ0

un+wn
. Noticing the Pohozaev identity of (vn, �n) in D+

δ0
for 0 < δ < δ0 is

δ

∫

S+
δ

∣∣∣∣
∂vn

∂ν

∣∣∣∣
2

− 1

2
|∇vn |2dσ

= (1 + α)

{∫

D+
δ

(2K 2
n (x)|x |2αe2vn − Kn(x)|x |αevn |�n |2)dv +

∫

Lδ

cKn(x)|x |αevn ds
}

−δ

∫

S+
δ

K 2
n (x)|x |2αe2vn dσ

+
∫

Lδ

c
∂Kn(s, 0)

∂s
|s|αsevn(s,0)ds − cKn(s, 0)|s|αsevn(s,0)|s=δ

s=−δ

+
∫

D+
δ

x · ∇(K 2
n (x))|x |2αe2vn dv −

∫

D+
δ

x · ∇Kn(x)|x |αevn |�n |2dv

+1

4

∫

S+
δ

〈
∂�n

∂ν
, (x + x̄) · �n

〉
dσ + 1

4

∫

S+
δ

〈
(x + x̄) · �n,

∂�n

∂ν

〉
dσ. (70)
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We will take n → ∞ first and then δ → 0 in (70). By using (69) we get

lim
δ→0

lim
n→∞ δ

∫

S+
δ

∣∣∣∣
∂vn

∂ν

∣∣∣∣
2

− 1

2
|∇vn |2dσ = lim

δ→0
δ

∫

S+
δ

1

2

∣∣∣∣∣∣

∂
(
m(p)

π ln 1
|x |

)

∂ν

∣∣∣∣∣∣

2

dσ = 1

2π
m2(p).

By using un → −∞ uniformly on S+
δ , we also have

lim
δ→0

lim
n→∞ δ

∫

S+
δ

K 2
n (x)|x |2αe2vn dσ = lim

δ→0
lim
n→∞ δ

∫

S+
δ

V 2(x)|x |2αe2un dσ = 0,

and

lim
δ→0

lim
n→∞ cKn(s, 0)|s|αsevn(s,0)|s=δ

s=−δ = 0.

By using the energy condition (67), we have

lim
δ→0

lim
n→∞

∫

D+
δ

(
|x |2αe2vn x · ∇(K 2

n (x)
)

− |x |αevn |�n|2x · ∇Kn(x))dx = 0,

and

lim
δ→0

lim
n→∞

∫

Lδ

c
∂Kn(s, 0)

∂s
|s|αsevn(s,0)ds = 0.

Since un → −∞ uniformly in any compact subset of (D+
δ0

∪ Lδ0)\{0}, and |�n| is
uniformly bounded in any compact subset of (D+

δ0
∪ Lδ0)\{0}, we know

{
/D� = 0, in D+

δ0
,

B� = 0, on Lδ0 \ {0}.

Weextend� a harmonic spinor� on Dδ0\{0}with bounded energy, i.e., ||�||L4(Dδ0 ) <

∞. Since the local singularity of a harmonic spinor with finite energy is removable,
we have � is smooth in Dδ0 . It follows that � is smooth in D+

δ0
∪ Lδ0 . Therefore we

obtain that

lim
δ→0

lim
n→∞

(
1

4

∫

S+
δ

〈
∂�n

∂ν
, (x + x̄) · �n

〉
dσ + 1

4

∫

S+
δ

〈
(x + x̄) · �n,

∂�n

∂ν

〉
dσ

)
= 0.

Putting all together, we obtain that

1

2π
m2(p) = (1 + α)m(p).

It follows that m(p) = 2π(1 + α). Thus we finish the proof of Theorem 1.6. ��
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9 Energy quantization for the global super-Liouville boundary
problem

In this section, we will show the quantization of energy for a sequence of blowing-
up solutions to the global super-Liouville boundary problem on a singular Riemann
surface. Let (M,A, g) be a compact Riemann surface with conical singularities rep-
resented by the divisorA = �m

j=1α j q j , α j > 0 and with a spin structure. We assume
that ∂M is not empty and (M, g) has conical singular points q1, q2, . . . , qm such that
q1, q2, . . . , ql are in Mo for 1 ≤ l < m and ql+1, ql+2, . . . , qm are on ∂M . Writing
g = e2φg0, where g0 is a smooth metric on M , we can deduce from the results for the
local super-Liouville equations:

Proof of Theorem 1.1: Since g = e2φg0 with g0 being smooth, then by the well known
properties of φ (see e.g. [36] or [5], p. 5639), we know that (un, ψn) satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�g0 (un + φ) = 2e2(un+φ) − eun+φ
〈
e

φ
2 ψn, e

φ
2 ψn

〉

g0
− Kg0 − ∑l

j=1 2πα j δq j in Mo,

/Dg0 (e
φ
2 ψn) = −eun+φ(e

φ
2 ψn) in Mo,

∂(un+φ)
∂n = ceun+φ − hg0 + ∑m

j=l+1 πα j δq j , on ∂M,

B±(e
φ
2 ψn) = 0, on ∂M,

with the energy conditions:

∫

M
e2(un+φ)dg0 + |e φ

2 ψn|4g0dvg0 +
∫

∂M
eun+φdσg0 < C .

If we define the blow-up set of un + φ as

�′
1 = {x ∈ M, there is a sequence yn → x such that (un + φ)(yn) → +∞} ,

then by Remark 3.4 and Remark 3.3 in [27], we have�1 = �′
1. By the blow-up results

of the local system, it follows that one of the following alternatives holds:

(i) un is bounded in L∞(M).

(ii) un → −∞ uniformly on M .
(iii) �1 is finite, nonempty and

un → −∞ uniformly on compact subsets of M\�1.

Furthermore,

∫

M
(2e2(un+φ)−eun+φ |e φ

2 ψn|2g0)ϕdvg0 +
∫

∂M
ceun+φϕdσg0 →

∑

pi∈�1

m(pi )ϕ(pi )

for any smooth function ϕ on M .

Next let p = q
q−1 > 2. Notice that

123



966 J. Jost et al.

||∇(un + φ)||Lq (M,g0)

≤ sup

{
|
∫

M
∇(un + φ)∇ϕdvg0 ||ϕ ∈ W 1,p(M, g0),

∫

M
ϕdvg0 = 0, ||ϕ||W 1,p(M,g0) = 1

}
.

Due to ||ϕ||L∞(M,g0)≤C for any ϕ ∈ W 1,p(M, g0) with
∫
M ϕdvg0 = 0 and

||ϕ||W 1,p(M,g0) = 1 by the Sobolev embedding theorem, we get that

∣∣∣∣
∫

M
∇(un + φ)∇ϕdvg0

∣∣∣∣

=
∣∣∣∣−

∫

M
�g0(un + φ)ϕdvg0 +

∫

∂M

∂(un + φ)

∂n
ϕdσg0

∣∣∣∣

≤
∫

M
(2e2(un+φ) + eun+φ |e φ

2 ψn|2g0 + |Kg0 |)|ϕ|dg0 +
∫

∂M
(ceun+φ + |hg0 |)|ϕ|dσg0

+
l∑

j=1

∣∣∣∣
∫

M
2πα jδq j ϕdvg0

∣∣∣∣ +
m∑

j=1+1

∣∣∣∣
∫

∂M
πα jδq j ϕdσg0

∣∣∣∣

≤ C .

This means that un +φ − 1
|M|

∫
M (un +φ)dvg0 is uniformly bounded inW 1,q(M, g0).

We define the Green function G by

⎧
⎨

⎩

−�g0G = ∑
p∈Mo∩�1

m(p)δp − Kg0 − ∑l
j=1 2πα jδq j ,

∂G
∂n = ∑

p∈∂M∩�1
m(p)δp − hg0 + ∑m

j=l+1 πα jδq j ,∫
M Gdvg0 = 0.

It is clear that G ∈ W 1,q(M, g0) ∩ C2
loc(M\�1) with

∫
M Gdg0 = 0 for 1 < q < 2.

Now we take R > 0 small such that, at each blow-up point p ∈ �1, the geodesic
ball of M , BM

R (p), satisfies BM
R (p) ∩ (�1 ∪ {q1, q2, . . . , qm}) = {p}. Then we also

have

G(x) =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
2π m(p) log d(x, p) + g(x), if p ∈ Mo ∩ (�1 \ {q1, q2, . . . , qm}),

− ( 1
2π m(p) − α j

)
log d(x, p) + g(x), if p = q j ∈ Mo ∩ �1 ∩ {q1, q2, . . . , ql },

− ( 1
π
m(p)

)
log d(x, p) + g(x), if p ∈ ∂M ∩ (�1 \ {ql+1, ql+2, . . . , qm}),

− ( 1
π
m(p) + a j

)
log d(x, p) + g(x), if p = q j ∈ ∂M ∩ �1 ∩ {ql+1, ql+2, . . . , qm},

for x ∈ BM
R (p)\{p} with g ∈ C2(BM

R (p)), where d(x, p) denotes the Riemannian
distance between x and p with respect to g0 and

m(p) = lim
R→0

lim
n→∞

{∫

BM
R (p)

(2e2(un+φ) − eun+φ |e φ
2 ψn|2g0 − Kg0)dvg0

+
∫

∂M∩BM
R (p)

(ceun+ϕ − hg0)dσg0

}
.
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On the other hand, since for any ϕ ∈ C∞(M)

∫

M
∇(un + φ − G)∇ϕdvg0

= −
∫

M
�g0(un + φ − G)ϕdvg0 +

∫

∂M

∂(un + φ − G)

∂n
ϕdσg0

=
∫

M
(2e2(un+φ) − eun+φ |e φ

2 ψn|2g0 −
∑

p∈Mo∩�1

m(p)δp)ϕdvg0

+
∫

∂M

⎛

⎝ceun+φ −
∑

p∈∂M∩�1

m(p)δp

⎞

⎠ ϕdσg0

→ 0, as n → ∞,

by using the fact that un + φ − 1
|M|

∫
M (un + φ)dg0 is uniformly bounded in

W 1,q(M, g0), we get

un + φ − 1

|M |
∫

M
(un + φ)dg0 → G

strongly in C2
loc(M\�1) and weakly in W 1,q(M, g0). Consequently we have

max
Mo∩∂BM

R (p)
un − min

Mo∩∂BM
R (p)

un ≤ C .

Therefore we get the blow-up value m(p) = 4π when p ∈ Mo ∩ (�1 \
{q1, q2, . . . , qm}), m(p) = 4π(1 + α j ) when p = q j ∈ Mo ∩ �1 ∩ {q1, q2, . . . , ql},
m(p) = 2π when p ∈ ∂M ∩ (�1 \ {ql+1, ql+2, . . . , qm}), and m(p) = 2π(1 + α j )

when p = q j ∈ ∂M ∩ �1 ∩ {ql+1, ql+2, . . . , qm}. By using that

∫

M
2e2un − eun |ψn|2gdvg +

∫

∂M
ceundσg =

∫

M
2e2(un+φ) − eun+φ |e φ

2 ψn|2g0dvg0

+
∫

∂M
ceundσg0 ,

we get the conclusion of the Theorem. ��
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