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Abstract
In the present paper, we prove the existence of solutions (λ1, λ2, u, v) ∈ R

2 ×
H1(R3,R2) to systems of coupled Schrödinger equations

⎧
⎪⎨

⎪⎩

−�u + λ1u = μ1u3 + βuv2 in R
3

−�v + λ2v = μ2v
3 + βu2v in R

3

u, v > 0 in R
3

satisfying the normalization constraint
∫

R3 u2 = a2 and
∫

R3 v2 = b2, which appear
in binary mixtures of Bose–Einstein condensates or in nonlinear optics. The param-
eters μ1, μ2, β > 0 are prescribed as are the masses a, b > 0. The system has been
considered mostly in the case of fixed frequencies λ1, λ2. When the masses are pre-
scribed, the standard approach to this problem is variational with λ1, λ2 appearing as
Lagrange multipliers. Here we present a new approach based on the fixed point index
in cones, bifurcation theory, and the continuation method. We obtain the existence
of normalized solutions for any given a, b > 0 for β in a large range. We also have
a result about the nonexistence of positive solutions which shows that our existence
theorem is almost optimal. Especially, if μ1 = μ2 we prove that normalized solutions
exist for all β > 0 and all a, b > 0.
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1 Introduction

The time-dependent system of coupled nonlinear Schrödinger equations
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1714 T. Bartsch et al.

⎧
⎪⎪⎨

⎪⎪⎩

−i ∂
∂t �1 = ��1 + μ1|�1|2�1 + β|�2|2�1,

−i ∂
∂t �2 = ��2 + μ2|�2|2�1 + β|�1|2�2,

� j = � j (x, t) ∈ C, j = 1, 2, N ≤ 3,

(x, t) ∈ R
N × R, (1.1)

is used as model for various physical phenomena, for instance binary mixtures of
Bose–Einstein condensates, or the propagation of mutually incoherent wave packets
in nonlinear optics; see e.g. [1,18,19,33]. In the models, i is the imaginary unit, � j is
the wave function of the j-th component, and the real numbers μ j and β represent the
intra-spaces and inter-species scattering length, describing respectively the interaction
between particles of the same component or of different components. In particular,
the positive sign of μ j (and of β) stays for attractive interaction, while the negative
sign stays for repulsive interaction. In present paper, we consider the case of positive
parameters μ1, μ2, β > 0, i.e. the self-focusing and attractive case. An important,
and of course well known, feature of (1.1) is conservation of masses: the L2-norms
|�1(·, t)|2, |�2(·, t)|2 of solutions are independent of t ∈ R. These norms have a
clear physical meaning. In the aforementioned contexts, they represent the number of
particles of each component in Bose–Einstein condensates, or the power supply in the
nonlinear optics framework.

The ansatz �1(x, t) = eiλ1t u(x) and �2(x, t) = eiλ2tv(x) for solitary wave solu-
tions leads to the elliptic system:

{
−�u + λ1u = μ1u3 + βuv2,

−�v + λ2v = μ2v
3 + βvu2,

in R
N . (1.2)

This system has been investigated by many authors since about 2005, mainly in the
fixed frequency case where λ1, λ2 > 0 are prescribed; see e.g. [4,11,12,14,24–26,29–
32,34] and the references therein.

Much less is known when the L2-norms |u|2, |v|2 are prescribed, in spite of the
physical relevance of normalized solutions. A natural approach to finding solutions of
(1.2) satisfying the normalization constraints

∫

RN
u2 = a2 and

∫

RN
v2 = b2 (1.3)

consists in finding critical points (u, v) ∈ H1(RN ,R2) of the energy

J (u, v) = 1

2

∫

RN

(
|∇u|2 + |∇v|2

)
− 1

4

∫

RN

(
μ1u

4 + μ2v
4 + 2βu2v2

)

under the constraints (1.3). Then the parameters λ1, λ2 appear as Lagrangemultipliers.
All papers on normalized solutions of (1.2) are based on this approach; see [7–10,21]
and the references therein. Only the papers [8,21] deal with (1.2)–(1.3) with β > 0.
The existence of normalized solutions for systems of nonlinear Schrödinger equations
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Normalized solutions for a coupled Schrödinger system 1715

with trapping potential has been proved in [27], and on bounded domains in [28], also
by variational methods. In [27,28] the masses a2, b2 have to be small.

In the present paper we propose a different approach based on bifurcation theory
applied to (1.2) with λ2 = 1, taking λ1 as parameter. There are two families of
semitrivial solutions of (1.2) where either u = 0 or v = 0. The bifurcation of global
continua of positive solutions of (1.2) from these semitrivial solutions has been proved
in [12]. We shall investigate the global behavior of these continua, and the L2-norms
of the solutions along them, in order to obtain the existence of solutions of (1.2)–(1.3).
A major tool will be the fixed point index in cones.

In this paper we deal with the case N = 3 when the growth of the nonlinearity
is mass-supercritical. In dimension N = 1 the growth of the nonlinearity is mass-
subcritical so that J is bounded from below on the constraint and normalized solutions
can be obtained by minimization. In dimension N = 2 the growth of the nonlinearity
in (1.2) is mass-critical making the existence of normalized solutions a very subtle
issue, heavily depending on the prescribed masses a2, b2, as can already be seen in
the scalar case.

The paper is organized as follows. In the next section we state and discuss our
results, in particular we compare them with existing results on normalized solutions.
We also state and discuss some new non-existence and uniqueness theorems for (1.2)
that will enter in the proofs of our results on normalized solutions. Then in Sect. 3
we collect and prove a few basic facts about (1.2). Section 4 contains the main idea
of our approach. There we reduce the proofs of our results on normalized solutions to
the problem of controlling the L2-norms along continua of solutions of (1.2), and we
describe the bifurcating continua. An important part of our proof is to understand the
behavior of the L2-norms as λ → 0 or λ → ∞. We investigate this in Sect. 5 where
we also prove the non-existence and uniqueness theorems for (1.2). The main results
about normalized solutions will be proved in Sect. 6.

2 Statement of results

Weare concernedwith the existence of real numbersλ1, λ2 ∈ R and of radial functions
u, v ∈ H1

rad(R
3) that solve

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�u + λ1u = μ1u3 + βuv2, in R
3,

−�v + λ2v = μ2v
3 + βu2v, in R

3,

u, v > 0, in R
3,

|u|2 = a and |v|2 = b,

(2.1)

where μ1, μ2, β, a, b > 0 are prescribed positive real numbers and | · |2 denotes the
L2-norm. In order to state our results we define

τ0 := inf
φ∈D1,2

0 (RN )\{0}

∫
R3 |∇φ|2dx
∫

R3 U 2φ2dx
, (2.2)

123



1716 T. Bartsch et al.

where U is the unique positive radial solution to

− �u + u = u3 in R
N ; u(x) → 0 as |x | → ∞; (2.3)

cf. [23]. We shall see that τ0 ∈ (0, 1).

Theorem 2.1 Let μ1, μ2 > 0. Then we have the following conclusions.

(a) If β ∈ (0, τ0 min{μ1, μ2}] ∪ (τ0 max{μ1, μ2},+∞) then for any a, b > 0, the
problem (2.1) has a solution (λ1, λ2, u, v) with λ1 > 0, λ2 > 0 and u, v ∈
H1
rad(R

3).
(b) If β ∈ (τ0 min{μ1, μ2}, τ0 max{μ1, μ2}] then there exists δ > 0 such that for any

a, b > 0 satisfying

{
a
b ≤ δ if μ2 < μ1;
a
b ≥ 1

δ
if μ2 > μ1,

the problem (2.1) has a solution (λ1, λ2, u, v) with λ1 > 0, λ2 > 0 and u, v ∈
H1
rad(R

3). If in addition β ∈ (τ0 min{μ1, μ2},min{μ1, μ2}) then

δ ≥
√

β − min{μ1, μ2}
β − max{μ1, μ2} .

Of course it is natural to ask whether (2.1) has a solution without any conditions
on μ1, μ2, β, a, b. This is not true however, as the next result shows.

Proposition 2.2 If μ2 ≤ β ≤ τ0μ1, then there exists q > 0 such that (2.1) has no
solution for a

b > q. If μ1 ≤ β ≤ τ0μ2, then there exists q̃ > 0 such that (2.1) has no
solution for a

b < q̃ .

Theorem 2.1 and Proposition 2.2 will be proved in Sect. 6.

Remark 2.3 As mentioned in the introduction, only the papers [8,21] deal with (1.2)–
(1.3) in the case β > 0. Theorem 2.1 significantly improves and complements the
results of [8]. There the authors obtain a solution (λ1, λ2, u, v) of (2.1) as in Theo-
rem 2.1 for 0 < β < β1 and for β > β2 where β1, β2 > 0 are defined implicitely
by

max

{
1

a2μ2
1

,
1

b2μ2
2

}

= 1

a2(μ1 + β1)2
+ 1

b2(μ2 + β1)2
.

and

(a2 + b2)3

(μ1a4 + μ2b4 + 2β2a2b2)2
= min

{
1

a2μ2
1

,
1

b2μ2
2

}

.
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Normalized solutions for a coupled Schrödinger system 1717

Clearly the bounds β1, β2 depend on the masses a, b > 0 and

β1 → 0, β2 → ∞ as
a

b
→ 0 or

a

b
→ ∞.

In particular there is no value of β so that the results from [8] yield a solution for all
masses.

In [21] the authors consider more general (but still homogeneous) nonlinearities
and interaction terms. Specialized to (1.2)–(1.3) their results recover those of [8]. Our
new approach via bifurcation theory and continuaton can also be applied to the systems
considered in [21] and to improve the results in that paper.

We now add a few results on (1.2) which enter in the proofs of Theorem 2.1 and
which have some interest in itself. Below we assume λ1, λ2 > 0. This is no restriction
because we shall prove that positive solutions of (1.2) with μ1, μ2, β > 0 can only
exist if λ1, λ2 > 0; see Lemma 3.3.

Theorem 2.4 (a) For β ≥ μ1 there exists η1(β) > 0 such that (1.2) has no positive
solution if λ1

λ2
> η1(β).

(b) For β ≥ μ2 there exists η2(β) > 0 such that (1.2) has no positive solution if
λ1
λ2

< η2(β).

The next theorem makes some progress towards uniqueness of positive solutions
of (1.2).

Theorem 2.5 (a) Problem (1.2) with N = 3 has at most one positive solution for
λ1
λ2

> 0 small or for λ1
λ2

large.

(b) If β ≤ τ0μ2 then (1.2) with N = 3 has a unique positive solution for λ1
λ2

> 0

small. If β ≤ τ0μ1 then (1.2) with N = 3 has a unique positive solution for λ1
λ2

large.

Theorems 2.4 and 2.5 will be proved in Sect. 5.

Remark 2.6 It is known and easy to see (cf. [11,29]) that the problem

⎧
⎪⎨

⎪⎩

−�u + u = μ1u3 + βuv2, in R
3,

−�v + v = μ2v
3 + βu2v, in R

3,

u, v > 0, in R
3.

(2.4)

has no solution in the regime β ∈ [min{μ1, μ2},max{μ1, μ2}], if μ1 	= μ2. On the
other hand, for β ∈ (0,min{μ1, μ2})∪ (max{μ1, μ2},+∞) it is also easy to see that

uβ(x) =
√

β − μ2

β2 − μ1μ2
U (x), vβ(x) =

√
β − μ1

β2 − μ1μ2
U (x)

solve (2.4). The solution (uβ, vβ) is nondegenerate in the space H1
rad(R

3,R2); see
[17, Lemma 2.2]. Sirakov [29, Remark 2] conjectured that, up to translations, (uβ, vβ)
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1718 T. Bartsch et al.

is the unique positive solution of (2.4). Wei and Yao [35, Theorem 4.1, Theorem 4.2]
proved this conjecture for β > max{μ1, μ2} and for 0 < β < β0 close to 0. Chen and
Zou [14, Theorem 1.1] proved the conjecture in case β ′

0 < β < min{μ1, μ2} close to
min{μ1, μ2}. The remaining range β ∈ [β0, β

′
0] is open up to now.

3 Some preliminaries

In this section we collect results that hold for more general N , not only for N = 3.
We write |u|p for the L p-norm. Let us first recall two results from [9].

Lemma 3.1 Let (u, v) be a solution to

⎧
⎪⎨

⎪⎩

−�u + λ1u = μ1u3 + βuv2 in RN ,

−�v + λ2v = μ2v
3 + βu2v in RN ,

u ≥ 0, v ≥ 0 in RN

(3.1)

with N ≤ 3. If λ1 > 0 then there exists α, γ > 0 such that

u(x) ≤ αe−
√

1+γ |x |2 for every x ∈ R
N .

Although only the case N = 3 has been considered in [9, Lemma 3.11] the proof
works verbatim for N ≤ 3. The second result [9, Lemma 3.12] is a Liouville-type
theorem.

Lemma 3.2 If 0 ≤ u ∈ H1(RN ) satisfies

−�u + c(x)u ≥ 0 in R
N , N ≤ 3,

with 0 ≤ c(x) ≤ Ce−C|x | for some C > 0, then u ≡ 0.

Proof The proof in [9, Lemma 3.12] for N = 3 can be modified to cover N ≤ 2 as
follows. Suppose by contradiction that u 	≡ 0, hence u > 0 by the strong maximum
principle. Setting v(x) := |x |−α for some 0 < α ≤ 1

2 there holds

−�v + c(x)v = α(−α + N − 2)|x |−α−2 + c(x)v

≤ α(−α + N − 2)|x |−α−2 + Ce−C|x ||x |−α < 0

for every |x | > r0 with r0 large enough. Since u > 0 in RN , there exists C0 > 0 such
that u(x) ≥ C0r

−α
0 for |x | = r0. Now the comparison principle implies u > C0|x |−α

in RN\Br0(0), hence |u|2 = ∞, contradicting u ∈ H1(RN ). �
Lemma 3.3 Assume that u, v ∈ H1(R3) are positive and solve (1.2) with μ1, μ2 > 0
and β 	= 0. If in addition

∫

RN

(
μ1u

4 + μ2v
4 + 2βu2v2

)
> 0
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Normalized solutions for a coupled Schrödinger system 1719

then λ1, λ2 > 0. Moreover, u, v are radial functions (up to translation) and strictly
radially decreasing if β > 0.

Proof We first observe that

|∇u|22 + λ1|u|22 = μ1|u|44 + β|uv|22, |∇v|22 + λ2|v|22 = μ2|v|44 + β|uv|22,

hence

|∇u|22 + |∇v|22 = −(λ1|u|22 + λ2|v|22) + (μ1|u|44 + μ2|v|44 + 2β|uv|22
)
.

Now the Pohozaev identity

(N − 2)
(|∇u|22 + |∇v|22

)

= −N
(
λ1|u|22 + λ2|v|22

)+ N

2

(
μ1|u|44 + μ2|v|44 + 2β|uv|22

)

implies

(
λ1|u|22 + λ2|v|22

) = 4 − N

4

(
μ1|u|44 + μ2|v|44 + 2β|uv|22

)
> 0.

Therefore without loss of generality we may assume λ1 > 0. Then u(x) decays
exponentially at infinity according to Lemma 3.1. If λ2 ≤ 0 we distinguish by the sign
of β. In the case β < 0, we have

−�v + (−βu2)v = μ2v
3 − λ2v ≥ 0.

Then 0 ≤ c(x) := −βu2 ≤ Ce−C|x | and −�v + c(x)v ≥ 0, hence v ≡ 0 by Lemma
3.2. In the case β ≥ 0, we have

−�v ≥ μ2v
3 in RN and v ≥ 0.

Now the classical Liouville-type theorem from [20] yields v ≡ 0, a contradiction. The
last statement is due to [13, Theorem 1]. �

Let S be the sharp constant for the embedding H1(RN ) ↪→ L4(RN ), i.e.

S|u|24 ≤ (|∇u|22 + |u|22
)

for all u ∈ H1(RN ), (3.2)

and

S =
(
|∇U |22 + |U |22

) 1
2 = |U |24 (3.3)

where U is the positive radial solution of (2.3). As in [12, (1.6)] we introduce the
function τ : R+ → R

+ defined by

τ(s) := inf
φ∈H1(RN )\{0}

∫

RN

(|∇φ|2 + sφ2
)

∫

RN U 2φ2
. (3.4)
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1720 T. Bartsch et al.

Lemma 3.4 (a) The infimum τ0 in (2.2) and the infimum in (3.4) are achieved by unique
positive radial functions (and their scalar multiples).

(b) τ ∈ C0(R+,R+) is strictly increasing and satisfies: τ(1) = 1, τ(s) → τ0 as
s → 0, τ(s) → ∞ as s → ∞.

Proof (a) Follows in a standard way from the compactness of the embedding
D1,2

0,rad ↪→ L2(U 2dx) and symmetrization. The positive radial minimizer φs ,

s ≥ 0, is the first eigenfunction of the eigenvalue problem −�φ + sφ = λU 2φ.
We choose φs to be normalized in L2(U 2dx).

(b) We have for s1 > s2 > 0:

τ(s2) < |∇φs1 |22 + s2|φs1 |22 < |∇φs1 |22 + s1|φs1 |22 = τ(s1),

hence τ(s) is strictly increasing.
In order to prove the continuity consider a sequence sn → s > 0. Clearly the

minimizers φsn are bounded, hence up to a subsequence φsn⇀φ in H1(RN ), and
φsn → φ in L2(U 2dx). This implies:

τ(s) ≤ |∇φ|22 + s|φ|22 ≤ lim inf
n→∞

(
|∇φsn |22 + s|φsn |22

)
= lim inf

n→∞ τ(sn)

≤ lim sup
n→∞

τ(sn) ≤ lim sup
n→∞

|∇φs |22 + sn|φs |22 = |∇φs |22 + s|φs |22 = τ(s)

Thus, τ(sn) → τ(s) and φ = φs , so τ is continuous. Moreover, for s > 0 we have
φsn → φs in H1(RN ) because

|∇φsn |22 + s|φsn |22 = τ(sn) + o(1) → τ(s) = |∇φs |22 + s|φs |22.

The identity τ(1) = 1 is obvious because by definition U > 0 is an eigenfunction
of −�φ + φ = λU 2φ associated to the eigenvalue λ = 1.

Next we observe that
∫

RN U 2φ2
s dx = 1 and U ∈ L∞(RN ) imply |φs |2 ≥ κ > 0

uniformly in s, hence

τ(s) = |∇φs |22 + s|φs |22 ≥ sκ2 → ∞ as s → ∞.

In order to prove τ(s) → τ0 as s → 0 assume to the contrary that there exists δ > 0
so that

τ(s) ≥ τ0 + δ, for all s > 0.

We choose a smooth cut-off function χ : R → [0, 1] that is decreasing and satisfies

χ(r) =
{
1 if r ≤ 1;
0 if r ≥ 2.
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Normalized solutions for a coupled Schrödinger system 1721

Setting χR : RN → R, χR(x) = χ(|x |/R) we have for R > 0 large that

|∇(φ0χR)|22∫

RN U 2(φ0χR)2dx
< τ0 + 1

2
δ.

This implies for s close to 0 the contradiction:

τ(s) ≤ |∇(φ0χR)|22 + s|φ0χR |22∫

RN U 2(ψ0χR)2dx
< τ0 + δ

�

4 Global branches of solutions

We consider a special case of (1.2) , namely

{
−�u + λu = μ1u3 + βv2u in R

3,

−�v + v = μ2v
3 + βu2v in R

3.
(4.1)

A straightforward computation shows the relation to (2.1).

Lemma 4.1 If (uλ, vλ) is a solution of (4.1) with

|uλ|2
a

= |vλ|2
b

=: α (4.2)

then

u(x) = α2uλ(α
2x) and v(x) = α2vλ(α

2x)

solve (2.1) with λ1 = λα4 and λ2 = α4.

Remark 4.2 Clearly the converse holds in Lemma 4.1. If (u, v) solves (2.1) then

uλ(x) = √λ2u(
√

λ2x) and vλ(x) = √λ2v(
√

λ2x)

solve (4.1) with λ = λ1
λ2

and such that (4.2) holds.

Recall the solution U of (2.3). Setting

Uλ,μ(x) =
√

λ√
μ
U (

√
λx)

one easily checks that (Uλ,μ1 , 0) and (0,U1,μ2) solve (4.1). These are called semitrivial
solutions in the literature. We fix μ1, μ2 > 0 and consider λ and β as parameters in
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1722 T. Bartsch et al.

(4.1). Then we have two families of semitrivial solutions of (4.1):

T1 = {(λ, β,Uλ,μ1 , 0) : λ, β > 0} and T2 = {(λ, β, 0,U1,μ2) : λ, β > 0}.

Clearly we also have the family T0 := {(λ, β, 0, 0) : λ, β > 0} of trivial solutions.
Setting E = H1

rad(R
3,R2) and P = {(u, v) ∈ E : u, v ≥ 0} for the positive cone,

there holds T1, T2 ⊂ X := (R+)2 × P; here R
+ = (0,∞). Given β > 0 we write

Xβ := R
+ × {β} × P and use the notation Mβ := M ∩ Xβ for subsets M ⊂ X .

We are interested in the set

S = {(λ, β, u, v) ∈ X : (λ, β, u, v) solves (4.1), u, v > 0}

of nontrivial positive solutions. Let us introduce the function

ρ : S → R
+, (λ, β, u.v) �→ |u|2

|v|2 . (4.3)

Lemma 4.1 implies the following corollary which is the basic tool of our approach to
finding normalized solutions.

Corollary 4.3 If a
b ∈ ρ(Sβ) then (2.1) has a solution.

For the proof of Theorem 2.1 it remains to get information about the image ρ(Sβ).
We shall approach this using continuation methods and bifurcation theory. First we
investigate the solutions bifurcating from T1 and T2. Since we are interested in global
bifurcation we reformulate (4.1). For λ, β > 0 we define a map Aλ,β : P → P by

Aλ,β(u, v) :=
(
(−� + λ)−1(μ1u

3 + βv2u), (−� + 1)−1(μ2v
3 + βu2v)

)
.

As a consequence of the compact embedding H1
rad(R

3) ↪→ L4(R3) the map

A : X → P, A(λ, β, u, v) = Aλ,β(u, v),

is completely continuous. Clearly fixed points ofAλ,β correspond to solutions of (4.1).
The set of bifurcation points can be explicitly determined. In order to describe it we
define the functions

β1(λ) = μ1τ(1/λ) and β2(λ) = μ2τ(λ) for λ > 0 (4.4)

with τ from (3.4). Using the fixed point index in the cone P, denoted by indP, the
following results have been proved in [12].

Proposition 4.4 (a) The map S → R
+ × R

+, (λ, β, u, v) �→ (λ, β) is proper, i.e.
inverse images of compact sets are compact.

(b) S ∩ T1 = {(λ, β,Uλ,μ1 , 0) : λ > 0, β = β1(λ)
} =: B1

(c) S ∩ T2 = {(λ, β, 0,U1,μ2) : λ > 0, β = β2(λ)
} =: B2
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Normalized solutions for a coupled Schrödinger system 1723

(d) For λ, β > 0 fixed we have

indP
(
Aλ,β, (Uλ,μ1 , 0)

) =
{

−1 β < β1(λ)

0 β > β1(λ)

and

indP
(
Aλ,β, (0,U1,μ2)

) =
{

−1 β < β2(λ)

0 β > β2(λ)

As a consequence of Proposition 4.4 there exist global two-dimensional continua
Si ⊂ S bifurcating from Ti so that S i ∩ Ti = Bi , i = 1, 2. Using the analyticity
of A it can be proved that S and Si are two-dimensional manifolds except for one-
dimensional subsets where secondary bifurcation takes place, but we do not need this.
The global property of Si can be formulated as in [2]. This is somewhat technical
and not needed here because we are interested in the case of prescribed β > 0. We
will only use the standard Rabinowitz alternative for one-parameter global bifurcation
(Fig. 1).

As a corollary of Lemma 3.4 we obtain the following properties of the functions βi
defined in (4.4).

Corollary 4.5 (a) The function β1 is strictly decreasing and β2 is strictly increasing in
λ ∈ R

+.

(b) β1(λ) →
{

∞ λ → 0

μ1τ0 λ → ∞

(c) β2(λ) →
{

μ2τ0 λ → 0

∞ λ → ∞
(d) There exists a unique λ∗ > 0 such that β1(λ

∗) = β2(λ
∗) =: β∗.

Now we deduce the global properties of the solutions bifurcating from Ti that we
need for β > 0 fixed. We set �i = β−1

i : (μiτ0,∞) → R
+ for i = 1, 2, define

Xβ := R
+ × {β} × P for β > 0, and write P1 : X → R

+ for the projection onto the
λ-component. The closure M of M ⊂ X has to be understood in the relative topology
of X .

Proposition 4.6 (a) There is no bifurcation from the set T0 = (R+)2 × {(0, 0)} of
trivial solutions, i.e. S ∩ T0 = ∅.

(b) If β ≤ τ0 min{μ1, μ2} then Sβ ∩ T β
i = ∅, i = 1, 2.

(c) If μ1τ0 < β ≤ μ2τ0 then there exists a connected component Sβ
1 ⊂ Sβ with

Sβ
1 ∩ T β

1 = {(�1(β), β,Uλ,μ1 , 0)}. The projection P1(Sβ
1 ) contains the interval

(0, �1(β)) or the interval (�1(β),∞). There is no bifurcation from T β
2 in Xβ .

(d) If μ2τ0 < β ≤ μ1τ0 then there exists a connected component Sβ
2 ⊂ Sβ with

Sβ
2 ∩ T β

2 = {(�2(β), β, 0,U1,μ2)}. The projection P1(Sβ
2 ) contains the interval

(0, �2(β)) or the interval (�2(β),∞). There is no bifurcation from T β
1 in Xβ .

123



1724 T. Bartsch et al.

Fig. 1 The sketches of β1(λ) and β2(λ) for the case μ2 < μ1

(e) If β > τ0 max{μ1, μ2} then there exist connected sets Sβ
i ⊂ Sβ , i = 1, 2, with

Sβ
1 ∩ T β

1 = {(�1(β), β,Uλ,μ1 , 0)} and Sβ
2 ∩ T β

2 = {(�2(β), β, 0,U1,μ2)}. If
Sβ
1 ∩ Sβ

2 	= ∅ then Sβ
1 = Sβ

2 . If this is not the case then P1(Sβ
1 ) contains the

interval (0, �1(β)) or the interval (�1(β),∞), and P1(Sβ
2 ) contains the interval

(0, �2(β)) or the interval (�2(β),∞).

Proof (a) This is clear since (0, 0) is a nondegenerate solution of (4.1) for all (λ, β) ∈
(R+)2.

(b) As a consequence of Corollary 4.5 there is no λ > 0 with β1(λ) = β or β2(λ) = β.
(c) Here Corollary 4.5 implies that there exists λ1 = �1(β) > 0 with β1(λ1) = β

but there is no λ2 > 0 with β2(λ2) = β. Therefore there exists a connected set

Sβ
1 ⊂ ((id−A)−1(0)∩Xβ

)\T1 withSβ
1 ∩T β

1 = {(�1(β), β,Uλ,μ1 , 0)} andwhich
satisfies the classical Rabinowitz alternative. It cannot return to T β

1 because there

is no second bifurcation point on T β
1 . Therefore it must be unbounded. Since there

is no bifurcation from T0 and T2 we deduce that Sβ
1 ∩ T β

i = ∅, i = 0, 2, hence

Sβ
1 ⊂ S. NowProposition 4.4 (a) implies that the onlyway forSβ

1 to be unbounded

is that P1(Sβ
1 ) contains the interval (0, �1(β)) or the interval (�1(β),∞). To be

careful, if P1(Sβ
1 ) contains the interval (0, �1(β)) then Sβ

1 is already unbounded
in the sense of the Rabinowitz alternative because we only consider the parameter
range λ ∈ R

+. It is not necessary that the (u, v)-component becomes unbounded
in Sβ

1 .
(d) The proof is analogous to the one of (c).
(e) As in the proof of (c) and (d) there exist connected sets S̃β

i ⊂ ((id−A)−1(0)∩Xβ
)\

Ti bifurcating from Ti which satisfy the Rabinowitz alternative. If the closure of
S̃β
1 intersects T β

2 then S̃β
1 contains T2 and the connected set of nontrivial solutions
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bifurcating from T2. This implies that

Sβ
1 := S̃β

1 ∩ S = S̃β
1 \ T β

2 = S̃β
2 \ T β

1 = S̃β
2 ∩ S =: Sβ

2

connects T β
1 andT β

2 . Analogously this holds if the closure of S̃β
2 intersects T β

1 .

It remains to consider the case where the closure of S̃β
i does not intersect T β

3−i for

i = 1, 2. Then Sβ
i := S̃β

i ⊂ Sβ is unbounded in the sense of (c) and (d), i.e. P1(Sβ
i )

contains the interval (0, �i (β)) or the interval (�i (β),∞), i = 1, 2. �
Remark 4.7 Using analytic bifurcation theory one can prove that the setsSβ

i are smooth
curves except for a discrete subset of singular points. One can also apply the Crandall-
Rabinowitz theorem about bifurcation from simple eigenvalues to see that Sβ

i is a
curve near the bifurcation point. These results are not needed here.

As a corollary we obtain a first major building block of the proof of Theorem 2.1.

Corollary 4.8 If β > max{μ1τ0, μ2τ0} and Sβ
1 ∩ Sβ

2 	= ∅ then problem (2.1) has a
solution for every a, b > 0.

Proof Recall the function ρ from (4.3). By definition there exist (λn, β, un, vn) ∈ Sβ
1

such that (λn, β, un, vn) → (�1(β), β,U�1(β),μ1 , 0)}, hence ρ(λn, β, un, vn) → ∞ as

n → ∞. And as a consequence of Proposition 4.6 (e) there exist (λ′
n, β, u′

n, v
′
n) ∈ Sβ

1
such that (λ′

n, β, u′
n, v

′
n) → (�2(β), β, 0,U1,μ2), hence ρ(λ′

n, β, u′
n, v

′
n) → 0 as

n → ∞. Since Sβ
1 is connected it follows that ρ is onto. Now the result follows from

Corollary 4.3. �
In addition to the global continua bifurcating from T1 and T2 there exists a third

global continuum S̃ ⊂ S. In order to see this recall that for λ = 1 and β ∈ (0, β0) close
to 0 the problem (4.1) has precisely four solutions in P: the trivial solution (0, 0), the
semitrivial solutions (U1,μ1 , 0), (0,U1,μ2), and a unique nontrivial solution (uβ, vβ)

which satisfies (uβ, vβ) → (U1,μ1 ,U1,μ2) as β → 0; see Remark 2.6. The map

(0, β0) → P, β �→ (uβ, vβ),

is smooth by the implicit function theorem applied at (U1,μ1 ,U1,μ2).

Proposition 4.9 For β ∈ (0, β0) there holds indP(A1,β , (uβ, vβ)) = 1.

Proof The solution (U1,μ1 ,U1,μ2) of (4.1) with λ = 1 and β = 0 has Morse index 2
as critical point of J , with negative eigenspace spanned by (U1,μ1 , 0), (0,U1,μ2) ∈ P.
The Poincaré-Hopf theorem in convex sets [5, Theorem 1.5] implies

indP(A1,0, (U1,μ1 ,U1,μ2) = (−1)2 = 1.

Now the proposition follows from the homotopy invariance of the fixed point index.
�
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The homotopy invariance of the fixed point index allows to continue the solutions
(uβ, vβ) to other parameter values in (R+)2. We define S̃ ⊂ S to be the connected
component of S containing the nontrivial solutions (1, β, uβ, vβ) for β > 0 small. As
a corollary of Proposition 4.9 we obtain the following.

Corollary 4.10 If β ≤ τ0 min{μ1, μ2} then there exists a connected set Sβ
0 ⊂ Sβ ∩ S̃

such that P1(Sβ
0 ) = R

+.
Proof Let O ⊂ X \ (S ∪ B1 ∪ B2) be an open neighborhood of

T0 ∪ (T1 \ B1) ∪ (T2 \ B2) ⊂ X \ (S ∪ B1 ∪ B2)

such that S∩O = ∅. For λ, β > 0 we setOλ,β := {(u, v) ∈ P : (λ, β, u, v) ∈ O}. By
definition the nontrivial fixed points of Aλ,β are contained in �λ,β := BR(0) \ Oλ,β

for R > R(λ, β) large. This a bounded and open subset of P. Proposition 4.9 and
the homotopy invariance of the fixed point index imply for β ≤ min{τ0μ1, τ0μ2} and
β ′ ∈ (0, β0):

indP(Aλ,β,�λ,β) = indP(Aλ,β ′ ,�λ,β ′) = indP(A1,β ′ ,�1,β ′) = 1

The result follows from the continuation principle. �
Observe that Sβ

0 may differ from S̃β = S̃ ∩ Xβ because the latter may not be
connected.

Wemay also use Proposition 4.9 to compute the global fixed point index of all posi-
tive solutions of (4.1), for each λ, β > 0. Observe that according to Proposition 4.4 (a)
for λ, β > 0 there exists R(λ, β) > 0 such that the positive solutions of (4.1) are
bounded by R(λ, β). Therefore the fixed point index

i∞(λ, β) = indP(Aλ,β, BR(0))

is well defined and independent of R > R(λ, β). Applying the homotopy invariance
of the fixed point index and Proposition 4.4 (a) again, we also see that i∞ := i∞(λ, β)

is independent of λ, β > 0.

Proposition 4.11 i∞ = 0

Proof We compute i∞(λ, β) for λ = 1 and β ∈ (0, β0). Then i∞ = i∞(1, β) is the
sum of the local indices at the four solutions (0, 0), (U1,μ1 , 0), (0,U1,μ2), (uβ, vβ).
From [5, Theorem 1.5] it follows that

indP
(
A1,0, (0, 0)

) = 1.

Propositions 4.4 and 4.9 imply for β ∈ (0, β0):

i∞ = indP
(
A1,β , (0, 0)

)+ indP
(
A1,β , (U1,μ1 , 0)

)+ indP
(
A1,β , (0,U1,μ1)

)

+ indP
(
A1,β , (uβ, vβ)

) = 1 − 1 − 1 + 1 = 0

�
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5 Asymptotic behavior of positive solutions for � → 0 or � → ∞
In this section we investigate the function

ρ : S → R
+, ρ(λ, β, u, v) = |u|2

|v|2 ,

from (4.3) as λ → 0 or λ → ∞.

Lemma 5.1 Let (un, vn), n ∈ N, be positive radial solutions to equation (4.1) with
λ = λn → 0. Then the following conclusions hold up to a subsequence.

(a) un(x) + vn(x) → 0 as |x | → ∞ uniformly in n.
(b) |un|∞ → 0, |vn|∞ ≤ C, and (un, vn) → (0,U1,μ2) in C2loc(RN ) × C2loc(RN ).
(c) vn → U1,μ2 in H1(RN )

(d) |∇un|2 = O(1)|un|2; if un is unbounded in H1(RN ), then ρ(λn, β, un, vn) → ∞.

Proof (a) The proof in [14, Step 2 in the proof of Theorem 1.1] is valid here.
(b) A standard blow up argument as in [17, Lemma 2.4] shows that |un|∞ + |vn|∞ is

bounded. If α := lim infn→∞ un(0) > 0 we consider

−�
un

un(0)
+ λn

un
un(0)

= μ1un(0)
2
(

un
un(0)

)3

+ βv2n
un

un(0)
.

Then un
un(0)

→ ũ as n → ∞ along a subsequence, which is a nonnegative radial
function satisfying

−�ũ ≥ μ1ε
2
0 ũ

3.

Now [20] implies ũ ≡ 0, contradicting ũ(0) = 1. Therefore |un|∞ → 0, hence
un → 0 inC2

loc(R
N ) along a subsequence. Since vn = (−�+1)−1(μ2v

3
n+βu2nvn)

and |un|∞ → 0, we see that |vn|∞ is bounded away from 0. Then ṽ := limn→∞ vn
is a positive radial solution to

−�v + v = μ2v
3 , v(x) → 0 as |x | → ∞,

which implies ṽ = U1,μ2 and vn → U1,μ2 in C
2
loc(R

N ).
(c) It is standard to prove that vn(x) → 0 exponentially and uniformly in n, so there

exist C, R > 0, independent of n such that

vn(x) ≤ Ce− 1
2 |x | for all |x | > R, all n ∈ N.

As in (b), or [14, Step 3 in the proof of Theorem 1.1], one sees that vn is bounded
in H1(RN ). Observe that this argument is not valid for un because λn → 0. Then
we have, up to a subsequence:

vn⇀v in H1(RN ), vn → v in L4(RN ), and vn → v a.e. in RN ,
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which implies v = U1,μ2 . Now we recall that |un|∞ → 0, hence β|unvn|22 → 0.
Using

|∇vn|22 + |vn|22 = μ2|vn|44 + β|unvn|22
and vn → U1,μ2 in L4(RN ), we deduce

|∇vn|22 + |vn|22 → μ2|U1,μ2 |44 = |∇U1,μ2 |22 + |U1,μ2 |22.

This yields vn → U1,μ2 in H1(RN ).
(d) Setting |∇un|22 = σn|un|22 we have

(σn + λn)|un|22 = μ1|un|44 + β|unvn|22.

Now (a) and (b) imply μ1|un|44 + β|unvn|22 = O(1)|un|22, hence |∇un|22 =
O(1)|un|22. Thus if un is unbounded in H1(RN ) then un must be unbounded in
L2(RN ) and ρ(λn, β, un, vn) = |un |2|vn |2 → ∞.

Lemma 5.2 Let (un, vn), n ∈ N, be positive radial solutions to equation (4.1) with
λ = λn → ∞. Then ūn(x) := 1√

λn
vn
(
x/

√
λn
)
and v̄n(x) := 1√

λn
un
(
x/

√
λn
)
satisfy

(along a subsequence):

(a) ūn(x) + v̄n(x) → 0 as |x | → ∞ uniformly in n.
(b) |ūn|∞ → 0, |v̄n|∞ ≤ C, and (ūn, v̄n) → (0,U1,μ1) in C2loc(RN ) × C2loc(RN ).
(c) v̄n → U1,μ1 in H1(RN )

(d) |∇ūn|2 = O(1)|ūn|2; if ūn is unbounded in H1(RN ) then ρ(λn, β, un, vn) → ∞.

Proof A direct computation shows that (ūn, v̄n) solve

{
−�u + 1

λn
u = μ2u3 + βuv2 in R

N ,

−�v + v = μ1v
3 + βvu2 in R

N .

The result follows from Lemma 5.1 and

ρ(λn, β, un, vn) = |un|2
|vn|2 = |v̄n|2

|ūn|2 → 0.

�
Now we prove Theorems 2.4 and 2.5. Observe that (u, v) is a positive solution to

(1.2) if and only if

ū(x) := 1√
λ2

u
(
x/
√

λ2

)
, v̄(x) := 1√

λ2
v
(
x/
√

λ2

)
,

solve (1.2) with λ1 = λ and λ2 = 1, i.e. (4.1). Therefore ist is sufficient to consider
this case.
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Proof of Theorem 2.4 (a) Arguing by contradiction suppose that for fixedβ ≥ μ2 there
exist a sequence λn → 0 and positive solutions (un, vn) to (4.1) with λ = λn . Then
we have

〈∇un,∇vn〉 + λn

∫

RN
unvn = μ1

∫

RN
u3nvn + β

∫

RN
unv

3
n

and

〈∇un,∇vn〉 +
∫

RN
unvn = μ2

∫

RN
v3nun + β

∫

RN
vnu

3
n .

These identities yield

(1 − λn)〈∇un,∇vn〉 =
∫

RN
[(β − λnμ2)v

3
nun + (μ1 − λnβ)vnu

3
n],

which implies 〈∇un,∇vn〉 > 0 for n large enough. On the other hand, we also
have

(

1 − β

μ2

)

〈∇un,∇vn〉 + (λn − β

μ2
)

∫

RN
unvn =

∫

RN
(μ1 − β2

μ2
)vnu

3
n .

Now |un|∞ → 0 by Lemma 5.1, so that

∫

RN

(

μ1 − β2

μ2

)

vnu
3
n = o(1)

∫

RN
unvn .

In the case β = μ2, we deduce

β

μ2

∫

RN
unvn = o(1)

∫

RN
unvn,

a contradiction. And if β > μ2 we obtain

(

1 − β

μ2

)

〈∇un,∇vn〉 = (
β

μ2
+ o(1))

∫

RN
unvn > 0,

which implies 〈∇un,∇vn〉 < 0 for n large enough, a contradiction again.
(b) This follows from (a) using the transformation from the proof of Lemma 5.2. �

Now we recall [17, Lemma 2.3].

Lemma 5.3 The linearized problem

⎧
⎪⎨

⎪⎩

�φ − λφ + 3μ1u2φ + βv2ϕ + 2βuvψ = 0, x ∈ R
N ,

�ψ − ψ + 3μ2v
2ψ + βu2ψ + 2βuvφ = 0, x ∈ R

N ,

ϕ = ϕ(r), φ = φ(r),
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has exactly a one-dimensional set of solutions for λ > 0 and β = β1(λ), (u, v) =
(Uλ,μ1 , 0) or β = β2(λ), (u, v) = (0,U1,μ2).

We have a similar result for λ = 0.

Lemma 5.4 The linearized problem

⎧
⎪⎨

⎪⎩

−�φ = βU 2
1,μ2

φ, x ∈ R
N ,

�ψ − ψ + 3μ2U 2
1,μ2

ψ = 0, x ∈ R
N ,

φ = φ(r), ψ = ψ(r).

has only the zero solution if 0 < β 	= τ0μ2. If β = τ0μ2 then the set of solutions has
dimension one.

Proof It is well known that the eigenvalue problem

−�φ + φ = νμ2ω
2
1,μ2

φ = νω2
1,1φ

has eigenvalues ν1 = 1, ν2 = · · · = νN+1 = 3,νk > 3 for k ≥ N + 2, and that the
eigenfunctions corresponding to ν = 3 are not radial. It follows that ψ = 0. If φ 	≡ 0
then φ > 0 by the maximum principle, and φ is a minimizer of β2(0) = μ2τ0. The
result follows from Lemma 3.4. �

Now we return to study the asymptotic behavior of the positive solution for λ small
or large and improve on Lemmas 5.1 and 5.2. And then give the proof of Theorem 2.5
to end this section.

Lemma 5.5 (a) Let (un, vn), n ∈ N, be positive radial solutions of equation (4.1)with
λ = λn → 0. Then

(
1√
λn

un
(
x/
√

λn

)
, vn(x)

)

→ (
U1,μ1(x),U1,μ2(x)

)
in C2loc(RN ) × C2loc(RN ).

(b) Let (un, vn), n ∈ N, be positive radial solutions of equation (4.1) with λ = λn →
∞. Then

(
1√
λn

un
(
x/
√

λn

)
, vn(x)

)

→ (
U1,μ1(x),U1,μ2(x)

)
in C2loc(RN ) × C2loc(RN ).

Proof (a) We first consider the case λn → 0.
Step 1: lim infn→∞ 1√

λn
un(0) > 0.

We argue by contradiction and assume that un(0) = o(1)
√

λn , after passing to a
subsequence. The function

ūn(x) := 1

un(0)
un
(
x/
√

λn

)
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solves

− �ūn(x) + ūn(x) = un(0)2

λn
μ1ūn(x)

3 + βūn(x)v̄n(x)
2 (5.1)

with

v̄n(x) := 1√
λn

vn

(
x/
√

λn

)
.

Observe that ūn → ū in C0loc(RN ) along a subsequence and ū(0) = 1 because
|ūn|∞ = ūn(0) = 1. By Lemma 5.1 we have vn → U1,μ2 both in H1(RN ) and
in C2

loc, and vn(x) → 0 as |x | → ∞ uniformly in n. It follows that v̄n → 0
uniformly outside an arbitrary neighborhood of 0. For a test function h ∈ D(RN )

and ε > 0, there exists rε such that

∫

|x |≤rε

∣
∣ūn v̄

2
n(x)h(x)

∣
∣dx ≤ |vn|23

(∫

|x |≤rε
|h(x)|3dx

) 1
3

<
ε

2
.

Therefore
∫

RN ūn v̄2nh dx → 0. Testing (5.1) with h we see that ūn⇀0 in H1(RN ),
contradicting ūn → ū in C0loc(RN ).
Step 2: lim supn→∞ 1√

λn
un(0) < ∞.

Assume by contradiction that
√

λn = o(1)un(0), after passing to a subsequence.
The function

ũn(x) = 1

un(0)
un
(√

λnx/un(0)
)

satisfies |̃un|∞ = ũn(0) = 1 and

−�ũn +
√

λn

un(0)
ũn ≥ μ1ũ

3
n in RN .

Then ũn → ũ ≥ 0 in C2
loc(R

N ), along a subsequence, with ũ(0) = 1, and ũ
satisfies

−�ũ ≥ μ1ũ
3 in RN .

This implies ũ ≡ 0, a contradiction.
The conclusion about vn(x) has already been proved in Lemma 5.1.

Step 3: ūn(x) := 1√
λn

un
(
x/
√

λn

)
→ U1,μ1(x) in C2loc(RN )

Observe that

⎧
⎪⎨

⎪⎩

−�ūn + ūn = μ1ū
3
n + β

λn
ūnv

2
n

(
· /√λn

)
in R

N

−�vn + vn = μ2v
3
n + βvn

(√
λnūn

(√
λn ·

))2
in R

N .
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By Step 1 and Step 2 we may assume that ūn → ū ≥ 0 inC2
loc(R

N ) and ū(0) > 0,
hence ū > 0 in R

N . By λn → 0, we may assume that λn < 1 for all n. Recalling
that there exist C, R > 0, independent of n such that

vn(x) ≤ Ce− 1
2 |x | for all |x | > R, all n ∈ N,

we have that

β

λn
v2n

(
x/
√

λn

)
≤ βC2 1

λn
e−|x |/√λn for all |x | > R, all n ∈ N.

Fix R > 0, then βC2 1
λn
e−R/

√
λn → 0 as n → ∞, which implies that

β

λn
v2n

(
x/
√

λn

)
<

1

2
for all |x | > R, and large n.

Then it is standard to prove that ūn(x) → 0 exponentially and uniformly in large
n. Thus, lim

x→∞ ū(x) = 0. A similar argument as that in Step 1 implies that ū is a

weak solution of

−�ū + ū = μ1ū
3, ū(x) → 0 as |x | → ∞.

So we obtain that ū = U1,μ1 and thus ūn(x) → U1,μ1(x) in C
2
loc(R

N ).
(b) Using the transformations λ̄n := 1

λn
→ 0, ūn(x) := 1√

λn
vn
(
x/

√
λn
)
and v̄n(x) :=

1√
λn
un
(
x/

√
λn
)
, we see that (un, vn) is a solution to

{
−�u + λnu = μ1u3 + βuv2 in R

N

−�v + v = μ2v
3 + βvu2 in R

N

if and only if (ūn, v̄n) is a solution to

{
−�u + λ̄nu = μ2u3 + βuv2 in R

N ,

−�v + v = μ1v
3 + βvu2 in R

N .
(5.2)

We can apply the conclusion of (a) to system (5.2) and obtain that

(
1
√

λ̄n
ūn

(

x/
√

λ̄n

)

, v̄n(x)

)

→ (
U1,μ2(x),U1,μ1(x)

)
in C2

loc(R
N ) × C2

loc(R
N ),

that is,

(
1√
λn

un
(
x/
√

λn

)
, vn(x)

)

→ (
U1,μ1(x),U1,μ2(x)

)
in C2

loc(R
N ) × C2

loc(R
N ).
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Corollary 5.6 (a) If (un, vn) is a positive radial solution to equation (4.1) with λ = λn
and λn → 0 then ρ(λn, β, un, vn) → +∞.

(b) If (un, vn) is a positive radial solution to equation (4.1)with λ = λn and λn → ∞
then ρ(λn, β, un, vn) → 0.

Proof (a) Lemma 5.5 ūn(x) := 1√
λn
un(

x√
λn

) → U1,μ1(x). So we have that

|un|22 = λ
− 1

2
n |ūn|22 → +∞

and

|vn|22 → |U1,μ2 |22.

Hence, ρ(λn, β, un, vn) → +∞.
(b) Apply a similar argument as in (a), and note that λn → ∞, we have that

|un|22 = λ
− 1

2
n |ūn|22 → 0.

�
Proof of Theorem 2.5 (a) Suppose there exists two families of positive solutions

(u(1)
λ , v

(1)
λ ) and (u(2)

λ , v
(2)
λ ) to problem (4.1) with λ → 0+. Let

(
ū(i)

λ (x), v̄(i)
λ (x)

)
:=
(

1√
λ
u(i)

λ

(
x/

√
λ
)

, v
(i)
λ (x)

)

, i = 1, 2.

Then
(
ū(1)

λ (x), v̄(1)
λ (x)

)
,
(
ū(2)

λ (x), v̄(2)
λ (x)

)
∈ E are two families of positive solu-

tions to the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�u(x) + u(x) = μ1u(x)3 + βu(x)
(

1√
λ
v
(
x/

√
λ
))2

in R
N ,

−�v(x) + v(x) = μ2v(x)3 + βv(x)
(√

λu
(√

λx
))2

in R
N ,

0 < u, v ∈ H1(RN ), N = 3.

(Pλ)

By Lemma 5.5,

(
ū(i)

λ (x), v̄(i)
λ (x)

)→ (U1,μ1 ,U1,μ2) in C2
loc(R

N ) × C2
loc(R

N ), i = 1, 2.

Indeed, one can prove that this convergence also holds in E due to the fact that
ūiλ(x) → 0 exponentially and uniformly in small λ.

Case 1: lim sup
λ→0+

|v̄(1)
λ − v̄

(2)
λ |∞

λ

∣
∣
∣ū

(1)
λ − ū(2)

λ

∣
∣
∣∞

< ∞
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We study the normalization

ξλ := ū(1)
λ − ū(2)

λ∣
∣
∣ū

(1)
λ − ū(2)

λ

∣
∣
∣∞

,

Then up to a subsequence ξλ → ξ in C2
loc(R

N ), hence

1
∣
∣
∣ū

(1)
λ − ū(2)

λ

∣
∣
∣∞

[

μ1

(
ū(1)

λ

)3 − μ1

(
ū(2)

λ

)3
]

= μ1ξλ

[(
ū(1)

λ

)2 + ū(1)
λ ū(2)

λ +
(
ū(2)

λ

)2
]

→ 3μ1U
2
1,μ1

ξ in C2
loc(R

N ) as λ → 0,

and

1
∣
∣
∣ū

(1)
λ − ū(2)

λ

∣
∣
∣∞

[

βū(1)
λ (x)

(
1√
λ

v̄
(1)
λ

(
x√
λ

))2

− βū(2)
λ (x)

(
1√
λ

v̄
(2)
λ

(
x√
λ

))2
]

= 1
∣
∣
∣ū(1)

λ − ū(2)
λ

∣
∣
∣∞

[

βū(1)
λ (x)

(
1√
λ

v̄
(1)
λ

(
x√
λ

))2

− βū(2)
λ (x)

(
1√
λ

v̄
(1)
λ

(
x√
λ

))2
]

+ 1
∣
∣
∣ū

(1)
λ − ū(2)

λ

∣
∣
∣∞

[

βū(2)
λ (x)

(
1√
λ

v̄
(1)
λ

(
x√
λ

))2

− βū(2)
λ (x)

(
1√
λ

v̄
(2)
λ

(
x√
λ

))2
]

= βξλ

(
1√
λ

v̄
(1)
λ

(
x√
λ

))2

+ βū(2)
λ (x)

(

v̄
(1)
λ

(
x√
λ

)

+ v̄
(2)
λ

(
x√
λ

)) v̄
(1)
λ

(
x√
λ

)
− v̄

(2)
λ

(
x√
λ

)

λ

∣
∣
∣ū(1)

λ − ū(2)
λ

∣
∣
∣∞

.

For any h ∈ H1(R3), one can prove that

lim
λ→0

∫

R3
βξλ

(
1√
λ

v̄
(1)
λ

( x√
λ

))2

hdx = 0 (5.3)

and

lim
λ→0

∫

R3
ū(2)

λ (x)v̄(i)
λ

( x√
λ

)
h(x)dx = 0, i = 1, 2.

So we see that ξ is a weak solution to

− �ξ + ξ = 3μ1U
2
1,μ1

ξ. (5.4)
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By |ξ |∞ = 1, standard elliptic estimates imply that ξ is a strong solution. Then
by the decay of U1,μ1 and applying the comparison principle, we obtain that ξ

is exponentially decaying to 0 as |x | → ∞. Hence, ξ ∈ H1(R3) and then (5.4)
implies that

ξ =
3∑

i=1

bi
∂U1,μ1

∂xi

for some suitable bi ∈ R. On the other hand, ξ is radial and thus bi = 0, i = 1, 2, 3.
This implies ξ = 0, a contradiction. Therefore

ū(1)
λ ≡ ū(2)

λ for small λ,

and then we also have

v̄
(1)
λ ≡ v̄

(2)
λ for small λ

due to

1√
λ

v
(i)
λ

(
x√
λ

)

=
⎛

⎜
⎝

−�ū(i)
λ + ū(i)

λ − μ1

(
ū(i)

λ

)3

βū(i)
λ

⎞

⎟
⎠

1
2

, i = 1, 2.

Case 2: lim supλ→0+

∣
∣
∣v̄

(1)
λ −v̄

(2)
λ

∣
∣
∣∞

λ

∣
∣
∣ū

(1)
λ −ū(2)

λ

∣
∣
∣∞

= ∞
In this case, we study the normalization

ηλ := v̄
(1)
λ − v̄

(2)
λ∣

∣
∣v̄

(1)
λ − v̄

(2)
λ

∣
∣
∣∞

,

Then ηλ → η in C2
loc(R

N ) up to a subsequence. A similar argument as above
yields

−�η + η = 3U 2
1,μ2

η.

Since η is a radial function, we also obtain

v̄
(1)
λ ≡ v̄

(2)
λ and ū(1)

λ ≡ ū(2)
λ for small λ
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by

√
λū(i)

λ

(√
λx
)

=
⎛

⎜
⎝

−�v̄
(i)
λ + v̄

(i)
λ − μ2

(
v̄

(i)
λ

)3

βv̄
(i)
λ

⎞

⎟
⎠

1
2

, i = 1, 2.

Combining the cases 1 and 2, we see that (4.1) has at most one positive solution
for λ small enough. And using the transformation in Lemma 5.2, one can prove
the case of λ large.

(b) It is well known that (1.2) has a mountain pass type solution for β ≤ μ2τ0 <

β2(λ) = min{β1(λ), β2(λ)} for λ > 0 small. It follows from (a) that this is unique.
The second statement in Theorem 2.5 (b) for β ≤ μ1τ0 follows by applying a
transformation as in the proof of Lemma 5.2. �

6 Proof of Theorem 2.1 and Proposition 2.2

Due to Lemma 4.1 it is sufficient to consider the case λ1 = λ and λ2 = 1, i.e. sys-
tem (4.1).

Proof of Theorem 2.1 (a) For β ≤ τ0 min{μ1, μ2} the existence of normalized solu-
tions for every a, b > 0 follows from Corollaries 4.10 and 5.6. For β ≥
τ0 max{μ1, μ2} let Sβ

i , i = 1, 2, be the connected sets of positive solutions from

Proposition 4.6 (e). If Sβ
1 ∩ Sβ

2 	= ∅ then the existence of normalized solutions

for every a, b > 0 follows from Corollary 4.8. Now we suppose Sβ
1 ∩ Sβ

2 = ∅.
Then Proposition 4.6 (e) yields that P1(Sβ

i ) contains one of the intervals (0, �i (β))

or (�i (β),∞), i = 1, 2. If (�1(β),∞) ⊂ P1(Sβ
1 ) then the existence of normal-

ized solutions for every a, b > 0 follows from Corollary 5.6. The same argument
applies if (0, �2(β)) ⊂ P1(Sβ

2 ). Now we show that the case Sβ
1 ∩ Sβ

2 = ∅ and

(0, �2(β)) 	⊂ P1(Sβ
2 ) cannot happen, concluding the proof of a). Similarly one

can show that Sβ
1 ∩ Sβ

2 = ∅ and (�1(β),∞) 	⊂ P1(Sβ
1 ) leads to a contradiction.

Suppose by contradiction that Sβ
1 ∩ Sβ

2 = ∅ and (0, �2(β)) 	⊂ P1(Sβ
2 ). Then

(�2(β),∞) ⊂ P1(Sβ
2 ). Recall from Theorem 2.5 (a) that (4.1) has at most one

solution for λ large. It follows that there exists a family (λ, β, uλ,β, vλ,β) ∈ X ,
λ ≥ λ̃(β), so that

Sβ ∩ ([λ̃(β),∞) × P
) = Sβ

1 ∩ ([λ̃(β),∞) × P
)

= {(λ, β, uλ,β, vλ,β) : λ ≥ λ̃(β)}.
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Normalized solutions for a coupled Schrödinger system 1737

The fixed point index computations in Sect. 4, in particular Propositions 4.4, 4.11
and Corollary 4.5, imply for λ ≥ λ̃(β):

indP
(
Aλ,β, (uλ,β, vλ,β)

) = i∞ − indP
(
Aλ,β, (Uλ,μ1 , 0)

)

− indP
(
Aλ,β, (0,U1,μ2)

)− indP
(
Aλ,β, (0, 0)

)

= 0 + 0 + 1 − 1 = 0
(6.1)

Observe that T β
2 ∪ Sβ

2 is a connected component of the set Z = T0 ∪ T1 ∪ T2 ∪ S
of all solutions because Sβ

1 ∩Sβ
2 = ∅. Then there exists an open setO ⊂ Xβ with

the following properties:

(i) T β
2 ∪ Sβ

2 ⊂ O
(ii) Z ∩ ∂O = ∅
(iii) There exists δ > 0 so that

O ∩ ((0, δ] × {β} × P
) = {(λ, β, u, v) : λ ∈ (0, δ], (u, v) ∈ Bδ(0,U1,μ2)

}

The last property (iii) can be achieved because (0, �2(β)) 	⊂ P1(Sβ
2 ), hence Sβ

2 ⊂
[δ,∞) × {β} ×P for some small δ > 0. Using the notationOλ,β := {(u, v) ∈ P :
(λ, β, u, v) ∈ O} it follows for λ ≥ λ̃(β) that:

indP
(
Aλ,β, (uλ,β, vλ,β)

) = indP
(
Aλ,β,Oλ,β

)− indP
(
Aλ,β, (0,U1,μ2)

)

= indP
(
Aδ,β ,Oδ,β

)− indP
(
Aλ,β, (0,U1,μ2)

)

= indP
(
Aδ,β , (0,U1,μ2)

)− indP
(
Aλ,β, (0,U1,μ2)

)

= 0 + 1 = 1

This contradicts (6.1).
(b) We only prove the case μ2 < μ1. The case μ1 < μ2 can then be deduced using

the transformation from the proof of Lemma 5.2. Let Sβ
2 be the connected set of

positive solutions from Proposition 4.6 (d). Then Proposition 4.6 (d) yields that
P1(Sβ

2 ) contains one of the intervals (0, �2(β)) or (�2(β),∞). If (0, �2(β)) ⊂
P1(Sβ

2 ) then the existence of normalized solutions for every a, b > 0 follows

from Corollary 5.6. If (�2(β),∞) ⊂ P1(Sβ
2 ) then

δ := max
(λ,β,u,v)∈Sβ

2

ρ(λ, β, u, v) > 0.

Since ρ(λ, β, u, v) → 0 as λ → ∞, and as λ → �2(β) on Sβ
2 , we see that

ρ(S) ⊃ (0, δ].
Finally, if β ∈ (τ0μ2, μ2) then there exists the solution (1, β, uβ, vβ) ∈ S from

Remark 2.6, which has fixed point index 1. Let Sβ
0 ⊂ Sβ be the connected com-

ponent of (1, β, uβ, vβ) in Sβ . An index count as above yields that P1(Sβ
0 ) ⊂ R

+
is bounded away from 0. Since it cannot bifurcate from T1 it must bifurcate from

123



1738 T. Bartsch et al.

T2, i.e. Sβ
3 = Sβ

2 . This implies

δ ≥ ρ(1, β, uβ, vβ) =
√

β − min{μ1, μ2}
β − max{μ1, μ2} .

�
Proof of Proposition 2.2 We only prove the case of μ2 ≤ β ≤ τμ1, the second part
result is easy by using the transformation from the proof of Lemma 5.2. By Theorem
2.4 (b), there exists η2(β) > 0 such that problem (4.1) has no positive solution
provided λ < η2(β). On the other hand, by Theorem 2.5 (b), problem (4.1) has a
unique positive solution (uλ, vλ), which is of mountain pass type, for λ ≥ λ̃(β) large
enough. By Corollary 5.6, we have that ρ(λ, β, uλ, vλ) → 0 as λ → ∞. So

q1 := {ρ(λ, β, uλ, vλ), λ ≥ λ̃(β) } < ∞.

Observe that according to Proposition 4.4 (a), see also [12, Lemma 2.1],

sup
(λ,β,u,v)∈Sβ ,η2(β)≤λ≤λ̃(β)

(
|u|22 + |v|22

)
< ∞.

Then we have that

q2 := sup{ρ(λ, β, u, v) : (λ, β, u, v) ∈ Sβ, η2(β) ≤ λ ≤ λ̃β} < ∞.

Indeed, if there exists a sequence (λn, β, un, vn)with λn → λ ∈ [η2(β), λ̃β ] such that
ρ(λn, β, un, vn) → ∞. Then we see that |vn|22 → 0 and it is standard to prove that
(un, vn) → (Uλ,μ1 , 0) in H1(RN ). And thus, β = β1(λ) > limλ→∞ β1(λ) = τ0μ1,
a contradiction. Then q := max{q1, q2} is the required bound. �
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