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Abstract
We extend the celebrated theorem of Kellogg for conformal mappings to the min-
imizers of Dirichlet energy. Namely we prove that a diffeomorphic minimizer of
Dirichlet energy of Sobolev mappings between doubly connected domains D and �

having C n,α boundary is C n,α up to the boundary, provided Mod(D) � Mod(�). If
Mod(D) < Mod(�) and n = 1 we obtain that the diffeomorphic minimizer has C 1,α′

extension up to the boundary, forα′ = α/(2+α). It is crucial that, every diffeomorphic
minimizer of Dirichlet energy has a very special Hopf differential and this fact is used
to prove that every diffeomorphic minimizer of Dirichlet energy can be locally lifted
to a certain minimal surface near an arbitrary point inside and at the boundary. This is
a complementary result of an existence results proved by Iwaniec et al. (Invent Math
186(3):667–707, 2011).
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1 Introduction and themain results

In this paper, we consider two doubly connected domains D and � in the complex
plane C. The Dirichlet energy of a diffeomorphism f : D → � is defined by

E[ f ] =
∫
D

‖Df ‖2 dλ = 2
∫
D

(
|∂ f |2 + |∂̄ f |2

)
dλ, (1.1)

where ‖Df ‖ is the Hilbert-Schmidt norm of the differential matrix of f and λ is
standard Lebesgue measure. The primary goal of this paper is to establish boundary
regularity of a diffeomorphism f : D onto−→ � of smallest (finite) Dirichlet energy,
provided such an f exists and the boundary is smooth. If we denote by J (z, f ) the
Jacobian of f at the point z, then (1.1) yields

E[ f ] = 2
∫
D
J (z, f ) dλ + 4

∫
D
|∂̄ f |2 � 2|�| (1.2)

where |�| is the measure of �. In this paper we will assume that diffeomorphisms as
well as Sobolev homeomorphisms are orientation preserving, so that J (z, f ) > 0. A
conformal mapping of D onto � would be an obvious minimizer of (1.2), because
∂̄ f = 0, provided it exists. Thus in the special case where D and � are conformally
equivalent the famous Kellogg theorem yields that the minimizer is as smooth as the
boundary in the Hölder category. For an exact statement of the Kellogg theorem, we
recall that a function ξ : D → C is said to be uniformly α−Hölder continuous and
write ξ ∈ C α(D) if

sup
z �=w,z,w∈D

|ξ(z) − ξ(w)|
|z − w|α < ∞.

In similar way one defines the class C n,α(D) to consist of all functions ξ ∈ C n(D)

which have their nth derivative ξ (n) ∈ C α(D). A rectifiable Jordan curve γ of
the length l = |γ | is said to be of class C n,α if its arc-length parameterization
g : [0, l] → γ is in C n,α , n � 1. The theorem of Kellogg (with an extension
due to Warschawski, see [7,29,33–35]) now states that if D and � are Jordan domains
having C n,α boundaries and ω is a conformal mapping of D onto �, then ω ∈ C n,α .

The theorem ofKellogg and ofWarshawski has been extended in various directions,
see for example the work on conformal minimal parameterization of minimal surfaces
by Nitsche [27] (see also the paper by Kinderlehrer [21] and by Lesley [24]), and
to quasiconformal harmonic mappings with respect to the hyperbolic metric by Tam
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Minimisers and Kellogg’s theorem 1645

and Wan [30, Theorem 5.5.]. For some other extensions and quantitative Lipschitz
constants we refer to the paper [25].

We have the following extension of the Kellogg’s theorem, which is the main result
of the paper.

Theorem 1.1 Let α ∈ (0, 1). Assume that D and� are two doubly connected domains
in the complex plane with C 1,α boundaries. Assume that f is a diffeomorphic mini-
mizer of energy (1.1) throughout the class of all diffeomorphisms between D and �.
Then f has a C 1,α′

extension up to the boundary, with α′ = α ifMod(D) � Mod(�)

and α′ = α
2+α

ifMod(D) < Mod(�).

For higher-degree regularity we will prove the following result:

Theorem 1.2 Let α ∈ (0, 1). Assume that D and� are two doubly connected domains
in the complex plane with C n,α boundaries so thatMod(D) � Mod(�). Assume that
f is a diffeomorphic minimizer of energy (1.1) throughout the class of all diffeomor-
phisms between D and �. Then f has a C n,α extension up to the boundary.

We will formulate some corollaries of Theorem 1.1 in Sect. 2, where we will
describe the keypoint of the proof. InSect. 3 togetherwith the appendix belowweprove
that diffeomorphic minimizers are Hölder continuous at the boundary components.
This is needed to prove the global Lipschitz continuity of such diffeomorphisms,which
is done in Sect. 4.1. The proof of the smoothness issue is given in Sect. 4.2. Section 5
contains the proof of the main results. The last section is devoted to an open problem.

The following existence result was proved in [12]:

Proposition 1.3 Suppose that D and � are bounded doubly connected domains in C

such that Mod D � Mod�. Then there exists a diffeomorphism h of finite Dirichlet
energy, which minimizes the energy amongst all diffeomorphisms; that is, E[h] =
inf{E[ f ] : f is a diffeomorphism between D and �}. Moreover, h is harmonic and it
is unique up to a conformal automorphism of D.

The most important issue in proving Proposition 1.3 was to establish some key
properties of Noether harmonic which we gather in the next subsections.

1.1 Noether harmonic mappings

We recall that a mapping g : D → � is said to be Noether harmonic (see [8]) if

d

dt

∣∣∣∣
t=0

E[g ◦ φ−1
t ] = 0 (1.3)

for every family of diffeomorphisms t → φt : � → � depending smoothly on the
real parameter t and satisfying φ0 = id. To be more exact, that means that the mapping
� × [0, ε0] 	 (t, z) → φt (z) ∈ � is a smooth mapping for some ε0 > 0. Not every
Noether harmonic mapping h is a harmonic mapping, however if the mapping g is a
diffeomorphism, then it is harmonic, i.e. it satisfies the equation �g = 0.
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1646 D. Kalaj, B. Lamel

1.2 Some key properties of Noether harmonic diffeomorphisms

The following properties of Noether harmonic mappings are derived in the proof of
[14, Lemma 1.2.5]. Assume that g : D → � is Noether harmonic. Then

1. The Hopf differential of g, defined by ϕ := gzgz̄ , which a priori belongs to L1(D),
is holomorphic.

2. If ∂D is C 1,α-smooth then ϕ extends continuously to D, and the quadratic differ-
ential ϕ dz2 is real on each boundary curve of D.

Using those key properties, [12, Lemma 6.1] (and [16]) show the following: If
D = A(r , R), where 0 < r < R < ∞, is a circular annulus centered at origin, �

a doubly connected domain, and g : D → � is a stationary deformation, then there
exists a real constant c ∈ R such that

gzgz̄ ≡ c

z2
in D (1.4)

We recall that every doubly connected domain D ⊂ C
2 whose inner boundary is

not just one point is conformally equivalent to such an annulus D = A(r , R). The
conformal invariant Mod D := R/r is called the conformal modulus of D.

The constant c appearing in (1.4) is related to the conformal modulus by the fol-
lowing proposition.

Proposition 1.4 [16, Corollary 5.2] If g : D → � is a Noether harmonic deformation,
then we have

⎧⎪⎨
⎪⎩
c > 0 if Mod D < Mod�,

c = 0 if Mod D = Mod�,

c < 0 if Mod D > Mod�.

We next recall that sense preserving mapping w of class ACL between two planar
domains X and Y is called (K , K ′)-quasi-conformal if

‖Dw‖2 � 2K J (z, w) + K ′, (1.5)

for almost every z ∈ X. Here K � 1, K ′ � 0, J (z, w) is the Jacobian of w in z and
‖Dw‖2 = |wx |2 + |w2

y | = 2|wz|2 + 2|wz̄|2. For a related definition for mappings
between surfaces the reader is referred to [31].

Noether-harmonic maps, and in particular minimizers, belong to the class of
(K , K ′) quasiconformal mappings, for a (K , K ′) which is nicely related to the data c
and Mod D:

Lemma 1.5 [17] Every sense-preserving Noether harmonic map g : A(ρ, 1) → � is
(K , K ′) quasiconformal, where

K = 1 and K ′ = 2|c|
ρ2 ,
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Minimisers and Kellogg’s theorem 1647

and c is the constant from (1.4). The result is sharp and for c = 0 the Noether
harmonic map is (1, 0) quasiconformal, i.e. it is a conformal mapping. In this case �

is conformally equivalent to A(ρ, 1).

Assume that g : [0, �] → � is the arc-length parameterization of a rectifiable
Jordan curve �. Here � = |�| is the length of �. We say that a continuous mapping
f : T → � of the unit circle onto � is monotone if there exists a monotone function
φ : [0, 2π ] → [0, �] such that f (eit ) = g(φ(s)). In a similar way we define a
monotone function between ρT := {z : |z| = ρ} and �. In view of [22, Proposition 5]
and Proposition 3.1 below we can formulate the following simple lemma.

Lemma 1.6 Assume that f is a diffeomorphic minimizer of Dirichlet energy between
the annuli A(ρ, 1) and the doubly connected domain �, which is bounded by the
outer boundary � and inner boundary �1. Then f has a continuous extension to the
boundary and the boundary mapping is monotone in both boundary curves.

2 Some corollaries and the strategy of the proof

Theorem 1.1 and Proposition 1.3 imply the following result:

Corollary 2.1 Assume that D and� are two doubly connected domains inCwithC 1,α

boundary. Assume also that Mod(D) � Mod(�). Then there exists a minimizer h of
Dirichlet energy E and it has a C 1,α/(2+α) extension up to the boundary. Moreover it
is unique up to the conformal change of D.

In view of Sect. 2.1, we can state the following corollary.

Corollary 2.2 Assume f = u+iv : Aρ → � is a diffeomorphic minimizer of Dirichlet
energy among the diffeomorphisms,where� is a doubly connected domainwith aC 1,α

boundary. Then, the mapping

F(z) =
⎧⎨
⎩

(
u, v, 2

√
cArg z

)
, for c > 0;(

u, v, 2
√−c log 1

|z|
)

, for c � 0,

is a conformal parametrisation of a minimal surface �, whose boundary is in C 1,α′
,

where α′ = α, if c < 0 and α′ = α/(2 + α). If c � 0, then the surface � is a
doubly connected catenoidal minimal surface, whose conformal modulus is equal to
ModAρ � Mod�. If c > 0, then the minimal surface � is a helicoidal minimal
surface.

Theminimizer ofDirichlet energy is not always a diffeomorphismwhenMod(D) �
Mod(�). Moreover it fails to be smooth in the domain if the boundary is not smooth
[3]. For more general setting we refer to [10].

Remark 2.3 By using Lemma 1.5, the first author in [17] proved that, a minimizer
of �−energy between doubly connected domains having C2 boundary is Lipschitz
continuous. The �−energy, is a certain generalization of Euclidean energy, and we
will omit details in this paper.
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1648 D. Kalaj, B. Lamel

2.1 Minimizingmappings andminimal surfaces

Since D is conformally equivalent toAρ = {z : ρ < |z| < 1}, for some ρ ∈ (0, 1), we
can assume that D = Aρ . Namely, by a Kellogg’s type result of Jost [15], a conformal
biholomorphism of a domain D with C n,α boundary onto Aρ is C n,α continuous up
to the boundary together with its inverse. For every p ∈ ∂Aρ , there is a Jordan domain
Ap ⊂ Aρ , containing a Jordan arc Tp in ∂Aρ , whose interior contains p. Moreover in
view of Lemma 1.6, enlarging Tp if necessary, we can assume that �p := f (Tp) is a
Jordan arc containing q = f (p) in its interior in ∂D. Moreover we can assume that
Ap has a C∞ boundary. Assume now that �p is a conformal mapping of the unit disk
D onto Ap so that �p(p/|p|) = p. Moreover, if p′ �= p, but |p| = |p′| we can chose
domains Ap′ to be just rotation of Ap. So all those domains Ap are isometric to A1
or Aρ . Moreover we also can assume that �p′ = eiς�p. Then f p = f ◦ �p has the
representation

f p(z) = g(z) + h(z), (2.1)

where g(z) = gp(z) and h(z) = h p(z) are holomorphic mappings defined on the unit
disk. Moreover f p is a sense preserving diffeomorphism and this means that

J (z, f p) = |g′(z)|2 − |h′(z)|2 > 0.

From (1.4) we have

fz fz̄ = c

z2
, z ∈ Aρ. (2.2)

It follows from (2.2) and (2.1) that

h′
pg

′
p = c

(�′
p(z))

2

�2
p(z)

. (2.3)

Then it defines locally the minimal surface by its conformal minimal coordinates,
ϕp = (ϕ1, ϕ2, ϕ3), and this is crucial for our approach:

ϕ1(z) = 
(g + h) (2.4)

ϕ2(z) = �(g − h) (2.5)

ϕ3(z) = 
(2i
√
c log�p(z)). (2.6)

This can be written

ϕ1(z) = ϕ1(z0) + 

∫ z

z0
(g′(z) + h′(z))dz (2.7)

ϕ2(z) = ϕ2(z0) + 

∫ z

z0
i(h′(z) − g′(z))dz (2.8)
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Minimisers and Kellogg’s theorem 1649

ϕ3(z) = ϕ3(z0) + 

∫ z

z0
2i

√
h′(z)g′(z)dz. (2.9)

Thus the Weierstrass–Enneper parameters are

p(z) = g′(z), q(z) =
√
h′(z)
g′(z)

.

The first fundamental form is given by ds2 = λ(z)|dz|2, where

λ(z) = 1

2

3∑
j=1

|k j |2.

Here

k1(z) = g′(z) + h′(z), k2(z) = i(h′(z) − g′(z)), k3(z) = 2i
√
h′(z)g′(z).

Then as in [5, Chapter 10], we get

λ(z) = |p|2(1 + |q|2)2 = |g′(z)|2
(
1 + |g′(z)|

|h′(z)|
)2

= (|g′(z)| + |h′(z)|)2.

Let us note the following important fact, the boundary curve of the minimal surface
defined in (2.4), (2.5) and (2.6) is

ϕp(e
is) = (ϕ1(e

is), ϕ2(e
is), ϕ3(e

is)), s ∈ [0, 2π),

p ∈ ∂Aρ . Its trace is not smooth in general. However the trace of curve

z p(e
is) = (ϕ1(e

is), ϕ2(e
is))

is smooth as well as the function k3 is smooth in a small neighborhood of p. This will
be crucial in proving our main results.

We will prove certain boundary behaviors of f near the boundary by using the
representation (2.1), and this is why we do not need global representation. The idea is
to prove that f is Lipschitz and has smooth extension up to the boundary locally. And
this will imply the same behaviour on the whole boundary. The conformal mapping
�p is a diffeomorphism and it is C∞(D), provided the boundary of Ap belongs to the
same class. So we will go back to the original mapping easily.

In the previous part we have showed that every minimizing mapping can be lifted
locally to a certain minimal surface. In the following part we show that in certain
circumstances the lifting is global.
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1650 D. Kalaj, B. Lamel

Every harmonic mapping f defined on the annulus Aρ can be expressed (see e.g.
[2, Theorem 9.1.7]) as

f (z) = a0 log |z| + b0 +
∑
k �=0

(akz
k + bk z̄

k). (2.10)

Assume now that f is a diffeomorphic minimizer between Aρ and � and that c < 0,
i.e. Mod(Aρ) > Mod(�) (see Proposition 1.4). Then we get the following conformal
parameterization of a catenoidal minimal surface �, ϕ : Aρ → �, defined by

ϕ(z) =
(


 f (z),� f (z), 2
√−c log

1

|z|
)

. (2.11)

If a0 = 0, then we have the following decomposition f (z) = b0 + g◦(z) + h◦(z),
where

g◦(z) =
∑
k �=0

akz
k,

and

h◦(z) =
∑
k �=0

bkz
k .

Then we get the following conformal parameterization of a minimal surface �, ϕ :
Aρ → �, defined by

ϕ(z) =
(


(g◦(z) + h◦(z)),�(g◦(z) − h◦(z)), 2
√−c log

1

|z|
)

. (2.12)

The following corollary is a consequence of Theorem 1.1 and (2.11).

Corollary 2.4 Assume that f : Aρ → � is a diffeomorphic minimizer of Dirichlet
energy, with ModAρ � Mod� and ∂� ∈ C 1,α . Then f can be lifted to a smooth
doubly connected minimal surface� with C 1,α boundary, and the lifting is conformal
and harmonic.

Let us continue this subsection with the following explicit example. Let

f (z) = r(R − r)(
1 − r2

)
z̄

+ (1 − r R)z

1 − r2
. (2.13)

Then f (z) is a harmonic mapping of the annulus Ar onto AR that minimizes the
Dirichlet energy [1]. Further, under notation of this subsection we have

p(z) = 1 − r R

1 − r2
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Minimisers and Kellogg’s theorem 1651

Fig. 1 A part of catenoid over an annulus. Here R = 2/3 and r = 1/2

and

q(z) =
√
r(r − R)(1 − r R)(

1 − r2
)
z

.

Put ϕ1 = 
 f (z), ϕ2(z) = � f (z) and assume that Mod(Ar ) > Mod(AR), i.e. R > r .
Then we have from (2.12) that

ϕ3(z) = 

∫

2iq(z)dz = 

∫

2i2
√
r(R − r)(1 − r R)(

1 − r2
)
z

dz

= 2

√
r(R − r)(1 − r R)(

1 − r2
) log

1

|z| .

Here
∫
Q(z)dz stands for the primitive function of Q(z). It follows that (2.13)

defines a global minimal surface by its conformal minimal coordinates ϕ(z) =
(ϕ1(z), ϕ2(z), ϕ3(z)). This minimal graph is a part of the lower slab of catenoid (see
Fig. 1).

Remark 2.5 It follows from (2.13) that,

w(z) = √−c log
1

|√ f −1(z)|
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1652 D. Kalaj, B. Lamel

Fig. 2 A part of helicoid over an
annulus. Here R = 1/2 and
r = 2/3

defines the nonparametric minimal surface �. This means that � = {(x, y, w(z)) :
z ∈ �}. Moreover Mod(�) = log 1

ρ
� Mod�.

For c > 0, i.e. for Mod(Aρ) < Mod(�) we get the following counterpart. Then
we get the following conformal parametrization of a helicoidal minimal surface �,
ϕ : Aρ → �, defined by

ϕ(z) = (
 f (z),� f (z), 2
√
cArg z

)
. (2.14)

If f has not the logarithmic part, then we get the parametrization of a minimal surface

ϕ(z) = (
(g◦ + h◦),�(g◦ − h◦), 2
√
cArgz

)
. (2.15)

In particular, if Aρ = Ar and � = AR , so that R < r , then

ϕ3(z) = −2

√
r(r − R)(1 − r R)(

1 − r2
) Arg(z).

In particular, if r = 2/3 and R = 1/3 then this minimal surface over the annulus Ar

is shown in Fig. 2.
We finish this section with a lemma needed in the sequel

Lemma 2.6 Let p ∈ T = ∂D.
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(a) Assume that� is a holomorphic mapping of the unit disk into itself so that�(p) =
p and � has the derivative at p. Then

�′(p) � 1 − |�(0)|
1 + |�(0)| > 0.

(b) Assume that � is a holomorphic mapping of the unit disk into the exterior of the
disk rD with �(p) = rp. Then

�′(p) < r
r − |�(0)|
|�(0)| + r

< 0.

To prove Lemma 2.6 we recall the boundary Schwarz lemma [6] which states the
following.

Lemma 2.7 (Boundary Schwarz lemma) Let f : D → D be a holomorphic function.
If f is holomorphic at z = 1 with f (0) = 0 and f (1) = 1, then f ′(1) � 1. Moreover,
the inequality is sharp.

Proof of Lemma 2.6 Assume that p = 1. Otherwise consider the function �1(z) =
1
p�(zp). Consider

F(z) = (1 − �(0))(�(z) − �(0))

(1 − �(0))(1 − �(0)�(z))
.

Then

F ′(1) = 1 + |�(0)|
1 − |�(0)|�

′(1).

Since F(0) = 0, F(1) = 1, it follows that F satisfies the boundary Schwarz lemma,
and therefore F ′(1) is a real positive number bigger or equal to 1. This implies a).

In order to prove b), consider the auxiliary function g(z) = r
�(z) . By applying a)

to g we get

g′(1) � 1 − |g(0)|
1 + |g(0)| .

Since

�′(z) = −r f ′(z)
�2(z)

,

we get

−r�′(1)
r2

� 1 − |g(0)|
1 + |g(0)|
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1654 D. Kalaj, B. Lamel

and so

−�′(r) � r
1 − r

|�(0)|
1 + r

|�(0)|
= r

|�(0)| − r

|�(0)| + r
.

This finishes the proof. ��

3 Hölder property of minimizers

In this section we prove that theminimizers of the energy are global Hölder continuous
provided that the boundary is C 1.

We first formulate the following result

Proposition 3.1 (Caratheodory’s theorem for (K , K ′) mappings) [18] Let W be a
simply connected domain inC whose boundary has at least two boundary points such
that ∞ /∈ ∂W. Let f : D → W be a continuous mapping of the unit disk D onto W
and (K , K ′) quasiconformal near the boundary T.

Then f has a continuous extension up to the boundary if and only if ∂W is locally
connected.

Let � ∈ C 1,μ, 0 < μ � 1, be a Jordan curve and let g be the arc length parameter-
ization of � and let l = |�| be the length of �. Let d� be the distance between g(s)
and g(t) along the curve �, i.e.

d�(g(s), g(t)) = min{|s − t |, (l − |s − t |)}. (3.1)

A closed rectifiable Jordan curve � enjoys a b− chord-arc condition for some
constant b > 1 if for all z1, z2 ∈ � there holds the inequality

d�(z1, z2) � b|z1 − z2|. (3.2)

It is clear that if � ∈ C 1 then � enjoys a chord-arc condition for some b = b� > 1. In
the following lemma we use the notation �(�) for a Jordan domain bounded by the
Jordan curve �. Similarly, �(�,�1) denotes the doubly connected domain between
two Jordan curves � and �1, such that �1 ⊂ �(�).

The following lemma is a (K , K ′)-quasiconformal version of [32, Lemma 1].

Lemma 3.2 Assume that the Jordan curves �,�1 are in the class C 1,α . Then there is
a constant B > 1, so that � and �1 satisfy B− chord-arc condition and for every
(K , K ′)− q.c. mapping f between the annulus Aρ and the doubly connected domain
� = �(�,�1) there exists a positive constant L = L(K , K ′, B, ρ, f ) so that there
holds

| f (z1) − f (z2)| � L|z1 − z2|β (3.3)

for z1, z2 ∈ T and z1, z2 ∈ ρT for β = 1
K (1+2B)2

.
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See appendix below for the proof of Lemma 3.2. We now can state the following
proposition:

Proposition 3.3 Let f be a diffeomorphic minimizer of the Dirichlet energy between
the annulusAρ and the doubly connected domain�(�,�1), where � and �1 areC 1,α

Jordan curves. Then f is Hölder continuous on Aρ .

The proof of Proposition 3.3 follows from Lemma 3.2, Lemma 4.5 below and
compactness property of Aρ .

4 Proof of Theorem 1.1

By repeating the proofs of corresponding result in [27] we can formulate the following
result.

Proposition 4.1 Assume that � is a Jordan curve in R3 and assume that �X(z) =
(X1, X2, X3) : D → R3 is a minimal graph so that �X(T) = �. Assume that �X is
Hölder continuous in an arc Tp ⊂ T containing p in its interior. If the arc Tp of T
is mapped onto the arc �p ⊂ � so that �p ∈ C 1,α , 0 < α < 1, then �X is C 1,α in a
small neighborhood of p = eit0 i.e. in a domain Dp,δ = {z = reit : 1/2 � r < 1, t ∈
(−δ + t0, δ + t0)}.

From time to time in the proof we will use the notation Dp or Dδ instead of Dp,δ ,
but the meaning will be clear from the context.

The proof of Proposition 4.1 depends deeply on the proof of a similar statement in
[27]. We observe that, almost all results proved in [27] are of local nature (see [27,
Lemma 5, Lemma 6, Lemma 7]), thus we will not write the details here.

We want to mention that also Lesley in [24, p. 125] have made a similar remark.
Further a similar explicit formulation to related to Proposition 4.1 has been stated as
Theorem 1 in Section 2.3 of the book of Dierkes, Hildebrandt and Tromba [4].

Since the minimising property is preserved under composing by a conformal map-
ping, in view of the original Kellogg’s theorem [7], we can assume that the domain is
Aρ = {z : ρ < |z| < 1}.

On the other hand, the minimising harmonic mapping has the local representation
(2.4). Here �p is a C∞ diffeomorphism, and it does not cause any difficulty.

Let p ∈ ∂Aρ be arbitrary, say |p| = 1 (the other possibility is |p| = ρ). Because
the boundary mapping is continuous and monotone, in view of Lemma 1.6, it follows
that, there is a neighborhood Tp which is mapped onto the arc �p ⊂ ∂�. Therefore
by Theorem 4.1, having in mind the notation from Sect. 2.1, the mapping

�X(z) = �X p(z) = {
 f p(z),� f p(z),
(2i
√
c log�p(z))}

is C 1,α in a neighborhood of p, provided the boundary arc is of the same class. But
we do not know that �X(Tp) ∈ C 1,α . We only know that �p is a priori in C∞(D) and
�p = f p(Tp) ∈ C 1,α . This will be enough for the proof.
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4.1 Proof of Lipschitz continuity

We will prove the following lemma needed in the sequel.

Lemma 4.2 Assume that f = u + iv : Aρ → � is a diffeomorphic minimizer, where
Aρ = {z : ρ < |z| < 1} and assume that ∂� ∈ C 1,α . Then f is Lipschitz continuous.

Proof We use the notation from Sect. 2.1. The constant C that appear in the proof is
not the same and its value can vary from one to the another appearance. Assume also
q ∈ � = ∂�, and, by using a rotation and a translation (if it is necessary) we can
assume that q = 0, and the tangent line of � at q is the real axis. Post-composing by
a such Euclidean isometry, the Euclidean harmonicity is preserved. Then in a small
neighborhood of q, � has the following parameterization γ (x) = (x, φ(x)), x ∈
(−x0, x0), so thatφ(0) = φ′(0) = 0. Assume also that, p = 1 and f (1) = q = 0. And
assume that for a small angle� = �p = {eiθ : |θ | � ε}we have f (�) ⊂ γ (−x0, x0).
We can assume also that x0 is a small enough positive constant global for all points
q ∈ ∂�. We want to localize the problem. We only need to prove that f is C 1,α′

in a
small neighborhood of 1. We also work with f p = f ◦ �p : D → f (Ap) instead of
f , where �p(p/|p|) = p, and assume that γ (−x0, x0) ⊂ ∂Ap for every p ∈ ∂Aρ .
We will from time to time use notation f instead of f p, since they behave in the same
way in a small neighborhood of p, because �p is a priori in C∞

Thus, there exists a function x : � → R so that

f (eit ) = (u(eit ), v(eit )) = γ (x(eit )) = (x(eit ), φ(x(eit ))).

We will also from time to time use notation x(t) instead of x(eit ). Similarly v(t)
instead of v(eit ).

Now we have v = �( f ) = �(g + h) = �(g − h) = 
(i(h − g)) and therefore,

vθ = 
(z(g′ − h′)). (4.1)

Because �p ∈ C 1,α we have as in [27, eq. 3], the following relation

|φ(s) − φ(t)| � C |s − t |{min{|s|α, |t |α} + |t − s|α}, |t | < t0, |s| < t0. (4.2)

The constant C and t0 are the same for all points p ∈ ∂Aρ . Recall that p = 1 and
f (1) = 0. By using translations and rotations in the domain and image domain, we
will obtain this property, and therefore we do not loos the generality.

Further

|φ(x) − φ(0) − φ′(0)x |
|x |1+α

= |φ′(θx) − φ′(0)|
|x |α � C,

where θ ∈ (0, 1).
Since

v(eit ) = φ(x(eit )) (4.3)
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we get

|v(eit ) − v(1)| = |φ(x(eit ))| � C |x(eit )|1+α. (4.4)

Now, the following sequence of the inequalities follow from (4.2), (4.4) and
Lemma 3.2.

|v(eit ) − v(1)| � C |t |β(1+α), (4.5)

and

|v(eit ) − v(eis)| = |φ(x(t)) − φ(x(s))|
� C |x(s) − x(t)|{min{|x(s)|α, |x(t)|α} + |x(t) − x(s)|α} (4.6)

and so

|v(eit ) − v(eis)| � CL1+α
0 |s − t |β{min{|s|αβ, |t |βα} + |t − s|βα}. (4.7)

Here

L0 = L�0, where �0 = sup
|z|=1,p∈∂Aρ

|�′
p(z)|, (4.8)

where L is defined in Lemma 3.2.
In order to continue we collect some results from [27] and [7].
First we formulate [27, Lemma 7] and a relation from its proof.

Lemma 4.3 Assume that F is a bounded holomorphic mapping defined in the unit disk,
so that |F | � M in D. Further assume that for a constants 0 � δ, 0 � η,μ � π/2 so
that for almost every −δ � t, s � δ we have

|
F(t) − 
F(s)| � M |t − s|μ{min{|t |η, |s|η} + |t − s|η}.

Then for ζ = τeis , with |s| � δ/2, 1/2 � τ � 1 we have the estimates

|F ′(ζ )|�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M1|s|η(1 − τ)μ−1 + M2(1 − τ)μ+η−1 + M3, if μ + η < 1;
M1|s|η(1 − τ)μ−1 + M2 log 1

1−τ
+ M3, if μ + η = 1;

M1|s|η(1 − τ)μ−1 + M2, if μ<1 ∧ μ + η>1;
M1|s|η · log 1

1−τ
+ M3, if μ = 1;

M1, if μ>1;
(4.9)
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and

|F(τ ) − F(1)| �

⎧⎪⎨
⎪⎩

N (1 − τ)μ+η, if μ + η < 1;
N (1 − τ) log 1

1−τ
, if μ + η = 1;

N (1 − τ), if μ + η > 1,

(4.10)

and

|F(eis) − F(1)| �

⎧⎪⎨
⎪⎩

N |s|μ+η, if μ + η < 1;
N |s| log 1

|s| , if μ + η = 1;
N |s|, if μ + η > 1.

(4.11)

Here N, M1, M2, M3 depends on M, η, μ and δ.

By repeating the proof of the theorem of Hardy and Littlewood [7, Theo-
rem 3, p. 411] and [7, Theorem 4, p. 414], we can state the following two theorems.

Lemma 4.4 Let μ ∈ (0, 1) and let Dδ = {z = rei(s+s0) : 1/2 � r � 1, s ∈ (−δ, δ)}.
Assume that f is a holomorphic mapping defined in the unit disk so that

| f ′(z)| � M(1 − |z|)μ−1,

where 0 < μ < 1 and z ∈ Dδ . Then the radial limit

lim
τ→1−0

f (τeiθ ) = f (eiθ )

exists for every θ ∈ (−δ + s0, δ + s0) and we have there the inequality

| f (w) − f (w′)| � N |w − w′|μ, w,w′ ∈ Dδ,

where N depends on M and μ. The converse is also true.

Lemma 4.5 Let μ ∈ (0, 1). Assume that f is continuous harmonic mapping on the
closed unit disk and satisfies on a small arc � = {eiθ : |θ − s0| < δ} the condition:

| f (eis) − f (eit )| � A|t − s|μ, eit , eis ∈ �,

for almost every points s and t. Then f satisfies the Hölder condition

| f (z) − f (w)| � B|z − w|μ

for z, w ∈ Dδ = {z = reis : 1/2 � r � 1, s ∈ (−δ + s0, δ + s0)}.
We now reformulate a result of Privalov [7, p. 414, Theorem 5] in its local form

(w.r.t. the boundary).
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Lemma 4.6 Letμ ∈ (0, 1). Assume that f = u+iv is a holomorphic bounded function
defined on the unit diskD and assume that u satisfies the condition |u(eit )−u(eis)| �
M |eit − eis |μ, for almost every s and t so that |s − s0| < δ and |t − s0| < δ. Then
there is a constant N depending on M and μ so that | f (z) − f (w)| � N |z − w|μ for
z, w ∈ Dδ , where

Dδ = {z = reis : 1/2 � r � 1, |s − s0| � δ}.

Proof of Lemma 4.6 From Schwarz formula we have

f (ζ ) = 1

2π

∫ 2π

0
u(eit )

eit + ζ

eit − ζ
dt + iC .

Thus

f ′(ζ ) = 2

2π

∫ 2π

0

u(eit )eit dt

(eit − ζ )2
= 1

π

∫ 2π

0

u(eit ) − u(eis)

(eit − ζ )2
eit dt, ζ = reis .

Let ζ = reis ∈ Dδ . Then we get

| f ′(ζ )| � 1

2π

∫ π

−π

|u(ei(s+t)) − u(eis)|
1 − 2r cos t + r2

dt .

If t ∈ [−π, π ], then

1 − 2r cos t + r2 � (1 − r)2 + 4r

π2 t
2.

Further, if s ∈ (s0 − δ, s0 + δ), t ∈ (−δ, δ) then we get

|u(ei(s+t)) − u(eis)| � K |t |μ.

If t ∈ [−π, π ] \ (−δ, δ), then

|u(ei(s+t)) − u(eis)| � 2M ≤ 2M

δμ
|t |μ.

The conclusion is that

| f ′(ζ )| � N

(1 − |ζ |)1−μ
,

for ζ ∈ Dδ. Then from Lemma 4.4 we get the desired result. ��
Repeating the proof of the preceding lemma, we also obtain the following pointwise

statement.
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Lemma 4.7 Let μ ∈ (0, 1) and δ > 0. Assume that f = u + iv is a holomorphic
bounded function defined on the unit disk D and assume that u satisfies the condition
|u(eit ) − u(eis0)| � M |eit − eis0 |μ, for almost every t: |t − s0| < δ. Then there is a
constant N so that

| f ′(reis0)| � N

(1 − r)1−μ

for 0 < r < 1.

Nowwe continue the proof of Lemma 4.2. Observe that β < 1/2 and so β(1+α) <

1. For Fp(z) = i(h p(z) − gp(z)) we get from (4.9)

|F ′
p(τ )| � C(1 − τ)(1+α)β−1, (4.12)

for 1/2 � τ < 1. Since

Fp ◦ �−1
p (z) = F1 ◦ �−1

1 (z), (4.13)

for z ∈ �1(D) ∩ �p(D) = A1 ∩ Ap. (and for |p| = ρ, Fp ◦ �−1
p (z) = Fρ ◦ �−1

ρ (z),
for z ∈ Aρ ∩ Ap)), we get that

|F ′
p(z)| � C(1 − |z|)(1+α)β−1, (4.14)

for all z ∈ Dp,ε := {z = reit : 1/2 � |z| < 1, t ∈ (−ε, ε)}. Further since p = 1
is not a special point we get that (4.14), is valid for all z ∈ Dp,ε := {z = reit+i t0 :
1/2 � |z| < 1, t ∈ (−ε, ε)}. Here p = eit0 or p = ρeit0 . Recall that ε > 0 is small
enough so that, for every point q ∈ ∂�, the graph of ∂� after a rotation and translation
has the form (x(eit ), φ(x(eit ))), t ∈ (−ε, ε).

Then from (4.14) and Lemma 4.4 we get that Fp is C 0,(1+α)β in Dp,ε .
Let

Gp(z) = gp(z) + h p(z). (4.15)

Then we also have

Gp ◦ �−1
p (z) = G1 ◦ �−1

1 (z), (4.16)

for z ∈ �1(D) ∩ �p(D) = A1 ∩ Ap. Then we have

(
G ′

p(z)
)2 +

(
F ′
p(z)

)2 = 4g′
p(z)h

′
p(z) = 4

(
�′

p(z)

�p(z)

)2

. (4.17)
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Since the right hand side of (4.17) is bounded, it follows thatGp is (1+α)β Hölder
continuous. Namely

∣∣∣G ′
p(z)(1 − |z|)1−(1+α)β

∣∣∣2 �
∣∣∣∣2 �′(z)

�p(z)
(1 − |z|)1−(1+α)β

∣∣∣∣
2

+
∣∣∣F ′

p(z)(1 − |z|)1−(1+α)β
∣∣∣2 � N0.

Now we have

h p = 1

2
(i Fp + Gp), gp = 1

2
(−i Fp + Gp). (4.18)

Since f p = gp + h p and f p(eit ) = γ (x(eit )), where γ (x) = (x, φ(x)) ∈ C 1,α , it
follows that x(eit ) = 
G(eit ) and therefore

x ∈ C 0,(1+α)β(∂Dp,ε ∩ ∂D). (4.19)

Chose β < 1/2 so that none of numbers (1 + α)kβ is equal to 1 for every k. Let
n be so that (1 + α)nβ < 1 < (1 + α)n+1β. Then by successive application of the
previous procedure we get

|F ′
p(z)| � M(1 − |z|)(1+α)nβ−1, z = ρeis, 1/2 < ρ < 1, s ∈ (−ε, ε),

and

|G ′
p(z)| � M(1 − |z|)(1+α)nβ−1, z = ρeis, 1/2 < ρ < 1, s ∈ (−ε, ε).

Then we get

|Fp(w) − Fp(w
′)| � N |w − w′|(1+α)nβ, w,w′ ∈ Dε,

|Gp(w) − Gp(w
′)| � N |w − w′|(1+α)nβ, w,w′ ∈ Dε,

where N depends on M and μ and so

|Fp(e
it ) − Fp(e

is)| � N |s − t |(1+α)nβ,

and

|Gp(e
it ) − Gp(e

is)| � N |s − t |(1+α)nβ,

for |s| < ε, |s| < ε. Thus

x ∈ C 0,(1+α)nβ(∂Dp,ε ∩ D),
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and, as in (4.6) and (4.32) we get

| f p(eit ) − f p(e
is)|

� CL1+α
0 |s − t |(1+α)nβ{min{|s|(1+α)nαβ, |t |(1+α)nαβ} + |t − s|(1+α)nαβ}.

From Lemma 4.3, for μ = (1 + α)nβ and η = (1 + α)nαβ, by choosing s = 0, we
get

|Fp
′(τ )| � M2, τ ∈ (1/2, 1). (4.20)

Since the functions F ′
p(z) and 4 (�′(z))2

�p
2(z)

are bounded in [1/2, 1], it follows that

G ′
p(z) is also bounded in [1/2, 1]. Let M0 > 0, so that

|F ′
p(τ )| � M0, |G ′

p(τ )| � M0, τ ∈ (1/2, 1].

Recall that

h p = 1

2
(i Fp + Gp), gp = 1

2
(−i Fp + Gp).

Thus we get

|Dfp(τ )| = |g′
p(τ )| + |h′

p(τ )| � 2M0.

Then we get

|Df (τ )| = | fζ (τ )| + | fζ̄ (τ )| � 2L0�0, ρ � τ � ρ1 ∨ ρ2 < τ < 1, (4.21)

where ρ1 < ρ2 are certain positive constants and

�0 = max
z∈D |�′(z)|.

Since the real interval [ρ, 1] has not a special geometric character for Aρ , we get that

|Df (z)| = | fζ (z)| + | fζ̄ (z)| � 2�0M2, z ∈ Bρ(ρ1, ρ2), (4.22)

where Bρ(ρ1, ρ2) = {z = τeis : ρ < τ � ρ1 ∨ ρ2 < τ < 1, s ∈ [0, 2π)}.
Since f ∈ C∞(Aρ) we get f ∈ C 0,1(Aρ) as claimed, and thus the proof of

Lemma 4.2 is finished. ��
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4.2 Theminimizer isC 1,˛′
up to the boundary

We continue to use the notation from Sects. 2.1 and 4.1. The constant C that appear
in the proof is not the same and its value can vary from one to the another appearance,
but it is global and the same for all points of ∂Aρ . Assume that f = u+ iv : Aρ → �

is a diffeomorphic minimizer, where Aρ = {z : ρ < |z| < 1}, we need to show that
is C 1,α′

(Aρ), provided that ∂� ∈ C 1,α . We only need to prove that f is C 1,α′
in

small neighborhood of p ∈ ∂Aρ . We also work with f p = f ◦ �p : D → f (Ap)

instead of f , where �p(1) = 1 as in the previous part of the paper. We will show
that f p ∈ C 1,α′

(Dp), where Dp = {z = reis+is0 : 1/2 � r < 1, s ∈ (−ε, ε)},
where p/|p| = eis0 , and ε > 0 is a small enough positive constant valid for all points
p ∈ ∂Aρ .

Assume as before that p = 1 and f (p) = 0 = q ∈ ∂�. Recall that � = �p =
{eiθ : |θ | � ε}. We already proved that f is Lipschitz continuous. We know as well
that γ (x) = (x, φ(x)) ∈ C 1,α . Since f (eiθ ) = γ (x(eiθ )), we have that x = x(eiθ ) is
Lipschitz continuous.

Since f is a diffeomorphism, there exists a non-decreasing continuous function
x : � → R so that

f (eit ) = u(eit ) + iv(eit ) = γ (x(eit )).

We can also assume that

∂t x(e
it ) � 0 (4.23)

for almost every t , because f is a restriction of a harmonic diffeomorphism between
domains and by Proposition 1.6 it is monotone at the boundary.

It follows from (4.4) and the fact that x is Lipschitz and x(1) = 0 that v is differ-
entiable with respect to θ for θ = 0, i.e. in 1 and

∂θv(1) = ∂θv(eiθ )|θ=0 = 0. (4.24)

Therefore

|∂θv(eiθ ) − ∂θv(1)| = |∂θv(eiθ )|
= |φ′(x(eiθ ))| · |∂θ x(e

iθ )|
� C |x(eiθ )|α � C |θ |α,

(4.25)

holds for a.e. θ in a certain interval. Recall from (4.1) that vθ = 
(z(g′ − h′)), so
from Lemma 4.7 we conclude that

|(z(g′ − h′))′(τ )| � C(1 − τ)α−1, 1/2 � τ � 1. (4.26)
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We also recall that we defined

k1(z) = i(g′(z) + h′(z)), k2(z) = h′(z) − g′(z). (4.27)

In view of (2.3)

k3(z) = √
4h′(z)g′(z) =

√
4c

(�′
p(z))

2

�2
p(z)

. (4.28)

Then from (4.26) we have that the following limit

k2(1) = i∂t (h(eit ) − g(eit ))|t=0

exists. Moreover, it can be assumed that

k2(1) = i∂t (h(eit ) − g(eit )),

because

lim
τ→1

h′(τeis) = −ie−is∂t h(eit )|t=s

lim
τ→1

g′(τeis) = −ie−is∂t g(e
it )|t=s

for almost every s ∈ (−π, π). This follows from the Riesz theorem [7, Theo-
rem 1, p. 409], because |h′| and |g′| are bounded. Moreover we have from (4.26)

|k2(1) − k2(τ )| � C(1 − τ)α, 1/2 � τ � 1. (4.29)

We conclude that

k3(1) = 2 lim
r→1

√
h′(r)g′(r)

exists and

|k3(1) − k3(τ )| � C |1 − τ |α, 1/2 � τ < 1. (4.30)

Further since

x(eiθ ) = u(eiθ ) = 
( f (eiθ )) = 
(g + h),

we get

∂θ x(e
iθ ) = 


[
ieiθ (g′(eiθ ) + h′(eiθ ))

]
= 


[
eiθk1(e

iθ )
]

� 0. (4.31)
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Then the following equality is important in our approach

k21 + k22 + k23 = 0. (4.32)

We now proceed as Nitsche did in [27]. So k21(τ ) = −k22(τ ) − k23(τ ).

It follows that the following limit

k21(1) := lim
τ→1

k21(τ ) = −k22(1) − k23(1),

exists. Therefore we get

|k1(1)2 − k1(τ )2| = |k22(1) − k22(τ ) + k23(1) − k23(τ )|.

Then from (4.29) and (4.30) we get

|k1(τ )2 − k1(1)
2| � C |τ − 1|α ≡ ε, 1/2 � τ < 1. (4.33)

From (4.24), in view of (4.1), we get


(k2(1)) = 0. (4.34)

Further, from (4.32), we have


(k1(1))�(k1(1)) + 
(k2(1))�(k2(1)) + 
(k3(1))�(k3(1)) = 0 (4.35)

and


2(k1(1)) + 
2(k2(1)) + 
2(k3(1))

= �2(k1(1)) + �2(k2(1)) + �2(k3(1)).
(4.36)

Notice the following important fact, the relations (4.35) and (4.36) make sense for
almost every p ∈ ∂Aρ . Namely k1(z) = P[ki |T](z), i = 1, 2, 3. We assume that
p = 1 is one of such points. From Lemma 2.6 it follows that k3(1) is a real or an
imaginary number. Therefore we have 
(k3(1))�(k3(1)) = 0. Thus


(k1(1))�(k1(1)) = 0. (4.37)

Nowwe divide the proof into two cases, and remember that the case c = 0 coincides
with the case when the minimizer is a conformal biholomorphism:

(1)We first consider the case c < 0 and put ξ = 1. In this case
k3(1) = 0. But then
cannot be �(k1(1)) �= 0, because in that case 
(k1(1)) = 0, and therefore by (4.36),
we get �2(k1(1)) + �2(k2(1)) + �2(k3(1)) = 0. The conclusion is that �(k1(1)) = 0.
Observe also that

k1(1) =
√

−�2(k2(1)) − 4c � 2
√−c > 0. (4.38)

123



1666 D. Kalaj, B. Lamel

(2) Then we consider the case c > 0 and put ξ = −isign�k1(1) if �k1(1) �= 0 and
ξ = 1 for the case �k1(1) = 0.

Then we apply the following lemma for w1 = ξk1(τ ) and w2 = ξk1(1) and for ε

defined in (4.33).

Lemma 4.8 [27] Let w1 = a + ib and w2 = ω be complex numbers satisfying the
inequalities ω � 0 and |w2

1 −w2
2| � ε for some ε > 0. Then either |w1 −w2| � 3

√
ε

or |w1| � √
ε and a < 0, ω > 0.

Then as in [27] we get

|k1(τ ) − k1(1)| � C(1 − τ)α/2, 1/2 � τ < 1. (4.39)

Recall now that

k1(z) = G ′
p(z) k2(z) = F ′

p(z). (4.40)

Then from (4.13) and (4.16) we get

�′
p(F1(z))F

′
p(z) = �′

1(Fp(z))F
′
1(z) (4.41)

and

�′
p(G1(z))G

′
p(z) = �′

1(Gp(z))G
′
1(z) (4.42)

for z ∈ Ap ∩ A1. Therefore from (4.29), (4.30) and (4.39), in a small ε−neighborhood
of p = 1, we get the inequalities

|k j (τeit ) − k j (e
it )| � C(1 − τ)α/2, 1/2 � τ < 1, j = 1, 2 (4.43)

for almost every t ∈ (−ε, ε).
Further as in [27, p. 325-326] we obtain that

|k j (eit ) − k j (e
is)| � C |s − t | α

α+2 , j = 1, 2

and almost every t, s ∈ (−ε, ε). The function k3 has the same behavior a priori. From
this it follows that

k j ∈ C 0, α
α+2 (Dp,ε), j = 1, 2, 3. (4.44)

This concludes the case c � 0.
Now we continue to prove the case c � 0. This case we use of the parameterization

ϕ(z) =
(


 f (z),� f (z), 2
√−c log

1

|z|
)

. (4.45)
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By using this we get that ϕ(Aρ) = � is a doubly connected minimal surface bounded
by two Jordan curves

ϒ1 = {(x, y,−2
√−c log r), (x, y) ∈ �1}

and

ϒ2 = {(x, y,−2
√−c log R), (x, y) ∈ �2},

where �1 and �2 are the inner and outer boundaries of �. Moreover ∂� ∈ C 1,α if and
only if ∂� ∈ C 1,α .

This time Proposition 4.1 will imply the result.

From Proposition 4.1 we obtain that f ∈ C 1,α(�−1
p (Ap)), where Ap is a small

neighborhood of a fixed point p. Notice that Ap = p/|p|A1 or Ap = p/|p|Aρ ,
where A1 and Aρ are fixed domains, whose boundary contains a Jordan arc �, whose
interior contains 1 respectively ρ. Since Aρ = �−1

p (Ap), we get that f ∈ C 1,α(Aρ)

as claimed.
Thus we have finished the proof of Theorem 1.1.

5 Proof of Theorem 1.2

Having proved Theorem 1.1 this proof is a simple matter.We can reformulate a similar
statement to Proposition 4.1, which is valid for higher-differentiability of themapping,
and then use the harmonicmappingϕ defined (4.45), in order to get thatϕ ∈ C n,α(Aρ),
provided that ∂� ∈ C n,α(Aρ),which is equivalentwith the condition ∂� ∈ C n,α(Aρ).

6 Concluding remark

We expect that the following statement is true:

Conjecture 6.1 Assume that f : D → � is a energy minimal diffeomorphism of the
energy between two domains with C 1,α boundaries. If Mod(D) � Mod(�) then the
diffeomorphic minimizer of Dirichlet energy, which is shown to have aC 1,α′

extension
up to the boundary is diffeomorphic on the boundary also and the extension is C 1,α .

This conjecture is motivated by the existing result described in Proposition 1.3
and the example presented in (2.13) of the unique minimizer (up to the rotation) of
Dirichlet energy between annuli Ar and AR , that maps the outer boundary onto the
outer boundary (see [1] for details). The mapping is a diffeomorphism between Ar

and AR , provided that

R <
2r

1 + r2
. (6.1)
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If R = 2r
1+r2

, and 0 < r < 1, then the mapping

w(z) = r2 + |z|2
z̄(1 + r2)

is a harmonicminimizer (see [1]) of theEuclidean energy ofmappings betweenA(r , 1)
and A( 2r

1+r2
, 1), however

|wz| = |wz̄| = 1

1 + r2

for |z| = r , and so w is not bi-Lipschitz.
Note that (6.1) is satisfied provided that ModAr � ModAR . The inequality (6.1)

(with � instead of <) is necessary and sufficient for the existence of a harmonic
diffeomorphism betweenAr andAR a conjecture raised by Nitsche in [28] and proved
by Iwaniec, Kovalev and Onninen in [11], after some partial results given by Lyzzaik
[26], Weitsman [36] and Kalaj [19]. If

R >
2r

1 + r2
,

then the minimizer of Dirichlet energy throughout the deformationsD(Ar ,AR) is not
a diffeomorphism (see [1] and [3, Example 1.2]).

We want to refer to one more interesting behavior that minimizers of energy share
with conformal mappings. Namely, if f is a diffeomorphic minimizer of Dirichlet
energy between the domains Aρ and �(�,�1) so that � and �1 are convex, then
f (tT) is convex for t ∈ (ρ, 1) [22]. Further if � and �1 are circles, then f (tT) is a
circle [23].

Appendix: Proof of Lemma 3.2

For a ∈ C and r > 0, put D(a, r) := {z : |z − a| < r} and define �r = �r (z0) =
D ∩ D(z0, r). Denote by kτ the circular arc whose trace is {ζ ∈ D : |ζ − z0| = τ }.
Lemma 6.2 (The length-area principle) [18] Assume that f is a (K , K ′)− q.c. on �r ,
0 < r < r0 � 1, z0 ∈ T . Then

F(r) :=
∫ r

0

l2τ
τ
dτ ≤ πK A(r) + π

2
K ′r2 , (6.2)

where lτ = | f (kτ )| denote the length of f (kτ ) and A(r) is the area of f (�r ).

Proof of Lemma 3.2 Let� be a conformal mapping of �(�) onto the unit disk , where

�(�) is the Jordan domain bounded by �, so that �( f (1)) = 1, �( f (e±i 2π3 )) =
e±i 2π3 .
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Then � ◦ f is a normalized (K1, K ′
1) quasiconformal mapping near T ⊂ ∂Aρ . For

a ∈ C and r > 0, put D(a, r) := {z : |z − a| < r}. Since � is a diffeomorphism near
T, the inequality (3.3) will be proved for f if we prove it for � ◦ f .

It is clear that if z0 ∈ T, then, because of normalization, f (T ∩ D(z0, 1)) has
common points with at most two of three arcs w0w1, w1w2 and w2w0. (Here w0,
w1, w2 ∈ � divide � into three arcs with the same length such that f (1) = w0,
f (e2π i/3) = w1, f (e4π i/3) = w2, and T ∩ D(z0, 1) do not intersect at least one of
three arcs defined by 1, e2π i/3 and e4π i/3).

Let κτ = {t ∈ [0, 2π ] : z0 + τeit ∈ kτ }. Let lτ = | f (kτ )| denotes the length of
f (kτ ). Let �τ := f (T ∩ D(z0, τ )) and let |�τ | be its length. Assume w and w′ are
the endpoints of �τ , i.e. of f (kτ ). Then |�τ | = d�(w,w′) or |�τ | = |�|− d�(w,w′).
If the first case holds, then since � enjoys the B−chord-arc condition, it follows
|�τ | � B|w − w′| � Blτ . Consider now the last case. Let �′

τ = � \ �τ . Then �′
τ

contains one of the arcs w0w1, w1w2, w2w0. Thus |�τ | � 2|�′
τ |, and therefore

|�τ | � 2Blτ .

Using the first part of the proof, it follows that the length of boundary arc �r of
f (�r ) does not exceed 2Blr which, according to the fact that ∂ f (�r ) = �r ∪ f (kr ),
implies

|∂ f (�r )| � lr + 2Blr . (6.3)

Therefore, by the isoperimetric inequality

A(r) � |∂ f (�r )|2
4π

� (lr + 2Blr )2

4π
= l2r

(1 + 2B)2

4π
.

Employing now (6.2) we obtain

F(r) :=
∫ r

0

l2τ
τ
dτ � Kl2r

(1 + 2B)2

4
+ πK ′

2
r2.

Observe that for 0 < r � 1 − ρ there holds r F ′(r) = l2r . Thus

F(r) � Kr F ′(r) (1 + 2B)2

4
+ πK ′

2
r2.

Let G be the solution of the equation

G(r) = KrG ′(r) (1 + 2B)2

4
+ πK ′

2
r2, G(0) = 0,

defined by

G(r) =
πK ′
2

K (1+2B)2

4 + 1
r2 = 2πK ′

K (1 + 2B)2 + 4
r2.
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It follows that for

β = 2

K (1 + 2B)2

there holds

d

dr
log([F(r) − G(r)] · r−2β) � 0,

i.e. the function [F(r) − G(r)] · r−2β is increasing. This yields

[F(r) − G(r)] � [F(1 − ρ) − G(1 − ρ)](r/(1 − ρ))2β

� C(K , K ′, B, ρ, f )r2β.

Now for every r � 1 − ρ there exists an r1 ∈ [r/√2, r ] such that

F(r) =
∫ r

0

l2τ
τ
dτ �

∫ r

r/
√
2

l2τ
τ
dτ = l2r1 log

√
2.

Hence,

l2r1 � C1(K , K ′, B, ρ, f )

log 2
r2β.

If z is a point with |z| � 1 and |z − z0| = r/
√
2, then by (6.3)

| f (z) − f (z0)| � (1 + 2B)lr1 .

Therefore

| f (z) − f (z0)| � H |z − z0|β,

where

H = H(K , K ′, B, ρ, f ).

Now for z1, z2 ∈ T, then the arch (z1, z2) can be divided into Q = Q(ρ) equal
arcs by points w0, . . . , wQ , so that |wi − wi+1| � 1−ρ√

2
. Then we get the inequality

| f (z1) − f (z2)| �
Q∑
j=1

| f (w j ) − f (w j−1)| � QH |w1 − w2|β � QH |z1 − z2|β.

Thus

| f (z1) − f (z2)| � L(K , K ′, B, ρ, f )|z1 − z2|β. (6.4)

123



Minimisers and Kellogg’s theorem 1671

In order to deal with the inner boundary, we take the composition

F(z) = 1

f (ρ/z) − a
,

which maps the annulusAρ into�′ = {1/(z−a) : z ∈ �}. Here a is a point inside the
inner Jordan curve. Then �′ = �′(�′, �′

1) is a doubly connected domain with C 1,α

boundary.
Now we construct a conformal mapping �1 between the domain �(�′) and the

unit disk and repeat the previous case in order to get that the inequality (3.3) does hold
in both boundary components. ��
Acknowledgements We would like to thank the anonymous referee for a large number of remarks that
helped to improve this paper. His/her idea is used to shorten the proof of the case c < 0.
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