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Abstract
We construct a singular solution of a stationary nonlinear Schrödinger equation onR2

with square-exponential nonlinearity having linear behavior around zero. In view of
Trudinger-Moser inequality, this type of nonlinearity has an energy-critical growth.
We use this singular solution to prove non-uniqueness of mild solutions for the Cauchy
problem of the corresponding semilinear heat equation. The proof relies on explicit
computation showing a regularizing effect of the heat equation in an appropriate func-
tional space.

1 Introduction

In this paper, we consider the Cauchy problem for the following semilinear heat
equation
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{
u̇ − �u = f (u) in (0,∞) × R

d ,

u(0, x) = u0(x) in Rd ,
(1.1)

whereu(t, x) : (0,∞)×R
d → R,d ≥ 2 is the unknown function, f is the nonlinearity

and u0 ∈ Lq(Rd) with 1 ≤ q ≤ ∞ is the given initial data.
It is well known that when f is C1(R,R), the Cauchy problem (1.1) possesses a

unique classical solution if the initial data u0 ∈ L∞(Rd). For unbounded initial data,
this equation has been studied intensively since the pioneering work of Weissler [18].
For instance, in the pure power case i.e. f (u) = |u|p−1u (p > 1), equation (1.1)
becomes scale invariant, that is, if u(t, x) satisfies (1.1), then so does

uλ(t, x) = λ
2

p−1 u(λ2t, λx)

for any λ > 0. Moreover, if one defines the index

qc = d(p − 1)

2
,

then the Lebesgue space Lqc (Rd) becomes invariant and we have ‖uλ‖Lqc = ‖u‖Lqc

for all λ > 0. The critical exponent qc then plays an important role for the well-
posedness of the Cauchy problem. Indeed, first recallWeissler’s result [18] concerning
the subcritical case q > qc or the critical case q = qc > 1. Weissler [18] proved that
for any u0 ∈ Lq(Rd), there exists a local time T = T (u0) > 0 and a solution u ∈
C([0, T ); Lq(Rd)) ∩ L∞

loc((0, T ); L∞(Rd)) to (1.1). After that, Brezis and Cazenave
[1] proved the unconditional uniqueness of Weissler’s solutions i.e. solution is unique
in C([0, T ); Lq(Rd)) when the subcritical case q > qc, q ≥ p or the critical case
q = qc > p. In the supercritical case q < qc, Weissler [18], and Brezis and Cazenave
[1] indicated that, for a specific initial data, there is no local solution in any reasonable
weak sense. Moreover, Haraux and Weissler [7] proved non-uniqueness of the trivial
solution in C([0, T ); Lq(Rd)) ∩ L∞

loc((0, T ); L∞(Rd)) when 1 + 2/d < p < (d +
2)/(d − 2).

In the critical case q = qc and d ≥ 3, when qc > p, Weissler [18] proved the exis-
tence of solutions to (1.1) and Brezis and Cazenave [1] obtained the unconditional
uniqueness of the solutions. In the double critical case of q = qc = p (= d/(d − 2)),
Weissler [19] proved the conditional well-posedness (uniqueness in a subspace of
C([0, T ); Lq(Rd))). In the case where the underlying space is the ball of Rd with
Dirichlet boundary condition,Ni and Sacks [15] showed that the unconditional unique-
ness fails, while Terraneo [17] and Matos and Terraneo [12] extended this result to the
entire space Rd (d ≥ 3).

We note that the critical exponent qc is also important for the blow-up problem (1.1).
Let u0 ∈ L∞(Rd) and T (u0) be the maximal existence of the time of the classical
solution u. It is known that if T (u0) < ∞, the solution u satisfies limt→T ‖u(t)‖L∞ =
∞ andwe say that the solution u blows up in finite time and T (u0) is called the blow-up
time of u. In particular, the critical Lqc norm blow-up problem has attracted attention
for a long time. Namely, it is a question whether the solution satisfies
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Non-uniqueness for an energy-critical heat... 319

sup
t∈(0,T )

‖u‖Lqc = ∞

or not when T (u0) < ∞. Concerning this problem, Giga andKohn [6] showed that if u
is a positive radially decreasing blow-up solution to (1.1), Then, for any neighborhood
N of 0 in Rd , limt→T ‖u(t)‖Lqc ,∞(N ) = ∞, where

‖u‖Lqc ,∞(N ) = sup
σ>0

σ | {x ∈ N | |u(x)| > σ } | 1
qc

and | · | is the Lebesgue measure on R
d . Since ‖u‖Lqc ,∞(N ) ≤ ‖u‖Lqc , it follows

that limt→T ‖u(t)‖Lqc = ∞. Recently, Mizoguchi and Souplet [14] gave light on
this problem and showed that if u is a type I blow-up solution of (1.1), that is,
lim supt→T (T − t)1/(p−1)‖u(t)‖L∞ < ∞, then we have limt→T ‖u(t)‖Lqc = ∞.

Now, let us pay our attention to the two dimensional case. When we consider the
two space dimension, we see that any exponent 1 < p < ∞ is subcritical, and thanks
to the result ofWeissler [18], we have the local well-posedness of the Cauchy problem
in Lq(R2) (1 < p≤ q < ∞). However, for exponential type nonlinearities, like
f (u) = ±u(eu

2 − 1), the result of Weissler [18] is not applicable for any Lebesgue
space Lq(R2)(1 < q < ∞). On the other hand, we can show the local well-posedness
for u0 ∈ L∞(R2), as we mentioned first. However, L∞(R2) is the subcritical space
for the problem (1.1) with d = 2 and exponential type nonlinearities. Therefore, one
can wonder if there is any notion of criticality in two space dimensions. In this regard,
Ibrahim, Jrad, Majdoub and Saanouni [8] have considered the following problem in
two space dimensions,

{
u̇ − �u = f0(u) := ±u(eu

2 − 1) in (0,∞) × R
2,

u(0, x) = u0(x) in R2.
(1.2)

The nonlinearity f0(u) has an energy-critical growth in view of Trudinger-Moser
inequality. In [8], the authors proved the local existence and uniqueness in
C([0, T ], H1(R2)) of the solution to (1.2) with the initial data u0 ∈ H1(R2).

On the other hand, it is expected that the problem (1.2) for the heat equation can be
solved in spaces which are defined by an integrability of functions such as the Orlicz
space as an extension of the class of Lebesgue spaces. Ruf and Terraneo [16] showed
the local existence of a solution to (1.2) for small initial data in the Orlicz space expL2

defined by

expL2(R2) :=
{
u ∈ L1

loc(R
2) : such that

∫
R2

exp(u2/λ2) − 1 dx < ∞,

for some λ > 0

}

endowed with Luxemburg norm

‖u‖expL2 := inf

{
λ > 0 :

∫
R2

exp(u2/λ2) − 1 dx ≤ 1

}
.
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320 S. Ibrahim et al.

Subsequently, Ioku [9] has shown that these local solutions are indeed global-in
time, and the behavior of f0(u) ∼ um near u ∼ 0 with m ≥ 3 was important in his
result. Later on, Ioku, Ruf and Terraneo [10] proved that there is no local solution do
not exist for the specific initial data

u∗(r) = a(− log r)
1
2 for r ≤ 1, a � 1, and u∗(r) = 0, elsewhere

that belongs to the Orlicz space, while they showed the local well-posedness (local
existence and uniqueness) for initial data in the subclass of the Orlicz space

expL20(R
2) :=

{
u ∈ L1loc(R

2) : such that
∫
R2

exp(αu2) − 1 dx < ∞ for every α > 0

}

The aim of this paper is to construct an explicit initial data, with neither small nor
too large norm in Orlicz space, for which two corresponding distinct solutions exist.
The idea is to use the concept of singular solutions as in Ni and Sacks [15]. Before
stating our result, let us recall the strategy of the proof of [15]. Ni and Sacks first
constructed a singular static solution φ∗ to (1.1) in the unit ball. Namely, φ∗ satisfies
the following: {

−�φ = f (φ) in B1,

φ = 0 on ∂B1, limx→0 φ(x) = ∞,
(1.3)

where B1 is the unit ball in Rd (d ≥ 3) and f (φ) = |φ|p−1φ. Then, they showed that
there exists a regular solution uR to the Dirichlet problem corresponding to (1.1) with
u(0, x) = φ∗. Setting uS = φ∗, we see that both of uS and uR are solutions to (1.1),
but uS �= uR because for any t > 0, uR(t, ·) ∈ L∞(B1) while uS /∈ L∞(B1) (the
subscripts S and R indicating ‘singular’ and ‘regular’ solutions). For the entire space
R
d , Terraneo [17] constructed a solution φ ∈ C2(Rd\{−x0, x0}) to the equation{

−�φ = f (φ) in Rd ,

lim|x |→∞ φ(x) = 0
(1.4)

such that lim supx→x0 φ(x) = ∞ and lim inf x→−x0 φ(x) = −∞, where d ≥ 3, x0 =
(1, . . . , 1) and f (φ) = |φ|p−1φ. However, we cannot apply the method of [15] nor
of [17] to two dimensional entire space R2 for f0(u) = (eu

2 − 1)u directly. Actually,
there is no positive solution to the equation (1.4) with f (u) = (eu

2 − 1)u (see the
proof of Theorem 2.1 below). For this reason, we consider

{
u̇ − �u = fm(u) in (0,∞) × R

2,

u(0, x) = u0(x) in R2,
(1.5)

where our nonlinearity fm , which depends on m > 0, satisfies

lim
u→∞

fm(u)

(eu2 − 1)u
= 1, lim

u→0

fm(u)

mu
= −1. (1.6)
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Non-uniqueness for an energy-critical heat... 321

See (2.17) below for the precise form of fm . Here, we would like to stress that the
essential characterization of the asymptotic form of our nonlinearity fm at infinity and
0 is just given by (1.6). Let X be the Fréchet space defined as the intersection of the
Lebesgue Banach spaces

X :=
⋂

1≤p<∞
L p(R2),

endowed with the metric

dist(u, v) =
∞∑
p=1

2−p ‖u − v‖L p

‖u − v‖L p + 1
.

Recall that the continuity of any map defined on X is equivalent to its continuity on
all L p spaces with 1 ≤ p < ∞.

Definition 1 (Mild solution) We call u a mild solution to (1.5) if the corresponding
integral equation

u(t) = et�u0 +
∫ t

0
e(t−s)� fm(u(s))ds

holds in C([0, T ), X), where et� denotes the heat semigroup on R
2.

Then, our main result is the following:

Theorem 1.1 There exist a positive mass m∗ > 0, a nonlinearity fm∗ satisfying (1.6),
an initial condition ϕ∗ ∈ X and a time T = T (ϕ∗) > 0 such that the Cauchy problem
(1.5) with u0 = ϕ∗ has two distinct mild solutions uS, uR ∈ C([0, T ), X).

Remark 1 (i) To prove Theorem 1.1, we construct a singular stationary solution ϕ∗ to
(1.5). Here, by a singular stationary solution, wemean a time independent function
which satisfies the equation (1.5) in the distribution sense on the whole domain
and diverges at some points. The result seems to be of independent interest.

(ii) We essentially use the condition limu→0 fm(u)/mu = −1 only for the decay of
a singular stationary soliton ϕ∗ to (1.5), that is, lim|x |→∞ ϕ∗(x) = 0. The other
argument in our proofworks evenwithout the condition. It is a challenging problem
to study whether non-uniqueness still hold without the condition or not.

Remark 2 After completing this paper, it has been brought to our attention that Ioku,
Ruf and Terraneo [11] obtained a similar non-uniqueness result for the following two
dimensional heat equation on a ball with Dirichlet boundary condition:

{
u̇ − �u = f (u) in (0,∞) × Bρ

u = 0 on (0,∞) × ∂Bρ

, (1.7)
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for some ρ > 0, and a nonlinearity f satisfying

f (u) :=
{

1
u3
eu

2
if |u| > β,

αu2 if |u| ≤ β,

with α = e5/2(5/2)−5/2 and β = (5/2)1/2. First, the authors constructed a stationary
singular solution ϕ∗ of (1.7). Then, they solved the Cauchy problem (1.7) with the
initial data u0(x) = μϕ∗ for μ > 0. They proved the following interesting result:

(i) If μ < 1, the equation (1.7) has a unique regular local-in-time solution
(ii) If μ = 1, the equation (1.7) has not only a singular solution uS(= ϕ∗) but also

a regular solution uR with the same initial data,
(iii) Ifμ > 1, the equation has no non-negative solution on any positive time interval.

See [11, Theorem 2.1] for a more precise statement of their trichotomy result. From
(ii), we see that non-uniqueness of a solution holds since there exists two distinct
solutions uS and uR with the same initial data. Thus, the strategy of the proof for the
non-uniqueness is same as that of our result. However, in addition to the fact that the
settings are different, the ways of constructing the singular and regular solutions are
not similar either. For example, their proof of the constructing of the singular stationary
solution ϕ∗ depended on the fact that the following equation

−U ′′ − 1

r
U ′ = 1

U 3 e
U2

, 0 < r < 1

has an explicit solution U = √−2 log r . On the other hand, the singular solution
we constructed is not explicit. We construct the singular solution in a ball by using
the contraction mapping theorem and extend it to the entire space by the shooting
method. Moreover, for the construction of the regular solution, they employed the
sub-super-solution method, while we employ the contraction mapping theorem.

Remark 3 The problem of uniqueness of solutions for PDEs is a classical and old issue
that can be tricky sometimes. It has caught a special attention in the last few years.
Among many others, one can refer to the pioneer works of De Lellis and Székelyhidi
[4] showing non-uniqueness of very weak solutions to the Euler problem. Their proof
relies on convex integration techniques, which more recently, have been upgraded to
show non-uniqueness of weak solutions of the Navier-Stokes system thanks to the
work of Buckmaster and Vicol [2]. Davila, Del Pino and Wei [3] constructed non-
unique weak solutions for the two-dimensional harmonic map, by attaching reverse
bubbling. In [5], Germain, Ghoul and Miura investigated the genericity of the non-
unique solutions of the supercritical heat flow map.

This paper is organized as follows. In Sect. 2, we construct a singular static soliton
ϕ∗ to (1.5). To this end, we first prove the existence of a singular soliton φ∗ to (1.3)
with f (φ) = eφ2

(φ − 1) in the ball in R
2, following Merle and Peletier [13]. Then,

we seek the singular stationary soliton ϕ∗ to (1.5) by the shooting method. In Sect. 3,
we shall show the existence of a regular solution to (1.5) with u|t=0 = ϕ∗ by the heat
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iteration and give a proof of Theorem 1.1. In Appendix A, we show a monotonicity
property of solution to the linear heat equation.

Notation

Throughout the paper, C denotes a positive constant, that does not depend on the
parameters, unless otherwise noted and may change from line to line.

2 Construction of singular soliton

2.1 Singular stationary solution on some disk

In this section, we construct a singular solution to the following elliptic equation on a
disk

{
−�u = u(eu

2 − 1) in BR,

u = 0 on ∂BR,
(2.1)

where R > 0. More precisely, we shall show the following:

Theorem 2.1 There exist R∞ > 0 and a singular solution u∞ ∈ C∞(BR∞\{0}) to
(2.1) with R = R∞ satisfying

u∞(x) = (−2 log |x | − 2 log(− log |x |) − 2 log 2)
1
2 + O((− log |x |)− 3

2 log(− log |x |))
as x → 0.

(2.2)

To prove Theorem 2.1, we look for radially symmetric solutions to (2.1). We first
pay our attention for 0 < r = |x | � 1 and employ the following Emden-Fowler
transformation:

y(ρ) = u(x), ρ = 2| log r |.

Then, we see that the equation in (2.1) is equivalent to the following:

− d2y

dρ2 = e−ρ

4
y(ey

2 − 1). (2.3)

We shall show the following:

Proposition 2.2 There exists�∞ > 0 and a solution y∞(ρ) to (2.3) for ρ ∈ [�∞,∞)

satisfying

y∞(ρ) = (ρ − 2 log ρ)
1
2 + O(ρ− 3

2 log ρ) as ρ → ∞.
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In order to prove Proposition 2.2, we write

y(ρ) = φ(ρ) + η(ρ), φ(ρ) := (ρ − 2 log ρ)
1
2 , (2.4)

and look for the ODE satisfied by η. We have

d2y

dρ2 = −ρ− 3
2

4
− 1

4
(φ−3 − ρ− 3

2 ) + φ−3
{
1

ρ
− 1

ρ2

}
+ φ−1ρ−2 + d2η

dρ2 . (2.5)

Now, since

y = ρ
1
2

(
1 − 2

log ρ

ρ

) 1
2 + η = ρ

1
2 + ρ

1
2

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ η,

and

ey
2−ρ = ρ−2ey

2−φ2 = ρ−2
{
1 + (y2 − φ2) +

(
ey

2−φ2 − 1 − (y2 − φ2)
)}

,

we obtain

yey
2−ρ = ρ−2

{
ρ

1
2 + ρ

1
2

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ η

}

×
{
1 + (y2 − φ2) +

(
ey

2−φ2 − 1 − (y2 − φ2)
)}

= ρ−2
{
ρ

1
2 + ρ

1
2

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ η

}

+ ρ−2(y2 − φ2)

{
ρ

1
2 + ρ

1
2

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ η

}

+ ρ−2
(
ey

2−φ2 − 1 − (y2 − φ2)
){

ρ
1
2 + ρ

1
2

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ η

}

= ρ− 3
2 + ρ− 3

2

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ ρ−2η

+ ρ− 3
2 (y2 − φ2) + ρ− 3

2 (y2 − φ2)

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ ρ−2(y2 − φ2)η

+ ρ−2
(
ey

2−φ2 − 1 − (y2 − φ2)
){

ρ
1
2 (1 − 2

log ρ

ρ
)
1
2 + η

}
.

In addition, since y2 − φ2 = 2φη + η2 = 2ρ
1
2 η + η2 + 2(φ − ρ

1
2 )η, we have

(y2 − φ2)ρ− 3
2 = 2η

ρ
+ ρ− 3

2 η2 + 2ρ− 3
2 (φ − ρ

1
2 )η.
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All this yields that

yey
2−ρ = ρ− 3

2 + ρ− 3
2

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ ρ−2η

+ 2
η

ρ
+ ρ− 3

2 η2 + 2ρ− 3
2 (φ − ρ

1
2 )η

+ (y2 − φ2)ρ− 3
2

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ ρ−2(y2 − φ2)η

+ ρ−2
(
ey

2−φ2 − 1 − (y2 − φ2)
) {

ρ
1
2 (1 − 2

log ρ

ρ
)
1
2 + η

}
.

(2.6)

From (2.3), (2.5) and (2.6), we have

ρ− 3
2

4
+ 1

4
(φ−3 − ρ− 3

2 ) − φ−3
{
1

ρ
− 1

ρ2

}
− φ−1ρ−2 − d2η

dρ2

= ρ− 3
2

4
+ ρ− 3

2

4

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ ρ−2

4
η

+ 1

2ρ
η + ρ− 3

2 η2

4
+ 1

2
ρ− 3

2 (φ − ρ
1
2 )η

+ 1

4
(y2 − φ2)ρ− 3

2

{
(1 − 2

log ρ

ρ
)
1
2 − 1

}
+ 1

4
ρ−2(y2 − φ2)η

+ ρ−2

4

(
ey

2−φ2 − 1 − (y2 − φ2)
) {

ρ
1
2 (1 − 2

log ρ

ρ
)
1
2 + η

}
− e−ρ y

4
.

Namely, η satisfies the following:

0 = d2η

dρ2 + 1

2ρ
η + f (ρ) +

6∑
i=1

gi (ρ, η) − e−ρ y

4
, (2.7)

where

f (ρ) = − 1

4
(φ−3 − ρ− 3

2 ) + φ−3
{
1

ρ
− 1

ρ2

}
+ φ−1ρ−2

+ ρ− 3
2

4

{(
1 − 2

log ρ

ρ

) 1
2 − 1

}
,

g1(ρ, η) = ρ−2

4
η, g2(ρ, η) = ρ− 3

2

2
(φ − ρ

1
2 )η, g3(ρ, η) = ρ− 3

2

4
η2,

g4(ρ, η) = 1

4
(y2 − φ2)ρ− 3

2

{(
1 − 2

log ρ

ρ

) 1
2 − 1

}
, g5(ρ, η) = ρ−2

4
(y2 − φ2)η,
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g6(ρ, η) = ρ−2

4

(
ey

2−φ2 − 1 − (y2 − φ2)
) {

ρ
1
2

(
1 − 2

log ρ

ρ

) 1
2 + η

}
.

To solve equation (2.7), we first consider the following linear equation: 1

d2η

dρ2 +
(

1

2ρ
+ 3

16ρ2

)
η = 0. (2.8)

Any solution η to (2.8) can be written explicitly as follows: we have

η(ρ) = A
(ρ) + B�(ρ)

for some A, B ∈ R, where


(ρ) = ρ
1
4 sin((2ρ)

1
2 ), �(ρ) = ρ

1
4 cos((2ρ)

1
2 ).

Namely, 
 and � are form the fundamental system of solutions to (2.8). For a given
function F , we seek a solution to the following problem:

{
d2η
dρ2 + ( 1

2ρ + 3
16ρ2 )η + F = 0, ρ � 1,

limρ→∞ η(ρ) = 0.
(2.9)

By the variation of parameters, we see that (2.9) is equivalent to the following integral
equation:

η(ρ) =
∫ ∞

ρ

(
(s)�(ρ) − 
(ρ)�(s))F(s)ds

=
∫ ∞

ρ

(ρs)
1
4 sin((2ρ)

1
2 − (2s)

1
2 )F(s)ds.

By integrating by parts, we can obtain the following:

Lemma 2.3 Let σ > 1. Then, we have

∫ ∞

ρ

sin((2ρ)
1
2 − (2s)

1
2 )s−σ log sds = − √

2ρ−σ+ 1
2 log ρ + O(ρ−σ− 1

2 log ρ),

∫ ∞

ρ

sin((2ρ)
1
2 − (2s)

1
2 )s−σds = − √

2ρ−σ+ 1
2 + O(ρ−σ− 1

2 ).

1 Equation (2.8) is obtained by removing the better decaying terms in right hand of (2.7) and by adding
3/(16ρ2) in the linear potential. By adding the term, we can write the solution to (2.8) just by the trigono-
metric functions. Otherwise, we need to use the Bessel functions of order 1. Thus, adding the extra term
makes the proof a bit simpler.
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Let g7(ρ, η) = − 3
16ρ2 η. In order to prove Theorem 2.1, we seek a solution to the

following problem:

{
d2η
dρ2 + ( 1

2ρ + 3
16ρ2 )η + f (ρ) + ∑7

i=1 gi (ρ, η) − e−ρ y
4 = 0, ρ � 1,

limρ→∞ η(ρ) = 0.
(2.10)

To this end, we prepare several estimates, which are needed later. First, note that

φ(ρ) = ρ
1
2 + O(ρ− 1

2 log ρ). (2.11)

By (2.11) and elementary calculations, we can obtain the following:

Lemma 2.4 Let φ be the function given by (2.4). Then, for sufficiently large ρ > 0,
we have

φ−3 − ρ−3/2 = 3ρ−5/2 log ρ + O(ρ−7/2 log2 ρ),∣∣∣∣ρ− 3
2

{
(1 − 2

log ρ

ρ
)
1
2 − 1

} ∣∣∣∣ = −ρ−5/2 log ρ + O(ρ−7/2 log2 ρ),

φ−1ρ−2 = ρ−5/2 + O(ρ−7/2 log ρ),

φ−3(ρ−1 − ρ−2) = ρ−5/2 + O(ρ−7/2 log ρ).

In addition, we have the following estimates on the terms g j of equation (2.10). More
specifically, we have

Lemma 2.5 Suppose that η1(ρ), η2(ρ) = O(ρ− 3
2 log ρ). Then, we have

|g1(ρ, η1) − g1(ρ, η2)|, |g7(ρ, η1) − g7(ρ, η2)| ≤ Cρ−2|η1 − η2|,
|g2(ρ, η1) − g2(ρ, η2)|, |g4(ρ, η1) − g4(ρ, η2)|, |g6(ρ, η1) − g6(ρ, η2)|

≤ Cρ−2(log ρ)|η1 − η2|,
|g3(ρ, η1) − g3(ρ, η2)|, |g5(ρ, η1) − g5(ρ, η2)| ≤ Cρ−3(log ρ)|η1 − η2|.

Proof From the definitions of gi and (2.11), we have

|g1(ρ, η1) − g1(ρ, η2)|, |g7(ρ, η1) − g7(ρ, η2)| ≤ Cρ−2|η1 − η2|,
|g2(ρ, η1) − g2(ρ, η2)| ≤ Cρ− 3

2 |φ − ρ
1
2 ||η1 − η2| ≤ Cρ−2(log ρ)|η1 − η2|,

|g3(ρ, η1) − g3(ρ, η2)| ≤ Cρ− 3
2 |η21 − η22| = ρ− 3

2 |η1 + η2||η1 − η2|
≤ Cρ−3(log ρ)|η1 − η2|.
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Let y1(ρ) = φ(ρ) + η1(ρ) and y2(ρ) = φ(ρ) + η2(ρ). Then, we obtain

|g4(ρ, η1) − g4(ρ, η2)| ≤ Cρ− 5
2 (log ρ)|(y21 (ρ) − φ2(ρ)) − (y22 (ρ) − φ2(ρ))|

≤ Cρ− 5
2 (log ρ)(2φ|η1 − η2| + |η1 + η2||η1 − η2|)

≤ Cρ−2(log ρ)|η1 − η2|.

Since y2i − φ2 = 2φηi + η2i for i = 1, 2, we have

|y2i − φ2| ≤ |2φ + ηi ||ηi | ≤ Cρ−1 log ρ for i = 1, 2.

It follows that

|g5(ρ, η1) − g5(ρ, η2)| ≤Cρ−2|(y21 − φ2)η1 − (y22 − φ2)η2|
≤Cρ−2|(y21 − φ2)(η1 − η2)| + ρ−2|y21 − y22 ||η2|
≤Cρ−3(log ρ)|η1 − η2| + ρ−2ρ− 3

2 (log ρ)ρ
1
2 |η1 − η2|

≤Cρ−3(log ρ)|η1 − η2|.
|g6(ρ, η1) − g6(ρ, η2)| ≤Cρ−2|ey21−φ2 − 1 − (y21 − φ2)||η1 − η2|

+ Cρ−2|(ey21−φ2 − 1 − (y21 − φ2))

− (ey
2
2−φ2 − 1 − (y22 − φ2))||ρ 1

2 + η2|
≤Cρ−2|ey21−φ2 − 1 − (y21 − φ2)||η1 − η2|

+ Cρ− 3
2 |(ey21−φ2 − 1 − (y21 − φ2))

− (ey
2
2−φ2 − 1 − (y22 − φ2))|

=: I + I I .

From (2.1), we have

I ≤ Cρ−2|y21 − φ2|2|η1 − η2| ≤ Cρ−4(log ρ)2|η1 − η2|.

Using the mean value theorem and (2.1), we have

|(ey21−φ2 − 1 − (y21 − φ2)) − (ey
2
2−φ2 − 1 − (y22 − φ2))|

≤ C | exp[θ(y21 − φ2) + (1 − θ)(y22 − φ2)] − 1||y21 − y22 |
≤ C |θ(y21 − φ2) + (1 − θ)(y22 − φ2)||y21 − y22 |
≤ Cρ−1(log ρ)(2φ|η1 − η2| + |η1 + η2||η1 − η2|)
≤ Cρ− 1

2 (log ρ)|η1 − η2|.
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This yields that I I ≤ Cρ−2(log ρ)|η1 − η2|. Thus, we see that

|g6(ρ, η1) − g6(ρ, η2)| ≤ Cρ−2(log ρ)|η1 − η2|,

as desired. ��

We are now in a position to prove Proposition 2.2.

Proof of Proposition 2.2 Note that (2.7) is equivalent to the following integral equation:

η(ρ) = T [η](ρ),

in which

T [η](ρ) =
∫ ∞

ρ

(ρs)
1
4 sin((2ρ)

1
2 − (2s)

1
2 )F(s, η)ds,

where

F(ρ, η) = f (ρ) +
7∑

i=1

gi (ρ, η) − e−ρ

4
y.

Fix � > 0 sufficiently large and let X be a space of continuous functions on [�,∞)

equipped with the following norm:

‖ξ‖ = sup
{
|ρ| 32 (log ρ)−1|ξ(ρ)| | ρ ≥ �

}
.

Lemmas 2.3 and 2.4 insure that there exists a constant C∗ > 0 such that

∣∣∣∣
∫ ∞

ρ

(ρs)
1
4 sin((2ρ)

1
2 − (2s)

1
2 ) f (s)ds

∣∣∣∣≤ C∗ρ− 3
2 log ρ. (2.12)

For this constant C∗ > 0, define the space

� = {ξ ∈ X | ‖ξ‖ ≤ 3C∗} ,

and we shall first show that T maps � to itself. From Lemma 2.5, we have

∣∣∣∣
7∑

i=1

gi (ρ, η)

∣∣∣∣≤ Cρ−2 log ρ|η| ≤ Cρ− 7
2 (log ρ)2,
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which yields that

∣∣∣∣
∫ ∞

ρ

(ρs)
1
4 sin((2ρ)

1
2 − (2s)

1
2 )

7∑
i=1

gi (ρ, η)ds

∣∣∣∣≤ C
∫ ∞

ρ

ρ
1
4 s

1
4 s− 7

2 (log s)2ds

≤ Cρ
1
4

∫ ∞

ρ

s−3ds ≤ Cρ− 7
4 .

Therefore, we can take � > 0 sufficiently large so that

∣∣∣∣
∫ ∞

ρ

(ρs)
1
4 sin((2ρ)

1
2 − (2s)

1
2 )

7∑
i=1

gi (ρ, η)ds

∣∣∣∣≤ C∗ρ− 3
2 log ρ (2.13)

for ρ ≥ �. We can easily find that for sufficiently large � > 0, we have

∣∣∣∣
∫ ∞

ρ

(ρs)
1
4 sin((2ρ)

1
2 − (2s)

1
2 )e−s y(s)ds

∣∣∣∣≤ Ce− ρ
2 ≤ C∗ρ− 3

2 log ρ (2.14)

for ρ ≥ �. By (2.12), (2.13) and (2.14), we obtain

|T [η](ρ)| ≤ 3C∗ρ− 3
2 log ρ

for η ∈ �. This yields that T [η] ∈ �.
Next, we shall show that T is a contraction mapping. For η1, η2 ∈ �, we have

|T [η1](ρ)−T [η2](ρ)|≤
7∑

i=1

∫ ∞

ρ

|(ρs) 1
4 sin((2ρ)

1
2 −(2s)

1
2 )||gi (s, η1)−gi (s, η2)|ds

+
∫ ∞

ρ

|(ρs) 1
4 sin((2ρ)

1
2 −(2s)

1
2 )|e−s |η1−η2|ds.

From Lemma 2.5 follows the estimate

|T [η1](ρ) − T [η2](ρ)| ≤ C
∫ ∞

ρ

|(ρs) 1
4 sin((2ρ)

1
2 − (2s)

1
2 )|s−2 log s|η1 − η2|ds

+ C‖η1 − η2‖e−ρ/2

≤ C
∫ ∞

ρ

s
1
4 ρ

1
4 s− 7

2 (log s)2‖η1 − η2‖ds + C‖η1 − η2‖e−ρ

≤ C‖η1 − η2‖ρ−2(log ρ)2.

This yields that

‖T [η1](ρ) − T [η2](ρ)‖ ≤ Cρ− 1
4 ‖η1 − η2‖ <

1

2
‖η1 − η2‖
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for sufficiently large ρ > 0. Thus, we find that T is a contraction mapping. This
completes the proof. ��
Proof of Theorem 2.1 Let u∞(r) = y∞(ρ), where y∞(ρ) is the solution to (2.3)
obtained by Proposition 2.2. We note that u∞ satisfies the following:

− d2u∞
dr2

− 1

r

du∞
dr

= u∞(eu
2∞ − 1) for r ∈ (0, R∞), (2.15)

where R∞ = e−�∞/2. Since u∞ is a solution to the ordinary differential equation
(2.15), we can extend u∞ in the positive direction of r as long as u∞ remains bounded.
We claim that u∞ has a zero at some point. Suppose the contrary that u∞(r) > 0 for all
0 < r < ∞. Then, we see that u∞ is monotone decreasing. Indeed, if not, there exists
a local minimum point r∗ ∈ (0,∞). It follows that ∂2r u∞(r∗) ≥ 0 and ∂r u∞(r∗) = 0.
Then, from the equation (2.15), we obtain

0 ≤ d2u∞
dr2

(r∗) = −u∞(r∗)(eu
2∞(r∗) − 1) < 0,

which is a contradiction.
Since u∞ is positive and monotone decreasing, there exists a constant C∞ ≥ 0

such that u∞(r) → C∞ as r → ∞. To prove that C∞ = 0, suppose the contrary that
C∞ > 0. This together with (2.15) yields that

0 = lim
r→∞

(
d2u∞
dr2

(r) + 1

r

du∞
dr

(r)

)
= − lim

r→∞(eu
2∞(r) − 1)u∞(r) < 0,

which is absurd. Therefore, we see that C∞ = 0, that is, limr→∞ u∞(r) = 0. Multi-
plying (2.15) by r and integrating the resulting equation from 0 to r yields that

−r
du∞
dr

(r) =
∫ r

0
su∞(eu

2∞ − 1)ds > 0.

This yields that for any R > 0, there exists a constantC1 > 0 such that−du∞/dr(r) ≥
C1/r for all r > R. It follows that

u∞(r) − u∞(R) =
∫ r

R

du∞
ds

(s)ds ≤ −C1

∫ r

R

1

s
ds.

Letting r → ∞, we have

−u∞(R) = lim
r→∞(u∞(r) − u∞(R)) ≤ −C1 lim

r→∞

∫ r

R

1

s
ds = −∞,

which is a contradiction. Therefore, there exists R∞ > 0 such that u∞(r) has a zero
at r = R∞.

123



332 S. Ibrahim et al.

Finally, we shall show that u∞ is a solution (2.1) in a distribution sense. Let η(ρ)

be the solution to (2.10), obtained in the proof of Proposition 2.2. Since η(ρ) =
O(ρ−3/2 log ρ), we see that u∞ satisfies

u∞(r) = (−2 log r − 2 log(− log r) − 2 log 2)
1
2 + O((− log r)−

3
2 log(− log r))

as r → 0.

This yields that there exists a constant C > 0 such that

u∞eu
2∞ ≤ Cr−2(− log r)−

3
2 for sufficiently small r > 0. (2.16)

This together with the monotonicity implies that u∞eu
2∞ ∈ L1

loc(BR∞). Therefore, we
see that u∞ is a distributional solution to (2.1). This completes the proof. ��

2.2 Singular soliton by the shooting

Let R ∈ (0, R∞) be the unique point such that u∞(R) = 2. For each m ≥ 0, we put

fm(s) := s(es
2 − 1) − mχ(s)s, (2.17)

where χ ∈ C∞(R) is a cut-off function satisfying χ(t) = 1 for |t | ≤ 1, χ(t) = 0
for |t | ≥ 2, and tχ ′(t) ≤ 0 for all t ∈ R. Consider a family of radial ODE’s with a
parameter m ≥ 0:

{
−ϕ′′∗ − ϕ′∗

r = fm(ϕ∗), (r > R)

ϕ∗(R) = u∞(R) = 2, ϕ′∗(R) = u′∞(R),
(2.18)

where the primemark denotes the differentiationwith respect to r . Letφm be the unique
solution of the above. We shall show that there exists m∗ > 0 such that φm∗(r) ↘ 0
as r → ∞. To this end, we show the following:

Proposition 2.6 Let m ≥ 0 and φm be the solution to (2.18). There exists mS > 0 and
mL > 0 such that if m ∈ [0,mS), φm has a zero in (R,∞), and if m ∈ (mL ,∞),
φm(r) is positive for all r ≥ R.

First, we define an energy density function Em : [R,∞) → R by

Em(r) := (φ′
m(r))2

2
+ Fm(φm(r)),

where Fm is the nonlinear potential energy defined by

Fm(u) :=
∫ u

0
fm(s)ds = eu

2 − 1 − u2

2
− m

∫ u

0
χ(s)sds,
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which enjoys the standard superquadratic condition:

0 ≤ Gm(u) := uF ′
m(u) − 2Fm(u) =

∞∑
k=2

(k − 1)

k! u2k + 2m
∫ u

0
(χ(s) − χ(u))sds,

(2.19)

and, thanks to the monotonicity of χ ,

Gm(u) = 0 if and only if u = 0. (2.20)

It follows from (2.18) that

E ′
m(r) = − (φ′

m(r))2

r
≤ 0. (2.21)

Thus, Em(r) is a non-increasing function of r . Using (2.21), we shall show the fol-
lowing:

Lemma 2.7 Let m > 0 and φm be a solution to (2.18). Let s ≥ R, Em(s) < 0 and
φm(s) > 0. Then, we have φm(r) > 0 for all r ∈ (s,∞).

Proof Suppose the contrary. Then there exists z ∈ (s,∞) such that φm(z) = 0. This
together with (2.21) yields that

0 > Em(s) ≥ Em(z) = (φ′
m(z))2

2
≥ 0,

which is a contradiction. ��
We are now in a position to prove Proposition 2.6.

Proof of Proposition 2.6 We note that m = 0, φ0(r) = u∞ has a zero at r = R∞.
Then, by the continuity of φm with respect to m, we see that φm(r) still has a zero if
m > 0 is sufficiently small.

On the other hand, we have

Em(R) = (u′∞(R))2

2
+ e4 − 5

2
− m

∫ 2

0
χ(s)sds < 0

for large m > 0, then Lemma 2.7 implies that φm(r) > 0 for all r > R. ��
We put

m∗ = inf {m > 0 | φm(r) > 0 on r > R} . (2.22)

We see from Proposition 2.6 that 0 < m∗ < ∞. We extend φm∗ by defining φm∗(r) =
u∞(r) for r ∈ (0, R) (still denoted by the same symbol). Then, we have the following:
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Theorem 2.8 Let m∗ > 0 be the number defined by (2.22). Then, φm∗ is a singular
positive radial solution to the following elliptic equation

{
−�φ = fm∗(φ) in R2,

lim|x |→∞ φ(x) = 0,
(2.23)

where fm(s) is defined by (2.17). Moreover, φm∗ is strictly decreasing in the radial
direction. Moreover, for any m ∈ (0,m∗) there exists Cm ∈ (0,∞) such that

φm∗(r) + |φ′
m∗(r)| ≤ Cme

−√
mr for all r ≥ R. (2.24)

Proof To prove Theorem 2.8, it suffices to show that φm∗(r) > 0, φ′
m∗(r) < 0 for all

r > 0, limr→∞ φm∗(r) = 0 and (2.24).
First, we shall show that φm∗(r) > 0 on r ∈ (R,∞). By definition of m∗, there

exists a sequence mn ↘ m∗ such that φmn (r) > 0 for all r > R and n ∈ N. Then
φm∗(r) = limn→∞ φmn (r) ≥ 0 for all r > R. If φm∗(r) = 0 at some r > R, then
φ′
m∗(r) = 0 and so φm∗ ≡ 0 by the ODE, a contradiction. Hence φm∗(r) > 0 for all

r > R.
Next, we claim that

Em∗(r) ≥ 0 for all r ∈ (R,∞). (2.25)

Suppose the contrary that there exists R∗ > 0 such that Em∗(R∗) < 0. Then the
continuity for m yields that φm(r) > 0 on R ≤ r ≤ R∗ and Em(R∗) < 0 when
m ∈ (0,m∗) is close enough to m∗. Then Lemma 2.7 implies φm(r) > 0 for r ≥ R∗,
hence for all r > R, contradicting the definition of m∗. Hence we have (2.25).

Next, we shall show that φ′
m∗(r) < 0 for all r > R. Suppose the contrary and let

s > R be the first zero of φ′
m∗ . Then we have 0 = φ′

m∗(s) ≤ φ′′
m∗(s) = − fm∗(φm∗(s)),

0 ≤ Em∗(s) = Fm∗(φm∗(s)), and so Gm∗(φm∗(s)) ≤ 0, contradicting (2.19).
Therefore φ′

m∗(r) < 0 < φm∗(r) for all r > R, so φm∗(r) ↘ ∃C∗ ∈ [0, 2) and
φ′
m∗(r) → 0 as r → ∞. Then we have 0 ≤ limr→∞ Em∗(r) = Fm∗(C∗) and

φ′′
m∗(r) = −φ′

m∗(r)/r − fm∗(φm∗(r)) → − fm∗(C∗) (r → ∞),

which has to be 0 because φ′
m∗(r) → 0. HenceGm∗(C∗) ≤ 0 and soC∗ = 0 by (2.19).

Next, letm ∈ (0,m∗). Then φm∗(r) ↘ 0 together with the definition of fm implies

φ′′
m∗(r) = −φ′

m∗(r)/r − fm∗(φm∗(r)) > mφm∗(r) > 0

for sufficiently large r > R. Hence e
√
mr (

√
m − ∂r )φm∗(r) is decreasing for large r ,

which implies the desired exponential decay.
Finally, it follows from (2.16) and (2.24) that fm∗ ∈ L1(R2). Thus, we see that φm∗

is a distributional solution to (2.23). This completes the proof. ��
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Remark 4 Let u∞ be a solution to (2.1), which is obtained in Theorem 2.1. Since
φm∗(r) = u∞(r) for r ∈ (0, R], we see from (2.2) that φm∗ satisfies

φm∗(r) = (−2 log r − 2 log(− log r) − 2 log 2)
1
2

+O((− log r)−
3
2 log(− log r)) as r → 0. (2.26)

Moreover,wehave, by (2.10), Lemmas2.3 and2.4, that |d2η/dρ2(ρ)| ≤ Cρ−5/2 log ρ.
Thus, by integrating, we see that |dη/dρ(ρ)| ≤ Cρ−3/2 log ρ. Thus, φ′

m∗ satisfies

φ′
m∗(r) = − (−2 log r − 2 log(− log r) − 2 log 2)−

1
2

(
1

r
+ 1

r log r

)
+O((− log r)−3/2 log(− log r)) as r → 0. (2.27)

3 Regular solution by the heat iteration

In what follows, we denote φm∗ , which is obtained in Theorem 2.8, by ϕ∗. Now we
are ready to construct a regular solution to (1.5) with initial data ϕ∗.

Theorem 3.1 Let u0 := et�ϕ∗. Then for any t > 0, u0(t) is bounded onR2. Moreover,
there exists a small T > 0, and a solution uR to (1.5) with uR |t=0 = ϕ∗ satisfying

| log t |1/2(uR − u0) ∈ L∞([0, T ) × R
2).

Note that ϕ∗ ∈ C∞(R2\{0}) is a positive radial function satisfying the asymptotic
form,

ϕ∗(r) = (ρ − 2 log ρ)1/2 + O(ρ−3/2 log ρ)

= (ρ − 2 log ρ + O(ρ−1 log ρ))1/2 (ρ → ∞), (3.1)

where, as before,ρ := | log r2| = 2| log r | � 1. The above two equivalent expressions
of remainder will be frequently switched in the following computations.

We need a precise estimate or asymptotic behavior around t, r → 0 of the iteration
sequence. Consider the first (or zeroth) iteration

u0 := et�ϕ∗ = 1

4π t

∫
R2

e− |x−y|2
4t ϕ∗(y)dy =

∫
R2

e−|z|2/4

4π
ϕ∗(x − √

t z)dz.

We shall show the following:

Lemma 3.2 There exists ε > 0 such that if max{t, |x |2} < ε2, we have

u0(t, x) ≤ min{ϕ∗(
√
t), ϕ∗(x)} + O(| log t |− 1

2 ). (3.2)
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Proof We take ε > 0 sufficiently small so that for any r < ε, ϕ∗(r) satisfies (3.1), and
consider the region (t, x) ∈ (0,∞) × R

2 satisfying max{t, |x |2} < ε2. Put

� := − log t = | log t | � 1, ν := |x |2/t ∈ [0,∞).

We shall estimate u0 by dividing the space-time regionmax{t, |x |2} < ε2 into the three
subregions: inside the parabolic cylinder ν ≤ 1, ν > 8 log � � 1 and 1 ≤ ν ≤ 8 log �.

First, we consider the region ν ≤ 1. It follows from Lemma A.1 that

‖u0(t, ·)‖L∞
x

= u0(t, 0) =
∫
R2

e−|z|2/4

4π
ϕ∗(

√
t z)dz.

Thus, by (3.1), we obtain

‖u0(t, ·)‖L∞
x

=
∫
R2

e−|z|2/4

4π
ϕ∗(

√
t z)dz

=
∫ t

0
e−s/4(− log(ts) − 2 log | log(ts)| + O(1))1/2ds/4

+
∫ ε2

t

t
e−s/4(− log(ts) − 2 log | log(ts)| + O(1))1/2ds/4

+
∫ ∞

ε2
t

e− s
4 ϕ∗(

√
ts)ds/4

=: I + J + K. (3.3)

For 0 < s < t , we have ts > s2. This yields via an integration by parts

I ≤ C
∫ t

0
|2 log s|1/2ds ≤ Ct�1/2 ≤ C�−1/2. (3.4)

For t < s < ε2

t , we have | log s| < �, so the integrand is expanded

(− log(ts) − 2 log | log(ts)| + O(1))1/2 = (� − 2 log � − log s + O(1))1/2

= (� − 2 log �)1/2 + O(�−1/2〈log s〉),
(3.5)

where we set 〈log s〉 = √
1 + | log s|2. Since ϕ∗(r) is monotone decreasing in r > 0,

we have, by (3.1) and (3.5), that

ϕ∗(
√
ts) ≤ (� − 2 log �)1/2 + O(�−1/2〈log s〉)

for s ≥ ε2

t . Integration against e−s/4 yields
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J + K ≤
∫ ∞

t
e−s/4((� − 2 log �)1/2 + O(�−1/2〈log s〉)ds/4

≤ (� − 2 log �)1/2 + O(�−1/2). (3.6)

Estimates (3.4) and (3.6) together with (3.3) imply

u0(t, 0) − (� − 2 log �)1/2 ≤ C�−1/2.

Namely, we have

u0 ≤ ϕ∗(
√
t) + O(�−1/2). (3.7)

This is enough in the region ν ≤ 1.
Before focusing on the two remaining regions, let 0 < δ ≤ ε be a small parameter

and set

B := {z ∈ R
2 | |x − √

t z| < δ|x |}.

Decomposing u0 as

u0(t, x) =
∫
B

e−|z|2/4

4π
ϕ∗(x − √

t z)dz +
∫
Bc

e−|z|2/4

4π
ϕ∗(x − √

t z)dz =: uI
0 + uX

0 ,

(3.8)

and writing

uX
0 =

∫
BC

e−|z|2/4

4π
[ϕ∗(x) + ϕ∗(x − √

t z) − ϕ∗(x)]dz. (3.9)

First, we consider z ∈ BC satisfying |x − √
t z| ≤ |x |. One can apply the mean value

theorem, and use (2.27) to write

|ϕ∗(|x − √
t z|) − ϕ∗(|x |)| ≤ sup

δ|x |≤|y|≤|x |
|ϕ′∗(|y|)|

∣∣|x − √
t z| − |x |∣∣ ≤ Cδ

√
t |z|

r | log r |1/2
(3.10)

for z ∈ BC satisfying |x − √
t z| ≤ |x |. Here, Cδ is a positive constant which depends

on δ. Next, we consider z ∈ BC satisfying |x − √
t z| ≥ |x |. Since ϕ∗ is monotone

decreasing in r = |x |, we see that

ϕ∗(x − √
t z) ≤ ϕ∗(x). (3.11)

for z ∈ BC satisfying |x − √
t z| ≥ |x |. From (3.9)–(3.11), we conclude that
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uX
0 ≤

∫
BC

e−|z|2/4

4π

[
ϕ∗(x) + Cδ

√
t |z|

r | log r |1/2 dz
]

= ϕ∗(x)(1 − θB) + Cδ

√
t/r2| log r |−1/2, (3.12)

where we set

θB :=
∫
B

e−|z|2/4

4π
dz ∈ (0, 1).

Now, for z ∈ B, it follows that

|√t z| ≥ |x | − |x − √
t z| ≥ (1 − δ)|x |. (3.13)

Thus, we have |z|2 ≥ ν(1 − δ)2, and so

uI
0 =

∫
B

e−|z|2/4

4π
ϕ∗(x − √

t z)dz ≤ e−ν(1−δ)2/4

4π t

∫
|y|2<tδ2ν

ϕ∗(y)dy. (3.14)

Second, we estimate uI
0 in the region ν > 8 log � � 1. For 0 < a � 1 we have

1

π

∫
|y|2<a

ϕ∗(y)dy =
∫ a

0
(− log s − 2 log | log s| + O(| log s|−1 log | log s|))1/2ds

=
∫ ∞

| log a|
(t − 2 log t + O(t−1 log t))1/2e−t dt

= a
[
(| log a| − 2 log | log a|)1/2

+ 1

2
| log a|−1/2 + O(| log a|−3/2 log | log a|)

]

= a
[
| log a| − 2 log | log a| + 1 + O(| log a|−1 log | log a|)

]1/2
,

(3.15)

by partial integration on e−t . Note that tδ2ν = δ|x |2 ≤ δε2 � 1. Plugging the formula
(3.15) into (3.14) yields

uI
0 ≤ e−ν(1−δ)2/4

4π
δ2ν(| log(tδ2ν)| − 2 log | log(tδ2ν)| + O(1))1/2. (3.16)

In the region ν > 8 log � � 1, we have � = | log t | < eν/8, yielding

| log(tδ2ν)| − 2 log | log(tδ2ν)| + O(1) ≤ 2| log(tδ2ν)|
≤ 2 (| log t | + 2| log δ| + | log ν|)

123



Non-uniqueness for an energy-critical heat... 339

≤ 2
(
eν/8 + 2| log δ| + | log ν|

)
≤ 4

(
eν/8 + 2| log δ|

)
. (3.17)

If we take δ > 0 sufficiently small so that −(1− δ)2/4 + 1/16 < −1/6, we have, by
(3.16) and (3.17), that

uI
0 ≤ e−ν(1−δ)2/4

π
δ2νeν/16(1 + 2e−ν/8| log δ|)1/2

≤ νe−ν/6δ2(1 + 2| log δ|)1/2
≤ νe−ν/6.

Thus, we get the first intermediate estimate uI
0 ≤ νe−ν/6. Moreover, using the fact

that | log t | < eν/8 again, we obtain

|2 log r | = − log r2 = − log(νt) = − log ν + | log t | ≤ eν/8,

and therefore,

uI
0 � | log r |−1/2ν−1/2. (3.18)

Finally, observe that in the same region ν > 8 log � � 1, we have r2 � t and

r2| log r | = −r2 log r2

2
� − t log t

2
= t�

2
.

This together with (3.8), (3.12) and (3.18) yields that for ν > 8 log � � 1, we have
obtained

u0 − ϕ∗(x) ≤ Cδ| log r |−1/2ν−1/2 � �−1/2. (3.19)

Thus it remains to estimate uI
0 in the region

1 ≤ ν = |x |2
t

< 8 log �.

Let ζ := z − x/
√
t . On z ∈ B, we have |ζ | < δ

√
ν � �. We shall show that

ϕ∗(x − √
t z) = ϕ∗(

√
tζ ) ≤ (� − 2 log �)1/2 + C�−1/2〈log |ζ |〉 (3.20)

for some constantC > 0, which is independent of ν and δ. We first consider the region
1 < |ζ |. Since 1 < |ζ | � �, we have �−1 log |ζ | < �−1 log � � 1. Thus, by (3.1) and
the Taylor expansion, we have
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ϕ∗(x − √
t z) = ϕ∗(

√
tζ )

≤ (− log t − 2 log | log t | − log |ζ |2 − 2 log |1 − �−1 log |ζ |2| + C)1/2

≤ (� − 2 log � + C〈log |ζ |〉)1/2
≤ (� − 2 log �)1/2(1 + C�−1〈log |ζ |〉)1/2
≤ (� − 2 log �)1/2(1 + C�−1〈log |ζ |〉)
≤ (� − 2 log �)1/2 + C�−1/2〈log |ζ |〉. (3.21)

Next, we consider the region |ζ | ≤ 1. Since − log |ζ |2 ≥ 0, we have

− log |ζ |2 − 2 log |1 − �−1 log |ζ |2| ≤ −2 log |ζ |2.

Using this together with (3.1), we obtain

ϕ∗(x − √
t z) ≤ (− log t − 2 log | log t | − log |ζ |2 − 2 log |1 − �−1 log |ζ |2| + C)1/2

≤ (� − 2 log � + C(− log |ζ | + 1))1/2

≤ (� − 2 log �)1/2 + C(� − 2 log �)−1/2(− log |ζ | + 1)

≤ (� − 2 log �)1/2 + C�−1/2〈log |ζ |〉. (3.22)

From (3.21) and (3.22), we see that (3.20) holds.
Moreover, it follows from (3.13) that |z|2 ≥ ν(1 − δ)2. This yields that

∫
B
e− |z|2

4 〈log |ζ |〉dz ≤
∫

|ζ |≤δ
√

ν

e−ν(1−δ)2/4〈log |ζ |〉dζ ≤ e−ν(1−δ)2/4δ2ν〈log δ2ν〉
≤ C (3.23)

for some constant C > 0, which is independent of ν and δ. It follows from (3.23) and
(3.20) that

uI
0 =

∫
B

e−|z|2/4
4π

ϕ∗(x − √
t z)dz

≤ (� − 2 log �)1/2
∫
B

e−|z|2/4

4π
dz + O(�−1/2)

≤ ϕ∗(
√
t)

∫
B

e−|z|2/4

4π
dz + O(�−1/2). (3.24)

Hence, by (3.8), (3.12) and (3.24), we have

u0 ≤ ϕ∗(x) + (ϕ∗(
√
t) − ϕ∗(x))

∫
B

e−|z|2/4

4π
dz + O(�−1/2),
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where the remainder on B is estimated by

ϕ∗(
√
t) − ϕ∗(x) ≤C

− log
√
t + log r

�1/2
≤ C

log ν

�1/2
,∫

B
e−|z|2/4dz ≤ e−ν(1−δ)2/4ν ≤ Ce−ν/8.

Here, we have used (3.13) in the second inequality. This yields that

u0 ≤ ϕ∗(x) + O(�− 1
2 ). (3.25)

From (3.7), (3.19) and (3.25), we see that (3.2) holds. ��
From Lemma 3.2, we have obtained, denoting ρ := | log r2|,

max(t, |x |2) < ε2 �⇒ u0 ≤ min
(
ϕ∗(

√
t), ϕ∗(x)

)
+ O(�−1/2)

�⇒ u20 ≤ min (� − 2 log �, ρ − 2 log ρ) + O(1)

�⇒ eu
2
0 ≤ C min

(
1

t�2
,

1

r2ρ2

)

�⇒ u0e
u20 ≤ C min

(
1

t�3/2
,

1

r2ρ3/2

)
,

u20e
u20 ≤ C min

(
1

t�
,

1

r2ρ

)
. (3.26)

One can use the radial monotonicity of u0 (cf. Lemma A.1) to extend, to all x ∈ R
2,

the bounds of the functions u0eu
2
0 and u20e

u20 as follows:

t < ε2 �⇒ u0 ≤ √
�, u0e

u20 ≤ C[(t + r2)−1 + ε−2]| logmin{t + r2, ε2}|−3/2 =: F0,
u20e

u20 ≤ C[(t + r2)−1 + ε−2]| logmin{t + r2, ε2}|−1 =: F ′
0.

(3.27)

We shall show the bound of the function u0eu
2
0 . From the monotonicity of u0, it is

enough to consider the region 0 < r < ε2 only.
Note thatwe have �−3/2, ρ−3/2 < | log(t+r2)|−3/2 formax(t, r2) < ε2.Moreover,

it follows that min( 1t ,
1
r2

) < 2(t + r2)−1. These together with (3.26) yield that

u0e
u20 ≤ C min

(
1

t
,
1

r2

)
| log(t + r2)|−3/2 ≤ C(t + r2)−1| log(t + r2)|−3/2.

(3.28)

We first consider the region t + r2 < ε2. It follows from (3.28) that

u0e
u20 ≤ C(t + r2)−1| logmin{t + r2, ε2}|−3/2

≤ C[(t + r2)−1 + ε−2]| logmin{t + r2, ε2}|−3/2. (3.29)
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Next, we consider the region ε2 ≤ t + r2 < 2ε2. Since the function s−1| log s|−3/2 is
decreasing for sufficiently small s > 0, we have, by (3.28), that

u0e
u20 ≤ C(t + r2)−1| log(t + r2)|−3/2 ≤ Cε−2| log ε2|−3/2

≤ C[(t + r2)−1 + ε−2]| logmin{t + r2, ε2}|−3/2. (3.30)

From (3.29) and (3.30), we see that u0eu
2
0 ≤ CF0 for t < ε2. We can obtain the bound

of the function u20e
u20 similarly. Thus, (3.27) holds.

Hence by the mean value theorem, for any functions v0 and v1, we have, for t < ε2,
that

√
�(|v0| + |v1|) ≤ C �⇒ | f0(u0 + v0) − f0(u0 + v1)|

≤ Cu20e
u20 |v0 − v1|

≤ CF ′
0|v0 − v1|, (3.31)

where f0(u) = u(eu
2 − 1).

To estimate the second iteration, we prepare the following:

Lemma 3.3 Let α > 0 and 0 < ε < 1. For any (t, r) ∈ (0, ε2) × (0,∞), there exists
a positive constant C∗ such that

∫ t

0
e(t−s)� 1

s + r2
| logmin{s + r2, ε2}|−αds ≤ C∗�−α, (3.32)∫ t

0
e(t−s)�| logmin{s + r2, ε2}|−αds ≤ C∗t�−α (3.33)

Proof From Lemma A.1, we have

∫ t

0
e(t−s)� 1

s + r2
| logmin{s + r2, ε2}|−αds

≤
∫ t

0

∫ ∞

0

re− r2
4(t−s)

2(t − s)(s + r2)
| logmin{s + r2, ε2}|−αdrds.

Then, the integral is estimated using the following formula

∫ t

0
e(t−s)� 1

s + r2
| logmin{s + r2, ε2}|−αds

≤
∫ t

0

∫ ∞

0

e− σ
4s

4s(t − s + σ)
| logmin{t − s + σ, ε2}|−αdσds

=
∫ ∞

0

∫ t

0

e−η/4

t − s + sη
| logmin{t − s + sη, ε2}|−αds

dη

4
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where the variables are changed by s → t − s, r2 → σ → sη. Then, we split the
integral as follows.

∫ ∞

0

∫ t

0

e−η/4

t − s + sη
| logmin{t − s + sη, ε2}|−αds

dη

4

=
∫ 1/

√
t

0

∫ t

0

e−η/4

t − s + sη
| logmin{t − s + sη, ε2}|−αds

dη

4

+
∫ ∞

1/
√
t

∫ t

0

e−η/4

t − s + sη
| logmin{t − s + sη, ε2}|−αds

dη

4
=: I + I I .

We first estimate I . Since t − s + sη ≤ √
t for 0 < s < t and 0 < η < 1/

√
t , we have

I ≤
∫ 1/

√
t

0

∫ t

0

e−η/4

t − s + sη
| logmin{√t, ε2}|−αds

dη

4

≤ C�−α

∫ 1/
√
t

0

∫ t

0

e−η/4

t − s + sη
dsdη = C�−α

∫ 1/
√
t

0
e−η/4 log η

η − 1
dη ≤ C�−α.

(3.34)

Next, we estimate I I . We note that | logmin{t − s + sη, ε2}|−α ≤ (− log ε2)−α and
t − s + sη ≥ t for 0 < s < t and η ≥ 1/

√
t . Therefore, we have

I I ≤ C(− log ε2)−α

∫ ∞

1/
√
t
e−η/4

∫ t

0

1

t
dsdη ≤ Ce

− 1
4
√
t . (3.35)

From (3.34) and (3.35), we obtain (3.32).We can obtain (3.33) by the similar argument
above. This completes the proof. ��

Using Lemma 3.3, we shall show the following:

Lemma 3.4 Let ε > 0 be given by Lemma 3.3. For any space-time function v on
(0, ε2) × R

2, let

D[v] :=
∫ t

0
e(t−s)� f0((u0 + v)(s))ds.

Then, there exists a positive constant C0 such that

|D[0]| ≤ C0�
−3/2. (3.36)

Moreover, for any C1 ∈ (0,∞), there exists C2 ∈ (0,∞) such that for any v0 and v1
satisfying

sup
0<t<ε

| log t |1/2‖v j (t)‖L∞ ≤ C1 ( j = 0, 1),
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and for any α> − 1, we have

|D[v0] − D[v1]| ≤ C2�
−1−α sup

0<s<t
| log s|α‖v0(s) − v1(s)‖L∞ . (3.37)

Proof (3.27) and Lemma 3.3 yield

|D[0]| ≤
∫ t

0
e(t−s)�| f0(u0(s))|ds ≤ C

∫ t

0
e(t−s)�F0(s)ds

≤ C�−3/2 + ε−2t�−3/2 ≤ C�−3/2.

Similarly, (3.31) and Lemma 3.3 yield

|D[v0] − D[v1]| ≤
∫ t

0
e(t−s)�| f0(u0 + v0)) − f0(u0 + v1)|ds

≤ C
∫ t

0
e(t−s)�F ′

0(s)‖v1(s) − v0(s)‖∞ds

≤ C
∫ t

0
e(t−s)�[(s + r2)−1 + ε−2]| logmin{s + r2, ε2}|−1−αds

× sup
0<s<t

| log s|α‖v0(s) − v1(s)‖L∞

≤ C�−1−α sup
0<s<t

| log s|α‖v0(s) − v1(s)‖L∞

for any α> − 1. Noting that the constants are independent of v0, v1, α, t , we arrive at
the desired conclusion. ��
We are now in a position to prove Theorem 3.1

Proof of Theorem 3.1 We put

E[v] :=
∫ t

0
e(t−s)�L(u0 + v)(s)ds, L(u) := m∗χ(u)u

and I [v] := D[v]−E[v]. Then,we are naturally led to consider themapping v �→ I [v]
for v in the following set

B1/2
T := {v ∈ C([0, T ] × R

2) | ‖v‖
X1/2
T

:= sup
0<t<T

�1/2‖v(t)‖L∞ ≤ 1}

for some constant T ∈ (0, ε2) to be determined, which is a closed ball of a Banach
space with the norm X1/2

T . The estimates on D[·] in (3.36) and (3.37) with C1 = 1
imply

‖D[v0] − D[v1]‖X1/2
T

≤ C2| log T |−1‖v0 − v1‖X1/2
T

,

‖D[v0]‖X1/2
T

≤ ‖D[0]‖
X1/2
T

+ ‖D[0] − D[v0]‖X1/2
T

≤ (C0 + C2)| log T |−1
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for any v0, v1 ∈ B1/2
T . Moreover, we can easily obtain

‖E[v]‖L∞ ≤ t‖L‖L∞ ,∥∥∥∥
∫ t

0
e(t−s)�(L(v0) − L(v1))(s)ds

∥∥∥∥
L∞

≤ t‖L‖Lip‖v0 − v1‖L∞ .

Hence if T > 0 is small enough then v �→ I [v] is a contraction mapping on B1/2
T , so

there is a unique fixed point v ∈ B1/2
T . Then u = u0 + v is a local (mild) solution on

0 < t < T of

u̇ − �u + m∗χ(u)u = f0(u), u(0) = ϕ∗.

This completes the proof. ��
We can prove Theorem 1.1 immediately from Theorems 2.8 and 3.1 .

Proof of Theorem 1.1 We also denote φm∗ , which is the stationary singular soliton to
(1.5) obtained in Theorem 2.8, by ϕ∗. Let uS(t) = ϕ∗ and uR(t) be the regular solution
to (1.5), obtained in Theorem 3.1. We see that uS(0) = uR(0) = ϕ∗.

We shall show that uS belongs to C([0, T ), X) and becomes a mild solution for
each T > 0. As we mentioned in the proof of Theorem 2.8, ϕ∗ satisfies (2.23) in a
distributional sense and fm∗(ϕ∗) ∈ L1(R2). It follows from the L p − Lq estimate of
the heat kernel (see e.g. [19, Proposition 1]) that for 1 ≤ p < ∞, we obtain

∥∥∥∥
∫ t

0
e�(t−s) fm∗(ϕ∗)ds

∥∥∥∥
L p

≤
∫ t

0
‖e�(t−s) fm∗(ϕ∗)‖L pds

≤ C
∫ t

0
(t − s)−(1− 1

p )‖ fm∗(ϕ∗)‖L1ds ≤ C‖ fm∗(ϕ∗)‖L1 < ∞.

Thus uS(t) = ϕ∗ ∈ C([0, T ), X) satisfies the Duhamel formula:

u(t) = et�ϕ∗ +
∫ t

0
e(t−s)� fm∗(u(s))ds in C([0, T ), X). (3.38)

Next, we shall show that uR belongs to C([0, T ), X) for sufficiently small T > 0
and becomes a mild solution. The fixed point v ∈ B1/2

T of I can be obtained as the
limit of vn = I [vn−1] starting from v0 = 0. Then for T > 0 small enough, there
exists M > 0 such that supn∈N | log t |1/2‖vn(t)‖L∞ ≤ M and limn→∞ vn(t) = v(t)
in L∞(R2) for 0 < t < T . Let un = u0 + vn . From the estimate (3.26) on u0 together
with Lemma A.1 and that ‖vn(t)‖L∞ ≤ M�−1/2, we obtain

|un|2 ≤ (|u0| + |vn|)2 ≤ � − 3

2
log �
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uniformly for 0 < t < T � 1, x ∈ R
2 and n ∈ N. Hence, there exists a constant

Cm∗ > 0

| fm∗(un)| ≤ Cm∗ |un|eu
2
n ≤ Cm∗ t

−1�−3/2|un|, (3.39)

where fm is defined by (2.17). Suppose that sup0<s<T ‖un(s)‖L p < ∞ for any p ∈
[1,∞). Using (3.39) in the Duhamel formula

un+1(t) = u0(t) + vn+1(t) = u0(t) +
∫ t

0
e(t−s)� fm∗(un(s))ds,

we obtain

‖un+1(t)‖L p ≤ ‖ϕ∗‖L p +
∫ t

0
‖ fm∗(un(s))‖L pds

≤ ‖ϕ∗‖L p + Cm∗

∫ t

0
s−1| log s|−3/2‖un(s)‖L pds

≤ ‖ϕ∗‖L p + 2Cm∗ | log T |−1/2 sup
0<s<T

‖un(s)‖L p

(3.40)

for 0 < t < T � 1. Here, we have used the L p contraction estimate of the heat kernel
(see e.g. [19, Proposition 1]) in the first inequality. Thus, we obtain by the induction
argument

sup
0<s<T

‖un(s)‖L p ≤ ‖ϕ∗‖L p (1 + 3Cm∗ | log T |−1/2) (3.41)

for n ∈ N. Since, for 0 < t < T � 1,

lim
n→∞ un(t) = lim

n→∞(u0 + vn(t)) = u0 + v = uR(t) in L∞(R2),

the above uniform bound (3.41) together with Fatou’s lemma implies that,

‖uR(t)‖L p ≤ lim inf
n→∞ ‖un(t)‖L p ≤ ‖ϕ∗‖L p (1 + 3Cm∗ | log T |−1/2)

for 0 < t < T � 1. In addition, the same estimate as in (3.40) implies that fm∗(uR) ∈
L1([0, T ), L p(R2)) and by the Duhamel formula, uR ∈ C([0, T ), L p(R2)). Thus, we
conclude that uR ∈ C([0, T ), L p(R2)) for all p ∈ [1,∞). That is uR ∈ C([0, T ), X).
Then, we see that uR also satisfies (3.38).

For all t ∈ (0, T ), we have uS(t) = ϕ∗ /∈ L∞(R2) while uR(t) ∈ L∞(R2). This
implies that uS(t) �= uR(t) for all t ∈ (0, T ). This completes the proof. ��
Acknowledgements The authorswould like to thank the anonymous referees for their comments. Thiswork
was done while H.K. was visiting at University of Victoria. H.K. thanks all members of the Department
of Mathematics and Statistics for their warm hospitality. The work of S.I. was supported by NSERC grant
(371637-2019). The work of H.K. was supported by JSPS KAKENHI Grant Number JP17K14223. K.N.

123



Non-uniqueness for an energy-critical heat... 347

was supported by JSPS KAKENHI Grant Number JP17H02854. The research of J.W. is partially supported
by NSERC of Canada.

Appendix A: Maximum point of solutions to the linear Heat equation

In this appendix, we shall give a proof of the fact, which is used in Sect. 3. More
precisely, we show the following:

Lemma A.1 Let φ be a radially decreasing function. Set u(t) = et�φ. Then, u(t) is
also radially decreasing and

‖u(t, ·)‖L∞
x

= u(t, 0).

Proof Note that u is also radial. Setting v = ∂r u, we see that v satisfies the following:

v̇ − �v + 1

r2
v = 0. (A.1)

Weputv+ = max{v, 0}.Multiplying (A.1) byv+ and integrating the resulting equation
over R2, we have

∂t‖v+‖2L2 = −‖∇v+‖2L2 −
∫

1

r2
|v+|2dx ≤ 0. (A.2)

From the assumption, we infer that v+(0) = 0. This together with (A.2) yields that
v+ ≡ 0 in (0,∞) × R

2. This completes the proof. ��
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