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Abstract
In this paper, we investigate V -shaped fronts around an obstacle K . We first prove that
there exist solutions emanating from any homogeneous transition front including V -
shaped front for exterior domainsΩ = R

N\K . By providing the complete propagation
of the V -shaped front, we prove that the V -shaped front can recover after passing the
obstacle.

Mathematics Subject Classification 35A18 · 35B08 · 35B30 · 35C07 · 35K57

1 Introduction

This paper is concerned with the following reaction-diffusion equation in exterior
domains

{
ut = Δu + f (u), t ∈ R, x ∈ Ω = R

N\K ⊂ R
N ,

uν = 0, on x ∈ ∂Ω,
(1.1)

where the obstacle K is a compact set of RN which is the closure of an open set with
smooth boundary and Ω is an exterior domain. Here, ν = ν(x) is the outward unit
normal on the boundary ∂Ω and uν = ∂u

∂ν
. On the boundary ∂Ω , the homogeneous

Neumann boundary condition is imposed.
Throughout of this paper, the reaction term f is assumed to be of bistable type,

namely u = 0 and u = 1 are both stable stationary states. More precisely, we assume
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that f is of C1([0, 1],R) and satisfies

f (0) = f (1) = 0, f ′(0) < 0 and f ′(1) < 0. (1.2)

For mathematical purposes, the function f is extended in R as a C1(R) function such
that

f (s) = f ′(0)s > 0 for s ∈ (−∞, 0)

and

f (s) = f ′(1)(s − 1) < 0 for s ∈ (1,+∞).

A typical example is the cubic nonlinearity f (s) = s(1 − s)(s − θ) with 0 < θ < 1.
Notice that the existence of V -shaped front requires the bistable reaction term f being
unbalanced. Thus, we assume additionally that

∫ 1

0
f (s)ds > 0, (1.3)

(for
∫ 1
0 f (s)ds < 0, one can only reverse the roles of 0 and 1). For the balanced case∫ 1

0 f (s)ds = 0, no more V -shaped fronts exist, see [14]. Instead, some fronts with
their level sets being exponential shape (N = 2) or parabolic shape (N ≥ 3) may
exist, see [8].

Since we consider the propagation of homogeneous transition fronts and V -shaped
fronts, we assume throughout this paper that if Ω = R, it admits a unique traveling
front u(t, x) = φ(x − c f t) such that

{
φ′′ + c f φ

′ + f (φ) = 0 in R,

φ(−∞) = 1 and φ(+∞) = 0.
(1.4)

It follows from [9] that the propagation speed c f is only determined by f and has

the sign of
∫ 1
0 f (s)ds. As we consider in this paper, c f > 0 by (1.3). We also point

out that the existence and nonexistence of traveling fronts relies on conditions of the
bistable nonlinearity, see [9].

The first aim of this paper is to prove the existence of entire solutions emanating
from any homogeneous transition front, that is, Theorem 1.2. Therefore, we first recall
some results in homogeneous case. For the following reaction-diffusion equation in
R

N ,

ut = Δu + f (u), t ∈ R, x ∈ R
N , (1.5)

it is well known that there are various kinds of entire solutions. The simplest example
is the planar front u(t, x) = φ(x · e − c f t) where e is a unit vector of RN . For the
existence of planar fronts, one can refer to the existence of one-dimensional traveling
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V -shaped fronts around an obstacle 663

fronts. Note that the level sets of a planar front are hyperplanes and a planar front
propagates with invariant level sets. More types of non-planar fronts are known to
exist inRN , such as V -shaped fronts, conical shaped fronts, pyramidal fronts and even
nonstandard fronts which have no invariant level sets. For the existence, uniqueness,
stability and other qualitative properties of these non-planar traveling fronts, we refer
to [6,7,14–16,18,19,21–24] and the references therein.

For these types of traveling fronts, their common features, such as they converge to
the stable states 0 or 1 far away from their moving or stationary level sets, uniformly
in time, led to the introduction of a more general notion of traveling fronts, that is,
transition fronts, see [3,4,13] and see [20] in the one-dimensional setting. We here
recall the notion of transition fronts for (1.5). First, for any two subsets A and B of
R

N and for x ∈ R
N , we set

d(A, B) = inf
{|y − z|; (y, z) ∈ A × B

}

and d(x, A) = d({x}, A), where | · | is the Euclidean norm in RN . Consider now two
families {Ω−

t }t∈R and {Ω+
t }t∈R composed of open nonempty subsets ofRN such that,

for any t ∈ R, Ω+
t and Ω−

t satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω−
t ∩ Ω+

t = ∅,

∂Ω−
t = ∂Ω+

t =: Γt ,

Ω−
t ∪ Γt ∪ Ω+

t = R
N ,

sup{d(x, Γt ); x ∈ Ω+
t } = sup{d(x, Γt ); x ∈ Ω−

t } = +∞

(1.6)

and as r → +∞,

⎧⎪⎨
⎪⎩

inf
{
sup

{
d(y, Γt ); y ∈ Ω+

t , |y − x | ≤ r
}; t ∈ R, x ∈ Γt

}
→ +∞

inf
{
sup

{
d(y, Γt ); y ∈ Ω−

t , |y − x | ≤ r
}; t ∈ R, x ∈ Γt

}
→ +∞.

(1.7)

Notice that the condition (1.6) implies in particular that the interfaceΓt is not empty
for every t ∈ R. As far as (1.7) is concerned, it says that for anyM > 0, there is rM > 0
such that for any t ∈ R and x ∈ Γt , there are y± = y±

t,x ∈ R
N such that

y± ∈ Ω±
t , |x − y±| ≤ rM and d(y±, Γt ) ≥ M, (1.8)

that is, y± ∈ B(x, rM ) and B(y±, M) ⊂ Ω±
t , where B(y, r) denotes the open

Euclidean ball of center y and radius r > 0. In other words, not too far from any
point x ∈ Γt , the sets Ω±

t contain large balls. Moreover, the sets Γt are assumed to
be made of a finite number of graphs: there is an integer n ≥ 1 such that, for each
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664 H. Guo, H. Monobe

t ∈ R, there are n open subsets ωi,t ⊂ R
N−1(for 1 ≤ i ≤ n), n continuous maps

ψi,t : ωi,t → R and n rotations Ri,t of RN , such that

Γt ⊂
⋃

1≤i≤n

Ri,t

(
{x ∈ R

N ; x ′ ∈ ωi,t , xN = ψi,t (x
′)}

)
. (1.9)

Definition 1.1 ([3,4]) We call u(t, x) a transition front connecting 0 and 1 of (1.5), or
simply “transition front”, if u(x, t) is a classical solution of (1.5) and there exist some
sets {Ω±

t }t∈R, {Γt }t∈R satisfying (1.6), (1.7) and (1.9) such that for any ε > 0, there
is a positive constant Mε satisfying

{
d(x, Γt ) ≥ Mε for (t, x) ∈ R × Ω+

t ⇒ u(t, x) ≥ 1 − ε,

d(x, Γt ) ≥ Mε for (t, x) ∈ R × Ω−
t ⇒ u(t, x) ≤ ε.

(1.10)

Furthermore, u is said to have a global mean speed γ (≥ 0) if

d(Γt , Γs)

|t − s| → γ as |t − s| → +∞.

It has been proved by [13] that any transition front of (1.5) has a global mean
speed which is equal to c f > 0 (by (1.3)), the propagation speed of one-dimensional
traveling front.

From the paper of Berestycki, Hamel and Matano [5], they proved the existence of
entire solution u(t, x) of (1.1) emanating from a planar front, that is, u(t, x) satisfies

u(t, x) → φ(x · e − c f t) as t → −∞ uniformly in Ω.

Inspired by [5], we prove that (1.1) admits entire solutions emanating from any tran-
sition front of (1.5) defined by Definition 1.1.

Theorem 1.2 For any transition front U (t, x) solving (1.5), there exists an entire solu-
tion u(t, x) of (1.1) such that

u(t, x) → U (t, x), as t → −∞ uniformly in Ω.

Furthermore, ut (t, x) > 0 for t ∈ R and x ∈ Ω .

Remark 1.3 One can notice from [5] that (1.1) admits entire solutions emanating from
planar fronts even if the obstacle K is unbounded but lying in a half space. However,
this can not be true for general transition fronts since the 1/2 level set of a transition
front may always cross with the unbounded obstacle as t → −∞.

Now, we consider the interaction between a transition front and the obstacle K .
From [5], one knows that a planar front coming from somewhere far away from
the obstacle can recover to the same planar front under some suitable geometrical
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conditions on the obstacle K , such as K is star-shaped1 or directionally convex with
respect to some hyperplane.2 It implies that the perturbation caused by the obstacle
will fade out finally. It also implies that the propagation of the entire solution u(t, x)
emanating from a planar front is complete in the sense that

u(t, x) → 1, as t → +∞ locally uniformly in Ω. (1.11)

Here we mean the complete propagation of an entire solution u(t, x) or that an entire
solution u(t, x) is a complete invasion by (1.11). Another interesting phenomenon in
[5] is the blocking phenomenon, that is, the solution u(t, x) might be blocked when
the obstacle K contains a small channel, like the neck of a hourglass, in the sense that

u(t, x) < 1 for some points x and any t ∈ R. (1.12)

In other words, the perturbation caused by the obstacle remains forever. Such blocking
phenomenon has also been studied in [2] for cylinderical domains.

In fact, the above phenomena also hold formore general entire solutions, that is, both
phenomena of complete propagation and blocking can occur for the entire solution
u(t, x) emanating from not only a planar front but also any homogeneous transition
front such as a V -shaped front, depending on the shape of the obstacle K . By applying
the arguments used in Step 1 of the proof of [12, Lemma 2.6], there exists a C2(Ω)

solution p : Ω → (0, 1] of

Δp + f (p) = 0 in Ω, pν = 0 on ∂Ω, and p(x) → 1 as |x | → +∞,(1.13)

such that the entire solution u of (1.1) emanating from any homogeneous transition
satisfies

lim inf
t→+∞ u(t, x) ≥ p(x) > 0 locally uniformly in x ∈ Ω. (1.14)

It follows from [5, Theorems 6.1 and 6.4] that, if the compact obstacle K is either star-
shaped or directionally convex with respect to some hyperplane, then any solution
p : Ω → [0, 1] of (1.13) is identically equal to 1. By (1.14), it means that the
propagation of u(t, x) is complete, that is, satisfying (1.11). Besides, a dilated domain
RΩ0 = R

N\(RK0) for large constants R and smooth bounded closed sets K0 of
R

N , can also ensure the complete propagation, refer to [12, Corollary 1.12]. For the
blocking phenomenon, the example made in Section 6.3 of [5], where the obstacle K
contains a small channel whose width is controlled by a small constant ε, still works

1 The obstacle K is called star-shaped if either K = ∅ or there is x in the interior Int(K ) of K such that
x + t(y − x) ∈ Int(K ) for all y ∈ ∂K and t ∈ [0, 1).
2 The obstacle K is called directionally convex with respect to a hyperplane H = {x ∈ R

N : x · e = a},
with e ∈ S

N−1 and a ∈ R, if for every line Σ parallel to e, the set K ∩ Σ is either a single line segment or
empty and if K ∩ H is equal to the orthogonal projection of K onto H .
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here. The authors of [5] proved that for any R such that B(0, R) ⊃ K and small
enough ε, the following problem has a solution ω �≡ 1

Δω + f (ω) = 0 in B(0, R)\K , ων = 0 on ∂K , and ω = 1 on ∂B(0, R).

One can easily notice that the function ω extended by 1 outside B(0, R) is actually a
supersolution for the entire solution u(t, x). It implies that the propagation of u(t, x)
is blocked in the sense of (1.12).

What we are interested in this paper is, for more general situation than planar
fronts, whether a transition front coming from somewhere far away from the obstacle
can recover to the same transition front provided by the complete propagation of the
front (which avoids the blocking). We conjecture that the answer is positive. However,
we can not prove this yet. From the arguments in [5], we believe that the global stability
of transition front is the key to solve this problem. Nevertheless, the global stability
of transition front in general settings is still open. Thus, in this paper, we consider a
special nonplanar case, namely, the V -shaped front, to give a positive answer to it.

Beforewe state ourmain result,weneed to recall someexistence results ofV -shaped
fronts of (1.5). For convenience, we only consider N = 2. The result can be extended
to high dimensions N ≥ 3 trivially. We denote points in R

2 by (x1, x2). It is known
from [15,16,18] that the existence of one-dimensional traveling fronts with nonzero
speed guarantees the existence of V -shaped fronts. Without loss of generality, we
assume that the V -shaped front propagates towards x2-direction with speed c denoted
by u(t, x1, x2) = V (y, ξ) with y = x1 and ξ = x2 − ct . The results of [15,16,18] say
that there exists a unique (up to shifts) V -shaped front V (x1, x2 − ct) of (1.5) with
asymptotic lines

x2 = m∗|x1| where m∗ =
√
c2 − c2f

c f
,

satisfying

−Vyy − Vξξ − cVξ − f (V ) = 0 in (y, ξ) ∈ R
2,

where Vξ = ∂V /∂ξ , Vξξ = ∂2V /∂ξ2 and Vyy = ∂2V /∂ y2.
Furthermore, the V -shaped front V (x1, x2 − ct) is known to be asymptotically

planar along its asymptotic lines, that is,

lim
R→+∞ sup

x21+(x2−ct)2>R2

∣∣∣V (x1, x2 − ct) − φ
(c f

c
(x2 − ct − m∗|x1|)

)∣∣∣ = 0. (1.15)

We now state the main result.

Theorem 1.4 Assume that u(t, x) is an entire solution of (1.1) emanating from a V -
shaped front, that is, u(t, x) satisfies

u(t, x) → V (x1, x2 − ct) as t → −∞ uniformly in Ω.
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V -shaped fronts around an obstacle 667

If u(t, x) is a complete invasion satisfying (1.11), then

u(t, x) → V (x1, x2 − ct) as t → +∞ uniformly in Ω.

Remark 1.5 From the above discussion, the entire solution u emanating from a V -
shaped front is a complete invasion as the obstacle K is star-shaped or directionally
convex with respect to some hyperplane or dilated by K = RK0 for a large constant R
and a smooth bounded closed set K0 of RN . Thus, the assumption of Theorem 1.4 is
not empty. Moreover, from Theorem 1.4, we know that the entire solution emanating
from a V -shaped front will recover to the same V -shaped front in such domains. One
can easily check that the entire solution u(t, x) in Theorem 1.4 is a transition front
connecting 0 and 1 in exterior domains.

This paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.2
and Sect. 3 is devoted to the proof of Theorem 1.4.

2 Entire solutions emanating from transition fronts

In this section, we prove the existence of entire solutions emanating from any homo-
geneous transition front. In order to follow the idea of [5], we need to prove some
additional properties of transition fronts and by which, we can construct supersolu-
tions and subsolutions.

2.1 Properties of homogeneous transition fronts

In this section, we study some properties of general transition fronts of the homoge-
neous equation (1.5).

Lemma 2.1 Let U (t, x) be a transition front of (1.5). For any point x0 ∈ R
N and any

R > 0, there are constants T1 < 0, α > 0, β > 0 and η > 0 such that it holds that

U (t, x) ≤ αeηt , for t ≤ T1 and x ∈ B(x0, R),

and

|∇U (t, x)| ≤ βeηt , for t ≤ T1 and x ∈ B(x0, R).

Proof Without loss of generality, we assume x0 = 0. Otherwise, one can shiftU (t, x)
by Ũ (t, x) = U (t, x + x0). To obtain our claim, we here make a supersolution of
U (x, t) by using the traveling front φ of (1.4).

Step 1: Choice of some parameters By (1.2), there is σ > 0 such that f (s) is
nonincreasing in (−∞, σ ] and

f (s) ≤ 0 for s ∈ [0, σ ].
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Since limξ→+∞ φ(ξ) = 0, there is C > 0 such that

φ(ξ) ≤ σ for ξ ≥ C . (2.1)

One can notice that the function φ is of class C3 and φ′ satisfies

(φ′)′′ + c f (φ
′)′ + f ′(φ)φ′ = 0,

and φ′ < 0 in R from [9]. Since f ′(s) is bounded, it follows from standard interior
estimates and Harnack inequality that the function φ′′/φ′ is bounded. Namely, there
is C1 > 0 such that

|φ′′(ξ)| ≤ C1|φ′(ξ)| for all ξ ∈ R. (2.2)

Take μ > 0 such that

√
2μC1 ≤ c f

2
. (2.3)

It is elementary to check that there is a C2 function h : [0,+∞] → R satisfying
the following properties:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ h′ ≤
√

μ
2C1

on [0,+∞),

h′ = 0 on a neighborhood of 0,

h(0) > 0 and h(r) =
√

μ
2C1

r on [H ,+∞) for some H > 0,
(N−1)h′(r)

r + h′′(r) ≤ μ
2 on [0,+∞).

(2.4)

Notice in particular that

√
μ

2C1
r ≤ h(r) ≤

√
μ

2C1
r + h(0) for all r ≥ 0. (2.5)

Step 2: Construction of a supersolution For t ∈ R and x ∈ R
N , we set

u(t, x) = φ(ξ(t, x)),

where

ξ(t, x) = −h(|x |) − μt + C +
√

μ

2C1
R + h(0).

Let

E =
{
(t, x) ∈ R × R

N ; t ≤ 0, |x | ≤ −√
2μC1t + R

}
, (2.6)
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and (t, x) be any point in E . By (2.5), one can get that

ξ(t, x) ≥ −
√

μ

2C1
|x | − h(0) − μt + C +

√
μ

2C1
R + h(0) ≥ C,

and hence (2.1) leads to

u(t, x) ≤ σ in E .

Thus, f (u(t, x)) ≤ 0 in E . Let us check thatLu := ut−Δu− f (u) ≥ 0 for (t, x) ∈ E .
One can easily compute that

Lu = − μφ′(ξ(t, x)) − φ′′(ξ(t, x))h′2(|x |)
+ φ′(ξ(t, x))

(
h′′(|x |) + N − 1

|x | h′(|x |)
)

− f (u).

Since φ′ < 0 in R and by (2.2), (2.4), it follows that

Lu ≥ −μφ′(ξ(t, x)) + μ

2
φ′(ξ(t, x)) + μ

2
φ′(ξ(t, x)) − f (u(t, x)) ≥ 0 in E .

Thus u is a supersolution of (1.5) in E .
Step 3: Exponentially approaching to 0 Notice that

ξ(t, x) ≤ −
√

μ

2C1
|x | − μt + C +

√
μ

2C1
R + h(0) = C + h(0)

on ∂E := {(t, x) ∈ R × R
N ; t ≤ 0, |x | = −√

2μC1t + R}. Since φ′ < 0 in R, one
has that

u(t, x) = φ(ξ(t, x)) ≥ φ(C + h(0)) on ∂E .

Since U (t, x) → 0 as t → −∞ locally uniformly for x ∈ R
N and u(0, x) > 0 for

x ∈ B(0, R), there is T1 < 0 such that

U (T1, x) ≤ min{u(0, x), φ(C + h(0))}, for all x ∈ B(0, R).

Since the global mean speed of U (t, x) is c f , one can decrease T1 such that

U (t, x) ≤ φ(C + h(0)), for t ≤ T1 and |x | ≤ R − c f

2
(t − T1).

By (2.3), it implies that

U (t, x) ≤ φ(C + h(0)) ≤ σ, for t ≤ T1 and |x | ≤ R − √
2μC1(t − T1).

Thus, U (t + T1, x) ≤ σ in E and U (t + T1, x) ≤ u(t, x) on ∂E .
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670 H. Guo, H. Monobe

Now, define

ε∗ = inf{ε > 0; U (t + T1, x) − ε ≤ u(t, x) in E}.

Assume that ε∗ > 0. Then, there are sequences εn ≥ ε∗ and (tn, xn) ∈ E such that
εn → ε∗ and

‖u(tn, xn) −U (tn + T1, xn) + εn‖L∞(E) → 0, as n → +∞. (2.7)

Since u(tn, xn) + εn ≥ ε∗ and U (t, x) → 0 as t → −∞ uniformly for x ∈ E , it
implies that there is −∞ < t∗ ≤ 0 such that tn → t∗ and hence, there is x∗ ∈ E such
that xn → x∗. Thus, by (2.7), one has that

u(t∗, x∗) −U (t∗ + T1, x
∗) + ε∗ = 0.

Since U (t + T1, x) ≤ σ in E and f (s) is nonincreasing in (−∞, σ ], one has that

(U (t + T1, x) − ε∗)t − Δ(U (t + T1, x) − ε∗) − f (U (t + T1, x) − ε∗) ≤ 0, in E .

Let z(t, x) = u(t, x) −U (t + T1, x) + ε∗. Then, z(t, x) ≥ 0 in E , z(t, x) > 0 on ∂E
and z(t∗, x∗) = 0. Since u(t, x) is a supersolution, one gets that zt −Δz+b(t, x)z ≥ 0
in E where b(t, x) is a bounded function. Then, by the maximum principle, one gets
that z(t, x) ≡ 0 in E which contradicts u(t, x) > U (t+T1, x)−ε∗ on ∂E . Therefore,
ε∗ = 0.

As a consequence, it follows that

U (t + T1, x) ≤ u(t, x) = φ(ξ(t, x)), in E .

For x ∈ B(0, R), one has that

ξ(t, x) ≥ −
√

μ

2C1
R − h(0) − μt + C +

√
μ

2C1
R + h(0) = −μt + C ≥ 0.

By [9], there are positive constants a0 and λ such that

U (t + T1, x) ≤ φ(ξ(t, x)) ≤ a0e
λμt−λC , for t ≤ 0 and x ∈ B(0, R),

that is, U (t, x) ≤ a0eλμ(t−T1)−λC for t ≤ T1 and x ∈ B(0, R). By standard interior
estimates, there is a1 > 0 such that

|∇U (t, x)| ≤ a1e
λμ(t−T1), for t ≤ T1 and x ∈ B(0, R).

This completes the proof. ��
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V -shaped fronts around an obstacle 671

2.2 Super- and subsolutions before the encounter

Assume without loss of generality that the obstacle K contains 0, namely, 0 ∈ K and
there is a positive constant R such that K ⊂ B(0, R). Otherwise, one can shiftU (t, x)
by Ũ (t, x) = U (t, x + x0) for x0 ∈ K .

In this section, we construct a supersoluion and subsolution of (1.1) by using the
transition frontU (t, x). To do so, we prepare an auxiliary function. Let ζ̃ be a function
of class C2(Ω), with compact support in Ω , and such that ν ·∇ ζ̃ = 1 on ∂Ω . Assume
that there is R1 > 0 such that supp{̃ζ } ∈ B(0, R1). The functions Δζ̃ and ζ̃ are
continuous and compactly supported in Ω and they are then bounded. For example of
a such function ζ̃ , one can construct a cut-off function satisfying the above conditions
by applying the classical distance function in [10] around the boundary ∂Ω . ByLemma
2.1, there are constants T1 < 0, β > 0 and η > 0 such that

|∇U (t + 1, x)| ≤ βeηt , for t ≤ T1 and x ∈ B(0, R). (2.8)

Take a constant C2 > 0 such that

ζ(x) := ζ̃ (x) + C2 in Ω,

and

∥∥∥∥Δζ

ζ

∥∥∥∥
L∞(Ω)

≤ η. (2.9)

By (1.2), there isσ > 0 such that f (s) is nonincreasing in (−∞, 2σ ] and [1−2σ,+∞).
By [11], one knows that Ut (t, x) > 0 for all (t, x) ∈ R × R

N and there is k > 0
such that, if (t, x) satisfies σ ≤ U (t, x) ≤ 1 − σ , then Ut (t, x) ≥ k. Take ω > 0
sufficiently large such that

kωη ≥ Lβ‖ζ‖L∞(Ω), (2.10)

where L = maxs∈R | f ′(s)|.
We set

U+(t, x) = U (t + ωeηt , x) + βζ(x)eηt , (2.11)

and

U−(t, x) = U (t − ωeηt , x) − βζ(x)eηt . (2.12)

Let T2 ≤ T1 such that ωeηt ≤ 1 for t ≤ T2 and

βζ(x)eηt ≤ σ, for t ≤ T2 and x ∈ Ω. (2.13)
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Lemma 2.2 U+(t, x) and U−(t, x) are a supersolution and a subsolution of (1.1) for
t ≤ T2, respectively.

Proof We first check the boundary condition on ∂Ω . It follows from (2.8) that

∇U+(t, x) · ν = ∇U (t + ωeηt , x) · ν + β∇ζ · νeηt ≥ 0,

and

∇U−(t, x) · ν = ∇U (t − ωeηt , x) · ν − β∇ζ · νeηt ≤ 0,

for t ≤ T2 and x ∈ ∂Ω .
We next check that

LU+ := U+
t − ΔU+ − f (U+) ≥ 0,

for t ≤ T2 and x ∈ Ω . One can easily compute that

LU+ = ωηeηtUt (t + ωeηt , x) + βηζ(x)eηt + βΔζeηt

+ f (U (t + ωeηt , x)) − f (U+(t, x)).

For t ≤ T2 and x ∈ Ω such that U (t + ωeηt , x) ≤ σ , it follows from (2.13) that
U+(t, x) ≤ 2σ . Since f (s) is nonincreasing in (−∞, 2σ ] and by Ut > 0, (2.9), one
gets that

LU+ ≥ βζ(x)eηt
(

η + Δζ

ζ

)
≥ 0.

For t ≤ T2 and x ∈ Ω such that U (t + ωeηt , x) ≥ 1 − σ , it follows that U+(t, x) ≥
1 − σ . Since f (s) is nonincreasing in [1 − 2σ,+∞) and by Ut > 0, (2.9), one gets
that LU+ ≥ 0. Finally, if t ≤ T2 and x ∈ Ω such that σ ≤ U (t + ωeηt , x) ≤ 1 − σ ,
then Ut (t + ωeηt , x) ≥ k. By (2.9) and (2.10), one gets that

LU+ ≥ kωηeηt + βζ(x)eηt
(

η + Δζ

ζ

)
− Lβζ(x)eηt ≥ 0.

Thus we can confirm that U+ is a supersolution of (1.1). Similarly, one can easily
check that LU− ≤ 0 for t ≤ T2 and x ∈ Ω , namely, U− is a subsolution of (1.1).
This completes the proof. ��

2.3 Proof of Theorem 1.2

We now construct a sequence of solutions defined for −n ≤ t < +∞ (n ∈ N). Let
un(t, x) be the solution of (1.1) for t ≥ −n with the initial data

un(−n, x) = U+(−n, x).
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Since U−(−n, x) ≤ un(−n, x) = U+(−n, x), the comparison principle implies

U−(t, x) ≤ un(t, x) ≤ U+(t, x), for t ∈ [−n, T2] and x ∈ Ω. (2.14)

Then, it follows that

un(−n + 1, x) ≤ U+(−n + 1, x) = un−1(−n + 1, x).

By the comparison principle, one has

un(t, x) ≤ un−1(t, x), for t ∈ [−n + 1, T2] and x ∈ Ω.

Thus, the sequence un(t, x) ismonotone decreasing in n. Passing to the limit n → +∞
and using parabolic estimates, one obtains that this sequence converges to an entire
solution u∗(t, x) defined for t ∈ R and x ∈ Ω . By (2.14), it follows that

U−(t, x) ≤ u∗(t, x) ≤ U+(t, x), for t ∈ (−∞, T2] and x ∈ Ω.

It also implies that

u∗(t, x) → U (t, x), as t → −∞ uniformly in Ω.

Finally, we show that u∗
t (t, x) > 0 for t ∈ R and x ∈ Ω . One can easily note

that U+(t, x) is monotone increasing in t for t sufficiently negative. This means
(un)t (−n, x) > 0 for all sufficiently large n. By using the maximum principle to ut ,
it yields that

(un)t (t, x) > 0, for t ∈ (−n,+∞) and x ∈ Ω.

As n → +∞, we get

u∗
t (t, x) ≥ 0, for t ∈ R and x ∈ Ω.

It is obviously that u∗
t is not identically equal to 0 and hence, u∗

t > 0 for t ∈ R and
x ∈ Ω by the strong maximum principle. This completes the proof of Theorem 1.2.

3 Existence of the almost V -shaped front

This section is devoted to the proof of the existence of the almost V -shaped front, that
is, Theorem 1.4.
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3.1 Subsolutions and supersolutions

In this section, we construct V -shaped like subsolutions and supersolutions for (1.1)
inspired by [18,19]. Let

k1 = 1

2
min{− f ′(0),− f ′(1)} > 0 and L = max

s∈[0,1] | f
′(s)|. (3.1)

Then, since f (s) = f ′(0)s for s ∈ (−∞, 0] and f (s) = f ′(1)s for s ∈ [1,+∞],
there exists a positive constant δ1 (0 < δ1 < 1/4) with

− f ′(s) > k1 if s ∈ (−∞, 2δ1] and s ∈ [1 − 2δ1,+∞). (3.2)

Recall thatV (x1, x2−ct) is theV -shaped front of (1.5) satisfying (1.15). From [18,19],
there exist constants τ1, τ2 such that

φ
( c f
c (x2 − ct − m∗|x1| + τ1)

) ≤ V (x1, x2 − ct)
≤ φ

( c f
c (x2 − ct − m∗|x1| + τ2)

) (3.3)

for t ∈ R and x = (x1, x2) ∈ R
2. It follows from [18] that Vξ < 0 and there is k2 > 0

such that, if

− Vξ (y, ξ) ≥ k2, for δ1 ≤ V (y, ξ) ≤ 1 − δ1. (3.4)

From [9], one also knows that there are positive constants a1, a2, b1, b2, α1, α2, β1,
β2 such that

a1e
b1ξ ≤ 1 − φ(ξ) ≤ a2e

b2ξ , for ξ ≤ 0, (3.5)

and

α1e
−β1ξ ≤ φ(ξ) ≤ α2e

−β2ξ , for ξ > 0. (3.6)

It implies that we can get the following estimates of derivatives of V (x1, x2 − ct).

Lemma 3.1 There exist positive constants d1, d2, λ1 and λ2 such that

‖∇V (x1, x2 − ct)‖L∞(R2) ≤ d1e
λ1(x2−ct−m∗|x1|), for x2 − ct − m∗|x1| ≤ 0,

and

‖∇V (x1, x2 − ct)‖L∞(R2) ≤ d2e
−λ2(x2−ct−m∗|x1|), for x2 − ct − m∗|x1| > 0.

Proof By (3.3), (3.5) and (3.6), one has
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a1e
b1c f /c(x2−ct−m∗|x1|+τ2) ≤ 1 − V (x1, x2 − ct) ≤ a2e

b2c f /c(x2−ct−m∗|x1|+τ1),

as x2 − ct − m∗|x1| → −∞ and

α1e
−β1c f /c(x2−ct−m∗|x1|+τ1) ≤ V (x1, x2 − ct) ≤ α2e

−β2c f /c(x2−ct−m∗|x1|+τ2),

as x2 − ct − m∗|x1| → +∞. By parabolic interior estimates, one can get that there
exist positive constants d1, d2, λ1 and λ2 such that

‖∇V (x1, x2 − ct)‖L∞ ≤ d1e
λ1(x2−ct−m∗|x1|), for x2 − ct − m∗|x1| ≤ 0,

and

‖∇V (x1, x2 − ct)‖L∞ ≤ d2e
−λ2(x2−ct−m∗|x1|), for x2 − ct − m∗|x1| > 0.

This completes the proof. ��
Next we construct a subsolution of (1.1). As in Sect. 2.2, we prepare an auxiliary

function ζ again. From now on, ζ always satisfies the following conditions. Let ζ̃ be
a nonnegative function of class C2(Ω), with compact support in Ω , and such that
ν · ∇ ζ̃ = 1 on ∂Ω . The function Δζ̃ and ζ̃ are continuous and compactly supported
in Ω and they are then bounded. There exists then a constant C3 ≥ 1 such that

ζ := ζ̃ + C3 ≥ 1 in Ω (3.7)

and
∥∥∥∥Δζ

ζ

∥∥∥∥
L∞(Ω)

≤ k1
2

. (3.8)

We remark that, since the obstacle K is bounded,

√
|x1|2 + |x2|2 < +∞ and |x2 − m∗|x1|| ≤ C̃ (3.9)

for all (x1, x2) ∈ ∂Ω and some positive constant C̃ .

Lemma 3.2 For any fixed M ∈ R, define

w1(t, x) := V (x1, x2 − c(t + T ) + ρδ(1 − e−βt ) + M) − δζ(x)e−βt .

Then, for any δ ∈ (0, δ1/‖ζ‖L∞), there exist β > 0, ρ > 0 and T > 0 (β, ρ are
independent of δ) such that w1(t, x) is a subsolution of (1.1) for t ≥ 0.

Proof Denote

ξ(t) = −c(t + T ) + ρδ(1 − e−βt ) + M .
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Then,

w1(t, x) = V (x1, x2 + ξ(t)) − δζ(x)e−βt .

Take β > 0 such that

β ≤ min

(
cλ1,

k1
2

)
, (3.10)

where λ1 is defined in Lemma 3.1 and k1 is defined by (3.1). Take ρ > 0 sufficiently
large such that

ρβk2 ≥ β‖ζ‖L∞(R) + ‖Δζ‖L∞(R) + L‖ζ‖L∞(R), (3.11)

where L and k2 are defined by (3.1) and (3.4) respectively. By (3.9), one can choose
T > 0 sufficiently large such that

x2 + ξ(t) − m∗|x1| = x2 − c(t + T ) + M + ρδ(1 − e−βt ) − m∗|x1| ≤ 0,(3.12)

for t ≥ 0 and x ∈ ∂Ω , and

d1e
λ1(C̃−cT+M+ρδ) ≤ δ, (3.13)

where d1, λ1 are defined in Lemma 3.1.
Let us first check the boundary conditions. One can compute that

∇w1(t, x) · ν = ∇V (x1, x2 + ξ(t)) · ν − δ∇ζ(x) · νe−βt .

for x ∈ ∂Ω and the outer normal unit vector ν = ν(x) on ∂Ω . By Lemma 3.1, (3.12)
and (3.13), one has

‖∇V (x1, x2 + ξ(t))‖L∞(R2) ≤ d1e
λ1(x2−c(t+T )+M+ρδ(1−e−βt )−m∗|x1|)

≤ d1e
−cλ1t eλ1(C̃−cT+M+ρδ)

≤ δe−cλ1t ,

for x ∈ ∂Ω . Since ∇ζ(x) · ν = 1 on ∂Ω and β ≤ cλ1, one gets that

∇w1(t, x) · ν ≤ δe−cλ1t − δe−βt ≤ 0 on ∂Ω.

Let us now check that

N (t, x) := (w1)t − Δw1 − f (w1) ≤ 0, for t ≥ 0 and x ∈ Ω.
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One can compute that

N (t, x) = f (V (x1, x2 + ξ(t))) − f (V (x1, x2 + ξ(t)) − δζ(x)e−βt )

+ ρδβe−βt Vξ (x1, x2 + ξ(t)) + δζ(x)βe−βt − δΔζ(x)e−βt .

For t ≥ 0 and x ∈ Ω such that V (x1, x2 + ξ(t)) ≥ 1 − δ1, one has that V (x1, x2 +
ξ(t)) − δζ(x)e−βt ≥ 1 − 2δ1 due to δ ∈ (0, δ1/‖ζ‖L∞) and hence, by (3.2),

f (V (x1, x2 + ξ(t))) − f (V (x1, x2 + ξ(t)) − δζ(x)e−βt ) ≤ −k1δζ(x)e−βt .(3.14)

Then, it follows from Vξ < 0, (3.8), (3.10) and (3.14) that

N (t, x) ≤ −k1δζ(x)e−βt + δζ(x)βe−βt − δΔζ(x)e−βt

= δζ(x)e−βt
(

β − Δζ(x)

ζ(x)
− k1

)
≤ 0.

Similarly one can get that N (t, x) ≤ 0 for t ≥ 0 and x ∈ Ω such that 0 ≤ V (x1, x2 +
ξ(t)) ≤ δ1. For t ≥ 0 and x ∈ Ω such that δ1 ≤ V (x1, x2 + ξ(t)) ≤ 1 − δ1, one has
that, by (3.1) and (3.4),

−Vξ (x1, x2 + ξ(t)) ≥ k2,

and

f (V (x1, x2 + ξ(t))) − f (V (x1, x2 + ξ(t)) − δζ(x)e−βt ) ≤ Lδζ(x)e−βt .

Then, (3.11) leads to

N (t, x) ≤ Lδζ(x)e−βt − ρδβk2e
−βt + δζ(x)βe−βt − δΔζ(x)e−βt

= δe−βt (Lζ(x) − ρβk2 + ζ(x)β − Δζ(x)) ≤ 0.

In conclusion, we have

N (t, x) ≤ 0, for t ≥ 0 and x ∈ Ω.

This completes the proof. ��

Wehere introduce some super- and subsolutions for homogeneous case (1.5) shown
in [18,19]. Remember that (1.5) admits V -shaped fronts V (x1, x2 − ct) satisfying

− Vyy − Vξξ − cVξ − f (V ) = 0, t ∈ R, (y, ξ) ∈ R
2. (3.15)
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Note that V has asymptotic lines x2 = m∗|x1| and a global mean speed γ = c f .
Define ψ(ξ) by

ψ(ξ) := 1

m∗γ
log (1 + exp(γ ξ)) .

Then we obtain the following lemmas and theorem:

Lemma 3.3 [19] There exist some constants Ki > 0 (i = 1, 2, 3) and γ > 0 so that
ψ(ξ) satisfies

max
{∣∣∣ψ(ξ) − ξ

m∗

∣∣∣ , ∣∣∣ψ ′(ξ) − 1
m∗

∣∣∣} ≤ K1sech(γ ξ) for ξ ≥ 0,

max{|ψ(ξ)|, |ψ ′(ξ)|} ≤ K1sech(γ ξ) for ξ ≤ 0,
max{|ψ ′′(ξ)|, |ψ ′′′(ξ)|} ≤ K1sech(γ ξ) for ξ ∈ R,

c f − cψ ′(ξ)√
1+ψ ′(ξ)2

≥ K2 min{1, exp(−γ ξ)} for ξ ∈ R,

0 ≤ c√
1+ψ ′(ξ)2

− c f m∗ ≤ K3 min{1, exp(−γ ξ)} for ξ ∈ R.

Theorem 3.4 [19] There exist a positive constant ε0 and a positive function α0(ε) so
that, for 0 < ε < ε0 and 0 < α < α0(ε),

v2(y, ξ ; ε, α) := φ

(
ψ(αξ) − αy

α
√
1 + ψ ′(αξ)2

)
− εsech(γ αξ)

is a subsolution of (3.15). Moreover, there exists a positive constant k3 such that

(v2)y ≥ k3, if δ1 ≤ v2 ≤ 1 − δ1.

Define v3(y, ξ ; ε, α) := v2(−y, ξ ; ε, α). It is also a subsolution of (3.15). In the
sequel, we only use v2(y, ξ), v3(y, ξ) for short.

Lemma 3.5 [19] Let w j (t, x) ( j = 2, 3) be defined by

w2(t, x) := v2(x1 − ρδ(1 − e−βt ), x2 − c(t + T )) − δe−βt ,

w3(t, x) := v3(x1 + ρδ(1 − e−βt ), x2 − c(t + T )) − δe−βt .

For any δ ∈ (0, δ1/2] and T ∈ R, there exist a large positive constant ρ and a small
positive constant β such that, w2 and w3 are also subsolutions of (1.5) for t ≥ 0.

Combining three functions w1, w2 and w3, we construct a subsolution which is
useful to show Theorem 1.4.

Lemma 3.6 For any small δ > 0 and any M > 0, there exist constants T > 0, ρ > 0
and β > 0 such that

w−(t, x) := max{w1(t, x), w2(t, x), w3(t, x)}

is a subsolution of (1.1) for t ≥ 0 and x ∈ Ω .
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Proof By Lemmas 3.2, 3.5, w1, w2, w2 all satisfy ut − Δu − f (u) ≤ 0. Thus one
only have to check the boundary condition for w−. Here we show that

w−(t, x) = w1(t, x), for any x ∈ ∂Ω and t ≥ 0.

If this is true, we immediately know ∂νw
− ≤ 0 on ∂Ω by the proof of Lemma 3.2.

Notice that ψ(ξ) > 0 and |ψ ′(ξ)| < +∞ for ξ ∈ R. Then, by (3.9), there is
0 < σ < 1 such that

w2(t, x) ≤ v2(x1 − ρδ(1 − e−βt ), x2 − c(t + T )) ≤ 1 − σ,

for any T ∈ R, t ≥ 0 and x ∈ ∂Ω . Similarly, w3(t, x) ≤ 1− σ , for any T ∈ R, t ≥ 0
and x ∈ ∂Ω . On the other hand, x2 − c(t +T )+ρδ(1− e−βt )+ M −m∗|x1| → −∞
for t ≥ 0 and x ∈ ∂Ω as T → +∞. Thus,

w1(t, x) ≥ 1 − δ‖ζ‖L∞ for t ≥ 0 and x ∈ ∂Ω as T → +∞.

Therefore, for sufficienly small δ, there exists a large T such that

w1(t, x) ≥ 1 − σ ≥ w2(t, x), w3(t, x), for t ≥ 0 and x ∈ ∂Ω,

and hence,

w−(t, x) = w1(t, x), for t ≥ 0 and x ∈ ∂Ω.

This completes the proof. ��
Next we deal with supersolutions of (1.1). In oder to make it, the traveling curve

front of the eikonal-curvature equation is useful. According to the result of [18], there
is a unique graph y = ϕ(ξ ; c f ) for ξ ∈ R with asymptotic lines y = m∗|ξ | such that

c f = ϕξξ

1 + ϕ2
ξ

+ c
√
1 + ϕ2

ξ

for ϕξξ (·, c) > 0 in R. As seen in Theorem 2.2 in [18], there exist γ2 > 0, ε0 > 0 and
a positive function α0(ε) so that, for 0 < ε < ε0 and 0 < α ≤ α0(ε),

v+(y, ξ ; ε, α) := φ

(
αξ − ϕ(αy)

α
√
1 + ϕ′(αy)2

)
+ εsech(γ2αy)

is a supersolution of (3.15). Moreover, the supersolution v+(y, ξ ; ε, α) satisfies
−(v+)ξ (y, ξ ; ε, α) > 0 for y ∈ R, ξ ∈ R and hence there is k3 > 0 such that
−(v+)ξ (y, ξ, ; ε, α) ≥ k3 for δ1 ≤ v+(y, ξ ; ε, α) ≤ 1 − δ1. Using this supersolution
ν+, we construct a supersolution of (1.1) in the next lemma.
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Lemma 3.7 For any δ ∈ (0, δ1/2], there exist constants ρ > 0, β > 0 and T > 0
such that

w+(t, x) = min{v+(x1, x2 − c(t + T ) − ρδ(1 − e−βt )) + δe−βt , 1}

is a supersolution of (1.1) for t ≥ 0.

Proof By [18], one knows that v+(x1, x2 − c(t + T ) − ρδ(1 − e−βt )) + δe−βt is a
supersolution of (1.5) for t ≥ 0. Then, we only has to check that v+(x1, x2 − c(t +
T ) − ρδ(1 − e−βt )) + δe−βt ≥ 1 for any x ∈ ∂Ω and t ≥ 0.

By (3.9), one has that εsech(γ2αx1) > 0 for x ∈ ∂Ω . Since

(αξ − ϕ(αy)/α
√
1 + ϕ′(αy)2 → −∞

as ξ → −∞ and φ(−∞) = 1, there is a positive constant T large enough such that

v+(x1, x2 − c(t + T ) − ρδ(1 − e−βt )) + δe−βt ≥ 1,

for any x ∈ ∂Ω and t ≥ 0. This completes the proof. ��
For any fixed M , let v1(y, ξ) := V (y, ξ + M) for (y, ξ) ∈ R

2. We remark that w1
is written by

w1(t, x) = v1(x1, x2 − c(t + T ) + ρδ(1 − e−βt ); ε, α) − δζ(x)e−βt .

Define

v−(t, x) := max{v1(x1, x2 − ct), v2(x1, x2 − ct), v3(x1, x2 − ct)},

and

v+(t, x) := v+(x1, x2 − ct).

From [18,19], one can easily get the following lemma :

Lemma 3.8 It holds that

lim
R→+∞ sup

x21+(x2−ct)2>R2

∣∣∣v±(t, x) − φ
(c f

c
(x2 − ct − m∗|x1|)

)∣∣∣ ≤ ε, for any t ≥ 0,

where ε is as defined in v2, v3 and v+.

Remark 3.9 Notice that Lemma 3.8 also means

lim
R→+∞ sup

x21+(x2−ct)2>R2

∣∣v±(t, x) − V (x1, x2 − ct)
∣∣ ≤ ε, for any t ≥ 0.

123



V -shaped fronts around an obstacle 681

3.2 Proof of Theorem 1.4

Since V -shaped front is a special transition front of (1.5), we know that, fromTheorem
1.2, (1.1) admits a time-increasing entire solution u(t, x) such that

u(t, x) → V (x1, x2 − ct), as t → −∞ uniformly in Ω.

Nowwe focus on an entire solution emanating from a V -shaped front. In particular, we
are interested in the behaviour of this entire solution after passing through the obstacle
K . Thus we assume a priori that u(t, x) is a complete invasion, that is, it satisfies

u(t, x) → 1 as t → +∞ locally uniformly in x ∈ Ω. (3.16)

Before starting the proof of Theorem 1.4, we first introduce some properties of the
solution u(t, x) of (1.1). Here we refer to Lemma 5.2 from [5] which is associated to
the following initial value problem:

{
ut − Δu = f (u), t > 0, x ∈ Ω,

uν = 0, t > 0, x ∈ ∂Ω,
(3.17)

with the initial data u(x, 0) = u0(x) satisfying

u0(x) :=
{
1 − ε, if x ∈ B(x0, R) ∩ Ω,

0, if x ∈ Ω\B(x0, R),
(3.18)

where x0 is a point of RN , B(x0, R) is the open ball of radius R and center x0 and ε

is an arbitrary positive constant such that

max{0 < θ < 1; f (θ) = 0} < 1 − ε < 1. (3.19)

In what follows, νx0,R denotes the solution of (3.17) with the initial condition (3.18).

Lemma 3.10 [5, Lemma 5.2] Let ε satisfy (3.19) and vx0,R be the solution of (3.17)
with the initial condition (3.18). Then there exist four positive constants R1, R2, R3
and T̄ such that R3 > R2 > R1 > 0, R2 − R1 > c f T̄ /4, and, if B(x0, R3) ⊂ Ω ,
then

vx0,R1(T̄ , ·) ≥ 1 − ε in B(x0, R2) (⊂ Ω).

Next we show that the level set of u(t, x) can be trapped between two V -shaped
curves after passing the obstacle K . In order to show that, the following supersolution
of (1.1) is useful. The proof is almost the same as Lemma 3.2 and hence we skip the
details of the proof.

Lemma 3.11 For any fixed M ∈ R, define

w+
1 (t, x) = V (x1, x2 − c(t + T ) − ρδ(1 − e−βt ) + M) + δζ(x)e−βt .
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Then, for any δ ∈ (0, δ1/‖ζ‖L∞), there exist β > 0, ρ > 0 and T > 0 such that
w+
1 (t, x) is a supersolution of (1.1) for t ≥ 0.

Now we show the relation between u and V-shaped front.

Lemma 3.12 For any ε > 0, there are constants T1 ∈ R, M1 > 0 and M2 > 0 such
that for any t ≥ T1, u(t, x) satisfies

u(t, x) ≥ 1 − ε, if x ∈ Ω ∩ {x ∈ R
2 ; x2 − ct − m∗|x1| ≤ −M1}, (3.20)

and

u(t, x) ≤ ε if x ∈ Ω ∩ {x ∈ R
2 ; x2 − ct − m∗|x1| ≥ M2}. (3.21)

Proof Let ε be a positive constant with (3.19) such that Lemma 3.10 holds. Take small
δ satisfying

0 < δ < min

{
ε

2‖ζ‖L∞
,

δ1

‖ζ‖L∞

}
(< ε), (3.22)

where ζ is given in (3.7). Then Lemmas 3.2 and 3.11 guarantee that there exist positive
constants β∗, ρ∗ and T∗ such that w1(t, x) and w+

1 (t, x) with M = 0 are a sub- and
supersolution of (1.1), respectively.

Recall that, by the monotonicity of φ(ξ) of (1.4), we can take a constant R > 0
such that

φ(ξ) ≤ δC3 for ξ ≥ c f

c
(R − cT∗ + τ2), (3.23)

where C3 and τ2 satisfy (3.7) and (3.3), respectively. Since u(t, x) → V (x1, x2 − ct)
as t → −∞ uniformly in Ω , it implies that there is T̃ < 0 such that

|u(T̃ , x) − V (x1, x2 − cT̃ )| ≤ δ/2 for x ∈ Ω. (3.24)

By (3.24), (3.3) and the monotonicity of φ(ξ), it follows that there is M̃ > 0 such that

u(T̃ , x) ≥ V (x1, x2 − cT̃ ) − δ/2

≥ 1 − δ in Ω ∩ {x ∈ R ; x2 ≤ m∗|x1| + cT̃ − M̃}. (3.25)

On the other hand, one knows that for any point y ∈ Ω such that y2 ≤ m∗|y1|+ R,
dΩ(y, {x ∈ Ω; x2 ≤ m∗|x1| + cT̃ − M̃}) < +∞. Note that there are x0 ∈ R

2 and
a positive constant L such that K ⊂ B(x0, L) because K is compact. By (3.22) and
Lemma 3.10, there are positive constants R1, R2, R3 and T̄ such that R3 > R2 >

R1 > 0, R2 − R1 > c f T̄ /4, and, if B(x0, R3) ⊂ Ω , then

vx0,R1(T̄ , ·) ≥ 1 − δ in B(x0, R2).
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Fig. 1 Example of
{x j }(1 ≤ j ≤ k) satisfying the
above condition for y. Here
V1 = {x ∈ R

2 ; x2 =
m∗x1 + cT̃ − M̃},
V2 = {x ∈ R

2 ; x2 = m∗x1+R}
y

x1

K

x
x

2
3

V

V1

2

Then, for any point y ∈ Ω\B(x0, L + R3 − R2) ∩ {x ∈ R
2 ; x2 ≤ m∗|x1| + R},

there are k points x1, . . ., xk in R2 such that (Fig. 1)

⎧⎪⎪⎨
⎪⎪⎩

B(x1, R1) ⊂ {x ∈ R
2; x2 ≤ m∗|x1| + cT̃ − M̃},

B(xi , R3) ⊂ Ω for 1 ≤ i ≤ k,
B(xi+1, R1) ⊂ B(xi , R2) for 1 ≤ i ≤ k − 1,
y ∈ B(xk, R2).

It follows from Lemma 3.10, (3.25) and the comparison principle that

u(T̃ + T̄ , x) ≥ vx1,R1
(T̄ , x) ≥ 1 − δ, for x ∈ B(x1, R2).

Since B(x2, R1) ⊂ B(x1, R2), one gets that u(T̃ + T̄ , x) ≥ 1− δ for x ∈ B(x2, R1).
Since B(x2, R3) ⊂ Ω , one apply Lemma 3.10 and get that u(T̃ + 2T̄ , x) ≥ 1− δ for
x ∈ B(x2, R2). By induction, one has that u(T̃ + kT̄ , x) ≥ 1 − δ for x ∈ B(xk, R2).
Thus,

u(T̃ + kT̄ , x) ≥ 1 − δ in Ω\B(x0, L + R3 − R2) ∩ {x ∈ R
2 | x2 ≤ m∗|x1| + R}.

(3.26)

By the assumption that u(t, x) is a complete invasion satisfying (3.16), there is T ′ ∈ R

such that

u(T̃ + T ′, x) ≥ 1 − δ, for any x ∈ B(x0, L + R3 − R2)\K . (3.27)

Define T1 := max{T̃ + kT̄ , T̃ + T ′}. Then, from (3.26) and (3.27), it follows from
ut > 0 that

u(T1, x) ≥ 1 − δ, for any x ∈ Ω ∩ {x ∈ R
2 | x2 ≤ m∗|x1| + R}.

Then we obtain that

u(T1, x) ≥ 1 − δ ≥ V (x1, x2 − cT∗) − δζ(x) = w1(0, x)
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in Ω ∩ {x ∈ R
2 ; x2 ≤ m∗|x1| + R} because 0 ≤ V ≤ 1 and ζ ≥ 1. For any

x ∈ Ω ∩ {x ∈ R
2 ; x2 ≥ m∗|x1| + R}, one has

x2 − cT∗ − m∗|x1| ≥ R − cT∗,

and by (3.3) and (3.23),

w1(0, x) =V (x1, x2 − cT∗) − δζ(x)

≤φ
(c f

c
(x2 − cT∗ − m∗|x1| + τ2)

)
− δC1 ≤ 0 ≤ u(T1, x).

Therefore, u(T1, x) ≥ w1(0, x) for all x ∈ Ω . By comparison principle, one has that
for all x ∈ Ω and t ≥ 0,

u(T1 + t, x) ≥ w1(t, x) = V (x1, x2 − c(t + T∗) + ρ∗δ(1 − e−β∗t )) − δζ(x)e−β∗t .

Then there is M1 > 0 such that, for any t ≥ T1,

u(t, x) ≥ 1 − ε

2
− δζ(x) ≥ 1 − ε in Ω ∩ {x ∈ R

2 | x2 − ct − m∗|x1| ≤ −M1}

by (3.3), (3.22) and φ(−∞) = 1. This implies (3.20).
At last, we show (3.21). By (3.24) and (3.3), it follows that there is M > 0 such

that

u(T̃ , x) ≤ V (x1, x2 − cT̃ ) + δ

2
≤ δ, for x ∈ Ω such that x2 ≥ m∗|x1| + cT̃ + M .

Then, for any x ∈ Ω such that x2 ≥ m∗|x1| + cT̃ + M , one has that

w+
1 (0, x) = V (x1, x2 − cT∗) + δζ(x) ≥ δ ≥ u(T̃ , x).

For any x ∈ Ω such that x2 ≤ m∗|x1| + cT̃ + M , one has that x2 − cT∗ − m∗|x1| ≤
c(T̃ − T∗). Remember that T∗ > 0 and T̃ < 0. Even if means decreasing T̃ , one can
have that V (x1, x2 − cT∗) ≥ 1 − δ for x ∈ Ω ∩ {x ∈ R

2 ; x2 ≤ m∗|x1| + cT̃ + M}.
Therefore,

w+
1 (0, x) = V (x1, x2 − cT∗) + δζ(x) ≥ 1 ≥ u(T̃ , x),

in Ω ∩ {x ∈ R
2 ; x2 ≤ m∗|x1| + cT̃ + M}. It leads to

w+
1 (0, x) ≥ u(T̃ , x), for x ∈ Ω.

By the comparison principle, one concludes that

u(T̃ + t, x) ≤ w+
1 (t, x) = V (x1, x2 − c(t + T∗) − ρ∗δ(1 − e−β∗t )) + δζ(x)e−β∗t .
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By (3.3) and φ(+∞) = 0, there is M2 > 0 such that, for t ≥ T̃ ,

u(t, x) ≤ ε

2
+ δζ(x) ≤ ε in Ω ∩ {x ∈ R

2 ; x2 ≥ m∗|x1| + ct + M2}.

Therefore the proof is completed. ��
Lemma 3.13 Let T1 ∈ R such that Lemma 3.12 holds. Then, for any ε > 0 and t ≥ T1,
there is R̃ > 0 such that u(t, x) and V -shaped traveling front V (x1, x2 − ct) of (1.5)
satisfy

|u(t, x) − V (x1, x2 − ct)| ≤ ε, for x ∈ Ω\B(η(t), R̃).

where η(t) = (0, ct) ∈ R
2.

Proof Let r ∈ R and take a sequence {xn}n∈N = {(xn1, xn2)}n∈N ⊂ R
2 such that

xn1 > 0, xn2 − m∗xn1 = r and |xn| → +∞ as n → +∞.

Denote un(t, x) = u(t, x + xn) for each t ∈ R and x ∈ Ω − {xn}. Since 0 ≤ u ≤ 1
and K = R

2\Ω is bounded, it follows from standard parabolic estimates that, as
n → +∞, the sequence {un}n∈N converge, up to extraction of a sequence, locally
uniformly in (t, x) ∈ R × R

2 to a solution U (t, x) of

(U )t − ΔU = f (U ), for t ∈ R and x ∈ R
2,

with 0 ≤ U (t, x) ≤ 1 for all (t, x) ∈ R × R
2.

Notice that |xn1| → +∞ since |xn| → +∞ and xn2 − m∗xn1 = r . It follows that
(x1 + xn1)2 + (x2 + xn2 − ct)2 → +∞ as n → +∞ for x1 ≥ −xn1/2. Thus (1.15)
leads to

V (x1 + xn1, x2 + xn2 − ct) − φ
(c f

c
(x2 + xn2 − ct − m∗(x1 + xn1))

)

= V (x1 + xn1, x2 + xn2 − ct) − φ
(c f

c
(x2 − ct − m∗x1 + r)

)
→ 0,

as n → +∞ for x ∈ R
2. Remember that u(t, x) − V (x1, x2 − ct) → 0 as t → −∞

uniformly in x ∈ Ω . Therefore,

U (t, x) → φ
(c f

c
(x2 − ct − m∗x1 + r)

)
, as t → −∞ for x ∈ R

2.

By [5], one gets that

U (t, x) = φ
(c f

c
(x2 − ct − m∗x1 + r)

)
, for t ∈ R and x ∈ R

2.
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Then, one concludes that

u(t, x + xn) → φ
(c f

c
(x2 − ct − m∗x1 + r)

)
, (3.28)

locally uniformly for t ∈ R and x ∈ R
2 as n → +∞. Similarly, for a sequence

{xn}n∈N such that

xn1 < 0, xn2 − m∗xn1 = r and |xn| → +∞ as n → +∞,

one can obtain

u(t, x + xn) → φ
(c f

c
(x2 − ct + m∗x1 + r)

)
,

locally uniformly for t ∈ R and x ∈ R
2 as n → +∞.

Fix t∗ ≥ T1. Take a sequence {yn}n∈N = {(yn1, yn2)}n∈N ⊂ R
2 such that yn2 −

m∗yn1 = ct∗ for yn1 ≥ 0, |yn| → ∞ as n → ∞ and there is R > 0 satisfying

{
x ∈ Ω; x1 > 0, −M1 ≤ x2 − ct∗ − m∗x1 ≤ M2

} ⊂
∞⋃
n=1

B(yn, R),

where M1, M2 are some positive constants. By (3.28) and yn2 −m∗yn1 = ct∗, one has
that

∣∣∣u(t∗, x + yn) − φ
(c f

c
(x2 − m∗x1)

)∣∣∣ <
ε

2
, for large n and x ∈ B(0, R).

This implies that there is R̃ > 0 such that

∣∣∣u(t∗, x) − φ
(c f

c
(x2 − ct∗ − m∗x1)

)∣∣∣ <
ε

2
, (3.29)

for x ∈ Ω ∩ {x ∈ R | |x − (0, ct∗)| ≥ R̃, x1 ≥ 0, −M1 ≤ x2 − ct∗ − m∗x1 ≤ M2}.
Similarly, there is R̃ > 0 such that

∣∣∣u(t, x) − φ
(c f

c
(x2 − ct∗ + m∗x1)

)∣∣∣ <
ε

2
, (3.30)

for x ∈ Ω ∩ {x ∈ R | |x − (0, ct∗)| ≥ R̃, x1 < 0, −M1 ≤ x2 − ct∗ − m∗x1 ≤ M2}.
Even if it means increasing R̃, one can treat that M1, M2 are large enough. Note that t∗
is an arbitrary fixed point with t∗ ≥ T1. Thus it follows from Lemma 3.12 and (1.15)
that, for t ≥ T1,

∣∣∣u(t, x) − φ
(c f

c
(x2 − ct − m∗|x1|)

)∣∣∣ ≤ ε, for x ∈ Ω\B(η(t), R̃),

where η = (0, ct). Therefore we completes the proof. ��

123



V -shaped fronts around an obstacle 687

Proof of Theorem 1.4 Take a sufficiently small ε > 0. Let δ be a small constant such
that Lemmas 3.6, 3.7 hold and δ ≥ 2ε. Take T such that Lemmas 3.6, 3.7, 3.12 and
3.13 hold for δ and ε. By Lemmas 3.8 and 3.13, one gets that there is R > 0 such that

u(T , x) ≥ φ
(c f

c
(x2 − ct + m∗|x1|)

)
− ε ≥ v−(T , x; ε, α) − δ‖ζ‖L∞ = w−(0, x),

and

u(T , x) ≤ v+(T , x; ε, α) + δ = w+(0, x),

for x ∈ Ω ∩ {x ∈ R
2 ; |x − (0, cT )| ≥ R }. From [19], one can make α sufficiently

small such that

v2(x1, x2 − cT ; ε, α) ≤ δ, for x ∈ B((0, cT ), R).

Then, w−(0, x) ≤ 0 ≤ u(T , x) for x ∈ B((0, cT ), R). Thus, w−(0, x) ≤ u(T , x) for
x ∈ Ω . From the comparison principle, it follows that

w−(t, x) ≤ u(t + T , x), for x ∈ Ω and t ≥ 0.

Also, from [18], one knows that one can make α sufficiently small such that

v+(x1, x2 − cT ; ε, α) ≥ 1 − δ, for x ∈ B((0, cT ), R).

Then, w+(0, x) ≥ 1 ≥ u(T , x) for x ∈ B((0, cT ), R). By the comparison principle,
it follows that

w+(t, x) ≥ u(T + t, x), for x ∈ Ω and t ≥ 0.

In conclusion, one has

w−(t, x) ≤ u(T + t, x) ≤ w+(t, x), for x ∈ Ω and t ≥ 0.

As T + t → +∞, one has that

max{v1(x1, x2 − ct + ρδ; ε, α), v2(x1 − ρδ, x2 − ct; ε, α),

v3(x1 + ρδ, x2 − ct; ε, α)} ≤ u(t, x) ≤ v+(x1, x2 − ct − ρδ; ε, α). (3.31)

Take any sequence {tn}n∈N such that tn → +∞ as n → +∞. Let un(t, x) =
u(t+ tn, x+(0, ctn)). By standard parabolic estimates, un(t, x) converge to a solution
U (t, x) of Ut − ΔU = f (U ) in t ∈ R and x ∈ R

2. Since ε and δ could be arbitrary
small, it follows from (3.31) and Lemma 3.8 that

lim
R→+∞ sup

x21+(x2−ct)2>R2

|U (t, x) − V (x1, x2 − ct)| = 0.
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By stability of V -shaped front due to [18,19], one concludes that

U (t, x) ≡ V (x1, x2 − ct).

This completes the proof. ��
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