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Abstract
In this paper, we investigate V -shaped fronts around an obstacle K. We first prove that
there exist solutions emanating from any homogeneous transition front including V-
shaped front for exterior domains £2 = R\ K. By providing the complete propagation
of the V-shaped front, we prove that the V-shaped front can recover after passing the
obstacle.

Mathematics Subject Classification 35A18 - 35B08 - 35B30 - 35C07 - 35K57

1 Introduction

This paper is concerned with the following reaction-diffusion equation in exterior
domains

{u,:Au+f(u), teR, x e 2 =R"\K c RV, (D

u, =0, onx € 952,

where the obstacle K is a compact set of RY which is the closure of an open set with
smooth boundary and §2 is an exterior domain. Here, v = v(x) is the outward unit
normal on the boundary 952 and u, = g—]’j On the boundary 952, the homogeneous
Neumann boundary condition is imposed.

Throughout of this paper, the reaction term f is assumed to be of bistable type,
namely u = 0 and u = 1 are both stable stationary states. More precisely, we assume
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that f is of Cl([O, 1], R) and satisfies
fO)=f1) =0, f/(0)<0 and f'(1) <O. (1.2)

For mathematical purposes, the function f is extended in R as a C!(R) function such
that

f(s) = f'(0)s >0 fors € (—o0,0)
and
f&)=f'(H(s—1) <0 fors e (1,+00).

A typical example is the cubic nonlinearity f(s) = s(1 —s)(s —0) with0 <0 < 1.
Notice that the existence of V-shaped front requires the bistable reaction term f being
unbalanced. Thus, we assume additionally that

1
/0 f(s)ds > 0, (1.3)

(for fol f(s)ds < 0, one can only reverse the roles of 0 and 1). For the balanced case

fol f(s)ds = 0, no more V-shaped fronts exist, see [14]. Instead, some fronts with
their level sets being exponential shape (N = 2) or parabolic shape (N > 3) may
exist, see [8].

Since we consider the propagation of homogeneous transition fronts and V -shaped
fronts, we assume throughout this paper that if 2 = R, it admits a unique traveling
front u(z, x) = ¢ (x — cyt) such that

{¢”+cf¢>’+f(¢)=o inR, (14)
¢(—o00)=1 and ¢(+00)=0. ’

It follows from [9] that the propagation speed c is only determined by f and has

the sign of fol f(s)ds. As we consider in this paper, ¢y > 0 by (1.3). We also point
out that the existence and nonexistence of traveling fronts relies on conditions of the
bistable nonlinearity, see [9].

The first aim of this paper is to prove the existence of entire solutions emanating
from any homogeneous transition front, that is, Theorem 1.2. Therefore, we first recall
some results in homogeneous case. For the following reaction-diffusion equation in
RV,

up = Au+ f(u), teR, x eRY, (1.5)
it is well known that there are various kinds of entire solutions. The simplest example

is the planar front u(¢, x) = ¢ (x - e — crt) where e is a unit vector of RN For the
existence of planar fronts, one can refer to the existence of one-dimensional traveling
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fronts. Note that the level sets of a planar front are hyperplanes and a planar front
propagates with invariant level sets. More types of non-planar fronts are known to
existin RV, such as V-shaped fronts, conical shaped fronts, pyramidal fronts and even
nonstandard fronts which have no invariant level sets. For the existence, uniqueness,
stability and other qualitative properties of these non-planar traveling fronts, we refer
to [6,7,14-16,18,19,21-24] and the references therein.

For these types of traveling fronts, their common features, such as they converge to
the stable states O or 1 far away from their moving or stationary level sets, uniformly
in time, led to the introduction of a more general notion of traveling fronts, that is,
transition fronts, see [3,4,13] and see [20] in the one-dimensional setting. We here
recall the notion of transition fronts for (1.5). First, for any two subsets A and B of
RY and for x € RY, we set

d(A, B) = inf{ly —zl; (y,2) € A X B}

and d(x, A) = d({x}, A), where | - | is the Euclidean norm in R" . Consider now two
families {£2, };er and {£2,7};cr composed of open nonempty subsets of R" such that,
forany t € R, 2, and 2, satisfy

27Nt =0,
02, = =13,

1.6)
QruUnLuURt=R"Y, (
sup{d(x, I;); x € ;) =sup{d(x, I}); x € 2} =+o0
and as r — +00,
inf{sup{d(y,]",); ye.(2+, ly — x| §r}; telR, xeF,} — 400
(1.7)

inf{SUP{d(y,B); yeR , ly—x|<r} teR, xen}—>+oo.

Notice that the condition (1.6) implies in particular that the interface I} is not empty
foreveryt € R. Asfaras (1.7) is concerned, it says that forany M > 0, thereisry > 0
such that for any 7 € R and x € I}, there are y* = y,j,[x € RY such that

yEeQF, lx—y* <ry and dOyF. 1) = M, (1.8)

that is, y* € B(x,ry) and B(y®*, M) C .Q,i, where B(y,r) denotes the open
Euclidean ball of center y and radius » > 0. In other words, not too far from any
point x € I3, the sets Q,i contain large balls. Moreover, the sets I; are assumed to
be made of a finite number of graphs: there is an integer n > 1 such that, for each
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t € R, there are n open subsets w; ; C RN ’l(for 1 < i < n), n continuous maps
Y¥i : wi; — Rand n rotations R; ; of R, such that

rnc U Ri(eRY xeon ww=yu). 19

1<i<n

Definition 1.1 ([3,4]) We call u(¢, x) a transition front connecting 0 and 1 of (1.5), or
simply “transition front”, if u(x, ¢) is a classical solution of (1.5) and there exist some
sets {Q,i}teR, {I}}ser satisfying (1.6), (1.7) and (1.9) such that for any ¢ > 0, there
is a positive constant M, satisfying

[d(x,]"t)zMg for (t,x) e R x 27 = u(t,x) > 1 —=, (110)

d(x,I7) > M, for (t,x) e Rx 2,7 = u(t,x) <e.

Furthermore, u is said to have a global mean speed y (> 0) if

M—) y as |t —s| — 4oo.
|t — s
It has been proved by [13] that any transition front of (1.5) has a global mean
speed which is equal to ¢y > 0 (by (1.3)), the propagation speed of one-dimensional
traveling front.
From the paper of Berestycki, Hamel and Matano [5], they proved the existence of
entire solution u (¢, x) of (1.1) emanating from a planar front, that is, u (¢, x) satisfies

u(t,x) — ¢(x-e—cyt)ast — —oo uniformly in Q.

Inspired by [5], we prove that (1.1) admits entire solutions emanating from any tran-
sition front of (1.5) defined by Definition 1.1.

Theorem 1.2 For any transition front U (t, x) solving (1.5), there exists an entire solu-
tion u(t, x) of (1.1) such that

u(t,x) — U(t,x), ast— —oo uniformly in 2.

Furthermore, u,(t,x) > 0 fort € Rand x € 2.

Remark 1.3 One can notice from [5] that (1.1) admits entire solutions emanating from
planar fronts even if the obstacle K is unbounded but lying in a half space. However,
this can not be true for general transition fronts since the 1/2 level set of a transition
front may always cross with the unbounded obstacle as t — —oo.

Now, we consider the interaction between a transition front and the obstacle K.
From [5], one knows that a planar front coming from somewhere far away from
the obstacle can recover to the same planar front under some suitable geometrical
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conditions on the obstacle K, such as K is star-shaped! or directionally convex with
respect to some hyperplane.? It implies that the perturbation caused by the obstacle
will fade out finally. It also implies that the propagation of the entire solution u (¢, x)
emanating from a planar front is complete in the sense that

u(t,x) - 1, ast — +oolocally uniformly in Q. (1.11)

Here we mean the complete propagation of an entire solution u(z, x) or that an entire
solution u(, x) is a complete invasion by (1.11). Another interesting phenomenon in
[5] is the blocking phenomenon, that is, the solution u(#, x) might be blocked when
the obstacle K contains a small channel, like the neck of a hourglass, in the sense that

u(t,x) <1 forsome points x and anyt € R. (1.12)

In other words, the perturbation caused by the obstacle remains forever. Such blocking
phenomenon has also been studied in [2] for cylinderical domains.

In fact, the above phenomena also hold for more general entire solutions, that is, both
phenomena of complete propagation and blocking can occur for the entire solution
u(t, x) emanating from not only a planar front but also any homogeneous transition
front such as a V-shaped front, depending on the shape of the obstacle K. By applying
the arguments used in Step 1 of the proof of [12, Lemma 2.6], there exists a C%(2)
solution p : 2 — (0, 1] of

Ap+ f(p)=0in 2, p,=0 ond2, and px)—1 as|x|—> +ad,13)

such that the entire solution u of (1.1) emanating from any homogeneous transition
satisfies

ltlmﬁnf u(t,x) > p(x) >0 locally uniformly in x € £2. (1.14)

It follows from [5, Theorems 6.1 and 6.4] that, if the compact obstacle K is either star-
shaped or directionally convex with respect to some hyperplane, then any solution
p @ 2 — [0,1] of (1.13) is identically equal to 1. By (1.14), it means that the
propagation of u(z, x) is complete, that is, satisfying (1.11). Besides, a dilated domain
RS20 = RN\ (RKj) for large constants R and smooth bounded closed sets Ko of
R¥, can also ensure the complete propagation, refer to [12, Corollary 1.12]. For the
blocking phenomenon, the example made in Section 6.3 of [5], where the obstacle K
contains a small channel whose width is controlled by a small constant ¢, still works

! The obstacle X is called star-shaped if either K = @ or there is x in the interior Int(K) of K such that
x+t(y—x) eInt(K) forally e 9K and ¢ € [0, 1).

2 The obstacle K is called directionally convex with respect to a hyperplane H = {x € RN :x.e=ua),
withe € SN =1 and a € R, if for every line X' parallel to e, the set K N X' is either a single line segment or
empty and if K N H is equal to the orthogonal projection of K onto H.
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here. The authors of [5] proved that for any R such that B(0, R) D K and small
enough ¢, the following problem has a solution w = 1

Ao+ f(w) =0 inB0O,R\K, w,=0 ondK, and w=1 onadB(0,R).

One can easily notice that the function w extended by 1 outside B(0, R) is actually a
supersolution for the entire solution u(¢, x). It implies that the propagation of u (¢, x)
is blocked in the sense of (1.12).

What we are interested in this paper is, for more general situation than planar
fronts, whether a transition front coming from somewhere far away from the obstacle
can recover to the same transition front provided by the complete propagation of the
front (which avoids the blocking). We conjecture that the answer is positive. However,
we can not prove this yet. From the arguments in [5], we believe that the global stability
of transition front is the key to solve this problem. Nevertheless, the global stability
of transition front in general settings is still open. Thus, in this paper, we consider a
special nonplanar case, namely, the V-shaped front, to give a positive answer to it.

Before we state our main result, we need to recall some existence results of V -shaped
fronts of (1.5). For convenience, we only consider N = 2. The result can be extended
to high dimensions N > 3 trivially. We denote points in R2 by (x1, x2). It is known
from [15,16,18] that the existence of one-dimensional traveling fronts with nonzero
speed guarantees the existence of V-shaped fronts. Without loss of generality, we
assume that the V -shaped front propagates towards x,-direction with speed ¢ denoted
by u(t, x1, x2) = V(y, &) with y = x1 and & = xp — ct. The results of [15,16,18] say
that there exists a unique (up to shifts) V-shaped front V (x1, xo — ct) of (1.5) with
asymptotic lines

Xy = my|x1| where my, = ———,

satisfying
—Vyy = Vee —cVe — f(V) =0 in (y,€) € R?,
where Ve = 3V /3, Vg = 02V /3E% and Vyy, = 32V /3y

Furthermore, the V-shaped front V (x1, x — ct) is known to be asymptotically
planar along its asymptotic lines, that is,

lim sup V(x1, x2 — ct) —¢<c—f(x2—ct—m*|x1|))’ —0. (1.15)
Rﬁ+ooxlz+(xzfct)2>R2 ¢

We now state the main result.

Theorem 1.4 Assume that u(t, x) is an entire solution of (1.1) emanating froma V -
shaped front, that is, u(t, x) satisfies

u(t,x) - V(x1,x2 —ct) ast — —oo uniformly in Q.
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V-shaped fronts around an obstacle 667

Ifu(t, x) is a complete invasion satisfying (1.11), then
u(t,x) - V(xy,x2 —ct) ast — +oo uniformly in Q.

Remark 1.5 From the above discussion, the entire solution # emanating from a V-
shaped front is a complete invasion as the obstacle K is star-shaped or directionally
convex with respect to some hyperplane or dilated by K = R K| for a large constant R
and a smooth bounded closed set Ko of RV . Thus, the assumption of Theorem 1.4 is
not empty. Moreover, from Theorem 1.4, we know that the entire solution emanating
from a V-shaped front will recover to the same V-shaped front in such domains. One
can easily check that the entire solution u(¢, x) in Theorem 1.4 is a transition front
connecting 0 and 1 in exterior domains.

This paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.2
and Sect. 3 is devoted to the proof of Theorem 1.4.
2 Entire solutions emanating from transition fronts
In this section, we prove the existence of entire solutions emanating from any homo-
geneous transition front. In order to follow the idea of [5], we need to prove some

additional properties of transition fronts and by which, we can construct supersolu-
tions and subsolutions.

2.1 Properties of homogeneous transition fronts

In this section, we study some properties of general transition fronts of the homoge-
neous equation (1.5).

Lemma 2.1 Let U(t, x) be a transition front of (1.5). For any point xo € RY and any
R > 0, there are constants Ty < 0, o > 0, B > 0 and n > 0 such that it holds that

U(t,x) <ae™, fort <Tandx € B(xo, R),
and
IVU(t, x)| < Be™, fort < Ty andx € B(xg, R).

Progvf Without loss of generality, we assume xo = 0. Otherwise, one can shift U (¢, x)
by U(t,x) = U(t,x + xo). To obtain our claim, we here make a supersolution of
U (x, t) by using the traveling front ¢ of (1.4).

Step 1: Choice of some parameters By (1.2), there is ¢ > 0 such that f(s) is
nonincreasing in (—oo, o] and

f(s) <0 fors €[0,0].

@ Springer



668 H. Guo, H. Monobe

Since limg s 10 ¢ (§) = 0, there is C > 0 such that
¢E) <o for§ >=C. 2.1
One can notice that the function ¢ is of class C> and ¢’ satisfies
@) +cr@) + ()¢’ =0,
and ¢’ < 0in R from [9]. Since f'(s) is bounded, it follows from standard interior

estimates and Harnack inequality that the function ¢” /¢’ is bounded. Namely, there
is C1 > 0 such that

19" (&)] < C1l¢/(§)| forall§ € R. 2.2

Take p > 0 such that
°r
V2uCq < 5 (2.3)

It is elementary to check that there is a C? function / : [0, 400] — R satisfying
the following properties:

0<h' < /56 onl0,+00),

h' =0 on a neighborhood of 0,

h(0) >0 and h(r) = /%r on[H,+oo) forsome H > 0,
W=DW@O |y (ry < & on [0, +00).

2.4)

Notice in particular that

/2LC1r <h(r) < /ziclr £ h(0) forallr > 0. 2.5)

Step 2: Construction of a supersolution Fort € R and x € RV, we set

u(t, x) = ¢, x)),

where

_ _ [+
§(,x)=—h(x|) —put +C+ 2C1R+h(0)'

Let
E:{(t,x)eRxRN; 1 <0, |x|5—,/2uclz+R}, (2.6)
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and (¢, x) be any point in E. By (2.5), one can get that

[ 1 [ 1
> [ x| = - R
E(t,x) > 2 x| —h(0) — put +C + 2C, +h(0) > C,

and hence (2.1) leads to
ult,x) <o IinkE.

Thus, f(u(t, x)) < 0in E.Letuscheck that Lu := u; —Au— f(u) > Ofor (t,x) € E.
One can easily compute that

L= — pud(E(t, x)) — ¢" (€, x)h"(|x])
N —1
+¢'(£(1, %)) (h”<|x|> + —h’(|x|>) — f@).

x|
Since ¢’ < 0in R and by (2.2), (2.4), it follows that
LT > —pd (E(t.x) + %qb’(é(t, X)) + %d(s(r, X)) — f(@(t.x) >0 inE.

Thus u is a supersolution of (1.5) in E.
Step 3: Exponentially approaching to O Notice that

[ [ _
§(t,x) < — 2_C1|x|_’”+c+ ER—Fh(O)—C—i-h(O)

ondE :={(t,x) e R x RN: ¢t <0, |x| = —4/2uCit + R}. Since ¢’ < 0in R, one
has that

u(t,x) =¢E@,x)) = ¢(C +h(0) ondE.

Since U(t,x) — 0ast — —oo locally uniformly for x € RY and %(0, x) > 0 for
x € B(0, R), there is T; < 0 such that

U(T1, x) < min{u(0, x), ¢(C + h(0))}, forallx € B(0, R).
Since the global mean speed of U (¢, x) is ¢y, one can decrease T such that
U(t,x) <¢p(C+h(0)), fort<T; and |x|<R-— Czl(t —T).
By (2.3), it implies that
U(t,x) <¢(C+h0) <o, fort<T; and |x| <R —2uCi(t —T1).
Thus, U(t +T1,x) <ocinEand U(t + T1,x) <u(t,x)ondE.
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Now, define
e*=infle >0; Ut +T1,x) —e <u(t,x) in E}.

Assume that ¢* > 0. Then, there are sequences ¢, > ¢* and (¢,, x,) € E such that
&, — €*and

u(ty, xp) — Uty + T1, xp) + 8n||L°°(E) — 0, asn — +4oo. 2.7
Since u(ty, x,) + &, > €* and U(¢t,x) — 0 ast — —oo uniformly for x € E, it
implies that there is —oco < #* < 0 such that ¢, — t* and hence, there is x* € E such
that x,, — x*. Thus, by (2.7), one has that

u*, x -U@*+ T, x*)+e*=0.
Since U(t + T1, x) < o in E and f(s) is nonincreasing in (—oo, o], one has that
Ut+T,x)—e)y—AUE+T1,x)—e")— fUE+T1,x) —e*) <0, inkE.
Letz(t,x) =u(t,x) — U+ Ty, x)+€*. Then, z(¢t,x) > 0in E, z(t,x) > Oon dE
and z(¢*, x*) = 0. Since u(z, x) is a supersolution, one gets that z;, — Az+b(t, x)z > 0
in E where b(¢, x) is a bounded function. Then, by the maximum principle, one gets
that z(¢, x) = 0in E which contradicts u(¢, x) > U(t+Tj, x) —&* on  E. Therefore,
e*=0.
As a consequence, it follows that

Uit+Ti,x) <u(t,x)=¢E&(t, x)), inkE.

For x € B(0, R), one has that

2 2
t,x)>— | —R—h0) —ut+C —R+h(0)=—ut+C >0.
&(t,x) > ‘/2C1 0) — pt + +/2C1 + h(0) ut+C >

By [9], there are positive constants ap and A such that
Ut +T1.x) < p(E(t,x)) < ape’™ ¢, fort <0 and x e B(O,R),

that is, U (¢, x) < age~T)=2C fort < Ty and x € B(0, R). By standard interior
estimates, there is a; > 0 such that

VU, x)| <ai* =T forr <T, and x € B(0, R).
This completes the proof. O
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2.2 Super- and subsolutions before the encounter

Assume without loss of generality that the obstacle K contains 0, namely, 0 € K and
therg is a positive constant R such that K C B(0, R). Otherwise, one can shift U (¢, x)
by U(t,x) = U(t, x + xo) forxg € K.

In this section, we construct a supersoluion and subsolution of (1.1) by using the
transition front U (¢, x). To do so, we prepare an auxiliary function. Let E be a function
of class C?(£2), with compact support in §2, and such that v - VE = 1 on 0§2. Assume
that there is Ry > O such that supp{E} € B(0, Ry). The functions AE and E are
continuous and compactly supported in £2 and they are then bounded. For example of
a such function E, one can construct a cut-off function satisfying the above conditions
by applying the classical distance function in [ 10] around the boundary 9£2. By Lemma
2.1, there are constants 77 < 0, 8 > 0 and n > 0 such that

VU@ +1,x)| < Be™, fort<T; and x e B(0,R). 2.8)
Take a constant C, > 0 such that
() :=C(x)+Cy ing2,

and

H a4 <. 2.9)
:

Loo(82)

By (1.2), thereiso > Osuchthat f(s)isnonincreasingin (—oo, 20 ]and [1—20, +00).
By [11], one knows that U,(t, x) > 0 for all (t,x) € R x RY and there is k > 0
such that, if (z, x) satisfies 0 < U(t,x) < 1 — o, then U;(¢t, x) > k. Take w > 0
sufficiently large such that

kaon = LB oo () (2.10)
where L = max,cg | f/(s)].
We set
UT(t,x) = Ut + we, x) + Be(x)e™, (2.11)
and
U™(t,x) = U(t —we, x) — BL(x)e™. (2.12)

Let 7> < Tj such that we < 1 fort < T and

Bc(x)e" <o, fort<T» and x € £2. (2.13)
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Lemma2.2 U™ (¢, x) and U™ (¢, x) are a supersolution and a subsolution of (1.1) for
t < T, respectively.

Proof We first check the boundary condition on 9£2. It follows from (2.8) that
VU (t,x) - v=VU(@{t +we”, x) v+ BV -ve >0,

and
VU (t,x) - v=VU{ —we™, x)-v— BV -ve" <0,

fort < T> and x € 952.
We next check that

LUT :=U - AUT — f(UT) >0,
fort < T, and x € £2. One can easily compute that

LU = wne U, (t + we™, x) + Bnc(x)e™ + BAce™
+ U@+ we™, x) — fWUT(,x)).
Fort < 15 and x € £2 such that U(t + we™, x) < o, it follows from (2.13) that

U™ (t,x) < 20. Since f(s) is nonincreasing in (—oo, 25 ] and by U; > 0, (2.9), one
gets that

LU* > Br(x)e (n + %) > 0,

Fort < T» and x € £2 such that U (¢t + we™, x) > 1 — o, it follows that U1 (¢, x) >
1 — 0. Since f(s) is nonincreasing in [1 — 20, +00) and by U; > 0, (2.9), one gets
that LU > 0. Finally, if r < T and x € 2 suchthato < U(t + we",x) <1 — o,
then U, (t + we™, x) > k. By (2.9) and (2.10), one gets that

LU = kone™ + B (x)e™ (n + %) — LBt (x)e™ > 0.

Thus we can confirm that U™ is a supersolution of (1.1). Similarly, one can easily
check that LU~ < O fort < 7> and x € £2, namely, U~ is a subsolution of (1.1).
This completes the proof. O

2.3 Proof of Theorem 1.2

We now construct a sequence of solutions defined for —n <t < +oo (n € N). Let
uy, (t, x) be the solution of (1.1) for t > —n with the initial data

uy(—n,x) = UV (—n, x).
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Since U™ (—n, x) < uy(—n, x) = Ut (—n, x), the comparison principle implies
U (t,x) <u,t,x) <UT(t,x), forte[-n,T,] and x e 2. (2.14)
Then, it follows that
Up(—n +1,x) < U (—=n+1,x) = up_1(—n+ 1, x).
By the comparison principle, one has
upy(t,x) <uy_1(t,x), forte[—n+1,T] and x € 2.

Thus, the sequence u, (¢, x) is monotone decreasing in n. Passing to the limitn — +o00
and using parabolic estimates, one obtains that this sequence converges to an entire
solution u*(¢, x) defined for r € R and x € £2. By (2.14), it follows that

U™ (t,x) <u*(t,x) <Ut(t, x), fort € (—o0, T»] and x € £2.
It also implies that
u*(t,x) — U(t,x), ast—> —oo uniformly in £2.

Finally, we show that u}(f,x) > 0 fort € R and x € £2. One can easily note
that U™ (¢, x) is monotone increasing in ¢ for ¢ sufficiently negative. This means
(up);(—n, x) > 0 for all sufficiently large n. By using the maximum principle to u;,
it yields that

(up)e(t,x) >0, fort € (—n,+00) and x € £2.
Asn — 400, we get
uf(t,x) >0, forre R and x € £.

It is obviously that u is not identically equal to O and hence, uf > 0 for t € R and
x € £2 by the strong maximum principle. This completes the proof of Theorem 1.2.

3 Existence of the almost V-shaped front

This section is devoted to the proof of the existence of the almost V -shaped front, that
is, Theorem 1.4.
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3.1 Subsolutions and supersolutions

In this section, we construct V-shaped like subsolutions and supersolutions for (1.1)
inspired by [18,19]. Let

ki = %min{—f’(O), —f(D}>0 and L= max L/ ()] 3.1)

Then, since f(s) = f'(0)s fors € (—o0,0] and f(s) = f/(1)s for s € [1, +00],
there exists a positive constant §; (0 < 81 < 1/4) with

— f/(s) > ki ifs € (—o00,281]and s € [1 — 281, +00). (3.2)

Recall that V (x1, xp —ct) isthe V -shaped front of (1.5) satisfying (1.15). From[18,19],
there exist constants 71, 7 such that

¢(CTf(x2 — ¢t — my|xq] +Tl)) < V(x1,xp —ct)

<@ (L —ct —mylxi| +12) oy

fort € Rand x = (x1, x3) € R2. It follows from [18] that Ve < 0 and thereis k; > 0
such that, if

—Ve(y,§) = ka, fordy =V(y,§) =1-34i. 34

From [9], one also knows that there are positive constants ay, az, by, ba, a1, &2, B,
B2 such that

aeht < 1— (&) < ame™, forg <0, (-5
and
are PE < pE) <ane PE, forE > 0. (3.6)

It implies that we can get the following estimates of derivatives of V (x1, xo — ct).

Lemma 3.1 There exist positive constants dy, d», A1 and L such that
IVV(x1,x2 — et)ll pooqrey < die™! 27D for xp — et —mylxi] <0,
and

IVV (x1,x2 = ct)|| pooqrzy < dpe 202 et

for xo — ct —my|x1| > 0.
Proof By (3.3), (3.5) and (3.6), one has
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aleblq/c‘(mfctfm*\m|+r2) <1-V@,xa—ct) < 6ZZebzc‘f/C(Xzfctfm*Im|+r|>7

as xp — ¢t — my|xy| - —oo and

aje Prerleamct=mailHT) <y (3 xy — cf) < ape” Prer/cmctmmalxi+T)

as xp — ¢t — my|x1| — +o00. By parabolic interior estimates, one can get that there
exist positive constants dy, d», A1 and A, such that

IVV (x1, %2 — et)|| oo < dyett 2= 0 for xy — et — mylxi| <0,
and
IVV (x1,x2 — ct)|| o < dae™*202=ct=maxiD = for x5 — ¢t — my|xq| > 0.

This completes the proof. O

Next we construct a subsolution of (1.1). As in Sect. 2.2, we prepare an auxiliary
function ¢ again. From now on, ¢ always satisfies the following conditions. Let E be
a nonnegative function of class C 2(.Q) with compact support in £2, and such that
V- V{ = 1 on 0£2. The function A{ and g“ are continuous and compactly supported
in £2 and they are then bounded. There exists then a constant C3 > 1 such that

(=0+C3>1 inf2 (3.7)

%
¢

We remark that, since the obstacle K is bounded,

VIxiZ+ 102 < 400 and  |xa — mylxi]| < C (3.9)

for all (x1, x2) € 952 and some positive constant C.

and

k1
< —. 3.8
) (3.3)

L>(2)

Lemma 3.2 For any fixed M € R, define
wit,x) =V, xo—ct +T)+ ps(1 —e Py + M) — st (x)e P,

Then, for any § € (0,81/||¢|| L), there exist B > 0, p > 0and T > 0 (B, p are
independent of §) such that wi(t, x) is a subsolution of (1.1) fort > 0.

Proof Denote
E(t) = —ct+T)+ps(1 —e Py + M.
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Then,
wi(t, x) = V(x1, x2 + £(1)) — 8¢ (x)e P

Take 8 > 0 such that

k
B < min (ml, %) (3.10)

where A1 is defined in Lemma 3.1 and k; is defined by (3.1). Take p > O sufficiently
large such that

pBka = BlISliLocm) + 1AL ooy + LI | Lo Ry, (3.11)

where L and kj are defined by (3.1) and (3.4) respectively. By (3.9), one can choose
T > 0 sufficiently large such that

X2+ E@) —mylx)| =x2 —c(t +T) + M+ ps(1 — e Py —my|x1| < 0,(3.12)
fort > 0and x € 052, and
dle)\](gch+M+,05) <8, (313)

where d;, A1 are defined in Lemma 3.1.
Let us first check the boundary conditions. One can compute that

Vwi(t,x) - v=VV(x,x2+&@) v—8VE(x) ve Pl

for x € 952 and the outer normal unit vector v = v(x) on d§2. By Lemma 3.1, (3.12)
and (3.13), one has

IVV(x1, x2 + E(t))”LOO(]RZ) Sdlekl(X2*0(1+T)+M+,05(17e*ﬂ’)fm*|xl\)

< dye M1 M (C—cT+M+p5)

< §e M1
for x € 9£2. Since V¢ (x) -v = 1o0n 92 and B < cA, one gets that
Vwi(t,x) v <8¢ M —se P <0 onasf.
Let us now check that
N(t, x):= (wy); — Awy; — f(w) <0, fort>0 and x € .
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One can compute that

N(t,x) = f(V(x1,x2 +E1)) — fF(V(x1, %2 + (1) — 8¢ (x)e P
+ p8Be P Ve (x1, x0 + £(1) + 8¢ (x)Be P! — s AL (x)e P

For 7 > 0 and x € £2 such that V(x1,x2 4+ &(t)) > 1 — &1, one has that V(x1, xo +
E()) — 8;“(x)e’/3’ >1—28; duetod € (0,81/]1¢|l~) and hence, by (3.2),

FV G x+E0) — F(V(xp, x2 4+ £(1) — 80 (x)e™ P < ki8¢ (x)e P(3.14)
Then, it follows from Vg < 0, (3.8), (3.10) and (3.14) that

N(t,x) < k180 (x)e P+ 80 (x)Be Pt — 5AL (x)e P!

_ AL (x)
_ Bt _ _
=8l (x)e (/3 70 k1> <0.

Similarly one can get that N(t,i) <Ofors > 0and x € §2 such that 0 < Vixt, x4+
E()) < 61.Fort > 0and x € 2 such that §; < V(x1, xp + &(¢)) < 1 — &1, one has
that, by (3.1) and (3.4),

—Ve(x1, x2 +§(1)) = ko,
and
SV (1, x2+E@0)) = f(V(x1, x2+ E(1) — 82(x)e ™) < Lot (x)e™".
Then, (3.11) leads to

N(t,x) < L8t (x)e P! — pdBkre P! + 80 (x)Be Pt — sAL (x)e™ P!
=8¢ P (Lt (x) — pPka + L (x)B — AL (x)) < 0.

In conclusion, we have
N(t,x) <0, fort >0 and x € 2.

This completes the proof. O

We here introduce some super- and subsolutions for homogeneous case (1.5) shown
in [18,19]. Remember that (1.5) admits V-shaped fronts V (x1, xo — ct) satisfying

—Vyy — Vie —cVe — f(V) =0, € R, (y,£) € R%. (3.15)
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Note that V has asymptotic lines xp = my|x1| and a global mean speed y = cy.
Define ¥ (£) by

1

myy

V() =

log (1 + exp(y$§)) .

Then we obtain the following lemmas and theorem:

Lemma 3.3 [19] There exist some constants K; > 0 (i = 1,2,3) and y > 0 so that

Y (&) satisfies

max {[v©&) = 5| [/ © - ;L |} = Kiseehre)  for =0,
max([y €)1, [ )]} < Kisech(y§) foré <0,
max([y" ()1, 9"/ ©)]) < Kisech(y§) foré R,
cp— % > Ky min{1, exp(—y§)) for§ €R,

= «/ﬁ — ¢ymy = K3 min{l, exp(—y£)} for& e R.

Theorem 3.4 [19] There exist a positive constant &y and a positive function ay(g) so
that, for0 < e <ggand 0 < o < ag(e),

Y(a) —ay
ay/1+ 9/ (a§)?

is a subsolution of (3.15). Moreover, there exists a positive constant k3 such that

n(,§ e a) :=¢( ) — esech(yaf)

(U2)y2k3, if&fl&fl—gl.

Define v3(y, &; ¢, o) := vo(—y, &; &, ). It is also a subsolution of (3.15). In the
sequel, we only use v2(y, £), v3(y, &) for short.

Lemma3.5 [19] Let w;(t,x) (j = 2, 3) be defined by

v(xr — p8(1 —e '), xy —c(t + 1)) — 8¢ 7",
w3 (t, x) = v3(x; + pd(1 — e P, xy —c(t + T)) — 8¢ P,

wo(t, x) :

Forany $§ € (0,81/2) and T € R, there exist a large positive constant p and a small
positive constant B such that, wr and ws are also subsolutions of (1.5) fort > 0.

Combining three functions wj, w, and w3, we construct a subsolution which is
useful to show Theorem 1.4.

Lemma 3.6 For any small § > 0 and any M > 0, there exist constants T > 0, p > 0
and B > 0 such that

w™ (¢, x) ;= max{wi (¢, x), wa(t, x), wi(t, x)}

is a subsolution of (1.1) fort > 0 and x € 2.
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Proof By Lemmas 3.2, 3.5, wy, wy, wy all satisfy u; — Au — f(u) < 0. Thus one
only have to check the boundary condition for w™. Here we show that

w (t,x) = wi(t,x), forany x € 982 and t > 0.

If this is true, we immediately know 9, w™ < 0 on 92 by the proof of Lemma 3.2.
Notice that ¥ (§) > 0 and |¢/(§)| < +oo for & € R. Then, by (3.9), there is
0 < o < 1 such that
wy(t, x) S va(xy — ps(l—eP) xa—c(t+T) <10,
forany T € R, ¢t > 0 and x € 0§2. Similarly, w3(t,x) <1 —o,forany T e R,t >0
and x € 3£2. On the other hand, x, — c(t +T) + p8(1 —e Py + M —m|x;| - —o0
fort >0and x € 082 as T — +o0. Thus,
wi(t,x) >1—=246|¢||pe fort >0 and x € 92 asT — +o0.
Therefore, for sufficienly small 8, there exists a large 7 such that
wi(t,x) >1—0 > wy(t,x), wi(t,x), fort >0 and x €082,

and hence,

w (t,x) =wi(t,x), fort>0andx € ds2.
This completes the proof. O

Next we deal with supersolutions of (1.1). In oder to make it, the traveling curve
front of the eikonal-curvature equation is useful. According to the result of [18], there
is a unique graph y = ¢(&; c¢y) for & € R with asymptotic lines y = m|&| such that

Peg 2
cr = +c/1+
T 4+ 2 i

3

for ggg (-, ¢) > 0in R. As seen in Theorem 2.2 in [18], there exist y» > 0, &g > 0 and
a positive function ag(e) so that, for 0 < & < gg and 0 < o < ap(e),

aé —p(ay)

ay/1+ ¢/ (ay)?

is a supersolution of (3.15). Moreover, the supersolution v (v, &6, a) satisfies
—(wMe(y,&6,0) > 0fory € R, & € R and hence there is k3 > 0 such that
—(Me(y, &, 6,a) > kz for ) <v'(y,&; e, @) <1 — 8. Using this supersolution
v, we construct a supersolution of (1.1) in the next lemma.

TG a) = ¢ ( ) + esech(y2ay)
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Lemma 3.7 For any § € (0, 81/2], there exist constants p > 0, B > 0and T > 0
such that

wh(r, x) = min{vT (x1, x2 —c(t + T) — p8(1 — e P1)) + 8P 1}

is a supersolution of (1.1) fort > 0.

Proof By [18], one knows that v (x1,x2 — c(t + T) — p8(1 — e P")) + 8¢ P isa
supersolution of (1.5) for ¢ > 0. Then, we only has to check that v*(x1, xa — c(t +
T)— p8(1 —e P")) 4 8e P > 1 forany x € 92 and r > 0.

By (3.9), one has that esech(y»ax1) > 0 for x € 9£2. Since

(@€ — p(ay)/a\/1+ ¢ (@y)? - —o0

as £ — —oo and ¢ (—o0) = 1, there is a positive constant 7 large enough such that
v i x — et +T) = ps(1 —e 7P + 877 = 1,
for any x € 962 and ¢ > 0. This completes the proof. O

For any fixed M, letvi(y, &) :=V(y,& + M) for (y,§) € R2. We remark that w
is written by

wi(t,x) =vi(x1,x2—c(t+T)+ ps(1 — e_ﬁt); g, o) — 8§(x)e_’3t.
Define
v~ (¢, x) := max{v(x1, x2 — ct), v2(x1, X2 — ct), v3(x1, x2 — ct)},
and
vr @, x) = v (xy, 02 — cp).

From [18,19], one can easily get the following lemma :

Lemma 3.8 It holds that

. c
lim sup ‘vi(t, xX)—¢ (—f(xz —ct — m*|x1|)>‘ <eg, foranyt > 0,
R—+o0 x%+(x2—cl)2>R2 ¢

where ¢ is as defined in vy, v3 and v™.

Remark 3.9 Notice that Lemma 3.8 also means

lim sup |vi(t,x) —Vx1,xp — ct)} <eg, foranyr > 0.
R_)-Hx})c12+()52—ct)2>R2
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3.2 Proof of Theorem 1.4

Since V-shaped front is a special transition front of (1.5), we know that, from Theorem
1.2, (1.1) admits a time-increasing entire solution u(#, x) such that

u(t,x) — V(xy,xp —ct), ast— —oo uniformly in Q.
Now we focus on an entire solution emanating from a V -shaped front. In particular, we
are interested in the behaviour of this entire solution after passing through the obstacle
K. Thus we assume a priori that u (¢, x) is a complete invasion, that is, it satisfies
u(t,x) = last — 4oo locally uniformly in x € 2. (3.16)
Before starting the proof of Theorem 1.4, we first introduce some properties of the

solution u(z, x) of (1.1). Here we refer to Lemma 5.2 from [5] which is associated to
the following initial value problem:

uy — Au = f(u), t>0, x € £2,
{uu =0, t>0, x €082, @.17)
with the initial data u(x, 0) = uo(x) satisfying
1 —e, ifx e B(xo, R)N L,
o (x) = & ifxe B R) (3.18)
0, if x € 2\B(xg, R),

where x is a point of RN, B(xp, R) is the open ball of radius R and center x¢ and ¢
is an arbitrary positive constant such that

max{0 <0 < 1; f(0) =0} <1 —¢ < . (3.19)

In what follows, vy, r denotes the solution of (3.17) with the initial condition (3.18).

Lemma 3.10 [5, Lemma 5.2] Let ¢ satisfy (3.19) and vy, g be the solution of (3.17)
with Ehe initial condition (3.18). Then there exist four positive constants Ry, Ry, R3
and T such that R3 > Ry > Ry > 0, Ry — Ry > ¢¢T /4, and, if B(xo, R3) C £2,
then

va.ry (T,) = 1 — ¢ in B(xo, R2) (C £2).
Next we show that the level set of u(z, x) can be trapped between two V-shaped
curves after passing the obstacle K. In order to show that, the following supersolution

of (1.1) is useful. The proof is almost the same as Lemma 3.2 and hence we skip the
details of the proof.

Lemma 3.11 For any fixed M € R, define

wf(t,x) =V, x2—c@t+T)— pé(l — e_ﬁt) + M)+ SC(x)e_ﬂ’.
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Then, for any § € (0,61/|¢ L), there exist B > 0, p > 0 and T > 0 such that
wf(r, x) is a supersolution of (1.1) fort > 0.

Now we show the relation between u and V-shaped front.

Lemma 3.12 For any ¢ > 0, there are constants Ty € R, M1 > 0 and My > 0 such
that for any t > Ty, u(t, x) satisfies

u(t,x)>1—¢, ifx enRn {x e Rz; Xy —ct —my|x1| < =M}, (3.20)
and
u(t,x) <e ifx € 2N{x e R?; xa —ct — my|x1| > Ma). (3.21)

Proof Let ¢ be a positive constant with (3.19) such that Lemma 3.10 holds. Take small
d satisfying

) € 81
0<$ , , 3.22
= <mm{2n;nm ||z||Loo} (<o 622

where ¢ is given in (3.7). Then Lemmas 3.2 and 3. 11 guarantee that there exist positive
constants By, o, and Ty such that wi(z, x) and w, (t x) with M = 0 are a sub- and
supersolution of (1.1), respectively.

Recall that, by the monotonicity of ¢ (£¢) of (1.4), we can take a constant R > 0
such that

$(E) <8C3 fors > LR —cT, + 1), (3.23)
C

where C3 and t; satisfy (3.7) and (3.3), respectively. Since u(z, x) — V(x, x2 — ct)
as t — —oo uniformly in £2, it implies that there is T < 0 such that

lu(T,x) — V(xi,xa—cT)| <8/2 forx e $2. (3.24)
By (3.24), (3.3) and the monotonicity of ¢ (£), it follows that there is M > 0 such that

Vxi,xo—cT)—8/2
1—8 in 2N{x eR; xa <mylx1| +cT — M). (3.25)

u(ix)

=
=

On the other hand, one knows that for any point y € £2 such that y, < m.|y | + R,
do(y,{x € 2;x) < m*|x1| + T — M}) < +00. Note that there are xo € R? and
a positive constant L such that K C B(xp, L) because K is compact. By (3.22) and
Lemma 3.10, there are positive constants Ry, Ry, R3 and T such that R3 > Ry >
Ry >0, Ry — Ry > ¢;T /4, and, if B(xo, R3) C 2, then

Vo Ry (T,-) = 1 =8 in B(xo, Ra).
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Fig. 1 Example of

{(x/}(1 < j < k) satisfying the
above condition for y. Here
Vi={xeR?; xp =

myX1 + T - 1171},

Vo = {x € R2; x3 = myx]+R)

Then, for any point y € 2\B(xo, L + R3 — R2) N {x € R?; xo < my|x1| + R},
there are k points x', ..., x¥ in R? such that (Fig. 1)

B(x', R)) C {x € R%: xp < my|xy| + T — M},

B(x',R3) C 2 forl <i <k,
B(xtl R)) c B(x!, Ry) forl <i<k-—1,
y € B(x*, Ro).

It follows from Lemma 3.10, (3.25) and the comparison principle that
u(f +T,x)> le’Rl(T,x) >1-68, forx e B(x!,Ry).

Since B(x2, R) C B(x', R,), one gets that u(T + T, x) > 1 -5 forx € B(x?, Ry).
Since B(xz, R3) C £2, one apply Lemma 3.10 and get that u(T 427, x) > 1 — § for
x € B(x2, Ry). By induction, one has that u(T + kT, x) > 1 — 8 forx € B(xk, Ry).
Thus,

u(f—l—kf,x) >1—-6 in2\B(xo, L+ R3—Ry)N{x e R? | X2 < my|x1| + R}.
(3.26)

By the assumption that u (¢, x) is a complete invasion satisfying (3.16), thereis T’ € R
such that

w(T +T,x)>1-6, foranyx e B(xo,L +Rs — R)\K.  (3.27)

Define T} := max{f + kT, T+ T'}. Then, from (3.26) and (3.27), it follows from
u; > 0 that

u(Ty,x) =138, foranyx € 2N {x € R?|xy < mylxi|+ R}.
Then we obtain that
u(Ty,x) > 1—38>V(xy,xa —cTe) — 8¢ (x) = w (0, x)
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in2N{x e R?; x5 < mylxi| + R} because 0 < V < 1 and ¢ > 1. For any
xe.Qﬁ{xeRz;xzzm*|x1|+R},onehas

x2 — Ty —mylx1] = R — cT,
and by (3.3) and (3.23),
w10, x) =V (x1, x3 — cTy) — 8¢(x)

¢ (Lon =T —milxi| + ) =801 <0 < u(Ti. x).

Therefore, u_(Tl, x) > w(0,x) forall x € Q. By comparison principle, one has that
forallx € 2 andt > 0,

u(Ty +1,x) = wi(t,x) = V(x, x2 — c(t + T) + p8(1 — e P')) = 8¢ (x)e P
Then there is M| > 0 such that, for any r > T7,

u(t,x)>1-— % —8¢(x)>1—¢ in2N{xe R? | X2 —ct — my|x1| < —My}
by (3.3), (3.22) and ¢ (—oo) = 1. This implies (3.20).

At last, we show (3.21). By (3.24) and (3.3), it follows that there is M > 0 such
that

~ ~ ) _ ~
u(T,x)fV(xl,xz—cT)—l—Ef& for x € £2 such that xo > my|x1| +cT + M.

Then, for any x € £2 such that xo > my|x1| + ¢T 4+ M, one has that

w0, %) = V(x1,x2 — cTy) +82(x) = 8 > u(T, x).
For any x € 2 such that xp < my|xq]| +c ¢T + M, one has that x2 — Ty — mylxi| <
c(T T.). Remember that T, > 0 and T < 0. Even if means decreasing T _one can
have that V(x1,x2 — cT) > 1 — 8 forx € 2 N{x € R2; xp < myl|xi| + cT + M}.
Therefore,

w(0,x) = V(x1,x2 — cT) + 8¢ (x) = 1 > u(T, x),
in2N{x eR2; xa <mylxi| + cT + M}. It leads to

wT(O,x) > u(f, x), forx e 2.

By the comparison principle, one concludes that

w(T +1.x) Swl(t,x) =V, xy—clt +T.) — puS(1— e ) + 50 (x)e P
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By (3.3) and ¢ (+00) = 0, there is M, > 0 such that, forr > T
u(t, x) 5%—1—8;@) <e in2N{x eR?: x, > my|x1| + ct + M>}.

Therefore the proof is completed. O

Lemma 3;13 Let Ty € R such that Lemma 3.12 holds. Then, for any e > Oandt > Tj,
there is R > 0 such that u(t, x) and V -shaped traveling front V (x1, xo — ct) of (1.5)
satisfy

lu(t,x) — V(xi,xo —ct)| <e, forx e 2\B(n(t), E).

where n(t) = (0, ct) € R2.
Proof Let r € R and take a sequence {x, }en = {(Xn1, ¥n2)}neny C R? such that
Xn1 >0, xp0 —myux,; =r and |x,| —> 400 as n — +oo.
Denote u,,(t,x) = u(t, x + x,) foreacht € Rand x € £2 — {x,}. Since 0 <u <1
and K = RZ\Q is bounded, it follows from standard parabolic estimates that, as

n — 400, the sequence {u,},cn converge, up to extraction of a sequence, locally
uniformly in (¢, x) € R x RR? to a solution U (¢, x) of

(U); — AU = f(U), forteR and x e R?,
with0 < U(t, x) < 1 forall (¢, x) € R x R2.
Notice that |x,|| — 400 since |x,| — 400 and x,,, — m,x,1 = r. It follows that

(x1 + x,,l)2 + (xp + x50 — ct)2 — +oo0asn — +oo for x; > —x;,1/2. Thus (1.15)
leads to

C
V(x1 + Xxp1, X2 + X2 —ct) — ¢ (%(xz + Xp2 — ¢t — my(x) +xn1)))

C
=V&x1 +x01,x2+x020 —ct) — ¢ (%(xz —Ct — MyX) +r)> — 0,

asn — 400 forx_e R?. Remember that u (¢, x) — V(x1,x2 — ct) — Oast — —00
uniformly in x € £2. Therefore,

Ui, x)— ¢ (C—f(xg —Ct — MmyXy| +r)) , ast — —oo forx e R%.
c
By [5], one gets that
Ul(t, x) :q)(c—f (X — ¢t — myxy +r)), fort e R and x e R%
c
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Then, one concludes that
Cf
u(l,x+x,,)—>qb(?(xz—ct—m*xl—i-r)), (3.28)

locally uniformly for t € R and x € R? as n — +oc. Similarly, for a sequence
{xn}nen such that

xn1 <0, xpp —myxy =r and |x,| & 400 asn — 400,
one can obtain

c
ult,x +x,) —> ¢ (?f(xz —ct +myx) + r)) ,

locally uniformly for r € R and x € R as n — +o0.
Fix t, > T. Take a sequence {yn}nen = {(Va1. Yn2)lnen C R? such that y,» —
My yn1 = cty for y,1 > 0, |y,| — 00 as n — oo and there is R > 0 satisfying

00
{x 65; x1 >0, —M| <x3 —cty —myx] < M2} C UB()’nv R),

n=1

where M1, M; are some positive constants. By (3.28) and y,» —m.y,1 = ct, one has
that

‘u(t*,x 4+ V) — ¢ (ﬁ(xz — m*xl))‘ < —, forlarge n and x € B(0, R).
C

| ™

This implies that there is R > 0 such that

(u(z*, X) —¢ (%f(xz — ety — m*x1))‘ < (3.29)

&

2’

forx € 2N {x eR |lx — (0, cty)| = ﬁ,xl >0, —M; < xp —cty —mux; < Mp}.
Similarly, there is R > 0 such that

’u(t, X)—¢ (%f(xz —cty + m*x1)>) < (3.30)

| ™

forx e R2N{x eR||x —(0,ct)] > R, x1 <0, —M; < x3 — cty —myx; < Ma}.
Even if it means increasing R ,one can treat that M, M, are large enough. Note that ¢,
is an arbitrary fixed point with #, > T7. Thus it follows from Lemma 3.12 and (1.15)
that, for ¢t > Ty,

ut,2) = ¢ (L0 — et = milxiD))| < e, forx € QWBGO, B),
c
where n = (0, ct). Therefore we completes the proof. O
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Proof of Theorem 1.4 Take a sufficiently small ¢ > 0. Let § be a small constant such
that Lemmas 3.6, 3.7 hold and § > 2¢. Take T such that Lemmas 3.6, 3.7, 3.12 and
3.13 hold for 6 and ¢. By Lemmas 3.8 and 3.13, one gets that there is R > 0 such that

c
u(T.x) = ¢ (Lo —ct+mulxi)) — e = v (Toxie.@) = 8¢ 1w = w™ (0.),
and
u(T,x) < v (T,x;e,0)+8=wt(0,x),

forx € 2N {x € R?: |[x = (0,cT)| = R }. From [19], one can make « sufficiently
small such that

v(xi,xp—cT;e,a) <8, forx e B(0,cT), R).

Then;w_(O,x) <0 <u(T,x)ftorx € B((0,cT), R). Thus, w™ (0, x) < u(T, x) for
x € £2. From the comparison principle, it follows that

w(t,x) <u(®t+T,x), forxeandsr>0.
Also, from [18], one knows that one can make « sufficiently small such that
vi(x1,x0 —cT;e,a) > 18, forx € B(0,cT), R).

Then, w* (0, x) > 1 > u(T, x) forx € B((0, cT), R). By the comparison principle,
it follows that

wh(t,x) >u(T +t,x), forxeandr>0.
In conclusion, one has
w(t,x) <u(lT +t,x)<wh(@,x), forxeRandr>0.
As T +t — 400, one has that

max{vy(x1, x2 — ct 4+ p8; &, a), v2(x] — S, X2 —ct; €, ),
v3(x1 + p8, x2 — ct; 6,00} < ult,x) < vh(x;,x2 —ct — pd; e, ). (3.31)

Take any sequence {f,},en such that , — 400 as n — +o0. Let u,(t,x) =
u(t+1t,, x+(0, cty)). By standard parabolic estimates, u, (¢, x) converge to a solution
Ui, x)of Uy — AU = f(U)int e Rand x € R2. Since ¢ and & could be arbitrary
small, it follows from (3.31) and Lemma 3.8 that

lim sup |U(t,x)— V(x1,x2 —ct)| =0.

R—o0 x12+(x2—ct)2>R2
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By stability of V-shaped front due to [18,19], one concludes that
U(t,x) = V(xy,xp —ct).

This completes the proof. O

Acknowledgements Research partially supported by National Science Foundation (grant no. DMS-
1514752). The authors are grateful to the anonymous referees for interesting comments which led to an
improvement of the article.

References

1. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics.
Adv. Math. 30, 33-76 (1978)

2. Berestycki, H., Bouhours, J., Chapuisat, G.: Front blocking and propagation in cylinders with varying
cross section. Calc. Var. Partial Differ. Equations 55, 1-32 (2016)

3. Berestycki, H., Hamel, F.: Generalized traveling waves for reaction-diffusion equations, In: Perspec-
tives in Nonlinear Partial Differential Equations. In honor of H. Brezis, Amer. Math. Soc., Contemp.
Math. , vol. 446, pp. 101-123 (2007)

4. Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl.
Math. 65, 592-648 (2012)

5. Berestycki, H., Hamel, F., Matano, H.: Bistable traveling waves around an obstacle. Commun. Pure
Appl. Math. 62, 729-788 (2009)

6. Bu, Z.-H., Wang, Z.-C.: Stability of pyramidal traveling fronts in the degenerate monostable and
combustion equations I. Discrete Contin. Dyn. Syst. 37, 2395-2430 (2017)

7. Bu,Z.-H., Wang, Z.-C.: Curved fronts of monostable reaction-advection-diffusion equations in space-
time periodic media. Commun. Pure Appl. Anal. 15, 139-160 (2016)

8. Chen, X., Guo, J.-S., Hamel, F., Ninomiya, H., Roquejoffre, J.-M.: Traveling waves with paraboloid
like interfaces for balanced bistable dynamics. Ann. Inst. H. Poincaré, Anal. Non Linéaire 24, 369-393
(2007)

9. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to traveling front
solutions. Arch. Ration. Mech. Anal. 65, 335-361 (1977)

10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New
York (2001)

11. Guo, H., Hamel, F.: Monotonicity of bistable transition fronts in RN.J. Elliptic Parabol. Equations 2,
145-155 (2016)

12. Guo, H., Hamel, F., Sheng, W.J.: On the mean speed of bistable transition fronts in unbounded domains.
https://hal.archives-ouvertes.fr/hal-01855979v2 (preprint)

13. Hamel, F.: Bistable transition fronts in RV . Adv. Math. 289, 279-344 (2016)

14. Hamel, F., Monneau, R.: Solutions of semilinear elliptic equations in RY with conical-shaped level
sets. Commun. Partial Differ. Equations 25, 769-819 (2000)

15. Hamel, F., Monneau, R., Roquejoffre, J.-M.: Existence and qualitative properties of multidimensional
conical bistable fronts. Disc. Contin. Dyn. Syst. A 13, 1069-1096 (2005)

16. Hamel, F., Monneau, R., Roquejoffre, J.-M.: Asymptotic properties and classification of bistable fronts
with Lipschitz level sets. Disc. Contin. Dyn. Syst. A 14, 75-92 (2006)

17. Kanel’, Y.I.: Stabilization of solution of the Cauchy problem for equations encountered in combustion
theory. Mat. Sb. 59, 245-288 (1962)

18. Ninomiya, H., Taniguchi, M.: Existence and global stability of traveling curved fronts in the Allen—
Cahn equations. J. Differ. Equations 213, 204-233 (2005)

19. Ninomiya, H., Taniguchi, M.: Global stability of traveling curved fronts in the Allen—Cahn equations.
Disc. Contin. Dyn. Syst. A 15, 819-832 (2006)

20. Shen, W.: Traveling waves in diffusive random media. J. Dyn. Differ. Equations 16, 1011-1060 (2004)

21. Taniguchi, M.: Traveling fronts of pyramidal shapes in the Allen—Cahn equation. SIAM J. Math. Anal.
39, 319-344 (2007)

@ Springer


https://hal.archives-ouvertes.fr/hal-01855979v2

V-shaped fronts around an obstacle 689

22. Taniguchi, M.: The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen—Cahn
equations. J. Differ. Equations 246, 2103-2130 (2009)

23. Taniguchi, M.: Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Disc. Con-
tin. Dyn. Syst. A 32, 1011-1046 (2012)

24. Wang, Z.C., Bu, Z.H.: Nonplanar traveling fronts in reaction-diffusion equations with combustion and
degenerate Fisher-KPP nonlinearities. J. Differ. Equations 260, 6405-6450 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	V-shaped fronts around an obstacle
	Abstract
	1 Introduction
	2 Entire solutions emanating from transition fronts
	2.1 Properties of homogeneous transition fronts
	2.2 Super- and subsolutions before the encounter
	2.3 Proof of Theorem 1.2

	3 Existence of the almost V-shaped front
	3.1 Subsolutions and supersolutions
	3.2 Proof of Theorem 1.4

	Acknowledgements
	References




