
Mathematische Annalen (2020) 376:1741–1793
https://doi.org/10.1007/s00208-019-01926-0 Mathematische Annalen

The strong Atiyah and Lück approximation conjectures for
one-relator groups

Andrei Jaikin-Zapirain1,2 · Diego López-Álvarez1,2

Received: 11 April 2019 / Revised: 18 October 2019 / Published online: 8 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
It is shown that the strong Atiyah conjecture and the Lück approximation conjecture
in the space of marked groups hold for locally indicable groups. In particular, this
implies that one-relator groups satisfy both conjectures. We also show that the center
conjecture, the independence conjecture and the strong eigenvalue conjecture hold for
these groups. As a byproduct we prove that the group algebra of a locally indicable
group over a field of characteristic zero has a Hughes-free epic division algebra and,
in particular, it is embedded in a division algebra.
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1 Introduction

1.1 The strong Atiyah conjecture

LetG be a group and assume that the orders of finite subgroups ofG are bounded above.
We denote by lcm(G) the least common multiple of the orders of finite subgroups of
G. Assume that G acts freely and cocompactly on a CW complex X . The strong
Atiyah conjecture for G over Q predicts that the L2-Betti numbers β

(2)
i (X ,G) belong

to 1
lcm(G)

Z. In this paper we consider an algebraic reformulation of this conjecture
which also leads to a natural generalization of it over an arbitrary subfield K of the
field of complex numbers C.

Let G be a countable group. Then G acts by left and right multiplication on l2(G).
A finitely generated Hilbert G-module is a closed subspace V ≤ (l2(G))n , invariant
under the left action of G. We denote by projV : (l2(G))n → (l2(G))n the orthogonal
projection onto V and we define

dimG V := TrG(projV ) :=
n∑

i=1

〈(1i ) projV , 1i 〉(l2(G))n ,

where 1i is the element of (l2(G))n having 1 in the i th entry and 0 in the rest of the
entries. The number dimG V is the von Neumann dimension of V .

Let A ∈ Matn×m(C[G]) be a matrix over C[G]. The action of A by right multipli-
cation on l2(G)n induces a bounded linear operator φA

G : (l2(G))n → (l2(G))m . We
put

rkG(A) = dimG Im φA
G = n − dimG ker φA

G . (1)

If G is not countable then rkG is defined as follows. Take a matrix A over C[G].
Then the group elements that appear in A are contained in a finitely generated group
H . We will put rkG(A) = rkH (A). One easily checks that the value rkH (A) does not
depend on the subgroup H .

Conjecture 1 (The strong Atiyah conjecture over K for a groupG) Let K be a subfield
of C. Assume that there exists an upper bound for the orders of finite subgroups of G.
Then for every A ∈ Matn×m(K [G]), rkG(A) ∈ 1

lcm(G)
Z.

There aremany different reasons to be interested in this conjecture. From a topological
point of view it is important because it imposes a strong restriction on possible values
of β

(2)
i (X ,G).

Ring theorists study the strong Atiyah conjecture because it implies that the ring
RK [G] (see Sect. 2.1 for definition) has a very particular structure and, in particular,
when G is torsion-free, the conjecture predicts thatRK [G] is a division ring. This is a
strong version of the Kaplansky zero-divisor conjecture for K [G].

The strong Atiyah conjecture has also importance in group theory. For example,
a question of Bieri asks whether a group G of homological dimension one is locally
free. Kropholler et al. [23] showed that the answer is positive provided that G satisfies
the strong Atiyah conjecture over Q.
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The strong Atiyah and Lück approximation. . . 1743

During the last 25 years it has been shown that many families of groups satisfy
the strong Atiyah conjecture. We refer the reader to a recent survey [20] of the first
author, where all these results are described. In this paper we show that the strong
Atiyah conjecture over C holds for locally indicable groups. Recall that a group G is
indicable if either G is trivial or G maps onto Z. We say that G is locally indicable
if every finitely generated subgroup of G is indicable.

Theorem 1.1 Let G be a locally indicable group. Then G satisfies the strong Atiyah
conjecture over C.

Recall that the Kaplansky zero-divisor conjecture for these groups was solved by
Higman [15] before I. Kaplansky formulated it. Observe that Theorem 1.1 implies the
corresponding result for all subfields of C.

1.2 Consequences of Theorem 1.1

Let us present several applications of Theorem 1.1.

Corollary 1.2 Let G be a countable locally indicable group.

(1) The strong algebraic eigenvalue conjecture.
Let K be a subfield ofC closed under complex conjugation and A ∈ Matn(RK [G]).
Then the eigenvalues of φA

G are algebraic over K .
(2) The center conjecture.

Let K be a subfield ofC closed under complex conjugation. Thenwe haveRK [G]∩
C = K .

(3) The independence conjecture.
Let K be a field and let ϕ1, ϕ2 : K → C be two embeddings of K into C. Then
for every matrix A ∈ Matn×m(K [G]), rkG(ϕ1(A)) = rkG(ϕ2(A)).

All these conjectures were proved for sofic groups in [19].
One-relator groups with torsion are virtually special by a theorem of Wise [35].

The strong Atiyah conjecture for virtually special groups over C is proved in [19].
Also virtually special groups are sofic. One-relator groups without torsion are locally
indicable by a result of Brodskii [2,3]. Thus, we obtain the following corollary.

Corollary 1.3 The strong Atiyah conjecture, the strong algebraic eigenvalue conjec-
ture, the center conjecture and the independence conjecture hold for one-relator
groups.

In Sect. 3.3we introduce the notion ofHughes-free epic division K [G]-algebra. In [17]
Hughes showed that up to K [G]-isomorphism there exists at most one Hughes-free
epic division K [G]-algebra. Our main result implies the following consequence.

Corollary 1.4 Let G be a locally indicable group and let K be a field of characteristic
zero. Then there exists a Hughes-free epic division K [G]-algebra.
Thus, a group algebra of a locally indicable group over a field of characteristic zero
is embedded in a division algebra. This solves the Malcev problem for this class of
group algebras (for more details about this problem see [14]).
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1744 A. Jaikin-Zapirain, D. López-Álvarez

1.3 The Lück approximation

Let F be a free group freely generated by a finite set S. The space of marked groups
MG(F) can be identified with the set of normal subgroups of F with the metric
d(M1, M2) = e−n where n is the largest integer such that the balls of radius n in the
Cayley graphs of F/M1 and F/M2 with respect to the generators S are simplicially
isomorphic (with respect to an isomorphism respecting the labelings). For example, if
M1 ≥ M2 ≥ · · · is a chain of normal subgroups of F and M = ∩i∈NMi , then (Mi )i
converges to M in MG(F).

Observe that the metric on MG(F) depends on the choice of S, but the topology
does not. Thus, we are thinking of MG(F) as a topological space.

Let M be a normal subgroup of F and A a matrix over C[F]. By abuse of notation
wewrite rkF/M (A) instead of rkF/M ( Ā), where Ā is thematrix overC[F/M] obtained
from A using the canonical map C[F] → C[F/M].

Now we can formulate the Lück approximation conjecture in the space of
marked groups over K for a finitely generated group G.

Conjecture 2 Let G be a finitely generated group and let K be a subfield of C. Let
F be a finitely generated free group and assume that (Mk ∈ MG(F))k converges to
M ∈ MG(F) with G ∼= F/M. Then for every A ∈ Matn×m(K [F]),

lim
k→∞ rkF/Mk (A) = rkF/M (A).

We say that a group satisfies the Lück approximation conjecture in the space ofmarked
groups over K if its finitely generated subgroups G satisfy the conclusion of Conjec-
ture 2.

Conjecture 2 has a long story which starts from the paper of Lück [26], where it is
proved when K = Q and the groups F/Mk are finite. Different extensions of Lück’s
result were obtained in [8–11,30]. In [19] the first author proved the conjecture in the
case where the groups F/Mk are sofic and K is an arbitrary subfield of C. The case
where G is free and K is an arbitrary subfield of C was proved in [18].

In our next result we prove the Lück approximation conjecture in the space of
marked groups over an arbitrary subfield of C for virtually locally indicable groups.

Theorem 1.5 Let G be a virtually locally indicable group. Then G satisfies the Lück
approximation conjecture in the space of marked groups over an arbitrary subfield
of C.

Since a one-relator group is virtually torsion-free [12] and a torsion-free subgroup
of a one-relator group is locally indicable [16], we obtain the following immediate
corollary.

Corollary 1.6 One-relator groups satisfy the Lück approximation conjecture in the
space of marked groups over an arbitrary subfield of C.
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1.4 A description of the proof

There are two points that make our results about the strong Atiyah conjecture and the
Lück approximation conjecture different from previous ones.

The first aspect concerns the methods that we use in the proof of the strong Atiyah
conjecture in Theorem 1.1. Algebraic methods were already widely used in previous
results on the strong Atiyah conjecture. However, all these proofs also contained some
analytic parts (as, for example, the use of the theory of Fredholm operators in [25]
or the use of Lück approximation in [8]). Our proof of Theorem 1.1 is almost purely
algebraic, and, in particular, this gives the first algebraic proof of the strong Atiyah
conjecture for free groups.

The second aspect is about the groups that we consider. All the previous instances
of both conjectures concerned groups which are known to be sofic. This is not the case
of locally indicable groups. In fact, it is not known yet whether one-relator groups are
sofic.

Let us describe briefly the ideas behind the proofs of Theorems 1.1 and 1.5. In
[6], Dicks et al. enligthened the argument of Hughes and gave a different proof of his
result on the uniqueness of the Hughes-free epic division E ∗ G-algebra. In order to
get some insight in the techniques that they use and we adopt here, let us give a short
summary of the fundamental steps of [6]. For this purpose, let E ∗ G be a crossed
product of a division ring E with a group G, and letD be a Hughes-free epic division
E ∗ G-algebra. For every subgroup H of G, denote by DH ,D the division closure of
E ∗ H in D.

First of all, for any multiplicative groupU , the authors introduce a universal object
Rat(U ), whose construction is a formal analog of the construction of a division closure,
and that canbe endowedwith ameasure of complexity that allows to compare elements.
As a consequence of its universality and construction, Dicks, Herbera and Sánchez
get, for every subgroup H of G, a surjective morphism

�H ,D : Rat(E×H) � DH ,D ∪ {∞}.

If H is non-trivial, finitely generated and splits as a semidirect product H = N �C
where C is infinite cyclic, t is an element in E×H whose image under E×H →
E×H/E× = H generates C , and τ denotes left conjugation by t , then they prove the
existence of the following commutative diagram

Rat(E×H)
�H ,D

�

DH ,D ∪ {∞}

Rat(E×N )((t; τ)) ∪ {∞}
�

DN ,D((t; τ)) ∪ {∞},
(2)

whereDN ,D((t; τ)) denotes the formal skew Laurent series (the action of t by conju-
gation on E×N extends canonically to an action on DN ,D).

Finally, they proved that for every element α ∈ Rat(E×G), there exists an appro-
priate finitely generated subgroup source(α) of E×G, and hence a finitely generated
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1746 A. Jaikin-Zapirain, D. López-Álvarez

subgroup H of G (given by the image of source(α) under E×G → E×G/E× = G),
such that up to multiplication by a unit we have that α ∈ Rat(E×H) and, in the above
diagram, �(α) is a series whose summands are strictly less complex than α. This
allows them to make proofs by induction on the complexity of the elements. A great
reference to learn how the details work is the Ph.D. Thesis of Javier Sánchez [29].

In our setting we will consider division E ∗G-closures inside rings which are non-
necessarily division rings. If (S, φ) is an E ∗ G-ring and, for any subgroup H of G,
DH ,S denotes the division closure of φ(E ∗H) inside S, then we also have a surjective
morphism

�H ,S : Rat(E×H) � DH ,S

The complexity of elements of Rat(E×G) induces a notion of G-complexity of ele-
ments of DG,S . It would also be desirable to have an analog for diagram (2) which
permits expressing any element in DG,S as a sum of less complex elements, and so
using induction on this complexity. However, at first sight we can say nothing about
the relation betweenDH ,S andDN ,S((t; τ)). In Proposition 5.1 we show that, if there
exists a diagram

E ∗ N
φ A

E ∗ H
φ A((t; τ)) P

where (A, φ) is a von Neumann regular E ∗ N -ring and τ is an automorphism of A
such that φ ◦ τ = τ ◦ φ, then we can develop the same sort of inductive method for
DH ,P andDN ,P ((t; τ)). The proofs of the strong Atiyah and the Lück approximation
conjectures rely then on the construction of such scenarios.

To prove the strong Atiyah conjecture, we introduce a generalization of the notion
of Hughes-freeness for epic ∗-regular E ∗ G-rings, expressed in terms of ∗-regular
Sylvester rank functions. Then, we show in Theorem 6.1 that if K is a subfield of C

closed under complex conjugation, any epic positive definite ∗-regular K [G]-ring U
with Hughes-free Sylvester rank rk is, in fact, a division algebra. Since rkG (defined
in (1)) is a canonical example of Hughes-free rank on C[G], this, in particular, implies
thatRC[G] is a division algebra, and soG satisfies the strongAtiyah conjecture overC.

What we do to deduce Theorem 6.1 is the following. Let UH (respectively UN )
denote the ∗-regular closure of K [H ] (respectively K [N ]) inU and setA = UN . Using
some results on epic ∗-regular R-rings proved in [19], we construct an environment
P = PUN

ω,τ containing A((t; τ)) as in the latter diagram. In addition, the Hughes-free
condition allows us to embed UH in P , and the regularity of U implies that DH ,P =
DH ,U andDN ,P = DN ,U . This means that we can talk about the intersectionDH ,U ∩
DN ,U ((t; τ)) inP . Using induction on the complexity, we eventually manage to show
that DH ,U is a subalgebra of DN ,U ((t; τ)), and that every 0 �= a ∈ DH ,U \ K×H
can be expressed as a series with coefficients in DN ,U of strictly lower complexity.
Therefore, again by induction on the complexity, we obtain that a is invertible, which
shows that DG,U , and hence U , is a division algebra.
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The paper is structured as follows. In Sect. 2 we include the preliminary results
on ∗-regular rings, Sylvester rank functions and the theory of ∗-regular R-rings. In
Sect. 3 we introduce the notion of natural extension and Hughes-free Sylvester rank
function on a group algebra of a locally indicable group. Here we also construct the
aforementioned ring PUN

ω,τ . Section 4 is devoted to recalling the notion of rational U -
semiring and the examples we will use later. In Sect. 5 we will present the proof of the
key proposition regarding the inductive step. Sections 6 and 7 contain the proofs of
the Atiyah and the Lück approximation conjectures in the setting of locally indicable
groups, and of its corollaries. Finally, in Sect. 8 we discuss the problem of universality
of Hughes-free Sylvester rank functions.

2 ∗-regular Sylvester rank functions
In this section we recall the notions of ∗-regular ring and Sylvester rank function, and
explain the main results about epic ∗-regular R-rings. More information about these
topics can be found in [19,20].

2.1 ∗-regular rings

An element x of a ring R is called von Neumann regular if there exists y ∈ R
satisfying xyx = x . A ring U is called von Neumann regular if all the elements of U
are von Neumann regular. For the sake of brevity, we will often refer to von Neumann
regular rings simply as regular rings. For instance, a division ring is regular and, for
any n, the ring of n × n matrices over a regular ring is also regular [13, Lemma 1.6,
Theorem 1.7].

By a ∗-regular ring U we mean a von Neumann regular ring together with a proper
involution (i.e. an involution ∗ : U → U for which x∗x = 0 implies x = 0). In this
setting, for every element x ∈ U ,we candistinguish an element x [−1] with xx [−1]x = x
among the others, called the relative inverse of x (see, for example, [19, Proposition
3.2]). The element x [−1] is characterized by the property that RP(x) = x [−1]x and
LP(x) = xx [−1] are projections (self-adjoint idempotents) and x [−1]xx [−1] = x [−1].
A useful remark about ∗-regular rings is the following proposition.

Proposition 2.1 [20, Proposition 3.3] Let U be a ∗-regular ring and I a (two-sided)
ideal of U . Then I is ∗-closed and ∗ is proper in U/I , i.e., U/I is also a ∗-regular
ring.

We say that a ∗-regular ring U is positive definite if Matn(U) is ∗-regular for every
n ≥ 1.

If R is a ∗-subring of a ∗-regular ringU , thenwe can construct the smallest ∗-regular
subring of U containing R, as follows.

Proposition 2.2 [1, Proposition 6.2] Let R be a ∗-subring of a ∗-regular ring U . Then
there exists a smallest ∗-regular subringR(R,U) of U containing R. Moreover, it can
be constructed as follows.

– Put R0(R,U) := R, a ∗-subring of U .
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– Suppose n ≥ 1 and that we have constructed a ∗-subring Rn(R,U) of U . Then
Rn+1(R,U) is the ∗-subring of U generated by the elements ofRn(R,U) and the
relative inverses of its elements.

– R(R,U) = ⋃∞
n=0 Rn(R,U).

We call R(R,U) the ∗-regular closure of R in U .

2.2 The algebra of affiliated operators

For a countable group G we denote by N (G) and U(G) its group von Neumann
algebra and the algebra affiliated to N (G). We direct the reader to the book by Lück
[27] for a detailed account of the subject. In this section we only recall the facts that
we use in the paper.

The algebra U(G) is an example of a positive definite ∗-regular ring, where the
∗ is the adjoint operation. The rank function rkG can be extended to matrices over
U(G). First observe that, given A ∈ Matn×m(N (G)), we can see A as an operator
l2(G)n → l2(G)m and, by analogy with (1), define

rkG(A) = n − dimG ker A.

Since U(G) is isomorphic to the completion of N (G) with respect to the metric
induced by rkG , we can extend continuously rkG on the matrices over U(G) as well.

If H is a subgroup of G, then l2(G) can be thought of as the Hilbert completion of
⊕t∈T t l2(H), where T is a right transversal of H in G. Hence, we can identify any
element ϕ of the group von Neumann algebra N (H) with the element of N (G) that
assigns to any tuple in⊕t∈T t l2(H) the tuple obtained by applying ϕ component-wise.
This gives an embedding of N (H) into N (G), that can be extended uniquely to an
embedding of U(H) into U(G). In the following, we will often consider U(H) as a
subalgebra of U(G) without further explanations.

Let K be a subfield of C closed under complex conjugation. The group algebra
K [G] is a ∗-subring of U(G) with the usual involution given by (λg)∗ = λ̄g−1, and
the ∗-regular closure of K [G] in U(G) is denoted by RK [G]. For an arbitrary group
G,RK [G] is defined as the direct union of {RK [H ]: H is a finitely generated subgroup
of G}.

2.3 Epic homomorphisms

We say that a homomorphism of rings ϕ : R → S is epic if it is right cancellable,
i.e., for every ring Q and homomorphisms ψ, φ : S → Q, we have that equality of
compositions ψ ◦ ϕ = φ ◦ ϕ implies ψ = φ. There exists a characterization of epic
morphisms in terms of the tensor product S ⊗R S.

Proposition 2.3 [4, Proposition 4.1.1] Let ϕ : R → S be a ring homomorphism.
Then, the following are equivalent:

(i) ϕ is epic.
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(ii) in the S-bimodule S ⊗R S, we have x ⊗ 1 = 1 ⊗ x for every x ∈ S.
(iii) the multiplication map m : S⊗R S → S given by x⊗ y �→ xy is an isomorphism

of S-bimodules.

In addition, when ϕ is a ∗-homomorphism from a ∗-ring to a ∗-regular ring, we
have another nice characterization in terms of ∗-regular closures.
Proposition 2.4 Let R be a ∗-ring, U a ∗-regular ring and ϕ : R → U a ∗-
homomorphism. Then ϕ is epic if and only if U is the ∗-regular closure of ϕ(R)

in U , i.e., U = R(ϕ(R),U).

Proof The “if” part is [19, Proposition 6.1]. In order to see the “only if” part, observe
that if ϕ is epic, then the inclusion map R(ϕ(R),U) → U is clearly epic, and so
surjective by [32, Proposition XI.1.4]. ��

The following lemma shows that in the above setting, the center Z(ϕ(R)) of the
image of R is contained in the center Z(U) of U :

Lemma 2.5 Let R be a subring of a ring S with epic embedding R ↪→ S. Then
Z(R) ⊆ Z(S).

Proof For every a ∈ Z(R), the map S × S → S ⊗R S given by (x, y) �→ x ⊗ ay is
R-bilinear, and so there exists a well-defined homomorphism φ : S ⊗R S → S ⊗R S
with φ(x ⊗ y) = x ⊗ ay. If m : S ⊗R S → S denotes the multiplication map, then in
view of Proposition 2.3, we deduce that for all x ∈ S,

xa = mφ(x ⊗ 1) = mφ(1 ⊗ x) = ax

Therefore, a ∈ Z(S). ��

2.4 Sylvester rank functions

The notions of Sylvester matrix rank function rk and Sylvester module rank function
(on finitely presented modules) dim were introduced in [28], and to learn more about
their properties in our setting one can consult [20, Section 5].

Let R be a ring. A Sylvester matrix rank function rk on R is a function that
assigns a non-negative real number to each matrix over R and satisfies the following
conditions.

(SMat1) rk(M) = 0 if M is any zero matrix and rk(1) = 1;
(SMat2) rk(M1M2) ≤ min{rk(M1), rk(M2)} for any matrices M1 and M2 which can

be multiplied;

(SMat3) rk

(
M1 0
0 M2

)
= rk(M1) + rk(M2) for any matrices M1 and M2;

(SMat4) rk

(
M1 M3
0 M2

)
≥ rk(M1) + rk(M2) for any matrices M1, M2 and M3 of

appropriate sizes.
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Observe that over a von Neumann regular ring the notion of Sylvester matrix rank
function coincides with the notion of pseudo-rank function that appears in [13], and
hence it is determined by its values on elements.

A Sylvester module rank function dim on R is a function that assigns a non-
negative real number to each finitely presented R-module and satisfies the following
conditions.

(SMod1) dim{0} = 0, dim R = 1;
(SMod2) dim(M1 ⊕ M2) = dim M1 + dim M2;
(SMod3) if M1 → M2 → M3 → 0 is exact then

dim M1 + dim M3 ≥ dim M2 ≥ dim M3.

There exists a natural bijection between Sylvester matrix and module rank functions
over a ring.

Proposition 2.6 Let R be a ring.

(i) If rk is a Sylvestermatrix rank function on R, thenwe can define a Sylvestermodule
rank function by assigning to any finitely presented module with presentation
M = Rm/Rn A for some A ∈ Matn×m(R), the value

dim(M) := m − rk(A).

This value does not depend on the given presentation.
(ii) If dim is a Sylvester module rank function on R, then we can define a Sylvester

matrix rank function by assigning to each A ∈ Matn×m(R), the value

rk(A) := m − dim(Rm/Rn A).

We say in this case that rk and dim are associated.

The proof of this proposition can be found in [28] for integer-valued Sylvester rank
functions but the proof works similarly without this additional assumption.

As an easy example, if R = D is a division ring, we obtain from (SMod2) that there
exists only one Sylvester module (and hence, matrix) rank function onD, namely, the
usual dimension dimD on vector spaces over D.

A Sylvester matrix rank function rk on R is said to be faithful if it does not vanish
on elements of R, i.e., the (two-sided) ideal of R

ker rk = {a ∈ R : rk(a) = 0}

is equal to {0}. From the property (SMat4) of a Sylvestermatrix rank function it follows
that if rk is faithful, then for any non-zero matrix A over R, rk(A) �= 0. Although
the following lemma is just a standard observation, it is helpful to record it for future
reference:

Lemma 2.7 Let rk be a faithful Sylvester matrix rank function on a regular ring U .
Then a square matrix A ∈ Matn(U) is invertible if and only if rk(A) = n.
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Proof It is clear that any invertible matrix has maximum rank. Now, assume x ∈ U
has rank rk(x) = 1 and let y ∈ U be such that xyx = x . Then, using [19, Proposition
5.1(3)],

rk(yx − 1) = rk(x(yx − 1)) = 0,

and so, by faithfulness, yx = 1. Similarly xy = 1. Thus, x is invertible.
For the general case, take A ∈ Matn(U) with rk(A) = n, and notice that rk′ = rk

n
defines a faithful rank on the regular ring Matn(U) and rk′(A) = 1. By the above
reasoning, A is invertible. ��

We denote by P(R) the set of Sylvester matrix rank functions on R, which is
a compact convex subset of the space of functions on matrices over R. A useful
observation is that a ring homomorphism ϕ : R → S induces a continuous map
ϕ� : P(S) → P(R), i.e., we can pull back any rank function rk on S to a rank function
ϕ�(rk) on R by just defining

ϕ�(rk)(A) = rk(ϕ(A))

for every matrix A over R. We will often abuse the notation and write rk instead of
ϕ�(rk) when it is clear that we speak about the rank function on R. Recently, H. Li
[24] proved that if φ is epic then φ� is injective, and so P(S) can be seen as a closed
subset of P(R).

If rk is a Sylvester matrix rank function on a ring S, then rk induces a faithful rank
function on S/ ker rk. If rk is faithful on S, then we say that (S, rk, ϕ) (or simply S,
when rk and ϕ are clear from the context) is an envelope of ϕ�(rk).

We denote by Preg(R) the space of Sylvester matrix rank functions that come
from rank functions on a regular ring, and we refer to its elements as regular rank
functions. Since any quotient of a regular ring is also regular, this is the space of rank
functions that admit a regular envelope, i.e., an envelope (U , rk, ϕ) with U regular.
Observe that a (regular) envelope is not unique in general.

If rk takes only integer values, then by a result of P. Malcolmson [28] there exists
a division algebra D such that (D, rkD, ϕ) is a regular envelope of rk. Moreover we
can assume that ϕ is epic by passing to the division closure of ϕ(R) inD. Under these
conditions (D, rkD, ϕ) or, to shorten up, (D, ϕ), is called epic division R-ring. Two
epic division R-rings (D1, ϕ1) and (D2, ϕ2) are said to be isomorphic if there exists
an isomorphism of rings between them respecting the R-structure, i.e., there exists an
isomorphism τ : D1 → D2 such that ϕ2 = τ ◦ ϕ1.

Theorem 2.8 ([4, Theorem 4.4.1], [28, Theorem 2]) Two epic division R-rings
(D1, ϕ1) and (D2, ϕ2) are isomorphic if and only if, for every matrix A over R,

rkD1(ϕ1(A)) = rkD2(ϕ2(A)).

Therefore, the epic regular envelope of an integer-valued rank function, which we
will refer to as the epic division envelope, is completely determined by rk and hence
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unique up to isomorphism. We denote the set of integer-valued rank functions on a
ring R by Pdiv(R). In the following, if D is an epic division R-ring we will also use
rkD to denote the induced rank function on R.

When R is a ∗-ring, U a ∗-regular ring, rk ∈ P(U) and ϕ : R → U is a ∗-
homomorphism we say that ϕ�(rk) is a ∗-regular rank, and we denote by P∗reg(R) the
space of Sylvestermatrix rank functions on R obtained that way.Again, we can assume
that rk is faithful, since U/ ker rk is ∗-regular by Proposition 2.1, and moreover we
can assume that ϕ is epic by passing to the ∗-regular closure of ϕ(R) in U . Under these
conditions, the ∗-regular envelope (U , rk, ϕ)will be called epic ∗-regular R-ring. In
view of the previous reasoning, anytime we consider a ∗-regular envelope (U , rk, ϕ),
we will assume that rk is faithful and ϕ is epic. Both Preg(R) and P∗reg(R) can be
shown to be closed convex subsets of P(R) [19, Propositions 5.9 and 6.4].

Two epic ∗-regular R-rings (U1, rk1, ϕ1) and (U2, rk2, ϕ2) are said to be isomorphic
if there exists a ∗-isomorphism of rings between them respecting the R-structure and
the rank, i.e., there exists a ∗-isomorphism τ : U1 → U2 such that the following
diagram commutes

U1

rk1

τR

ϕ1

ϕ2

R≥0

U2

rk2

Notice that, inasmuch as U1 is regular, if the equality rk2(τ (x)) = rk1(x) holds for
every element x ∈ U1, then rk2(τ (A)) = rk1(A) for every matrix over U1.

In [19], the first author proved that, as it happens with epic division rings, an epic ∗-
regular R-ring is completely determined by the values of the rank function onmatrices
over R.

Theorem 2.9 [19, Theorem 6.3] Two epic ∗-regular R-rings (U1, rk1, ϕ1) and
(U2, rk2, ϕ2) are isomorphic if and only if, for every matrix A over R,

rk1(ϕ1(A)) = rk2(ϕ2(A)).

3 Natural extensions and Hughes-free Sylvester rank functions

The notion of natural extension was introduced in [19] in the context of (Laurent)
polynomial rings (see also [20, Section 8] for other variations of this concept). In this
section we define the natural extension in the context of skew (Laurent) polynomial
rings and we use it to define the notion of Hughes-free Sylvester rank function.
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3.1 The definition of the natural extension for skew (Laurent) polynomial rings

Let R be a ring and let τ be an automorphism of R. Recall that the skew polynomial
ring R[t; τ ] is a ring of polynomials in t with coefficients in R and subject to the
relation ta = τ(a)t , a ∈ R. The skew Laurent polynomial ring R[t±1; τ ] is a
localization of R[t; τ ] with respect to the set of powers of t . Similarly we can define
the skew Taylor series ring R[[t; τ ]] and the skew Laurent series ring R((t; τ)).

In the first place, to construct a rank function over R[t±1; τ ] from a rank function
over R, we will need some compatibility between the latter and the twisted product,
namely, τ has to preserve the rank. We say that a Sylvester matrix rank function
rk on a ring R is τ -compatible if rk = τ �(rk), i.e., for every matrix A over R,
rk(A) = rk(τ (A)).

We can rewrite this property in terms of the associated Sylvester module rank
function. Let M be a finitely presented left R-module, and denote by tnM , n ∈ Z, the
finitely presented left R-module whose elements are of the form tnm form ∈ M , with
natural sum and R-product given by r(tnm) = tn(τ−n(r)m). Observe that it is not true
in general that M ∼= tnM . The next lemma states that τ -compatibility is equivalent to
both having the same rank for all n.

Lemma 3.1 Let rk be a Sylvester matrix rank function on a ring R and dim its asso-
ciated Sylvester module rank function. Let τ be an automorphism of R. Then rk is
τ -compatible if and only if for every finitely presented R-module M, dim(M) =
dim(tM).

Proof First notice that for every matrix A ∈ Matn×m(R), the finitely presented left R-
modules Rm/Rnτ(A) and t(Rm/Rn A) are isomorphic, via v+Rnτ(A) �→ t(τ−1(v)+
Rn A). Thus, if rk is τ -compatible, then

dim(Rm/Rn A) = m − rk(A) = m − rk(τ (A))

= dim(Rm/Rnτ(A)) = dim(t(Rm/Rn A)).

Conversely, if dim(M) = dim(tM) for every finitely presented R-module and we
take a matrix A ∈ Matn×m(R), then we can apply the same reasoning to the finitely
presented module Rm/Rn A to obtain that rk(τ (A)) = rk(A). ��
Observe that the previous proposition implies also that dim(M) = dim(tnM) for every
n ∈ Z if rk is τ -compatible.

Suppose that we have a ring R and a Sylvester rank function rk on R. Let dim
be the associated Sylvester matrix rank function. Then, for every i , we have a ring
homomorphism

R[t; τ ] −→ EndR(R[t; τ ]/R[t; τ ]t i )
p �−→ φ

p
R,i

where φ
p
R,i is given by right multiplication by p. Since the codomain is isomorphic to

Mati (R), we can pull back to R[t; τ ] the rank induced by rk on Mati (R). This means
that we have rank functions r̃ki on R[t; τ ] such that if A ∈ Matn×m(R[t; τ ]), then
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r̃ki (A) = rk(B)

i

where B ∈ Matin×im(R) is the matrix associated to the R-homomorphism of free
R-modules φA

R,i : (R[t; τ ]/R[t; τ ]t i )n → (R[t; τ ]/R[t; τ ]t i )m given by right mul-
tiplication by A with respect to some bases in the domain and codomain. Of course,
this is independent of the choice of the bases, and so we can write rk(φA

R,i ) instead of
rk(B).

Assume that rk is τ -compatible. Let r̃k ∈ P(R[t; τ ]). We say that r̃k is the natural
extension of rk if

r̃k = lim
i→∞ r̃ki ∈ P(R[t; τ ]),

i.e., for every A ∈ Matn(R[t; τ ]) there exists the limit lim
i→∞ r̃ki (A) and it is equal to

r̃k(A).
Observe that in this case r̃k(t) is equal to 1. Indeed, the matrix associated to φt

R,i
with respect to the canonical basis in both the domain and codomain is the i × i matrix(
0 Ii−1
0 0

)
, which is of rank i − 1, by the properties of rank functions. Therefore,

r̃k(t) = lim
i→∞ r̃ki (t) = lim

i→∞
i − 1

i
= 1

Thus, r̃k can be extended to R[t±1; τ ] (see [19, Corollary 5.5]). We also denote this
extension by r̃k and we will call it the natural extension of rk to R[t±1; τ ].

We do not know what are the necessary conditions for the existence of natural
extensions. In [19, Proposition 7.5] it is shown that if τ is the identity automorphism,
then the natural extension exists if rk is regular. In the next section we give an analog
of this result in the case where τ is an arbitrary automorphism.

3.2 On the existence and characterizations of the natural extension

A Sylvester module rank function dim on a ring R is exact if for every surjective map
between finitely presented modules φ : M � N we have

dim(M) − dim(N ) = inf{dim(L) : L finitely presented and L � ker φ}.

Since everyfinitely presentedmodule over a vonNeumann regular ring is projective,
we have that every short exact sequence of finitely presentedmodules splits, and so any
Sylvester module rank function over a von Neumann regular ring is exact. Notice that
the exactness condition seems to be necessary if onewants to obtain an extensionwhich
behaves additively on exact sequences. Indeed, we have the following proposition.

Proposition 3.2 [33] Let dim be an exact Sylvester module rank function on a ring R.
Consider, for every finitely generated module,

dim(M) = inf{dim(L) : L finitely presented and L � M}

123



The strong Atiyah and Lück approximation. . . 1755

and set for any R-module

dim(M) = sup{dim(L) : L finitely generated and L ≤ M}

The extended function dim : R-mod → R≥0 ∪ {∞} is a well-defined normalized
length function, i.e., it satisfies:

(1) (Normalization) dim(R) = 1.
(2) (Continuity) For every R-module,

dim(M) = sup{dim(L) : L finitely generated and L ≤ M}

(3) (Additivity) For every exact sequence 0 → M1 → M2 → M3 → 0, we have
dim(M2) = dim(M1) + dim(M3)

In addition, the correspondence between exact Sylvester module rank functions and
normalized length functions is bijective.More precisely, the restriction of a normalized
length function to finitely presentedmodules is an exact Sylvestermodule rank function,
and from this restriction we can recover it by means of the previous procedure.

In view of this proposition, we can (and sometimes we will) indistinctly talk about
an exact Sylvester module rank function and its associated normalized length function.
Nevertheless, we will usually try to maintain the corresponding terminology in order
to keep in mind the extent of the definition. It is important to notice that if dim is an
exact τ -compatible Sylvester module rank function, then its associated normalized
length function is also τ -compatible in the sense that for any R-module M , we have
dim(M) = dim(tM). This follows easily from the property for finitely presented
modules and the way we extend dim.

We are now in position to present the construction of the natural extension of
an exact Sylvester rank function using the construction from [34, Theorem B and
Definition 4.3].

Proposition 3.3 Let dim be a τ -compatible normalized length function on a ring U
and let rk be the Sylvester matrix rank function associated with dim. Define, for every
U[t±1; τ ]-module M

d̃im(M) = sup{EM,N : N is U-submodule of M and dim(N ) < ∞},

where

EM,N = lim
i→∞

dim(N + t N + · · · + t i−1N )

i
.

Then d̃im is a well-defined normalized length function onU[t±1; τ ], and its associated
Sylvester matrix rank function r̃k is the natural extension of rk to U[t±1; τ ].

This has been studied in [19] for the case of Laurent polynomial rings R[t±1], and,
in fact, almost the same proofs apply in this setting with very slight modifications
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regarding the twist ta = τ(a)t . In particular, the following characterizations of the
natural extension hold.

Proposition 3.4 Let R be a ring, τ an automorphism of R and dim a τ -compatible
normalized length function on R with associated Sylvester matrix rank function rk.
Then, for every left ideal I of R[t±1; τ ],

d̃im(I ) = lim
k→∞

dim(Pk−1)

k

where Pk is the set of polynomials in R[t; τ ] of degree at most k contained in I .
Moreover, if R is regular, then the above limit equals

d̃im(I ) = sup

{
rk(a0) : a0 ∈ R and ∃n ≥ 0, ∃a1, . . . , an ∈ R s.t.

n∑

i=0

ai t
i ∈ I

}

Proposition 3.5 LetU bea regular ring, τ anautomorphismofU and rk a τ -compatible
Sylvester matrix rank function on U . Let rk′ be a rank on U[t±1; τ ] that extends rk.
Then rk′ is the natural extension of rk if and only if, for any matrix A ∈ Matn(U), we
have

rk′(In + At) = n

Now assume that U is positive definite ∗-regular and τ is a ∗-automorphism. In this
case we will show that the natural extension r̃k of a Sylvester matrix rank function
rk on U is a ∗-regular Sylvester rank function on U[t±1; τ ]. To do so first observe
that, provided τ is a ∗-automorphism, we can endow U[t±1; τ ] with an involution
by setting t∗ = t−1. This is indeed consistent with the twist ta = τ(a)t because
(ta)∗ = a∗t−1 = t−1τ(a∗) = t−1τ(a)∗ = (τ (a)t)∗.

Since U is positive definite, Matn(U), and so EndU (U[t; τ ]/U[t; τ ]tn), is ∗-regular
for every n. In this ring we have the rank rkn = rk

n (from where we obtained r̃kn).
Let us fix a non-principal ultrafilter ω on N. We can construct a rank function rkω :=
limω π

�
n(rkn) on the ∗-regular ring ∏∞

n=1 EndU (U[t; τ ]/U[t; τ ]tn), where πn is the
natural projection onto the n-th factor. We denote

PU
ω,τ :=

( ∞∏

n=1

EndU (U[t; τ ]/U[t; τ ]tn)
)

/ ker rkω . (3)

and rkω defines a faithful rank function on PU
ω,τ . Consider the natural map fω :

U[t; τ ] → PU
ω,τ , where p �→ (φ

p
U ,n)n + ker rkω, and observe that the definition of

natural extension tells us that as a rank over U[t; τ ], r̃k = fω�(rkω). Finally, since
r̃k(t) = 1, fω extends to a homomorphism

fω : U[t±1; τ ] → PU
ω,τ (4)
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and r̃k = fω�(rkω). As in [19] one may check that fω is a ∗-homomorphism, and
consequently, the following proposition.

Proposition 3.6 Let U be a positive definite ∗-regular ring, τ a ∗-automorphism of U .
If rk is a τ -compatible Sylvester matrix rank function on U , then the natural extension
of rk on U[t±1; τ ] is a ∗-regular rank function on U[t±1; τ ].

We can use the previous results to show the existence of the natural extension for
either a ∗-regular or an integer-valued Sylvester rank function. We describe this in
two separate propositions for the sake of clarity. Although the proof of the follow-
ing proposition is similar to the proof of [19, Proposition 7.5], it presents additional
technical difficulties that do not appear when τ is the identity automorphism.

Proposition 3.7 Let R be a ∗-ring, τ a ∗-automorphism of R and rk a τ -compatible ∗-
regular Sylvester matrix rank function on R. Let (U , rk′, ϕ) be the ∗-regular envelope
of rk.

(1) Then τ can be extended to a ∗-automorphism of U (also denoted τ ) such that rk′
is τ -compatible.

(2) Denote also by ϕ the induced map R[t±1; τ ] → U[t±1; τ ]. Then there exists the
natural extension r̃k′ of rk′ to U[t±1; τ ] and r̃k = ϕ�(r̃k′) is the natural extension
of rk to R[t±1; τ ].

(3) Endow R[t±1; τ ] and U[t±1; τ ] with an involution by setting t∗ = t−1. If U is
positive definite, then r̃k is a ∗-regular Sylvestermatrix rank function on R[t±1; τ ].

Proof Observe that (U , rk′, ϕ ◦ τ) is also an epic ∗-regular R-ring. Since rk is τ -
compatible, by Theorem 2.9 τ can be extended to a ∗-automorphism of U preserving
the rank rk′. Hence we have the following commutative diagram

U
rk′

∃τR

ϕ

ϕ◦τ

R≥0

U
rk′

Now, inasmuch as rk′ is exact and τ -compatible, using Proposition 3.3, we obtain that
there exists its natural extension r̃k′, which is a regular Sylvester rank function on
U[t±1; τ ]. Since rk = ϕ�(rk′) and r̃ki = ϕ�(r̃k′

i ), we conclude that r̃k = ϕ�(r̃k′) is
the natural extension of rk.

Part 3 follows from Proposition 3.6 because the extension ϕ : R[t±1; τ ] →
U[t±1; τ ] is a ∗-homomorphism. ��

As a consequence of the latter proposition and Proposition 3.5 we have the following
corollary.
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Corollary 3.8 Let R be a ∗-ring, τ a ∗-automorphism of R and {rki } a family of τ -
compatible ∗-regular rank functions. For every i ∈ N, let r̃ki be the natural extension
of rki to R[t±1; τ ]. Then, for every non-principal ultrafilter on N, limω r̃ki is the
natural extension of rkω = limω rki .

Proof Since rki is ∗-regular and τ -compatible for every i , rkω is also ∗-regular and
τ -compatible, and therefore, their natural extensions exist by Proposition 3.7. Let
(Ui , rk′

i , ϕi ) be the ∗-regular envelope of rki and set U = ∏
Ui , ϕ = (ϕi ). Consider

R
ϕ

ϕi

U
πi

Ui

R[t±1; τ ] ϕ

ϕi

U[t±1; τ ′]
πi

Ui [t±1; τi ]

where τi is the ∗-automorphism of Ui given in Proposition 3.7(1), τ ′ = (τi ) and πi is
the natural projection. By construction, rk′

ω := lim
ω

π
�
i (rk

′
i ) satisfies rkω = ϕ�(rk′

ω).

Now, since U is regular and rk′
ω is τ ′-compatible, there exists its natural extension on

U[t±1; τ ′], and so r̃kω = ϕ�(r̃k
′
ω). In addition, notice that limω π

�
i (r̃k

′
i ) extends rk

′
ω

and that, since r̃k
′
i is the natural extension of rki , we obtain from Proposition 3.5 that

(
lim
ω

π
�
i (r̃k

′
i )

)
(In + At) = lim

ω
r̃k

′
i (In + πi (A)t) = lim

ω
n = n.

As a consequence, another application of Proposition 3.5 gives us that

r̃k
′
ω = lim

ω
π

�
i (r̃k

′
i )

and, therefore, r̃kω = ϕ�(r̃k
′
ω) = limω ϕ

�
i (r̃k

′
i ) = limω r̃ki . ��

Now we consider integer-valued Sylvester rank functions.

Proposition 3.9 Let R be a ring, τ an automorphism of R and rk an integer-valued
τ -compatible Sylvester matrix rank function on R. Let (D, ϕ) be the epic division
envelope of rk.

(1) Then τ can be extended to an automorphism of D (also denoted τ ) and rkD is
(automatically) τ -compatible.

(2) Denote also by ϕ the induced map R[t±1; τ ] → D[t±1; τ ]. Then there exists
the natural extension r̃kD of rkD to D[t±1; τ ] and r̃k = ϕ�(r̃kD) is the natural
extension of rk to R[t±1; τ ].

(3) The function r̃k is integer-valued and its epic division envelope is isomorphic to
the Ore division ring of fractions of D[t±1; τ ].

Proof The first two statements are proved as in the previous proposition invoking
Theorem 2.8 instead of Theorem 2.9 and taking into account that in a division ring
there exists only one rank function.
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To prove (3) observe that, for every p = ai t i + ai+1t i+1 + · · · ∈ D[t; τ ] with
ai �= 0, we have that r̃kD(p) ≥ rkD(ai ) = 1 by Proposition 3.4, and so we can use
[19, Corollary 5.5] to extend r̃kD not only to D[t±1; τ ] but to the Ore division ring
of fractions D(t; τ). Again, by uniqueness of rank in a division ring, r̃kD = rkD(t;τ)

takes integer values, and since the composition R[t±1; τ ] → D[t±1; τ ] → D(t; τ) is
also epic, we conclude that D(t; τ) is the epic division envelope of r̃k. ��

To finish this section, let G be a group and suppose that H is a non-trivial finitely
generated indicable subgroup of G. Take a decomposition H = N�τ < t > with
t ∈ H , and notice that K [H ] ∼= K [N ][t±1; τ ]. Assume that rk is a ∗-regular Sylvester
matrix rank function on K [G]with positive definite ∗-regular envelope (U , rk′, ϕ), and
denote by rk|K [H ] and rk|K [N ] the restrictions of rk to K [H ] and K [N ], respectively.

In Sect. 1, we anticipated that for the proof of the main theorem we were going to
construct an environment in which we could compareDH ,U andDN ,U ((t; τ)), where
DH ,U andDN ,U denote, respectively, the division closures of ϕ(K [H ]) and ϕ(K [N ])
inside U . This object will be the ∗-regular ring PUN

ω,τ that appeared in (3), where UN is
the ∗-regular closure of ϕ(K [N ]) in U .

On the one hand, we have an injective homomorphism

UN [[t; τ ]] →
∞∏

n=1

EndUN (UN [t; τ ]/UN [t; τ ]tn).

This induces a homomorphism ψ : UN [[t; τ ]] → PUN
ω,τ . Moreover, ψ is injective,

because if p = ai t i + ai+1t i+1 + · · · ∈ UN [[t; τ ]] with ai �= 0, then we have that
rk′

ω(ψ(p)) ≥ rk′(ai ) > 0. Indeed, by the properties of Sylvester rank functions and
by τ -compatibility and faithfulness of rk′ we have that

rk′
ω(ψ(p)) = lim

ω

rk′(φ p
UN ,n)

n
≥ lim

ω

(n − i) rk′(ai )
n

= rk′(ai ) > 0.

Since t is invertible in PUN
ω,τ , the property of universal localization allows us to

extend ψ to an embedding
UN ((t; τ)) ↪→ PUN

ω,τ . (5)

On the other hand, to show that UH can be identified with a subring of PUN
ω,τ , we

need the rank rk to satisfy the following additional property

rk|K [H ] is the natural extension of rk|K [N ]. (6)

(Observe that the existence of the natural extension of rk|K [N ] follows fromProposition
3.7.) Indeed, let us assume that (6) holds for H and N . Since K [H ] ∼= (K [N ])[t±1; τ ],
we can consider the ∗-map fω : UN [t±1; τ ] → PUN

ω,τ as in (4). Denote by rk′
UH

the restriction of rk′ to UH . Then, if ϕ denotes also the induced homomorphism
ϕ : (K [N ])[t±1; τ ] → UN [t±1; τ ],
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rk|K [H ] = ˜rk|K [N ] = ϕ� ◦ f �
ω(rk′

ω).

This means that (UH , rk′
UH

, ϕ) and (R( fω ◦ ϕ(K [H ]),PUN
ω,τ ), rk′

ω, fω ◦ ϕ) are both
∗-regular envelopes for rkK [H ], and so they are isomorphic. Thus, we can think that

UH ⊆ PUN
ω,τ and rk′

|UH
is the restriction of rk′

ω.
Thus, assuming the condition (6), we have constructed the following diagram.

UN UH

UN ((t; τ)) PUN
ω,τ

(7)

with rk′
ω|UH

= rk′
|UH

.

3.3 Hughes-free rank functions

In this section we are going to introduce a property for rank functions on certain
crossed products. Given an algebra R and a group G, a crossed product R ∗ G is a
G-graded ring R ∗ G = ⊕

g∈G Rg such that R1G = R and for every g ∈ G there
exists an element ug ∈ Rg invertible in R ∗ G.

As we have done in the previous sections, for group rings R[G] we can (and we
will) just set ug = g. Since the multiplication is extended from the one in G, this way
we canonically embed G (as a group) in R[G]. Therefore, we can define R×G to be
the subgroup of the group of units in R[G] consisting on the elements rg for a unit
r ∈ R and a group element g ∈ G.

In thegeneral setting this identification is no longer possible, but still the set R×G :=
{rug : r ∈ R×, g ∈ G} is a subgroup of units of R ∗ G containing R× as a normal
subgroup and such that R×G/R× ∼= G. When E is a division ring and G is locally
indicable, Higman proved [15] that E×G is precisely the set of units of E ∗ G.

In the latter situation, we are going to introduce the property of Sylvester rank
functions on E ∗ G that will be central in the proof of the main theorem of Sect. 6,
namely, the Hughes-free property. This property is closely related to the one imposed
to construct diagram (7) and it is the analog of the Hughes-free property for epic
division E ∗ G-rings that appears in [17]. In fact we will remark that an epic division
E ∗ G-ring is Hughes-free if and only if the corresponding Sylvester rank function
is Hughes-free. Moreover, we will see in Sect. 6 that if K is a subfield of C closed
under complex conjugation, then any ∗-regular Hughes-free Sylvester rank function
on K [G] with positive definite ∗-regular envelope takes integer values, and so its
∗-regular envelope is a division ring.

First let us recall the definition ofHughes-free epic division E∗G-ring. If H is a non-
trivial finitely generated subgroup of G, then we can express H = N �C , where C is
infinite cyclic. Let t be a preimage of a generator ofC under E×H → E×H/E× ∼= H .
Then, left conjugation by t induces an automorphism τ : E ∗ N → E ∗ N and
E ∗ H ∼= (E ∗ N )[t±1; τ ]. Moreover, if (D, ϕ) is an epic division E ∗ G-ring, then τ
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can be extended to an automorphism (also denoted by τ ) ofDN ,D, the division closure
of ϕ(E ∗ N ) in D.

We say that an epic division E ∗ G-ring (D, ϕ) is Hughes-free if for every non-
trivial finitely generated subgroup H of G and for every expression H = N � C
as before, we have that DH ,D is isomorphic (as an E ∗ H -ring) to the Ore ring of
fractions of DN ,D[t±1; τ ]. Here DH ,D is the division closure of ϕ(E ∗ H) in D. This
definition is equivalent to saying that {t i }i∈N are DN ,D-linearly independent, in the
sense that there exists no non-trivial expression a0 + a1t + · · · + antn = 0 in DH ,D
with coefficients in DN ,D. If (D, ϕ) is Hughes-free, then ϕ is injective and we will
consider E ∗ G as a subring of D.

We introduce the following generalization. Let rk be a Sylvester matrix rank func-
tion on the crossed product E∗G.We say that rk isHughes-free if for every non-trivial
finitely generated subgroup H of G and every expression H = N � C as above, we
have that the natural extension of rk |E∗N exists and coincides with rk |E∗H .

The next lemma states that this is indeed a generalization of the Hughes-free notion
for epic division rings.

Lemma 3.10 An epic division E ∗ G-ring D is Hughes-free if and only if rkD is
Hughes-free as a Sylvester matrix rank function on E ∗ G.

Proof Let H be a finitely generated subgroup of G and assume that we have that
H = N � C , for C infinite cyclic. Let t ∈ E×H be such that its image under
E×H → H generates C , and let τ denote the automorphism of E ∗ N induced by left
conjugation by t . By Proposition 3.9(3) we know that DN ,D(t; τ) is the epic division

envelope of ˜rkDN ,D viewed as a Sylvester matrix rank function on E ∗ H . Thus, the
lemma follows from the Hughes-freeness definition and Theorem 2.8. ��
Now, let us present the main example of a Hughes-free Sylvester rank function.

Proposition 3.11 Let G be a group, K a subfield of C and H a non-trivial finitely
generated indicable subgroup of G. If N � H is a normal subgroup of H such that
H/N ∼= Z, then, as a rank function over K [H ], rkH is the natural extension of rkN .
In particular, if G is locally indicable, then rkG restricted to K [G] is Hughes-free.
Proof This is a particular application of [20, Corollary 12.2]. ��

Observe that if rk is a ∗-regular Hughes-free Sylvester matrix rank function on
K [G] with positive definite ∗-regular envelope (U , rk′, ϕ), then we can construct a
diagram (7) for any non-trivial finitely generated subgroup H of G. In Section 6 we
will prove that U is the Hughes-free epic division K [G]-ring, and so, in fact, that UH

can be seen as a subring of UN ((t; τ)).

4 Rational U-semirings

In this section we recall the notion of rationalU -semiring for a multiplicative groupU
and two of the main examples that appear in [6]. We also present two new examples.

123



1762 A. Jaikin-Zapirain, D. López-Álvarez

The first is the case of division E ∗G-closures, where E ∗G denotes a crossed product
of a skew field E with a group G. The second is the case of epic ∗-regular K [G]-rings
for any subfield K of C closed under complex conjugation, which will be shown to
be a K×G-rational semiring with rational operation given by taking relative inverses.
Except for some minor notation details, we will stick to the definitions and notation
used in [6].

By a semiring R we understand a set together with an associative addition and an
associative product with identity element 1R which is distributive over the addition.
Let U be a multiplicative group and let R be a semiring. We say that R is a rational
U -semiring if

(1) There is a map � : R → R (with r �→ r�) defined on R (this is a rational structure
on R).

(2) R is aU -biset (U acts on both sides of R in a compatible way, i.e. (ur)v = u(rv)

for any u, v ∈ U , r ∈ R).
(3) For every u, v ∈ U and r ∈ R, (urv)� = v−1r�u−1.

A morphism of rational U -semirings � : R1 → R2 is a map respecting all of the
operations, i.e., satisfying, for all r , r ′ ∈ R1 and u, v ∈ U

(1) �(r + r ′) = �(r) + �(r ′), �(1R1) = 1R2 and �(rr ′) = �(r)�(r ′);
(2) �(r�) = �(r)�;
(3) �(urv) = u�(r)v.

Each of the following sections is devoted to showing a particular example of rational
U -semiring. Notice that a U -semiring is also a V -semiring for every V ≤ U .

4.1 Finite rooted trees

Let T be the set of all finite (oriented) rooted trees up to isomorphism. We will just
recall here that T has a well-order satisfying some desirable properties and that can
be trivially seen to be a U -semiring for any multiplicative group U . This order will
define later a measure of complexity of elements in Rat(U ) and, therefore, a measure
of complexity of elements in division E ∗ G-closures and epic ∗-regular K [G]-rings.

Denote by 0T the one-vertex tree. If 0T �= X ∈ T , we denote by fam(X) the
finite family of finite rooted trees obtained from X by deleting the root and all incident
edges, and we call width of X to the number of elements in fam(X). The height of X
is defined recursively as the maximum height of the elements in fam(X) plus one, with
height(0T ) = 0. Finally, we denote by exp(X ) the tree obtained from X by adding a
new vertex which is declared to be the root of exp(X), and a new edge joining it to
the root of X .

Let X ,Y ∈ T . The sum of X and Y consists of identifying their roots, and declare it
to be the root of X+Y .With this operationT is an additivemonoidwith neutral element
0T . The product of X and Y consists of adding pairwise the elements of fam(X) with
the elements of fam(Y ), and then connecting all the resulting finite rooted trees by
adding a new vertex (the root of X · Y ) with incident edges to their roots. In other
words,
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X · Y =
∑

X ′∈ fam(X)
Y ′∈ fam(Y )

exp(X ′ + Y ′).

With this operation, T is a commutative multiplicative monoid with identity element
1T = exp(0T ), the one-edge rooted tree. The rational map is given by

X� = exp2(X).

TheU -semiring structure will be the trivial one, with uX = Xu = X for every u ∈ U .
If Tn denotes the subset of T consisting of all elements with at most n edges, the

following defines a well-order in T ([6] Lemma 3.3):

– 0T is the least element of T . Set T0 = {0T }.
– Suppose n ≥ 1 and that Tn−1 is already ordered. Take X ,Y ∈ Tn\{0T }. Let log(X )
denote the largest element of Tn−1 in fam(X), so exp(log(X )) is a summand of X ,
and denote its complement by X − exp(log(X)) ⊆ Tn−1. We say that X > Y if
either log(X )>log(Y ) or log(X ) = log(Y ) and X−exp(log(X)) > Y−exp(log(Y )).

In particular, if height(X) > height(Y ), then X > Y , and essentially, what we do
to compare two different rooted trees X and Y is to recursively compare the largest
element in fam(X) with the largest element in fam(Y ); if they are equal, we move
on to the next largest element in each of the families; and we continue until we can
declare X > Y or Y > X .

This order satisfies, among many others (cf. [29, Remark 5.18]), the following
properties.

Lemma 4.1 Let X ,Y , X ′,Y ′ ∈ T :

(i) If X ′ ≤ X and Y ′ ≤ Y , then X ′ + Y ′ ≤ X + Y , and equality holds if and only if
X ′ = X and Y ′ = Y . In particular, if Y �= 0T , then X < X + Y .

(ii) If X ′ ≤ X and Y ′ ≤ Y , then X ′ · Y ′ ≤ X · Y . If X ′, Y ′ �= 0T , then equality holds
if and only if X ′ = X and Y ′ = Y . In particular, if X ,Y �= 0T , then X ≤ X · Y
and they are equal if and only if Y = 1T .

4.2 The universal rational U-semiring

Given a multiplicative group U , the universal rational U -semiring Rat(U ) is con-
structed inductively as a formal analog of the construction of a division or a ∗-regular
closure, starting with the elements of U , constructing at each inductive step a bigger
rationalU -semiring bymeans of sums, products and rational operations � of the object
in the previous step, and then taking unions. Before defining Rat(U ), we present some
definitions and notation:

• If X is a set, then the free additive monoid on X is N[X ] and the free additive
semigroup on X is N[X ]\{0}. This way we can consider formal sums of elements
in X . Moreover, when X is a multiplicative monoid with U -biset structure, these
have a U -semiring structure naturally inherited from the one on X .
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• If X is a U -biset, then X×n
U is the set of equivalence classes of words in X of

length n with respect to the relation generated by

x1 . . . (xi u)xi+1 . . . xn ∼ x1 . . . xi (uxi+1) . . . xn for all u ∈ U , 1 ≤ i ≤ n − 1.

X×n
U has a natural U -biset structure given by

u(x1x2 . . . xn) = (ux1)x2 . . . xn and (x1x2 . . . xn)u = x1x2 . . . (xnu).

The multiplicative free monoid on X over U is defined as

U�X =
∞⋃

n=0

X×n
U

where we understand X×0
U = U . This object is again a U -biset with the natural

structure. In this manner we can consider formal products of elements of X . In
addition, observe that N[U�X ] has a U -semiring structure, where the multiplica-
tion is naturally inherited from the one on U�X .

• If X is a U -biset, then X� denotes a disjoint copy of X together with a bijective
map X → X�, x �→ x�, and a U -biset structure given by ux�v := (v−1xu−1)�.
This will allow us to construct a formal rational operation in X .

The universal rational U -semiring is defined as follows (compare with the defi-
nition of ∗-regular closure).
• Consider the U -semiring N[U ]\{0}, and set X0 := ∅, X1 := (N[U ]\{0})�. Triv-
ially X0 is a U -sub-biset of X1.

• Suppose n ≥ 1, Xn is a U -biset and Xn−1 a U -sub-biset of Xn . Consider the
U -semiring N[U�Xn] and the U -sub-biset N[U�Xn]\N[U�Xn−1], and define

Xn+1 := (N[U�Xn]\N[U�Xn−1])� ∪ Xn .

• Then, X = ⋃
Xn is a U -biset and the universal rational U -semiring Rat(U ) is

defined as

Rat(U ) := N[U�X ]\{0}.

Its rational map � can be shown to carry N[U ]\{0} to X1, N[U�Xn]\N[U�Xn−1]
to Xn+1\Xn for n ≥ 1, N[U�Xn]\{0} to Xn+1 for n ≥ 0, and Rat(U ) to X .

In order to understand the resulting object of this definition, it is important to
notice that starting from U , at each step we just allow formal sums and products of
the elements in the previous step, and define a formal rational operation on the new
elements obtained this way.

The universality of Rat(U ) comes from the following property ([6] Lemma 4.7).

Lemma 4.2 If U is a multiplicative group and R a rational U-semiring , then there
exists a unique morphism of rational U-semirings � : Rat(U ) → R.
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� extends to a morphism of U -semirings � : Rat(U ) ∪ {0} → R whenever R has
a zero element with {0R} · R = R · {0R} = {0R}. In particular, we obtain a morphism
of U -semirings:

Tree : Rat(U ) ∪ {0} → T .

We call Tree(α) the complexity of α.
As shown in [29, Example 5.35], if V is a subgroup of U then the universal mor-

phism

� : Rat(V ) → Rat(U )

is naturally injective at every inductive step, so we can think that Rat(V ) ⊆ Rat(U ).
Moreover, if α ∈ Rat(V ) ⊆ Rat(U ), then Tree(α) does not depend on whether we
consider α as an element of Rat(V ) or Rat(U ), because the universal property of
Rat(V ) implies that TreeV = TreeU ◦�.

The following lemma collects some of the properties of the complexity. In order
to state it properly, add to T a new least element {−∞} and turn T ∪ {−∞} into a
semiring by setting T + {−∞} = T · {−∞} = {−∞} · T = {−∞}. Now define
log(0T ) = −∞ and log(−∞) = −∞.

Lemma 4.3 If α, β ∈ Rat(U ) ∪ {0}, then the following holds.

(i) Tree(α) = 0T if and only if α = 0.
(ii) Tree(α) = 1T if and only if α ∈ U.
(iii) Tree(α + β) = Tree(α) + Tree(β).
(iv) Tree(α) ≤ Tree(α + β) and they are equal if and only if β = 0.
(v) Tree(αβ) = Tree(α)Tree(β).
(vi) If α, β �= 0, then Tree(α) ≤ Tree(αβ) and they are equal if and only if β ∈ U.
(vii) log Tree(α + β) = max{log Tree(α), log Tree(β)}.
(viii) log Tree(αβ) = log Tree(α) + log Tree(β).
(ix) log2 Tree(α + β) = max{log2 Tree(α), log2 Tree(β)}.
(x) log2 Tree(αβ) ≤ max{log2 Tree(α), log2 Tree(β)} and they are equal if and

only if α, β �= 0.
(xi) If α �= 0, Tree(α�) = exp2 Tree(α).
(xii) If α �= 0, Tree(α�) > log2 Tree(α�) = Tree(α).
(xiii) If α ∈ U�X, then width(Tree(α)) = 1.

Proof Properties (i)-(x) and (xii) can be found in [6, Lemma 4.9], property (xi)
holds because over non-zero elements Tree is a morphism of rational U -semirings,
and property (xii i) is observed in [29], page 112. ��

Acrucial step for the inductivemethod used in [6] is the existence, for every element
α in Rat(U ), of a subgroup source(α) ofU with the following properties ([6], Lemma
5.2, Lemma 5.4, Theorem 5.7).
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Theorem 4.4 If α ∈ Rat(U ), then the following holds.

(i) source(α) is finitely generated and α ∈ Rat(source(α)) · U. The elements satis-
fying α ∈ Rat(source(α)) are called primitive.

(ii) The set P of all primitive elements satisfies PU = U P = Rat(U ). If α = α′u
with α′ ∈ P and u ∈ U, then source(α) = source(α′).

(iii) If V is a subgroup of U such that α ∈ Rat(V ) ·U, then source(α) ≤ V .

4.3 Division E ∗ G-closures

The following example is a modification of [29, Example 1.43(d)] in the case we deal
with division closures. Let R be a subring of a ring S. We will denote by DR,S the
division closure of R in S. As it happens with the ∗-regular closure, it is easy to see
that it can be constructed as follows.

– Put Q0 := R.
– Suppose n ≥ 1 and that we have constructed a subring Qn of S. Then Qn+1 is
the subring of S generated by the elements of Qn and its inverses (whenever they
exist).

– DR,S = ⋃∞
n=0 Qn .

Observe that if S is ∗-regular, then DR,S is contained in the ∗-regular closure of R in
S. The following lemma is just a straightforward consequence of the definitions.

Lemma 4.5 Let R be a subring of a ring S, and let DR,S denote the division closure
of R in S. Then

(1) If T is a subring of R, then DT ,S = DT ,DR,S ⊆ DR,S.
(2) If U is a regular subring of S containing R, then DR,S = DR,U .

Proof The first assertion is clear. To prove the second, take x ∈ U and note that if x is
invertible in S then it is a non-zero-divisor in U . Since U is regular, this means that x
is invertible in U . ��

Now, let E ∗G be a crossed product of a division ring E with any group G, and let
φ : E ∗ G → A be an E ∗ G-ring. For each subgroup H of G denote by DH ,A the
division closure of φ(E ∗ H) inA. Then we can define an E×H -rational structure on
DH ,A by putting a� = a−1 if a is invertible in DH ,A and a� = 0 otherwise.

Therefore, for any H ≤ G we can apply Lemma 4.2 to DH ,A to obtain a unique
morphism of E×H -semirings

�H ,A : Rat(E×H) ∪ {0} → DH ,A

with �H ,A(0) = 0. Reasoning as in [29, Examples 5.37 and 5.38], every �H ,A is
surjective and the restriction of �G,A to Rat(E×H) is a morphism of E×H -rings
whose image is Dφ(E∗H),DG,A = DH ,A. Therefore, the uniqueness in Lemma 4.2
implies that the following diagram is commutative.
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Rat(E×H)
�H ,A DH ,A

Rat(E×G)
�G,A DG,A

(8)

Now we can define the H -complexity of any element of DH ,A. Let a ∈ DH ,A.
Then we put

TreeH (a) = min{Tree(α) : α ∈ Rat(E×H) ∪ {0},�(α) = a}.

This notion is always defined since the rooted trees are well-ordered. Notice also that
TreeG(a) ≤ TreeH (a), for alla ∈ DH ,A.Wewill say thatα realizes the H -complexity
of a ∈ DH ,A if �(α) = a and Tree(α) = TreeH (a).

As an important remark, suppose that (A1, φ1) and (A2, φ2) are two E ∗ H -rings
such thatDH ,A1 andDH ,A2 are isomorphic E∗H -rings. Ifwe denote this isomorphism
by ϕ, then for every a ∈ DH ,A1 we have that TreeH (a) = TreeH (ϕ(a)). Indeed, since
ϕ is an isomorphism of E ∗ H -rings, it preserves the E×H -rational structure, and so
ϕ ◦ �H ,A1 is a morphism of E×H -semirings. Uniqueness in Lemma 4.2 implies that
ϕ ◦ �H ,A1 = �H ,A2 , and the claim follows.

We finish the section with some comments in the case we are really interested in.
Suppose that G is a locally indicable group, H a finitely generated subgroup, and
H = N � C , where C is infinite cyclic. Let t be an element of E×H such that its
image under the map E×H → H generates C , and let τ : E×N → E×N denote the
automorphism given by left conjugation by t . Then τ can be extended, respectively,
to an automorphism of DN ,A and to an automorphism of the semiring Rat(E×N ).
Both extensions will also be denoted by τ . We will write Rat(E×N ) < t > to refer
to the multiplicative submonoid of Rat(E×H) whose elements are of the form αtn ,
for α ∈ Rat(E×N ) and n ∈ Z, and with (αtn) · (βtm) = ατ n(β)tn+m . Observe in
particular that the following holds.

– If α ∈ Rat(E×N ), then tnα = τ n(α)tn ∈ Rat(E×N ) < t >.
– If α, β ∈ Rat(E×N ) < t >, then αβ ∈ Rat(E×N ) < t >.
– If α, β ∈ Rat(E×N )tn , then α + β ∈ Rat(E×N )tn .

4.4 Epic ∗-regular K[G]-rings as K×G-semirings

The next example of rational semiring was central in a previous version of our proof of
the Atiyah conjecture for locally indicable groups [21] and, although it will not play a
role in the proof shown in this paper, we think it can be relevant for future references.

For the rest of the section let G be a group, K a subfield of the complex numbers
C closed under complex conjugation, and endow the group ring K [G] with the usual
proper involution ∗, which is defined by (λg)∗ = λ̄g−1 and extended by linearity.

Suppose that we have a ∗-regular K [G]-ring U with an epic ∗-homomorphism
ϕ : K [G] → U . The following lemma shows that U is a rational K×G-semiring.
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Lemma 4.6 If K [G] is a ∗-subring of a ∗-regular ring U such that K [G] ↪→ U is epic,
then U is a rational K×G-semiring with rational operation given by taking relative
inverses.

Proof We have to show that, for every u, v ∈ K×G and x ∈ U , the equality
(uxv)[−1] = v−1x [−1]u−1 holds. Observe first that K ⊆ Z(U) by Lemma 2.5. Put
e = RP(x), f = LP(x). Then, by the previous observation and the definition of LP(x),
we have that LP(uxv) = u f u−1. Indeed, if u = λg for some λ �= 0 and g ∈ G,

– u f u−1 is idempotent, and

(u f u−1)∗ = λ̄−1g f λ̄g−1 = λ̄g f λ̄−1g−1 = u f u−1

so it is a projection.
– uxvR = ux R = u f R = u f u−1R.

Similarly we have that RP(uxv) = v−1ev. To conclude the result, just observe that
(uxv)(v−1x [−1]u−1) = LP(uxv), v−1x [−1]u−1uxv = RP(uxv), and v−1x [−1]u−1 =
RP(uxv)v−1x [−1]u−1 LP(uxv). ��

As a consequence, in the previous setting we obtain a morphism of rational K×G-
semirings

�G : Rat(K×G) → U .

Again, as in the case of division closures, for any H ≤ G we can think of �H as
the restriction of �G to Rat(K×H) and, as a mere rewriting of [29, Examples 5.37
and 5.38], we obtain that the image of �H is UH , the ∗-regular closure of K [H ]
inside U . In particular �G is surjective. Therefore, we can understand that for every
N ≤ H ≤ G, the following diagram is commutative

Rat(K×N )
�N UN

Rat(K×H)
�H UH

Using this, we can push forward to UH the notion of H -complexity in the same way
we defined it before.

5 A key auxiliary result and first applications

In this section we are going to present a key result for the proof of the Atiyah and the
Lück approximation conjectures, and one of its immediate applications. The structure
of the proof mimics the steps of the proof of Hughes theorem presented in [29]. In
what follows, for any E ∗ G-ring (A, φ) and for any subgroup H ≤ G, DH ,A will
denote the division closure of φ(E ∗ H) in A. If we are working with an indexed
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family of E ∗ G-rings, say {(Ai , φi )}, then we will replace the previous notation by
DH ,i for the sake of readability.

5.1 A key auxiliary result

Let H be a finitely generated group and let N be a normal subgroup of H such that
H/N ∼= Z. Let E be a division algebra, let E ∗ H be a crossed product of E and H
and take t a preimage in E×H of a generator of the quotient E×H/E×N . Denote by
τ the automorphism of E ∗ N induced by the left conjugation by t , i.e., ta = τ(a)t
for a ∈ E ∗ N . Then E ∗ H is isomorphic to the skew Laurent polynomial ring
(E ∗ N )[t±1; τ ]. Assume that we have the following

(i) A von Neumann regular E ∗ N -ring (A, φ).
(ii) An automorphism of A, also denoted by τ , such that τ ◦ φ = φ ◦ τ .
(iii) A ring P such that A((t; τ)) ⊆ P .

Then φ can be extended to a homomorphism

φ : E ∗ H ∼= (E ∗ N )[t±1; τ ] → A((t; τ)) ⊆ P,

and so we can consider DN ,P and DH ,P . As it was explained in Sect. 4.3, we can
define a notion of H -complexity on DH ,P by means of the corresponding map � :
Rat(E×H) → DH ,P .

There are two important things to notice before stating our key result. Firstly, since
A is regular, Lemma 4.5 states thatDN ,P equalsDN ,A. Secondly, it follows from the
condition (i i) and the construction of a division closure that the restriction of τ to
DN ,A is an automorphism of DN ,A. Indeed, let DN ,A = ⋃

Qi as at the beginning
of this section, with Q0 = φ(E ∗ N ). Condition (i i) assures that τ(Q0) = Q0. Now
assume i ≥ 1 and τ(Qi ) = Qi . If x ∈ Qi is invertible, then τ(x−1) = τ(x)−1 ∈ Qi+1
by the induction hypothesis. From here τ(Qi+1) ⊆ Qi+1, and since we can play the
same gamewith τ−1, we are done. Therefore, it makes sense to considerDN ,P ((t; τ)),
a subring of A((t; τ)).

Proposition 5.1 Assume the previous notation. Let a ∈ DH ,P and assume that for
every 0 �= c ∈ DH ,P such that TreeH (c) < TreeH (a), c is invertible in DH ,P . Then
for every b ∈ DH ,P such that TreeH (b) ≤ TreeH (a) the following holds

(1) b belongs to DN ,P ((t; τ)) and
(2) if 0 �= b = ∑

bk with bk ∈ DN ,P tk , then

TreeH (bk) ≤ TreeH (b)

for all k, and the equality holds for some n if and only if b = bn ∈ DN ,P tn and

{
β ∈ Rat(E×H) ∪ {0} : �(β) = b and Tree(β) = TreeH (b)

}
⊆ Rat(E×N )tn .
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Proof For b = 0 it is clear, so let b �= 0. If TreeH (b) = 1T and β realizes the H -
complexity of b, then we have that β ∈ E×H = E×N < t > and b ∈ φ(E×H) =
φ(E×N ) < t >, so the result holds. Suppose now that TreeH (b) > 1T and that the
result holds for every element c ∈ DH ,P with TreeH (c) < TreeH (b). Fix an arbitrary
element β ∈ Rat(E×H) realizing the H -complexity of b. We are going to divide
Rat(E×H) in four disjoint subsets

U = E×H X U�X\(X ∪U ) N[U�X ]\(U�X ∪ {0}).

As far as we are assuming TreeH (b) > 1T , we know that β /∈ U , so we have three
possibilities left:

Case 1. If β ∈ U�X\(X ∪ U ), then there exist γ, δ ∈ U�X\U such that β = γ δ.
By Lemma 4.3(vi),

Tree(γ ),Tree(δ) < Tree(β).

Setting c = �(γ ), d = �(δ), we obtain a decomposition b = cd. We claim that
γ realizes the H -complexity of c, i.e., TreeH (c) = Tree(γ ). Otherwise, there would
exist γ ′ with �(γ ′) = c satisfying Tree(γ ′) < Tree(γ ), from where using Lemma
4.3(v) and Lemma 4.1(ii)

Tree(γ ′δ) = Tree(γ ′)Tree(δ) < Tree(γ )Tree(δ)
= Tree(γ δ) = Tree(β).

Since �(γ ′δ) = b, this contradicts the minimality of β. Similarly, δ realizes de
H -complexity of d, and therefore we have found a decomposition b = cd with
TreeH (b) > TreeH (c),TreeH (d). Now, by the induction hypothesis, we can write
c = ∑

cn , d = ∑
dn with TreeH (cn) ≤ TreeH (c) and TreeH (dn) ≤ TreeH (d).

Hence, we have an expression b = ∑
bn with bn = ∑

cmdn−m . Let βn , γn , δn be
elements inRat(E×H)∪{0} such that Tree(βn) = TreeH (bn), Tree(γn) = TreeH (cn),
Tree(δn) = TreeH (dn), for all n. From the previous expression we obtain

Tree(βn) ≤
∑

Tree(γm)Tree(δn−m).

Therefore, using Lemma 4.3,

log TreeH (bn) ≤ log
(∑

Tree(γm)Tree(δn−m)
)

= max {log(Tree(γm)Tree(δn−m))}
= max {log Tree(γm) + log Tree(δn−m)}
≤ log Tree(γ ) + log Tree(δ) = log Tree(γ δ)

= log Tree(β) = log TreeH (b).

If log TreeH (bn) < log TreeH (b) for all n, then TreeH (bn) < TreeH (b) for all n. If
there exists n such that the equality holds, then by the previous expression there exists
some integer m such that
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log Tree(γm) = log Tree(γ ) log Tree(δn−m) = log Tree(δ).

Since γ, δ ∈ U�X , Lemma 4.3(xiii) tells us that width(γ ) = width(δ) = 1, and con-
sequently Tree(γm) ≥ Tree(γ ) and Tree(δn−m) ≥ Tree(δ). Therefore, we have
equality, and the induction hypothesis says that there exist c′

m, d ′
n−m ∈ DN ,P ,

γ ′, δ′ ∈ Rat(E×N ) such that c = cm = c′
mt

m ,d = d ′
n−mt

n−m ,γ = γ ′tm , δ = δ′tn−m ,
and so

b = cd = c′
mτm(d ′

n−m)tn ∈ DN ,P t
n

β = γ δ = γ ′τm(δ′)tn ∈ Rat(E×N )tn .

Case 2. If β ∈ N[U�X ]\(U�X ∪ {0}), then there exist γ, δ ∈ N[U�X ]\{0} such
that β = γ + δ. By Lemma 4.3(iv),

Tree(γ ),Tree(δ) < Tree(β).

Setting c = �(γ ), d = �(δ), we obtain a decomposition b = c + d. We claim that
γ realizes the H -complexity of c, i.e., TreeH (c) = Tree(γ ). Otherwise, there would
exist γ ′ with �(γ ′) = c satisfying Tree(γ ′) < Tree(γ ), from where using Lemma
4.3(iii) and Lemma 4.1(i)

Tree(γ ′ + δ) = Tree(γ ′) + Tree(δ) < Tree(γ ) + Tree(δ)

= Tree(γ + δ) = Tree(β).

Since �(γ ′ + δ) = b, this contradicts the minimality of β. Similarly, δ realizes the
H -complexity of d, and therefore we have found a decomposition b = c + d with
TreeH (b) > TreeH (c),TreeH (d). Now, by the induction hypothesis, we can write
c = ∑

cn , d = ∑
dn with TreeH (cn) ≤ TreeH (c) and TreeH (dn) ≤ TreeH (d).

Hence, we have an expression b = ∑
bn with bn = cn + dn . Let βn , γn , δn be

elements inRat(E×H)∪{0} such that Tree(βn) = TreeH (bn), Tree(γn) = TreeH (cn),
Tree(δn) = TreeH (dn), for all n. From the previous expression we obtain that, for any
n,

TreeH (bn) = Tree(βn) ≤ Tree(γn) + Tree(δn)
≤ Tree(γ ) + Tree(δ) = TreeH (b).

If there exists n such that the equality holds, then

Tree(γn) = Tree(γ ) Tree(δn) = Tree(δ).

and by induction there exist c′
n, d

′
n ∈ DN ,P , γ ′, δ′ ∈ Rat(E×N ) such that c = cn =

c′
nt

n , d = d ′
nt

n , γ = γ ′tn , δ = δ′tn . Hence,

b = c + d = (c′
n + d ′

n)t
n ∈ DN ,P t

n

β = γ + δ = (γ ′ + δ′)tn ∈ Rat(E×N )tn .
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Case 3. If β ∈ X , then there exists γ ∈ N[U�X ]\{0} such that β = γ �. By Lemma
4.3(xii), Tree(γ ) < Tree(β), and setting c = �(γ ) ∈ DH ,P we obtain that

b = �(γ �) = c�

and since b is non-zero, b = c−1. We claim that γ realizes the H -complexity of c,
i.e., TreeH (c) = Tree(γ ). Otherwise, there would exist γ ′ with �(γ ′) = c satisfying
Tree(γ ′) < Tree(γ ), from where using Lemma 4.3(xi)

Tree((γ ′)�) < Tree(γ �) = Tree(β).

Since �(γ ′) = c−1 = b, this contradicts the minimality of β. Hence, b = c−1 with
TreeH (c) < TreeH (b). Now, by the induction hypothesis, we can write c = ∑

cn
with TreeH (cn) ≤ TreeH (c). It is important to notice also that

TreeH (cn) ≤ TreeH (c) < TreeH (b) ≤ TreeH (a)

Thus, all non-zero cn are invertible in DH ,P . Therefore, cnt−n ∈ DN ,P is invertible
in DH ,P , and hence in DN ,P , and so c, which is invertible in DH ,P with inverse b,
is also invertible as an element of DN ,P ((t; τ)). Thus, we can express b as a Laurent
series b = ∑

bn by taking the inverse of
∑

cn .
Let k = min{n : cn �= 0}. Then bn can be expressed using sums and products of

elements c−1
k and−cm , form ∈ Cn = {k+1, . . . , 2k+n}. Let βn, γn,∈ Rat(E×H)∪

{0} be such that Tree(βn) = TreeH (bn), Tree(γn) = TreeH (−cn), for all n. By Lemma
4.3(xii),

log2 Tree(γ �
k ) = Tree(γk) ≤ Tree(γ ) = log2 Tree(γ �) = log2 Tree(β), (9)

and observe that we also have

log2 Tree(γm) < Tree(γm) ≤ Tree(γ ) = log2 Tree(β). (10)

Therefore, using Lemma 4.3 (ix) and (x),

log2 Tree(βn) ≤ max

{
log2 Tree(γ �

k ), max
m∈Cn

{
log2 Tree(γm)

}}
≤ log2 Tree(β).

If for every n, log2 Tree(βn) < log2 Tree(β), then we conclude that for every n,
Tree(βn) < Tree(β). If equality holds for some n, then since the inequality in (10)
is strict, we obtain from (9) that Tree(γk) = Tree(γ ). By induction, there exist c′

k ∈
DN ,P , γ ′ ∈ Rat(E×N ) such that

c = ck = c′
k t

k, γ = γ ′tk,
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and so

b = c−1 = t−k(c′
k)

−1 = τ−k(c′
k)t

−k ∈ DN ,P t
−k

β = γ �=t−k(γ ′)� = τ−k((γ ′)�)t−k ∈ Rat(E×N )t−k .

This finishes the proof. ��

5.2 The uniqueness of Hughes-free epic division rings for locally indicable groups

In this section we give an example of the use of Proposition 5.1, presenting an alterna-
tive argument for the last part of the proof from [6] of the uniqueness of Hughes-free
epic division ring for locally indicable groups.

Theorem 5.2 Let E be a division ring, G a locally indicable group and E ∗ G a
crossed product of E and G. Let (D1, ϕ1) and (D2, ϕ2) be two Hughes-free epic
division E ∗ G-rings. Then D1 and D2 are isomorphic as E ∗ G-rings.

Proof Set S = D1 × D2, ϕ = (ϕ1, ϕ2) : E ∗ G → S and D = DG,S . Denote by
πi : D → Di (i = 1, 2) the canonical projections. The ring D is an E×G-rational
semiring on which we can define the notion of G-complexity using the surjective map
� : Rat(E×G) → D. By induction on the G-complexity TreeG(a) of a we will show
that any non-zero element a ∈ D is invertible. This would imply that π1 and π2 are
two E ∗ G-isomorphisms, and so, D1 and D2 are isomorphic as E ∗ G-rings.

The base of induction, when TreeG(a) = 1T , is clear, because in this case a ∈
ϕ(E×G). Now assume that TreeG(a) > 1T and that for every 0 �= b ∈ D such that
TreeG(b) < TreeG(a), b is invertible. Let α ∈ Rat(E×G) realize theG-complexity of
a. Using Proposition 4.4, we obtain a finitely generated subgroup source(α) of E×G,
and we can assume without loss of generality that α is primitive, since multiplying by
a unit in E×G does not change the complexity nor the conclusion for a. Let H be the
image of source(α) in G ∼= E×G/E×. Observe that H is finitely generated as well,
and since α ∈ Rat(source(α)), then a ∈ DH ,D = DH ,S . In particular we obtain the
corresponding diagram (8), and as a consequence

TreeH (a) = TreeG(a) = Tree(α)

Clearly we can assume that H �= {1}, so there exists a normal subgroup N of
H such that H/N ∼= Z. Take t ∈ E×H whose image under the compositions of
canonical maps E×H → H → H/N generates H/N . Set A = DN ,1 × DN ,2
and B = DH ,1 × DH ,2. Inasmuch as Di is Hughes-free, we have an embedding (of
E ∗ H -rings) DH ,i ↪→ DN ,i ((t; τi )), where τi denotes the automorphism of DN ,i

induced by left conjugation by t in E ∗ N . Therefore, B embeds in P = A((t; τ)) ∼=
DN ,1((t; τ1)) ×DN ,2((t; τ2)), where τ = (τ1, τ2). SinceA and B are regular and the
following diagram commutes
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E ∗ N

ϕ

E ∗ G

ϕ

E ∗ H

ϕ

A S B

P

Lemma 4.5 implies that DN ,D = DN ,S = DN ,P and DH ,D = DH ,S = DH ,P .
Observe that, for every 0 �= b ∈ DH ,S with TreeH (b) < TreeH (a), we have

TreeG(b) ≤ TreeH (b) < TreeH (a) = TreeG(a)

and consequently the induction hypothesis implies that b is invertible. Thus, the con-
ditions in Proposition 5.1 are satisfied, and therefore we obtain that a belongs to
DN ,S((t; τ)). Moreover, if we write a = ∑

ak with ak ∈ DN ,S tk , then there are
at least two non-zero summands. In the contrary case, if a = an , then by the same
proposition α ∈ Rat(E×N )tn , from where Proposition 4.4(iii) states that H ≤ N , a
contradiction.

Hence, TreeH (ak) < TreeH (a) for all k. In particular, if n is the smallest k such
that ak is non-zero, we deduce as before that the element an ∈ DN ,S tn is invertible in
DH ,S . This implies that a is invertible in DN ,S((t; τ)) ⊆ P , and hence in DH ,P =
DH ,D ⊆ D. ��

6 The Atiyah conjecture for locally indicable groups

6.1 A generalization of Theorem 1.1

This section is entirely devoted to stating and proving one of the main theorems in
this paper, related to ∗-regular Hughes-free ranks, and its immediate consequence
regarding the strong Atiyah conjecture for locally indicable groups.

Theorem 6.1 Let G be a locally indicable group, K a subfield of C closed under
complex conjugation. Let rk be a ∗-regular Hughes-free Sylvester rank function on
K [G] with epic positive definite ∗-regular envelope (U , φ). Then U is a division ring.

Proof Let D = DG,U be the division closure of φ(K [G]) in U , and for any subgroup
H ≤ G, denote byDH ,U and UH the division and the ∗-regular closures of φ(K [H ]),
respectively, in U . Consider the universal morphism of rational K×G-semirings � :
Rat(K×G) → D. We are going to show that D is a division ring by induction on the
G-complexity. Since φ is epic, this will imply that U = D.

Consider a non-zero element a ∈ D. If TreeG(a) = 1T , then a ∈ φ(K×G) is
invertible. Now assume that TreeG(a) > 1T and that the result holds for all 0 �= b ∈ D
with TreeG(b) < TreeG(a). Take α ∈ Rat(K×G) realizing the G-complexity of a.
We can assume that α is primitive because multiplying by a unit in K×G does not
change the complexity nor the conclusions about the invertibility of a. Set H to be
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the image of source(α) under K×G → K×G/K× = G. By Proposition 4.4, H is
finitely generated and α ∈ Rat(K×H), so a ∈ DH ,D = DH ,U = DH ,UH , this latter
equality due to Lemma 4.5. If H is trivial, then DH ,UH

∼= K and since a is non-zero,
it is invertible. If H is non-trivial, then there exists a normal subgroup N � H and
an element t ∈ H of infinite order such that H = N�τ < t >, where τ is given
by left conjugation by t . Set A = UN , fix any non-principal ultrafilter ω on N and
considerP = PUN

ω,τ , which is ∗-regular sinceU is positive definite.We have an injective
∗-homomorphism

fω : A((t; τ)) → P

and, since rk is Hughes-free, we can identify, as discussed after (6), the K [H ]-rings
R( fω(φ(K [N ])[t±1; τ ]),P) and UH . Hence, DH ,P ∼= DH ,UH as K [H ]-rings and
DN ,P = DN ,UN . Now, observe that we can apply Proposition 5.1 to DH ,P , since
in an isomorphism of K [H ]-rings the invertibility and H -complexity of elements is
preserved and, for every 0 �= b ∈ DH ,UH with TreeH (b) < TreeH (a), we have by
definition that

TreeG(b) ≤ TreeH (b) < TreeH (a) = TreeG(a)

and therefore the induction hypothesis states that b is invertible inD, and so inDH ,UH .
By an abuse of notation, we denote the image of a under the above isomorphism of
K [H ]-rings also by a. Then, we have that a ∈ DN ,UN ((t; τ)), and we claim that
if a = ∑

ai , then there are at least two non-zero summands. Otherwise, we would
have that α ∈ Rat(K×N )tn for some n, and so Proposition 4.4 would tell us that
source(α) ⊆ K×N , and hence H ≤ N , a contradiction. Thus, the same Proposition
5.1 implies that TreeH (ai ) < TreeH (a) for all i . By the inductive assumption, if
ai �= 0, then it is invertible. As a consequence, a is invertible in DN ,UN ((t; τ)) ⊆ P ,
and hence in DH ,P ∼= DH ,UH . This finishes the proof. ��

Theorem 6.1 implies in particular Theorem 1.1, as we show in the next corollary.

Corollary 6.2 Let G be a locally indicable group. Then RC[G] is a Hughes-free epic
division C[G]-ring. In particular, G satisfies the strong Atiyah conjecture over C.

Proof It is enough to prove the result when G is countable.RC[G] is positive definite
and Proposition 3.11 tells us that the von Neumann rank rkG is Hughes-free. Now,
Theorem 6.1 and Lemma 3.10 imply thatRC[G] is a Hughes-free epic division C[G]-
ring. This implies that rkG (as the unique Sylvester rank function on a division ring)
takes integer values, from where the strong Atiyah conjecture follows. ��
Corollary 6.3 Let G be a locally indicable group and K a subfield of C. Then the
division closure DK [G] of K [G] inRC[G] is a Hughes-free epic division K [G]-ring.
Proof By Corollary 6.2,DK [G] is a division ring. Let us check the Hughes-free condi-
tion. For any finitely generated H ≤ G and decomposition H = N�τ < t >with t ∈
H of infinite order, Corollary 6.2 tells us that the elements {t i }i∈N areRC[N ]-linearly
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independent, i.e., there exists no non-trivial expression a0 +a1t +· · ·+antn = 0 with
coefficients inRC[N ]. In particular, the elements {t i }i∈N are DK [N ]-linearly indepen-
dent, and hence DK [G] is Hughes-free. ��

It was proved in [7] that if G is a locally indicable group of homological dimension
one, then any two-generator subgroup is free. From Corollary 6.2 and [23, Theorem
2], which we mentioned during the introduction, we deduce the result for any finitely
generated subgroup.

Corollary 6.4 Any locally indicable group of homological dimension one is locally
free.

Wefinish this section with another application of the techniques used in the proof of
Proposition5.1, regarding the stability of the strongAtiyah conjecture under extensions
by locally indicable groups. This was pointed out by Fabian Henneke and Dawid
Kielak.

Proposition 6.5 Let K be a subfield of C. Let G2 be a group and G1 a torsion-free
normal subgroup of G2 satisfying the strong Atiyah conjecture over K . Assume that
G2/G1 is locally indicable. Then G2 satisfies the strong Atiyah conjecture over K .

Proof Let DK [G2] be the division closure of K [G2] inRC[G2] and let

�G2 : Rat(K×G2) → DK [G2]

be the universal map. Take 0 �= a ∈ DK [G2]. If TreeG2(a) = 1T , then a ∈ K×G2, and
so it is invertible. Suppose that TreeG2(a) > 1T and that any non-zero element of lower
G2-complexity is invertible. Take an α ∈ Rat(K×G2) realizing the G2-complexity
of a, and observe that we can assume that α is primitive. We put H = π(source(α)),
where π : K×G2 → K×G2/K× = G2. Observe that a lies in the division closure of
K [H ] inRC[G2]. Now, if H ≤ G1, then a is invertible because G1 satisfies the strong
Atiyah conjecture over K . Otherwise, HG1/G1, and so H , is indicable, and therefore
there exists N � H with H/N ∼= Z. Proposition 3.11 allows us to construct the
corresponding diagram (7) (forC, and setting U = RC[G2]), and so, using Proposition
5.1 we deduce, as in Theorem 6.1, that a is invertible in DK [G2]. Thus, DK [G2] is a
division ring and G2 satisfies the strong Atiyah conjecture over K . ��

6.2 The proof of other corollaries

In this section, we make use of the existence and uniqueness of the Hughes-free epic
division ring to prove some other related conjectures regarding the group ring K [G]
where G is locally indicable.

Corollary 6.6 (The independence conjecture) Let G be a locally indicable group, K a
field of characteristic zero and ϕ1, ϕ2 : K → C two different embeddings of K . Then,
for every matrix A ∈ Matn×m(K [G]),

rkG(ϕ1(A)) = rkG(ϕ2(A))
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Proof Let us denote ϕ1(K ) = K1 and ϕ2(K ) = K2. Corollary 6.3 tells us that the
division closures of K1[G] and K2[G] in RC[G] are both Hughes-free epic division
K [G]-rings, and so by uniqueness there exists a commutative diagram

DK1[G]

∼=K [G]

ϕ1

ϕ2

DK2[G]

In particular, rkG(ϕ1(A)) = rkG(ϕ2(A)). ��
Now we are ready to prove Corollary 1.4.

Corollary 6.7 Let G be a locally indicable group and K a field of characteristic zero.
Then K [G] has a Hughes-free epic division ring.

Proof Let K0 be a finitely generated subfield of K . Let ϕ : K0 → C be any embedding
of K0 into C. Extend this embedding to ϕ : K0[G] → C[G]. For any matrix A over
K0[G], we put

rk(A) = rkG(ϕ(A)).

By Corollary 6.6, the value of rk(A) does not depend on the embedding ϕ. Thus,
we have constructed a Sylvester matrix rank function rk on K [G] which takes only
integer values. Therefore, it has an epic division envelope D which is a division ring.
Moreover, since rkG is Hughes-free, rk is also Hughes-free. Hence by Lemma 3.10,
D is a Hughes-free epic division K [G]-ring. ��

Given any field K and a field extension L/K we can, under some extra assumptions,
relate the Hughes-free epic division rings of K [G] and L[G]. We record it as a lemma.

Lemma 6.8 Let G be a locally indicable group, K a field and L/K a field extension.
If there exists a Hughes-free epic division K [G]-ring D and D ⊗K L is a domain,
then the (left) classical division ring of quotients Ql(D ⊗K L) is a Hughes-free epic
division ring for L[G].
Proof First of all, note that for any subfield L ′ of L which is a finitely generated
extension of K , the tensor productD⊗K L ′ is noetherian by the Hilbert basis theorem,
and therefore it is a left Ore domain. Hence,D⊗K L is a left Ore domain and it makes
sense to consider its left classical division ring of fractions Ql(D ⊗K L).

Now, for any subgroup N ≤ G, and identifying L[G] ∼= K [G] ⊗K L , we have
that the division closure of L[N ] in Ql(D ⊗K L) is Ql(DN ,D ⊗K L). Indeed, we
have L[N ] ∼= K [N ] ⊗K L ⊆ Ql(DN ,D ⊗K L), and since the latter is a division
subring of Ql(D ⊗K L), we conclude that the division closure of K [N ] ⊗K L is
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contained in Ql(DN ,D ⊗K L). Conversely, any element in DN ,D ⊗K L , and hence
in Ql(DN ,D ⊗K L), is obtained from elements of K [N ] ⊗K L by means of sums,
products and inverses (by definition of DN ,D), so we have equality.

Therefore, we need to prove that for every finitely generated subgroup H ≤ G
and any decomposition H = N�τ < t > where t ∈ H has infinite order and τ is
given by left conjugation by t , the elements {(t⊗1)i }i∈N areQl(DN ,D⊗K L)-linearly
independent. Clearing denominators, it suffices to prove that the elements {(t⊗1)i }i∈N
are DN ,D ⊗K L-linearly independent, and this is clear because

< DN ,D ⊗K L, t ⊗ 1 > = < DN ,D, t > ⊗K L
(∗)∼= (DN ,D[x; τ ]) ⊗K L

∼= (DN ,D ⊗K L)[x; τ ⊗ Id]

where (∗) comes from the Hughes-freeness of D. ��
Corollary 6.9 (The strong algebraic eigenvalue conjecture) Let G be a countable
locally indicable group and K a subfield of C. Then, for any λ ∈ C which is not
algebraic over K and for any A ∈ Matn(RK [G]), the matrix A − λI is invertible in
U(G).

Proof Let DK [G] and DK (λ−1)[G] denote, respectively, the Hughes-free epic division
K [G] and K (λ−1)[G]-rings, which can be constructed as division subrings of U(G)

by Corollary 6.3.
Since λ is not algebraic over K , we have that DK [G] ⊗K K [λ−1] ∼= DK [G][x], the

polynomial ring in the indeterminate x . In particular, DK [G] ⊗K K [λ−1], and hence
DK [G] ⊗K K (λ−1), is a domain. In addition, notice that Ql(DK [G] ⊗K K (λ−1)) =
Ql(DK [G] ⊗K K [λ−1]), so adding up we obtainQl(DK [G] ⊗K K (λ−1)) ∼= DK [G](x).

Thus, Lemma 6.8 and the uniqueness of Hughes-free epic division ring, tell us that
DK (λ−1)[G] ∼= DK [G](x) and, therefore, we can define an injective homomorphism

DK (λ−1)[G] −→ DK [G]((x))

in which λ �→ x−1. The image A − x−1 I of the matrix A − λI ∈ Matn(DK (λ−1)[G])
under the above homomorphism is invertible, and so, in particular, it is a non-zero-
divisor. The injectivity implies that A− λI is a non-zero-divisor in the von Neumann
regular ring Matn(DK (λ−1)[G]), and hence invertible. ��

Just as a remark before stating the next corollary, recall that if G is a countable
group and H ≤ G, then we can identify any element ϕ of the group von Neumann
algebra N (H) with the element of N (G) that assigns to any tuple in ⊕t∈T t l2(H)

the tuple obtained by applying ϕ component-wise. In addition, an element of G\H
(as an operator inN (G)) does not fix the components of ⊕t∈T t l2(H). Therefore, we
conclude thatN (H)∩G = H . Since the elements ofG, viewed as operators on l2(G),
are bounded, we also have that U(H) ∩ G = H . Therefore, RC[H ] ∩ G = H and,
in particular, for any subfield K of C, the division closure DK [H ] of K [H ] in U(H)

satisfies DK [H ] ∩ G = H . The former equality also implies that RC[H ] ∩ K×G =
K×H .
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The following result contains the center conjecture as a particular case when the
field K is closed under complex conjugation.

Corollary 6.10 Let G be a countable locally indicable group and K a subfield of C. If
DK [G] is the division closure of K [G] in U(G) then

DK [G] ∩ C = K .

Proof By Corollary 6.3, DK [G] is an epic Hughes-free division K [G]-ring. Thus, for
every finitely generated subgroup H ≤ G and decomposition H = N� < t > with
t ∈ H of infinite order, we can construct the following diagram

DK [H ] DK [N ]((t; τ))

C DC[H ] DC[N ]((t; τ))

The elements of C are identified then with the Laurent series DC[N ]((t; τ)) with
just one possible non-zero summand corresponding to the constant term. Consider
the universal morphism � : Rat(K×G) → DK [G], and take any non-zero element
a ∈ DK [G] ∩ C. If TreeG(a) = 1T , then a ∈ K×G ∩ C = K×.

If TreeG(a) > 1T , then let α ∈ Rat(K×G) realize the G-complexity of a.
There exist a primitive element α′ and u ∈ K×G such that α = α′u. Setting
H = π(source(α)) = π(source(α′)), where π : K×G → K×G/K× = G is the
natural map, and a′ = �(α′), we obtain that a′ ∈ DK [H ] and TreeH (a′) = Tree(α′).
The same reasoning from Theorem 6.1 applies and gives us a decomposition of a′
as an element of DK [N ]((t; τ)) with at least two summands. Moreover, we have that
u = (a′)−1a ∈ RC[H ] ∩ K×G = K×H , so a = a′u ∈ DK [H ] is a complex number
whose representation as a Laurent series has at least two summands, a contradiction.
We deduce that a non-zero element a in DK [G] ∩ C must have TreeG(a) = 1T , and
therefore a ∈ K . ��

Recall that a group G is called ICC if all non-trivial conjugacy classes of G are
infinite.

Corollary 6.11 Let G be a locally indicable ICC group, K a field of characteristic zero
and D a Hughes-free epic division K [G]-ring. Then Z(D) = K.

Proof Assume thata ∈ Z(D)\K . Then there are afinitely generated subgroup H0 ≤ G
and a finitely generated subfield K0 of K such that a ∈ DK0[H0] (hereDK0[H0] denotes
the division closure of K0[H0] inD). We can embed H0 in a countable ICC subgroup
H of G. Indeed, starting with H0 we can define for every i > 0 a countable subgroup
Hi ofG such that all Hi -conjugacy classes of non-trivial elements of Hi−1 are infinite,
and so H = ⋃

Hi is a countable ICC group containing H0.
Embed now K0 into C. By Corollary 6.3, DK0[H ] is isomorphic to the division

closure D′
K0[H ] of K0[H ] inside RC[H ]. Since H is ICC,

CU(H)(H) = Z(U(H)) = C.
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Thus, by Corollary 6.10, CD′
K0[H ](H) = K0. and, therefore, we obtain that a ∈

CDK0[H ](H) = K0. This contradicts our assumption on a. ��
Using the previous result and Corollary 6.7 we can prove that the conditions on

Lemma 6.8 are satisfied when we deal with fields of characteristic zero.

Corollary 6.12 Let L/K be an extension of fields of characteristic zero, G a locally
indicable group and D a Hughes-free epic division K [G]-ring. Then D ⊗K L is a
domain. In particular the Hughes-free epic division L[G]-ring is isomorphic to the
classical ring of quotients of D ⊗K L

Proof First let us assume that G is ICC. In this case Z(D) = K by Corollary 6.11,
and therefore D ⊗K L is a simple ring. By Corollary 6.7, there exists a Hughes-free
epic division L[G]-ring D̃. Identify D with the division closure of K [G] in D̃. Since
D ⊗K L is simple, it is isomorphic to the subring of D̃ generated by D and L , and
hence it is a domain.

For an arbitrary G, the wreath product G � Z is again locally indicable and ICC,
and so D ⊗K L can be embedded in a domain. This concludes the proof, and the last
assertion follows from Lemma 6.8. ��

If K and L are subfields ofC, this corollary states that the division closureDL[G] of
L[G] inside U(G) is isomorphic to the classical ring of quotients ofDK [G] ⊗K L . It is
proved throughout [19] that the same statement holds when we consider sofic groups
satisfying the strong Atiyah conjecture instead of locally indicable groups. We expect
that this property holds in general.

Conjecture 3 Let L/K be an extension of subfields of C and G any group satisfying
the strong Atiyah conjecture. Let DK [G] and DL[G] denote, respectively, the division
closures of K [G] and L[G] in U(G). Then DL[G] is isomorphic to the classical ring
of quotients DK [G] ⊗K L.

7 The Lück approximation for locally indicable groups

The goal of this section is to give a proof of the Lück approximation conjecture in
the space of marked groups when the group being approximated is virtually locally
indicable. More precisely, we want to prove the following statement.

Theorem 7.1 Let F be a finitely generated free group and assume that (Mi )i∈N con-
verges to M in the space of marked groups of F. If F/M is virtually locally indicable,
then rkF/Mi converges to rkF/M in the space of Sylvester matrix rank functions on
C[F].
In this context, by convergence of the rank functions rkF/Mi to rkF/M we mean that,
for every matrix A ∈ Mat(C[F]), we have

lim
i→∞ rkF/Mi (A) = rkF/M (A).
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Our strategy will be to prove that for any non-principal ultrafilter ω on N

lim
ω

rkF/Mi = rkF/M as Sylvester rank functions on C[F].

During the proof, the capability to compare between all the involved rank functions
will play an important role. If R is any ring and rk1, rk2 ∈ P(R), we write rk1 ≤ rk2
if, for every matrix A ∈ Mat(R), we have

rk1(A) ≤ rk2(A).

In this section we fix a non-principal ultrafilter ω on N. The starting point of our proof
is the Kazhdan inequality (see, for example, [20, Proposition 10.7]).

Proposition 7.2 With the previous notation

lim
ω

rkF/Mi ≥ rkF/M as Sylvester rank functions on C[F].

7.1 Comparing Sylvester matrix rank functions

We present in this section some general results on the comparison between rank func-
tions, and some more specific ones regarding the von Neumann rank functions that
appear in our context.Webeginwith a useful observation, namely, ifwe have rk1 ≤ rk2
on R, then this property extends to its division closure D inside a certain ring.

Proposition 7.3 Let R be a ring and let {rki }ni=1 be a family of Sylvester rank functions
on R such that rki ≤ rki+1 for any i . Assume that (Si , ϕi , rk′

i ) is an envelope of rki ,
and set S = ∏

Si , ϕ = (ϕi ) : R → S. If D is the division closure of ϕ(R) in S and
πi : D → Si is the standard projection, then

π
�
i (rk

′
i ) ≤ π

�
i+1(rk

′
i+1).

In particular, πn is injective.

Proof Let A be a matrix over D. By [4, Proposition 4.2.2] and Cramer’s rule ([4,
Proposition 4.2.3]), there exist k ≥ 1, a matrix A′ over ϕ(R) and invertible matrices
P , Q over D such that

A ⊕ Ik = PA′Q.

Suppose A′ = ϕ(B) for some B ∈ Mat(R). This implies that

rk′
i (πi (A)) + k = rk′

i (πi (A
′)) = rk′

i (ϕi (B)) = rki (B)

and the first assertion of the proposition follows because rki ≤ rki+1 for all i . Finally,
if d = (di ) ∈ D is such that πn(d) = 0, then by faithfulness of rk′

i we deduce that
πi (d) = 0 for all i, and hence d = 0. ��
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Notice that in the previous proposition the image of the standard projection πi actually
lies inDi , the division closure of ϕi (R) in Si . This is due to the fact that every element
(ai ) ∈ D is obtained from ϕ(R) by taking sums, products and inverses, so every
ai is obtained from ϕi (R) by means of the same operations. Thus, we can consider
πi : D → Di , what will be used in the subsequent consequences.

Corollary 7.4 Let G be a group, and let rk1, rk2 be regular Sylvester matrix rank
functions on R = C[G] with regular envelopes (Ui , rk′

i , ϕi ), i = 1, 2. Let DR,U and
DR,1 be the division closures of the image of R in U = U1 × U2 and U1, respectively.
Then, if rk1 ≤ rk2, the following diagram commutes

Rat(C×G)
�U

�1

DR,U

π1

DR,1

where �U and �1 are the universal morphisms induced by the C×G-rational struc-
tures on DR,U and DR,1 described in section 4.3, and π1 is the standard projection.

Proof For any d = (d1, d2) ∈ DR,U , we have rk′
1(d1) ≤ rk′

2(d2) by Proposition 7.3.
Since U2 is regular, we deduce from here that d is invertible in DR,U if and only if
π1(d) = d1 is invertible in DR,1. This implies that π1 respects the rational operation,
i.e.,π1(d�) = π1(d)�, and therefore, it is also amorphism of rationalC×G-semirings.
By the uniqueness of �1, necessarily �1 = π1 ◦ �U . ��
The following corollary is a technical result which will be essential for the proof of
the Lück approximation conjecture.

Corollary 7.5 Let H be a group, and let rk1, rk2, rk3 be regular Sylvester matrix rank
functions on R = C[H ]with regular envelopes (Ui , rk′

i , ϕi ), i = 1, 2, 3. LetDR,12 and
DR,13 be the division closures of the image of R in U1 ×U2 and U1 ×U3, respectively.
Assume that rk1 ≤ rk2 ≤ rk3 and consider the universal morphisms

�12 : Rat(C×H) → DR,12 �13 : Rat(C×H) → DR,13

Then, for any α ∈ Rat(C×H), if �12(α) is non-zero then �13(α) is non-zero. More-
over, �12(α) is invertible if and only if �13(α) is invertible.

Proof Let U = U1 × U2 × U3, ϕ = (ϕi ), DR,U the division closure of ϕ(R) in U , and
�U : Rat(C×H) → DR,U the universal morphism. Denote by π12 and π13 the natural
projections from DR,U to DR,12 and DR,13, respectively. Reasoning as in Corollary
7.4, both π12 and π13 preserve the corresponding rational structure, and this implies
that we have a commutative diagram

DR,U
π12 π13

DR,12 Rat(C×H)
�12 �13

�U

DR,13
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Take any α ∈ Rat(C×H) and set �U (α) = (a1, a2, a3). Hence, we have that

�12(α) = (a1, a2), �13(α) = (a1, a3),

and also, by Proposition 7.3, rk′
1(a1) ≤ rk′

2(a2) ≤ rk′
3(a3). Thus, if �12(α) is non-

zero, then rk′
3(a3) > 0, and hence �13(α) is non-zero. In addition, since Ui is regular

for any i , both of them are invertible if and only if a1 is invertible. ��
The motivation and necessity of this result lies in the fact that, at a certain point,
we will need to prove that an element, expressible as �12(α), is invertible. Corollary
7.5 will then allow us to pass from the ambient U1 × U2 to an appropriate ambient
P = U1×U3 on which the conditions of Proposition 5.1 are satisfied, and therefore, to
tackle instead the invertibility of the non-zero element �13(α) by means of induction
on the complexity.

Now we turn to a specific case we are going to deal with later. Let F be a finitely
generated free group and assume that (Mi )i converges to M in the space of marked
groups of F . Assume that there exists a normal subgroup N of F such that M ≤ N
and F/N ∼= Z. We put Ki = Mi ∩ N . It is clear that (Ki )i also converges to M . In
the proof of Theorem 7.1 we will pass from (Mi )i to (Ki )i and, therefore, to get the
result we need to know the relation between the following rank functions on C[F]

rk(F/Mi )i = lim
ω

rkF/Mi and rk(F/Ki )i = lim
ω

rkF/Ki .

The next lemmas will be useful to our purpose.

Lemma 7.6 LetU be a regular ring, rk a Sylvestermatrix rank function onU , and let r̃k
denote the natural extension of rk toU[t]. Then, for anymatrix A = A(t) ∈ Mat(U[t]),

r̃k(A(t)) = r̃k(A(t + 1)).

Proof By [19, Lemma 7.3], we have that for any A ∈ Matn×m(U[t]),

r̃k(A(t)) = lim
i→∞

dim((Qi−1)
n A(t))

i
,

where Qi−1 is the set of polynomials inU[t] of degree atmost i−1 and dim denotes the
Sylvester module rank function associated to rk. Observe that, as a set, Qi−1 coincides
withQi−1(t+1), the set of polynomials of degree atmost i−1 in the indeterminate t+1,
and that there exists a naturalU-isomorphism (Qi−1)

n A(t) ∼= (Qi−1(t+1))n A(t+1).
Therefore

r̃k(A(t)) = lim
i→∞

dim((Qi−1)
n A(t))

i
= lim

i→∞
dim((Qi−1)

n A(t + 1))

i
= r̃k(A(t + 1)).

��
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Lemma 7.7 Let G be a group and assume that G = H × Z for some H ≤ G. If
π : C[G] → C[H ] is the map induced by the projection π : G → G/Z ∼= H, then
π�(rkH ) ≤ rkG.

Proof Observe that C[G] = (C[H ])[t±1], and that for any polynomial p = ∑
ai t i

with coefficients in C[H ], π(p) = ∑
ai . By Proposition 3.11, we know that as rank

functions over C[G], rkG is the natural extension of rkH . Therefore, we want to show
that, for any matrix A = A0 + A1t + · · · + Antn ∈ Mat(C[H ][t]),

r̃kH (A)
Lemma 7.6= r̃kH (A(t + 1)) ≥ rkH

(
n∑

i=0

Ai

)
,

what follows from [19, Proposition 7.6]. ��
Now we are ready to compare rk(F/Mi )i and rk(F/Ki )i .

Proposition 7.8 Let F be a finitely generated free group and assume that (Mi )i con-
verges to M in the space of marked groups of F. Assume that there exists a normal
subgroup N of F such that M ≤ N and F/N ∼= Z, and set Ki = Mi ∩ N. Then the
following holds:

(1) rk(F/Ki )i is the natural extension of the restriction of rk(F/Mi )i to C[N ].
(2) rk(F/Mi )i ≤ rk(F/Ki )i .

Proof (1) Since F/N ∼= Z, there exists t ∈ F such that C[F] ∼= (C[N ])[t±1; τ ]
and C[F/Ki ] ∼= (C[N/Ki ])[t±1; τ ], where τ is induced by left conjugation by t .
Proposition 3.11 states that, as a rank function overC[F/Ki ], rkF/Ki is the natural
extension of rkN/Ki as a rank function on C[N/Ki ], and consequently, as a rank
function on C[F], rkF/Ki is the natural extension of rkN/Ki as a rank function on
C[N ]. Thus, by Corollary 3.8, rk(F/Ki )i is the natural extension of limω rkN/Ki .
Since Ki = Mi ∩ N , then, as rank functions on C[N ], rkN/Ki coincides with the
restriction of rkF/Mi . Hence, the result follows.

(2) For each i ∈ N we set Gi = F/Mi × F/N . The natural maps F → Gi and
Gi → F/Mi induce the homomorphisms

π1 : C[F] → C[Gi ] and π2 : C[Gi ] → C[F/Mi ].

Since Ki = Mi ∩ N , π1(F) ∼= F/Ki . Thus, we obtain that

rkF/Ki = π
�
1(rkGi ) and rkF/Mi = (π2 ◦ π1)

�(rkF/Mi ) = π
�
1(π

�
2(rkF/Mi ))

as rank functions on C[F]. (In the second and third appearances of rkF/Mi in
the previous formula we see it as a rank function on C[F/Mi ].) By Lemma 7.7,
π

�
2(rkF/Mi ) ≤ rkGi . Hence rkF/Mi ≤ rkF/Ki as rank functions on C[F]. This

clearly implies that rk(F/Mi )i ≤ rk(F/Ki )i . ��
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7.2 The proof of the Lück approximation conjecture

As at the beginning of the section, let F be a finitely generated free group and assume
that (Mi )i converges to M in the space of marked groups of F . We put G = F/M .
Consider the positive definite ∗-regular ring R = ∏

RC[F/Mi ] and let pi : R →
RC[F/Mi ] be the i-th projection. Then rk = limω p�

i (rkF/Mi ) defines a rank function on
R. Ifπ : C[F] → Rdenotes the canonicalmap, thenwehave that rk(F/Mi )i = π�(rk).

SetRω = R/ ker rk. Then π induces a ∗-homomorphism πω : C[F] → Rω. Note
that Rω is positive definite because R is positive definite and ker rk is an ideal of R.
Hence, if U = R(πω(C[F]),Rω)), then (U , πω, rk) is the positive definite ∗-regular
envelope of rk(F/Mi )i .

Moreover, since (Mi )i approximates M , we have that the kernel of πω is the ideal
I generated by {m − 1 : m ∈ M}. Indeed, for any m in M we have rk(πω(m −
1)) = 0. Thus, the properties of rank functions imply that the image of any element
in I has zero rank, and so I ⊆ ker πω. On the other hand, Proposition 7.2 tells
us that rkF/M ≤ π

�
ω(rk). Hence, if a /∈ I , then rkF/M (a) �= 0 and consequently

rk(πω(a)) ≥ rkF/M (a) > 0, from where πω(a) �= 0. This means a /∈ ker πω, and so,
πω(C[F]) ∼= C[F]/I ∼= C[G].

Let ψ denote the induced isomorphism between C[G] and πω(C[F]). Then we
can think of rk(F/Mi )i also as a ∗-regular rank function on C[G] with positive definite
∗-regular envelope (U , ψ, rk).

In addition, observe that if H is a non-trivial finitely generated subgroup of G and
F ′ is a finitely generated subgroup of F such that H = F ′M/M ∼= F ′/(F ′ ∩ M),
then (M ′

i = F ′ ∩ Mi )i converges to M ′ = F ′ ∩ M in the space MG(F ′) and

rk(F/Mi )i |C[F ′] = rk(F ′/M ′
i )i

as rank functions on C[F ′].

We will obtain Theorem 7.1 as a consequence of the following proposition.

Proposition 7.9 Let F be a finitely generated free group, and assume that (Mi )i con-
verges to M in the space ofmarked groups of F and that G = F/M is locally indicable.
Let (U , ψ, rk) be the ∗-regular envelope of rk(F/Mi )i as a rank function on C[G]. Let
ϕ = (i, ψ) : C[G] → RC[G] × U be the induced map. Then, the division closure of
ϕ(C[G]) inRC[G] × U is a division ring.

Proof Observe that rk(F/Mi )i , and hence U , is uniquely determined by the approxi-
mation (F/Mi )i of G. Set S = RC[G] × U , let D = DG,S be the division closure of
ϕ(C[G]) in S and denote, for any subgroup H ≤ G, SH = RC[H ] × UH , where
UH is the ∗-regular closure of ψ(C[H ]) in U . Consider the universal morphism
of rational C×G-semirings �G,S : Rat(C×G) → D. We are going to prove the
result for all locally indicable groups G and all approximations (F/Mi )i at the same
time, using induction on the complexity. More precisely, we are going to show that if
α ∈ Rat(C×G) realizes the G-complexity of a non-zero a ∈ DG,S for some locally
indicable group G and for some approximation (F/Mi )i of G, then a is invertible
in DG,S . Since �G,S is surjective for every choice of G and (F/Mi )i , this gives the
result.
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For any locally indicable group G and for any approximation (F/Mi )i of G, if
α ∈ Rat(C×G) satisfies Tree(α) = 1T , then α ∈ C×G realizes the complexity of
a = �G,S(α) ∈ ϕ(C×G), and a is invertible. Now suppose that Tree(α) > 1T
realizes the G-complexity of a non-zero a ∈ DG,S for some locally indicable G and
for some approximation (F/Mi )i of G, and assume by induction that we have proved
the result for all locally indicable G ′ = F ′/M ′, for all approximations (F ′/M ′

i )i of
G ′ and for all β ∈ Rat(C×G ′) with Tree(β) < Tree(α). We want to show that a is
invertible in DG,S .

Observe that we can assume, without loss of generality, that α is primitive, because
multiplying by a unit inC×G does not change the complexity of α nor the invertibility
of its image a. Define H to be the image of source(α) under C×G → C×G/C× = G
and observe that H is finitely generated by Proposition 4.4. Then, α ∈ Rat(C×H)

and therefore a ∈ DH ,D = DH ,S = DH ,SH , this latter equality due to Lemma 4.5. If
H is trivial, then DH ,SH

∼= C and the result is clear. Otherwise, there exists a normal
subgroup N � H such that H/N ∼= Z.

We would like to apply Proposition 5.1 to a in order to decompose it into elements
of lower complexity, but a priori we do not have a candidate for the ringA. Therefore,
we are going to use Propositions 7.8 and 7.5 to rephrase the question of invertibility of
a to the question of invertibility of a certain a′, lying in an appropriate ring on which
we can use Proposition 5.1.

First, we can take a finitely generated subgroup F ′ of F such that H = F ′M/M ∼=
F ′/(F ′ ∩M). In this case, the preimage N ′ of N is a normal subgroup of F ′ containing
M ′ = F ′ ∩ M such that F ′/N ′ ∼= Z. Set M ′

i = F ′ ∩ Mi and K ′
i = M ′

i ∩ N ′, and
observe that H = F ′/M ′ is a locally indicable group and that both (M ′

i )i and (K ′
i )i

converge to M ′ in the space of marked groups of F ′.
Choose an element t ∈ F ′ such that F ′ = 〈N ′, t〉. Hence

C[H ] ∼= (C[N ])[t±1; τ ] and C[F ′] ∼= (C[N ′])[t±1; τ ],

where τ is given by left conjugation by t . Since τ can be extended to an automorphism
of both RC[N ] and UN , it extends to an automorphism of the regular ring A = SN =
RC[N ] × UN . Therefore, we have a homomorphism

ϕ : C[H ] ∼= (C[N ])[t±1; τ ] → A((t; τ)).

Moreover, since RC[G] is the epic Hughes-free division C[G]-ring, we have that
RC[H ] ∼= RC[N ](t; τ), the Ore division ring of fractions of RC[N ][t±1; τ ], and so
ϕ(C[H ]) lies in a subring of A((t; τ)) isomorphic to RC[H ] × UN ((t; τ)).

Recall that for the given ultrafilter ω we can construct, as in (3), a ring PUN
ω,τ which

is ∗-regular and positive definite (since UN is both), an injective ∗-homomorphism

fω : UN [t±1; τ ] → PUN
ω,τ

and a rank function rkω such that f �
ω(rkω) is the natural extension of the restriction of

rk to UN .

123



The strong Atiyah and Lück approximation. . . 1787

Since ψ embeds C[N ] into UN , the subring ψ(C[N ])[t±1; τ ] of UN [t±1; τ ] is
isomorphic to C[H ]. Denote this isomorphism by ψ ′. Proposition 3.7 implies that
f �
ω(rkω), as a rank function on C[N ][t±1; τ ], is the natural extension of the restriction

of rk(F/Mi )i to C[N ]. Thus, from Proposition 7.8(1), we obtain that ( fω ◦ ψ ′)�(rkω)

equals rk(F ′/K ′
i )i

as rank functions on C[H ]. Let U ′ = R(( fω ◦ ψ ′)(C[H ]),PUN
ω,τ )

and let rk′ be the restriction of rkω to U ′. Then (U ′, ψ ′, rk′) is a ∗-regular envelope of
rk(F ′/K ′

i )i
.

In addition, by Proposition 7.8(2) and Proposition 7.2, we have that

rkH ≤ rk(F ′/M ′
i )i

≤ rk(F ′/K ′
i )i

as rank functions on C[H ]. (11)

Observe that fω can be extended to an injective ∗-homomorphism fω : UN ((t; τ)) →
PUN

ω,τ as in (5), and therefore, settingP = RC[N ]((t; τ))×PUN
ω,τ , we have an embedding

A((t; τ))
(i, fω)−−−→ P.

By Lemma 4.5, regularity of A implies that DN ,P = DN ,SN , and regularity of B =
RC[H ] × U ′ implies that DH ,P = DH ,B. Proposition 7.5, applied to the triple of
ranks appearing in (11) (whose ∗-regular envelopes are, respectively,RC[H ], UH and
U ′), tells us that a is invertible if and only if the non-zero element a′ = �H ,B(α) ∈
DH ,B = DH ,P is invertible, where �H ,B : Rat(C×H) → DH ,B is the universal
morphism.

Observe that, by definition, TreeH (a′) ≤ Tree(α), and therefore any 0 �= b ∈
DH ,P with TreeH (b) < TreeH (a′) is invertible by the induction hypothesis (now
the locally indicable group is H ∼= F ′/M ′ and we approximate M ′ by (F ′/K ′

i )i ).
Now we are in position to use Proposition 5.1, that assures that a′ ∈ DN ,P ((t; τ)).
Moreover, a′ = ∑

a′
k with at least two non-zero summands, because otherwise α ∈

Rat(C×N )tn and therefore H ≤ N , a contradiction. The same proposition then states
that TreeH (a′

k) < TreeH (a′), for all k, and consequently every non-zero a′
k is invertible

in DH ,P . Let n be the smallest k such that a′
k is non-zero. Then a′

nt
−n ∈ DN ,P is

invertible in DH ,P , and hence in DN ,P . Thus, a′ = ∑
a′
k ∈ DH ,P is invertible in

DN ,P ((t; τ)) = DN ,A((t; τ)) ⊆ P , and hence in DH ,P . As we already mentioned,
this implies the invertibility of a, and the result follows. ��
With the above result, the Lück approximation theorem follows.

Proof of Theorem 7.1 First assume that G = F/M is locally indicable. Borrowing the
notation of Proposition 7.9, we know that DG,S , the division closure of ϕ(C[G]) in
S = RC[G]×U , is a division ring, and this implies that the projections fromDG,S onto
each factor are C[G]-isomorphisms. ThereforeRC[G] and U are isomorphic division
C[G]-rings, and hence ψ�(rk) = rkG , from where rk(F/Mi )i = rkF/M , as we wanted
to show.

Nowassume thatG = F/M is virtually locally indicable and ICC. Then there exists
a normal subgroup F ′ of F of finite index such that M ≤ F ′ andG ′ = F ′/M is locally
indicable. If (Mi )i converges to M in MG(F), then (Mi ∩ F ′)i converges to M in
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MG(F ′). Hence, if (U , ψ, rk) is the ∗-regular envelope of rk(F/Mi )i as a rank function
on C[G] and UG ′ denotes the ∗-regular closure of ψ(C[G ′]) in U , we obtain that
RC[G ′] and UG ′ are isomorphic C[G ′]-rings. Denote this ∗-isomorphism by φ. We are
going to show that φ extends to a ∗-isomorphism ofC[G]-rings betweenRC[G] andU .

Denote by RC[G ′]G the C-vector subspace of RC[G] generated by RC[G ′] and G.
It is easy to check that every element in G normalizesRC[G ′]. Thus, in fact,RC[G ′]G
is a ∗-subring of RC[G] containing C[G], and using [25, Lemma 2.1], we see that
RC[G ′]G = RC[G ′] ∗ G/G ′. Moreover, RC[G ′] is a division subring of RC[G ′]G, so
RC[G ′]G is artinian. Since a proper ∗-ring cannot have non-trivial nilpotent ideals,
RC[G ′]G is also semisimple, and hence regular. Thus,RC[G] = RC[G ′]G.

SinceRC[G] is semisimple,RC[G] coincides with its rkG-completion, and since G
is ICC, it follows from [19, Propositions 5.7 and 5.8] that RC[G] is simple and that
rkG is the only Sylvester matrix rank function on RC[G].

Let {t1, . . . , tn} be a transversal of G ′ in G and observe that we have RC[G] =⊕
i tiRC[G ′]. We extend φ to the map φ : RC[G] → U by sending

∑
i ti ai

(ai ∈ RC[G ′]) to φ(
∑

i ti ai ) := ∑
i ψ(ti )φ(ai ). Since the above sum is direct, φ is

well-defined, and it is a ∗-homomorphism of C[G]-rings because for any a ∈ RC[G ′],
one can show that

φ(ti at
−1
i ) = ψ(ti )φ(a)ψ(t−1

i )

SinceRC[G] is simple, φ is injective, and taking into account that φ is epic andRC[G]
is regular, φ is surjective (see [32, Proposition XI.1.2]). Therefore, φ is bijective. By
uniqueness of the rank function onRC[G], we obtain rkG = φ�(rk) as rank functions on
RC[G] and, hence, sinceφ is aC[G]-isomorphism,we have rkG = ψ�(rk) = rk(F/Mi )i

as rank functions on C[G].
Finally, we assume only that G = F/M is virtually locally indicable. Consider the

free product F ′ = F ∗ Z. Let M ′ be the normal subgroup of F ′ generated by M and
for each i , let M ′

i be the normal subgroup of F ′ generated by Mi .
Then G ′ = F ′/M ′ ∼= G ∗ Z is virtually locally indicable and ICC. Indeed, if N

is a finite index locally indicable normal subgroup of G, then the normal subgroup
N ′ of G ′ generated by N and the free factor Z, which is precisely the kernel of the
natural map G ∗ Z → G/N sending Z to the trivial element, is of finite index and it
is isomorphic to the free product of N and |G : N | copies of Z.

Observe also that (M ′
i )i converges to M ′, and so rkG ′ = rk(F ′/M ′

i )i
. Notice that rkG

is the restriction of rkG ′ to C[G] and rk(F/Mi )i is the restriction of rk(F ′/M ′
i )i
. Hence

we are done. ��

8 On the universality of Hughes-free Sylvester matrix rank functions

Considering different division R-algebras for a given ring R, it is natural to askwhether
there exists the largest possible in some sense. P. Cohn made this notion precise by
introducing the notion of universal epic division ring of a ring [5, Section 7.2]. In our
language an epic division R-ringD is universal if for every division R-ring E we have
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that

rkE ≤ rkD as Sylvester matrix rank functions on R.

If, additionally, R embeds in D, then D is its universal division ring of fractions.
Given a familyF ⊆ P(R) of Sylvester matrix rank functions on R, we say that rk ∈ F
is universal in F if

rk′ ≤ rk for every rk′ ∈ F .

For example, if F is a free group, then rkF is universal inP(C[F]), because it coincides
with the inner rank (see, for example, the proof of [18, Proposition 5.3]). The proof
of Theorem 1.5 suggests that some of the following questions might have a positive
answer.

Question 1 Let G be a locally indicable group. Is it true that rkG is universal in
P(Q[G]), Preg(Q[G]), P∗reg(Q[G]) or Pdiv(Q[G])?
It is shown in [22] that if rk{1} ≤ rkG as Sylvester matrix rank functions on Q[G],
then G is locally indicable. {1} denotes here the trivial group and, therefore, rk{1}, as
a rank on Q[G], is obtained from the map Q[G] → Q that sends any g ∈ G to 1.
Because of this, we consider the previous questions for locally indicable groups only.

In this section we consider again the more general situation of crossed products
and we prove the following theorem.

Theorem 8.1 Let E∗G bea crossed product of a division ring E anda locally indicable
group G, and assume that there exists a Hughes-free epic division E ∗G-ringD. Then
the Sylvester matrix rank function rkD is maximal in Pdiv(E ∗ G).

As an immediate application of the previous theorem and Corollary 6.3 we obtain the
following result.

Corollary 8.2 Let E ∗ G be a crossed product of a division ring E and a locally
indicable group G. If there exist a Hughes-free division ring D and a universal epic
division ring E for E ∗ G, then they are isomorphic as E ∗ G-rings. In particular,
if there exists a universal epic division K [G]-ring for a subfield K of C, then it is
isomorphic to the division closure of K [G] in U(G).

The rest of the section will be dedicated to the proof of Theorem 8.1, which is very
similar to the proof of Theorem 1.5. We will need the following auxiliary result.

Lemma 8.3 Let R be a ring and τ an automorphism of R. Set S = R[t±1; τ ] and let
rk be a τ -compatible integer-valued Sylvester matrix rank function on R. Then the
natural extension r̃k of rk is universal among the Sylvester matrix rank functions on
S that extend rk.

Proof Let (D, φ) be the division envelope of rk. By Proposition 3.9 τ and φ extend,
respectively, to an automorphism τ ofD and to a homomorphism φ : S → D[t±1; τ ],
and r̃k = φ�(̃rkD).
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Let rk′ be a Sylvester matrix rank function on S whose restriction to R coincides
with rk. We want to show that rk′ ∈ Im φ�. Let � be the set of matrices over R
of maximum rk′-rank (and so of maximum rk-rank), and denote by R� and S� the
localizations of R and S at �, respectively. Observe that τ(�) = �, and so τ extends
to an automorphism of R� and S�

∼= R�[t±1; τ ]. Now, [31, Theorem 7.5] allows us
to extend rk′ to rank functions on R� and S� , that we also denote by rk′. Moreover,
since rk′ is integer-valued on R, [31, Theorem 7.6] also tells us that M = ker rk′ is
the maximal ideal of R� and that R�/M is isomorphic to D as an R-ring. Therefore,
S�/S�M is isomorphic toD[t±1; τ ] as an S-ring, and inasmuch as rk′ can be viewed
as a rank function on S�/S�M , rk′ ∈ Im φ�.

Now, r̃kD is universal in P(D[t±1; τ ]), because the r̃kD-rank of any non-zero
element is 1, and any matrix over D[t±1; τ ] can be written as a product PDQ, where
P and Q are invertible over D[t±1; τ ] and D is diagonal. Thus, rk′ ≤ r̃k. ��
The following proposition is an analog of Proposition 7.9.

Proposition 8.4 Let E ∗ G be a crossed product of a division ring E and a locally
indicable group G, and assume that there exists aHughes-free epic division E∗G-ring
D. Let rk be an integer-valued rank function on E ∗ G such that rk ≥ rkD, and with
epic division envelope (E, φ). If ϕ = (i, φ) : E ∗ G → D × E denotes the induced
map, then the division closure of ϕ(E ∗ G) in D × E is a division ring.

Proof Set S = D × E , let L = DG,S be the division closure of ϕ(E ∗ G) in S
and denote, for any subgroup H ≤ G, SH = DH × EH , where DH and EH are the
division closures of the image of E∗H inD and E , respectively. Consider the universal
morphism of rational E×G-semirings �G,S : Rat(E×G) → L. Considering E fixed,
we are going to show that if α ∈ Rat(E×G) realizes the G-complexity of a non-zero
a ∈ DG,S for some locally indicable group G and for some crossed product E ∗ G
for which there exists a Hughes-free epic division E ∗ G-ring D, then a is invertible
in DG,S . Since �G,S is surjective for every G and for every crossed product E ∗ G,
this gives the result.

For any locally indicable group G, and for any crossed product E ∗ G in the
previous setting, if α ∈ Rat(E×G) satisfies Tree(α) = 1T , then α ∈ E×G realizes
the G-complexity of a = �G,S(α) ∈ ϕ(E×G), and a is invertible. Now suppose that
Tree(α) > 1T realizes the G-complexity of a non-zero a ∈ DG,S for some locally
indicable G and for some crossed product E ∗G for which there exists a Hughes-free
epic division E ∗G-ring, and assume by induction that we have proved the result for all
locally indicable G ′, for all crossed products E ∗ G ′ for which there exists a Hughes-
free epic division E ∗ G ′-ring, and for all β ∈ Rat(E×G ′) with Tree(β) < Tree(α).
We want to show that a is invertible in DG,S .

We can assume, without loss of generality, that α is primitive. Let H be the (finitely
generated) image of source(α) under E×G → E×G/E× = G. Then,α ∈ Rat(E×H)

and therefore a ∈ DH ,L = DH ,S = DH ,SH . If H is trivial, the result is clear.
Otherwise, there exists a normal subgroup N � H such that H = N � C where C is
infinite cyclic. Let t be a preimage in E×H of a generator of C , and let τ denote the
automorphism of E ∗ N induced by left conjugation by t . Since τ can be extended to
an automorphism of both DN and EN , it extends to an automorphism of the regular
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ring A = SN = DN × EN . Therefore, we have a homomorphism

ϕ : E ∗ H ∼= (E ∗ N )[t±1; τ ] → A((t; τ)) = P

In addition, since D is the Hughes-free epic division E ∗ G-ring, we have that DH ∼=
DN (t; τ) as E ∗ H -rings, whereDN (t; τ) denotes the Ore division ring of fractions of
DN [t±1; τ ], and so, by an abuse of notation, we can write ϕ(E ∗H) ⊆ DH ×EN (t; τ).
Set rk′ = rkEN (t;τ). Since φ�(rk′) is the natural extension of rk |E∗N by Proposition
3.9, we deduce in view of the previous lemma that, as rank functions over E ∗ H ,

φ�(rk′) ≥ rk|E∗H ≥ rkDH ,

where the second inequality follows from the hypothesis rk ≥ rkD. By Lemma 4.5,
regularity of A implies that DN ,P = DN ,SN , and regularity of B = DH × EN (t; τ)

implies that DH ,P = DH ,B. Proposition 7.5 applied to the above triple of ranks
tells us that a is invertible if and only if the non-zero element a′ = �H ,B(α) ∈
DH ,B = DH ,P is invertible, where �H ,B : Rat(E×H) → DH ,B is the universal
morphism. By definition, TreeH (a′) ≤ Tree(α), and therefore applying the induction
hypothesis to H (which has Hughes-free epic division E ∗ H -ring DH ) and φ�(rk′),
we have that any 0 �= b ∈ DH ,P with TreeH (b) < TreeH (a′) is invertible. Using
Proposition 5.1, we obtain that a′ ∈ DN ,P ((t; τ)). Moreover, a′ = ∑

a′
k with at least

two non-zero summands, because otherwise α ∈ Rat(E×N )tn and therefore H ≤ N ,
a contradiction. The same proposition then states that TreeH (a′

k) < TreeH (a′), for all
k, and so every non-zero a′

k is invertible in DH ,P . Let n be the smallest k such that
a′
k is non-zero. Then a

′
nt

−n ∈ DN ,P is invertible in DH ,P , and hence in DN ,P . Thus,
a′ = ∑

a′
k ∈ DH ,P is invertible in DN ,P ((t; τ)) = DN ,A((t; τ)) ⊆ P , and hence in

DH ,P . Therefore, a is invertible and the result holds. ��
Now we are ready to prove Theorem 8.1.

Proof of Theorem 8.1 Assume that there exists a division E ∗G-ring E such that rkE ≥
rkD as rank functions on E ∗ G. Applying the previous proposition and borrowing
the notation, we obtain that the division closure DG,S of ϕ(E ∗ G) in S = D × E is
a division ring, and this implies that the projections from DG,S onto each factor are
E ∗G-isomorphisms. Therefore,D and E are isomorphic E ∗G-rings, and in particular
rkD = rkE .
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