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Abstract
In this paperweconsider theCauchyproblem for the semilinear dampedwave equation

utt − Δu + ut = h(u), u(0, x) = φ(x), ut (0, x) = ψ(x),

where h(s) = |s|1+ 2
n μ(|s|). Here n is the space dimension and μ is a modulus of

continuity. Our goal is to obtain sharp conditions on μ to obtain a threshold between
global (in time) existence of small data solutions (stability of the zero solution) and
blow-up behavior even of small data solutions.

Mathematics Subject Classification 35L05 · 35L71 · 35B44

1 Introduction

In [12], the authors proved the global existence of small data energy solutions for the
semilinear damped wave equation
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1312 M. R. Ebert et al.

utt − Δu + ut = |u|p, u(0, x) = φ(x), ut (0, x) = ψ(x), (1)

in the supercritical range p > 1+ 2
n , by assuming compactly supported small data from

the energy space. Under additional regularity the compact support assumption on the
data can be removed. By assuming data in Sobolev spaces with additional regularity
L1(Rn), a global (in time) existence result was proved in space dimensions n = 1, 2 in
[5], by using energy methods, and in space dimension n ≤ 5 in [9], by using Lr − Lq

estimates, 1 ≤ r ≤ q ≤ ∞. Nonexistence of general global (in time) small data
solutions is proved in [12] for 1 < p < 1 + 2

n and in [13] for p = 1 + 2
n . The

exponent 1 + 2
n is well known as Fujita exponent and it is the critical power for the

following semilinear parabolic Cauchy problem (see [2]):

vt − �v = v p, v(0, x) = v0(x) ≥ 0. (2)

If one removes the assumption that the initial data are in L1(Rn) and we only assume
that they are in the energy space, then the critical exponent is modified to 1 + 4

n or to
1+ 2m

n under additional regularity Lm(Rn), withm ∈ [1, 2]. For the classical damped
wave equation, this phenomenon has been investigated in [4].

The diffusion phenomenon between linear heat and linear classical damped wave
models (see [3,7,9,10]) explains the parabolic character of classical damped wave
models with power nonlinearities from the point of decay estimates of solutions.

In the mathematical literature (see for instance [1]) the situation is in general
described as follows: We have a semilinear Cauchy problem

L(∂t , ∂x , t, x)u = |u|p, u(0, x) = φ(x), ut (0, x) = ψ(x),

where L is a linear partial differential operator. Then the authors would like to find
a critical exponent pcrit in the scale {|u|p}p>0, a threshold between two different
qualitative behaviors of solutions. As examples see the models (1) or (2).

The main concern of this paper is to show by the aid of the model (1) that the
restriction to the scale {|u|p}p>0 is too rough to verify the critical non-linearity or the
critical regularity of the non-linear right-hand side.

For this reason we turn to the Cauchy problem for the semilinear damped wave
equation

utt − Δu + ut = h(u), u(0, x) = φ(x), ut (0, x) = ψ(x), (3)

in [0,∞)×R
n , where h(s) = |s|1+ 2

n μ(|s|). Hereμ = μ(s), s ∈ [0,∞), is a modulus
of continuity, which provides an additional regularity of the right-hand side h = h(s)
for s ∈ [0,∞).

Definition 1 A function μ : [0,∞) → [0,∞) is called a modulus of continuity, if μ

is a continuous, concave and increasing function satisfying μ(0) = 0.

Our goal is to discuss the influence of the function μ on the global (in time) existence
of small data Sobolev solutions or on statements for blow-up of Sobolev solutions to
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Critical regularity of nonlinearities… 1313

(3). In the following result, we assume that the modulus of continuity μ given in (3)
satisfies the following two conditions:

sk |μ(k)(s)| ≤ Cμ(s) for 1 ≤ k ≤ n, s ∈ (0, s0], and
∫ C0

0

μ(s)

s
ds < ∞,

(4)

where C is a sufficiently large positive constant, s0 and C0 are sufficiently small
positive constants.

Remark 2 In the further considerations we need a suitable modulus of continuity sat-
isfying the conditions (4) on a small interval [0, s0] only. Nevertheless we can assume
that the modulus of continuity can be continued to the real line in such a way that the
properties from Definition 1 are satisfied.

Theorem 3 Let n = 1, 2 and

(φ,ψ) ∈ A :=
(
H1+� n

2 	(Rn) ∩ L1(Rn)
)

×
(
H � n

2 	(Rn) ∩ L1(Rn)
)

,

where we denote by �·	 the floor function. Assume that the modulus of continuity μ

satisfies the condition (4). Then, the following statement holds for a sufficiently small
ε0 > 0: if

‖(φ,ψ)‖A ≤ ε for ε ≤ ε0,

then there exists a unique globally (in time) Sobolev solution u to (3) belonging to the
function space

C
(
[0,∞), H1(Rn) ∩ L∞(Rn)

)
,

such that the following decay estimates are satisfied:

‖u(t, ·)‖L∞ ≤ C(1 + t)−
n
2 ‖(φ,ψ)‖A,

‖∇k
x u(t, ·)‖L2 ≤ C(1 + t)−

n+2k
4 ‖(φ,ψ)‖A, k = 0, 1.

Remark 4 The key tool to prove Theorem 3 is to apply estimates for solutions to the
parameter-dependent Cauchy problem for the linear classical damped wave equation
(Lemma 7). By usingmore general Lr −Lq estimates, 1 ≤ r ≤ q ≤ ∞, derived in [9]
for the linear damped wave equation, one can also obtain a global (in time) existence
result for higher dimensions n, but this aim is beyond the scope of this paper.

Example 1 The hypotheses of Theorem 3 hold for the following functions μ (see also
Remark 2) on a small interval [0, s0]:
1. μ(s) = s p, p ∈ (0, 1];
2. μ(s) = (log(1 + s))p, p ∈ (0, 1];
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1314 M. R. Ebert et al.

3. μ(0) = 0 and μ(s) =
(
log 1

s

)−p
, p > 1;

4. μ(0) = 0 and μ(s) =
(
log 1

s

)−1(
log log 1

s

)−1 · · ·
(
logk 1

s

)−p
, p > 1, k ∈ N.

The next result shows that the integral condition on the function μ in (4) can not be
relaxed.

Theorem 5 Consider for n ≥ 1 the Cauchy problem

{
utt − Δu + ut = |u|1+ 2

n μ(|u|), (t, x) ∈ (0,∞) × R
n,

(u(0, x), ut (0, x)) = (0, g(x)), x ∈ R
n .

(5)

Here μ = μ(s), s ∈ [0,∞) is a modulus of continuity which satisfies the condition

∫ C0

0

μ(s)

s
ds = ∞, (6)

where C0 is a sufficiently small positive constant. Moreover, we assume that the func-

tion h : s ∈ R → h(s) := s1+ 2
n μ(s) is convex on R. Suppose that the data

g ∈ A := H [ n2 ](Rn) ∩ L1(Rn),

such that
∫
Rn

g(x) dx > 0.

Then, in general we have no global (in time) existence of Sobolev solutions even if the
data are supposed to be very small in the following sense:

‖g‖A ≤ ε for ε ≤ ε0.

To prove Theorem 5 we will follow the approach used in [6] in which the authors get
a sharp upper bound for the lifespan of solutions to some critical semilinear parabolic,
dispersive and hyperbolic equations, by using a test function method.

Example 2 The hypotheses of Theorem 5 hold for the following functions μ (see also
Remark 2) on a small interval [0, s0]:
1. μ(0) = 0 and μ(s) =

(
log 1

s

)−p
, 0 < p ≤ 1;

2. μ(0) = 0 and μ(s) =
(
log 1

s

)−1(
log log 1

s

)−1 · · ·
(
logk 1

s

)−p
, p ∈ (0, 1], k ∈

N.

Remark 6 Let us discuss the assumption in Theorem 5 that the function

h : s ∈ R → h(s) := s1+
2
n μ(s) is convex on R.
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In the case of smooth μ, in a small right-sided neighborhood of s = 0, this hypothesis
can be replaced by the condition

skμ(k)(s) = o(μ(s)) for s → +0, k = 1, 2.

Indeed, it is sufficient to verify that on a small interval (0, s0]

h
′′
(s) = s

2
n −1

(
2

n

(
1 + 2

n

)
μ(s) + 2

(
1 + 2

n

)
sμ′(s) + s2μ

′′
(s)

)
≥ 0.

This condition is satisfied in our examples. Outside this interval we can choose a
convex continuation of h.

In the following we use f � g for nonnegative f and g if there exists a constant C
with f ≤ Cg. We use f ∼ g if f ≤ C1g and g ≤ C2 f with suitable constants C1
and C2.

2 Global existence of small data solutions

In the proof of Theorem 3 we are going to use the following estimates for Sobolev
solutions to the parameter-dependent Cauchy problem for the linear classical damped
wave equation.

Lemma 7 (Lemma 1 in [8]) Let

(φ,ψ) ∈ A :=
(
H1+� n

2 	(Rn) ∩ L1(Rn)
)

×
(
H � n

2 	(Rn) ∩ L1(Rn)
)

.

Then, the Sobolev solutions to the Cauchy problem

utt − Δu + ut = 0, u(s, x) = φs(x), ut (s, x) = ψs(x), (7)

satisfy the following estimates for t ≥ 0:

‖u(t, ·)‖L∞ ≤ C(1 + t − s)−
n
2

(
‖φs‖L1 + ‖φs‖H1+� n2 	 + ‖ψs‖L1 + ‖ψs‖H � n2 	

)
,

and for k = 0, 1, 1 + � n
2 	

‖∇k
x u(t, ·)‖L2 ≤ C(1 + t − s)−

n+2k
4

(‖φs‖L1 + ‖φs‖Hk + ‖ψs‖L1 + ‖ψs‖Hk−1

)
.

Proof of Theorem 3 The space of Sobolev solutions is X(t) = C
([0, t], H1(Rn) ∩

L∞(Rn)
)
. Taking into consideration the estimates of Lemma 7 we define on X(t) the

norm

‖u‖X(t) = sup
τ∈[0,t]

{
1∑

k=0

(1 + τ)
n+2k
4 ‖∇ku(τ, ·)‖L2 + (1 + τ)

n
2 ‖u(τ, ·)‖L∞

}
.
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1316 M. R. Ebert et al.

For arbitrarily given data (φ,ψ) ∈ A we introduce the operator

N : u ∈ X(t) → ulin +
∫ t

0
Φ(t, s, ·) ∗(x) h(u(s, ·))(x) ds

in X(t), where byulin wedenote the solution to the linear parameter-dependentCauchy
problem (7) with initial data (φ,ψ). By

Φ(t, s, ·) ∗(x) h(u(s, ·))(x)

we denote the Sobolev solution to the Cauchy problem (7) with φs ≡ 0 and ψs =
h(u(s, ·)). We will prove that

‖Nu‖X(t) ≤ C0‖(φ,ψ)‖A + C̃ε0‖u‖1+
2
n

X(t) , (8)

‖Nu − Nv‖X(t) ≤ Cε0‖u − v‖X(t)

(
‖u‖

2
n
X(t) + ‖v‖

2
n
X(t)

)
, (9)

where Cε0 and C̃ε0 tend to 0 for ε0 to 0.
First of all we have after applying Lemma 7 for all t > 0 the estimate

‖ulin‖X(t) ≤ C0‖(φ,ψ)‖A, (10)

where the constant C0 is independent of t . Consequently, it remains to estimate

G(u)(t, x) :=
∫ t

0
Φ(t, s, x) ∗(x) h(u(s, x)) ds.

For j = 0, 1 we have

‖∇ j G(u)(t, ·)‖L2 ≤
∫ t

0
(1 + t − s)−

n
4− j

2 ‖h(u(s, ·))‖L1∩L2ds.

It holds

‖h(u(s, ·))‖L1∩L2 ≤ μ(‖u(s, ·)‖L∞) ‖|u(s, ·)|1+ 2
n ‖L1∩L2 .

Thus, by using that

‖u(s, ·)‖L∞ ≤ (1 + s)−
n
2 ‖u‖X(s)

and the monotonicity of μ = μ(s) we get the following estimate:

μ(‖u(s, ·)‖L∞) ≤ μ
(
(1 + s)−

n
2 ‖u‖X(s)

)
. (11)

123



Critical regularity of nonlinearities… 1317

Let us assume ‖u‖X(t) ≤ ε0 for all t > 0 and some ε0 > 0 sufficiently small. Then,
since the norm in X(t) is increasing with respect to t , we can estimate the right-hand
side of (11) by

μ
(
ε0(1 + s)−

n
2

)
.

Moreover, to estimate ‖|u(s, ·)|1+ 2
n ‖L1∩L2 we may apply the Gagliardo–Nirenberg

inequality and obtain

‖u(s, ·)‖1+
2
n

L1+ 2
n

≤ C‖∇u(s, ·)‖1−
n
2

L2 ‖u(s, ·)‖
2
n + n

2
L2 ≤ C(1 + s)−1‖u‖1+

2
n

X(s), (12)

and

‖u(s, ·)‖1+
2
n

L2+ 4
n

≤ C‖∇u(s, ·)‖L2‖u(s, ·)‖
2
n
L2 ≤ C(1 + s)−1− n

4 ‖u‖1+
2
n

X(s). (13)

Thus, we may conclude

‖∇ j G(u)(t, ·)‖L2 ≤ ‖u‖1+
2
n

X(t)

∫ t

0
(1 + t − s)−

n
4− j

2 (1 + s)−1μ
(
ε0(1 + s)−

n
2

)
ds.

To estimate ‖G(u)(t, ·)‖L∞ , the required regularity to the data increases with n, so
we split the analysis for n = 1 and n = 2. For n = 1 we may estimate

‖G(u)(t, ·)‖L∞ ≤
∫ t

0
(1 + t − s)−

1
2 ‖h(u(s, ·))‖L1∩L2ds,

and proceed as before to derive

‖G(u)(t, ·)‖L∞ ≤ ‖u‖3X(t)

∫ t

0
(1 + t − s)−

1
2 (1 + s)−1μ

(
ε0(1 + s)−

1
2

)
ds.

For n = 2, applying Lemma 7 we may estimate

‖G(u)(t, ·)‖L∞ ≤
∫ t

0
(1 + t − s)−1‖h(u(s, ·))‖L1∩H1ds.

Now, we have to deal with a new term ‖∇h(u(s, ·))‖L2 . Using (4), we may estimate

|∇h(u(s, x))| ≤ |u(s, x)|μ(|u(s, x)|)|∇u(s, x)|

and

‖∇h(u(s, ·))‖L2 � ‖u(s, ·)‖L∞μ(‖u(s, ·)‖L∞)‖∇u(s, ·)‖L2

� (1 + s)−2‖u‖2X(s)μ
(
(1 + s)−1‖u‖X(s)

)
.
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1318 M. R. Ebert et al.

Therefore

‖G(u)(t, ·)‖L∞ ≤ ‖u‖1+
2
n

X(t)

∫ t

0
(1 + t − s)− n

2 (1 + s)−1μ
(
ε0(1 + s)− n

2

)
ds, n = 1, 2.

Now, let α ≤ 1. On the one hand it holds

∫ t
2

0
(1 + t − s)−α(1 + s)−1μ

(
ε0(1 + s)−

n
2
)
ds

∼ (1 + t)−α

∫ t
2

0
(1 + s)−1μ

(
ε0(1 + s)−

n
2
)
ds

by using (1 + t − s) ∼ (1 + t) on [0, t/2]. On the other hand
∫ t

t
2

(1 + t − s)−α(1 + s)−1μ
(
ε0(1 + s)−

n
2
)
ds

� (1 + t)−α

∫ t

t
2

(1 + t − s)−α(1 + s)−1+αμ
(
ε0(1 + s)−

n
2
)
ds

� (1 + t)−α

∫ t

t
2

(1 + t − s)−1μ
(
ε0(1 + t − s)−

n
2
)
ds,

where we used 1 + s ∼ 1 + t and 1 + s � 1 + t − s on [t/2, t].
By using the change of variables r = ε0(1 + s)− n

2 , we get

∫ +∞

0
(1 + s)−1μ

(
ε0(1 + s)−

n
2
)
ds ∼

∫ ε0

0

μ(r)

r
dr ,

that is finite, due to assumption (4). Summarizing, we arrive at

‖Nu‖X(t) � C0‖(φ,ψ)‖A + C̃ε0‖u‖1+
2
n

X(t) , (14)

where C̃ε0 tends to 0 for ε0 to 0.
To derive a Lipschitz condition we recall

Gu − Gv =
∫ t

0
Φ(t, s, x) ∗(x)

(
|u|1+ 2

n μ(|u|) − |v|1+ 2
n μ(|v|)

)
ds

=
∫ t

0
Φ(t, s, x) ∗(x)

(∫ 1

0
(d|u|H(|u|))(v + τ(u − v))dτ

)
(s, x)

×(u − v)(s, x) ds,

where

H : |u| ∈ R
+ → H(|u|) = |u|1+ 2

n μ(|u|).
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By using our assumption to μ′ = μ′(s) we get
∣∣d|u|H(|u|)∣∣ � |u| 2n μ(|u|).

Here we take into consideration that |u| ≤ s0 with s0 from (4) for small data solu-
tions. Applying Minkowski’s integral inequality, Lemma 7 and the monotonicity of
d|u|H(|u|) for small |u| gives

∥∥∥∇ j
x (Gu(t, ·) − Gv(t, ·))

∥∥∥
L2

�
∫ t

0
(1 + t − s)−

n
4− j

2

∥∥∥
(∫ 1

0
μ(|v + τ(u − v)|)|v + τ(u − v)| 2n dτ

)

×|u − v|(s, ·)
∥∥∥
L1∩L2

ds

�
∫ t

0

∫ 1

0
(1 + t − s)−

n
4− j

2

∥∥∥
(
|u| 2n + |v| 2n

)
(u − v)(s, ·)

∥∥∥
L1∩L2

×∥∥μ(|v + τ(u − v)|)∥∥L∞ dτ ds.

By using Hölder’s inequality we get

∥∥∥
(
|u(s, ·)| 2n + |v(s, ·)| 2n

)
(u − v)(s, ·)

∥∥∥
L1

�
(

‖u(s, ·)‖
2
n

L1+ 2
n

+ ‖v(s, ·)‖
2
n

L1+ 2
n

)
‖(u − v)(s, ·)‖

L1+ 2
n
,

and
∥∥∥
(
|u(s, ·)| 2n + |v(s, ·)| 2n

)
(u − v)(s, ·)

∥∥∥
L2

�
(

‖u(s, ·)‖
2
n

L2+ 4
n

+ ‖v(s, ·)‖
2
n

L2+ 4
n

)
‖(u − v)(s, ·)‖

L2+ 4
n
.

Thus, we can apply Gagliardo–Nirenberg as in (12) and (13) to get

∥∥∥
(
|u(s, ·)| 2n + |v(s, ·)| 2n

)
(u − v)(s, ·)

∥∥∥
L1

� (1 + s)−1
(

‖u‖
2
n
X(s) + ‖v‖

2
n
X(s)

)
‖u − v‖X(s),

∥∥∥
(
|u(s, ·)| 2n + |v(s, ·)| 2n

)
(u − v)(s, ·)

∥∥∥
L2

� (1 + s)−1− n
4

(
‖u‖

2
n
X(s) + ‖v‖

2
n
X(s)

)
‖u − v‖X(s).

Now we follow the same ideas presented above to conclude

∥∥∥∇ j
x (Gu(t, ·) − Gv(t, ·))

∥∥∥
L2
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1320 M. R. Ebert et al.

� ‖u − v‖X(t)

(
‖u‖

2
n
X(t) + ‖v‖

2
n
X(t)

)

×
∫ t

0

∫ 1

0
(1 + t − s)−

n
4− j

2 (1 + s)−1μ(‖v + τ(u − v)‖L∞) dτ ds

� ‖u − v‖X(t)

(
‖u‖

2
n
X(t) + ‖v‖

2
n
X(t)

)

×(1 + t)−
n
4− j

2

∫ t

0

∫ 1

0
(1 + s)−1μ

(
ε0(1 + s)−

n
2
)
dτ ds

≤ C ′
ε0

(1 + t)−
n
4− j

2 ‖u − v‖X(t)

(
‖u‖

2
n
X(t) + ‖v‖

2
n
X(t)

)
,

where C ′
ε0
tends to 0 for ε0 to 0.

To estimate ‖Gu(t, ·) − Gv(t, ·)‖L∞ , we again split the analysis for n = 1 and
n = 2. For n = 1 wemay proceed as we did to derive the estimates for ‖∇ j

x (Gu(t, ·)−
Gv(t, ·))‖L2 to conclude

‖Gu(t, ·) − Gv(t, ·)‖L∞ ≤ C ′
ε0

(1 + t)−
1
2 ‖u − v‖X(t)

(
‖u‖2X(t) + ‖v‖2X(t)

)
,

where C ′
ε0
tends to 0 for ε0 to 0.

For n = 2, applying Lemma 7 we may estimate

‖Gu(t, ·) − Gv(t, ·)‖L∞ ≤
∫ t

0
(1 + t − s)−1

×
∥∥∥∥
(∫ 1

0
(d|u|H(|u|))(v + τ(u − v)) dτ

)
(u − v)(s, ·)

∥∥∥∥
L1∩H1

ds.

The only new term to be considered is

∥∥(d|u|H(|u|))(v + τ(u − v))(s, ·)(u − v)(s, ·)∥∥Ḣ1 .

Using (4), we may estimate

∣∣∇xd|u|H(|u|)(v + τ(u − v))
∣∣ � (|∇u| + |∇v|)μ(|v + τ(u − v)|)

and

∥∥(d|u|H(|u|))(v + τ(u − v))(s, ·)(u − v)(s, ·)∥∥Ḣ1

� μ(‖v + τ(u − v)‖L∞)
(‖∇u(s, ·)‖L2 + ‖∇v(s, ·)‖L2

)‖(u − v)(s, ·)‖L∞

+ μ(‖v + τ(u − v)‖L∞)(‖u(s, ·)‖L∞ + ‖v(s, ·)‖L∞)‖∇(u − v)(s, ·)‖L2

� (1 + s)−2μ
(
ε0(1 + s)−1)(‖u‖X(s) + ‖v‖X(s))‖u − v‖X(s).

123



Critical regularity of nonlinearities… 1321

Hence, we may estimate

‖Gu(t, ·) − Gv(t, ·)‖L∞

�
(‖u‖X(t) + ‖v‖X(t)

) ‖u − v‖X(t)

×
∫ t

0
(1 + t − s)−1(1 + s)−1μ

(
ε0(1 + s)−1) ds

≤ C ′
ε0

(1 + t)−1 (‖u‖X(t) + ‖v‖X(t)
) ‖u − v‖X(t),

where C ′
ε0
tends to 0 for ε0 to 0.

Summarizing all the estimates implies

‖Nu − Nv‖X(t) ≤ Cε0‖u − v‖X(t)

(
‖u‖

2
n
X(t) + ‖v‖

2
n
X(t)

)
(15)

for any u, v ∈ X(t), where Cε0 tends to 0 for ε0 to 0. Due to (14) the operator N
maps X(t) into itself if ε0 is small enough. The existence of a unique global (in time)
Sobolev solution u follows by contraction (15) and continuation argument for small
data. ��

3 Non-existence result via test functionmethod

Following the proof of Theorem 3, we obtain a local (in time) Sobolev solution u ∈
C

([0, T ), H1(Rn) ∩ L∞(Rn)
)
to (5). For this reason we restrict ourselves to prove

that this solution can not exist globally in time.

Proof of Theorem 5 We introduce the following functions:

η(s) =

⎧⎪⎨
⎪⎩
1 if s ∈ [0, 1

2 ],
is decreasing if s ∈ ( 12 , 1),

0 if s ∈ [1,∞),

η∗(s) =
{
0 if s ∈ [0, 1

2 ],
η(s) if s ∈ [ 12 ,∞),

where the function η = η(s) is supposed to belong to C∞[0,∞). For R ≥ R0 > 0,
where R0 is a large parameter, we define for (t, x) ∈ [0,∞)×R

n the cut-off functions

ψR = ψR(t, x) = η

( |x |2 + t

R

)n+2

and ψ∗
R = ψ∗

R(t, x) = η∗
( |x |2 + t

R

)n+2

.

We note that the support of ψR is contained in

QR = [0, R] × B√
R with B√

R =
{
x ∈ R

n : |x | ≤ √
R
}

.
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The support of ψ∗
R is contained in

Q∗
R = QR \

{
(t, x) : |x |2 + t ≤ R

2

}
.

We suppose that the Sobolev solution u = u(t, x) exists globally in time, that is, the
lifespan is T = T (u) = ∞. We define the functional

IR =
∫
QR

h(|u(t, x)|)ψR(t, x) d(t, x) with h(s) := s1+
2
n μ(s).

Then, by Eq. (5), after using integration by parts we arrive at

IR = −
∫
Rn

g(x)ψR(0, x) dx +
∫
QR

u(t, x)
(
∂2t ψR − ΔψR − ∂tψR

)
d(t, x).

It holds

∂tψR = n + 2

R
η

( |x |2 + t

R

)n+1

η′
( |x |2 + t

R

)
;

∂2t ψR = (n + 2)(n + 1)

R2 η

( |x |2 + t

R

)n

η′
( |x |2 + t

R

)2

+ n + 2

R2 η

( |x |2 + t

R

)n+1

η′′
( |x |2 + t

R

)
;

∂2x j ψR = 4(n + 2)(n + 1)x2j
R2 η

( |x |2 + t

R

)n

η′
(
x2 + t

R

)2

+ 4(n + 2)x2j
R2 η

( |x |2 + t

R

)n+1

η′′
( |x |2 + t

R

)

+ 2(n + 2)

R
η

( |x |2 + t

R

)n+1

η′
( |x |2 + t

R

)
.

Thus, since 0 ≤ η ≤ 1 and η′, η′′ are bounded on [0,∞), there exists C > 0 such
that for each (t, x) ∈ suppψR it holds

∣∣∂2t ψR − ΔψR − ∂tψR
∣∣ ≤ C

R
(ψ∗

R(t, x))
n

n+2 .

Thus, we get

IR =
∫
QR

h(|u(t, x)|)ψR(t, x) d(t, x) ≤ −
∫
Rn

g(x)ψR(0, x) dx

+ C

R

∫
QR

|u(t, x)|(ψ∗
R(t, x))

n
n+2 d(t, x). (16)
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By applying Lemma 8 from the Appendix with α ≡ 1 we get

h

⎛
⎝

∫
Q∗

R
|u(t, x)|(ψ∗

R(t, x))
n

n+2 d(t, x)∫
Q∗

R
1 d(t, x)

⎞
⎠ ≤

∫
Q∗

R
h
(|u(t, x)|(ψ∗

R(t, x))
n

n+2
)
d(t, x)∫

Q∗
R
1 d(t, x)

.

Taking account of

∫
Q∗

R

|u(t, x)|(ψ∗
R(t, x))

n
n+2 d(t, x) =

∫
QR

|u(t, x)|(ψ∗
R(t, x))

n
n+2 d(t, x),

∫
Q∗

R

1 d(t, x) = C
∫
QR

1 d(t, x),

we arrive at the estimate

h

(∫
QR

|u(t, x)|(ψ∗
R(t, x))

n
n+2 d(t, x)

C
∫
QR

1 d(t, x)

)
≤

∫
QR

h
(|u(t, x)|(ψ∗

R(t, x))
n

n+2
)
d(t, x)

C
∫
QR

1 d(t, x)
.

Notice that, since the modulus of continuity μ is non-decreasing, we can estimate

h
(|u(t, x)|(ψ∗

R(t, x))
n

n+2
) ≤ h(|u(t, x)|)ψ∗

R(t, x).

Moreover,

∫
QR

1 d(t, x) = R
n+2
2 .

Thus, thanks again to μ to be a non-decreasing function, there exists h−1 and we may
conclude

∫
QR

|u(t, x)|(ψ∗
R(t, x))

n
n+2 d(t, x)

≤ CR
n+2
2 h−1

(∫
QR

h(|u(t, x)|)ψ∗
R(t, x) d(t, x)

CR
n+2
2

)
. (17)

Let us define the functions

y = y(r) =
∫
QR

h(|u(t, x)|)ψ∗
r (t, x) d(t, x) and Y = Y (R) =

∫ R

0
y(r)r−1 dr .

Then, it holds

Y (R) =
∫ R

0

(∫
QR

h(|u(t, x)|)ψ∗
r (t, x) d(t, x)

)
r−1 dr
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=
∫
QR

h(|u(t, x)|)
(∫ R

0
η∗

( |x |2 + t

r

)n+2

r−1 dr

)
d(t, x)

=
∫
QR

h(|u(t, x)|)
(∫ ∞

|x |2+t
R

(η∗(s))n+2s−1ds

)
d(t, x).

Since supp η∗ ⊂ [1/2, 1] and η∗ is a non-increasing function on its support, we obtain
the estimate

∫ ∞
|x |2+t

R

(η∗(s))n+2s−1 ds ≤ η

( |x |2 + t

R

)n+2 ∫ 1

1
2

s−1 ds ≤ log(2)η

(
x2 + t

R

)n+2

.

Consequently, we may conclude

Y (R) ≤ log(2)
∫
QR

h(|u(t, x)|)ψR(t, x) d(t, x) = log(2) IR .

Moreover, we notice

Y ′(R)R = y(R) =
∫
QR

h(|u(t, x)|)ψ∗
R(t, x) d(t, x).

Thus, by (16) and (17), we get

Y (R)

log(2)
≤ C2R

n
2 h−1

(
Y ′(R)

CR
n
2

)
.

It follows

h

(
Y (R)

C2 log(2)R
n
2

)
≤ Y ′(R)

CR
n
2

.

Thus, we have

(
Y (R)

C2 log(2)R
n
2

) n+2
n

μ

(
Y (R)

C2 log(2)R
n
2

)
≤ Y ′(R)

CR
n
2

.

For each R ≥ R0, since Y = Y (r) is increasing we have Y (R) ≥ Y (R0). Thus, since
μ is non-decreasing, we have

(
Y (R)

C2 log(2)R
n
2

) n+2
n

μ

(
Y (R0)

C2 log(2)R
n
2

)
≤ Y ′(R)

CR
n
2

.
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Thus, we have

1

R(C2 log(2))
n+2
n

μ

(
Y (R0)

C2 log(2)R
n
2

)
≤ Y ′(R)

CY (R)
n+2
n

.

By integrating from R0 to R, we can conclude that there exist constants c1, c2 such
that

∫ R

R0

1

s
μ

(
c2s

− n
2
)
ds = c1

∫ R
− n
2

0

R− n
2

μ(s)

s
ds �

[
− 1

Y (s)
2
n

]R
n
2

R
n
2
0

� 1

Y (R
n
2
0 )

2
n

. (18)

Due to the assumption that u = u(t, x) exists globally in time it is allowed to form
the limit R → ∞ in (18). But this produces a contradiction, due to the fact that the
right-hand side is bounded and the modulus of continuity μ satisfies condition (6).
This completes our proof.

Acknowledgements The discussions on this paper began during the time the third author spent a twoweeks
research stay in November 2018 at the Department of Mathematics and Computer Science of University
of São Paulo, FFCLRP. The stay of the third author was supported by Fundação de Amparo à Pesquisa do
Estado de São Paulo (FAPESP), Grant 2018/10231-3. The second author contributed to this paper during
a four months stay within Erasmus+ exchange program during the period October 2018 to February 2019.
The first author have been partially supported by FAPESP, Grant Number 2017/19497-3.

Appendix

In this section we include the following generalized version of Jensen inequality [11].

Lemma 8 LetΦ be a convex function onR. Let α = α(x) be defined and non-negative
almost everywhere on Ω , such that α is positive in a set of positive measure. Then, it
holds

Φ

(∫
Ω
u(x)α(x) dx∫
Ω

α(x) dx

)
≤

∫
Ω

Φ(u(x))α(x) dx∫
Ω

α(x) dx

for all non-negative functions u provided that all the integral terms are meaningful.

Proof Let γ > 0 be fixed. From the convexity of Φ it follows that there exists k ∈ R
1,

such that

Φ(t) − Φ(γ ) ≥ k(t − γ ) for all t ≥ 0.

Putting t = u(x) and multiplying the last inequality by α(x), we get after integration
over Ω that
∫

Ω

Φ(u(x))α(x) dx − Φ(γ )

∫
Ω

α(x) dx ≥ k

(∫
Ω

u(x)α(x) dx − γ

∫
Ω

α(x) dx

)
.
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The statement follows by putting

γ =
∫
Ω
u(x)α(x) dx∫
Ω

α(x) dx
.
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