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Abstract
The first goal of this paper is to construct examples of higher dimensional contact
manifolds with specific properties. Our main results in this direction are the existence
of tight virtually overtwisted closed contact manifolds in all dimensions and the fact
that every closed contact 3-manifold, which is not (smoothly) a rational homology
sphere, contact-embeds with trivial normal bundle inside a hypertight closed contact
5-manifold. This uses known construction procedures by Bourgeois (on products with
tori) and Geiges (on branched covering spaces). We pass from these procedures to def-
initions; this allows to prove a uniqueness statement in the case of contact branched
coverings, and to study the global properties (such as tightness and fillability) of the
results of both constructions without relying on any auxiliary choice in the proce-
dures. A second goal allowed by these definitions is to study relations between these
constructions and the notions of supporting open book, as introduced by Giroux, and
of contact fiber bundle, as introduced by Lerman. For instance, we give a definition
of Bourgeois contact structures on flat contact fiber bundles which is local, (strictly)
includes the results of the Bourgeois construction, and allows to recover an isotopy
class of supporting open books on the fibers. This last point relies on a reinterpretation,
inspired by an idea by Giroux, of supporting open books in terms of pairs of contact
vector fields.

Mathematics Subject Classification 53D10 · 53D35 · 57R17

1 Introduction

This paper is concerned with the systematic study of some explicit constructions of
high dimensional co-oriented contact structures, i.e. of hyperplane fields ξ on oriented
smooth manifolds M2n−1 which are given by the kernel of α ∈ Ω1(M) such that
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958 F. Gironella

α ∧ dαn−1 is a positive volume form on M . More precisely, the focus is on the
constructions due to Geiges [16] and Bourgeois [3].

In the first article, developing ideas from Gromov [26], Geiges transposes some
constructions from the symplecticworld to the contact setting, introducing in particular
the notion of contact branched coverings. Contact fiber sums and contact reductions
are also constructed, but we will not deal with them in the following (see Gironella
[18, Section 5.3] for the case of contact fiber sums).

In the paper [3], taking inspiration from Lutz [36], Bourgeois proves that, given a
closed contact manifold (M2n−1, ξ) and an open book decomposition (B, ϕ) of M
supporting ξ , there is a contact structure η on M ×T

2 that is invariant under the natural
T
2-action, that restricts to ξ on each submanifold M ×{pt} and that naturally deforms

to the hyperplane field ξ ⊕ TT
2 on M ×T

2. Recall that, according to Giroux [22], for
any contact manifold (M2n−1, ξ), one can always find an open book decomposition
(B, ϕ) on M supporting ξ , i.e. such that B is a positive contact submanifold and there
is α ∈ Ω1(M) defining ξ such that dα is a positive symplectic form on the fibers of
ϕ : M\B → S

1.
The main motivation behind both [3,16] was the problem of the existence of con-

tact structures, i.e. the question of which high dimensional manifolds admit a contact
structure. This (big) problem in contact topology has now been solved by Borman
et al. [2]: high-dimensional contact structures exist whenever the corresponding for-
mal objects, i.e. almost contact structures, exists. As a consequence, the aim has now
shifted from providing examples to providing “interesting” examples of contact struc-
tures.

The papers [3,16] fit well in this perspective because they actually give rather
explicit contact manifolds, which can be studied in some detail and which (under the
right conditions) manifest interesting properties of tightness, fillability, overtwisted-
ness, etc. For instance, these two papers provided the first explicit methods of building
PS-overtwisted (hence overtwisted, according to the posterior Casals et al. [5] and
Huang [30]) contact manifolds in high dimensions. The interested reader can consult
Presas [41] for the case of the construction in [3] and Niederkrüger and Presas [39,
page 724] for the case of contact branched coverings; see also Niederkrüger [38, The-
orem I.5.1], attributed to Presas, which uses contact fiber sums. Compare also with
Observation 5.9 in Sect. 5.2 below.

The aim of this article is hence to construct contact manifolds with particular prop-
erties starting from [3,16]. In order to do so, we need to pass from the construction
procedures by Geiges and Bourgeois to definitions. We can then study the properties
of these contact structures, without the need to rely on any auxiliary choice made in
their actual constructions in [3,16].

As far as contact branched coverings are concerned,we point out that the uniqueness
problem is not explicitly addressed in [16], i.e. it is not shown that the objects obtained
are independent of the auxiliary choices made to build them. We hence propose in this
paper a definition of contact branched coverings that allows to naturally obtain a
uniqueness (up to isotopy) statement.

A definition and a uniqueness statement can also be given in the case of contact
fiber sums; see Gironella [18, Section 5.3].
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On some examples and constructions of contact manifolds 959

We remark that in the literature there is already a definition of contact branched
coverings that goes in this direction. Indeed, Öztürk and Niederkrüger [40] define
this notion in terms of contact deformations verifying an additional condition at the
branching locus. Removing this further constraint, we show here the following:

Proposition A Let (V 2n−1, η) be a contact manifold and π : ̂V → V be a smooth
branched covering map with downstairs branching locus M. Suppose that η ∩ T M is
a contact structure on M. Then:

1. there is a [0, 1]-family of hyperplane fields η̂t on ̂V such that η̂0 = π∗η and η̂t is
a contact structure for all t ∈ (0, 1];

2. if η̂t and η̂′
t are as in point 1, then η̂r is isotopic to η̂′

s for all r , s ∈ (0, 1].
Moreover, in point 1, η̂t can be chosen invariant under local deck transformations of
π for all t ∈ (0, 1]. Similarly, the isotopy in point 2 can be chosen among contact
structures invariant under local deck transformations, provided that η̂t and η̂′

t are
invariant too.

We will hence call contact branched covering a contact structure η̂ on ̂V that is the
endpoint of any path η̂t as above. Notice that Proposition A tells exactly that this object
exists and is well defined up to isotopy.

At this point, we are able to give precise statements about the properties of contact
branched coverings. For instance, we prove the following:

Theorem B Consider a smooth branched covering π : ̂V → V and a contact structure
ξ on V and let η̂ be a contact branched covering of η. Suppose that (V , η) is weakly
filled by (W ,Ω) in such a way that the downstairs branching locus M of π is filled
by a symplectic submanifold X of (W ,Ω). Suppose also that π extends to a smooth
branched covering π̂ : ̂W → W branched over X. Then, there is a symplectic structure
̂Ω on ̂W weakly filling η̂ on ̂V = ∂ ̂W .

We then devote a part of the paper to an analysis and a generalization of the Bour-
geois construction in [3].

As already recalled above, one can look at the examples in [3] in two different and
“orthogonal” ways, namely via the projections M × T

2 → M and M × T
2 → T

2.
The first one tells that these examples are T2-invariant contact structures on the total
space of the T2-bundle M × T

2 → M . We will not deal with this point of view here
and we invite the interested reader to consult Gironella [18, Chapter 7], where the
links between the construction in [3] and the study of T2-invariant contact structures
in Lutz [36] are analyzed in detail. The second point of view shows that the examples
in [3] are contact structures on M ×T

2 which moreover induce a contact structure on
each fiber of M × T

2 → T
2, i.e., using the language introduced by Lerman in [34],

which are contact fiber bundles on M × T
2 → T

2. We point out that this contact
bundle structure on the examples from [3] has already been exploited successfully in
Presas [41], van Koert and Niederkrüger [32], Niederkrüger and Presas [39], Etnyre
and Pancholi [13,15] to obtain high dimensional contact manifolds with remarkable
properties. This suggests that this second point of viewmight be the best one to analyze
and generalize the construction in [3].
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960 F. Gironella

In this paper we then use the theory of contact fiber bundles from Lerman [34]
in order to generalize the Bourgeois construction and define the notion of Bourgeois
contact structures. More precisely, on a fiber bundle π : V 2n+1 → Σ2 equipped with
a reference contact fiber bundle η0, every contact fiber bundle η admits a potential
form A with respect to η0, with a well defined curvature form RA. In the case where
the reference contact bundle η0 is flat, we call Bourgeois contact structure any contact
fiber bundle structure on π : V → Σ that is also a contact structure on V and verifies
1
ε

Rε A → 0 for ε → 0.
Beside the need to pass from the construction procedure in [3] to a definition, another

motivation behind the introduction of this notion is the following: the condition on the
curvature is, on one hand, weak enough to be satisfied by a class of contact structures
strictly containing the results of the construction in [3] and, on the other hand, strong
enough to ensure some nice properties, for instance from the points of view of weak
fillings and adapted open book decompositions (other properties will also be analyzed
in Sect. 4.5).

As far as the weak-fillability is concerned, we prove the following:

Proposition C Let (M2n−1, ξ) be a contact manifold and η be a Bourgeois contact
structure on the trivial fiber bundle M × T

2 → T
2, that restricts to ξ on M ×

{pt} = M. If (M, ξ) is weakly filled by (X2n, ω), then (M ×T
2, η) is weakly filled by

(X × T
2, ω + ωT2), where ωT2 is an area form on T

2.

We point out that the result is already known in the case of the Bourgeois construc-
tion [3]. Indeed, the statement and the idea of the proof already appeared in Massot
et al. [37, Example 1.1]; see also Lisi et al. [35, Theorem A.a] for an explicit proof.

From the point of view of adapted open books, Bourgeois contact structures implic-
itly carry some information on open book decompositions supporting the contact
structures on each fiber:

Proposition D Let η be a Bourgeois contact structure on π : V → Σ . Then, there is
a map ψη that associate to each point b ∈ Σ an isotopy class of adapted open book
decompositions on (Mb, ξb) := (

π−1 (b) , η ∩ T
(

π−1 (b)
))

. Moreover, if γ (t), with
t ∈ (−ε, ε), is a path in an open set U of Σ over which π is trivialized, i.e. over
which π becomes the projection on the first factor prU : U × M → U, then the path
of isotopy classes ψη ◦ γ (t) comes from a path of open books (Bt , ϕt ) of {γ (t)} × M
such that its image via prM : U × M → M is an isotopy of open books on M.

In the case of the examples from [3], via the global prM : M × T
2 → M, the map

ψη gives the isotopy class of the open book (B, ϕ) used in the construction.

In order to prove Proposition D, we give a reinterpretation of adapted open books
in terms of pairs of contact vector fields:

Theorem E On a contact manifold (M2n−1, ξ), a supporting open book decomposition
gives a pair of contact vector fields X , Y , such that [X , Y ] is everywhere transverse to
ξ . Viceversa, such a pair of contact vector fields allows to recover a supporting open
book decomposition.

The first part of this result has been stated by Giroux in talks for the Yashafest in June
2007 and for the AIM workshop of May 2012 (see Giroux [23, Claim on page 19]).
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On some examples and constructions of contact manifolds 961

A more detailed statement and a detailed proof of Theorem E are given in Sect. 3.
We point out that this result does not only serve to prove Proposition D but also gives
another point of view on adapted open book decompositions, which is of independent
interest.

These reinterpretations and generalizations of [3,16] lead us to examples of high
dimensional contact manifolds with interesting tightness, fillability or overtwistedness
properties. As a byproduct, we obtain two new results, one concerning tight virtually
overtwisted contact structures and one concerning codimension 2 embeddings with
trivial normal bundle of contact 3-manifolds.

As far as the first result is concerned, we recall that a tight contact structure ξ on M
is called virtually overtwisted if its pullback̂ξ on a finite cover ̂M of M is overtwisted.
In this paper, we prove the following:

Theorem F Virtually overtwisted structures exist in all odd dimensions ≥ 3.

The proof of this result is by induction on the dimension. As far as the initialization step
is concerned, the existence of tight virtually overtwisted contact structures is known
in dimension 3 since Gompf [25]. The interested reader can also consult Giroux [21]
and Honda [29], which present a classification result for this type of contact structures
on particular 3-manifolds. The inductive step uses Propositions C and A above, i.e.
the fact that both the construction in [3] and contact branched coverings preserve the
weak fillability condition, and relies on the existence of supporting open books proven
by Giroux [22], on the Bourgeois construction [3] and on the “large” neighborhood
criterion for overtwistedness proven in [5, Theorem 3.1].

Another application concerns the following question: for a given contact manifold
(M, ξ = ker α), is there ε > 0 such that

(

M × D2
ε , ker

(

α + r2dϕ
))

is tight? Here,
D2

ε is the disk of radius ε and centered at the origin in R
2, and (r , ϕ) are its polar

coordinates.
This is linked to the problem of finding codimension 2 contact-embeddings with

trivial normal bundle in tight ambient manifolds. Indeed, having trivial normal bundle
and trivial conformal symplectic normal bundle is equivalent in codimension 2. Hence,
according to the contact neighborhood theorem (see for instance Geiges [17, Theorem
2.5.15]), if (M2n−1, ξ = ker α) embeds into (V 2n+1, η) with trivial normal bundle
then it admits a neighborhood

(

M × D2
r0 , ker

(

α + r2dϕ
))

, for a certain r0 > 0. In
particular, if (V , η) is tight, so is this neighborhood.

Historically, the first motivation for addressing the above question on the “size” of
the neighborhood of a codimension 2 submanifold is given byNiederkrüger and Presas
[39], where it is shown that “big” neighborhoods of contact overtwisted submanifolds
obstruct fillability of the ambient manifold. As reported in Niederkrüger [38], this led
Niederkrüger and Presas to conjecture that the presence of a chart contactomorphic to
a product of an overtwisted R

3 and a “large” neighborhood in R
2n with the standard

Liouville form could be the correct generalization of overtwistedness to dimensions
greater than 3. After the introduction in Borman et al. [2] of a definition of overtwisted
structures in all dimensions, Casals et al. [5] confirmed this conjecture, proving that
the presence of such a chart in a contact manifold is indeed equivalent to it being
overtwisted. More precisely, this follows from [5, Theorem 3.1], which states that, if
(M, ξ = ker α) is overtwisted, then

(

M × D2
R, ker

(

α + r2dϕ
))

is also overtwisted,
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962 F. Gironella

provided that R > 0 is sufficiently large. In particular, thismotivates the abovequestion
on the existence, for a given contact manifold (M, ξ = ker α), of an ε > 0 such that
(

M × D2
ε , ker

(

α + r2dϕ
))

is tight.
The problem of finding codimension 2 embeddings in tight manifolds has already

been explicitly addressed for instance by Casals et al. [6], Etnyre and Furukawa [11]
and Etnyre and Lekili [14]. More precisely, [6] proves that each 3-dimensional over-
twisted manifold can be contact-embedded with trivial normal bundle into an exact
symplectically fillable closed contact 5-manifold. In [11], the authors shows how
to embed many contact 3-manifolds into the standard contact 5-sphere. Finally, it
is proven in [14] that each 3-dimensional contact manifold contact-embeds in the
(unique) non-trivial S3-bundle over S2 equipped with a Stein fillable contact structure.

In this paper, we prove the following result:

Theorem G Each 3-dimensional contact manifold (M, ξ) with H1 (M;Q) �= {0}
embeds with trivial normal bundle in a hypertight closed (V 5, η).

Corollary H For each (M3, ξ = ker α) with H1 (M;Q) �= {0}, there is ε > 0 such
that

(

M × D2
ε , ker

(

α + r2dϕ
))

is tight.

We recall that a contact structure is called hypertight if it admits a defining formwith
no contractible closed Reeb orbit. Recall also that each hypertight contact manifold is
in particular tight, according to Hofer [28], Albers and Hofer [1] and Casals et al. [5].

Remark that, by the Poincaré’s duality and the universal coefficients theorem, the
condition H1 (M;Q) = {0} is equivalent to M being a rational homology sphere.
An analogue of Theorem G, with (V 5, η) symplectically fillable, is actually already
known both in the case of every contact structure on S3 and in the case of overtwisted
structures on any rational homology sphere. Indeed, the case of overtwisted rational
homology spheres (which includes the overtwisted S3’s) is covered in Casals et al. [6,
Proposition 11], and the standard tight 3-sphere (which is the unique tight contact
structure on S

3 up to isotopy according to Eliashberg [9]) naturally embeds in the
strongly fillable standard contact 5-sphere with trivial normal bundle.

The main ingredients we use in the proof of TheoremG are the existence of adapted
open book decompositions for contact 3-manifolds, due toGiroux, and a detailed study
of the dynamics of the Reeb flow of the contact forms constructed in [3].

More precisely, under the assumption H1 (M;Q) �= {0}, we will show that, up to
positive stabilizations, each open book decomposition (B, ϕ) of M can be supposed
to have binding components of infinite order in H1(M;Z). We will then show that
this allows us to get hypertight contact forms on M × T

2 using [3]. Finally, (M, ξ)

naturally embeds in the contact manifold constructed by Bourgeois as a fiber of the
fibration M × T

2 → T
2 given by the projection on the second factor.

We point out that an analogue of Theorem G for any M3 and with (V 5, η) tight
(and not necessarily hypertight) follows from Bowden et al. [4], where it is shown,
using part of the proof of Theorem G above, that the Bourgeois construction [3] on
any 3-dimensional manifold results in a contact structure on its product withT2 which
is tight, no matter what the original contact structure and supporting open books are.

As far as Corollary H is concerned, notice that it has recently been generalized to all
dimensions in Hernández-Corbato et al. [27] (without any assumption on H1 (M;Q)),
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On some examples and constructions of contact manifolds 963

with completely different techniques. More precisely, there the authors deduce such
a generalization from [27, Theorem 10], stating that every contact (2n − 1)-manifold
embeds with trivial conformal symplectic normal bundle in a Stein-fillable contact
(2n + 2m − 1)-manifold. This result relies on the h-principle from Cieliebak and
Eliashberg [7], and is an analogue of Theorem G in all dimensions, with less control
on the codimension.

Outline In Sect. 2, we give the announced new approach to contact branched cov-
erings, thus proving in particular Proposition A. We also analyze the stability of the
weak fillability condition under contact branched covering, thus proving Theorem B.

Section 3 describes the equivalent formulation, based on an idea by Giroux [23], of
open book decompositions supporting contact structures in terms of pairs of contact
vector fields and it contains the proof of Theorem E.
Then, we rephrase and generalize in Sect. 4 the construction by Bourgeois using the
notion of contact fiber bundle introduced in Lerman [34]. In particular, we give the
definition of Bourgeois contact structures and prove Proposition D.

Section 5 contains the study of the weak fillability of Bourgeois contact structures,
hence the proof of Proposition C, and the proof of Theorem F.
Lastly, in Sect. 6 we analyze the Reeb dynamics of the contact forms in Bourgeois [3]
and we prove Theorem G and Corollary H.

2 Contact branched coverings

In Sect. 2.1, we give a definition of contact branched coverings that allows to naturally
obtain uniqueness statements; we will in particular prove Proposition A stated in the
introduction. We point out that the proofs in this section are mainly a reformulation
of those in Geiges [16].

An analogous analysis can be carried out in the case of contact fiber sums, but, as
it is not necessary for our purposes, it will not be presented here and we redirect the
interested reader to Gironella [18, Section 5.3].

Then, Sect. 2.2 contains a proof of Theorem B stated in the introduction, i.e. of the
fact that, under some natural assumptions, contact branched coverings of a weakly
fillable contact manifold are also weakly fillable.

2.1 Definition and uniqueness

Suppose π : ̂V 2n+1 → V 2n+1 is a branched covering map of manifolds without
boundary, branched along the codimension 2 submanifold M2n−1 ⊂ V . Let ̂M2n−1

be the locus of points of ̂V with branching index> 1 and M its projectionπ(̂M). In the
following,wewill also refer to ̂M2n−1 asupstairs branching set and to M asdownstairs
branching set. Consider now η a contact structure on V such that ξ := η ∩ T M is a
contact structure on M .

The pullback π∗η is a well defined hyperplane field on ̂V , because if we fix a
contact form α for η then π∗α is nowhere vanishing. Though, π∗η is not a contact
structure, because at each point p̂ of ̂M we have π∗(α ∧ dαn)| p̂ = 0. Nonetheless,
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964 F. Gironella

the restriction of π∗η to ̂M is a honest contact structure on ̂M . We then want to show
that π∗η gives a “natural” way to construct contact structures on ̂V .

We start by considering a more general setting. Let Y 2n+1 be a smooth manifold,
Z2n−1 a codimension-2 submanifold and η a hyperplane field on Y .

Definition 2.1 We say that η is adjusted to Z if it is a contact structure away from Z
and η ∩ T Z is a contact structure on Z . If that’s the case, we also call contactization
of η a contact structure ξ such that there is a smooth path {ηs}s∈[0,1] of hyperplane
fields, all adjusted to Z , starting at η0 = η and ending at η1 = ξ , such that ηs is a
contact structure for all s ∈ (0, 1].
Proposition 2.2 Let η be a hyperplane field on Y adjusted to Z. Contactizations of η

exist and are all isotopic.

Recall from Eliashberg and Thurston [10, Section 1.1.6] that a confoliation is a
hyperplane field ζ = ker α that admits a complex structure J : ζ → ζ tamed by dα|ζ ,
i.e. such that dα(X , J X) ≥ 0 for all vector fields X tangent to ζ .
We point out that, in our situation we can talk directly about confoliations adjusted to a
certain codimension 2 submanifold. Indeed, if η is a hyperplane field on Y adjusted to
a 2-codimensional submanifold Z , then η is in particular a confoliation. This follows
from Proposition 2.2 and the following:

Fact 2.3 Let (ηn)n∈N be a sequence of contact structures on a compact manifold Y 2n+1

which C1-converges to a hyperplane field η on Y . Then, η = ker α admits a complex
structure J tamed by dα|η.

Idea of proof (Fact 2.3) A first attempt could be to take, for each k ∈ N, a complex
structure Jk on ηk = ker αk tamed by dαk |ηk (which exists because ηk is a contact
structure) and to define J as “the limit” of the sequence (Jk)k∈N. However, such a
limit does not necessarily exist for a general choice of Jk .

The solution is hence to ensure the orthogonality of each of the Jk with respect to
an auxiliary Riemannian metric g, using the polar decomposition of matrices. By the
compactness of the space of vector bundle isomorphisms of T Y preserving the metric
g, one can now find a subsequence (Jk j ) j∈N converging to a certain J , which is hence
a complex structure on η tamed by dα|η. 
�

Proposition 2.2 is a consequence of the following lemma, which deals with the
more general situation of any number of parameters:

Lemma 2.4 Given K a compact set and (ηk)k∈K a smooth K -family of confoliations
on V adjusted to M, there is a smooth family of confoliations

(

ηs
k

)

s∈[0,1], k∈K such

that
(

ηs
k

)

s∈[0,1] is contactization of ηk , for each k ∈ K . Moreover, if ηk is contact for
all k in a closed subset H ⊂ K , then ηs

k can be chosen so that ηs
k = ηk for all k ∈ H

and s ∈ [0, 1].
Proof of Proposition 2.2 The existence of contactizations follows directly fromLemma
2.4 with K a point. We then prove their uniqueness up to isotopy.
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On some examples and constructions of contact manifolds 965

Given two contactizations ξ, ξ ′ of η, we have by definition two associated paths of
adjusted confoliations ηt , η

′
t , with t ∈ [0, 1], such that η0 = η′

0 = η, η1 = ξ , η′
1 = ξ ′

and ηt , η
′
t contact for t ∈ (0, 1]. Then, the path

t �→ η̂t :=
{

η1−2t if t ∈ [0, 1/2]
η′
2t−1 if t ∈ [1/2, 1] (1)

is a continuous path of adjusted confoliations from η̂0 = ξ to η̂1 = ξ ′. Moreover, up to
perturbing it smoothly at t = 1/2, we can suppose that η̂t is smooth in t . Then, applying
Lemma 2.4 to η̂t , with K = [0, 1] and H = {0, 1}, we get a family

(

η̂s
t

)

s∈[0,1], t∈[0,1]
of adjusted confoliations such that η̂s

0 = ξ , η̂s
1 = ξ ′ for all s ∈ [0, 1] and such that η̂s

t
is contact for s > 0. The subfamily η̂1t is then a path of contact structures from ξ to
ξ ′, and it can be turned into an isotopy by Gray’s theorem.

Proof of Lemma 2.4 This proof follows almost step by step the construction and the
computations made in Geiges [16, Section 2].

Because of the C1-openness of the contact condition, there is an open subset U
of K which contains H and such that ξk is contact for all k ∈ U . We then consider
a smooth cut-off function ρ : K → [0, 1], equal to 0 on H and equal to 1 on the
complement of U .

Take now an auxiliary Riemannian metric on V and consider the circle bundle
S (N M) given by the vectors of norm 1 in the normal bundle N M of M inside V .
Let γ be a connection form on S (N M), i.e. a nowhere vanishing 1−form defining
a hyperplane field which is transversal to the fibers of the fibration S (N M) → M .
Using the natural retractionR2\{0} → S

1, γ can also be seen as a 1−form onN M\M .
Moreover, the form r2γ , where r is the radial coordinate inN M\M , extends smoothly
to N M .

We consider then a non-increasing cut-off smooth function g = g(r) which is 1
near r = 0 and vanishes for r > 1 and we identify N M with a neighborhood of M
inside V . If αk is a smooth K -family of 1-forms defining ξk , set

αs
k := αk + sερ(k)g(r)r2γ .

Here ε is a positive real constant which will be chosen very small later. Suppose, with-
out loss of generality, that ε ≤ 1. Remark that ξ s

k := αs
k is a well defined hyperplane

field. Moreover, it is adjusted to M , for all values of s, k.
We then need to show that, for an ε small enough, ξ s

k is actually a contact structure
on V for all s > 0, k ∈ K . We can compute

αs
k ∧ (dαs

k

)n = αk ∧ (dαk)
n

+ nsε
[

rg′ (r) + 2g (r)
]

ρ (k) αk ∧ (dαk)
n−1 ∧ rdr ∧ γ

+ sεr2g (r) ρ (k) h vol

where vol is the Riemannian volume form on V and h is a function of p ∈ V , k ∈ K ,
s ∈ [0, 1], ε ∈ R+ and is polynomial in ε.
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966 F. Gironella

Consider the smooth functions Pk, Qk : V → R such that αk ∧ (dαk)
n = Pk vol

and n
[

rg′ (r) + 2g (r)
]

αk ∧ (dαk)
n−1 ∧ rdr ∧ γ = Qk vol. Let also Rk(ε) := r2

g (r) h(ε, k). Then,

αs
k ∧ (dαs

k

)n = {Pk + sερ (k) [Qk + Rk (ε)]} vol .

Now, Qk > 0 and Rk(ε) = 0 along ̂M , for all k ∈ K and ε ∈ [0, 1] (remark we allow
here ε = 0). Hence, by compactness of ̂M and [0, 1], there is an open neighborhood
O of ̂M inside ̂V such that Qk + Rk(ε) > 0 on O for all ε ∈ [0, 1].
Pk is independent of ε, s and is non-negative everywhere on ̂V for all k. Moreover, Pk

is positive on the complement of O for all k ∈ K , and even on all ̂V if k ∈ U ⊂ K
(remember ξk is contact if k ∈ U ).

Then, Pk + sερ (k) [Qk + Rk (ε)] > 0 on O, for all k ∈ K and all ε ∈ (0, 1].
Finally, for ε very small, Pk dominates sερ(k) [Qk + Rk (ε)] wherever it is positive,

because the latter is bounded above in norm (recall we are working with ε ≤ 1).
Hence, by compactness of ̂V \O, Pk + sερ (k) [Qk + Rk (ε)] is also positive on the
complement of O for all k ∈ K , for ε > 0 small enough. 
�

Coming back to the specific case of branched coverings, the hyperplane field π∗η
on ̂V is adjusted to ̂M (and is then in particular a confoliation).

Definition 2.5 We say that a contact structure on ̂V is a contact branched covering of
η if it is a contactization of π∗η and it is invariant under all the diffeomorphisms of ̂V
covering the identity of V .

We point out that, by definition of contactization, if η̂ is a contact branched covering
of η, the upstairs branching locus ̂M is naturally a contact submanifold in (̂V , η̂). Then,
Proposition 2.2 easily implies the following:

Proposition 2.6 Let ̂V → V be a smooth branched covering and η a contact structure
on V . Then, contact branched coverings of η on ̂V exist and are all isotopic (among
contact branched coverings).

Wepoint out that, in order to deduce this result fromProposition 2.2, the contactization
in the statement Proposition 2.2 has to be invariant under deck transformations of π , as
requested in Definition 2.5, and the isotopy has to be among invariant contactizations.
From the explicit formula in the proof of Lemma 2.4 above, it’s clear that both these
conditions can be easily arranged.

Remark also that Proposition A stated in the introduction is a simple consequence
of Gray’s theorem and the fact that contact branched coverings exist and are unique
up to isotopy. Indeed, the [0, 1]-families of hyperplane fields in points 1 and 2 in the
statement of Proposition A are automatically adjusted to the upstairs branching locus
for small parameters t ≥ 0.

2.2 Effects of branched coverings on weak fillings

Wewill use in this section the notion ofweak fillability introduced inMassot et al. [37],
in the following computation-friendly form:
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Definition 2.7 [37]We say that (W , ω) weakly fills (V , η), or thatω weakly dominates
ξ , if, for one (hence every) 1-form α defining η, α ∧ (ω + τdα)n is a positive volume
form on V for all τ ≥ 0.

Consider now a branched covering π : ̂W 2n+2 → W 2n+2 of even dimensional
manifolds with non-empty boundaries ̂V 2n+1 = ∂ ̂W and V 2n+1 = ∂W . Let also ̂X2n

be the upstairs branching set, X the downstairs branch set, M, ̂M the boundaries of
X , ̂X respectively and π ′ the restriction π |

̂V : ̂V → V . Here’s a more detailed version
of Theorem B from Sect. 1:

Theorem 2.8 Suppose we are in the following situation:

(a) η is a contact structure on V and ξ := η ∩ T M is contact on M;
(b) η̂ on ̂V is a contact branched covering of (V , η);
(c) ω on W weakly dominates η on V ;
(d) X is a symplectic submanifold of (W , ω) and it weakly fills (M, ξ).

Then, ̂W admits a symplectic form ω̂ that weakly dominates η̂ on ̂V .

Notice that, because π ′|
̂M : ̂M → M is a (unbranched) covering map, ̂ξ

:= (

π ′|
̂M

)∗
ξ = η̂ ∩ T ̂M is a contact structure on ̂M .

Proof Consider the normal bundle of ̂X inside ̂W and view it as a neighborhood ̂U of
̂X . Similarly for a neighborhood ̂O of ̂M in ̂V . In particular, we have a norm function
on ̂U and ̂O, and we can denote by ̂Ur , ̂Or the set of vectors of norm less than r .

Fix now an arbitrary smooth function f : ̂W → R≥0, compactly supported in ̂U1,
depending only on r , non-increasing in it, and equal to 1 on a neighborhood of ̂X .
Denote also by g its restriction to ̂V = ∂ ̂W . Notice that in particular f ′(r) = 0, hence
g′(r) = 0, for r = 0.

Let now δ be a connection 1-form on the circle bundle ŜU given by the vectors
of norm 1 in ̂U . Denote also by γ the restriction of δ to the sub-bundle ŜO given by
the vectors of norm 1 in ̂O. Notice that γ is in particular a connection form on ŜO.
The explicit formula in the proof of Lemma 2.4 then shows that, up to isotopy, we can
assume that the contact branched covering η̂ is the kernel of α̂ε := π∗α + εg(r)r2γ ,
for every ε smaller than or equal to a certain constant ε0 > 0.

As far as the symplectic structure on ̂W is concerned, consider the closed 2-form
ω̂ε := π∗ω + ε d

(

f (r)r2δ
)

on ̂W , where ε > 0.

Claim 2.9 There is ε1 > 0 such that ω̂ε is symplectic on ̂W for all 0 < ε < ε1.

Proof of Claim 2.9 We have ω̂ε = π∗ω + ε
(

2 f + r f ′) rdr ∧ δ + ε f r2dδ, so that

ω̂n+1
ε =

[

π∗ω + ε
(

2 f + r f ′) rdr ∧ δ + ε f r2dδ
]n+1

= π∗ωn+1 + (n + 1) ε
(

2 f + r f ′)π∗ωn ∧ rdr ∧ δ

+ εr2 f hvol ,

where vol is a volume form on W and h is a smooth function depending on p ∈ ̂W
and on ε > 0. Using that π∗ω is symplectic on the complement of ̂X and that the
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restriction of ω to X is symplectic on X , we can then conclude, as we did in the proof
of Lemma 2.4, that ω̂n+1

ε > 0 for ε small enough. 
�
We then want to show that ω̂ε weakly dominates η̂ = ker(̂αε), provided that ε > 0

is small enough (and in particular such that ε < ε := min (ε0, ε1)). In other words,
we need to check that, if ε is small enough, the following is satisfied:

α̂ε ∧ (ω̂ε,V + τdα̂ε

)n
> 0, ∀τ ≥ 0 ,

where ω̂ε,V denotes the pullback of ω̂ε via the inclusion ̂V ↪→ ̂W , i.e.

ω̂ε,V = π∗ωV + εd
(

gr2γ
)

= π∗ωV + ε
(

2g + rg′) rdr ∧ γ + εgr2dγ .

Using that dα̂ε = π∗α + ε
(

2g + rg′) rdr ∧ γ + εr2gdγ , we can compute

α̂ε∧ (ω̂V + τdα̂ε)
n

=
(

π∗α + εgr2γ
)

∧ [π∗ωV + τπ∗dα

+ ε (1 + τ)
(

rg′ + 2g
)

rdr ∧ γ + ε (1 + τ) gr2dγ
]n

= π∗ [α ∧ (ωV + τdα)n]

+ nε (1 + τ)
(

rg′ + 2g
)

π∗ [α ∧ (ωV + τdα)n−1
]

∧ rdr ∧ γ

+ εgr2hvol ,

where vol is a volume form on ̂V and h is a smooth function of p̂ ∈ ̂V , ε and τ , which
is moreover polynomial in ε and in τ , with degτ h ≤ n.

Denote now by P0(τ ) and P1(τ ) the polynomials in τ , with coefficients in the ring
of functions ̂V → R, defined respectively by the identities

P0(τ ) vol = π∗ [α ∧ (ωV + τdα)n] ,

P1(τ ) vol = n (1 + τ)
(

rg′ + 2g
)

π∗ [α ∧ (ωV + τdα)n−1
]

∧ rdr ∧ γ .

Similarly, denote by P2(τ, ε) the polynomial in τ and ε given by P2(τ, ε) = gr2h.

Claim 2.10 For all τ ≥ 0, P0(τ ) is non-negative everywhere on ̂V and positive away
from ̂M.

Proof of Claim 2.10 This follows from the fact that (W , ω) is a weak filling of (V , η)

and that π |
̂V is a branched cover with (upstairs) branching locus ̂M . 
�

Claim 2.11 There are constants0 < ε′
0 < ε andr0 > 0, such that P1(τ )+P2(τ, ε) > 0

on ̂Or0 for all 0 ≤ ε < ε′
0 and all τ ≥ 0.
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Notice that we allow ε = 0 in its statement. The proof of Claim 2.11 will follow after
the end of the proof of Theorem 2.8.

According to Claims 2.10 and 2.11, we have that α̂ε ∧ (ω̂V + τdα̂ε)
n is a positive

volume form on ̂Or0 , for all 0 < ε < ε′
0 and all τ ≥ 0. (Notice that here ε �= 0.)

Then, the following result, whose proof is also postponed, concludes the proof of
Theorem 2.8:

Claim 2.12 There is 0 < ε′
1 < ε′

0 such that P0(τ ) + ε [P1 (τ ) + P2 (τ, ε)] > 0 on the
complement of ̂Or0/2, for all 0 ≤ ε < ε′

1 and all τ ≥ 0. 
�
We now give a proof of Claims 2.11 and 2.12 above. They are corollaries of the

following fact, whose proof is easy and omitted:

Fact 2.13 Consider a smooth manifold S and a continuous function p : S ×R≥0 → R

such that, for each s ∈ S, ps : R≥0 → R defined by ps(τ ) := p(s, τ ) is polynomial
in τ . Suppose there is s0 ∈ S and a neighborhood U of s0 such that for all s ∈ U the
followings are satisfied:

1. degτ

(

ps0

) ≥ degτ (ps);
2. the leading coefficient of ps0 is positive.

Then, there is a neighborhood O of s0 contained in U such that, for all s ∈ O, the
minimum ms of ps exists and it depends continuously on s. In particular, if moreover
ms0 > 0, then ms > 0 for s sufficiently near to s0.

Proof of Claim 2.11 Wewould like to use Fact 2.13, with S := ̂V ×[0, ε) and P := P1
+ P2 : S × R≥0 → R, i.e. Pq,ε(τ ) is given by [P1 (τ ) + P2 (τ, ε)] (q) for (q, ε) ∈
S = ̂V × [0, ε); notice that we allow ε = 0 here.
Consider the compact set K := ̂M × {0} in S. If (q, 0) ∈ K , then

P(q,0) · vol(q,0) = [

P1 (τ )q + P2 (τ, 0)q
]

vol(q,0)

= P1 (τ )q vol(q,0)

= 2n (1 + τ)
{

π∗ [α ∧ (ωV + τdα)n−1
]

∧ rdr ∧ γ
}

q
,

which is positive because the restriction of ω to X weakly dominates ξ on M = ∂ X .
Thus, for (q, 0) ∈ K , P(q,0) has positive leading coefficient andm(q,0) > 0.Moreover,
for each (q, 0) ∈ K , degτ

(

P(q,0)
) = n ≥ degτ (Ps) for all s ∈ S = ̂V × [0, ε). One

can then applyFact 2.13,which, by compactness of K , tells that there is a neighborhood
U of K in S such that ms exists and is positive for all s ∈ U . Now, U contains an open
set of the form {r < r0, ε < ε′

0} ⊂ S = ̂V × [0, ε), which concludes. 
�
Proof of Claim 2.12 Weuse again Fact 2.13. Here, S := ̂Oc

r0/2×[0, ε′
0), where ̂Oc

r0/2 is the

complement of ̂Or0/2 in ̂V and r0, ε′
0 are given by Claim 2.11. Also, P : S ×R≥0 → R

is here defined as

P(p,ε)(τ ) = P0(τ )|p + ε [P1 (τ ) + P2 (τ, ε)] (p)

for (p, ε) ∈ S. Notice that once again we allow ε = 0.
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Then, if K := ̂Oc
r0/2 × {0}, P(q,0) = P1(τ )q for all (q, 0) ∈ K , hence it is positive by

Claim 2.10. In particular, P(q,0) has positive leading coefficient and positive minimum
m(q,0) for all (q, 0) ∈ K . Moreover, degτ

(

P(q,0)
) = n ≥ degτ

(

P(p,ε)

)

, for all
q, p ∈ ̂Oc

r0/2 and ε ∈ [0, ε′
0). Fact 2.13 then implies, by compactness of K , that P(p,ε)

admits a minimum m(p,ε), which is moreover positive in a neighborhood of K .

3 Open books and contact vector fields

In this section we prove the reinterpretation of adapted open book decompositions in
terms of contact vector fields described in Theorem E. A part of this result has been
stated by Giroux during the Yashafest in June 2007 and the AIM workshop in May
2012; see Giroux [23, Claim on page 19].

More precisely, in Sect. 3.1 we describe how to obtain a pair of contact vector
fields with Lie bracket everywhere transverse to ξ from the data of an open book
decomposition supporting a contact structure. This is the part of Theorem E that has
already been stated in [23]. Section 3.2 deals with the converse, i.e. contains the proof
of the fact that it is also possible to recover a supporting open book from such a pair
of contact vector fields.

3.1 From open books to contact vector fields

We have the following more precise version of the first part of Theorem E:

Proposition 3.1 (stated in Giroux [23]) Let (B, ϕ) be an open book decomposition of
M2n−1 supporting ξ . Denote by α a contact form defining ξ such that dα is symplectic
on the fibers of ϕ. Then, there is a smooth function φ : M → R

2 defining (B, ϕ) such
that the contact vector fields X and Y , associated via α respectively to the contact
Hamiltonians φ1 and −φ2, have Lie bracket [X , Y ] negatively transverse to ξ .

Recall from Giroux [22] that an open book decomposition (B, ϕ) on M is said to
support a contact structure ξ if B is a positive contact submanifold and there is a defin-
ing 1-formα for ξ such thatdα is positively symplectic on thefibers ofϕ : M\B → S

1.
In the statement of Proposition 3.1 above, by “φ : M → R

2 defining (B, ϕ)” wemean
that φ is transverse to 0 ∈ R

2, that B = φ−1(0), and that φ/‖φ‖ : M\φ−1(0) → S
1

coincides with ϕ.

Proof of Proposition 3.1 Let φ = (φ1, φ2) : M → R
2 be a smooth function defining

(B, ϕ). Consider then ε > 0 such that α∧dαn−2∧dφ1∧dφ2 is positive on {∥∥φ∥∥ < ε}.
Such an ε exists because α induces a contact form on B = φ−1(0).

Consider now a smooth function f : M → R>0, depending only on ‖φ‖ in a non-
decreasing way, equal to 1 for ‖φ‖ < ε/2 and equal to 1/‖φ‖ for ‖φ‖ > ε. Let then
φ := f φ : M → R

2; in particular, φ defines (B, ϕ) too. Consider also ρ := ‖φ‖ and
θ := φ/ρ : M\B → S

1, and notice that θ = ϕ. We claim that

Ω := nρ2dθ ∧ dαn−1 + n(n − 1)ρdρ ∧ dθ ∧ α ∧ dαn−2
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is a volume form on M . Indeed, the first term is non-negative everywhere and positive
away from B, because dα is symplectic on the fibers of θ = ϕ, and the second term
is positive along B and non-negative everywhere, by choice of f .

We then denote by X , Y the contact vector fields associated, respectively, to the
contact hamiltonians φ1,−φ2 via the contact form α given in the statement. Because
ρ2dθ = φ1dφ2 − φ2dφ1 and ρdρ ∧ dθ = dφ1 ∧ dφ2, we have

Ω = n [−α (X) d (α (Y )) + α (Y ) d (α (X))] ∧ dαn−1

− n(n − 1)d (α (X)) ∧ d (α (Y )) ∧ α ∧ dαn−2 . (2)

Notice now that α ∧ d (α (Y )) ∧ dαn−1 = 0 on M , because dim M = 2n − 1. Hence,
ιX
[

α ∧ d (α (Y )) ∧ dαn−1
] = 0, which, using the graded Leibniz rule for the interior

product, gives

α(X) d (α (Y )) ∧ dαn−1 = X · (α (Y )) α ∧ dαn−1

−(n − 1)α ∧ d (α (Y )) ∧ dα(X , ·) ∧ dαn−2 . (3)

(Here, we adopted the notation Z · f = d f (Z) for a smooth function f and a vector
field Z .) Exchanging the roles of X and Y in Equation (3), we also get

α(Y ) d (α (X)) ∧ dαn−1 = Y · (α (X)) α ∧ dαn−1

−(n − 1)α ∧ d (α (X)) ∧ dα(Y , ·) ∧ dαn−2 . (4)

As X and Y are contact vector fields for ξ , one also has

d (α (X)) |ξ = −dα(X , ·)|ξ and d (α (Y )) |ξ = −dα(Y , ·)|ξ . (5)

Then, Eqs. (2)–(5) give

Ω = − nX · (α (Y )) α ∧ dαn−1 + nY · (α (X)) α ∧ dαn−1

+n(n − 1)α ∧ dα(X , .) ∧ dα(Y , .) ∧ dαn−2 . (6)

Again for dimensional reasons, dαn = 0 on M , so that ιX ιY dαn = 0, i.e.

(n − 1)dα(X , .) ∧ dα(Y , .) ∧ dαn−2 = dα(X , Y ) dαn−1 .

Then, Eq. (6) finally becomes

Ω = − n [X · (α (Y )) + Y · (α (X)) + dα(X , Y )] α ∧ dαn−1

= − nα ([X , Y ]) α ∧ dαn−1 .

As Ω is a volume form on M and α is a positive contact form, [X , Y ] must then be
negatively transverse to ξ . 
�
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3.2 From contact vector fields to open books

We have the following converse to Proposition 3.1.

Proposition 3.2 Let (M2n−1, ξ) be a closed contact manifold. Suppose X, Y are two
contact vector fields with Lie bracket [X , Y ] everywhere negatively transverse to ξ .
Then, if we denote Xθ := cos θ X + sin θ Y and Yθ := Xθ+π/2 for θ ∈ S

1, we have
the following:

(a) The set Σθ := {Xθ ∈ ξ} is a non-empty regular hypersurface, which is moreover
ξ -convex.

(b) For θ �= θ ′ mod π , the intersection K := Σθ ∩Σθ ′ is non-empty, transverse and
doesn’t depend on the choice of θ , θ ′.

(c) For each θ ∈ S
1, consider the set

Fθ := {

p ∈ Σθ | Yθ (p) is positively transverse to ξp
}

,

and define ϕ : M\K → S
1 as ϕ(p) := θ if p ∈ F−θ . Then, (K , ϕ) is an open

book decomposition of M, which is moreover adapted to ξ .

Recall from Giroux [19] that a hypersurface Σ in M is called ξ -convex if there is
a vector field Z which is contact for ξ and transverse to Σ .

The rest of Sect. 3.2 is devoted to the proof of the above result, which is a more
detailed version of the second part of Theorem E. To improve readability, each claim
in this section will be proved right after the conclusion of the part of the proof in which
it is used.

Let α be a contact form for ξ and denote by f , g : M → R the smooth functions
given by LXα = f α and LY α = gα respectively (these functions exist because X
and Y are contact vector fields). For the proof of point (c) we will need to change this
α conveniently.

Fact 3.3 For all θ ∈ S
1, Xθ , Yθ are contact vector fields, and [Xθ , Yθ ] = [X , Y ].

Proof of Proposition 3.2 (a) We start by proving that α (Xθ ) is somewhere zero, i.e. that
Σθ = {α (Xθ ) = 0} is non-empty.

Suppose by contradiction this is not the case, i.e.α (Xθ ) > 0without loss of general-
ity. If we define β := 1

α(Xθ )
·α, then Xθ = Rβ . By Fact 3.3, we have β ([Xθ , Yθ ]) = β

([X , Y ]) < 0. On the other hand, we also have [Xθ , Yθ ] = [Rβ, Yθ ], so that

β ([Xθ , Yθ ]) = β([Rβ, Yθ ])
(i)= [−dβ(Rβ, Yθ ) + d (β (Yθ )) (Rβ) − d

(

β
(

Rβ

))

(Yθ )
]

(i i)= d (β (Yθ )) (Rβ) .

(7)

Here, for (i) we used the fact that β([Rβ, Yθ ]) = −dβ(Rβ, Yθ ) + d (β (Yθ )) (Rβ) −
d
(

β
(

Rβ

))

(Yθ ) by the formula for the exterior derivative of differential forms, and for
(i i) we used that dβ(Rβ, .) = 0 and β(Rβ) = 1. Now, β (Yθ ) is a function defined on
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the compact manifold M , hence it has at least one critical point. This contradicts Eq.
(7) and the fact that β ([Xθ , Yθ ]) < 0, thus proving that α (Xθ ) is somewhere zero.

In order to conclude the proof, it is then enough to show that

d (α (Xθ )) (Yθ ) = −α ([X , Y ]) along Σθ . (8)

Indeed, this tells that α (Xθ ) : M → R is transverse to {0} ⊂ R, i.e. Σθ is a smooth
hypersurface, and that, more precisely, the contact vector field Yθ is transverse to Σθ ,
i.e. the latter is ξ−convex. We then proceed to prove Eq. (8).

Using the formula for the exterior derivative, we compute

dα (Xθ , Yθ ) = d (α (Yθ )) (Xθ ) − d (α (Xθ )) (Yθ ) − α ([Xθ , Yθ ]) . (9)

Also, by Fact 3.3 there are fθ , gθ : M → R such that

fθ α = LXθ α = dιXθ α + ιXθ dα and gθ α = LYθ α = dιYθ α + ιYθ dα . (10)

Now, evaluating these last two equations respectively on Yθ and Xθ gives

d (α (Xθ )) (Yθ ) = fθ α (Yθ ) − dα (Xθ , Yθ ) ,

d (α (Yθ )) (Xθ ) = gθ α (Xθ ) + dα (Xθ , Yθ ) .
(11)

Substituting inside Eq. (9), we get dα (Xθ , Yθ ) = gθ α (Xθ ) + dα (Xθ , Yθ )

− fθ α (Yθ ) + dα (Xθ , Yθ ) − α ([Xθ , Yθ ]), which, using α (Xθ ) = 0 (we are inter-
ested in points p ∈ Σθ ), gives−dα (Xθ , Yθ )+ fθ α (Yθ ) = −α ([Xθ , Yθ ]). Replacing
this identity inside Eq. (11) gives d (α (Xθ )) (Yθ ) = −α ([Xθ , Yθ ]). Then, again by
Fact 3.3, we have d (α (Xθ )) (Yθ ) = −α ([Xθ , Yθ ]) = −α ([X , Y ]). 
�

We point out a direct consequence of Eq. (8) and another lemma, which we will
both need later.

Corollary 3.4 d (α (Yθ )) (Xθ ) = α ([X , Y ]) on all of Σθ+π/2 = {α(Yθ ) = 0}.
In particular, along Σθ ∩Σθ+π/2 (which we will show below to be independent of θ and
denote by K ), we have both d (α (Xθ )) (Yθ ) = −α ([X , Y ]) and d (α (Yθ )) (Xθ ) =
α ([X , Y ]), which also implies dα(Xθ , Yθ ) = α ([X , Y ]) < 0.

Lemma 3.5 Xθ is tangent to Σθ . Moreover, it is transverse to ∂ Fθ = Σθ ∩ Σθ+π/2
and points outwards from Fθ .

Proof of Lemma 3.5 Evaluating the left identity in Eq. (10) on Xθ at points p ∈ Σθ ,
we get d (α (Xθ )) (Xθ ) |p = 0, i.e. Xθ is tangent to Σθ .
The second part of the statement follows from the fact that α (Yθ ) = 0 along ∂ Fθ =
Σθ ∩ Σθ+π/2 (by definition of Σθ+π/2), and that d (α (Yθ )) (Xθ ) < 0 along ∂ Fθ by
Corollary 3.4. Indeed, this means that Xθ points in the region where α (Yθ ) < 0 along
∂ Fθ , being always tangent to Σθ , i.e., by definition of Fθ , that it points outwards from
Fθ along its boundary. 
�
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Proof of Proposition 3.2.(b) Σθ ∩ Σθ ′ is non-empty because at the previous point we
showed that Yθ is a contact vector field transverse to Σθ , and we know from convex
surface theory that {α(Yθ ) = 0} ∩ Σθ ⊂ Σθ is a dividing set for the characteristic
foliation Σθ(ξ), and that dividing sets are always non-empty. This last statement is a
consequence of the fact that there are no exact symplectic forms on closed manifolds
due to Stokes’ identity.

Let’s now prove that, for θ �= θ ′ mod π , Σθ ∩ Σθ ′ is independent of θ, θ ′.
We have that Σθ ∩ Σθ ′ = {α (Xθ ) = 0, α (Xθ ′) = 0}. Now, if we consider
the function ν = (α (X) , α (Y )) : Σθ ∩ Σθ ′ → R

2, the equation α (Xθ ) =
cos (θ) α (X) + sin (θ) α (Y ) = 0 tells us that, where ν is non-zero, it has to be pro-
portional to (− sin (θ) , cos (θ) ), whereas the equation α (Xθ ′) = cos

(

θ ′) α (X) +
sin
(

θ ′) α (Y ) = 0 tells that, where ν is non-zero, it has to be proportional to
(− sin

(

θ ′) , cos
(

θ ′) ). Because θ �= θ ′ mod π , this means ν ≡ 0. In other words,
Σθ ∩ Σθ ′ is equal to ν−1(0), i.e. it is independent of θ, θ ′. We will denote it K , as in
the statement.

Finally, we prove that K is a codimension 2 submanifold of M . For that, it is enough
to find a vector field tangent to Σθ ′ and transverse to Σθ at every point of K . Because
K = Σθ ∩ Σθ ′ is independent of θ, θ ′, we can suppose that θ = 0 and θ ′ = π/2.
This being said, the contact vector field Y serves well to our purposes. In fact, in the
proof of point (a), we showed that Y = Xπ/2 is transverse to Σ0; moreover, it is also
tangent to Σπ/2, because Xθ is tangent to Σθ according to Lemma 3.5. 
�

It now only remains to prove Proposition 3.2.(c). We use the following:

Lemma 3.6 (Giroux) Let (M2n−1, ξ) be a contact manifold. Suppose there are an
open book decomposition (K , ϕ) of M (in particular, K is oriented as boundary of
ϕ−1 (θ)), a tubular neighborhood N = K × D2 of K (here D2 is the open unit disk
in R

2) and a contact form α defining ξ such that:

(i) ϕ restricted to N \K is the angular coordinate of the projection on the second
factor N = K × D2 → D2;

(ii) ξ induces a positive contact structure on each submanifold Kz := K × {z} of N
(notice each Kz is oriented because K is);

(iii) dα induces a positive symplectic form on each fiber of ϕ|M\N .

Then, the open book decomposition (K , ϕ) supports the contact structure ξ .

Proof of Lemma 3.6 Let α be a contact form for ξ as in the statement. The aim is to
find a function f : M → R+ such that d( f α) is positively symplectic on the fibers
of ϕ.

Notice that Hypothesis (iii) implies that there is a very small ε > 0 such that dα is

a symplectic form on each fiber of the restriction of ϕ to M\K × D2
1−ε , where D2

1−ε

is the disk of radius 1− ε in R2. We then search the function f of the following form:
f is a smooth function that depends only on the radius coordinate r on D2 inside N ,
non-increasing in r , which is equal to 1 on M\K × D2

1−ε/2 and equal to 1+ e−kr2 on

K × D2
1−ε , where k > 0 is a constant yet to determine. We can then compute
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dϕ ∧ d ( f α)n−1 = dϕ ∧ ( d f ∧ α + f dα )n−1

= f n−1dϕ ∧ dαn−1 + (n − 1) f n−2dϕ ∧ ∂ f

∂r
dr ∧ α ∧ dαn−2

= f n−2
[

f dϕ ∧ dαn−1 − (n − 1)
∂ f

∂r
dr ∧ dϕ ∧ α ∧ dαn−2

]

.

Now, on M\K × D2
1−ε/2 we have that f α = α, hence dϕ ∧d( f α)n−1 > 0 as wanted.

We then need to control its sign on K × D2
1−ε/2.

Let’s start by analyzing it on K × D2
1−ε . Here,

∂ f
∂r = −2kre−kr2 , so that

f dϕ ∧ dαn−1 − (n − 1)
∂ f

∂r
dr ∧ dϕ ∧ α ∧ dαn−2

= e−kr2
[

dϕ ∧ dαn−1 + 2 (n − 1) krdr ∧ dϕ ∧ α ∧ dαn−2
]

.

By Hypothesis (ii), the form rdr ∧ dϕ ∧ α ∧ dαn−2 is positive on N , hence on

K × D2
1−ε/2, and dϕ ∧ dαn−1 is bounded above in norm, even if we don’t know its

exact sign. This means that for k > 0 big enough, the second form will dominate the
first, i.e. their sum will still be positive.

It then remains to study the sign on the open set K ×
(

D2
1−ε/2\D2

1−ε

)

. Here, the

situation is easy because dϕ ∧ dαn−1 is positive and − ∂ f
∂r dr ∧ dϕ ∧ α ∧ dαn−2 is

non-negative (remember f is a non-increasing function of r in this set), so their sum
is also positive.

We are now ready to give a proof of the last part of Proposition 3.2. In order to
improve the readability, the latter is split in three main claims, which are then proved
separately right after the end of the proof of Proposition 3.2.

Proof of Proposition 3.2.(c) Consider the smooth map φ : M → R
2 given by φ(p) =

(

α (X)p ,−α (Y )p
)

, and let ϕ := φ/‖φ‖ : M\φ−1(0) → S
1.

Claim 3.7 φ is transverse to the origin of R2 and φ−1(0) = K as subsets of M.
Also, ϕ is a submersion and ϕ−1(θ) = F−θ−π/2 as subsets of M. Moreover, ϕ−1(θ)

is cooriented by the vector Y−θ−π/2 and φ−1(0), naturally oriented as boundary of
ϕ−1(θ) by definition of ϕ, is also cooriented by the ordered couple of vectors (Y , X).

In other words, Claim 3.7 tells that (K , ϕ) is an open book decomposition of M . We
then need to prove that it moreover supports ξ . Notice that this is enough in order to
prove point (c) of Proposition 3.2, because the ϕ in point (c) is just obtained from the
ϕ of Claim 3.7 by post-composing with the rotation of S1 of angle −π

2 , so they have
the same pages.

Consider on K , Fθ the orientations such that φ−1(0) = K , ϕ−1(θ) = F−θ−π/2 as
oriented manifolds. To show that (K , ϕ) is adapted to ξ , we then need to verify that
ξ ∩ T K is a positive contact structure on K and that there is a contact form defining ξ

whose differential is a positive symplectic form on each Fθ . Thus, Lemma 3.6 together
with the following two claims conclude the proof of Proposition 3.2.(c):
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976 F. Gironella

Claim 3.8 Let Ψ be the map defined by

Ψ : K × D2
δ → M

(p, x, y) �→ ψ1
y·X+x ·Y (p)

,

where ψ1
Z denotes the time-1 flow of the vector field Z on M and D2

δ is the 2-disk of
radius δ in R

2. Then, for δ > 0 sufficiently small, we have the following:

(i) Ψ is a diffeomorphism onto its image;
(ii) if we denoteN := Ψ (K ×D2

δ ), then we have the following commutative diagram,
where ν is the composition of the projection on D2

δ \{0} and the natural angle
function D2

δ \ {0} → S
1:

K × (

D2
δ \ {0}) M\K

S
1

Ψ

ν
ϕ

(iii) each Kz := Ψ (K × {z}) is a positive contact submanifold of (M, ξ).

Claim 3.9 Let N be the neighborhood of K given by Claim 3.8. Then there is a contact
form α defining ξ such that:

(i) α induces a positive contact structure on each submanifold Kz of N ;
(ii) dα is a positive symplectic form on the fibers of ϕ|M\N . 
�

We now prove the claims used in the above proof.

Proof of Claim 3.7 Clearly, φ−1(0) = Σ0 ∩ Σπ/2 = K as subsets of M .
Moreover, we can compute dφ(X) = d (α (X)) (X)∂x − d (α (Y )) (X)∂y along K .

According to Lemma 3.5 and Corollary 3.4, d (α (X)) (X) = 0 and d (α (Y )) (X) =
α ([X , Y ]) along K , hence dφ(X) = −α ([X , Y ]) ∂y . Similarly, we can compute
dφ(Y ) = −α ([X , Y ]) ∂x along K . In other words, φ is transverse to the origin of R2

and the oriented couple (Y , X) gives the positive coorientation of φ−1(0).
To study ϕ−1(θ), we argue as follows. Suppose ϕ(p) = θ and write φ(p) ∈ R

2 in
polar coordinates as ‖φ(p)‖ · (cos θ, sin θ). Then, we can compute

α
(

X−θ−π/2
) = α (X) sin θ + α (Y ) cos θ

= φ1(p) sin θ − φ2 cos θ

= ‖φ(p)‖ · (cos θ sin θ − sin θ cos θ)

= 0 ,

i.e. we have that p ∈ Σ−θ−π/2.
Hence, to show that p ∈ F−θ−π/2, we need to check that Y−θ−π/2 is positively

transverse to ξ at p, i.e. that αp
(

Y−θ−π/2 (p)
)

> 0. This follows from:

αp
(

Y−θ−π/2 (p)
) = αp(X(p)) cos θ − αp (Y (p)) sin θ = φ1(p) cos θ + φ2 sin θ

= ‖φ(p)‖
(

cos2 θ + sin2 θ
)

= ‖φ(p)‖ > 0 .
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We now check that ϕ−1(θ) is positively cooriented by Y−θ−π/2. For this, we need
to check that dϕp

(

Y−θ−π/2 (p)
)

is positive. We can compute

‖φ(p)‖ dϕp
(

Y−θ−π/2 (p)
) = (cos θ dφ2 − sin θ dφ1)p

(

Y−θ−π/2 (p)
)

= [− cos θ d (α (Y )) − sin θ d (α (X))]p
(

Y−θ−π/2 (p)
)

= d
(

α
(

X−θ−π/2
))

p

(

Y−θ−π/2 (p)
)

(∗)= − (α ([X , Y ])) (p) > 0 ,

where (∗) comes from Eq. (8). 
�
Proof of Claim 3.8 Let’s start with point (i). We can explicitly evaluate the differential
dΨ at points of the form (p, 0, 0). On K × {0}, we simply have that dΨ (∂x ) = Y ,
dΨ (∂y) = X and that dΨ (V ) = V for all vector fields V which are tangent to
K × {0}. This shows that Ψ is a local diffeomorphism at each point (p, 0, 0). Hence,
by compactness, Ψ is also a diffeomophism from K × D2

δ onto its image, provided δ

is small enough.
We now prove point (ii). For θ ∈ S

1, let Hθ : K × [0, δ) → M be defined by
Hθ (p, r) := Ψ (p, r cos θ, r sin θ); we then have to show that ϕ(Hθ (p, r)) = θ .
Because Y−θ = sin θ · X + cos θ · Y , we can rewrite more explicitly Hθ (p, r) =
ψr

Y−θ
(p), i.e. Hθ (·, r) is the flow of Y−θ at time r . By Lemma 3.5, Y−θ = −X−θ−π/2

is tangent to Σ−θ−π/2 and entering in F−θ−π/2; in particular, for r > 0 we
have ψr

Y−θ
(p) ∈ F−θ−π/2. Now, by Claim 3.7, ϕ−1 (θ) = F−θ− π

2
, which implies

ϕ(Hθ (p, r)) = θ , as desired.
Let’s finish with point (iii). Because the contact condition is open, up to shrinking

δ, it is enough to prove that K0 = Ψ (K × {0}) is a positive contact submanifold. This
follows from general results from Giroux [19]: indeed, Xθ defines the characteristic
foliation of Σθ , and K is transverse to it. 
�
Proof of Claim 3.9 We search for a function f such that α̃ := f α satisfies dϕ ∧
dα̃n−1 > 0 on M\Int(N ). We start by computing

dϕ ∧ dα̃n−1 = f n−1dϕ ∧ dαn−1 + (n − 1) f n−2dϕ ∧ d f ∧ α ∧ dαn−2

= f n−2
[

f dϕ ∧ dαn−1 − (n − 1) d f ∧ dϕ ∧ α ∧ dαn−2
]

.

Let now ε > 0 be such that {‖φ‖ < 2ε} ⊂ N and choose a smooth non-increasing
function f of ‖φ‖, equal to 1/ε on the set {‖φ‖ < ε} and equal to 1/‖φ‖ on the set
M\{‖φ‖ < 2ε}.

We then analyze dϕ ∧ dα̃ on N c. Here, f = 1/‖φ‖ and d f = −d ‖φ‖/‖φ‖2, so

‖φ‖n+1 dϕ ∧ dα̃n−1 = ‖φ‖2 dϕ ∧ dαn−1 + (n − 1) ‖φ‖ d ‖φ‖ ∧ dϕ ∧ α ∧ dαn−2 .

Moreover, recalling that φ = (α (X) ,−α (Y )), one has

‖φ‖2 dϕ = φ1dφ2 − φ2dφ1 = −α (X) d (α (Y )) + α (Y ) d (α (X)) ,

‖φ‖ d ‖φ‖ ∧ dϕ = dφ1 ∧ dφ2 = −d (α (X)) ∧ d (α (Y )) .
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In particular,

‖φ‖n+1 dϕ ∧ dα̃n−1 = [−α (X) d (α (Y )) + α (Y ) d (α (X))] ∧ dαn−1

− (n − 1) d (α (X)) ∧ d (α (Y )) ∧ α ∧ dαn−2 .
(12)

Notice then that the right hand side is exactly the same (up to a factor n) as the one
of Eq. (2) in the proof of Proposition 3.1. Hence, the exact same computations made
in that proof tell us that

‖φ‖n+1 dϕ ∧ dα̃n−1 = −α ([X , Y ]) α ∧ dαn−1 .

Now, [X , Y ] is negatively transverse to ξ by hypothesis, so dα̃ is positively symplectic
on the fibers of ϕ|M\N , as desired. 
�

4 Bourgeois structures as contact fiber bundles

The aim of this section is to generalize the construction due to Bourgeois using the
notion of contact fiber bundles introduced in Lerman [34].

More precisely, we start by recalling the Bourgeois construction in Sect. 4.1. In
Sect. 4.2 we recall the definitions and the main properties of contact fiber bundles.
Section 4.3 describes how to effectively compare two of them, which is then used
to generalize the construction by Bourgeois [3]. In particular, in Sect. 4.4 we take a
general fibration admitting a flat contact connection and we consider on it two non-
trivial subclass of all its contact connections. The first class is characterized in terms
of deformations to the flat contact connection, in a flavor similar to the notion of
contactizations introduced in Definition 2.5. The second one, subclass of the first, is a
direct generalization of the examples from [3] in the setting of contact fiber bundles
and is presented in Sect. 4.5. There Proposition D from the introduction is also proved
using the results from Sect. 3. Lastly, in Sect. 4.6 we study the stability of the first
class under the operation of contact branched covering.

4.1 The Bourgeois construction

Using the notion of open book decompositions for contact manifolds (M2n−1, ξ) from
Giroux [22], Bourgeois constructs in [3] explicit contact structures on M ×T

2. More
precisely, the main statement of [3] can be rephrased as follows:

Theorem 4.1 (Bourgeois) Let (M2n−1, ξ) be a contact manifold and (B, ϕ) an open
book decomposition of M supporting ξ .

(a) There is a smooth map φ = (φ1, φ2) : M → R
2 defining the open book (B, ϕ)

and such that γ ∧ dγ n−2 ∧ dφ1 ∧ dφ2 ≥ 0 on M, where γ is any contact form
defining ξ .

(b) If φ is as in point (a), then for any choice of coordinates (θ1, θ2) on T
2 and for

any contact form β defining ξ and adapted to the open book (B, ϕ), the 1-form
α := β + φ1dθ1 − φ2dθ2 is a contact form on M × T

2.
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We point out that the condition γ ∧dγ n−2∧dφ1∧dφ2 ≥ 0 in point (a) of Theorem
4.1 is independent of the choice of form γ defining ξ . Indeed, it is equivalent to the
fact that ξ induces by restriction a contact structure on φ−1(z), for each z regular value
of φ.

Notice, moreover, that the contact form α in point (b) clearly induces the original
contact structure ξ on each fiber M × {pt} of π : M × T

2 → T
2.

Remark 4.2 If φ = (φ1, φ2) satisfies point (a) of Theorem 4.1, then, for all ε > 0, the
same is true for εφ = (εφ1, εφ2). In particular, the 1-formsαε := β+εφ1dθ1−εφ2dθ2
always define positive contact structures by point (b) of Theorem 4.1, which are
moreover all isotopic by Gray’s theorem. Notice that α0 = β defines the hyperplane
field ξ ⊕ TT

2, which is not a contact structure on M × T
2, but still defines a contact

structure on each fiber of the projection π : M × T
2 → T

2.

4.2 Generalities on contact fiber bundles

Werecall in this section the notionof contact fiber bundle introducedbyLerman in [34],
focusing in particular on their description using contact connections. We specialize
here to the case of fiber bundles over (closed) surfaces as this will be the case we are
interested in for the following sections.

Let Σ2, M2n−1 and V 2n+1 be smooth closed manifolds and π : V → Σ a smooth
fiber bundle with fiber M . Denote by Mb the fiber of π over b ∈ Σ . Suppose also V
and Σ oriented, and let Mb be the (oriented) preimage π−1(b).

Definition 4.3 [34] A contact fiber bundle is a cooriented hyperplane field η on V that
induces a contact structure ξb on each fiber Mb of π .

Notice that, given a contact manifold (M, ξ), both the hyperplane field ξ ⊕ TT
2

and the contact structures on M × T
2 obtained as in Theorem 4.1 are examples of

contact fiber bundles on the trivial bundle π : M × T
2 → T

2.

Lemma 4.4 [34, Lemma 2.4] Let (π : V → Σ, η) be a contact fiber bundle and α a
1-form on V defining η. The distribution H defined as the dα|η-orthogonal of ξb in η

is an Ehresmann connection on the bundle π : V → Σ , i.e. at any point p ∈ V we
have η(p) = ξπ(p)(p) ⊕ H(p). Moreover, its holonomy over a path γ : [0, 1] → B
is a contactomorphism between ξγ (0) and ξγ (1).

Vice versa, the data of ξ f ib := η ∩ ker(dπ) = (ξb)b∈Σ and H obviously allows
to restore the hyperplane field η. For this reason, we introduce the following auxiliary
object:

Definition 4.5 A fiber bundle with contact fibers is the data
(

π : V → Σ, ξ f ib
)

of a
fiber bundle π : V → Σ and a 3-codimensional distribution ξ f ib on V inducing, for
all b ∈ Σ , a contact structure ξb on the fiber Mb.

Recall also that any Ehresmann connection H on a fiber bundle π : V → Σ is
equivalent to a fiber-wise projection ω of T V onto ker(dπ), i.e. to a connection form
ω ∈ Ω1(V ; ker(dπ)), defined on V and with values in ker(dπ) ⊂ T V , such that
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ω ◦ ω = ω and ω|ker(dπ) = Id |ker(dπ). More precisely, given H, each vector field
Z on V can be uniquely decomposed as Z = Zh + Zv , where Zh is horizontal, i.e.
everywhere tangent toH, and Zv is vertical, i.e everywhere tangent to the fibers of π .
Then, for each Z vector field on V , one can define ω(Z) := Zv . Vice versa, given an
ω ∈ Ω1(V ; ker(dπ)) as above, H := ker(ω) is an Ehresmann connection.

4.3 Comparing contact fiber bundles

In this section, we are going to compare two contact fiber bundles having the same
underlying structure of fiber bundles with contact fiber.

We start by showing that, given a fiber bundle with contact fibers (π : V →
Σ, ξ f ib), one can naturally associate to it a vector bundleX f ib(V , ξ f ib) → Σ having
as fiber, over a point b ∈ Σ , the Frechet vector space of contact vector fields for
(Mb, ξb). We invite the reader to consult Kriegl and Michor [33] for the foundations
of analysis on manifolds locally modeled on Frechet vector spaces. We can explicitly
construct X f ib(V , ξ f ib) → Σ as follows.

The fiber bundle with contact fibers (π : V → Σ, ξ f ib) is equivalent to the
following data: an open cover (Ui )i∈I of Σ , trivial bundles with contact fibers
(prUi

: M × Ui → Ui , ξ ⊕ {0T Ui })i∈I , where ξ is contact on M , and transition
functions ϕi, j : Ui ∩ U j → Diff(M, ξ), where Diff(M, ξ) is the space of contacto-
morphisms of (M, ξ). Then, X f ib(V , ξ f ib) → Σ is given by the same open cover
(Ui )i∈I of Σ of Σ , by a collection (X(M, ξ) × Ui → Ui )i∈I trivial bundles (here,
X(M, ξ) is the space of contact vector fields on (M, ξ)), and by transition functions
Φi, j : Ui ∩U j → GL(X(M, ξ)) given byΦi, j (b) = d(ϕi, j (b)) for each b ∈ Ui ∩U j .

Remark 4.6 We proposed here a very direct construction of the the vector bundle
X f ib(V , ξ f ib) → Σ , in order to keep this presentation simple and self contained.
This being said, X f ib(V , ξ f ib) → Σ can also be interpretated as an adjoint bundle as
follows.

Analogously to [33, Paragraph 44.4] defining the principal ((nonlinear) frame bun-
dle of a smooth fiber bundle, one can associate to a given fiber bundle with contact
fibers (π : V → Σ, ξ f ib) (and with model fiber (M, ξ)) its ((nonlinear) contact
frame bundle E → Σ , which is a natural principal Diff(M, ξ)-bundle associated to
(π, ξ f ib). Then, up to isomorphism of vector bundles over Σ , X f ib(V , ξ f ib) → Σ is
just the adjoint bundle associated to E → Σ .

We now want to show that the space of contact connections on a given fiber bundle
with contact fibers (π : V → Σ, ξ f ib) has naturally the structure of an affine space
over the vector spaceΩ1(Σ;X f ib(V , ξ f ib)) of 1-forms defined onΣ and with values
in the vector bundle X f ib(V , ξ f ib) → Σ .

Let H0 be a reference contact connection on (π : V → Σ, ξ f ib). For simplicity,
we call (π : V → Σ, ξ f ib,H0) a referenced fiber bundle with contact fibers in the
following. Denote also by ω0 the connection form associated toH0.

Notice that, given a point p ∈ V and a vector v ∈ TpV , the vector ω0(v) − ω(v)

is tangent to the fiber Mp of π . Indeed, both ω and ω0 are with values in ker(dπ).
Moreover, it only depends on the vector u := dπ(v) on Tπ(p)Σ , i.e. if v, v′ ∈ TpV

123



On some examples and constructions of contact manifolds 981

such that dπ(v) = dπ(v′), then ω0(v) − ω(v) = ω0(v
′) − ω(v′). Indeed, for such

v, v′, we have dπ(v − v′) = 0, i.e. v − v′ is tangent to TpV , hence ω0(v − v′) =
v − v′ = ω(v − v′), which, by linearity of ω and ω′, gives the desired equality. In
other words, given a point b ∈ Σ , a vector u ∈ TbΣ and a vector field Zb on the fiber
Mb such that dπ(Zb) = u, we can define Au := ω0(Zb) − ω(Zb).

The last thing to show is then that A has actually values in the vector bundle of
contact vector fields on the fibers of the fiber bundle with contact fiber (π : V →
Σ, ξ f ib), i.e. that A ∈ Ω1(Σ;X f ib(V , ξ f ib)). For this, notice that, if u ∈ TbΣ

and Zb is a vector field on Mb with dπ(Zb) = u, then Au = ω0(Zb) − ω(Zb) =
(Zb)h − (Zb)h0 , where (Zb)h0 := Zb − ω0(Zb) and (Zb)h := Zb − ω(Zb) are the
lifts of u which are horizontal for, respectively,H0 andH. Then, Lemma 4.4 tells that
both the flows ψ t

0 and ψ t of, respectively, (Zb)h0 and (Zb)h give contactomorphisms
between different fibers of (π, ξ f ib). Because d

dt |t=0(ψ
t
0◦ψ−t ) = (Zb)h0−(Zb)h , this

then directly implies that Au = (Zb)h − (Zb)h0 is a contact vector field for (Mb, ξb).
With a little abuse of notation, for each b ∈ Σ and u ∈ TbΣ , we will just denote

by û and û0 the vector fields on Mp given by the lifts of u which are horizontal for,
respectively, H and H0, i.e. the (Zb)h and (Zb)h0 above.

Definition 4.7 For any referenced fiber bundle with contact fibers (π : V →
Σ, ξ f ib,H0) and any contact connection H on (π : V → Σ, ξ f ib), the 1-form A ∈
Ω1(Σ;X f ib(V , ξ f ib)) defined as above is called potential of H with respect toH0.

Remark 4.8 The fact that the space of contact connections on a given (π : V →
Σ, ξ f ib) is an affine space over Ω1(Σ;X f ib(V , ξ f ib)) has also the following more
theoretical interpretation, in the spirit of Remark 4.6.

Analogously to what is explained in [33, Paragraph 44.5] in the case of smooth
fiber bundles, connection forms on (π, ξ f ib) correspond bijectively to principal con-
nections on the (nonlinear) contact frame bundle E → Σ . Now, the space of principal
connections on a principal bundle has naturally an affine structure over the vector
space of 1-forms on the base with values in the adjoint bundle.

The potential A also allows to compare the curvature ofHwith that ofH0. In order
to explain how, we need to introduce two more objects.

Firstly, we show that the connectionH0 on (π : V → Σ, ξ f ib) induces a covariant
derivative ∇ : �(X f ib(V , ξ f ib)) → Ω1(Σ;X f ib(V , ξ f ib)) on the associated vector
bundle X f ib(V , ξ f ib) → Σ .

More precisely, given a vector fieldU onΣ and a section σ ofX f ib(V , ξ f ib) → Σ ,
consider theH0-horizontal lift ̂U 0 ofU and the vector field σ on V defined by σ(p) =
σπ(p)(p), where σπ(p) denotes the image of π(p) via σ . Notice that their Lie bracket
[̂U 0, σ ] is contained in ker(dπ) and is, moreover, a contact vector field on each fiber
of π : V → Σ . An explicit computation also shows that [̂U 0, σ ] is C∞(Σ)-linear in
U and satisfies the Leibniz rule in σ . In other words, ∇U σ := [̂U 0, σ ] gives a well
defined covariant derivative.

We point out that ∇ is flat. Indeed, the curvature F ∈ �(X f ib(V , ξ f ib)) →
Ω2(Σ;X f ib(V , ξ f ib)) of ∇ is, by definition, given by F(U , W )σ = ∇U ∇W σ −
∇W ∇U σ − ∇[U ,W ]σ for all U , W vector fields on Σ and σ ∈ �(X f ib(V , ξ f ib)). A
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direct computation using the Jacobi identity for the Lie bracket of vector fields on V
then shows that F = 0, as desired.

The second object we need to introduce is the covariant exterior derivative
d∇ : Ω p(Σ;X f ib(V , ξ f ib)) → Ω p+1(Σ;X f ib(V , ξ f ib)) naturally induced by ∇.
As explained for instance in Kriegl and Michor [33, Paragraph 37.29], d∇ is charac-
terized by the formula

d∇ω(U1, . . . , Up+1) :=
p
∑

i=0

(−1)i∇Ui (ω(U1, . . . , ̂Ui , . . . , Up+1))

+
∑

0≤i, j≤p

(−1)i+ jω([Ui , U j ], U1, . . ., ̂Ui , . . .,̂U j , . . ., Up+1) ,

(13)

for all ω ∈ Ω p(Σ;X f ib(V , ξ f ib)) and U1, . . . , Up+1 vector fields on Σ . Here, the
notation ̂Z denotes the fact that the vector field Z is omitted in the argument.

Notice that the flatness of ∇ implies that d2∇ = 0. This is a consequence of the
formula d∇d∇ω = ω ∧ F for all ω ∈ Ω p(Σ,X f ib(V , ξ f ib)) (see for instance [33,
Paragraph 37.29] for a proof of this identity). In other words, d∇ is a differential on
the chain complex Ω∗(Σ,X f ib(V , ξ f ib)).

We are now ready to give an expression for the curvature R of H in terms of the
curvature R0 ofH0.

Let X , Z be vector fields on V , and denote, as before, by Xh, Zh their H-
horizontal component. By definition of curvature R ∈ Ω2(V ; ker(dπ)) of H, we
have R(X , Z) = ω([Xh, Zh]). Introducing the potential A, one can further write
ω([Xh, Zh]) = ω0([AU + Xh0 , AW + Zh0 ]) − A[U ,W ], where U := dπ(X) and
W := dπ(Z). Notice that [AU , Zh0 ], [Xh0 , AW ] and [AU , AW ] are all vertical, i.e.
vector fields on V which are tangent to the fibers of π . Because ω0 = Id on ker(dπ),
one then has ω0([AU + Xh0 , AW + Zh0 ]) = [AU , Zh0 ] + [Xh0 , AW ] + [AU , AW ] +
ω0([Xh0 , Zh0 ]) = [AU , Zh0 ] − [AW , Xh0 ] + [AU , AW ] + R0(X , Z). Finally, remark
that Xh0 and Zh0 are just theH0-horizontal lifts ̂U 0 and ̂W 0 of U and W respectively.
Hence, by Eq. (13), we also have d∇ A(U , W ) = ∇U (AW ) − ∇W (AU ) − A[U ,W ] =
[̂U 0, AW ] − [̂W 0, AU ] − A[U ,W ]. Putting all the pieces together, we then get: for all
X , Z vector fields on V ,

R(X , Z) = R0(X , Z) + d∇ A(π∗ X , π∗Z) + [Aπ∗ X , Aπ∗ Z ] . (14)

As it will be useful for the following section, we also point out the following fact.
Fix a covariant derivative ∇Σ on the tangent bundle of Σ . Then, the ∇ introduced
above naturally extends to a unique map

∇ : Ω p(Σ;X f ib(V , ξ f ib)) → Ω p+1(Σ;X f ib(V , ξ f ib))

satisfying the following property: for all W1, . . . , Wp, U vector fields on Σ ,

(∇ω)(W1, . . . , Wp, U ) = ∇U (ω(W1, . . . , Wp))

−
p
∑

i=1

ω(W1, . . . ,∇Σ
U Wi , . . . , Wp) .

(15)
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4.4 Flat contact bundles and contact deformations

Here we call flat contact bundle any referenced fiber bundle with contact fibers
(

π : V → Σ, η0 = ξ f ib ⊕ H0
)

such that H0 satisfies R0 = 0.
The first reason why flat contact bundles are interesting is because they admit a

“nice” presentation in terms of their monodromy.
Indeed, once fixed a certain fiber (M, ξ) of (π : V → Σ, ξ f ib) over b ∈ Σ ,

one gets a representation ρ : π1 (Σ) → Diff(M, ξ), where Diff(M, ξ) is the space
of contactomorphisms of (M, ξ), as follows. Because H0 is flat (hence a foliation
according to Frobenius’ theorem), the monodromy Ψδ of the connection H0 over a
(smooth immersed) curve δ in Σ depends only on [δ] ∈ π1 (Σ). Moreover, it is also a
contactomorphism of the fibers, by Lemma 4.4. Hence, for each c ∈ π1 (Σ), one can
define ρ(c) := Ψδ , where δ is any (smooth immersed) representative of c.

Let now πΣ : ˜Σ → Σ be the universal cover of Σ , and consider the map F :
M × ˜Σ → V covering πΣ given by F(q, [γ ]) := ρc(q). Here, we see ˜Σ as the set of
arcs γ on Σ starting at b, up to homotopy. The differential of F sends the connection
{0} ⊕ T ˜Σ of M × ˜Σ → ˜Σ to the connection H0 of π : V → Σ , and the contact
structure ξ ⊕ {0} on the fiber of ˜Σ × M over p̂ ∈ ˜Σ to the contact structure ξp of the
fiber Mp of V over p = πΣ( p̂).

Moreover, if we denote by ρ̃ the diagonal action of π1 (Σ) on M × ˜Σ induced by
the natural action on the second factor and by the action ρ on the first factor, F induces
an isomorphism f : M ×ρ̃ Σ → V of fiber bundles over Σ , where M ×ρ̃ Σ is the

quotient of M × Σ by ρ̃. Notice also that on M ×ρ̃ Σ → Σ there are natural ξ
ρ̃
f ib

and Hρ̃
0 induced, respectively, by ξ ⊕ {0} and {0} ⊕ T Σ on M × ˜Σ . Because of the

properties of F , we also have that the differential of f sends ξ
ρ̃
f ib andHρ̃

0 respectively
to ξ f ib andH0. In other words, f gives the desired “nice” presentation of (π, ξ f ib,H0)

in terms of the monodromy ρ.
The second reason for restricting to the class of flat contact bundles is the following:

using the notion of potential from Sect. 4.3, given a flat
(

π : V → Σ, ξ f ib,H0
)

, we
cangive an explicit criterion that tellswhenever anyother contact bundle on it (inducing
the same ξ f ib, hence described by a contact connectionH) defines a contact structure
on the total space V . More precisely, using Eq. (14) (with R0 = 0), we can rephrase
Lerman [34, Proposition 3.1] in the following computational-friendly way:

Proposition 4.9 On a flat contact fiber bundle
(

π : V 2n+1 → Σ2, ξ f ib,H0
)

, a contact
connection H with potential A gives a contact structure η on the total space if and
only if, for all b in Σ and all oriented basis (u, v) of TbΣ , the vector field d∇ A(u, v)+
[Au, Av] on Mb is a negative contact vector field for (Mb, ξb).

Recall that a contact vector field is called negative if it is everywhere negatively
transverse to the contact structure.

In Sect. 4.5, we will use Proposition 4.9 to study the following objects:

Definition 4.10 Let
(

π : V → Σ, η0 = ξ f ib ⊕ H0
)

be a flat contact bundle. We say
that a contact fiber bundle η on π is a contact deformation of η0 if it defines a contact
structure on the total space V and if there is a smooth family of contact fiber bundles
(ηs)s∈[0,1] starting at η0, ending at η1 := η and satisfying:
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984 F. Gironella

1. for all s ∈ [0, 1], ηs ∩ ker(dπ) = ξ f ib;
2. for all s > 0, ηs defines a contact structure on V .

By point 1, a contact deformation is equivalent to a path of contact connectionsHs

interpolating between H0 and H.
We point out that this definition is “non-empty”, i.e. given a flat contact fiber

bundle (π : V → Σ, η0 = ξ f ib ⊕ H0), not all the contact fiber bundles for the same
underlying fibration with contact fibers (π, ξ f ib) are contact deformations of η0.

For instance consider the contact fiber bundle structure on T3 = S
1 × T

2 which is
given by the kernel η of α = dθ + cos(θ)dx − sin(θ)dy, where θ ∈ S

1 and (x, y) are
coordinates on T

2. This contact fiber bundle structure is a contact deformation of the
flat contact fiber bundle structure given by η0 = ker (dθ): the deformation is given by
αt := dθ + t cos θdx − sin θdy, with t ∈ [0, 1].

We point out that, by Giroux [20, Lemma 10], η admits prelagrangian tori only
in the isotopy class of {pt} × T

2. Take now a diffeomorphism ψ of T3 sending
(θ, x, y) to (θ + x, x, y). Then, ψ∗η is still transverse to the S1 factor, hence it is a
contact fiber bundle on the chosen fibration, and obviously it still defines a contact
structure on the total space. Though, it has prelagrangian tori in an isotopy class
which is different from that of the prelagrangian tori of η. According to Vogel [43,
Proposition 9.9], this implies that φ∗η cannot be a contact deformation of η0 = {0} ⊕
TT

2 ⊂ T
(

S
1 × T

2
)

.
We also remark that, even though the above definition is of a very similar flavor

to Definition 2.5, the objects they define behave differently. For instance, there is no
uniqueness up to isotopy for contact deformations.

Indeed, if we take again the fiber bundle π : T
3 = S

1 × T
2 → T

2 where we see
the fibers as contact manifolds

(

S
1, ker (dθ)

)

, then the flat contact bundle defined by
η0 = ker(dθ) on π actually admits as contact deformations every contact structure
on T3 defined by αn := dθ + cos(nθ)dx − sin(nθ)dy. Though, these are not isotopic
one to the other as contact fiber bundles defining contact structures on the total space.
Indeed, they are not even isomorphic as contact structures on T

3, because they have
different Giroux torsion (see Giroux [20]).

4.5 Bourgeois’ construction revisited

The aim here is to use what we defined in the previous sections to generalize the
construction by Bourgeois recalled in Sect. 4.1. Let’s start by reformulating it with
this new terminology.

Let (M2n−1, ξ) be a contact manifold and (π : M × T
2 → T

2, ξ ⊕ TT
2) be a flat

contact bundle. Once an open book decomposition (B, ϕ) supporting ξ on M and a
particular adapted contact form β are fixed, consider a function φ = (φ1, φ2) : M →
R
2 as in the statement of Theorem 4.1. Now take the contact vector fields X and Y

on (M, ξ) associated, respectively, to the contact hamiltonians φ1 and −φ2 via the
contact form β, and consider the potential A := −X ⊗ dθ1 − Y ⊗ dθ2, where (θ1, θ2)

are coordinates on T
2 = R

2/Z2. A direct computation shows that the contact fiber
bundle associated to A is the kernel of the contact form α = β +φ1dθ1 −φ2dθ2 given
by Theorem 4.1.
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On some examples and constructions of contact manifolds 985

Notice also that T2 has a natural (flat and) torsion-free ∇T
2
, inherited by the standard

∇R
2
on R

2, and such that ∇T
2

∂θi
∂θ j = 0. Then, because X and Y are independent from

the point of T2 in the product M ×T
2, it is easy to check that A is ∇-parallel, i.e. that

∇ A = 0 (see Sect. 4.3 for the definition of ∇).
We can then give the following definition:

Definition 4.11 Let (π : V → Σ, η0 = ξ f ib ⊕ H0) be a flat contact bundle, and
consider a torsion-free covariant derivative∇Σ onΣ .We call strong Bourgeois contact
structure each contact structure on the total space V given by a contact fiber bundle
structure η on V with ∇-parallel potential A.

Notice that, generalizing Remark 4.2, each strong Bourgeois contact structure η is
a contact deformation of the underlying flat contact bundle η0. More precisely, if A
is the potential associated to η with respect to η0, the deformation is just given by the
family of potentials (s A)s∈[0,1].

We also point out thatDefinition 4.11 is a non-trivial generalization of theBourgeois
construction, i.e. the class of strong Bourgeois contact structures is not exhausted by
the examples on M × T

2 from Bourgeois [3]:

Proposition 4.12 There is a flat contact fiber bundle (π : V → T
2, η0) that admits a

strong Bourgeois contact structure (for the standard flat ∇T
2

onT2) and is non-trivial,
i.e. not isomorphic, as flat contact fiber bundle, to (π : M × T

2 → T
2, ξM ⊕ TT

2).

Proposition 4.12 is a consequence of this generalization of Theorem 4.1.

Lemma 4.13 Let (M, ξ) be a contact manifold, G a subgroup of the group of con-
tactomorphisms of (M, ξ), and ρ : π1(T

2) → G a group homomorphism. Suppose
that there is a G-invariant function φ = (φ1, φ2) : M → R

2 defining a (G-invariant)
open book (B, ϕ) on M supporting ξ .

Let’s also denote by β a G-invariant contact form for ξ on M such that dβ is
symplectic on the fibers of ϕ, and by η0 the flat contact bundle induced on π : M ×ρ̃

T
2 → Σ by the flat contact bundle ξ ⊕ TR

2 on M ×R
2 → Σ . Here, ρ̃ is the action

of π1(T
2) on M × R

2 given by ρ on the first factor and by the natural action on the
universal cover R2 → T

2 on the second factor.
Then, the hyperplane field η on M ×ρ̃ T

2, induced by ker(β + φ1dθ1 − φ2dθ2) on
M ×R

2, is a strong Bourgeois contact structure on the flat contact bundle (π : M ×ρ̃

T
2 → T

2, η0) equipped with the standard flat ∇T
2

on T
2.

Proof of lemma 4.13 The formβ+φ1dθ1−φ2dθ2 on M×R
2 defines a contact structure

η̂ on M × R
2. This follows from the same computations as those in [3]. Moreover, it

is invariant under the action ρ̃. Hence, it induces a well defined contact structure η on
the codomain M ×ρ̃ T

2 of the quotient map q : M × R
2 → M ×ρ̃ T

2.
Finally, we need to prove that η is indeed a strong Bourgeois contact structure.

Being∇-parallel is a local condition, hence it is enough to prove that the potential ˜A of
η̃ = q∗η is parallel with respect to the connection q∗∇, pullback of∇ to M ×R

2 via q.
Now, an explicit computation gives ˜A = X⊗dx+Y ⊗dy, where (x, y) are coordinates
on R

2 and X , Y are contact vector fields on (M, ξ) with contact hamiltonians (via
β) respectively −φ1, φ2. Hence, X and Y , as functions from M × T

2 to the space
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X(M, ξ) of contact vector fields for (M, ξ), are independent of the coordinates on T2.
This implies that ˜A is (q∗∇)-parallel. 
�
Proof of Proposition 4.12 We recall that van Koert and Niederkrüger [31] exhibited an
explicit open book decomposition for each Brieskorn manifold W 2n−1

k ⊂ C
n+1, with

supporting form αk . We invite the reader to consult their article for the details. What’s
important for us is that the adapted open book decomposition is defined by a map
φ : W 2n−1

k → R
2 which is invariant under the action of the subgroup SO(n) of the

group of strict contactomorphisms for the strict contact manifold (W 2n−1
k , αk). More

precisely, if (z0, . . . , zn) are the coordinates ofCn+1, the action of SO(n) on W 2n−1
k ⊂

C
n+1 is given by the identity on the z0-coordinate and by matrix multiplication on

(z1, . . . , zn). For simplicity, we denote here the couple (W 2n−1
k , αk) by (M, β).

Let now ρ : π1
(

T
2
) → SO(n) be defined by ρ(a, b) = a · f for each (a, b) ∈

Z
2 = π1

(

T
2
)

, where f is any element of SO(n) of order 2. Then, Lemma 4.13 tells
us that the η on M ×ρ̃ T

2, induced by ker(β +φ1dθ1 −φ2dθ2) on M ×R
2, is a strong

Bourgeois contact structure on the flat contact bundle (π : M ×ρ̃ T
2 → T

2, η0). Here,
η0 is the flat contact bundle induced by ξ ⊕ TR

2 on M × R
2 → R

2.
The only thing left to show is that (π : M ×ρ̃ T

2 → T
2, η0) is not isomorphic to

the trivial flat contact bundle (p : M × T
2 → T

2, ξ ⊕ TT
2).

The connection H0 associated to η0 defines a foliation F0 by tori T2 on V , which
is also transverse to the fibers of π : V → T

2. Moreover, because of our particular
choice of ρ : π1(T

2) → SO(n), each leaf L of F0 intersects every fiber twice. Now,
the connection TT

2 on the trivial bundle p : M × T
2 → T

2 gives a foliation F1
with leaves {pt} × T

2, which only intersects each fiber once. In particular, there is
no isomorphism Ψ of fiber bundles (equipped with connections) over T2 between
(π : M ×ρ̃ T

2 → T
2,H0) and (p : M × T

2 → T
2, {0} ⊕ TT

2). Indeed such a Ψ

would send F0 to F1, but this contradicts the fact that their leaves intersect the fibers
a different number of times. 
�

Even though strong Bourgeois contact structures are a non-trivial extension of the
examples from [3], we believe that this class of contact structures is still, in a certain
sense, too “rigid”. The first (somewhat philosophical) reason is that their definition
depends on the choice of a torsion-free ∇Σ on the base Σ , that is an auxiliary data
with respect to the underlying flat contact bundle structure. The second (much more
concrete) reason is given by the following converse to Lemma 4.13:

Proposition 4.14 Let (M, ξ) be a contact manifold and consider the flat contact bundle
(π : M ×ρ̃ T

2 → T
2, η0), where η0 is induced by ξ ⊕ TR

2 on the cover M × R
2 of

M ×ρ̃ T
2. Let also η be a strong Bourgeois contact structure on (π, η0), equipped with

the standard flat ∇T
2

on T
2. Then, there is a Im(ρ)-invariant function φ : M → R

2

that defines an open book decomposition of M supporting ξ , and such that the given
η is the result of the application of Lemma 4.13 with these choices of (M, ξ), ρ and φ

(and G = Im(ρ)).

Recall from Sect. 4.4 that every flat contact bundle (π : V → T
2, η0) is isomorphic

(as flat contact bundle) to (π ′ : M ×ρ̃ T
2 → T

2, η′
0), where η′

0 is induced by ξ ⊕ TR
2

on the cover M ×R
2 of M ×T

2. Thus, Proposition 4.14 says that the examples given
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On some examples and constructions of contact manifolds 987

by Lemma 4.13 are actually all the possible strong Bourgeois contact structures on
(π, η0), equipped with the standard flat ∇T

2
.

Proof of Proposition 4.14 Consider the following natural commutative diagram:

(M × R
2, ξ ⊕ TR

2) (M ×ρ̃ T
2, η0)

R
2

T
2 = R

2/Z2

Q

pr2 π

q

with Q and q the natural quotients maps (see Sect. 4.4). This induces the commutative
diagram

X f ib(M × R
2, ξ ⊕ {0}) = X(M, ξ) × R

2 X f ib(M ×ρ̃ T
2, η0 ∩ ker(dπ))

R
2

T
2

G

pr1
q

where X(M, ξ) denotes the space of contact vector fields of (M, ξ) and G is the
restriction of d Q to the fibers of pr2. Consider the pullbacks ̂∇ and ̂A of ∇ and A via
(G, q). Because of the particular choice of∇T

2
, the fact that A iŝ∇-parallel translates

to the fact that ̂A is R
2-invariant. A straightforward computation then shows that

d
̂∇̂A = 0, so that R

̂A = [̂A, ̂A].
Now, ̂A is the potential associated to a contact structure on M × R

2, because the
same is true for A on M ×ρ̃ T

2. Let then X := ̂A(∂x ) and Y := ̂A(∂y), for any
choice coordinates (x, y) ∈ R

2. Proposition 4.9 then tells that [X , Y ] is negatively
transverse to ξ everywhere on M . Moreover, as ̂A is the pullback of A, both X and Y
are Im(ρ)-invariant. Proposition 3.2 then gives the desired Im(ρ)-invariant open book
decomposition φ : M → R

2. More precisely, we use here the fact that the proof of
Proposition 3.2.(c) gives an invariant function M → R

2, provided the original contact
vector fields X and Y are both invariant. 
�

We then propose the following generalization of Definition 4.11.

Definition 4.15 Let (π : V → T
2, η0 = ξ f ib ⊕H0) be a flat contact fiber bundle. We

call Bourgeois contact structure each contact structure on the total space V given by
a contact fiber bundle structure η on V → Σ with potential A that is d∇ -closed, i.e.
such that d∇ A = 0.

Notice that the condition d∇ A = 0 in Definition 4.15 above is actually the same as
the condition 1

ε
Rε → 0, for ε → 0, used to introduce Bourgeois contact structures in

Sect. 1.
Indeed, according to Eq. (14), the curvature R of a Bourgeois contact structure

is just d∇ A + [A, A], where A is its potential. In particular, this curvature has two
terms which behave differently under rescaling A �→ ε A, for ε > 0. The term d∇ A
is rescaling linearly in ε, whereas [A, A] is rescaling quadratically in it. Then, if we
denote by Rε the curvature associated to the connectionHε of potential ε Awith respect
to η0, the condition d∇ A = 0 is equivalent to the fact that 1

ε
Rε → 0 for ε → 0.
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We point out that, as announced before Definition 4.15 (and as the terminology
suggests), strong Bourgeois structures are also Bourgeois structures. Indeed, by Equa-
tion (15), we have (∇ A)(W , U ) = ∇U (AW ) − A(∇T

2

U W ) for all vector fields U , W
on T2. Using the fact that A is ∇-parallel, we compute

d∇ A(U , W ) = ∇U (AW ) − ∇W (AU ) − A[U ,W ]
= A(∇T

2

U W ) − A(∇T
2

W U ) − A[U ,W ]
= AT (U ,W ) = 0 ,

where T ∈ Ω2(T2; TT
2) is the torsion of ∇T

2
, which is by assumption zero.

We point out, however, that a direct analogue of Proposition 4.14 is not true for
Bourgeois contact structures. For instance, given a strong Bourgeois contact structure
ε with potential A on any flat contact bundle (π : V → Σ, η0 = ξ f ib ⊕ H0), if
A0 ∈ Ω1(Σ;X f ib(V , ξ f ib)) is anyotherd∇ -closed potential, not necessarily inducing
a contact structure on the total space V (these are not hard to find, for instance in the
case of (π : M ×T

2 → T
2, ξ ⊕TT

2)), then, for ε > 0 small enough, the perturbation
A + ε A0 gives a Bourgeois contact structure ηε . Though, such ηε’s do not necessarily
come from the construction in Lemma 4.13. In other words, the class of Bourgeois
contact structures is bigger than the one of strong Bourgeois contact structures.

This being said, the motivation behind Definition 4.15 doesn’t only consist in the
fact that it’s a strict generalization of Definition 4.11. Indeed, we now show that the
condition d∇ A = 0 above, while being general enough to be satisfied by a class of
contact structures strictly larger than those given by the construction in Lemma 4.13,
is also strong enough to ensure some nice properties from the points of view of contact
deformations, weak fillability and adapted open book.

We start by showing that each Bourgeois contact structure η is in particular a contact
deformation of the underlying flat contact bundle η0.
Indeed, we have the natural path of contact bundle structures (ηt )t∈[0,1] that is given
by the potential At := t A with respect to H0, where A is the potential of η. This
has the wanted starting and ending points and gives a contact structure ηt for t > 0,
according to Proposition 4.9, because d∇ At = td∇ A is zero and, for any b ∈ Σ ,
oriented basis (u, v) of TbΣ and t > 0, [At , At ](u, v) = t2[Au, Av] is negatively
transverse to ξb = η ∩ T Mb.

This property is a generalization of the fact that strong Bourgeois structures (which
includes the examples in [3]) are contact deformations of the trivial flat contact bundle
on M × T

2.
The study of weak fillability of Bourgeois contact structures is postponed to

Sect. 5.1. There, Proposition 5.1 states that if (M, ξ) is weakly fillable then a Bour-
geois contact structure η on the flat contact bundle (π : M × T

2 → T
2, ξ ⊕ TT

2) is
weakly fillable too. (Notice that the particular case of the contact structures obtained
as in [3] is covered by Massot et al. [37, Example 1.1] and Lisi et al. [35, Theo-
rem A.a].) This stability of weak fillability is also true in a more general case, as stated
in Proposition 5.4.
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As far as adapted open book decompositions are concerned, we prove the following:
given a Bourgeois contact structure η on the flat contact bundle (π : V → Σ, η0),
we can “naturally” associate to each point b of Σ an open book decomposition of the
fiber Mb supporting the contact structure ξb. This crucially relies on Proposition 3.2
on pairs of contact vector fields and supporting open book decomposition. In order to
give a precise statement, let’s introduce some notations.
Consider a smooth contact bundle η on X → Y , where X is not assumed to be closed.
Denote by Λ the space of maps Φ : X → R

2 such that, for each y ∈ Y :

i. the restriction φy := Φ|π−1(y) : π−1(y) → R
2 is transverse to {0} ⊂ R

2,

ii. the map φy‖φy‖ : π−1(y)\φ−1
y (0) → S

1 is a fibration,

iii. (φ−1
y (0), φy‖φy‖ ), which is an open book decomposition of π−1(y) according to

points i., ii., is moreover adapted to the contact structure η ∩ T
(

π−1(y)
)

.

Notice that this space Λ comes endowed with a natural C∞-topology induced by that
on the space of functions X → R

2 in which it is contained. Consider then the quotient
Λ/∼ of Λ by the relation ∼ defined as follows: Φ1, Φ2 ∈ Λ are equivalent via ∼ if
there is a positive function f : X → R such thatΦ2 = f Φ1. Notice that Λ/∼ inherits a
natural topology as quotient of the topological spaceΛ.We then call smooth Y−family
of open books on X (adjusted to η) each element of Λ/∼.

Remark also that if we have a contact bundle η on a smooth fiber bundleπ : X → Y
and f : Z → Y is a smooth map, we can define the pullback contact bundle f ∗η on
the pullback bundle

f ∗ X := {(z, x) ∈ Z × X | f (z) = π(x)} X

Z Y

prX

prZ π

f

as the vector sub-bundle {W ∈ T ( f ∗ X)| d(prX )(W ) ∈ η} of T ( f ∗ X), where prX , prZ
are the projections of Z × X on the first and second factors respectively. This f ∗η is
indeed a contact bundle because its trace on each fiber (prZ )−1(z)∩ f ∗ X = {z}×π−1

f (z)
of prZ : f ∗ X → Z is exactly {0} ⊕ η f (z).

Lets now go back to the specific case of Bourgeois contact structure η on a flat
contact bundle (π : V → Σ, η0). Denote, for all b ∈ Σ , (Mb, ξb) the contact fiber
over b, i.e. Mb := π−1(b) and ξb := η0 ∩ T Mb. We then call fiber adapted open
book any open book (K , ϕ) on a fiber Mb which supports the respective contact
structure ξb.

Denote finally by pr : FΣ → Σ the frame tangent bundle of Σ , i.e. the (principal)
bundle over Σ with fiber over b ∈ Σ given by the set of all oriented basis of TbΣ . We
can finally state the desired result on Bourgeois structures and open books:

Proposition 4.16 Given a Bourgeois contact structure η on the flat contact bundle
(π : V → Σ, η0), there is a map

Ψη : FΣ → {fiber adapted open book}

verifying the following properties:
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990 F. Gironella

(i) Ψη sends, for all b ∈ Σ , each positive basis of TbΣ to an open book decomposition
of Mb adapted to ξb;

(ii) for each smooth path γ : [0, 1] → FΣ , the composition

Ψη ◦ γ : [0, 1] → {fiber adapted open books}

describes a smooth [0, 1]−family of open books on γ ∗ pr∗ V adjusted to γ ∗ pr∗ η.

(γ ∗ pr∗ V , γ ∗ pr∗ η) (pr∗ V , pr∗ η) (V , η)

[0, 1] FΣ Σ

π

γ pr

From the above result, we can deduce a more precise version of Proposition D
stated in the introduction:

Corollary 4.17 The map Ψη in Proposition 4.16 induces a well defined

ψη : Σ → {fiber adapted open books}/∼ ,

where (K0, ϕ0) ∼ (K1, ϕ1) if they are both adapted open books on a same fiber
(Mb, ξb) and there is an isotopy ( ft )t∈[0,1] of the fiber Mb, starting at φ0 = Id, such

that K1 = f1(K0), ϕ1 = ϕ0 ◦ f −1
1 and

(

ft (K0) , ϕ0 ◦ f −1
t

)

is an open book of Mb

adapted to ξb. In other words, η uniquely determines an isotopy class of adapted open
book decompositions for each fiber (Mb, ξb) of (π : V → Σ, η0).

Moreover, if η = ker α is the Bourgeois contact structure on (π : M × T
2 →

T
2, ξ ⊕ TT

2) given by Theorem 4.1 starting from an open book (B, ϕ) for (M, ξ),
then the corresponding map ψη sends each b ∈ T

2 to an isotopy class of adapted open
books on (Mb, ξb) that (via the natural identification (Mb, ξb) � (M, ξ) given by the
projection M ×T

2 → M) corresponds to the isotopy class of the original open book
(B, ϕ) on (M, ξ).

Proof of Corollary 4.17 Given b ∈ Σ , consider an ordered basis (u, v) of TbΣ and
define ψη(b) as the class of Ψη(u, v) under the relation ∼. Here, Ψη is the map given
by Proposition D. We then need to show that this is well defined.

Suppose (u′, v′) is another ordered basis of TbΣ . We want to show that Ψη(u, v) ∼
Ψη(u′, v′). Choose a curve γ : [0, 1] → FΣ with image contained in the fiber pr−1(b)

of pr : FΣ → Σ and such that γ (0) = (u, v) and γ (1) = (u′, v′). Then, according
to point (ii) of Proposition 4.16, Ψη ◦ γ gives a smooth [0, 1]−family of open books
on γ ∗ pr∗ V adjusted to γ ∗ pr∗ η. Now, γ ∗ pr∗ V = [0, 1] × Mb and γ ∗ pr∗ η =
T ([0, 1]) ⊕ ξb, so that we actually have, via the natural projection [0, 1] × Mb →
Mb, a smooth family of open books (Kt , ϕt )t∈[0,1] on Mb supporting ξb. Because a
smooth path of open book decompositions comes from an isotopy as described in the
statement, this actually means that (K0, ϕ0) is isotopic to (K1, ϕ1). In other words,
Ψη(u, v) ∼ Ψη(u′, v′) as wanted.

The last statement about the construction by Bourgeois follows directly from the
definition ofΨη and from point (c) of Proposition 3.2. Indeed, let η = ker(β+φ1dθ2−
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φ2dθ2) a the Bourgeois contact structure on the flat contact bundle (π : M × T
2 →

T
2, ξ ⊕ TT

2) given by Theorem 4.1 starting from open book (B, ϕ) of M adapted to
ξ . As already observed in the beginning of Sect. 4.5, we can compute that A∂θ1

and
A∂θ2

are respectively the contact vector fields on (M, ξ) of contact hamiltonians −φ1
and φ2 (via β), with φ = (φ1, φ2) defining (B, ϕ). Then, we can see that point (c) of
Proposition 3.2 with X := A∂θ1

and Y := A∂θ2
gives exactly the open book (B, ϕ′),

where ϕ′ is obtained from ϕ by composition with the antipodal map S
1 → S

1.
In other words, for all b ∈ T

2, if (∂θ1 , ∂θ2) is the oriented base of TbT
2 coming

from the choice of coordinates (θ1, θ2) ∈ T
2 as in the statement of Theorem 4.1,

then Ψη(∂θ1 , ∂θ2) = (B, ϕ′). In particular, ψη(b) is the isotopy class of (B, ϕ′), which
coincides with that of (B, ϕ). 
�

We now derive Proposition 4.16 as a consequence of Proposition 3.2:

Proof of Proposition 4.16 Let’s start by definingΨη. Let A be the potential for η relative
to the flat contact connection H0 of η0. Then, for each b ∈ Σ and each positive
basis (u, v) of TbΣ , Au and Av are two vector fields on Mb which are contact for
ξb. Moreover, according to Proposition 4.9 (and by definition of Bourgeois contact
structure), [Au, Av] is negatively transverse to ξb. Then, Proposition 3.2 gives an open
book decomposition O B D(u,v) for Mb supporting ξb. Because O B D(u,v) is also a
fiber adapted open book, we can define Ψη(u, v) := O B D(u,v). In particular, it is
clear that point (i) of Proposition 4.16 is satisfied.

Let’s now prove point (ii). Consider b ∈ Σ and a basis (u, v) of TbΣ . Let α be a
1-form defining η on V and denote αb its restriction to the fiber Mb of V → Σ . From
the explicit proof of point (c) of Proposition 3.2, we can see that Ψη(u, v) is the open
book defined by the smooth function

φ(u,v) := (αb (Au) ,−αb (Av)) : Mb → R
2 .

By definition of pullback smooth bundle and pullback contact bundle,Ψη ◦γ describes
then the smooth [0, 1]-family of open books on γ ∗ pr∗ V adjusted to γ ∗ pr∗ η which
is given by the conformal class of Ψγ : γ ∗ pr∗ V → R

2 defined, for all (t, p) ∈
γ ∗ pr∗ V = {(t, p) ∈ [0, 1] × V | pr ◦γ (t) = π(p)}, by

Ψγ (t, p) := (

(μ∗α)(t,p)

(

Aγ1(t)(p)
)

, (μ∗α)(t,p)

(

Aγ2(t)(p)
))

,

where, for each t ∈ [0, 1], γ1(t) and γ2(t) are the two vectors of the (ordered)
basis γ (t) ∈ FΣ and where μ : γ ∗ pr∗ V → V is the restriction of the projec-
tion prV : [0, 1] × V → V to γ ∗ pr∗ V . Notice that Aγ1(t)(p) and Aγ2(t)(p) are well
defined because (t, p) ∈ γ ∗ pr∗ V . This concludes the proof of point (ii). 
�

Finally, we point out a somehow peculiar property: on the trivial flat contact bundle
(π : M × T

2 → T
2, ξ ⊕ TT

2) there is a natural way to associate a strong Bourgeois
contact structure to each Bourgeois contact structure, in such a way that it gives a left
inverse to the natural inclusion
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i :
⎧

⎨

⎩

strong Bourgeois
contact structures on

(π, ξ ⊕ TT
2)

⎫

⎬

⎭

↪→
⎧

⎨

⎩

Bourgeois
contact structures on

(π, ξ ⊕ TT
2)

⎫

⎬

⎭

.

Let’s give a precise statement.
The potential A of a contact bundle η, with respect to the natural flat connection

{0} ⊕ TT
2 ⊂ T

(

M × T
2
)

on π : M × T
2 → T

2, can actually be seen as a 1-form
defined on T

2 and with values in the vector space of contact vector fields of (M, ξ),
thanks to the canonical identification of each fiber of π with M . Moreover, an explicit
computation gives that A is ∇-parallel (with respect to the natural flat ∇T

2
on T

2) if
and only if η is invariant under the natural T2-action on the total space M ×T

2. Using
this equivalence, we get:

Proposition 4.18 Let η be a Bourgeois contact structure on the flat contact bundle
(π : M × T

2 → T
2, ξ ⊕ TT

2) and denote by A its potential. The average A of A
via the natural T2-action is the potential of a strong Bourgeois contact structure with
respect to the natural flat ∇T

2
on T

2.
In particular, taking the average of the potential gives a well defined map

F :
⎧

⎨

⎩

Bourgeois
contact structures on

(π, ξ ⊕ TT
2)

⎫

⎬

⎭

→
⎧

⎨

⎩

strong Bourgeois
contact structures on

(π, ξ ⊕ TT
2)

⎫

⎬

⎭

,

which satisfies F ◦ i = Id.

In other words, the space of Bourgeois contact structures on (π, ξ ⊕ TT
2) retracts

to its subspace of strong Bourgeois contact structures. It is not clear to the author
whether this is actually a deformation retract or not.

Proof of Proposition 4.18 As remarked above, because A is T2-invariant, it is also ∇-
parallel, hence satisfies d∇ A = 0. By Proposition 4.9, what we need to show is then
that [A, A] is with values in the negative contact vector fields for (M, ξ). Let’s start
by analyzing this condition more explicitly.

Write A = X⊗dx+Y ⊗dy,with (x, y) coordinates onT2 = (R/2πZ)2 and X , Y aT2-
family of vector fields on M parametrized smoothly by (x, y). Here, for all (x, y) ∈ T

2,
[X , Y ] is everywhere negatively transverse to ξ . Because A = X ⊗ dx + Y ⊗ dy, it is
then enough to show that their averages X , Y are such that [X , Y ] is also everywhere
negatively transverse to ξ .

We point out that, if Z , W are T2-parametric vector fields on M , it is not true in
general that the T2-average of [Z , W ] is equal to the Lie bracket of the averages of Z
and W . This being said, what we are going to show here is that this is actually true for
X , Y , because of the additional condition d∇ A = 0.

Notice that X , Y can be seen as smooth functions from T
2 to the space of vector

field on M , which has a natural structure of vector space over R. As such, they both
admit a complex Fourier series expansion

X =
∑

m,n∈Z
ei(mx+ny)Xm,n and Y =

∑

h,k∈Z
ei(hx+ky)Yh,k , (16)
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where, for all m, n, h, k ∈ Z, Xm,n, Yh,k are complex vector fields on M , i.e. sections
of the complexified tangent bundle T M ⊗R C → M . Because X , Y are actually real,
we have the following condition on the coefficients:

Xm,n = X−m,−n and Yh,k = Y−h,−k , for all m, n, h, k ∈ Z, (17)

where Xm,n , Yh,k denote the complex conjugates of Xm,n and Yh,k respectively.
The condition d∇ A = 0 also gives some information on the Fourier coefficients.

More precisely,

d∇ A = 0 if and only if
∂

∂x
Y − ∂

∂ y
X = 0 . (18)

Indeed, we can explicitly compute

d∇ A
(

∂x , ∂y
) = ∇∂x (A∂y ) − ∇∂y (A∂x ) − A[∂x ,∂y]

(i)= [

̂∂x , Y
]− [

̂∂y, X
]

(i i)= ∂

∂x
Y − ∂

∂ y
X ,

where (i) comes from the fact that ∂x and ∂y commute (and from the definition of ∇),
and (i i) follows from the expression in coordinates of the Lie bracket.

A straightforward computation shows that the right condition in Eq. (18) is equiv-
alent to:

mYm,n = nXm,n for all m, n ∈ Z . (19)

Notice now that the averages of X and Y are, respectively, X0,0 and Y0,0, which are in
particular real vector fields on M . To avoid confusion with the conjugation, we will
hence drop the notation X and Y for the averages and just denote them by X0,0 and
Y0,0 instead.

Let [. , .]C be the Lie bracket induced on the complex vector space of the sections
of T M ⊗ C → M by [. , .] on the space of vector fields on M . We then compute:

[X , Y ] =
⎡

⎣

∑

m,n∈Z
ei(mx+ny) Xm,n ,

∑

h,k∈Z
ei(hx+ky)Yh,k

⎤

⎦

C

(a)=
∑

m,n∈Z

∑

h,k∈Z
ei[(m+h)x+(n+k)y] [Xm,n, Yh,k

]

C

(b)=
∑

r ,s∈Z
ei(r x+sy)

⎛

⎝

∑

m,n∈Z

[

Xm,n, Yr−m,s−n
]

C

⎞

⎠ ,

where the equality (a) comes from the fact that the Lie bracket is C−bilinear and is
taken on each fiber M ×{pt} of M ×T

2 → T
2 (where the exponentials are constant),

and the equality (b) comes from replacing r = m + h and s = n + k.
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The above computation shows that [X , Y ] has Fourier coefficients

[X , Y ]r ,s =
∑

m,n∈Z

[

Xm,n, Yr−m,s−n
]

C
(20)

for r , s ∈ Z. In particular, its average is given by

[X , Y ]0,0 =
∑

m,n∈Z

[

Xm,n, Y−m,−n
]

C

(a)= [X0,0, Y0,0] +
∑

m,n∈Z\{0}

[

Xm,n, Y−m,−n
]

C

(b)= [X0,0, Y0,0] +
∑

m,n∈Z\{0}

m

n

[

Ym,n, Ym,n
]

C

(c)= [X0,0, Y0,0] − 2i
∑

m,n∈Z\{0}

m

n

[�Ym,n,�Ym,n
]

(d)= [X0,0, Y0,0] ,

where �Ym,n and �Ym,n denote respectively the real and imaginary part of Ym,n .
Moreover, (a) comes from the fact that Xm,n is zero if m = 0, n �= 0 and Y−m,−n is
zero if n = 0, m �= 0 by Eq. (19), (b) comes from Eqs. (17) and (19), (c) comes from
the C−bilinearity of [. , .]C and the anti-symmetry of [. , .] and, finally, (d) comes
from the fact that [X , Y ]0,0 is a (real) tangent vector field, because average of [X , Y ],
hence has zero imaginary part.

Because [X , Y ] is negatively transverse to ξ everywhere on M for all (x, y) ∈ T
2,

its average [X , Y ]0,0 = [X0,0, Y0,0] is also negatively transverse to ξ everywhere on
M . This concludes the proof of Proposition 4.18. 
�
Remark 4.19 In analogy with the case of Bourgeois contact structures, we could have
also considered, on a flat contact fiber bundle (π : V → Σ, η0), the class of contact
structures η on V given by a potential A with [A, A] = 0.

For such an η, Proposition 4.9 tells us that d∇ A is with values in the negative contact
vector fields of the fibers. Such a condition, though, is not compatible with the fact
that the surface Σ is closed.
Indeed, by explicit computations (analogous to the ones in the proof of Claim 5.3 in
the following) it can be proven that this condition on d∇ A implies the existence of
an exact volume form on Σ . Now, the latter can’t exist if Σ is closed, according to
Stoke’s theorem.

Moreover, even if we allow Σ to have boundary, we do not recover all the infor-
mations on the fiber that we have with a Bourgeois contact structure. More precisely,
we can’t recover in general an (isotopy class of) open book decomposition supporting
the contact structure on the fiber.

For instance, consider on the flat contact bundle (M × Σ → Σ, ξM ⊕ T Σ) the
contact fiber bundle structure η = ker (α + λ), with ξM = ker α and dλ symplectic
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on Σ (that hence has non−empty boundary). Then, an explicit computation shows
that A = −Rα ⊗ λ, where Rα is the Reeb vector field of α. In particular, [A, A] = 0
and d∇ A = −Rα ⊗ dλ, and we do not have any way to recover an (isotopy class of)
open book decomposition on M from A.

4.6 Contact deformations and branched coverings

We show in this section that the class of contact fiber bundles that are contact defor-
mations of a flat contact fiber bundle is stable under the operation of contact branched
coverings:

Proposition 4.20 Let (π : V 2n+1 → Σ, η0) be a flat contact fiber bundle and p :
̂Σ → Σ a branched covering map that lifts to a branched covering map p̂ : ̂V → V .
Consider now the pull-back flat contact fiber bundle (π̂ : ̂V → Σ, η̂0) induced by p,
i.e. η̂0 := p̂ ∗η0. If η is a contact deformation of η0, then there is a contact branched
covering η̂ of η to ̂V that is a contact deformation of η̂0.

Proof By definition of contact deformation, there is a smooth family of 1-forms
(αt )t∈[0,1] on V interpolating between η = ker α1 and η0 = ker α0, such that
ηt = ker αt is contact for t > 0 and the fibers of π : V → Σ have induced
contact structures independent of t . For t ∈ [0, 1], define ft , ht : V → R by
αt ∧ dαn−1

t |ker(dπ) = ftα1 ∧ dαn−1
1 |ker(dπ) and αt ∧ dαn

t = htα1 ∧ dαn
1 . Notice

that ft > 0 everywhere for every t ∈ [0, 1], whereas ht > 0 everywhere for t > 0
and h0 = 0. Moreover, as ht is a smooth function of t and V is compact, the function
k(t) := min{ht (p) | p ∈ V } is smooth in t .

According to the proof of Lemma 2.4, we can choose η̂ on ̂V to be the kernel of
α̂ = p̂ ∗α1 + εg(r)r2dθ , with the same notations as in that proof, using the particular
choice of closed form γ = dθ as connection on the trivial unit normal bundle of M
in V . Recall that ε > 0 can be chosen arbitrarily small here.
Define (̂αt )t∈[0,1] by α̂t = p̂ ∗αt + tk(t)εg(r)r2dθ . In particular, ker(̂α1) = η̂ and
ker(̂α0) = η̂0. We then claim that α̂t is a contact deformation of η̂0 to η̂.
Now, α̂t gives on each fiber a contact structure independent of t , hence the only thing
we need to show is that α̂t defines a contact structure for t > 0. We can explicitly
compute

α̂t ∧ dα̂n
t = Cn+1 p̂ ∗ (αt ∧ dαn

t

)

+ Cn ε t k(t)
(

rg′ (r) + 2g (r)
)

p̂ ∗ (αt ∧ dαn−1
t

)

∧ rdr ∧ dθ

+ Cn ε t k(t) g(r) r2dθ ∧ p̂ ∗dαn
t .

Notice that p̂ ∗ (αt ∧ dαn
t

) = ht p̂ ∗ (α1 ∧ dαn
1

)

. Moreover,

p̂ ∗ (αt ∧ dαn−1
t

)

∧ rdr ∧ dθ = ft p̂ ∗ (α1 ∧ dαn−1
1

)

∧ rdr ∧ dθ .
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In particular, p̂ ∗
(

αt ∧ dαn−1
t

)

∧ rdr ∧ dθ is bounded below by a positive volume

form independent of t . Using the fact that t k(t)/ht → 0 for t → 0, an argument
analogous to the one in the proof of Lemma 2.4 allows to conclude that, if ε > 0 is
small enough, α̂t ∧ dα̂n

t > 0 for every t > 0. 
�

5 Virtually overtwisted contact structures in high dimensions

In Sect. 5.1, we prove Proposition C from Sect. 1, stating that a Bourgeois contact
structure on a fiber bundle with total space M × T

2 is weakly fillable provided that
the same is true for the fiber (M, ξ). Then, Sect. 5.2 contains the proof of Theorem F,
also stated in Sect. 1, about the existence of virtually overtwisted manifolds in all odd
dimensions.

5.1 Bourgeois contact structure and weak fillability

Let (M2n−1, ξ) be a contact manifold and consider the flat contact bundle (π : M ×
T
2 → T

2, η0 = ξ ⊕ TT
2), where π is the projection on the T2-factor.

Proposition 5.1 Let η be a Bourgeois contact structure on (π, η0). If (M, ξ) is weakly
filled by (X , ω), then (M × T

2, η) is weakly filled by (X × T
2, ω + ωT2), where ωT2

is an area form on T
2.

Recall that the result is already known in the case of η obtained by the Bour-
geois construction [3]. The statement and the idea of the proof in that case already
appeared in Massot et al. [37, Example 1.1], and an explicit proof can be found in Lisi
et al. [35, Theorem A.a]. Notice also that, in a similar vein, [35, Theorem A.b] studies
the stability of (subcritical) Stein fillability under the Bourgeois construction.

The proof of Proposition 5.1 uses the following fact about polynomials:

Fact 5.2 Let P1, P2 ∈ R [τ ] of degree n, with P1(τ ) > 0 ∀ τ ≥ 0 and with P2 having
positive leading coefficient. Then ∃ ε0 > 0 such that ∀ 0 < ε < ε0, P1 + ε2P2 > 0
on R≥0.

Proof of Proposition 5.1 We first choose a convenient contact form for η.
Let β is a form on M defining ξ . We can then write η = ker (α), where α :=

β + φ1dθ1 − φ2dθ2, with φ1, φ2 : M × T
2 → R and (θ1, θ2) coordinates on T

2.
Recall from Sect. 4.5 that if A denotes the potential of η with respect to η0 then,

for each ε > 0, the family of potentials Aε := ε A defines a family ηε of Bourgeois
contact structures that are all isotopic among Bourgeois contact structures (hence
among contact structures).

Thus, up to isotopy, we suppose η = ker(αε), where αε = β + εφ1dθ1 − εφ2dθ2,
for a certain ε > 0 that will be chosen very small in the following.

The weak fillability condition for M implies that

β ∧ (ωM + τdβ)n−1 > 0 on M , for all τ ≥ 0 ,
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where ωM denotes the restriction of ω to M = ∂ X . We want to verify that, for ε > 0
small enough, we also have

αε ∧ (ωM + ωT2 + τdαε)
n > 0 on M × T

2, for all τ ≥ 0 .

Claim 5.3 Let Ω be an arbitrary volume form on M × T
2. We then have

αε ∧ (ωM + ωT2 + τdαε)
n = nβ ∧ (ωM + τdβ)n−1 ∧ ωT2

+ ε2τ nα1 ∧ dαn
1 + ε2h Ω ,

where h is independent of ε and polynomial in τ , with degτ (h) ≤ n − 1.

To improve readability, the proof of this claim is postponed.
Denote now f and g the functions defined by f Ω = nβ ∧ (ωM + τdβ)n−1 ∧ωT2 ,

g Ω = τ nα1 ∧ dαn
1 . Then we need to show that f + ε2(g + h) > 0 on M × T

2.
Notice that for each p ∈ M×T

2, f (p), g(p) and h(p) are polynomials in τ , by explicit
computation in the case of f and g, and by Claim 5.3 in the case of h. Moreover, we
have the following properties: for each p ∈ M × T

2,

(a) f (p) > 0, because (X , ω) weakly fills (M, ξ);
(b) g(p) > 0, because α1 is a contact form for η;
(c) h(p) has degree in τ strictly less than g(p), by Claim 5.3.

For each p ∈ M × T
2, define P1 = f (p) and P2 = g(p) + h(p). Fact 5.2 then

gives an εp > 0 such that f (p)+εp(g+h)(p) > 0. Thus, by compactness of M ×T
2,

there is ε > 0 such that f + ε(g + h) > 0, as desired. 
�
Proof of Claim 5.3 We can compute

dαε = dβ + εdφ1 ∧ dθ1 − εdφ2 ∧ dθ2 −
(

∂φ1

∂θ2
+ ∂φ2

∂θ1

)

dθ1 ∧ dθ2 . (21)

Moreover, one has the following:

d∇ A = 0 if and only if
∂φ1

∂θ2
+ ∂φ2

∂θ1
= 0 . (22)

Indeed, we have A = X ⊗ dθ1Y ⊗ dθ2, with X , Y the contact vector fields on (M, ξ)

with contact hamiltonians −φ1, φ2 w.r.t. β. By Eq. (18), d∇ A = 0 if and only if
∂

∂θ1
Y − ∂

∂θ2
X = 0. Now, because the latter is a contact vector field on each fiber

(M, ξ), it is zero if and only if its contact hamiltonian w.r.t. β is zero, i.e. if and
only if

0 = ∂

∂θ1
β (Y ) − ∂

∂θ2
β (X) = ∂φ2

∂θ1
+ ∂φ1

∂θ2
,

thus giving the equivalence in Eq. (22).
Because η is a Bourgeois contact structure, Eq. (21) then becomes

dαε = dβ + εdφ1 ∧ dθ1 − εdφ2 ∧ dθ2 .
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For dimensional reasons, we thus get

(

ω|T M + ωT2 +τdαε)
n = n

(

ω|T M + τdβ
)n−1 ∧ (ωT2 + τεdφ1 ∧ dθ1−τεdφ2 ∧ dθ2

)

+ τ 2ε2n(n − 1)
(

ω|T M +τdβ
)n−2 ∧dφ1∧dφ2∧dθ1 ∧ dθ2 ,

and

αε ∧ (ω|T M + ωT2 + τdαε)
n

= n(β + εφ1dθ1 − εφ2dθ2) ∧ (ωM + τdβ)n−1

∧ (ωT2 + τεdφ1 ∧ dθ1 − τεdφ2 ∧ dθ2)

+ τ 2ε2n(n − 1) (β + εφ1dθ1 − εφ2dθ2) ∧ (ω|T M + τdβ
)n−2

∧ dφ1 ∧ dφ2 ∧ dθ1 ∧ dθ2

= nβ ∧ (ωM + τdβ)n−1 ∧ ωT2

+ nτε2(φ1dφ2 − φ2dφ1) ∧ (ωM + τdβ)n−1 ∧ dθ1 ∧ dθ2

+ τ 2ε2n(n − 1)β ∧ (ω|T M + τdβ
)n−2 ∧ dφ1 ∧ dφ2 ∧ dθ1 ∧ dθ2.

(23)

A similar explicit computation [using again Eq. (22)] shows that

α1 ∧ dαn
1 = n (φ1dφ2 − φ2dφ1) ∧ dβn−1 ∧ dθ1 ∧ dθ2 +

+ n(n − 1)β ∧ dβn−2 ∧ dφ1 ∧ dφ2 ∧ dθ1 ∧ dθ2 ,

so that the second and third term in the right hand side of the last equality in Eq. (23)
give ε2τ nα1 ∧dαn−1

1 +ε2h Ω , where h is as in the statement. This conclude the proof
of Claim 5.3. 
�

Even if we will not use it in the following, we remark that the local nature of the
condition d∇ A = 0 and of all the computations in the above proof actually gives the
following more general result:

Proposition 5.4 Let (M2n−1, ξ) be a contact manifold weakly filled by (X2n, ω). Sup-
pose that a representation ρ̃ of π1(Σg) in the group of symplectomorphisms of (X , ω)

gives, by restriction to the boundary, a representation ρ of π1(Σg) in the group of
contactomorphisms of (M, ξ). Let also η be a Bourgeois contact structure on the flat
contact bundle (π : M ×ρ Σg → Σg, η0) (as constructed in Sect. 4.4). Then, there
is a symplectic form Ω on X ×ρ̃ Σg that weakly fills η on M ×ρ Σg.

More precisely, if R2 → Σg denotes the universal covering map, Ω can be chosen
to be the symplectic form on X ×ρ̃ Σg induced by ω + ω

g
R2 on X × R

2 and where

ω
g
R2 is a symplectic form on R

2 invariant by the action of π1(Σg) on R
2 by deck

transformations.

Let’s now come back to the results we need in order to exhibit examples of virtu-
ally overtwisted manifolds in all odd dimensions. Proposition 5.1 and (the proof of)
Theorem 2.8 have the following immediate corollary:
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Proposition 5.5 Consider a branched covering Σg → T
2, where Σg is the closed

genus g ≥ 2 surface, and the naturally induced branched covering M×Σg → M×T
2.

Let ηg on M × Σg be a contact branched covering of a Bourgeois contact structure η

on the the contact bundle (π : M ×T
2 → T

2, ξ ⊕TT
2), where ξ is a contact structure

on the fiber M. Then, if (M, ξ) admits a weak filling (X , ω), there is a symplectic form
Ω on X × Σg weakly dominating ηg on M × Σg = ∂ X × Σg. More precisely, Ω can
be chosen to be of the form ω + ωg, for a certain area form ωg on Σg.

5.2 High dimensional virtually overtwistedmanifolds

Let π : Σg → T
2 be a branched covering map, branched along two points, and

consider (Id, π) : M × Σg → M × T
2. Notice that g is the branching index along

each of the two connected components of the upstairs branching locus of (Id, π).

Proposition 5.6 Let η be a Bourgeois contact structure on the flat contact bundle
(M × T

2,T2, M, η0) and consider a contact branched covering ηg of η with respect
to (Id, π) : M ×Σg → M ×T

2. If (M, ξ) is weakly fillable and virtually overtwisted,
then, for g ≥ 2 big enough,

(

M × Σg, ηg
)

is weakly fillable and virtually overtwisted.

Starting for instance from the case of a holomorphically fillable virtually over-
twisted contact structure on lens spaces, that exist by Gompf [25, Proposition 5.1]
(see also Giroux [21, Theorem 1.1]), and using the construction in [3], a proof by
induction on the dimension 2n − 1 of M gives then the following:

Corollary 5.7 Virtually overtwisted manifolds exist in all odd dimensions ≥ 3.

For the proof of Proposition 5.6 we will need the following result, which is essen-
tially just a rephrasing of the discussion in Niederkrüger and Presas [39, Page 724]
for the local situation near the branching locus:

Lemma 5.8 For k ∈ N>1, let πk : ̂Vk → V 2n+1 be a branched covering map of
branching index k. Suppose that all πk’s have same downstairs branching locus M
and that the upstairs branching locus ̂Mk of πk is connected (in particular, πk |̂Mk

induces a diffeomorphism between ̂Mk and M). Suppose also that there is a tubular
neighborhood N := M × D2 (where D2 is the 2−disk centered at 0 and of radius
1) of the downstairs branching locus M over which all the πk’s are trivialized at the
same time, i.e. such that πk : M × D2 → M × D2 is just (p, z) �→ (p, zk) for all k.
Finally, let η be a contact structure on V inducing a contact structure ξ on M and η̂k

on ̂Vk be a contact branched covering of η.
Then, there is ε > 0 such that, for all k ≥ 2, the upstairs branching

locus (̂Mk,̂ξk = ker π∗
k α)

πk� (M, ξ = ker α) has a neighborhood of the form
(

M × D2√
kε

, ker
(

α + r2dϕ
)

)

inside (̂Vk, η̂k) (here, by D2
r we denote the open disk

centered in 0 and of radius r inside R
2).

Proof of Proposition 5.6 Proposition 5.5 tells us that
(

M × Σg, ηg
)

is weakly fillable
for all g ≥ 2. We then have to show that, for g sufficiently big, this contact manifold
admits a finite cover which is overtwisted.
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By hypothesis, there is a finite cover p : M → M such that (M, ξ := p∗ξ) is
overtwisted. Consider then the following commutative diagram of smooth maps:

M × Σg M × Σg

M × T
2 M × T

2

(p,Id)

(Id,π) (Id,π)

(p,Id)

Consider also η := (p, Id)∗η on M ×T
2 and ζg := (p, Id)∗ηg on M ×Σg . Notice that

the restriction of ζg to the upstairs branching locus of (Id, π) : M × Σg → M × T
2

is exactly ξ .
We now claim that (M × Σg, ζg) is a branched contact covering of (M × T

2, η).
Indeed, we can see that ζg is a contact deformation of the confoliation (Id, π)∗η on
M × Σg as follows. If (ηt

g)t∈[0,1] is a path of confoliations adapted to the upstairs
branching locus of (Id, π) : M × Σg → M × T

2 starting at η0g = (Id, π)∗η, ending
at η1g = ηg and such that ηt

g is contact for t ∈ (0, 1], then (p, Id)∗ηt
g is the path of

confoliations on M × Σg which shows that ζg is a contact deformation of (Id, π)∗η.
Notice that, letting g ≥ 2 vary, we get a sequence of branched coverings M ×Σg of

M × T
2, together with contact branched coverings ζg of η. Lemma 5.8 then tells that

each of the fibers (M, ξ = ker(α)) that belong to the (upstairs) branching set has a

contact neighborhood of the form
(

M × D2
Rg

, ker
(

α + r2dθ
)

)

, with Rg → +∞ for

g → +∞. Because ξ on M is overtwisted, this implies, according to Casals et al. [5,
Theorem 3.2], that if g is big enough then the upstairs branching set has an overtwisted
neighborhood, so that (M ×Σg, ζg) is also overtwisted. In other words, we just proved
that, for g big enough, (M × Σg, ηg) has a finite cover which is overtwisted. 
�

Notice that taking g = 1 in the statement of Proposition 5.6, i.e. working directly
on M ×T

2 without taking a branched covering, is in general not enough to ensure the
same conclusion.

For instance, this follows from Sect. 6, where we will show that for each contact
manifold (M3, ξ), with π1(M) �= 0, there is an open book decomposition of M
supporting ξ such that the construction in [3] yields a hypertight contact form α

on M × T
2. In particular, even if (M, ξ) is virtually overtwisted, with (M, ξ) an

overtwisted finite cover, the pullback α of α to M ×T
2 will still define a tight contact

structure η = ker α: indeed, if by contradiction η is overtwisted, according to Casals
et al. [5] and Albers and Hofer [1], α admits a contractible Reeb orbit in M × T

2,
which then projects to a contractible Reeb orbit of α in M × T

2, contradicting the
hypertightness of α.

We also point out thatwe preferred to take a very big g in Proposition 5.6 in order not
to enter too much in technical details and to keep the construction simple, but actually
g = 2 is already enough. Indeed, it’s enough to apply the following observation to the
overtwisted cover (M, ξ) in the proof of Proposition 5.6 above.

Observation 5.9 (Massot–Niederkrüger) If (M, ξ) is overtwisted, the contact manifold
(M × Σg, ηg) is overtwisted already for g = 2.
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The argument, which we now sketch, is due to Massot and Niederkrüger, and relies on
the idea fromPresas [41] of usingmonodromyoncontact fiber bundleswith overtwisted
fibers in order to find embedded Plastikstufes.

Sketch of proof of Observation 5.9 Take an arc γ on T
2 going from one (downstairs)

branching point of the cover Σ2 → T
2 to the other and such that it is radial in a local

model (trivializing the smooth branched covering) around the two branching points,
in such a way that its double cover δ in Σ2 is a smooth closed curve.

The monodromy of the contact fiber bundle M ×Σ2 → Σ2 over δ is trivial. Indeed,
as the proof of Lemma 2.4 shows, the contact branched covering η2 of a Bourgeois
contact structure (M × T

2 → T
2, η = ker β) can be chosen to be defined by a form

β2 on M ×Σ2 which is invariant under deck transformations of the branched covering
π : M ×Σ2 → M ×T

2 and C∞-close to π∗β. Then, one can see that the monodromy
of (M × Σ2 → Σ2, η2) over δ is obtained as the concatenation of the monodromy
fγ of

(

M × T
2 → T

2, η = ker (β)
)

over γ , plus a C∞−little perturbation h, and the

monodromy
(

fγ
)−1 over −γ , plus the inverse h−1 of the same perturbation.

Using the techniques from [41], we can then find an embedded plastikstufe inside
M × δ ⊂ M × T

2. In practice, if p ∈ Σ2 denotes one of the two upstairs branching
points, this PS is obtained by parallel-transporting (w.r.t. the connection defined by
η2) an overtwisted disk in M × {p} � M along δ. This procedure actually gives an
embedded PS because the monodromy along the loop δ is the identity. Finally, Huang
[30] tells that each PS-overtwisted manifold is also overtwisted, which concludes. 
�

6 Bourgeois construction and Reeb dynamics

Themain aim of this section is to give a proof of TheoremG stated in Sect. 1. In order to
do this, starting from a contact manifold (M2n−1, ξ) and an open book (B, ϕ) adapted
to ξ , we consider in Sect. 6.1 a strong Bourgeois contact structure η on the flat contact
bundle (M × T

2 → T
2, ξ ⊕ TT

2) which admits a contact form α with very specific
Reeb vector field. This η is actually one of the examples described in [3]. We then
show that the Reeb dynamics of α on M ×T

2 is strictly related to the Reeb dynamics
on the binding B of the open book (B, ϕ). This will give a criterion for the existence
of closed contractible Reeb orbits of α on M × T

2. Then, we show in Sect. 6.2 how
to deduce Theorem G as a corollary of this study in the case of 3-dimensional M .

6.1 Bourgeois structures and contractible Reeb orbits

Proposition 6.1 Let (M, ξ) be a (2n − 1)-dimensional contact manifold, (B, ϕ) an
open book decomposition on M supporting ξ and β0 a contact form for ξ adapted to
(B, ϕ). Then, there is a strong Bourgeois contact structure η on the flat contact bundle
(M ×T

2 → T
2, ξ ⊕ TT

2), which is obtained as in Theorem 4.1 and admits a contact
form α with associated Reeb vector field of the form

Rα = Z + f ∂x − g ∂y .
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Here, Z, f and g are as follows:

(a) Z is a smooth vector field on M such that:

i. on M\B, it is tangent to the fibers of ϕ,
ii. on the binding B, it is a (non-zero) multiple of the Reeb vector field RB of the

restriction of β0 to B;

(b) f , g : M → R are smooth functions such that ( f , g) : M → R
2 is positively

proportional to (cosϕ, sin ϕ) on M\B and f = g = 0 on B.

For the proof of Proposition 6.1 we will need the following result, whose proof can
be found for instance in Dörner et al. [8, Section 3]:

Lemma 6.2 (Giroux) Let D2 ⊂ R
2 be the disk centered at the origin with radius 1

and β be a contact form on B × D2 with the following properties:

1. βB := β|T B is a contact form on B = B × {0}.
2. For each ϕ ∈ S

1, dβ|T Σϕ is a symplectic form on Σϕ\B, where

Σϕ = { (p, r , ϕ) ∈ B × D2 | p ∈ B, 0 ≤ r ≤ 1 } .

3. With the orientations of B and Σϕ induced, respectively, by βB and dβ|T Σϕ , B is
oriented as the boundary of Σϕ .

Then, for a sufficiently small δ > 0, there is an embedding B × D2
δ → B × D2 (here,

D2
δ ⊂ R

2 denotes the disk centered at the origin of radius δ > 0) which preserves the
angular coordinate ϕ on the second factor, is the identity on B × {0} and pulls back a
convenient isotopic modification β ′ of β (with an isotopy between contact forms that
satisfy Hypothesis 1, 2 and 3 above) to a 1-form h1(r) βB + h2(r) dϕ, where:

(i) h1(0) > 0 and h1(r) = h1(0) + O(r2) for r → 0,
(ii) h2(r) ∼ r2 for r → 0,

(iii) if H := hn−1
1 (h1h′

2 − h2h′
1), then H

r > 0 ∀r ≥ 0 (contact condition);
(iv) h′

1(r) < 0 for r > 0, (symplectic condition on Σϕ).

Proof of Proposition 6.1 We start by finding a convenient isotopic modification of the
adapted form β0 in the statement as well as a particular normal neighborhood N of
the binding and a particular smooth map φ : M → R

2 defining (B, ϕ).
Take a normal neighborhood B × D2 of the binding B in M such that ϕ : B ×

(

D2\ {0}) → S
1 becomes the angular coordinate of D2\ {0}. Such neighborhood

exists by definition of open book decomposition. Then, Lemma 6.2 gives an isotopic
modification β of β0, still adapted to the same open book, and of the form h1βB +h2dϕ

in the neighborhood N := B × D2
δ ⊂ B × D2. Moreover, β|T B = β0|T B , so that

they induce the same Reeb vector field on B; as in the statement, we denote it RB .
Consider now a function ρ : M → R which is smooth away from B, equal

to the radial coordinate r of D2
δ on the neighborhood {r ≤ δ/3} of B × {0} inside

N = B × D2
δ , equal to 1 on the complement in M of the open set {r < 2δ/3} ⊂ N , and

depending only on r in a strictly increasing way on the set δ/3 < r < 2δ/3. Then, we
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On some examples and constructions of contact manifolds 1003

define φ := ρ (cosϕ, sin ϕ). Remark that such a φ is indeed well defined and smooth
on all M , and defines the open book (B, ϕ).

We now define two functions λ,μ : M → R as follows:

λ =
{

ρ′
ρ′h1−ρh′

1
inside N

0 outside N
and μ =

{ −h′
1

ρ′h1−ρh′
1

inside N
1 outside N

.

Notice that they are well defined smooth functions on all M ×T
2. Indeed, ρ′ smoothly

extends as 1 at r = 0, h′
1 = O(r) near r = 0 (by point (i) of Lemma 6.2) and

ρ′h1 − ρh′
1 is positive for r > 0 and smoothly extends as h1(0) at r = 0.

Consider then Z := λRB and ( f , g) := μ(cosϕ, sin ϕ). Here, RB is seen as as a
vector field on N = B × D2

δ tangent to the first factor and λ has support contained
insideN , hence λRB is well defined on all M . Similarly, f , g are well defined because
μ is zero on B. It is also easy to check that such Z , f , g satisfy points (a) and (b) of
Proposition 6.1.

Finally, we have to choose a contact form α defining a strong Bourgeois contact
structure η on the flat contact bundle (M × T

2 → T
2, ξ ⊕ TT

2), as desired in the
statement of Proposition 6.1. Let α := β + φ1dx − φ2dy, i.e. the one obtained from
Theorem 4.1.(b) with the choices of φ and N made above.

We already know that the contact structures given by Theorem 4.1 are in particular
strong Bourgeois structures. An explicit computation also shows that Z + f ∂x − g∂y

is indeed the Reeb vector field associated to α, as desired. 
�
We have the following immediate consequence on the Reeb dynamics:

Corollary 6.3 Let α on M ×T
2 be the contact form given by Proposition 6.1. Then, the

closed contractible orbits of Rα in M × T
2 are of the form O × {pt}, where pt ∈ T

2

and O is a closed orbit of RB in B which is contractible in M.

Notice that, even if the closed orbits of RB are contained in B, we are interested
here in their homotopy class as loops in M .

6.2 Embedding 3-manifolds in (hyper)tight 5-manifolds

We start with a proposition on (topological) open books of 3-manifolds:

Proposition 6.4 Let M be a 3-manifold with H1 (M;Q) �= {0}. Then, every open
book decomposition (K , ϕ) of M can be transformed, by a sequence of positive sta-
bilizations, to an open book decomposition (K ′, ϕ′) with binding K ′ having at most 2
connected components, each of which has infinite order in H1 (M;Z).

For the proof of Proposition 6.4 we need the following embedded version of the
stabilization procedure for open book decompositions, which, as explained in Giroux
and Goodman [24], essentially follows from Stallings’ study in [42]:

Theorem 6.5 Let Σ be a compact surface with boundary in a manifold M and δ0 a
properly embedded arc in Σ . Let also Σ ′ ⊂ M be obtained by plumbing a positive
Hopf band to Σ , i.e. Σ ′ = Σ ∪ A where A is an annulus in M such that
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Fig. 1 Curves on a page Σ of (K , ϕ) which give a set of generators of π1(M, p)

1. the intersection A ∩ Σ is a tubular neighborhood of δ0,
2. the core curve δ of A bounds a disk in M\Σ and the linking number of the boundary

components is +1.

If Σ is a page of an open book decomposition (B, ϕ) of M, then Σ ′ is also a page of
an open book (B ′, ϕ′) of M.

Proof of Proposition 6.4 We start by applying a sequence of stabilizations to reduce the
number of connected components of the boundary of the pages to one. We can thus
suppose that the open book decomposition (K , ϕ) has connected binding K . Notice
that if [K ] ∈ H1(M;Z) is of infinite order, then we have nothing to prove. We can
hence suppose that it is a torsion element.

We now consider the following set of generators for H1(M;Z).
Let p ∈ K , Σ be a page of (K , ϕ) inside M and α1, β1, . . . , αg, βg, K be curves on
Σ that generate π1(Σ, p), as in Fig. 1. We can then use Van-Kampen theorem (see
for instance Etnyre and Ozbagci [12]) with the following two open sets: U given by
an open neighborhood K × D of the binding K and V := M\K . Because V is just
the mapping torus of the monodromy ϕ : Σ → Σ , we then get that the inclusion
Σ ↪→ M induces a surjection at the π1-level. Moreover, by Hurewicz theorem, the
same is true at the H1-level, i.e. H1(M,Z) is generated by the homology classes of
(the images in M of) α1, β1, . . . , αg, βg, K .

Now, by the hypothesis H1(M;Q) �= {0} and by the universal coefficients theorem,
at least one of the generators [αi ], [βi ], [K ] of H1(M;Z) is non-torsion;we canw.l.o.g.
assume that this is the case for [βg] (as we are assuming that [K ] is torsion).

Consider then a surface Σ ′ obtained, as surface embedded in M , by plumbing a
positive Hopf band A to Σ along a properly embedded arc δ0 which is in the same
class as βg in π1(Σ, ∂Σ), as shown in Figs. 2 and 3. According to Theorem 6.5, Σ ′
is the page of an open book of M . In particular, we know that the core δ of A bounds
a disk � in M\Σ .
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Fig. 2 Stabilization arc δ0. Only
a part of the surface is shown

Fig. 3 Stabilized surface Σ ′.
The representation is abstract
and not embedded for simplicity
(the boundary components of A
have trivial linking number in
the picture)

Now, δ is homotopic (in Σ ′) to the concatenation (K ′
1)

−1 ∗ βg of the inverse of the
boundary component K ′

1 ofΣ
′ = Σ ∪ A that passes through p and βg; see Fig. 3. The

existence of the disk � then tells that [K ′
1] = [βg] in H1(M;Z) and, because [βg] is

non-torsion, the same is true for [K ′
1].

Moreover, K = ∂Σ is cohomologous (inΣ ′) to K ′
1� K ′

2; see again Fig. 3.Working
in H1(M;Z) modulo torsion, it is then easy to check that [K ] torsion and [K ′

1] non-
torsion imply that [K ′

2] is also non-torsion, as desired. 
�
Corollary 6.3 and Proposition 6.4 have the following direct consequence:

Proposition 6.6 Let (M3, ξ) be a contact manifold with H1(M;Q) �= {0}.
Then, there is a hypertight strong Bourgeois contact structure on (M ×T

2 → T
2, ξ ⊕

TT
2). More precisely, given any open book (K , ϕ) supporting ξ , there is another

supporting (K ′, ϕ′), obtained from (K , ϕ) by a sequence of positive stabilizations,
such that the strong Bourgeois contact structure on M ×T

2 obtained as in Theorem 4.1
from (M, ξ, (K ′, ϕ′)) is hypertight.

Recall that a contact structure is called hypertight if it admits a contact form with
non-contractible Reeb orbits.

Let’s denote by D2
R the disk of radius R > 0 centered at the origin in R

2 and
by (r , ϕ) the polar coordinates on it. Theorem G and Corollary H then follow from
Proposition 6.6:

Theorem 6.7 Every closed 3-dimensional contact manifold (M, ξ) with non-trivial
H1(M;Q) can be embedded, with trivial conformal symplectic normal bundle, in a
hypertight closed 5-dimensional contact manifold (N , η).
In particular, for each contact form α defining ξ on M, there is an ε > 0 such that
(

M × D2
ε , ker

(

α + r2dϕ
))

is tight.

As already remarked in the introduction, Hernández-Corbato et al. [27] deal with
the higher dimensional case. More precisely, they give a generalization of the second
part of this result, as well as an analogue (with less control on the codimension) of the
first part of it.
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Proof of Theorem 6.7 Consider an arbitrary contact 3-manifold (M, ξ)with H1(M;Q)

�= {0} and take one of the hypertight contact manifolds (M × T
2, η) given by Propo-

sition 6.6.
Each (M × {pt}, η ∩ T (M × {pt}))) is then exactly (M, ξ) and it has topologi-

cally trivial normal bundle, hence trivial conformal symplectic normal bundle. Indeed,
a symplectic vector bundle of rank 2 is symplectically trivial if and only if it is topo-
logically trivial.

As far as the second part of the statement is concerned, according to the standard
neighborhood theorem for contact submanifolds (see for instanceGeiges [17, Theorem
2.5.15]), the contact submanifold (M, ξ = ker(α)) = (M × {pt}, η ∩ T (M × {pt})))
of (M × T

2, η) has a contact neighborhood of the form
(

M × D2
ε , ker

(

α + r2dϕ
))

,
for a certain real ε > 0. Moreover, each hypertight high dimensional contact manifold
is in particular tight, according to Albers and Hofer [1] and Casals et al. [5]. In par-
ticular, (M ×T

2, η) is tight. Then,
(

M × D2
ε , ker

(

α + r2dϕ
))

is tight too, because it
embeds (in codimension 0) in a tight contact manifold. 
�
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