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Abstract
We explain a general construction of double covers of quadratic degeneracy loci and
Lagrangian intersection loci based on reflexive sheaves. We relate the double covers
of quadratic degeneracy loci to the Stein factorizations of the relative Hilbert schemes
of linear spaces of the corresponding quadric fibrations. We give a criterion for these
double covers to be nonsingular. These results are an extension of O’Grady’s con-
struction of double covers of EPW sextics and provide an alternate construction of
Iliev–Kapustka–Kapustka–Ranestad’s EPW cubes.
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1436 O. Debarre, A. Kuznetsov

1 Introduction

When double coverings are mentioned, one usually thinks of double coverings
branched over divisors. These are very classical objects in algebraic geometry. Let D
be an effective Cartier divisor on a scheme S such that the line bundle OS(D) is a
square in the Picard group of S, that is,

OS(−D) � M⊗2

for some line bundle M . The double covering ˜S of S branched over D is defined as
the relative spectrum

˜S := SpecS(OS ⊕ M ),

where the algebra structure on OS ⊕M is such that the multiplication onM is given
by the composition

M ⊗ M � OS(−D)
·sD−−→ OS

(here sD is a section of OS(D) with divisor D). This construction depends on the
choice of the line bundle M (there may be several choices if the Picard group has
nontrivial 2-torsion) and of the section sD (the various choices form a torsor over the
group H0(S,O×

S ) of invertible functions on S, and two choices provide isomorphic
double coverings if and only if their ratio is the square of an invertible function). The
construction also works for the zero divisor D and produces an étale double covering
of S (which is nontrivial if the square root M of OS(−D) = OS is nontrivial, and
with the same ambiguity for the choice).

There is an extension of this construction which, although quite standard in bira-
tional geometry, is much less known. It is defined in a similar way, with the line
bundleM replaced by a reflexive rank-1 sheaf R. One considers the sum OS ⊕R as
a sheaf of commutativeOS-algebras, where themultiplication on the second summand
is given by a symmetric map m : R ⊗ R → OS . Such a map automatically factors
through the canonical map R ⊗ R → (R ⊗ R)∨∨ to the reflexive hull. We will
concentrate on the special case where

(R ⊗ R)∨∨ � OS

(the reflexive sheafR is then self-dual) and choose a mapm that factors through such
an isomorphism (it is then automatically symmetric). The double covering

˜S := SpecS(OS ⊕ R) −→ S

is then étale outside of a subset of codimension 2 and (when all invertible functions
are squares) is canonically defined by the reflexive sheaf R. So, if there is a natural
source of self-dual rank-1 reflexive sheaves, one obtains double covers as above.

In this paper, we apply this principle in two situations. The first one concerns
quadratic degeneracy loci: start from a family of quadratic forms, that is, from a
morphism

q : L −→ Sym2(E ∨)
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Double covers of quadratic degeneracy... 1437

from a line bundle L to the symmetric square of a rank-m vector bundle over a
scheme S. Consider the subscheme Sk ⊂ S where the morphism L ⊗ E → E ∨
induced by q has corank at least k. We define a reflexive rank-1 sheaf Rk on Sk by

Rk := (
∧kCk)

∨∨, where Ck = Coker(L ⊗ E
q−→ E ∨)|Sk .

IfL ⊗(m−k)|Sk � M⊗2 for some line bundleM on Sk , the determinant of the restricted
quadratic form q|Sk induces a self-duality isomorphism on the tensor product sheaf
M ⊗ Rk ⊗ det(E )|Sk . Thus, we obtain a double cover

˜Sk := SpecSk (OSk ⊕ (M ⊗ Rk ⊗ det(E )|Sk )) −→ Sk

of the quadratic degeneracy locus (see Theorem 3.1 for details). There is an ambiguity
in the choice of the line bundle M if the Picard group of Sk has nontrivial 2-torsion,
and in the choice of an isomorphismL ⊗(m−k)|Sk � M⊗2, but the local properties of
the double covers do not depend on these choices.

The archetypical example of this construction is the following. Let V be a k-vector
space of dimension k + 1 and let S = Sym2(V∨) be the space of quadratic forms
on V , equipped with the universal familyOS → Sym2(V∨ ⊗OS) of quadratic forms.
The subscheme Sk ⊂ S is the locus of forms of rank at most 1 and the double cover
constructed above is the morphism

V∨ −→ V∨/(±1) � Sk
� �−→ �2.

The scheme Sk is isomorphic to the cone over the double Veronese embedding of the
projective spaceP(V∨), its ring of functions is isomorphic to the invariant ringk[V∨]+
of the involution � �→ −� acting on k[V∨], and the associated reflexive sheaf corre-
sponds to the antiinvariant module k[V∨]− of the involution (Lemma 3.4).

We show that under suitable assumptions (a regularity property of the family of
quadratic forms; see Definition 3.5), the double cover ˜Sk → Sk can be obtained from
the archetypical example by a smooth base change (away from the locus Sk+2). This
provides a convenient nonsingularity criterion for the double cover˜Sk (Proposition 3.7)
and allows us to describe the branch and the ramification loci of the cover.

We also relate the double cover˜Sk → Sk to the double covers obtained by the Stein
factorization of the projections of the Hilbert schemes of linear isotropic spaces for
the quadric fibration

Q ⊂ PS(E ) −→ S

corresponding to the family of quadratic forms q: we prove in Proposition 3.10 that
the two covers agree over the locus Sk�Sk+1, so that ˜Sk is the normalization of the
cover obtained from the Stein factorization of the Hilbert scheme (and if the Hilbert
scheme is normal, the two covers are isomorphic).

In Sect. 3.4, we apply our results to construct natural double covers of symmetroid
hypersurfaces of odd degree (Theorem 3.11).
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1438 O. Debarre, A. Kuznetsov

The second situation where our machinery works is the case of Lagrangian inter-
section loci. Let V be a vector bundle of rank 2n over a scheme S, equipped with a
family

ω : ∧2V −→ L

of symplectic forms. Given a pair of Lagrangian subbundlesA1,A2 ⊂ V , we consider
the morphism

ωA1,A2 : A1 ↪−→ V
ω−→∼ V ∨ ⊗ L −→ A ∨

2 ⊗ L

and define a subscheme Sk ⊂ S as the corresponding corank-k degeneration scheme.
As in the quadratic case, we define a reflexive rank-1 sheafRk on Sk by

Rk = (∧kCk
)∨∨

, where Ck = Coker

(

A1
ωA 1,A 2−−−−−→ A ∨

2 ⊗ L

)

∣

∣

∣

Sk
,

and note that if (L ⊗(−n−k)⊗det(A1)⊗det(A2))|Sk � M⊗2 for some line bundleM
on Sk , we have a self-duality isomorphism on the sheaf M ⊗ Rk . Thus, we obtain a
double cover

˜Sk = SpecSk (OSk ⊕ (M ⊗ Rk)) −→ Sk

(see Theorem 4.2 for details). We show that this double cover does not change under
(appropriately defined) isotropic reduction (Proposition 4.5). We also check that étale
locally, this double cover coincides with the double cover of a quadratic degener-
acy locus for an appropriately defined family of quadratic forms (Proposition 4.7).
This allows us to use the nonsingularity criterion developed in the quadratic situation
(Corollary 4.8).

In the last section, we provide applications of our results to the EPW varieties
Y≥k
A , Y≥k

A⊥ , and Z≥k
A defined below. Let V6 be a complex vector of dimension 6. We

endow the 20-dimensional vector space
∧3V6 with the det(V6)-valued symplectic

form defined by the wedge product. Given a Lagrangian subspace A ⊂ ∧3V6, one
defines, for k ≥ 0, three series of varieties

Y≥k
A = {[v] ∈ P(V6) | dim(A ∩ (v ∧ ∧2V6)) ≥ k

}

,

Y≥k
A⊥ = {[V5] ∈ P(V∨

6 ) | dim(A ∩ ∧3V5) ≥ k
}

,

Z≥k
A = {[U3] ∈ Gr(3, V6) | dim(A ∩ (V6 ∧ ∧2U3)) ≥ k

}

.

The first two were extensively investigated by O’Grady ([13–19]; the second series
reduces to the first upon replacing V6 with V∨

6 and A with A⊥) and the third by
Iliev–Kapustka–Kapustka–Ranestad [9].When A is sufficiently general,O’Grady con-
structed a double cover˜YA → Y≥1

A and Iliev–Kapustka–Kapustka–Ranestad a double

cover˜ZA → Z≥2
A , where˜YA and˜ZA are hyperkähler varieties of respective dimensions

4 and 6 (called double EPW sextic and EPW cube). We show (Theorems 5.2 and 5.7)
that our construction produces, for each k, double covers
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Double covers of quadratic degeneracy... 1439

˜Y
≥k
A −→ Y≥k

A , ˜Y
≥k
A⊥ −→ Y≥k

A⊥ , ˜Z
≥k
A −→ Z≥k

A ,

that give double EPW sextics and EPW cubes as special cases. These double covers
also appear in the theory of Gushel–Mukai varieties [2,3] and this was the original
motivation for this work. In the relative situation (for the universal family of EPW
varieties), a similar double cover is the base for a generalized root stack construction
in terms of which the moduli stack of Gushel–Mukai varieties is described in [4].

Throughout the article,wefix afieldkof characteristic different from2.All schemes
are assumed to be of finite type over k.

We thank Nicolas Addington for suggesting to include the symmetroid example
(Sect. 3.4) and the referee for useful comments.

2 Reflexive sheaves and double covers

We start with a brief reminder of the correspondence between self-dual reflexive
sheaves, 2-torsion classes in the Weil divisors class groups, and double covers unram-
ified in codimension 1.

A connected normal scheme is integral and any normal scheme is a disjoint union
of normal integral schemes [20, Tag 033H]. A scheme is nonsingular if its local rings
are regular.

Let R be a coherent sheaf on a normal scheme S. Its dual sheaf R∨ is defined as

R∨ := Hom(R,OS).

The coherent sheaf R is called reflexive [6] if the canonical morphism

R −→ R∨∨ := (R∨)∨

is an isomorphism. Any locally free sheaf is reflexive, and so is the sheafR∨ for any
coherent sheaf R [6, Corollary 1.2].

We say that the sheaf R has rank r if there is a dense open subscheme S0 ⊂ S
such that the restriction ofR to S0 is locally free of rank r . Its locally free locus is the
maximal open subscheme S0 ⊂ S with this property.

Rank-1 reflexive sheaves on S form a group for the operation

(R1,R2) �−→ (R1 ⊗ R2)
∨∨

and the inverse of R is R∨. This group is isomorphic to the Picard group of the
nonsingular locus of S [20, Tag 0AVT].

A Weil divisor D on a normal scheme S is a finite formal linear combination with
integral coefficients of integral subschemes of S of codimension 1. Its Cartier locus is
the maximal open subset S0 ⊂ S such that the restriction of D to S0 is Cartier, that is,
locally principal. The complement of S0 in S is contained in the singular locus of S, so
it has codimension at least 2. The following lemma is classical (see [10, Notation 1.2]
or [20, Tag 0AVT]).
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1440 O. Debarre, A. Kuznetsov

Lemma 2.1 Let S be a normal scheme. There is a group isomorphism D �→ OS(D)

between the group Cl(S) of linear equivalence classes of Weil divisors on S and the
group of rank-1 reflexive sheaves on S. This isomorphism is compatible with flat base
change between normal schemes. If D ⊂ S is an integral subscheme of codimension 1,
we have

OS(D) = (ID)∨,

the dual of the ideal sheaf of D in S. Moreover, for any D, the locally free locus
of OS(D) is the Cartier locus of D.

The following result is a simple consequence of the lemma.

Corollary 2.2 Let S be a normal scheme and let D be a Weil divisor on S. Then D is a
2-torsion class, that is, 2D ≡

lin
0, if and only if the corresponding reflexive sheafOS(D)

is self-dual.

Proof The first condition is equivalent to D ≡
lin

−D which, in view of the isomorphism

OS(D)∨ � OS(−D),

is equivalent to the self-duality of OS(D). ��
We now study double covers, by which we mean the following.

Definition 2.3 Amorphism f : ˜S → S is a double cover if it is finite of degree 2 (that
is, f∗O˜S has rank 2), but is not necessary flat, and there is an involution τ : ˜S → ˜S
over S such that S � ˜S/τ .

Remark 2.4 If˜S and S are both normal, there is no need to require the existence of the
involution τ . Indeed, ˜S is then just the integral closure of S in a degree-2 extension
of the ring of rational functions on S (any such extension is a Galois extension since
the characteristic of the base field is different from 2) and the Galois group of the
extension acts regularly on ˜S and gives the involution.

The relation with the notions discussed above is the following.

Proposition 2.5 Assume D is a 2-torsion Weil divisor class on a normal scheme S.
There is a double cover f : ˜S → S, with ˜S normal, that satisfies the following two
properties:

(a) there is an isomorphism f∗O˜S � OS ⊕ OS(D);
(b) the morphism f is étale over the Cartier locus of D.

The set of isomorphism classes of double covers satisfying properties (a) and (b) is a
torsor over the group

H0(S,O×
S )/H0(S,O×

S )2

of invertible functions on S modulo squares, and all these covers are étale locally
over S isomorphic to each other.
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Double covers of quadratic degeneracy... 1441

In Lemma 2.6, we will show that any double cover of a normal scheme which is
étale over its nonsingular locus is obtained by this construction.

Proof SetR := OS(D). By Lemma 2.1, there is an isomorphism (R⊗R)∨∨ ∼−→OS .
Choose such an isomorphism and consider the composition

m : R ⊗ R −→ (R ⊗ R)∨∨ ∼−→OS (1)

of the canonical morphism with the chosen isomorphism. The composition is sym-
metric (with respect to the permutation of factors in R ⊗ R), hence turns OS ⊕ R
into a sheaf of commutative OS-algebras. This allows us to set

˜S := SpecS(OS ⊕ R),

with canonical map f : ˜S → S. This map is finite since OS ⊕ R is coherent, and its
degree is 2, the rank of OS ⊕ R. The automorphism of the algebra OS ⊕ R acting
trivially on OS and by −1 on R induces an involution τ of ˜S over S. The invariant
subalgebra in OS ⊕ R for this automorphism is OS , hence we have ˜S/τ � S. Thus,
f is a double cover in the sense of Definition 2.3.
On the Cartier locus of D, the sheaf R is invertible and m is an isomorphism,

hence f is étale. In particular, f is étale over the nonsingular locus of S, hence ˜S
is nonsingular in codimension 1. Moreover, the sheaf OS ⊕ R satisfies Serre’s con-
dition S2: for the first summand, this follows from the normality of S, and for the
second summand, this follows from the reflexivity ofR [7, Theorem 1.9]. Therefore,
the scheme ˜S satisfies condition S2, hence is normal by Serre’s criterion.

The only ambiguity in the construction of f is the choice of the algebra structure
on OS ⊕ R, that is, of the multiplication morphism R ⊗ R → OS . Since OS is
reflexive, this morphism factors through a morphism (R ⊗ R)∨∨ → OS . Since we
assume f to be étale over the locally free locus of R, that is, on the complement of
a subset of codimension 2, this map is an isomorphism. Furthermore, if we multiply
this isomorphism by the square of an invertible function, the isomorphism class of the
algebra OS ⊕ R will not change. It follows that the isomorphism class of f corre-
sponds to the choice of an element in H0(S,O×

S )/H0(S,O×
S )2. Since any invertible

function is étale locally a square, all these covers are étale locally isomorphic. ��
There is also a converse statement.

Lemma 2.6 Assume that f : ˜S → S is a double cover of normal schemes that is étale
over the nonsingular locus of S. There exists a Weil divisor D on S such that 2D ≡

lin
0

and f∗O˜S � OS ⊕ OS(D). If f is étale everywhere, D is a Cartier divisor.

Proof Let τ be the involution of the double cover. It induces an involution of f∗O˜S
over OS . Since we have ˜S/τ � S, the invariant part is OS . So, denoting by R the
antiinvariant part, we have a direct sum decomposition

f∗O˜S � OS ⊕ R.
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1442 O. Debarre, A. Kuznetsov

The sheaf R satisfies Serre’s condition S2 since ˜S is normal, hence it is reflexive
by [7, Theorem 1.9] (since S is normal). Since f has degree 2, the rank ofR is 1. By
Lemma 2.1, we can therefore write

R � OS(D)

for some Weil divisor class D on S. Furthermore, over the nonsingular locus of S, the
map f is étale, hence R is locally free and the multiplication m : R ⊗ R → OS is
surjective. It is therefore an isomorphism (over the nonsingular locus of S) and the
normality of S implies 2D ≡

lin
0.

If f is étale everywhere, the sheaf R is locally free everywhere, hence the corre-
sponding divisor class D is Cartier. ��
Lemma 2.7 In the situation of Proposition 2.5, assume that the scheme S is moreover
integral. If D �≡

lin
0, the scheme ˜S is also integral.

Proof If˜S is not integral, there is a subscheme S′ ⊂ ˜S such that the map S′ ↪→ ˜S → S
is birational. Since it is also finite, and S is normal, the map is an isomorphism.
Therefore, there is a morphism of sheaves γ : R → OS such that the morphism

(1, γ ) : OS ⊕ R → OS

is an algebra homomorphism. This is equivalent to the equalitym = γ ⊗ γ , wherem
is the map from (1). On the other hand, m is an isomorphism over the locally free
locus ofR, hence so is γ . In particular, γ is an isomorphism over the complement of
a subset of codimension 2, hence is an isomorphism over the entire scheme S, since
both sheaves R and OS are reflexive. Finally, R � OS means D ≡

lin
0. ��

We finish this section with a discussion of the branch and ramification loci.

Definition 2.8 Let f : ˜S → S be a double cover of normal schemes which is étale
over the nonsingular locus of S. Let R be the corresponding reflexive sheaf on S
and let m : R ⊗ R → OS be the multiplication map. The image of m is a sheaf of
ideals on S. We call the corresponding subscheme of S the branch locus of f and we
denote it by B( f ) ⊂ S. Sincem is an isomorphism on the nonsingular locus of S, we
have B( f ) ⊂ Sing(S) as sets, thus B( f ) has codimension 2 or more.

The natural morphism OS ⊕ R → OB( f ) (restriction on the first summand, and
zero on the second) is a surjectiveOS-algebra homomorphism, hence induces a closed
embedding

ι : B( f ) = SpecS(OB( f )) −→ SpecS(OS ⊕ R) = ˜S

such that f ◦ ι = idB( f ).Wecall the subscheme R( f ) = ι(B( f )) ⊂ ˜S the ramification
locus of f .

Lemma 2.9 The scheme-theoretic preimage f −1(B( f )) ⊂ ˜S of the branch locus of f
is a nonreduced subscheme that contains the ramification locus and is contained in
its first-order infinitesimal neighborhood.
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Double covers of quadratic degeneracy... 1443

Proof The scheme-theoretic preimage of the branch locus B( f ) is isomorphic to
SpecB( f )(OB( f ) ⊕ R|B( f )). Since the multiplication map m|B( f ) is zero, the sum-
mand R|B( f ) is a square-zero ideal in the algebra OB( f ) ⊕ R|B( f ), while the first
summand OB( f ) corresponds to the structure sheaf of R( f ). Therefore, f −1(B( f ))
contains R( f ) and is contained in its first-order infinitesimal neighborhood. ��

3 Double covers of quadratic degeneracy loci

Let S be a scheme, let E be a vector bundle of rankm on S, and letL be a line bundle
on S. Consider a family of quadratic forms

q : L −→ Sym2(E ∨)

on S. We denote also by q the associated map L ⊗ E → E ∨ and by C its cokernel.
We have an exact sequence

L ⊗ E
q−→ E ∨ −→ C −→ 0. (2)

For any nonnegative integer k, we let Sk ⊂ S be the corank-k degeneracy locus of q
with its natural scheme structure defined by the minors of q of size m + 1 − k and
we let Ck be the restriction of the sheaf C to Sk . Its further restriction to the open
subscheme

S0k := Sk�Sk+1

is locally free of rank k.

3.1 Double covers

The main result of this section is the construction of natural double covers of the
schemes Sk . Assume that Sk is normal and that S0k is dense in Sk . We consider the
rank-1 reflexive sheaf

Rk := (∧kCk
)∨∨

(3)

on Sk ; it is invertible on S0k .

Theorem 3.1 Assume that Sk is normal and that codimSk (Sk+1) ≥ 2. For each line
bundle M on Sk such that

L ⊗(m−k)|Sk � M⊗2, (4)

there is a double cover fM : ˜Sk → Sk, with ˜Sk normal, that satisfies the following
two properties:

(a) there is an isomorphism

fM ∗O˜Sk � OSk ⊕ (

M ⊗ Rk ⊗ det(E )|Sk
)

,

(b) the morphism fM is étale over the dense open subset S0k ⊂ Sk.

123



1444 O. Debarre, A. Kuznetsov

If all invertible functions on Sk are squares, such a double cover is unique up to
isomorphism.

Proof The map E ∨|S0k → Ck |S0k is an epimorphism of vector bundles, so we may

consider C ∨
k |S0k as a subbundle of E |S0k . Set

Ek :=
(

E |S0k
)

/
(

C ∨
k |S0k

)

and Lk := L |S0k . (5)

Note that Ek is a vector bundle of rank m − k on S0k with a canonical isomorphism

det(Ek) � (Rk ⊗ det(E )) |S0k . (6)

The quadratic form q induces a canonical isomorphism

qk : Lk ⊗ Ek
∼−−→ E ∨

k (7)

of sheaves over S0k . Its determinant gives a canonical isomorphism

det(qk) :
(

L ⊗(m−k) ⊗ Rk ⊗ det(E )
)

|S0k
∼−−→ (Rk ⊗ det(E )) |∨

S0k
.

In particular, for each square root M of the line bundle L ⊗(m−k)|Sk , this gives a
self-duality isomorphism for the line bundle (M ⊗ Rk ⊗ det(E ))|S0k . Since we have
codimSk (Sk+1) ≥ 2, the above isomorphism extends uniquely to a self-duality on the
rank-1 reflexive sheaf M ⊗ Rk ⊗ det(E )|Sk on Sk . By Proposition 2.5, this gives a
double cover fM : ˜Sk → Sk , with ˜Sk normal, that satisfies properties (a) and (b). The
uniqueness also follows from Proposition 2.5. ��
Remark 3.2 If m − k is even, there is a natural choice for the line bundle M in (4),
namely

M := L ⊗((m−k)/2)|Sk .
Similarly, ifL = OS , there is also, for any m − k, a canonical choice

M := OSk .

In any of these situations, with this choice of M , the double cover of Theorem 3.1
becomes completely canonical. We will refer to it as the canonical double cover of
the quadratic degeneracy locus Sk .

When k is even, we can relate the reflexive sheaf Rk (and hence the sheaf giving
the double cover) to the canonical class of Sk . For a coherent sheaf F on a normal
scheme S, we denote by c1(F ) theWeil divisor class on S corresponding to the Cartier
divisor class c1(det(F |S0)) on the nonsingular locus S0 of S.
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Lemma 3.3 Assume that the scheme Sk is normal, codimS(Sk) = k(k + 1)/2, and
codimSk (Sk+1) ≥ 2. There is an equality of Weil divisor classes

KSk =
{

KS|Sk + c1(Rk) − kc1(E ) − k(m−k)
2 c1(L ) if k is even,

KS|Sk − (k + 1)c1(E ) − (k+1)(m−k)
2 c1(L ) if k is odd.

Proof It is easy to see that the normal bundle to S0k in S is isomorphic to the
sheaf Sym2(Ck). Therefore, we have an equality of Cartier divisor classes

KS0k
= KS|S0k + c1(Sym

2(Ck)) = KS|S0k + (k + 1)c1(Ck) = KS|S0k + (k + 1)c1(Rk).

The proof of Theorem 3.1 shows that on S0k , we have an equality

2c1(Rk) + 2c1(E ) + (m − k)c1(L ) = 0.

When k is odd, we can use this to rewrite (k + 1)c1(Rk) as a linear combination
of c1(E ) and c1(L ), and when k is even, we do the same for kc1(Rk). Then we treat
the equality of Cartier divisor classes obtained on S0k as an equality of Weil divisor
classes on Sk , which gives the required formulas. ��

3.2 Smoothness criteria

Let us first discuss a prototypical example of a double cover.
Let k be a positive integer, let V be a k-vector space of dimension k + 1, and let

Q(V ) := Sym2(V∨) � A(k+1)(k+2)/2
k

be the affine space of all quadratic forms on V . Consider the trivial bundles

E := V ⊗ OQ(V ) and L := OQ(V ),

and let q : L → Sym2(E ∨) be the universal quadratic form. The corresponding k-th
degeneration scheme Q(V )k ⊂ Sym2(V∨) is the affine cone over the double Veronese
embedding P(V∨) ⊂ P(Q(V )) and the (k + 1)-st degeneration scheme is the single
pointQ(V )k+1 = {0}, bothwith the reduced scheme structure. Since the line bundleL
is trivial, Theorem 3.1 provides a canonical double cover of Q(V )k .

Lemma 3.4 The map V∨ → Q(V ) that takes a linear form to its square factors as

V∨ f0−−→ Q(V )k ↪−→ Q(V ), (8)

where f0 is a double cover branched over the vertex of the cone. Moreover, f0 agrees
with the canonical double cover of Q(V )k provided by Theorem 3.1.
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1446 O. Debarre, A. Kuznetsov

The branch locus of f0 is the reduced point {0} ∈ Q(V ), its ramification locus is
the reduced point {0} ∈ V∨, and the preimage of the branch locus is the first-order
infinitesimal neighborhood of the ramification locus.

Proof The factorization through Q(V )k is clear and the map f0 is a double cover
because it is the quotient for the Z/2-action on V∨ defined by � �→ −�.

Denote by k[V∨]+ and k[V∨]− the invariant and antiinvariant parts of k[V∨]with
respect to this Z/2-action, so that

k[V∨] = k[V∨]+ ⊕ k[V∨]−.

Then Q(V )k � Spec(k[V∨]+), and under the identification of sheaves on Q(V )k
with k[V∨]+-modules, this direct sum provides the decomposition of f0∗OV∨ into
invariant and antiinvariant parts. As explained in the proof of Lemma 2.6, the reflexive
sheaf R corresponding to the double cover f0 is the sheaf associated with k[V∨]−,
considered as a k[V∨]+-module.

Consider the natural morphisms

(

V ⊗ k[V∨]+
) ⊗ (

V ⊗ k[V∨]+
) → k[V∨]− ⊗ k[V∨]− → k[V∨]+

of k[V∨]+-modules, where both maps are induced by the multiplication inside k[V∨]
(note that V is the space of linear functions on V∨). Their composition coincides with
the restriction of q to Q(V )k . Therefore, the map q|Q(V )k : E |Q(V )k → E |∨Q(V )k

can
be rewritten as the composition

V ⊗ k[V∨]+ → k[V∨]− → V∨ ⊗ k[V∨]+,

where the first map is the multiplication and the second is its transposed. Therefore,
over the open subset Q(V )0k = Q(V )k�{0}, the sheaf Ek = Im(q|Q(V )0k

) can be

identified with k[V∨]− and the induced family of quadratic forms is given by the
multiplication ink[V∨]− with values ink[V∨]+. Thismeans that the algebra structure
on O ⊕ Rk defined in Theorem 3.1 coincides over Q(V )0k with the natural algebra
structure on k[V∨] = k[V∨]+ ⊕k[V∨]−. Thus, the double covers agree over Q(V )0k ,
and since V∨ is normal, they agree everywhere.

Finally, by Definition 2.8, the ideal of the branch locus B( f0) is the image of the
multiplication map

k[V∨]− ⊗ k[V∨]− −→ k[V∨]+.

It is generated by all monomials of degree 2 in the coordinates on V∨, that is, by the
coordinates on Q(V ). Thus, B( f0) is the origin in Q(V ) with the reduced scheme
structure. Consequently, the ramification locus R( f0) is the origin in V∨ with the
reduced scheme structure as well. Since the map f0 is given by all monomials of
degree 2, the scheme-theoretic preimage of the branch locus is the first-order infinites-
imal neighborhood of R( f0) = {0}. ��

We will need the following definition.
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Definition 3.5 A family of quadratic forms q : L → Sym2(E ∨) over a scheme S is
called p-regular at a point s ∈ S if s is nonsingular on S and, for any vector subspace
K ⊂ Ker(qs) ⊂ Es such that dim(K ) ≤ p, the canonical morphism

dq : TS,s ⊗ Ls → Sym2(E ∨
s ) → Sym2(K∨)

is surjective, where TS,s is the tangent space of S at s.

Lemma 3.6 Let s be a point of Sk�Sk+1 nonsingular on S and let p be an integer
such that p ≥ k. Then q is p-regular at s if and only if Sk is nonsingular of (expected)
codimension k(k + 1)/2 in S at s.

Proof Since p≥k= dim(Ker(qs)), the family of quadratic forms q is p-regular at s if
and only if the morphism TS,s ⊗Ls → Sym2(Ker(qs)∨) is surjective. Since its kernel
is TSk ,s ⊗ Ls , the lemma follows. ��

The following proposition is a very useful criterion for proving the nonsingularity
of the double covers associated with quadratic degeneracy loci.

Proposition 3.7 Assume that the scheme S is nonsingular, that Sk is normal,
that codimSk (Sk+1) ≥ 2, that Sk+2 is empty, and that q is (k + 1)-regular at all
points of Sk .

For any double cover f : ˜Sk → Sk provided by Theorem 3.1, the scheme ˜Sk is
nonsingular, the branch locus of f equals Sk+1 as schemes, and the preimage of the
branch locus is the first-order infinitesimal neighborhood of the ramification locus.

Proof Since the map f is étale over Sk�Sk+1 and Sk�Sk+1 is nonsingular by
Lemma 3.6, it is enough to verify that ˜Sk is nonsingular over any point s ∈ Sk+1.
Since the question is local on S, we may assume that the line bundle L is trivial and
that there is a q-orthogonal direct sum decomposition

E = E ′ ⊕ E ′′,

where q|E ′ is everywhere nondegenerate, q ′′ := q|E ′′ vanishes at s, and E ′′ = V ⊗OS

is free of rank k + 1. The summand q ′′ defines a morphism

ψ : S −→ Sym2(V∨) = Q(V ) (9)

and one can viewq ′′ as the pullback of the universal family of quadratic forms onQ(V ).
Note that the differential of ψ is surjective at s by the (k +1)-regularity of q, hence ψ

is smooth in a neighborhood of s. Furthermore, we have

Sk = ψ−1(Q(V )k) and Sk+1 = ψ−1({0}),

and the determinant cokernel sheaf Rk (defined in (3)) on Sk is the pullback of the
determinant cokernel sheaf on Q(V )k . By Lemma 3.4, the scheme

̂Sk := V∨ ×Q(V )k Sk,
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where the fiber product is taken with respect to the maps (8) and (9), provides a double
cover

f̂ : ̂Sk −→ Sk

that satisfies properties (a) and (b) in Theorem 3.1. Since ψ is smooth at s and V∨
is nonsingular, it follows that ̂Sk is nonsingular at f̂ −1(s). Since all double cov-
ers f : ˜Sk → Sk provided by Theorem 3.1 are étale locally isomorphic to each other,
˜Sk is also nonsingular at f −1(s).

Similarly, the branch locus of f : ˜Sk → Sk is equal to the branch locus of f̂ , which
in turn is equal to the pullback by ψ of the branch locus of f0 : V∨ → Q(V )k . The
latter is the point {0} in Q(V ) (Lemma 3.4), hence the branch locus of f is the zero-
locus of ψ which is, as we noted before, equal to Sk+1. The preimage of the branch
locus of f̂ in ̂Sk equals the first-order infinitesimal neighborhood of the ramification
locus, hence the same is true for every double cover provided by Theorem 3.1. ��

3.3 Families of isotropic spaces

Another way of constructing double covers of quadratic degeneracy loci is the follow-
ing. Let as before q : L → Sym2(E ∨) be a family of quadratic forms on a rank-m
vector bundle E on a scheme S and let Q ⊂ PS(E ) be the corresponding family of
quadrics. Consider the relative Hilbert scheme

ϕ : Fd−1(Q/S) := HilbP
d−1

(Q/S) −→ S (10)

parameterizing projective linear spaces of dimension d − 1 in the fibers ofQ over S.
We make a couple of observations.

Lemma 3.8 Assume that S is Cohen–Macaulay, that

dim(Fd−1(Q/S)) = dim(S) + d(m − d) − d(d + 1)/2, (11)

and that Fd−1(Q/S) is nonsingular in codimension 1. Then Fd−1(Q/S) is normal.

Proof Let U be the tautological bundle on the relative Grassmannian GrS(d,E ).
The scheme Fd−1(Q/S) is the zero-locus of a global section of the vector bundle
L ∨ ⊗ Sym2(U ∨) of rank d(d + 1)/2 on the Cohen–Macaulay scheme GrS(d,E )

of dimension dim(S) + d(m − d). If condition (11) is satisfied, Fd−1(Q/S) is itself
Cohen–Macaulay. By Serre’s normality criterion, since Fd−1(Q/S) is nonsingular in
codimension 1, it is normal. ��
Lemma 3.9 Assume that S is nonsingular and that Q/S is p-regular. Over S�Sp+1,
the scheme Fd−1(Q/S) is nonsingular and the dimension condition (11) holds. In
particular, ifQ/S is p-regular and

dim(Fd−1(Q/S) ×S Sp+1) ≤ dim(S) + d(m − d) − d(d + 1)/2 − 2, (12)

the scheme Fd−1(Q/S) is normal.
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Proof The proof is analogous to the proof of [11, Proposition 2.1]. Let s ∈ S be a
point such that the corank of qs is equal to k, with k ≤ p. LetU ⊂ Es be a qs-isotropic
subspace of dimensiond. To show that Fd−1(Q/S) ⊂ GrS(d,E ) is nonsingular at [U ],
it is enough to check that the natural map

dq : TS,s ⊕ Hom(U ,Es/U ) −→ Sym2(U∨)

is surjective. Let K := U∩Ker(qs). Since the cokernel of the restriction of themap dq
to the second summand is isomorphic to Sym2(K∨), it remains to check the surjectivity
of the map TS,s → Sym2(K∨) obtained by restricting dq to the first summand. But
this is precisely the map from the definition of p-regularity (see Definition 3.5). Since
dim(K ) ≤ dim(Ker(qs)) = k ≤ p, it is surjective.

The above argument proves that over S�Sp+1, the scheme Fd−1(Q/S) is nonsin-
gular and the equality (11) holds. If the inequality (12) also holds, the codimension
of Fd−1(Q/S) ×S Sp+1 in Fd−1(Q/S) is at least 2, hence the equality (11) holds
over S and Fd−1(Q/S) is nonsingular in codimension 1. It is therefore normal by
Lemma 3.8. ��

Fix an integer k ∈ {0, . . . ,m} such that m − k is even and set

d := (m + k)/2. (13)

In the next proposition, we relate the double covering of the degeneracy locus Sk
constructed in Theorem 3.1 and Remark 3.2 to the Hilbert scheme Fd−1(Q/S).

Proposition 3.10 Assume that Sk is normal and that codimSk (Sk+1) ≥ 2. If m − k is
positive and even and the integer d is defined by (13), the map ϕ : Fd−1(Q/S) → S
factors as

Fd−1(Q/S) −→ S′
k −→ Sk ↪−→ S,

where the first morphism has connected fibers and the second morphism is finite.
Furthermore, if f : ˜Sk → Sk is the canonical double cover provided by Theorem 3.1
and Remark 3.2, we have

S′
k ×Sk S

0
k � ˜Sk ×Sk S

0
k , (14)

and ˜Sk is the normalization of S′
k . In particular, if Fd−1(Q/S) is normal, we have an

isomorphism S′
k � ˜Sk.

Proof The fiber of Fd−1(Q/S) over a point s ∈ S parameterizes d-dimensional
qs-isotropic vector subspaces in the m-dimensional vector space Es . If the fiber is
nonempty, the rank of qs does not exceed 2(m − d) = m − k, hence its corank is at
least k. This proves that ϕ factors through Sk . We define S′

k by the Stein factoriza-
tion Fd−1(Q/S) → S′

k → Sk . Let us show that it has all the required properties.
We use the notation of the proof of Theorem 3.1: in particular, the vector bundles Ek

and Lk are defined by (5) and the morphism qk is defined by (7). We denote by

Qk ⊂ PS0k
(Ek)
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the family of nondegenerate quadrics given by the quadratic form qk . Let us prove that
there is an isomorphism

Fd−1(Q/S) ×S S0k � Fd−k−1(Qk/S
0
k ) (15)

of schemes over S0k .
We first construct a map from the left side to the right side of (15). Denote by ϕ0

the natural projection Fd−1(Q/S) ×S S0k → S0k . Let U ⊂ ϕ∗
0 (E ) be the rank-d

tautological subbundle on the Hilbert scheme Fd−1(Q/S) ×S S0k ⊂ GrS0k
(d,E ). Any

d-dimensional isotropic subspace for a quadratic form of rank m − k = 2(m − d) on
a vector space of dimension m contains the kernel of the form, therefore there is an
inclusion ϕ∗

0 (C
∨
k |S0k ) ↪→ U and the quotient bundle

Uk := U /ϕ∗
0 (C

∨
k |S0k )

is a subbundle of ϕ∗
0 (Ek) of rank d−k which is isotropic for qk . Therefore,Uk induces

a map
Fd−1(Q/S) ×S S0k −→ Fd−k−1(Qk/S

0
k ).

Conversely, let ϕk be the natural projection Fd−k−1(Qk/S0k ) → S0k and let
Uk ⊂ ϕ∗

k (Ek) be the rank-(d − k) tautological subbundle on the Hilbert scheme
Fd−k−1(Qk/S0k ) ⊂ GrS0k

(d − k,Ek). Denote byU ⊂ ϕ∗
k (E ) the preimage ofUk with

respect to the natural projection ϕ∗
k (E ) → ϕ∗

k (Ek). By construction, U is a rank-d
subbundle in ϕ∗

k (E ) which is isotropic for q. Therefore, it induces a map

Fd−k−1(Qk/S
0
k ) −→ Fd−1(Q/S) ×S S0k .

The two constructed maps are clearly mutually inverse, and this proves (15).
Since the Stein factorization is compatible with base changes, it follows from (15)

that S′
k ×S S0k provides the Stein factorization for the map ϕk : Fd−k−1(Qk/S0k ) → S0k .

But Qk → S0k is a family of nondegenerate quadrics and the Hilbert scheme
Fd−k−1(Qk/S0k ) parameterizes its maximal isotropic subspaces, hence the Stein fac-
torization is provided by the double cover

SpecS0k
(OS0k

⊕ L d−k
k ⊗ det(Ek)) −→ S0k ,

where the algebra structure on OS0k
⊕L d−k

k ⊗ det(Ek) is given by det(qk). Using (6),

we see that this double cover coincides with ˜Sk ×S S0k → S0k . This proves (14).
In particular, the double covers S′

k → Sk and ˜Sk → Sk have same rings of rational
functions. Since the scheme ˜Sk is normal, it is isomorphic to the normalization of S′

k .
Finally, if Fd−1(Q/S) is normal, the scheme S′

k is also normal, hence S′
k � ˜Sk . ��
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3.4 Application to double covers of symmetroids

The discriminant hypersurface for a linear system of quadratic forms is classically
called a symmetroid. To be more precise, let V be a vector space of dimension m,
let W be a vector space, and let

W −→ Sym2 V∨ (16)

be a linearmapwhichwe think of as a family of quadratic forms inP(V ) parameterized
by P(W ). We denote by Q ⊂ P(W ) × P(V ) the corresponding family of quadrics
over P(W ). The corresponding symmetroid hypersurface in P(W ) is the discriminant
for the map Q → P(W ).

This fits in our general framework: the map (16) is a family of quadratic forms
over the projective space S = P(W ) on the trivial vector bundle E = V ⊗ OP(W ),
the line bundle is L = OP(W )(−1), and the symmetroid is the corank-1 degen-
eracy locus S1 ⊂ S = P(W ). As an application of our results, we will construct a
canonical double cover of this symmetroid. These double covers appeared for instance
in [8, Section 2.3].

As in the first paragraph of Sect. 3, we set

C := Coker
(

V ⊗ OP(W )(−1) → V∨ ⊗ OP(W )

)

and we denote by Sk ⊂ P(W ) the corank-k locus.

Theorem 3.11 Assume thatwe are given a linearmap as in (16), with dim(V ) = 2d−1
odd. Assume moreover that S1 is a hypersurface in P(W ), that S1�S2 is nonsingular,
and that codimS1(S2) ≥ 2.

(1) There is a double cover
f : ˜S1 −→ S1,

with ˜S1 normal, f étale over S1�S2, and

f∗O˜S1 � OS1 ⊕ C (1 − d).

If the base field is quadratically closed and dim(W ) ≥ 3, this double cover is
unique up to isomorphism.

(2) If moreover S2�S3 is nonsingular, ˜S1 is nonsingular over S1�S3.
(3) If, additionally, dim(Fd−1(Q/P(W )) ×P(W ) S3) ≤ dim(W )+ 1

2d(d−3)−3, the
cover f provides the Stein factorization for the map Fd−1(Q/P(W )) → P(W )

defined in (10).

If S3 = ∅, one concludes in statement (2) that ˜S1 is everywhere nonsingular, and
the condition in statement (3) becomes void.

Proof The scheme S1 is normal, because it is a hypersurface in P(W ) which is
nonsingular in codimension 1. The double cover is then given by Theorem 3.1
(taking k = 1 and M = OS1(1 − d)): we only have to check that R1 � C or,
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in view of the definition (3) ofR1, that C is a reflexive sheaf on S1. Restricting to S1
the exact sequence

0 → V ⊗ OP(W )(−1) → V∨ ⊗ OP(W ) → C → 0

of sheaves on P(W ) gives an exact sequence

0 → C (−m) → V ⊗ OS1(−1) → V∨ ⊗ OS1 → C → 0

of sheaves on S1. The sheaf C (−m) is therefore reflexive and so is C .
If dim(W ) ≥ 3, the projective scheme S1 is integral hence all regular functions

on S1 are constant. If moreover the base field is quadratically closed, they are squares
and the uniqueness of the double cover follows from Theorem 3.1.

If S2�S3 is nonsingular, the family of quadricsQ is 2-regular at all points of S1�S3
by Lemma 3.6. By Proposition 3.7, the scheme ˜S1 is nonsingular over S1�S3. This
proves (2).

Under the hypotheses of (3), the relative Hilbert scheme Fd−1(Q/S) is normal
by Lemma 3.9, hence, by Proposition 3.10, the double cover f provides the Stein
factorization. ��

4 Double covers of Lagrangian intersection loci

Let V be a vector bundle of rank 2n on a scheme S and let ω : ∧2V → L be a family
of symplectic forms on V (with values in a line bundleL ). A Lagrangian subbundle
in V is a rank-n vector subbundle A ⊂ V such that the composition

ωA ,A : A ↪−→ V
ω−→∼ V ∨ ⊗ L � A ∨ ⊗ L

is zero. Consequently, for any Lagrangian subbundle A ⊂ V , there is an exact
sequence

0 → A → V → A ∨ ⊗ L → 0, (17)

where the map V → A ∨ ⊗ L is the composition above.
Let A1,A2 ⊂ V be Lagrangian subbundles. We define the subscheme

Sk = Sk(A1,A2) ⊂ S (18)

as the corank-k degeneracy locus of the morphism

ωA1,A2 : A1 ↪−→ V
ω−→∼ V ∨ ⊗ L � A ∨

2 ⊗ L

and set S0k := Sk�Sk+1. Set-theoretically, the subscheme Sk parameterizes points
of S at which the intersection of the fibers ofA1 andA2 has dimension at least k. The
subschemes Sk ⊂ S are called the Lagrangian intersection loci of A1 and A2.
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We define the Lagrangian cointersection sheaf as the cokernel of the map ωA1,A2 .
We will be especially interested in its restrictions to various intersection loci, so we
set

Ck = Ck(A1,A2) := Coker(A1
ωA 1,A 2−−−−−→ A ∨

2 ⊗ L )|Sk (A1,A2).

The next lemma shows that the subschemes Sk(A1,A2) and the sheaves Ck(A1,A2)

do not depend on the ordering of the Lagrangian subbundles A1 and A2.

Lemma 4.1 We have Sk(A1,A2) = Sk(A2,A1) and Ck(A1,A2) � Ck(A2,A1).

Proof Both sides of the equality (resp. of the isomorphism) can be rewritten as degen-
eracy loci (resp. cokernel sheaves) of the morphism A1 ⊕ A2 → V . ��

4.1 Double covers

We construct natural double covers of the schemes Sk = Sk(A1,A2) defined in (18).
As in Sect. 3.1, we assume that Sk is normal and that S0k := Sk�Sk+1 is dense in Sk .
We consider the rank-1 reflexive sheaf

Rk � (
∧kCk)

∨∨ (19)

on Sk .

Theorem 4.2 Assume that Sk is normal and that codimSk (Sk+1) ≥ 2. For each line
bundle M on Sk such that

(

L ⊗(−n−k) ⊗ det(A1) ⊗ det(A2)
)∣

∣

Sk
� M⊗2, (20)

there is a double cover fM : ˜Sk → Sk, with ˜Sk normal, that satisfies the following
two properties:

(a) there is an isomorphism

fM ∗O˜Sk � OSk ⊕ (M ⊗ Rk),

(b) the morphism fM is étale over the dense open subset S0k = Sk�Sk+1.

If all invertible functions on Sk are squares, such a double cover is unique up to
isomorphism.

Proof The argument is analogous to that of Theorem 3.1: indeed, by definition the
maps (A ∨

i ⊗L )|S0k → Ck |S0k are epimorphisms of vector bundles, sowemay consider

(C ∨
k ⊗ L )|S0k as a subbundle of both A1|S0k and A2|S0k . Set

Ai,k := (Ai |S0k )/(C
∨
k ⊗ L )|S0k and Lk := L |S0k .

Note that A1,k and A2,k are vector bundles of rank n − k on S0k with canonical
isomorphisms

det(Ai,k) � (L ⊗(−k) ⊗ det(Ai ) ⊗ Rk)|S0k .
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The map ωA1,A2 induces an isomorphism

ωk : A1,k
∼−−→ A ∨

2,k ⊗ Lk

of sheaves on S0k . Its determinant gives a canonical isomorphism

det(ωk) :
(

L ⊗(−k) ⊗ det(A1) ⊗ Rk
)∣

∣

S0k

∼−−→ (

L ⊗(−k) ⊗ det(A2) ⊗ Rk
)∣

∣

∨
S0k

⊗ L ⊗(n−k)|S0k .

Under our assumptions, this provides a self-duality on the line bundle (M ⊗ Rk)|S0k
which extends uniquely to a self-duality on the rank-1 reflexive sheafM ⊗Rk on Sk .
By Proposition 2.5, it gives a double cover fM : ˜Sk → Sk , with ˜Sk normal, and fM
is étale over S0k . The uniqueness also follows from Proposition 2.5. ��

We have the following analogue of Lemma 3.3.

Lemma 4.3 Assume that the scheme Sk is normal, codimS(Sk) = k(k + 1)/2, and
codimSk (Sk+1) ≥ 2. We have an equality of Weil divisor classes

KSk =
{

KS|Sk + c1(Rk) − k
2 (c1(A1) + c1(A2)) + k(n+k)

2 c1(L ) if k iseven,

KS|Sk − k+1
2 (c1(A1) + c1(A2)) + (k+1)(n+k)

2 c1(L ) if k is odd.

Proof As in Lemma 3.3, the conormal bundle to S0k is isomorphic to Sym2(Ck), so we
obtain the equality KS0k

= KS|S0k + (k + 1)c1(Rk). The proof of Theorem 4.2 shows

that on S0k , we have

2c1(Rk) + c1(A1) + c1(A2) − (n + k)c1(L ) = 0.

Repeating the argument of Lemma 3.3, we deduce the required equalities. ��

4.2 Isotropic reduction

Let I ⊂ V be an isotropic subbundle of rank r , that is, a subbundle such that the
composition ωI ,I : I → I ∨ ⊗ L is zero. Then,

V := ˜V /I , where ˜V := Ker(V
ω−→∼ V ∨ ⊗ L � I ∨ ⊗ L ),

is a vector bundle on S of rank 2(n − r) and the symplectic form ω on V induces a
symplectic form

ω̄ : V −→ V
∨ ⊗ L .

The pair (V , ω̄) is called the isotropic reduction of (V , ω) with respect to I .
Let A ⊂ V be a Lagrangian subbundle.
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Lemma 4.4 Assume that the composition

A ↪−→ V −→ I ∨ ⊗ L (21)

has constant rank. Its kernel ˜A is a subbundle of ˜V and the imageA of ˜A in V is a
Lagrangian subbundle.

Proof Both ˜A and the kernel K := Ker(I → A ∨ ⊗ L ) of the transposed map
of (21) are locally free. Consider the commutative diagram

A I ∨ ⊗ L

I V I ∨ ⊗ L

I A ∨ ⊗ L .

Its rows are complexes and its columns are exact sequences. By the snake lemma, it
induces a long exact sequence

0 → K → ˜A → V → ˜A ∨ ⊗ L → K ∨ ⊗ L → 0.

It follows that A = ˜A /K is a Lagrangian subbundle in V . ��

We call the Lagrangian subbundle A ⊂ V the isotropic reduction of A (with
respect to I ).

Proposition 4.5 Let A1,A2 ⊂ V be Lagrangian subbundles and let I1 ⊂ A1 and
I2 ⊂ A2 be subbundles such that the morphismsI1 ⊕A2 → V andA1 ⊕I2 → V
are embeddings of vector bundles (so that the respective quotients are vector bundles)
and the image I := Im(I1 ⊕ I2 → V ) is isotropic.

If A 1 and A 2 are the isotropic reductions with respect to I , we have

Sk(A 1,A 2) = Sk(A1,A2) for all k.

Moreover, if Sk(A1,A2) is normal and codimSk (A1,A2)(Sk+1(A1,A2)) ≥ 2, we have,
for any line bundle M on Sk(A1,A2) satisfying (20), an isomorphism

(

L ⊗(−(n−r)−k) ⊗ det(A 1) ⊗ det(A 2)
)∣

∣

Sk (A 1,A 2)
� M⊗2 (22)
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and the corresponding double covers are isomorphic: there is a commutative diagram

˜Sk(A 1,A 2)
∼

f̄M

˜Sk(A1,A2)

fM

Sk(A 1,A 2) Sk(A1,A2).

Proof The hypotheses imply that the morphisms I1 → V → A ∨
2 ⊗ L and

I2 → V → A ∨
1 ⊗ L are embeddings of vector bundles, hence their dual

maps are epimorphisms. On the other hand, the maps I1 → V → A ∨
1 ⊗ L

and I2 → V → A ∨
2 ⊗ L are zero, hence so are their duals. This means that

the image of the map Ai → V → I ∨ ⊗ L is I ∨
3−i ⊗ L . In particular, these maps

have constant rank and the isotropic reductions A 1 and A 2 are well defined.
Consider the case I2 = 0 and I = I1. The isotropic reductions of A1 and A2

are then given by A 1 = A1/I and A 2 = Ker(A2 → I ∨ ⊗ L ). Therefore,

det(A 1) � det(A1) ⊗ det(I )∨ and det(A 2) � det(A2) ⊗ det(I ) ⊗ L ⊗(−r),

hence we have (22). Furthermore, there is a commutative diagram

0 I A1

ωA 1,A 2

A 1

ωA 1,A 2

0

0 I A ∨
2 ⊗ L A

∨
2 ⊗ L 0.

The cointersection sheaves C = Coker(ωA1,A2) and C = Coker(ωA 1,A 2
) are

therefore isomorphic. Since the Lagrangian intersection loci are defined via the rank
stratification of the cointersection sheaf (that is, their ideals are the Fitting ideals of
the cointersection sheaf), we deduce an equality of subschemes

Sk(A 1,A 2) = Sk(A1,A2)

for all k.
To identify the double covers, we consider, after identifyingCk andC k , the diagram

0 I |S0k A1,k

ωk

A 1,k

ω̄k

0

0 I |S0k A ∨
2,k ⊗ Lk A

∨
2,k ⊗ Lk 0.

It implies det(ωk) = det(ω̄k), hence the double covers of S0k before and after the
isotropic reduction are the same. Since the double covers of Sk are obtained by taking
the normal closures, they are the same too.
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The case I1 = 0 and I = I2 can be dealt with in the same way (just switch the
roles of A1 and A2). Finally, the general isotropic reduction (when both I1 and I2
are nonzero) can be done in two steps: first consider the reduction with respect to I1
and then the reduction with respect toI2. So, applying twice the above argument, we
deduce the general claim. ��

4.3 Relation to quadratic covers

We show that Lagrangian intersection loci and their cointersection sheaves can locally
(and sometimes also globally) be written as quadratic degeneracy loci and their cok-
ernel sheaves for appropriate families of quadrics.

Let as above A1,A2 ⊂ V be Lagrangian subbundles and let A3 ⊂ V be another
Lagrangian subbundle such that S1(A1,A3) = S1(A2,A3) = ∅, that is, both maps

ωA3,A2 : A3 −→ A ∨
2 ⊗ L and ωA1,A3 : A1 −→ A ∨

3 ⊗ L (23)

are isomorphisms. We show that étale locally, such an A3 always exists.

Lemma 4.6 For any closed point s ∈ S of the scheme S, there is an étale neighborhood
(U , u) → (S, s) and a Lagrangian subbundle A3 ⊂ VU such that the maps (23) are
isomorphisms.

Proof We may assume that the vector bundles A1, A2, V , and L are trivial. Let V
be the fiber of V at point s and let A1, A2 ⊂ V be the fibers of A1 and A2. For
each i ∈ {1, 2}, the set of Lagrangian subspaces A ⊂ V such that A ∩ Ai �= 0 is a
Schubert hyperplane in the Lagrangian Grassmannian LGr(V ), hence one can choose
a Lagrangian subspace A ⊂ V such that

A ∩ A1 = A ∩ A2 = 0.

Since the projection LGrS(V ) → S of the relative Lagrangian Grassmannian is
smooth, it has, locally in the étale topology, a section passing through the point [A]
in the fiber over s. We define A3 to be the corresponding Lagrangian subbundle. The
maps (23) are isomorphisms at s by definition of A3. Shrinking S if necessary, we
may assume that they are isomorphisms on S. ��

Assume that A3 is chosen so that the maps in (23) are isomorphisms. The compo-
sition

A ∨
3 ⊗ L

ω−1
A 1,A 3−−−−−→∼ A1

ωA 1,A 2−−−−−→ A ∨
2 ⊗ L

ω−1
A 3,A 2−−−−−→∼ A3 (24)

gives a family of bilinear forms

q : L −→ E ∨ ⊗ E ∨

on the rank-n vector bundle
E := A ∨

3 .

123



1458 O. Debarre, A. Kuznetsov

Proposition 4.7 The family of bilinear formsq is symmetric.Moreover, the Lagrangian
intersection loci and cointersection sheaves coincidewith the corresponding quadratic
degeneracy loci and cokernel sheaves:

Sk(A1,A2) = Sk(q) and Ck(A1,A2) � Ck(q).

Denoting the scheme Sk(q) simply by Sk, we have, for any line bundle M on Sk
satisfying the isomorphism (20),

L ⊗(n−k)|Sk � (M ⊗ det(E )∨)⊗2. (25)

Finally, if Sk is normal and codimSk (Sk+1) ≥ 2, the double covers in Theorems 3.1
and 4.2 respectively associated with the line bundles M ⊗ det(E )∨ and M are iso-
morphic: there is a commutative diagram

˜Sk(q)
∼

fM ⊗det(E )∨

˜Sk(A1,A2)

fM

Sk(q) Sk(A1,A2).

Proof The symmetry of q is checked by a standard computation. Since the first
and last maps in (24) are isomorphisms, the Lagrangian cointersection sheaf
of (A1,A2) and the cokernel sheaf of q are isomorphic. The loci Sk(q) and Sk(A1,A2)

being defined via the rank stratification of these sheaves, the equality of subschemes
Sk(A1,A2) = Sk(q) and the isomorphismCk(A1,A2) � Ck(q) follow. Furthermore,
the isomorphisms (23) give

det(A1) � det(A2) � det(A ∨
3 ) ⊗ L ⊗n = det(E ) ⊗ L ⊗n, (26)

hence any line bundleM satisfying (20) also satisfies (25). In particular, Theorems 4.2
and 3.1 provide double covers fM and fM⊗det(E )∨ over Sk .

To identify these double covers, we consider the diagram

A ∨
3,k ⊗ Lk

ω−1
A 1,A 3

A1,k
ωk

A ∨
2,k ⊗ Lk

ω−1
A 3,A 2

A3,k

Ek ⊗ Lk
qk

E ∨
k

of sheaves on S0k obtained by taking the quotients of the two leftmost terms in (24)
by C ∨

k |S0k ⊗ Lk and by considering the kernels of the maps from the two rightmost
terms in (24) into Ck |S0k . This implies

det(qk) = det(ωA1,A3)
−1 ⊗ det(ωA3,A2)

−1 ⊗ det(ωk).
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The first two factors induce isomorphisms in (26), so the above equality means that
the self-duality isomorphisms of the reflexive sheavesM ⊗Rk used in Theorems 3.1
and 4.2 coincide. Therefore, the double covers coincide as well. ��

From this proposition, we deduce a useful nonsingularity criterion for Lagrangian
double covers (the branch and ramification loci were defined in Definition 2.8).

Corollary 4.8 Assume that S is nonsingular, that Si�Si+1 is nonsingular of codimen-
sion i(i + 1)/2 in S for each i ∈ {k, k + 1}, and that Sk+2 = ∅. For each choice of
a line bundle M on Sk satisfying (20), giving rise to a double cover fM : ˜Sk → Sk,
we have:

• the scheme ˜Sk is nonsingular,
• the branch locus of fM is equal to Sk+1,
• the preimage of the branch locus is the first-order infinitesimal neighborhood of
the ramification locus.

Proof The statement is étale local, so wemay use the local quadratic presentation of˜Sk
provided by Proposition 4.7. By Lemma 3.6, the corresponding family of quadrics is
(k + 1)-regular on Sk , so Proposition 3.7 gives all we need. ��

5 Application to EPW varieties

We apply the results of the previous sections to several Lagrangian intersection loci
related to the choice of a Lagrangian subspace in a certain 20-dimensional symplectic
vector space. Some of these loci appeared in the article [5] of Eisenbud, Popescu, and
Walter, as examples of codimension 3 subvarieties that are not quadratic degeneracy
loci. For this reason, they are called Eisenbud–Popescu–Walter loci, or EPW loci for
short. We will use various results of O’Grady from [13,15–19], so we work over the
field of complex numbers.

Let V6 be a vector space of dimension 6.We endow the 20-dimensional space
∧3V6

with the symplectic form given by wedge product (it takes values in det(V6) and we
trivialize this space by choosing a volume form on V6).

5.1 EPW stratification of P(V6)

Let A ⊂ ∧3V6 be a Lagrangian subspace. We say that A has no decomposable
vectors if

P(A) ∩ Gr(3, V6) = ∅,

where the intersection takes place inside P(
∧3V6). We consider two Lagrangian sub-

bundles of the trivial symplectic vector bundle V = ∧3V6 ⊗ OP(V6) on P(V6). The
first is the trivial bundleA1 := A⊗OP(V6). The second,A2 := ∧2TP(V6)(−3), comes
from the truncation

0 → ∧2TP(V6)(−3) → ∧3V6 ⊗ OP(V6) → ∧3TP(V6)(−3) → 0
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of the Koszul complex (or, equivalently, from the exterior cube of the Euler sequence).
The fiber of

∧2TP(V6)(−3) at a point v ∈ P(V6) is v ∧ ∧2(V6/Cv) ⊂ ∧3V6, hence it
is indeed a Lagrangian subbundle of V . One can consider the Lagrangian intersection
loci for these two Lagrangian subbundles, their cokernel sheaves, and the induced
double covers.

The traditional notation for the Lagrangian intersection loci in this case is

Y≥k
A := Sk

(

A1,A2
) ⊂ P(V6) and YkA := Y≥k

A �Y≥k+1
A = S0k

(

A1,A2
)

. (27)

The results of O’Grady that we need can be summarized as follows ([2, TheoremB.2]);
the various singular loci are endowed with their reduced scheme structures.

Theorem 5.1 If the Lagrangian A has no decomposable vectors, the following prop-
erties hold:

(a) Y≥1
A is an integral normal sextic hypersurface in P(V6);

(b) Y≥2
A is the singular locus of Y≥1

A ; it is an integral normal Cohen–Macaulay surface
of degree 40;

(c) Y≥3
A is the singular locus of Y≥2

A ; it is finite and smooth, and is empty for A general;

(d) Y≥4
A is empty.

In this situation, the line bundlesL and det(A1) = det(A⊗OP(V6)) are both trivial,
while

det(A2) = det(
∧2TP(V6)(−3)) � OP(V6)(−6).

The line bundle L ⊗(−10−k) ⊗ det(A1) ⊗ det(A2) � OP(V6)(−6) of Theorem 4.2
therefore has a unique square root, OP(V6)(−3). We always take forM the restriction
of OP(V6)(−3). Theorem 4.2 gives the following result (the sheaves Rk on Y≥k

A were
defined by (19)).

Theorem 5.2 If the Lagrangian A has no decomposable vectors, the following prop-
erties hold.

(0) There is a unique double cover f0 : ˜Y
≥0
A → P(V6) with branch locus Y≥1

A such
that

f0∗O
˜Y

≥0
A

� OP(V6) ⊕ OP(V6)(−3).

The scheme˜Y
≥0
A is integral and normal, and it is smooth away from f −1

0 (Y≥2
A ).

(1) There is a unique double cover f1 : ˜Y
≥1
A → Y≥1

A with branch locus Y≥2
A such that

f1∗O
˜Y

≥1
A

� OY≥1
A

⊕ R1(−3).

The scheme˜Y
≥1
A is integral and normal, and it is smooth away from f −1

1 (Y3A).

(2) There is a unique double cover f2 : ˜Y
≥2
A → Y≥2

A with branch locus Y3A such that

f2∗O
˜Y

≥2
A

� OY≥2
A

⊕ R2(−3).
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The scheme˜Y
≥2
A is integral and normal, it is smooth away from f −1

2 (Y3A) and has
ordinary double points along f −1

2 (Y3A). Moreover, R2 � ωY≥2
A
.

Proof For part (0), we let˜Y
≥0
A → P(V6) be the double cover branched along the sextic

hypersurface Y≥1
A . The fact that ˜Y

≥0
A is smooth away from f −1

0 (Y≥2
A ) follows from

Theorem 5.1(b). Integrality and normality of˜Y
≥0
A are standard.

For part (1), we apply Theorem 4.2: Y≥1
A is normal and integral by Theorem 5.1(a),

the codimension of the next stratum is 2, and we take for the line bundle M the
restriction of OP(V6)(−3). By Corollary 4.8,˜Y

≥1
A is smooth away from f −1

1 (Y3A) and
the branch locus of f1 is equal to Y

≥2
A . Since the branch locus is nonempty,R1 is not

locally free by Proposition 2.5(b), hence˜Y
≥1
A is integral byLemma2.7. For uniqueness,

note that Y≥1
A is proper and connected, hence any regular function on it is constant

and, since the base field is C, every constant is a square.
For part (2), we apply again Theorem 4.2 (whose hypotheses are verified as in the

previous case) to construct the double cover f2 : ˜Y
≥2
A → Y≥2

A , where˜Y
≥2
A is normal.

Since Y2A is smooth by Theorem 5.1(c) and f2 is étale over this open subset, ˜Y
≥2
A is

smooth away from f −1
2 (Y3A). The isomorphism between R2 and the dualizing sheaf

ofY≥2
A follows fromLemma4.3. For the description of the branch locus, the description

of the singularities when Y3A �= ∅ (so that Y3A does not have the expected codimension),

and the integrality of ˜Y
≥2
A when Y3A = ∅, we use a relative version of the same

construction.
Let U ⊂ LGr(

∧3V ) be an open subset containing the point [A] such that for
all [A′] ∈ U , the subspace A′ ⊂ ∧3V6 has no decomposable vectors. We may also
assume that the tautological subbundleA ⊂ ∧3V6 ⊗OU has trivial determinant (this
assumption is used below to construct a relative double cover, and since it is not sat-
isfied on the open subset LGr0(

∧3V6) ⊂ LGr(
∧3V6) parameterizing Lagrangian

subspaces with no decomposable vectors, we have to restrict to a smaller open
subset U ⊂ LGr0(

∧3V6)). We may also assume that the open subset U0 ⊂ U of
points [A′] ∈ U such that Y3A′ = ∅ is distinct from U .

The intersection loci for the Lagrangian subbundles

A1 = A � OP(V6) and A2 = OU �
∧2TP(V6)(−3)

of
∧3 V6 ⊗ OU×P(V6) are given by the total spaces of the EPW strata

∅ = Y ≥4
U �= Y ≥3

U ⊂ Y ≥2
U ⊂ Y ≥1

U ⊂ U × P(V6),

where the fiber of Y ≥k
U over a point [A] ∈ U is equal to Y≥k

A . Since the scheme Y ≥2
U

has expected codimension, it is Cohen–Macaulay. It is smooth outside the next
stratum Y ≥3

U , which has codimension 3. It is therefore normal and, since its fibers
over U are integral (Theorem 5.1(b)), it is also integral.

Since det(A ) is trivial onU , the line bundleM = OU �OP(V6)(−3) satisfies (20)
for k = 2. The next stratum Y ≥3

U is smooth of codimension 3 in Y ≥2
U by [16, Corol-

123



1462 O. Debarre, A. Kuznetsov

lary 2.4]. Therefore, by Theorem 4.2, there exists a double cover

ϕ2 : ˜Y ≥2
U −→ Y ≥2

U ,

étale over Y 2
U . Since Y ≥4

U is empty, by Corollary 4.8, ˜Y ≥2
U is smooth and the branch

locus of ϕ2 is equal to Y 3
U . Since this branch locus is nonempty (because U0 �= U ),

the scheme ˜Y ≥2
U is integral by Proposition 2.5 and Lemma 2.7.

Since the formation of the Lagrangian cointersection sheaf and of the branch locus
is compatible with base changes, and so is the operation of taking the topwedge power,
the restriction of the double cover ϕ2 over a point [A] ∈ U coincides with the double
cover f2 discussed earlier and the branch locus of f2 is equal to Y3A.

Assume that ˜Y
≥2
A is not integral. By Lemma 2.7 and Proposition 2.5, we

have Y3A = ∅, that is [A] ∈ U0, and the corresponding reflexive sheafRA is trivial, that
is,RA � OY≥2

A
. Since for each [A′] ∈ U0, the sheaf RA′ is a 2-torsion line bundle on

the smooth projective surface Y≥2
A′ , it follows thatRA′ � OY≥2

A′
. Therefore, the reflexive

sheafR onY ≥2
U , when restricted toY ≥2

U0
, is the pullback of a line bundle onU0. Since

the divisor Y 2
U �Y 2

U0
on Y 2

U is the pullback of the divisorU�U0 onU , it follows that
the line bundleR|Y 2

U
is isomorphic to the pullback of a line bundle on U . Therefore,

there is a line bundle L on Y ≥2
U such that the rank-1 reflexive sheaf R is isomor-

phic to L on the complement of the codimension 3 subset Y ≥3
U , and hence R � L

on the entire Y ≥2
U . Such an isomorphism contradicts Lemma 2.6, since the double

cover ϕ2 has nontrivial branch locus. This proves that˜Y
≥2
A is integral.

Finally, let us describe the singularities of the double cover˜Y
≥2
A . Let [v] ∈ Y3A and

set K := A∩(v∧∧2V6), so that dim(K ) = 3. By [16, Corollary 2.4, Proposition 2.5],
a transversal slice toY 3

U in LGr(
∧3V6)×P(V6) at ([A], [v]) can be identified with the

affine space Q(K ) = Sym2(K∨) and a transversal slice to Y3A in P(V6) at [v] with the
hyperplane in Q(K ) corresponding to a nondegenerate quadratic form. Furthermore,
a transversal slice to Y ≥2

U can be identified with the subscheme Q(K )2 ⊂ Q(K ) of
quadratic forms of corank ≥ 2 (that is, of rank ≤ 1) and, by Lemma 3.4, a transversal
slice to the double cover ˜Y ≥2

U → Y ≥2
U can be identifiedwith the quotient by the (±1)-

action map K∨ → Q(K )2. Therefore, a transversal slice to˜Y
≥2
A at [v] can be identified

with the affine quadratic cone over a nondegenerate quadric. Thus, the scheme ˜Y
≥2
A

has an ordinary double point at [v]. ��

The double cover in part (1) of Theorem 5.2 coincides with the EPW double sextic
defined by O’Grady—its definition is just the same. The double cover in part (2) is

new, although˜Y
≥2
A can be interpreted as the minimal model of the surface of conics

on a Gushel–Mukai threefold (studied in [12, Proposition 0.1] and [1, Section 6]).

Remark 5.3 The results of Theorem 5.2 hold for the dual EPW stratification of P(V∨
6 )

associated with the dual Lagrangian subspace A⊥ = Ker(
∧3V∨

6 → A∨) ⊂ ∧3V∨
6 .

Since A⊥ has no decomposable vectors if and only if A has the same property, we
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obtain double covers
˜Y

≥k
A⊥ −→ Y≥k

A⊥

with analogous properties.

5.2 The first quadratic fibration of Gushel–Mukai varieties

Let X be a smooth Gushel–Mukai variety of dimension n ≥ 3, as defined in [2],
and let (V6, V5, A) be the Lagrangian data [2, Definition 3.4] associated with X by
[2, Theorem 3.10]: V6 is a 6-dimensional vector space, V5 ⊂ V6 is a hyperplane,
and A ⊂ ∧3V6 is a Lagrangian subspace with no decomposable vectors. Set, for
any k,

Y≥k
A,V5

:= Y≥k
A ∩ P(V5) and YkA,V5

:= YkA ∩ P(V5)

and, for 0 ≤ k ≤ 2,
˜Y

≥k
A,V5 := ˜Y

≥k
A ×P(V6) P(V5)

(see Theorem 5.2).
In [2, Section 4.2], we defined a morphism

ρ1 : Q1(X) = PX (UX ) −→ P(V5),

(hereUX is the rank-2 Gushel bundle of X ), called the first quadratic fibration of X ,
and a subscheme �1(X) ⊂ P(V5) on the complement of which ρ1 is flat. Ordinary
and special Gushel–Mukai varieties are defined in [2, Section 2.5].

Lemma 5.4 Assume n ≥ 3 if X is ordinary and n ≥ 4 if X is special. The degeneracy
loci of the first quadratic fibration ρ1 : Q1(X) → P(V5) coincide with the schemes
Y≥k
A,V5

away from �1(X), and their double covers associated with ρ1 coincide with the

double covers fk : ˜Y
≥k
A,V5 → Y≥k

A,V5
over the complement of �1(X).

Proof Assume first that X is ordinary. Then A has no decomposable vectors [2, The-
orem 3.16] and dim(A ∩ ∧3V5) = 5 − n ≤ 2 [2, Proposition 3.13]. Consider the
restriction to P(V5) of the symplectic vector bundle

∧3V6 ⊗ OP(V6), the Lagrangian
subbundles

A1 = A ⊗ OP(V5), A2 = ∧2TP(V6)(−3)|P(V5),

A3 = ∧3V5 ⊗ OP(V5),

and the isotropic subbundles

I1 := A1 ∩ A3 = (A ∩ ∧3V5) ⊗ OP(V5) ⊂ A1

I2 := A2 ∩ A3 = ∧2TP(V5)(−3) ⊂ A2

of respective ranks 5 − n and 6. The natural morphisms

A1 ⊕ I2 −→ ∧3V6 ⊗ OP(V5) and I1 ⊕ A2 −→ ∧3V6 ⊗ OP(V5)
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are embeddings of vector bundles away from the subscheme �1(X) ⊂ P(V5). More-
over, I = I1 ⊕ I2, a subbundle of A3, is isotropic of rank 11 − n. Therefore,
over P(V5)��1(X), the conditions of Proposition 4.5 are satisfied and we can per-
form isotropic reduction with respect to I . We deduce an isomorphism of double
covers

˜Y
≥k
A,V5 = ˜Sk(A1,A2) � ˜Sk(A 1,A 2)

over Sk = Y≥k
A,V5

��1(X). Furthermore, since we have I ⊂ A3, the isotropic reduc-

tion A 3 = A3/I is well defined, has rank n − 1, and on P(V5)��1(X), both maps

ω̄A 3,A 2
: A 3 −→ A

∨
2 and ω̄A 1,A 3

: A 1 −→ A
∨
3

(defined as in (23)) are isomorphisms. The quadratic fibration associated with the
Lagrangian subbundlesA 1,A 2,A 3 by Proposition 4.7 coincides with the restriction
to P(V5)��1(X) of the first quadratic fibration ρ1 of X (see [2, proof of Proposi-
tion 4.5]). By Proposition 4.7, the degeneracy loci of ρ1 coincide with Y

≥k
A,V5

, and the

double covers of Y≥k
A,V5

associated with ρ1 coincide with˜Y
≥k
A,V5 .

Assume now that X is special and let X0 be the associated ordinary Gushel–Mukai
variety (it has the same Lagrangian data as X and �1(X) = �1(X0)). The first
quadratic fibrationsQ1(X) andQ1(X0) are related as follows: if E is the rank-(n−1)
vector bundle on P(V5)��1(X) such that Q1(X0) is defined inside P(E ) by the
quadratic form q : O → Sym2(E ∨), the quadratic fibration Q1(X) is defined inside
P(E ⊕ O) by the quadratic form

q̄ = q ⊕ id : O −→ Sym2(E ∨) ⊕ O ⊂ Sym2((E ⊕ O)∨).

Therefore, the degeneracy loci of Q1(X) coincide with those of Q1(X0), that is,
with Y≥k

A,V5
. Furthermore, the cokernel sheaves of q and q̄ are isomorphic, hence the

double covers agree. Thus, the double covers of Y≥k
A,V5

associated withQ1(X) coincide

with˜Y
≥k
A,V5 . ��

The Hilbert schemes Fd−1(Q1(X)/P(V5)) were identified in [3, Proposition 4.1]
with some irreducible components of the Hilbert schemes Fd−1(X) of (d − 1)-
dimensional linear spaces on X . The connected fibers of its Stein factorization
over P(V5) were described in [3, Theorems 4.2, 4.3, and 4.7]. The next corollary
identifies the finite morphism in the Stein factorization in cases when it is not trivial,
in particular answering [3, Remark 4.4].

Corollary 5.5 In the situation of Lemma 5.4, let moreover d be an integer such that

(n, d) ∈ {(4, 2), (5, 2), (5, 3), (6, 3)},

and set
k := 2d + 1 − n.
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When k = 2, assume that Y2A,V5
is smooth. The double cover fk : ˜Y

≥k
A,V5 → Y≥k

A,V5
then

provides the Stein factorization for the map Fd−1(Q1(X)/P(V5)) → P(V5) over the
open subset P(V5)�(�1(X) ∪ Y3A,V5

).

Proof The rank of the vector bundle in the projectivization of which Q1(X) is con-
tained is m = n − 1. We have m − k = 2(n − 1 − d), which is positive in all cases.
Therefore, byProposition 3.10 andLemma5.4, the double cover coming from theStein

factorization agrees with the double cover˜Y
≥k
A,V5 → Y≥k

A,V5
coming from Lagrangian

intersection up to normalization. It is therefore enough to check that both ˜Y
≥k
A,V5

and Fd−1(Q1(X)/P(V5)) are normal over the complement of �1(X) ∪ Y≥3
A,V5

.

For each k ∈ {0, 1, 2}, the scheme ˜Y
≥k
A,V5 is a Cartier divisor in a normal

variety ˜Y
≥k
A , hence satisfies condition S2. On the other hand, by [3, Lemma 2.5], its

singular set has codimension at least 2 away from �1(X), hence ˜Y
≥k
A,V5��1(X) is

normal.
We now check that Fd−1(Q1(X)/P(V5)) is normal. If k = 2, Q1 is 2-regular

by Lemma 3.6, because Y≥1
A,V5

�(�1(X) ∪ Y≥2
A,V5

) is smooth by [3, Lemma 2.5]

and Y2A,V5
is smooth by assumption. Therefore, over P(V5)�(�1(X) ∪ Y3A,V5

), the
scheme Fd−1(Q1(X)/P(V5)) is smooth by Lemma 3.9.

Now assume k ≤ 1. The above argument proves that Q1(X) is 1-regular
over P(V5)�(�1(X) ∪ Y≥2

A,V5
). Therefore, over P(V5)�(�1(X) ∪ Y≥2

A,V5
), the scheme

Fd−1(Q1(X)/P(V5)) is smooth of the expected dimension. By Lemma 3.9, it
remains to check that (12) holds with p = 1 over Y2A,V5

��1(X). Denote the map
Fd−1(Q1(X)/P(V5)) → P(V5) by ϕ.

Assume first k = 0. We then have n = 5 and d = 2 andQ1(X) → P(V5) is (away
from �1(X)) a fibration in quadrics of dimension 2. Consequently, the dimensions
of the fibers of Fd−1(Q1(X)/P(V5)) over the stratum Y2A,V5

��1(X) are equal to 2,

while dim(Y2A,V5
) = 1 by [3, Lemma 2.5]. Thus, dim ϕ−1(Y2A,V5

��1(X)) = d + 1,

while the right side of (12) is equal to 4 + d2 − d(d + 1)/2 − 2, which is equal to 3.
Assume k = 1.We then have n = 2d (hence d = 2 or d = 3) andQ1(X) → P(V5)

is (away from �1(X)) a fibration in quadrics of dimension 2d − 3. Consequently, the
dimensions of the fibers of Fd−1(Q1(X)/P(V5)) over the stratum Y2A,V5

��1(X) are

equal to 0 if d = 2, and to 1 if d = 3, hence dim ϕ−1(Y2A,V5
��1(X)) = d − 1, while

the right side of (12) is equal to 4 + d(d − 1) − d(d + 1)/2 − 2, which is equal to
d − 1 for d ∈ {2, 3}. ��

For the reader’s convenience,we summarize these results in a table. The first column
is the dimension n of the Gushel–Mukai variety X . The second column indicates
which Hilbert scheme Fd−1(X) of linear subspaces contained in X we consider (the
superscript 0 in the last two lines means that we consider only some components, as
detailed in [3, Theorem 4.3]) and the third column explains what the associated double
cover obtained as a Stein factorization is (the scheme Y≥•

A,V5
is the image of the Hilbert

scheme morphism Fd−1(X) → P(V5)).
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dim(X) Hilbert scheme morphism Double covering

4 F1(X) → P(V5) f1 : ˜Y≥1
A,V5

→ Y≥1
A,V5

5 F1(X) → P(V5) f0 : ˜Y≥0
A,V5

→ Y≥0
A,V5

5 F0
2 (X) → P(V5) f2 : ˜Y≥2

A,V5
→ Y≥2

A,V5
6 F0

2 (X) → P(V5) f1 : ˜Y≥1
A,V5

→ Y≥1
A,V5

5.3 EPW stratification of Gr(3,V6)

We can also apply our results to the EPW stratification of the Grassmannian Gr(3, V6)
described by Iliev–Kapustka–Kapustka–Ranestad in [9]. We keep k = C.

As before, we consider two Lagrangian subbundles in the trivial symplectic vector
bundle

V := ∧3V6 ⊗ OGr(3,V6).

The first is the trivial bundleA1 := A⊗OGr(3,V6). The second Lagrangian subbundle
is the image A2 := V6 ∧ ∧2U3 of the wedge product map

V6 ⊗ ∧2U3 −→ ∧3V6 ⊗ OGr(3,V6),

where U3 is the tautological subbundle. It fits into an extension

0 → ∧3U3 → V6 ∧ ∧2U3 → (V6/U3) ⊗ ∧2U3 → 0.

Its fiber at a point [U3] ∈ Gr(3, V6) is the subspace V6 ∧ ∧2U3 ⊂ ∧3V6, hence it is
indeed a Lagrangian subbundle of V . One can consider the Lagrangian intersection
loci

Z≥k
A = Sk(A1,A2) ⊂ Gr(3, V6) and ZkA = Z≥k

A �Z≥k+1
A . (28)

The results of Iliev–Kapustka–Kapustka–Ranestad that we need can be summarized
as follows [9, Proposition 2.6 and Corollary 2.10].

Theorem 5.6 If the Lagrangian A has no decomposable vectors, the following prop-
erties hold.

(a) Z≥1
A is an integral normal quartic hypersurface in Gr(3, V6).

(b) Z≥2
A is the singular locus of Z≥1

A ; it is an integral normal Cohen–Macaulay sixfold
of degree 480.

(c) Z≥3
A is the singular locus of Z≥2

A ; it is an integral normal Cohen–Macaulay three-
fold of degree 4944.

(d) Z≥4
A is the singular locus of Z≥3

A ; it is finite and smooth, and is empty for A general.

(e) Z≥5
A is empty.
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In this situation, the line bundles L and det(A1) = det(A ⊗ OGr(3,V6)) are both
trivial, while

det(A2) = det(V6∧∧2U3) � det(
∧3U3)⊗det((V6/U3)⊗∧2U3) � OGr(3,V6)(−4).

The line bundle L ⊗(−10−k) ⊗ det(A1) ⊗ det(A2) � OGr(3,V6)(−4) of Theorem 4.2
therefore has a unique square root,OGr(3,V6)(−2).We always take forM the restriction
ofOGr(3,V6)(−2). Theorem 4.2 gives the following result (the sheavesRk on Z

≥k
A were

defined by (19)).

Theorem 5.7 Assume that the Lagrangian A has no decomposable vectors.

(0) There is a unique double cover g0 : ˜Z
≥0
A → Gr(3, V6) branched over Z≥1

A such
that

g0∗O
˜Z

≥0
A

� OGr(3,V6) ⊕ OGr(3,V6)(−2).

The scheme˜Z
≥0
A is integral, normal, and smooth away from g−1

0 (Z≥2
A ).

(1) There is a unique double cover g1 : ˜Z
≥1
A → Z≥1

A branched over Z≥2
A such that

g1∗O
˜Z

≥1
A

� OZ≥1
A

⊕ R1(−2).

The scheme˜Z
≥1
A is integral, normal, and smooth away from g−1

1 (Z≥3
A ).

(2) There is a unique double cover g2 : ˜Z
≥2
A → Z≥2

A branched over Z≥3
A such that

g2∗O
˜Z

≥2
A

� OZ≥2
A

⊕ R2(−2).

The scheme˜Z
≥2
A is integral, normal, and smooth away from g−1

2 (Z4A). Moreover,
we have R2 � ωZ≥2

A
(2).

(3) There is a unique double cover g3 : ˜Z
≥3
A → Z≥3

A branched over Z4A such that

g3∗O
˜Z

≥3
A

� OZ≥3
A

⊕ R3(−2).

The scheme˜Z
≥3
A is integral, normal, and smooth away from g−1

3 (Z4A).

Proof Repeat the proof of Theorem 5.2, replacing Theorem 5.1 with Theorem 5.6. ��
While the double covers in parts (1) and (3) are new, the one in part (2) coincides

with the hyperkähler sixfold constructed in [9] (and called the EPW cube) under the
assumption Z4A = ∅.

Lemma 5.8 If Z4A = ∅, the scheme˜Z
≥2
A is isomorphic to the EPW cube.

Proof Denote the EPW cube by g : ˜ZA → Z≥2
A . The fundamental group of ˜ZA is

trivial since, by [9, Theorem 1.1], ˜ZA is smooth and deformation equivalent to the
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Hilbert cube of a K3 surface. Since˜ZA is smooth and g−1(Z≥3
A ) has codimension 3,

the fundamental group of˜ZA�g−1(Z≥3
A ) is trivial as well. Since

g : ˜ZA�g−1(Z≥3
A ) −→ Z2A

is an étale double covering by [9, Proposition 3.1], the fundamental group of Z2A
is Z/2.

By Theorem 5.7 (2),

g2 : ˜Z
≥2
A �g−1

2 (Z≥3
A ) −→ Z2A

is also an étale double cover. Since also˜Z
≥2
A is integral, we have an isomorphism

˜Z
≥2
A �g−1

2 (Z≥3
A ) � ˜ZA�g−1(Z≥3

A )

of schemes overZ2A. Since˜Z
≥2
A and˜ZA are both normal, they are isomorphic as schemes

over Z≥2
A . ��

Remark 5.9 One can also relate the double covers obtained by the Stein
factorization of the Hilbert scheme of the second quadratic fibration of a Gushel–

Mukai variety (see [2, Section 4.4]) to the double covers ˜Z
≥k
A,V5 → Z≥k

A,V5
obtained

from the double covers of Theorem 5.7 by base change along the natural embedding
Gr(3, V5) → Gr(3, V6). In this situation, an analogue of Lemma 5.4 is true (with the
same proof, using [2, Proposition 4.10]). It is hard however to control the normality

of the schemes˜Z
≥k
A,V5 and Z≥k

A,V5
, so we do not know of an analogue of Corollary 5.5.
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