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Abstract
We study tensors on Lie groupoids suitably compatible with the groupoid structure,
calledmultiplicative. Ourmain result gives a complete description of these objects only
in terms of infinitesimal data. Special cases include the infinitesimal counterparts of
multiplicative forms, multivector fields and holomorphic structures, obtained through
a unifying and conceptual method. We also give a full treatment of multiplicative
vector-valued forms, particularly Nijenhuis operators and related structures.
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1 Introduction

Lie groupoids are present in several areas of mathematics, including foliations, group
actions and Poisson geometry. In these various contexts, Lie groupoids often come
equipped with additional geometric structures, suitably compatible with the groupoid
multiplication; such structures, referred to as multiplicative, are the main object of
interest in this paper.

The study of multiplicative geometric structures on Lie groupoids has by now a
long and rich history (see [38] for a recent survey). A basic example of multiplicative
structure arises in the definition of complex Lie groups, regarded as real Lie groups
endowed with a “compatible” complex structure; here, compatibility means that the
groupmultiplicationmap is holomorphic. Another class ofmultiplicative structures on
Lie groups arose in the early 80swith the emergence of Poisson-Lie groups, introduced
by Drinfel’d [19] (later extended to Poisson groupoids byWeinstein [60]). Around the
same time, the first examples of multiplicative differential forms on Lie groupoids
appeared with the advent of symplectic groupoids [32,59] (and in their connections
with the theory of hamiltonian actions [53] and equivariant cohomology; see [5,7,
62]). Multiplicative structures now abound in the literature, where one finds multi-
vector fields [29,46,49,50], differential forms [1,3,8,16], contact and Jacobi structures
[15,28,33], holomorphic structures [42,43], as well as distributions and foliations
[16,21,27,30], among others (e.g. [23,44,55]).

Any Lie groupoid corresponds to a Lie algebroid, which linearizes it at the units.
As in classical Lie theory, a central issue when considering multiplicative geomet-
ric structures is identifying their infinitesimal versions, i.e., finding their description
solely in terms of Lie-algebroid data. This problem has been studied in numer-
ous settings, through different approaches, leading to various “infinitesimal-global”
correspondence results. Examples include the correspondences between symplec-
tic groupoids and Poisson structures [9,13,51], Poisson groups/groupoids and Lie
bialgebras/bialgebroids [46,49,51], contact groupoids and Jacobi structures [14,15],
presymplectic groupoids and Dirac structures [7], complex Lie groupoids and holo-
morphic Lie algebroids [43], to mention a few (see also [1,10,29,57]). All these results
rely on defining a “Lie functor”, taking global to infinitesimal objects, and on an “inte-
gration” step, which reconstructs multiplicative structures from infinitesimal data.
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Lie theory of multiplicative tensors 1491

In spite of these various results in specific settings, the theory of multiplicative
geometric structures still lacked a complete treatment. The very notion of “multi-
plicativity” seemed to be adapted to each case at hand, and different techniques have
been employed to handle seemingly analogous results. In this paper, we introduce
the concept of multiplicative tensor on Lie groupoids, which agrees with the exist-
ing notions of multiplicativity in known situations, and devise a general method to
obtain their complete infinitesimal description. As a consequence, all aforementioned
“infinitesimal-global” correspondences can be naturally derived from our main result
(Theorem 3.19), with a unified proof and conceptual approach, and new applications
are obtained. Although we focus on ordinary tensors, our method adapts to more gen-
eral contexts (such as the study of 1-cocycles on VB-groupoids), including tensors
with values in representations (up to homotopy), see [20,22].

Main results Let G ⇒ M be a Lie groupoid with source and target maps s and t. We
denote its Lie algebroid by A, equipped with anchor map ρ and bracket [·, ·]. Consider
a (q, p)-tensor field1 τ ∈ �(∧pT ∗G ⊗ ∧qTG). Let

G := (⊕pTG) ⊕ (⊕qT ∗G),

which carries a natural groupoid structure over M := (⊕pT M) ⊕ (⊕q A∗) induced
from the tangent and cotangent groupoids of G; see Sect. 2.

Definition 1.1 The tensor τ ∈ �(∧pT ∗G ⊗ ∧qTG) is multiplicative if the map cτ :
G → R,

cτ (U1, . . . ,Up, ξ1, . . . , ξq) = τ(U1, . . . ,Up, ξ1, . . . , ξq), Ui ∈ TgG, ξ j ∈ T ∗
g G,

is a groupoid morphism, where R is viewed as an abelian group; in other words, cτ is
a differentiable 1-cocycle on G.

To state our main result, consider the action of �(A) on �(∧pT ∗M ⊗ ∧q A) by

a · (β ⊗ X) = Lρ(a)β ⊗ X + β ⊗ [a,X],

where [·, ·] is the Schouten bracket on �(∧•A). The following theorem gives a full
description of the infinitesimal counterparts of multiplicative tensors:

Theorem 1.2 If G ⇒ M is a source 1-connected Lie groupoid, then there is a natural
one-to-one correspondence between multiplicative (q, p)-tensors τ on G and triples
(D, l, r), where l : A → ∧p−1T ∗M ⊗ ∧q A and r : T ∗M → ∧pT ∗M ⊗ ∧q−1A
are vector bundle maps covering the identity, D : �(A) → �(∧pT ∗M ⊗ ∧q A) is an
R-linear map satisfying the Leibniz-type condition

D( f a) = f D(a) + d f ∧ l(a) − a ∧ r(d f ), f ∈ C∞(M), a ∈ �(A),

1 The assumption of skew symmetry leads to some simplifications of the results, but it is by no means
essential.
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1492 H. Bursztyn, T. Drummond

and the following equations hold: for a, b ∈ �(A) and α, β ∈ �1(M),

D([a, b]) = a · D(b) − b · D(a), (IM1)

l([a, b]) = a · l(b) − iρ(b)D(a), (IM2)

r(Lρ(a)α) = a · r(α) − iρ∗(α)D(a), (IM3)

iρ(a) l(b) = −iρ(b) l(a), (IM4)

iρ∗α r(β) = −iρ∗β r(α), (IM5)

iρ(a) r(α) = iρ∗α l(a). (IM6)

We refer to the Eqs. (IM1)–(IM6) as cocycle equations, or IM equations (where
IM stands for “infinitesimally multiplicative”). A more detailed formulation of the
previous result can be found in Theorem 3.19 below.

The definition of the “Lie functor”, taking multiplicative tensors τ to triples
(D, l, r), relies on a useful characterization ofmultiplicativity proven inTheorem3.11;
it asserts, in particular, that for any α ∈ �1(M), a ∈ �(A) and −→a the corresponding
right-invariant vector field on G, the tensors i−→a τ , it∗α τ , and L−→a τ lie in the image of
the map

T : �(∧•T ∗M ⊗ ∧•A) → �(∧•T ∗G ⊗ ∧•TG),

defined on homogeneous elements by T (α ⊗ X) = t∗α ⊗ −→
X . The maps D, l, and r

arise from the equations

i−→a τ = T (l(a)), it∗α τ = T (r(α)), L−→a τ = T (D(a)).

The IM-equations, combined with the 1-connectedness of the source fibers of G, per-
mit the reconstruction of τ out of (D, l, r). Theorem 1.2, when restricted to tensors of
types (0, p) or (q, 0), directly recovers the infinitesimal descriptions of multiplicative
differential forms and multivector fields proven in [1,5,29], but using other methods.
For (1, 1)-tensors, it encompasses the correspondence of complex Lie groupoids and
holomorphic Lie algebroids of [43]. In these special cases, the operator D takes dif-
ferent guises, codifying k-differentials [29], IM-forms [5] (or the “Spencer operators”
of [16]), or flat partial connections defining holomorphic structures.

The content of Theorem 1.2 is discussed in Sect. 3, and its proof is presented in
Sect. 4, heavily based on our viewpoint to multiplicative tensors τ on G as multi-
plicative functions cτ on the “big” Lie groupoid G ⇒ M. Multiplicative functions
are simple to describe infinitesimally: they correspond to Lie-algebroid 1-cocycles,
i.e., sections of the dual of the Lie algebroid which are closed under the Lie-algebroid
differential. So the proof follows from a detailed analysis of 1-cocycles of the Lie
algebroid A of G. The key fact that A → M has a natural VB-algebroid structure over
A → M allows us to identify a special set of generators of the C∞(M)-module �(A),
parametrized by �(A) and�1(M). We use these generators to describe 1-cocycles of
A by means of triples (D, l, r) as in Theorem 1.2, and we resort to classical lifting
operations to realize the cocycle condition as the Eqs. (IM1)–((IM6).
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Lie theory of multiplicative tensors 1493

In Sect. 5, we specialize ourmain result to the case of (1, p)-tensors, i.e.,multiplica-
tive vector-valued forms. As observed in [6], the usual Frölicher–Nijenhuis bracket
preserves the multiplicativity condition, so it makes the space of multiplicative vector-
valued forms into a graded Lie algebra. One of our key results is the identification
of the corresponding graded Lie algebra at the infinitesimal level, in Proposition 5.4.
In Sect. 6, we focus on multiplicative vector-valued 1-forms, i.e., (1,1)-tensors. In
this case, we obtain an explicit infinitesimal description of their Nijenhuis torsions
(Corollary 6.3), which provides a broader viewpoint to the results in [43,57] con-
cerning multiplicative (almost) complex structures and Poisson (quasi-) Nijenhuis
structures. We also treat multiplicative projections and product structures, interpreting
their infinitesimal versions in terms of matched pairs.

2 Preliminaries

This section reviews some preliminary material, including tangent and cotangent Lie
groupoids; see e.g. [47,49]. We also discuss a convenient viewpoint to classical tensor
fields, regarded as real-valued functions on Whitney sums of vector bundles.

2.1 Tangent Lie groupoids

Let G ⇒ M be a Lie groupoid. We use the following notation: s, t : G → M are the
source and target maps, 1 : M → G is the unit map, i : G → G is the inversion map,
and m : G s×t G → G is the multiplication map. We will often identify M with its
image under the unit map.

The tangent groupoid ofG is theLie groupoidTG ⇒ T M whose structuralmaps are
all obtained by taking the derivatives of the structural maps ofG; e.g., its multiplication
map is Tm : TG T s×T tTG → TG, where we have identified T (G s×tG) ∼= TG T s×T t
TG. We shall denote the multiplication on TG by •.

We denote the Lie algebroid ofG by A → M , or AG if there is any risk of confusion.
We identify Awith ker(T s)|M , so the Lie bracket on�(A) is induced by right-invariant
vector fields on G, and the anchor ρ : A → T M is given by T t|A. For a ∈ �(A),
we denote by −→a ∈ X(G) the corresponding right-invariant vector field, and by ←−a the
left-invariant vector field induced by a − ρ(a) ∈ �(ker(T t)|M ).

Note that each section a ∈ �(A) defines a bisection Ba : T M → TG of TG ⇒
T M ,

Ba(X) = T1(X) + a(x), (2.1)

for X ∈ TxM , covering the map T M → T M , X �→ X + ρ(a)(x). This bisection
splits the exact sequence

0 −→ A ↪→ 1∗TG T s−→ T M −→ 0. (2.2)

We refer to Ba as the translation bisection associated with a.
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1494 H. Bursztyn, T. Drummond

2.2 Cotangent Lie groupoids

The cotangent bundle of a Lie groupoid G ⇒ M also carries a natural Lie groupoid
structure, T ∗G ⇒ A∗, where A∗ is the dual vector bundle to A. The source and target
maps s̃,˜t : T ∗G → A∗ are defined by the restriction of covectors to the subspaces
tangent to the s- and t-fibers, respectively:

〈̃s(ξg), a〉 = 〈ξg,←−a (g)〉 and 〈˜t(ξg), b〉 = 〈ξg,−→b (g)〉, (2.3)

for ξg ∈ T ∗
g G, a ∈ As(g), b ∈ At(g). The unit map˜1 : A∗ → T ∗G is the vector bundle

morphism covering 1 : M → G, determined by

〈˜1ϕ, T 1(X) + a〉 = 〈ϕ, a〉,

for (X , ϕ, a) ∈ T M ×M A∗ ×M A.
The multiplication on T ∗G is defined as follows: for ξ1 ∈ T ∗

g1G and ξ2 ∈ T ∗
g2G such

that s̃(ξ1) =˜t(ξ2), their product ξ1 • ξ2 ∈ T ∗
g1g2G is determined by

〈ξ1 • ξ2,U1 •U2〉 = ξ1(U1) + ξ2(U2), (2.4)

for composable U1 ∈ Tg1G,U2 ∈ Tg2G.
The source map s̃ fits into the following exact sequence of vector bundles over M :

0 −→ T ∗M
(T t)∗
↪→ 1∗T ∗G s̃−→ A∗ −→ 0. (2.5)

Given a differential 1-form α ∈ �1(M) on M , the map Bα : A∗ → 1∗T ∗G given by

〈Bα(ϕ), T 1(X) + a〉 = 〈α(x), ρ(a) + X〉 + 〈ϕ, a〉, (2.6)

for ϕ ∈ A∗
x , X ∈ TxM, a ∈ Ax , provides a splitting of the sequence (2.5). It is a

bisection of T ∗G ⇒ A∗ covering ϕ �→ ϕ + ρ∗(α(x)), ϕ ∈ A∗
x . We call Bα the

translation bisection corresponding to α.

2.3 Whitney sums

Tangent and cotangent groupoids satisfy the property that theirWhitney sums as vector
bundles again carry natural Lie groupoid structures, defined componentwise.2 In this
paper, we will be interested in Lie groupoids of the form G

(p,q) ⇒ M
(p,q), where

G
(p,q) = (⊕pTG) ⊕ (⊕qT ∗G) and M

(p,q) = (⊕pT M) ⊕ (⊕q A∗), (2.7)

for non-negative integers p and q. When there is no risk of confusion, we omit the
indices (q, p) and write just G ⇒ M. We denote the source and target maps by

2 This property holds, more generally, for VB-groupoids, of which tangent and cotangent groupoids are
special cases (see e.g. [4]).
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s, t : G → M and the unit map by 1 : M → G. We keep the notation • for the
multiplication.

We shall denote by (X , ϕ) and (U , ξ) the elements (X1, . . . , X p, ϕ1, . . . , ϕq) ∈ M

and (U1, . . . ,Up, ξ1, . . . , ξq) ∈ G, respectively.

Remark 2.1 An important observation is that each source-fiber of G is an affine bun-
dle over a source-fiber of G, see e.g. [4, Rem. 3.1.1(a)]; it follows that G is source
connected, or source 1-connected, if and only if so is G.

2.4 Functions on theWhitney sum of vector bundles

A key viewpoint pursued in this work is that tensor fields should be regarded as
functions on the Whitney sum of the tangent and cotangent bundles. We now explain
this point of view from a general perspective. Let E1, . . . , Ep be vector bundles over
N and consider their Whitney sum π : E1 ⊕ · · · ⊕ Ep → N .

Definition 2.2 A function F : E1 ⊕· · ·⊕ Ep → R is said to be componentwise linear
if Fy : (E1)y × · · · × (Ep)y → R is multi-linear, for each y ∈ N .

Example 2.3 For p = 1, componentwise linear functions on a vector bundle E → N
are fiberwise linear functions, i.e., those of the form �μ, where

�μ(e) := 〈μ(y), e〉, ∀ e ∈ Ey,

for μ ∈ �(E∗).

Every tensor field τ ∈ �(E∗
1 ⊗ · · · ⊗ E∗

p) defines a componentwise linear function
cτ : E1 ⊕· · ·⊕ Ep → R by pulling back the linear function �τ : E1 ⊗· · ·⊗ Ep → R

by the natural map E1 ⊕ · · · ⊕ Ep → E1 ⊗ · · · ⊗ Ep. The letter “c” in our notation
stands for “componentwise”, and it is used to distinguish cτ from the linear functions
on E1 ⊕ · · · ⊕ Ep defined by sections of its dual. In case τ = μ1 ⊗ · · · ⊗ μp, for
μi ∈ �(E∗

i ), i = 1, . . . , p,

cτ = �μ1 ◦ pr1 . . . �μp ◦ pr p,

where pr j : E1 ⊕ · · · ⊕ Ep → E j is the projection on the j-th component.
The next result is a direct consequence of the properties of tensor products.

Lemma 2.4 The map τ �→ cτ defines a bijection between �(E∗
1 ⊗ · · · ⊗ E∗

p) and the
space of componentwise linear functions on E1 ⊕ · · · ⊕ Ep satisfying

c f τ = ( f ◦ π) cτ , ∀ f ∈ C∞(N ),

where π : E1 ⊕ · · · ⊕ Ep → N is the natural projection.

When E1 = · · · = Ep = E , we say that a function F ∈ C∞(⊕p
i=1E) is skew-

symmetric if F(eσ(1), . . . , eσ(p)) = sgn(σ )F(e1, . . . , ep), for every permutation σ ∈
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S(p). Under the correspondence of Lemma 2.4, the componentwise linear functions
on ⊕pE which are skew-symmetric correspond to �(∧pE∗). For τ = μ1 ∧ · · · ∧μp,
with μi ∈ �(E∗),

cτ =
∑

σ∈S(p)
sgn(σ )(�μσ(1) ◦ pr1) · · · (�μσ(p) ◦ pr p). (2.8)

There is a natural projection C∞(⊕pE) → C∞(⊕pE) on the space of skew-
symmetric functions, defined by

F �→ 1

p!
∑

σ∈S(p)
sgn(σ ) F ◦ σ, (2.9)

where σ : ⊕pE → ⊕pE is given by σ(e1, . . . , ep) = (eσ(1), . . . , eσ(p)).

Remark 2.5 Functions which are skew-symmetric only on some components can be
defined similarly by considering E1 = · · · = Ep′ = E , p′ < p. Extending the
previous observations to this case is straightforward.

3 Multiplicative tensors

In this section, we introduce our main object of study, multiplicative tensors, and state
our main theorem, which gives their full infinitesimal description. As we follow the
idea of regarding tensors as functions on Whitney sums of the tangent and cotangent
bundles, we start by discussing multiplicative functions in general.

3.1 Multiplicative functions

Let H ⇒ N be a Lie groupoid with Lie algebroid AH.

Definition 3.1 A smooth function f ∈ C∞(H) is said to be multiplicative if

f (h1h2) = f (h1) + f (h2), ∀ (h1, h2) ∈ Hs×t H. (3.1)

In other words, a multiplicative function f : H → R is a groupoid morphism from
H ⇒ N to the abelian Lie group R. As such, it defines a Lie-algebroid morphism
A f : AH → R given by 〈A f , χ〉 = d f (χ), for χ ∈ AyH and y ∈ N ; equivalently,

〈A f , χ(y)〉 =
(

L−→χ f
)

(y), (3.2)

for χ ∈ �(AH). When we view A f as a section of the dual bundle A∗H, the condition
for A f to be a Lie-algebroid morphism is expressed by the cocycle equation
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Lie theory of multiplicative tensors 1497

dA(A f ) = 0,

where dA : �(∧•A∗H) → �(∧•+1A∗H) is the Lie-algebroid differential.

Example 3.2 The function f = t∗ψ − s∗ψ is multiplicative, for any ψ ∈ C∞(N ).
The associated cocycle A f is dAψ ∈ �(A∗H), which is exact, i.e., a coboundary.

Example 3.3 Let π : E → N be a vector bundle, viewed as a Lie groupoid. A function
f ∈ C∞(E) is multiplicative if and only if it is fiberwise linear. Let μ ∈ �(E∗) be
such that f = �μ. The cocycle A f ∈ �(A∗E) = �(E∗) is given by

〈A f , e〉 = d f

(

d

dε

∣

∣

∣

∣

ε=0
ε e

)

= d

dε

∣

∣

∣

∣

ε=0
〈μ, ε e〉 = 〈μ, e〉, ∀ e ∈ E .

So A f = μ (which agrees with f itself, if seen as a function E → R). The equation
dAμ = 0 is trivially satisfied since dA = 0 in this case.

The next result gives a useful formula relating the cocycle A f and the function f .

Lemma 3.4 For a multiplicative function f : H → R, its corresponding cocycle
A f ∈ �(A∗H) satisfies

L−→χ f = t∗〈A f , χ〉, ∀χ ∈ �(AH). (3.3)

Proof First, by differentiating equation (3.1), one sees that

d f (U • V ) = d f (U ) + d f (V ), ∀(U , V ) ∈ TH T s×T t TH.

Also, −→χ (h) = χ(t(h)) • 0h (where 0h is the zero vector field on H at h). Hence

(L−→χ f )(h) = d f (−→χ (h)) = d f (χ(t(h)) • 0h) = d f (χ(t(h))) = 〈A f , χ〉(t(h)),

as we wanted. ��

It turns out that when H is source connected, Eq. (3.3) essentially characterizes
multiplicative functions:

Proposition 3.5 Let H ⇒ N be a source-connected Lie groupoid. A function f ∈
C∞(H) is multiplicative if and only if f |N = 0 and there exists μ ∈ �(A∗H) such
that

L−→χ f = t∗〈μ, χ〉, ∀χ ∈ �(AH). (3.4)

In this case, A f = μ.
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Proof If f is multiplicative, then f |N = 0 as a consequence of (3.1). Also, setting
μ = A f , (3.4) follows from Lemma 3.4.

In the other direction, fix χ1, χ2 ∈ �(AH). Then

t∗〈μ, [χ1, χ2]〉 = L[−→χ1,−→χ2] f = L−→χ1L−→χ2 f − L−→χ2L−→χ1 f
= t∗(Lρ(χ1)μ(χ2) − Lρ(χ2)μ(χ1)),

which implies that

dAμ(χ1, χ2) = Lρ(χ1)μ(χ2) − Lρ(χ2)μ(χ1) − μ([χ1, χ2]) = 0.

So μ is a Lie-algebroid cocycle. If ˜H is a source 1-connected integration of AH,
then there exists a multiplicative function fμ ∈ C∞(˜H) such that A fμ = μ. The
Lie groupoids H and ˜H correspond to the same Lie algebroid, so they are related by
a groupoid map σ : ˜H → H which is a local diffeomorphism (and restricts to the
identity map on N ). To check that f is multiplicative, it is enough to check that σ ∗ f
is multiplicative. We will verify that σ ∗ f = fμ.

By (3.3), since σ is a groupoid morphism (hence commutes with structure maps
and preserves invariant vector fields), one has that

L−→χ σ ∗ f = σ ∗L−→χ f = σ ∗t∗〈μ, χ〉 = t∗〈A fμ, χ〉 = L−→χ fμ,

where we have kept the same notation for the structure maps on ˜H and H. Since ˜H
has source-connected fibers, it follows that σ ∗ f − fμ is constant along the s-fibers.
Finally, since (σ ∗ f − fμ)|N = 0, one has that σ ∗ f − fμ = 0 everywhere. ��

3.2 Definition and examples

Let G ⇒ M be a Lie groupoid and consider a (q, p)-tensor field τ ∈ �(∧p T ∗G ⊗
∧qTG). Let cτ : G

(p,q) → R be the corresponding componentwise linear function,

cτ (U1, . . . ,Up, ξ1, . . . , ξq) = τ(U1, . . . ,Up, ξ1, . . . , ξq),

as in Definition 2.2, whereG
(p,q) ⇒ M

p,q) is the Lie groupoid (2.7). In the following,
we shall omit the (p, q)-indices.

Definition 3.6 A (q, p)-tensor field τ ∈ �(∧p T ∗G ⊗ ∧qTG) on G ⇒ M is multi-
plicative if the function cτ : G → R is multiplicative.

Note that the very same definition of multiplicativity makes sense for elements of
�((⊗pT ∗G) ⊗ (⊗qTG)) (or for their symmetric versions). Along the paper, we will
make some comments on how to adapt our results to this more general case.

The next examples relate our definition with known notions of multiplicativity for
special types of tensors.
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Example 3.7 A differential form ω ∈ �p(G) is multiplicative if it satisfies

m∗ω = pr∗1ω + pr∗2ω,

where pri : G s×t G → G → G, i = 1, 2, are the natural projections. One can directly
check (see e.g. [3]) that this is equivalent to cω being multiplicative.

Example 3.8 A multivector field � ∈ Xq(G) is said to be multiplicative [29] if the
graph of the multiplication map is coisotropic with respect to � ⊕ � ⊕ (−1)q+1�:
for ξi ∈ Ann(graph(m)) ⊂ T ∗(G × G × G), i = 1, . . . , q, we have

(� ⊕ � ⊕ (−1)q+1�)(ξ1, . . . , ξq) = 0.

It is shown in [29] that this condition is equivalent to c� being multiplicative.

The next result shows that our definition of multiplicativity for (1, p)-tensor fields
K ∈ �(∧pT ∗G ⊗ TG) agrees with the one given in [43]. Note that K can be seen as
a map K : ⊕pTG → TG.
Proposition 3.9 A (1, p)-tensor field K ∈ �(∧pT ∗G ⊗ TG) is multiplicative if and
only if there is a vector-bundle map r : ⊕pT M → T M covering the identity such
that

⊕pTG K TG

⊕pT M
r

T M

(3.5)

is a groupoid morphism.

Proof It is straightforward to check that if (3.5) is a groupoid morphism, then K is
multiplicative. Conversely, let us assume that K is a multiplicative (1, p)-tensor field.
FromProposition 3.5, one knows that cK |M = 0. This implies that, for (X1, . . . , X p) ∈
T M ⊕ · · · ⊕ T M , K (X1, . . . , X p) ∈ TG|M has zero component on A under the
decomposition TG|M = T M ⊕ A. So, define r = K |⊕pT M .

It is straightforward to see that once

T t ◦ K = r ◦ T t, T s ◦ K = r ◦ T s,

K will preserve the multiplication as a direct consequence of the multiplicativity of
K . So, let α ∈ T ∗

s(g)M .

〈T s(K (U1, . . . ,Up)), α〉 = cK (U1, . . . ,Up, (ds)∗g α)
= cK (U1 • T s(U1), . . . ,Up • T s(Up), 0g • (ds)∗s(g) α)
= cK (U1, . . . ,Up, 0g) + cK (T s(U1), . . . , T s(Up), (ds)∗s(g) α))
= 〈r(T s(U1), . . . , T s(Up)), α〉.
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Here, we have used the equality (ds)∗g α = 0g • (ds)∗s(g) α, which follows from (2.4).
The other equality follows similarly. ��

We now consider a special class of multiplicative tensor fields on G, analogous
to the multiplicative functions in Example 3.2. Let S, T : �(∧p T ∗M ⊗ ∧q A) →
�(∧p T ∗G ⊗ ∧qTG) be the R-linear maps defined on homogeneous elements as

T (α ⊗ X) = t∗α ⊗ −→
X , S(α ⊗ X) = s∗α ⊗ ←−

X . (3.6)

Proposition 3.10 The maps S and T satisfy the following properties:

(1) T ( f�) = (t∗ f ) T (�), S( f�) = (s∗ f )S(�),
(2) t∗c� = cT (�),
(3) s∗c� = cS(�),

for � ∈ �(∧p T ∗M ⊗ ∧q A) and f ∈ C∞(M). In particular,

(T − S)(α ⊗ X) = t∗α ⊗ −→
X − s∗α ⊗ ←−

X (3.7)

is a multiplicative (exact) (q, p)-tensor field on G.
Proof The formulas in (1) can be verified directly.

For � of the form α ⊗ X and ξ1, . . . , ξq ∈ T ∗
g G, formulas (2) and (3) reduce to

−→
X (ξ1, . . . , ξq) = X(˜t(ξ1), . . . ,˜t(ξq)) and

←−
X (ξ1, . . . , ξq) = X(̃s(ξ1), . . . , s̃(ξq)),

respectively, and these identities are direct consequences of the definitions of the source
and target maps of the cotangent groupoid (see (2.3)). The case of arbitrary� follows
by linearity.

The last assertion follows from the fact that t∗c� −s∗c� is always a multiplicative
function (see Example 3.2). ��

3.3 Themain results: statements and first examples

We now present a complete infinitesimal characterization of multiplicative tensor
fields. Our first main theorem is an analog of Proposition 3.5 for general tensor fields.

Theorem 3.11 Let G ⇒ M be a source-connected Lie groupoid. A (q, p)-tensor field
τ ∈ �(∧pT ∗G ⊗ ∧qTG) is multiplicative if and only if

τ(X , ϕ) = 0, ∀ (X , ϕ) ∈ M, (3.8)

and there exist vector-bundle maps l : A → ∧p−1T ∗M ⊗ ∧q A and r : T ∗M →
∧pT ∗M⊗∧q−1A, covering the identity map on M, and anR-linearmap D : �(A) →
�(∧pT ∗M ⊗ ∧q A), such that

D( f a) = f D(a) + d f ∧ l(a) − a ∧ r(d f ), (3.9)

i−→a τ = T (l(a)), it∗α τ = T (r(α)), L−→a τ = T (D(a)), (3.10)

for a ∈ �(A), α ∈ �(T ∗M) and f ∈ C∞(M).
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We refer to the triple (D, l, r) as the infinitesimal components of the multiplicative
tensor τ and to Eq. (3.9) as the Leibniz condition for D.

Remark 3.12 Regarding the notation in Theorem 3.11 above, in (3.9) we view
�(∧•T ∗M⊗∧•A) as a left module for the exterior algebras �(∧•A) and �(∧•T ∗M),
and both actions are denoted by ∧: for Y ∈ �(∧•A), η ∈ �(∧•T ∗M), and
ω ⊗ X ∈ �(∧•T ∗M ⊗ ∧•A),

Y ∧ (ω ⊗ X) = ω ⊗ (Y ∧ X), η ∧ (ω ⊗ X) = (η ∧ ω) ⊗ X.

In (3.10), the contraction operators are defined as follows: for U ∈ �(TG), ξ ∈
�(T ∗G) and τ = λ ⊗ W ,

iU τ = (iUλ) ⊗ W , iξ τ = U ⊗ (iξW ).

We mention some particular cases of interest.

Corollary 3.13 On a source-connected Lie groupoid G ⇒ M, a p-form ω ∈ �p(G)
is multiplicative if and only if there is an R-linear map D : �(A) → �p(M) and a
vector-bundle morphism l : A → ∧p−1T ∗M such that the following holds:

1∗ω = 0, L−→a ω = t∗D(a), i−→a ω = t∗l(a),

for all a ∈ �(A).

The next result recovers [29, Thm. 2.19] (showing that some conditions there are
redundant, cf. [11, Lem. 2.3]).

Corollary 3.14 Let G ⇒ M be a source-connected Lie groupoid. A q-vector field
� ∈ Xq(G) ismultiplicative if and only there is anR-linearmap D : �(A) → �(∧q A)
and a vector bundle morphism r : T ∗M → ∧q−1A such that the following holds:

�(ϕ1, . . . , ϕq) = 0, L−→a � = −−→
D(a), it∗α� = −−→

r(α),

for all (ϕ1, . . . , ϕq) ∈ A∗ ×M · · · ×M A∗, a ∈ �(A) and α ∈ �1(M). (In the
terminology of [29,51], the first condition above expresses the fact that M is coisotropic
with respect to �, while the other conditions express the fact that � is an affine
multivector field (see also [18,35]).)

In view of the previous corollary, Theorem 3.11 suggests a notion of affine tensors
on Lie groupoids, in which we retain all properties of multiplicative tensors described
in Theorem 3.11 except for (3.8) (cf. [61, Thm. 4.5]).

In the next example, we identify the infinitesimal components of a multiplicative
tensor field of type (3.7). To do so, let us consider, for a Lie algebroid (A, ρ, [·, ·]),
the action of the Lie algebra �(A) on �(∧pT ∗M ⊗ ∧q A) given by

a · (β ⊗ X) = Lρ(a)β ⊗ X + β ⊗ [a,X], (3.11)

where [·, ·] is the Schouten bracket on �(∧•A).
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Example 3.15 For� ∈ �(∧pT ∗M⊗∧q A), consider themultiplicative tensor given by
τ = (T −S)(�) (see Proposition 3.10). As particular cases, for q = 0, τ = t∗�−s∗�,
while for p = 0, τ = −→

� − ←−
� . The infinitesimal components (D, l, r) corresponding

to τ are

D(a) = a · �, l(a) = iρ(a)�, r(α) = iρ∗(α)�.

Remark 3.16 For τ ∈ �((⊗pT ∗G) ⊗ (⊗qTG)), there is a result similar to Theorem
3.11 characterizing multiplicativity. In this case we have infinitesimal components
(D, l1, . . . , l p, r1, . . . , rq), where D : �(A) → �((⊗pT ∗M) ⊗ (⊗q A)), li : A →
(⊗p−1T ∗M) ⊗ (⊗q A), and r j : T ∗M → (⊗pT ∗M) ⊗ (⊗q−1A), defined by

L−→a τ = T (D(a)), τ (. . . ,
−→a , . . . )

︸ ︷︷ ︸

i-th TG-entry

= T (li (a)), τ (. . . , t∗α, . . . )
︸ ︷︷ ︸

j-th T ∗G-entry

= T (r j (α)).

(3.12)

The Leibniz equation for D will change accordingly. For instance, for a multiplicative
τ ∈ �(TG ⊗ TG), the infinitesimal components (D, r1, r2) satisfy

D( f a) = f D(a) − a ⊗ r1(d f ) − r2(d f ) ⊗ a.

We now formulate our main result, which concerns the correspondence between
multiplicative tensors τ and their infinitesimal components (D, l, r). The multiplica-
tivity of τ is expressed by a set of equations satisfied by (D, l, r), described in the
next definition.

Definition 3.17 Let (A, [·, ·], ρ)be aLie algebroid.An IM (q, p)-tensoron A is a triple
(D, l, r), where l : A → ∧p−1T ∗M ⊗ ∧q A and r : T ∗M → ∧pT ∗M ⊗ ∧q−1A are
vector-bundlemaps covering the identitymap onM , D : �(A) → �(∧pT ∗M⊗∧q A)
is R-linear and satisfies the Leibniz rule

D( f a) = f D(a) + d f ∧ l(a) − a ∧ r(d f ), ∀ f ∈ C∞(M), a ∈ �(A),

such that the following equations hold:

D([a, b]) = a · D(b) − b · D(a), (IM1)

l([a, b]) = a · l(b) − iρ(b)D(a), (IM2)

r(Lρ(a)α) = a · r(α) − iρ∗(α)D(a), (IM3)

iρ(a) l(b) = −iρ(b) l(a), (IM4)

iρ∗α r(β) = −iρ∗β r(α), (IM5)

iρ(a) r(α) = iρ∗α l(a), (IM6)

for a, b ∈ �(A) and α, β ∈ �1(M).

We refer to Eqs. (IM1)–(IM6) as the IM-equations of an IM (q, p)-tensor.
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Remark 3.18 (Redundancies) We observe that, in many cases, there are some redun-
dancies in the IM-equations. Note first that, if p > dim(M) + 1 or q > rank(A) + 1,
then any IM (p, q)-tensor is trivial. On the other hand, when p < dim(M) + 1 and
q < rank(A)+1, we claim that {(IM1), (IM2), (IM6)} and {(IM1), (IM3), (IM6)} are
minimal sets of independent IM-equations. Indeed, in this case, (IM1) implies that

d f ∧ (l([a, b]) − a · l(b)+iρ(b)D(a))=b∧(r(Lρ(a)(d f )) − a · r(d f )+id f D(a)),

for all f ∈ C∞(M), a, b ∈ �(A). This follows from the Leibniz rule for the Lie
bracket [·, ·], the Leibniz formula for D, and Proposition 4.3 below. Therefore,

(IM1) + (IM2) ⇒ (IM3) and (IM1) + (IM3) ⇒ (IM2).

Similarly, one can prove that (IM2) (resp. (IM3)) implies that

d f ∧ (iρ(a)l(b) + iρ(b)l(a)) = a ∧ (id f l(b) − iρ(b)r(d f ))

(resp. a ∧ (id f r(α) + iρ∗αr(d f )) = d f ∧ (iρ(a)r(α) − iρ∗αl(a))).

As a result, (IM2) + (IM6) ⇒ (IM4) and (IM3) + (IM6) ⇒ (IM5).

Our main theorem can now be stated as follows:

Theorem 3.19 Let G ⇒ M be a source 1-connected Lie groupoid, and let A be its Lie
algebroid. There is a one-to-one correspondence between multiplicative (q, p)-tensor
fields τ ∈ �(∧pT ∗G ⊗ ∧qTG) and IM (q, p)-tensors (D, l, r) on A satisfying

i−→a τ = T (l(a))
it∗α τ = T (r(α))
L−→a τ = T (D(a)),

where T is the map given by (3.6).

Remark 3.20 The correspondence in Theorem 3.19 can be naturally extended to mul-
tiplicative tensors τ ∈ �((⊗pT ∗G)⊗ (⊗qTG)); in this case, following Remark 3.16,
we have more infinitesimal components (D, l1, . . . , l p, r1, . . . , rq), obtained as in
(3.12), satisfying analogous IM-equations.

We now show how Theorem 3.19, when restricted to (0, p) and (q, 0) tensors,
directly recovers the infinitesimal descriptions of multiplicative differential forms and
multivector fields, proven in [1,5,29]. It also recovers the correspondences in [43,57],
but we will leave this discussion to Sect. 6, where we present a more general treatment
of multiplicative (1, 1)-tensor fields.

Multiplicative multivector fields We start by illustrating our result in the simplest
context of multiplicative vectors fields on Lie groupoids, treated in [50] (see also [47,
Sec. 3.4]). In this case, our general notion of multiplicativity admits an alternative
formulation: a vector field Z on a Lie groupoid G ⇒ M is multiplicative if Z : G →
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TG is a groupoid morphism; in particular, it covers a map X : M → T M , which
is a vector field on M . To describe Z in infinitesimal terms, one considers the Lie-
algebroid morphism ZA : A → T A obtained by differentiating Z : G → TG, and
note that ZA is a linear vector field on A; i.e., viewed as a derivation of C∞(A), ZA

preserves linear functions on A. By identifying linear functions on A with sections of
A∗, we have an induced R-linear map �∗ : �(A∗) → �(A∗), which is a derivation
on A∗ in the sense that it satisfies �∗( f ϕ) = f�∗(ϕ) + (LX f )ϕ, for ϕ ∈ �(A∗),
f ∈ C∞(M). We can alternatively consider the dual derivation � : �(A) → �(A),
defined by 〈ϕ,�(a)〉 = LX 〈ϕ, a〉 − 〈�∗(ϕ), a〉. It is then proven in [50] that the fact
that ZA is a morphism of Lie algebroids is equivalent to � being a derivation of the
Lie bracket on �(A),

�([a, b]) = [�(a), b] + [a,�(b)], a, b ∈ �(A),

and that one can obtain � directly from Z via
−−→
�(a) = [Z ,−→a ], for a ∈ �(A).

Comparing to Theorem 3.19, we see that D = −� : �(A) → �(A) and r : T ∗M →
R, r(d f ) = LX f , are the infinitesimal components of Z . We will now see how this
result generalizes to multiplicative multivector fields, as in [29].

Since multiplicative q-vector fields are multiplicative (q, 0)-tensor fields, it follows
from Theorem 3.19 that their infinitesimal counterparts are IM (q, 0)-tensors: on a
given Lie algebroid A → M , these are pairs (D, r), where r : T ∗M → ∧q−1A is
a vector-bundle map (covering the identity), D : �(A) → �(∧q A) is R-linear and
satisfies

D( f a) = f D(a) − a ∧ r(d f ) = f D(a) + (−1)qr(d f ) ∧ a, (3.13)

for a ∈ �(A) and f ∈ C∞(M), and the following compatibility conditions hold:

D([a, b]) = [a, D(b)] − [b, D(a)] = [D(a), b] + [a, D(b)]
r(Lρ(a)α) = [a, r(α)] − iρ∗αD(a)

iρ∗αr(β) = −iρ∗βr(α),

for a, b ∈ �(A), α, β ∈ �1(M).
In order to make the connection with the work in [29] (and following its ter-

minology), recall that a q-differential on a Lie algebroid A is an R-linear map
δ : �(∧•A) → �(∧•+q−1A) satisfying

δ(X1 ∧ X2) = δ(X1) ∧ X2 + (−1)k1(q−1)X1 ∧ δ(X2) (3.14)

δ([X1,X2]) = [δ(X1),X2] + (−1)(k1−1)(q−1)[X1, δ(X2)] (3.15)

where Xi ∈ �(∧ki A), i = 1, 2, and [·, ·] is the Schouten bracket on �(∧•A) (which
makes it into aGerstenhaber algebra). In other words, δ is a derivation of degree (q−1)
of �(∧•A) which is also a derivation of the Schouten bracket. We denote the space of
q-differentials by Aq . The space A = ⊕q≥0Aq is naturally a Gerstenhaber algebra
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with respect to the bracket given by the commutator

[δ,˜δ] = δ ◦˜δ − (−1)(q−1)(q̃−1)
˜δ ◦ δ,

where δ ∈ Aq and˜δ ∈ Aq̃ .
Note that a q-differential δ is determined by its restrictions

δ0 : C∞(M) → �(∧q−1A), δ1 : �(A) → �(∧q A).

For this reason, we may denote a q-differential by the pair (δ0, δ1).
Before studying the relationship between q-differentials and IM (q, 0)-tensors, we

list here some properties of the Schouten bracket that we need (see e.g. [40,41]):

(1) For f ∈ C∞(N ), X ∈ �(∧q A),

[X, f ] = (−1)q−1iρ∗d fX.

(2) For Xi ∈ �(∧qi A), i = 1, 2,

[X1,X2] = −(−1)(q1−1)(q2−1)[X2,X1].

(3) For Xi ∈ �(∧qi A), i = 1, 2, 3,

[X1,X2 ∧ X3] = [X1,X2] ∧ X3 + (−1)(q1−1)q2X2 ∧ [X1,X3].

Lemma 3.21 There is a one-to-one correspondence between q-differentials (δ0, δ1)

and IM (q, 0)-tensors (D, r) via

δ1 = D, δ0 = (−1)qr ◦ d, (3.16)

where d is the de Rham differential.

Proof Note that (3.14), (3.15) give rise to five equations involving δ0 and δ1, to be
compared with the four equations characterizing IM (q, 0)-tensors.

For k1 = k2 = 0, (3.14) is equivalent to the existence of a vector-bundle map
r0 : T ∗M → ∧q−1A such that r0(d f ) = δ0( f ). This guarantees that we can always
assume that δ0 is of the form described in (3.16), i.e., we set r = (−1)qr0 and D = δ1.

For k1 = 1 and k2 = 0, (3.14) becomes

D(a f ) = D(a) f + (−1)q−1a ∧ (−1)qr(d f ) = f D(a) − a ∧ r(d f ),

which is just the Leibniz rule for (D, r).
Next, when k1 = k2 = 0 (3.15) reads

0 = (−1)q([r(d f ), g] + (−1)q−1[ f , r(dg)]).

123



1506 H. Bursztyn, T. Drummond

Because the Schouten bracket satisfies [X, f ] = (−1)k−1iρ∗d fX, for f ∈ C∞(M)

andX ∈ �(∧k A), we see that this last equation reduces to iρ∗dgr(d f ) = −iρ∗d f r(dg),
which is equivalent to the condition

iρ∗αr(β) = −iρ∗βr(α)

for α, β ∈ �1(M).
It is immediate that, for k1 = k2 = 1, (3.15) becomes

D([a, b]) = [D(a), b] + [a, D(b)].

Finally, when k1 = 1, k2 = 0, (3.15) amounts to

(−1)qr(Lρ(a)d f ) = (−1)q−1iρ∗d f D(a) + (−1)q [a, r(d f )],

which is equivalent to the condition

r(Lρ(a)α) = −iρ∗αD(a) + [a, r(α)].

��
For a multiplicative q-vector � on a Lie groupoid G ⇒ M , its infinitesimal com-

ponents are written in terms of the corresponding q-differential as follows:

L−→a � = −−→
D(a) = −−→

δ1(a),

it∗d f� = −−−→
r(d f ) = (−1)q

−−−→
δ0( f ).

Since [−→a ,�] = L−→a � and [�, t∗ f ] = (−1)q−1it∗d f�, and using the fact that δ is a
q-differential if and only if so is −δ, we see that Theorem 3.19 recovers the following
correspondence (which is the central result in [29]; see also [5]):

Corollary 3.22 For a source 1-connected Lie groupoid G ⇒ M, there is a one-to-one
correspondence between multiplicative q-vector fields� ∈ Xq(G) and q-differentials
(δ0, δ1), given by

−−−→
δ0( f ) = [�, t∗ f ], −−→

δ1(a) = [�,
−→a ].

for f ∈ C∞(M) and a ∈ �(A).

Remark 3.23 In [29], it is verified that the space of multiplicative multivector fields
on a Lie groupoid G is closed under the Schouten bracket, so it is a Gerstenhaber
subalgebra of the space of all multivector fields on G. The correspondence in the
previous corollary is proven to give rise to an isomorphism of Gerstenhaber algebras.

The next example shows how the correspondence between Poisson groupoids and
Lie bialgebroids [51] fits into the framework of IM (2, 0)-tensors.
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Example 3.24 For the case q = 2, there is a one-to-one correspondence between pairs
(D, r) satisfying (3.13) and pre-Lie algebroid 3 structures on A∗ given as follows:
ρ∗ : A∗ → T M is the dual map to r : T ∗M → A, and the bracket [·, ·]∗ is determined
by the Koszul formula:

〈[μ1, μ2]∗, a〉 = Lρ∗(μ2)〈μ1, a〉 − Lρ∗(μ1)〈μ2, a〉 − D(a)(μ1, μ2), (3.17)

for a ∈ �(A) and μ1, μ2 ∈ �(A∗). This is just another incarnation of the known
correspondence between pre-Lie algebroids structures on A∗ and linear bivector fields
on A [26] (see also Corollary 4.11).

Recall that a Poisson groupoid is a Lie groupoid G ⇒ M endowed with a multi-
plicative 2-vector field� ∈ X2(G) such that [�,�] = 0. The IM (2, 0)-tensor (D, r)
on its Lie algebroid A corresponding to� defines a pre-Lie algebroid structure on A∗.
It has an associated operator δ : �(∧•A) → �(∧•+1A) which is the 2-differential
defined by (3.16). Now, the fact that [�,�] = 0 implies that δ2 = 0, which says
that the Jacobi identity holds for the pre-Lie bracket [·, ·]∗; so A∗ is a Lie algebroid.
Finally, the IM-equation

D([a, b]) = [D(a), b] + [a, D(b)], a, b ∈ �(A),

gives the compatibility condition for (A, A∗) to be a Lie bialgebroid. This is the only
relevant IM-equation because of the redundancies explained inRemark 3.18 (see [36]).

Multiplicative differential forms In parallel to what we did for multivector fields, we
start by briefly illustrating our general result in the case of multiplicative 1-forms,
building on [50]. For a 1-form ω on a Lie groupoid G ⇒ M , being multiplicative is
equivalent to the map ω : G → T ∗G being a groupoid morphism; in particular, it
covers a section of A∗. By differentiating ω : G → T ∗G, we obtain a morphism of
Lie algebroids ωA : A → T ∗A, which is in particular a linear 1-form on A → M
(in the sense that it is a bundle map from A → M to the cotangent prolongation
T ∗A → A∗, see Sect. 4.2 below). The main observation now is that any linear 1-form
on A can be identified with a pair (μ, ν), with μ ∈ �(A∗) (the section of A∗ that it
covers) and a vector-bundle map ν : A → T ∗M . To prove this, first note that, for
a linear 1-form on A, the corresponding map T A → R is linear on the fibres of the
vector bundle T A → T M , and hence it is given by a section of the bundle dual to
T A over T M . But this dual bundle is naturally identified with T (A∗) → T M [47,
Sec. 9.3], so it follows that linear 1-forms on A are in correspondence with sections of
T (A∗) → T M which are linear, i.e., given by vector-bundles maps from T M → M
to T (A∗) → T M . Finally, the space of linear sections of T (A∗) → T M (which can
be also seen as sections of the first jet bundle of A∗) admits a canonical decomposition
as �(A∗) ⊕ �(Hom(A, T ∗M)) (see e.g. [16, Example 2.8]). If now ωA corresponds
to the pair (μ, ν), the fact that ωA : A → T ∗A is a morphism of Lie algebroids
translates into suitable conditions on (μ, ν), described in [3]. By setting l = μ and

3 A pre-Lie algebroid structure on a vector bundle E → M consists of an anchor map ρE : E → T M
together with a skew-symmetric bilinear bracket [·, ·] on �(E) such that the Leibniz equation [u, f v] =
f [u, v] + (LρE (u) f ) v holds (see [26]).
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1508 H. Bursztyn, T. Drummond

defining D by D(a) = ν(a) + dμ(a), we obtain the infinitesimal components given
in Theorem 3.19. We now extend the discussion to arbitrary multiplicative forms, as
in [3].

Since multiplicative p-forms are (0, p)-tensors, it follows from Theorem 3.19 that
their infinitesimal counterparts are IM (0, p)-tensors. Explicitly, on a given Lie alge-
broid A → M , IM (0, p)-tensors are pairs (D, l), where D : �(A) → �(∧pT ∗M),
l : A → ∧p−1T ∗M , and these maps satisfy

D( f a) = f D(a) + d f ∧ l(a),

for a ∈ �(A) and f ∈ C∞(M), and

D([a, b]) = Lρ(a)D(b) − Lρ(b)D(a)

l([a, b]) = Lρ(a)l(b) − iρ(b)D(a)

iρ(a)l(b) = −iρ(b)l(a).

Note that IM (0, p)-tensors agree with Spencer operators with values in the trivial
representation, as considered in [16].

Example 3.25 On a Poisson manifold (M,�), the cotangent bundle T ∗M has a Lie
algebroid structure whose anchor is given by the contraction of covectors with �,
�� : T ∗M → T M , and the Lie bracket is given by

[α, β]� = L��(α)β − L��(β)α − d(i��(α)β), α, β ∈ �(T ∗M). (3.18)

There exists a canonical IM (0, 2)-tensor on T ∗M given by D = d, the de Rham
differential, and l = idT ∗M .

We have the following alternative way to express IM (0, p)-tensors, see [1,3,8].
We consider pairs (μ, ν) with μ : A → ∧p−1T ∗M , ν : A → ∧pT ∗M bundle maps
(covering the identity) satisfying

ν([a, b]) = Lρ(a)ν(b) − iρ(b)dν(a),

μ([a, b]) = Lρ(a)μ(b) − iρ(b)(dμ(a) + ν(a)),

iρ(a)μ(b) = −iρ(b)μ(a),

for all a, b ∈ �(A). Such a pair (μ, ν) is called an IM p-form in [3]. The equivalence
between IM (0, p)-tensors (D, l) and IM p-forms (μ, ν) is given by the following
explicit relations:

D(a) = dμ(a) + ν(a),

l(a) = μ(a).

When (D, l) are the infinitesimal components of a multiplicative (0, p) tensor field
(i.e. a differential p-form) ω ∈ �p(G), we have that

L−→a ω = t∗(dμ(a) + ν(a)), i−→a ω = t∗μ(a)
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for all a ∈ �(A). It follows that

t∗ν(a) = L−→a ω − t∗dμ(a) = i−→a dω + d(i−→a ω − t∗μ(a)) = i−→a dω.

In this way, we can see that Theorem 3.19 immediately recovers the main result of
[3], relating multiplicative and IM differential forms:

Corollary 3.26 For a source 1-connected groupoid G ⇒ M, there is a one-to-one
correspondence between multiplicative p-forms ω ∈ �p(G) and IM p-forms (μ, ν),
given by

t∗μ(a) = i−→a ω, t∗ν(a) = i−→a dω,

for a ∈ �(A).

For a Poisson manifold (M,�), if (T ∗M, [·, ·]�) is the Lie algebroid of a source 1-
connected groupoid G ⇒ M , then G has a canonical multiplicative 2-form integrating
the canonical IM (0, 2)-tensor of Example 3.25. In this case, note that ν = 0, and this
implies that dω = 0. One can also verify that l = μ being an isomorphism implies
that ω is non-degenerate. So (G, ω) is the symplectic groupoid integrating T ∗M .

Remark 3.27 Multiplicative differential forms on a Lie groupoid G form a subcomplex
of the de Rham complex. On the other hand, if (μ, ν) is an IM p-form, one can directly
verify that (ν, 0) is an IM (p + 1)-form. So (μ, ν) �→ (ν, 0) defines a differential on
the space of all IM-forms, in such a way that the correspondence in Corollary 3.26 is
an isomorphism of complexes.

4 Proof of the Theorems

Before delving into the proofs of Theorems 3.11 and 3.19, let us briefly sketch the
general strategy to obtain the infinitesimal description of multiplicative tensors.

Given a multiplicative (q, p)-tensor field τ ∈ �(∧pT ∗G⊗∧qTG), our main object
of analysis is formula (3.3) applied to cτ , the corresponding multiplicative function
on the groupoid G ⇒ M in (2.7):

L−→χ cτ = t∗〈Acτ , χ〉. (4.1)

Our goal is to have a concrete description of the infinitesimal cocycle Acτ ∈ �(A∗),
which codifies the infinitesimal information of τ .

The first key observation is that it is enough to check the identity (4.1) when χ

varies within a special set of generators for theC∞(M)-module of sections ofA. These
generators will be parametrized by �(A) and �1(M), and their pairing with Acτ will
give rise to maps from the space of parameters into C∞(M); more precisely, we will
obtain three maps, D, l, and r , taking values in the subspace �(∧pT ∗M ⊗ ∧q A) ⊆
C∞(M) of componentwise linear functions. Thesemaps, which completely determine
Acτ , will agree with the infinitesimal components of τ .
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1510 H. Bursztyn, T. Drummond

Considering the left-hand side of (4.1), we will see that the Lie derivatives of cτ
can be expressed in terms of contraction and Lie-derivative operations on the tensor
field τ itself. In this way, the equality (4.1) is re-written as the relations involving
τ and (D, l, r) in Theorem 3.19. The last step is expressing the cocycle condition
dA(Acτ ) = 0,where dA is theLie algebroid differential on�(A∗), in terms of (D, l, r).
This will lead to the IM-equations.

We will need a few technical tools to carry out this strategy, including the study of
lifting operations (Sect. 4.1) and an analysis of linear tensor fields (Sect. 4.4).

4.1 Lifting operations

As we now see, classical lifting operations (see e.g. [63]) of vector fields are essential
ingredients in relating Lie derivatives of tensor fields τ with Lie derivatives of the
corresponding componentwise linear functions cτ .

Let πE : E → N be a vector bundle over a smooth manifold N . Given a section
u ∈ �(E), its vertical lift is the vector field uv : E → T E on E defined by

uv(e) = d

dε

∣

∣

∣

∣

ε=0
(e + ε u(y)), y ∈ N , e ∈ Ey . (4.2)

For a section ψ ∈ �(E∗), we recall that the Lie derivative of its corresponding linear
function �ψ ∈ C∞(E) along uv is given by

Luv �ψ = 〈ψ, u〉 ◦ πE . (4.3)

In this paper, we are mostly interested in the cases where E = T N or E = A∗,
the dual of a Lie algebroid (A, [·, ·], ρ) over N . We denote the bundle projections by
π : T N → N and π∗ : A∗ → N . In these cases, besides the vertical lifting, there
are two other important lifting constructions that we need to recall. For a vector field
X ∈ X(N ), consider its (local) flow φε : N → N . The tangent lift of X is the vector
field XT on T N with flow given by ε �→ Tφε . For α ∈ �1(N ) and f ∈ C∞(N ), the
Lie derivatives of the functions �α and f ◦ π in C∞(T N ) along XT are given by

LXT �α = �LXα and LXT ( f ◦ π) = (LX f ) ◦ π. (4.4)

The Hamiltonian lift of a section a ∈ �(A) of a Lie algebroid is the vector field
Ha on A∗ defined by

Ha = �
�
lin(d�a), (4.5)

where�lin ∈ �(∧2T A∗) is the linearPoisson structure on A∗ (dual to theLie algebroid
structure on A) and �a ∈ C∞(A∗) is the linear function corresponding to a. For
b ∈ �(A) and f ∈ C∞(N ),

LHa �b = �[a,b] and LHa ( f ◦ π∗) = (Lρ(a) f ) ◦ π∗. (4.6)
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Note that (4.4) and (4.6) completely characterize XT and Ha , respectively. When
A = T N , the linear Poisson structure on T ∗N comes from the canonical symplectic
form, and the Hamiltonian lift HX of a vector field X ∈ X(N ) coincides with the
cotangent lift XT ∗ ∈ X(T ∗N ), which is the vector field with flow ε �→ (Tφ−ε)

∗.
Our aim is to extend formulas (4.3), (4.4) and (4.6) to elements of the space

�(∧pT ∗N ⊗ ∧q A). Let us first introduce some notation. For Y ∈ X(M), we define
vector fields on ⊕pT M as follows:

Y T , p(X1, . . . , X p) = (Y T (X1), . . . ,Y
T (X p)) (4.7)

Y v, p
(i) (X1, . . . , X p) = (0X1 , . . . , 0Xi−1 ,Y

v(Xi ), 0Xi+1 , . . . , 0X p ), i = 1, . . . , p.

(4.8)

Similarly, for a ∈ �(A) and μ ∈ �(A∗), we define vector fields on ⊕q A∗ by

Hq
a (ϕ1, . . . , ϕq) = (Ha(ϕ1), . . . , Ha(ξq)) (4.9)

μ
v, q
( j) (ϕ1, . . . , ϕq) = (0ϕ1 , . . . , 0ϕ j−1 , μ

v(ϕ j ), 0ϕ j+1 , . . . , 0ϕp ), j = 1, . . . , q.

(4.10)

Define

γ
(p,q)
(i,0) :(⊕pT N ) ⊕ (⊕q A∗) → (⊕p−1T N ) ⊕ (⊕q A∗),

γ
(p,q)
(0, j) :(⊕pT N ) ⊕ (⊕q A∗) → (⊕pT N ) ⊕ (⊕q−1A∗)

to be the projections

γ
(p,q)
(i,0) (X , ϕ) = (X1, . . . , Xi−1, Xi+1, . . . , X p, ϕ1, . . . , ϕq) (4.11)

γ
(p,q)
(0, j) (X , ϕ) = (X1, . . . , X p, ϕ1, . . . , ϕ j−1, ϕ j+1, . . . , ϕq), (4.12)

for 1 ≤ i ≤ p, 1 ≤ j ≤ q. When there is no risk of confusion, we simplify the
notation by omitting the superscripts (q, p) on the projections.

Proposition 4.1 Let τ ∈ �(∧pT ∗N ⊗∧q A), and consider the corresponding compo-
nentwise linear function cτ : (⊕pT N ) ⊕ (⊕q A∗) → R. For a ∈ X(A), μ ∈ �(A∗)
and Y ∈ �(T N ), one has that

L(ρ(a)T ,p,Hq
a )
cτ = ca·τ

L(Y v, p
(i) ,0) cτ = (−1)i−1ciY τ ◦ γ(i,0)

L(0,μv, q
( j) )

cτ = (−1) j−1ciμτ ◦ γ(0, j),

where · is the action (3.11).

Proof Let us consider the case τ = ω ⊗ X, for ω ∈ �p(N ) and X ∈ Xq(A). First
note that cτ = (cω ◦ prT N )(cX ◦ prA∗), where prT N and prA∗ are the projections of
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1512 H. Bursztyn, T. Drummond

(⊕pT N ) ⊕ (⊕q A∗) onto ⊕pT N and ⊕q A∗, respectively. Using the Leibniz rule, it
suffices to prove that

L
Y T , p
(i)

cω = cLYω, LY v, p
(i)

cω = (−1)i−1ciYω ◦ γ(i,0)

LHq
a
cX = c[a,X], Lμ

v, q
( j)

cX = (−1) j−1c iμX ◦ γ(0, j).

Let us simplifymatters oncemore by assuming thatω = α1∧· · ·∧αp, forα1, . . . , αp ∈
�(T ∗N ). On the one hand, we have that

ciYω ◦ γ(i)(X1, . . . , X p) = iYω(X1, . . . , Xi−1, Xi+1, . . . , X p)

= ω(Y , X1, . . . , Xi−1, Xi+1, . . . , X p)

= (−1)i−1ω(X1, . . . , Xi−1,Y , Xi+1, . . . , X p).

On the other hand, by (2.8) and (4.3),

LY v, p
(i)

cω =
∑

σ∈S(p)
sgn(σ )〈ασ(i),Y 〉(�ασ(1) ◦ pr1T N ) · · · ̂(�ασ(i) ◦ priT N )

· · · (�ασ(p) ◦ pr pT N ),

where pr jT N : ⊕pT N → T N is the projection on the j-component, for 1 ≤ j ≤ p.
Hence,

(

LY v, p
(i)

cω
)

(X1, . . . , X p) = ω(X1, . . . , Xi−1,Y , Xi+1, . . . , X p)

= (−1)i−1ciYω ◦ γ(i)(X1, . . . , X p).

The other equations follow similarly using (4.4) and (4.6). The casewhere τ is arbitrary
follows from linearity of the Lie derivative. ��
Remark 4.2 When A = T N , the action · of X ∈ X(N ) on τ ∈ �(∧pT ∗N ⊗ ∧qT N )

is the Lie derivative of τ along X , X · τ = LXτ. In this case, Proposition 4.1 says that

L(XT ,p,XT∗,q ) cτ = cLX τ ,

where XT and XT ∗
are the tangent and cotangent lifts of X .

For our next result, we keep the notation as in Remark 3.12.

Proposition 4.3 Let τ ∈ �(∧pT ∗N ⊗ ∧q A) and a ∈ �(A). For f ∈ C∞(N ),

( f a) · τ = f (a · τ) + d f ∧ iρ(a)τ − a ∧ idA f τ,

where dA is the Lie algebroid differential and d is the de Rham differential.
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Proof By linearity, it suffices to prove the result for τ = ω⊗X, whereω ∈ �(∧pT ∗N )

and X ∈ �(∧q A). First,

Lρ( f a) ω = f Lρ(a)ω + d f ∧ iρ(a)ω

and, by the properties of the Schouten bracket,

[ f a,X] = −[X, f a] = −[X, f ] ∧ a − f [X, a]
= −(−1)q−1(idA fX) ∧ a + f [a,X]
= −a ∧ idA fX + f [a,X].

Hence, ( f a) · (ω ⊗ X) = f (a · τ) + d f ∧ (

(iρ(a)ω) ⊗ X
) − a ∧ (

ω ⊗ (idA fX)
)

, as
we wanted. ��

4.2 The Lie algebroid ofG ⇒ M

In this subsection, we discuss the Lie algebroid A → M of the Lie groupoid G ⇒ M

introduced in (2.7) and describe a special set of generators for the C∞(M)-module
�(A).

Prolongations of vector bundles Given a vector bundle πE : E → M , we may view
it as a Lie groupoid whose source and target maps are equal to πE , the unit map is
the zero section 0 : M → E , and the multiplication is fiberwise addition. In this
case, the tangent Lie groupoid is the vector bundle TπE : T E → T M , called the
tangent prolongation of E . Similarly, the cotangent Lie groupoid is the vector bundle
π̃E : T ∗E → E∗, called the cotangent prolongation. The projection π̃E has the
following description: for ξ ∈ T ∗

e E , π̃E (ξ) ∈ E∗
πE (e)

is the element defined by

〈π̃E (ξ), ė〉 = 〈ξ, d

dε

∣

∣

∣

∣

ε=0
(e + ε ė)〉, ∀ ė ∈ EπE (e).

The Lie algebroid AE is identified with E → M itself, with the zero anchor and
zero bracket; the right-invariant vector field corresponding to u ∈ �(E) is the vertical
lift uv ∈ X(E), see (4.2). The exact sequence (2.2) becomes

0 −→ E ↪→ 0∗T E
TπE−→ T M −→ 0. (4.13)

For e ∈ Ex ,

e = d

dε

∣

∣

∣

∣

ε=0
(ε e) ∈ T0x E

defines the inclusion E ↪→ 0∗T E in the exact sequence above. The translation bisec-
tion associated to u ∈ �(E) is given by
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Bu(X) = T 0(X) + u(x), X ∈ TxM . (4.14)

In the cotangent prolongation, the exact sequence (2.5) becomes the dual of (4.13),

0 −→ T ∗M
(TπE )

∗
↪→ 0∗T ∗E π̃E−→ E∗ −→ 0.

For β ∈ T ∗
x M , its image under the first map of the exact sequence is

β = (T0xπE )
∗β ∈ T ∗

0x E .

For a 1-form α ∈ �1(M), its translation bisection Bα : E∗ → T ∗E is given by

Bα(ϕ) =˜0ϕ + α(x), ϕ ∈ E∗
x .

Note that since t = s = πE , Bu and Bα are sections of TπE : T E → T M and
π̃E : T ∗E → E∗, respectively. They are known as core sections in the general theory
of double vector bundles (see e.g. [47]).

Sections of prolongations For a section u : M → E , its derivative Tu : T M → T E
defines a section of the tangent prolongation. There is also an induced section Ru :
E∗ → T ∗E of the cotangent prolongation, as we now explain.

Recall the reversal isomorphismR : T ∗(E∗) → T ∗E (see e.g. [47] for details): in
local coordinates,

R(ϕ, β, e) = (e,−β, ϕ), (4.15)

where we are locally writing T ∗(E∗) ∼= E∗ ⊕T ∗M ⊕ E and T ∗E ∼= E ⊕T ∗M ⊕ E∗.
Globally, R is both a vector bundle morphism from the cotangent bundle of E∗,
T ∗(E∗) → E∗, to the cotangent prolongation of E , T ∗E → E∗, and from the
cotangent prolongation of E∗, T ∗(E∗) → E , to the cotangent bundle of E , T ∗E → E .
It fits into the following commutative diagram of vector bundle morphisms:

E∗

M

E∗

M

T ∗(E∗)

E

T ∗E

E

idE∗

idM

R

idE

For u ∈ �(E) and μ ∈ �(E∗), let �u ∈ C∞(E∗) and �μ ∈ C∞(E) be the
corresponding fiberwise linear functions. Then the composition
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Ru := R ◦ d�u : E∗ → T ∗E (4.16)

defines a section of the cotangent prolongation. Note that the identities

Ru(μ(x)) = d�μ(u(x)) − (π∗
E d〈μ, u〉)(u(x)), (4.17)

and

R(−π∗
E∗α) = Bα, (4.18)

completely determine R, where πE∗ : E∗ → M is the projection of the dual bundle.
Let us fix positive integers p, q and consider the Lie groupoid (2.7), with G = E .

This is actually a vector bundle

E
(p,q) → M

(p,q).

As before, we will simplify the notation by dropping the superindices.
For a section u ∈ �(E), we denote by (T pu,R q

u ) : M → E the section given by

(T pu,Rq
u)(X , ϕ) = (Tu(X1), . . . , Tu(X p),Ru(ϕ1), . . . ,Ru(ϕq)), (4.19)

and by Bu(i) : M → E the section given by

Bu(i)(X , ϕ) = (T 0(X1), . . . ,Bu(Xi ), . . . , T 0(X p),˜0ϕ1 , . . . ,˜0ϕq ), (4.20)

for i = 1, . . . , p. Similarly, for α ∈ �1(M), denote by Bα( j) : M → E the section
defined by

Bα( j)(X , ϕ) = (T 0(X1), . . . , T 0(X p),˜0ϕ1 , . . . ,Bα(ϕ j ), . . . ,˜0ϕq ), (4.21)

for j = 1, . . . , q. The following result is proven in [48].

Proposition 4.4 The C∞(M)-module of section �(E) is generated by (T pu,Rq
u),

Bv(i) and Bα( j), for u, v ∈ �(E) and α ∈ �1(M), i = 1, . . . , p, j = 1, . . . , q.

Remark 4.5 [C∞(M)-linearity] One can check that

T ( f u) = ( f ◦ πE ) · Tu +p �d f · Bu, (4.22)

where we used the notation +p and · for the sum and scalar multiplication on the
fibers of the tangent prolongation T E → T M , respectively, and �d f ∈ C∞(T M) is
the linear function corresponding to d f ∈ �1(M). Similarly,

R f u = ( f ◦ πE∗) · Ru +p �−u · B(d f ), (4.23)
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where+p and · denote the sum and scalar multiplication on the fibers of the cotangent
prolongation T ∗E → E∗, respectively.

Brackets and anchors We now recall the main features of the tangent and cotangent
Lie algebroids, see e.g. [49] for details.

For a Lie algebroid (A, [·, ·], ρ), consider its tangent prolongation T A → T M . It
has the structure of a Lie algebroid, where the Lie bracket [·, ·] on the space of sections
of T A → T M is determined by the conditions

[Ta, Tb] = T [a, b] , [Ta,Bb] = B[a, b], [Ba,Bb] = 0,

for a, b ∈ �(A), while the anchor ρT : T A → T (T M) is determined by

ρT (Ta) = ρ(a)T , ρT (Ba) = ρ(a)v.

where (·)T and (·)v are the tangent and vertical lifts, respectively.
The cotangent Lie algebroid is the Lie algebroid structure on T ∗A → A∗ defined

as follows: the anchor ρT ∗ : T ∗(A) → T (A∗) is determined by

ρT ∗(Ra) = Ha, ρT ∗(Bα) = (ρ∗α)v,

where Ha ∈ X(A∗) is the Hamiltonian lift of a ∈ �(A), see (4.5). The Lie bracket on
the space of sections of T ∗A → A∗ is determined by

[Ra,Rb] = R[a,b], [Ra,Bα] = B
(

Lρ(a)α
)

, [Bα,Bβ] = 0,

where a, b ∈ �(A) and α, β ∈ �1(M).
The Whitney sum

A
p,q = (⊕pT A) ⊕ (⊕qT ∗A) → (⊕pT M) ⊕ (⊕q A∗)

inherits a Lie algebroid structure which is determined componentwise by the tangent
and the cotangent Lie algebroids. We give a detailed description here for convenience.
The anchor map is determined by

ρT(T
pa,Rq

a) = (ρ(a)T ,p, Hq
a )

ρT(Ba(i)) = (ρ(a)v, p(i) , 0)

ρT(Bα( j)) = (0, ρ∗αv, q
( j) ), (4.24)

for α ∈ �1(M). The Lie bracket on the space of sections of A → M is determined
by what it does on generators according to the following formulas:
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[(T pa,Rq
a), (T

pb,Rq
b)] = (T p[a, b],Rq

[a,b]), [(T pa,Rq
a),Bb(i)] = B[a, b](i)

[(T pa,Rq
a),Bα( j)] = B(Lρ(a)α)( j), [Ba(i),Bb(i ′)] = 0

[Ba(i),Bα( j)] = 0, [Bα( j),Bβ( j ′)] = 0. (4.25)

For a Lie groupoid G ⇒ M , let A → M be its Lie algebroid. There are natural
Lie-algebroid identifications A(TG) ∼= T A as well as A(T ∗G) ∼= T ∗A (see [49, §7]).
Hence, the Lie algebroid A(G(p,q)) → M

(p,q) of the Lie groupoid G
(p,q) ⇒ M

(p,q)

is naturally isomorphic to

A
p,q = (⊕pT A) ⊕ (⊕qT ∗A) → (⊕pT M) ⊕ (⊕q A∗). (4.26)

The right-invariant vector fields on TG corresponding to the sections of type Ta, Ba
are given by

−→
Ta = −→a T and

−→Ba = −→a v, (4.27)

see e.g. [49, §7] for a proof. Similarly, the right-invariant vector fields on T ∗G corre-
sponding to the sections of type Ra , Bα are

−→Ra = −→a T ∗
and

−→Bα = (t∗α)v. (4.28)

The proof of these last formulas can be found in Appendix B.
It is now a straightforward consequence of (4.27) and (4.28) that the right-invariant

vector fields
−−−−−−→
(T pa,Rq

a),
−−→Ba(i) and

−−−→Bα( j) ∈ X(Gp,q) are given by

−−−−−−→
(T pa,Rq

a) = (
−→a T , p,

−→a T ∗, q) (4.29)
−−→Ba(i) = (

−→a v
(i), 0) (4.30)

−−−→Bα( j) = (0, (t∗α)v( j)), (4.31)

for i = 1, . . . , p, j = 1, . . . , q.

4.3 Proof of Theorem 3.11

Let us begin with two important lemmas. For the first one, we need to introduce some
notation. Define π

(p,q)
(i,0) : G

(p,q) → G
(p−1,q), π(p,q)

(0, j) : G
(p,q) → G

(p,q−1), as the
natural projections

π
(p,q)
(i,0) (U , ξ) = (U1, . . . ,Ui−1,Ui+1, . . . ,Up, ξ1, . . . , ξq) (4.32)

π
(p,q)
(0, j) (U , ξ) = (U1, . . . ,Up, ξ1, . . . , ξ j−1, ξ j+1, . . . , ξq) (4.33)
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for 1 ≤ i ≤ p, 1 ≤ j ≤ q. When there is no risk of confusion, we will omit the
superscripts (q, p) on the projections. Observe that π(i,0) and π(0, j) are groupoid
morphisms (covering (4.11) and (4.12), respectively).

Lemma 4.6 For any multiplicative tensor field τ ∈ �(∧pT ∗G ⊗ ∧qTG), there exist
vector bundle maps l : A → ∧p−1T ∗M ⊗ ∧q A and r : T ∗M → ∧pT ∗M ⊗ ∧q−1A
covering the identity map such that

i−→a τ = T (l(a)), (4.34)

it∗α τ = T (r(α)). (4.35)

Proof By formulas (3.3) and (4.30), we have that

t∗〈Acτ , Ba(i)〉 = L−−→Ba(i)
cτ = L(

−→a v
(i),0)

cτ = (−1)i−1c i−→a τ ◦ π(i,0)

for a ∈ �(A), where the last equality is a consequence of Proposition 4.1. Similarly,
for α ∈ �1(M), we check that

t∗〈Acτ , Bα( j)〉 = (−1) j−1cit∗α τ ◦ π(0, j).

Note that, for (X , ϕ) ∈ M,

〈Acτ ,Ba(i)〉(X , ϕ) = (−1)i−1τ(
−→a , X1, . . . , Xi−1, Xi+1, . . . , X p, ϕ1, . . . , ϕq),

which shows that 〈Acτ ,Ba(i)〉 is a componentwise linear function of γ(i,0)(X , ϕ).
Hence (see Lemma 2.4) there exists l(a) ∈ �(∧p−1T ∗M ⊗ ∧q A) such that

〈Acτ ,Ba(i)〉 = (−1)i−1cl(a) ◦ γ(i,0). (4.36)

Now, note that

ci−→a τ ◦ π(i,0) = (−1)i−1t∗〈Acτ , Ba(i)〉 = t∗ (

cl(a) ◦ γ(i,0)
)

= (

t∗cl(a)
) ◦ π(i,0) = cT (l(a)) ◦ π(i,0).

Formula (4.34) follows from the injectivity of the correspondence between tensors
and componentwise linear functions (Lemma 2.4).

To prove that l is C∞(M)-linear, we use Proposition 3.10 to see that

T (l( f a)) = i−→
f a
τ = (t∗ f ) i−→a τ = (t∗ f ) T (l(a)) = T ( f l(a)),

for f ∈ C∞(M), so that C∞(M)-linearity follows from the injectivity of T .
Similarly,we can prove the existence of r : T ∗M → ∧pT ∗M⊗∧q−1A by checking

that 〈Acτ , Bα( j)〉 is componentwise linear, so that (4.35) follows from
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〈Acτ ,Bα( j)〉 = (−1) j−1cr(α) ◦ γ(0, j). (4.37)

��
Lemma 4.7 For any multiplicative tensor τ ∈ �(∧pT ∗G ⊗ ∧qTG), there exists an
R-linear map D : �(A) → �(∧p T ∗M ⊗ ∧q A) satisfying the Leibniz condition (3.9)
and such that

L−→a τ = T (D(a)). (4.38)

Proof From (3.3) and (4.29), we see that

t∗〈Acτ , (T pa,Rq
a)〉 = L−−−−−−→

(T pa,Rq
a )
cτ = L(

−→a T ,p,
−→a T∗,q ) cτ = cL−→a τ ,

where the last equality relies on Proposition 4.1. In particular, for (X , ϕ) ∈ M,

〈Acτ , (T pa,Rq
a)〉(X , ϕ) = L−→a τ(X , ϕ),

which proves that 〈Acτ , (T pa,Rq
a)〉 ∈ C∞(M) is a componentwise linear function.

By Lemma 2.4, there exists D(a) ∈ �(∧p T ∗G ⊗ ∧qTG) such that

〈Acτ , (T pa,Rq
a)〉 = cD(a). (4.39)

Now (4.38) follows from Proposition 3.10 (and the injectivity part of Lemma 2.4):

cL−→a τ = t∗〈Acτ , (T pa,Rq
a)〉 = t∗cD(a) = cT (D(a)).

To prove the Leibniz condition (3.9), we use Proposition 4.3 to see that

T (D( f a)) = L−→
f a

τ = L(t∗ f )−→a τ = (t∗ f )L−→a τ + t∗d f ∧ i−→a τ − −→a ∧ it∗d f τ

= (t∗ f )T (D(a)) + t∗d f ∧ T (l(a)) − −→a ∧ T (r(d f ))

= T ( f D(a) + d f ∧ l(a) − a ∧ r(d f )).

The conclusion follows from the injectivity of T . ��
We are now in position to present the proof of Theorem 3.11.

Proof of Theorem 3.11 If τ is multiplicative, then the existence of the triple (D, l, r) is
guaranteed by Lemmas 4.6 and 4.7; condition (3.8) follows from the fact that, since cτ
is a multiplicative function, it must vanish along groupoid units (see Proposition 3.5).

Conversely, assume the existence of (D, l, r). We claim that there is a unique
μ ∈ �(A∗

G) defined by the following conditions:

〈μ,Ba(i)〉 = (−1)i−1cl(a) ◦ γ(i,0), (4.40)

〈μ,Bα( j)〉 = (−1) j−1cr(α) ◦ γ(0, j), (4.41)

〈μ, (T pa,Rq
a)〉 = cD(a), (4.42)
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for a ∈ �(A) and α ∈ �1(M). Uniqueness follows from Proposition 4.4, so it
remains to verify that μ is indeed well-defined. For local frames (ak)k=1,...,rank(A)
of A and (αs)s=1,...,dim(M) of T ∗M , we observe that the collection of local sections
(T pak,Rq

ak
), Bak(i), and Bαs

( j) form a local frame forA. We first defineμ on this local
frame using the formulas above (and extend it by linearity). In the following, we use
Einstein notation. To show that μ is globally well defined, it suffices to verify that
(4.40), (4.41), and (4.42) hold for a = fkak and α = gsαs , where fk , gs ∈ C∞(M).
One can check that

Ba(i) = ( fk ◦ pr)Bak(i), Bα( j) = (gs ◦ pr)Bαs
( j)

where pr : M → M is the bundle projection. Using (4.22) and (4.23), one also verifies
that (see Remark 4.5 for notation)

(T pa,Rq
a) = ( fk ◦ pr)(T pak,Rq

ak
) +p (�d fk ◦ priT M )Bak(i) +p (�−ak ◦ pr jA∗)Bβk

( j),

where βk = d fk , and priT M : M → T M , pr jA∗ : M → A∗ are given by priT M (X , ϕ) =
Xi , pr

j
A∗(X , ϕ) = ϕ j . Using Lemma 2.4, we see that

〈μ,Ba(i)〉 = ( fk ◦ pr)〈μ,Bak(i)〉 = (−1)i−1( fk ◦ pr)cl(ak ) ◦ γ(i,0)

= (−1)i−1cl(a) ◦ γ(i,0),

which is (4.40). A similar argument verifies (4.41). For (4.42), note that

〈μ, (T pa,Rq
a)〉 = ( fk ◦ pr)cD(ak ) + (−1)i−1(�d fk ◦ priT M )cl(ak ) ◦ γ(i,0)

+ (−1) j−1(�−ak ◦ pr jA∗)cr(d fk ) ◦ γ(0, j).

By (2.8), it follows that the right-hand side above agrees with

c fk D(ak) + cd fk∧l(ak) − cak∧r(d fk ) = cD( fkak ),

where the Leibniz condition for D is used in the last equality. Hence (4.42) holds and
μ is well defined.

Now consider the componentwise linear function cτ ∈ C∞(G). It follows from the
third equality in (3.10), Lemma 3.10 and Theorem 4.1 that

L−−−−−−→
(T pa,Rq

a )
cτ = cL−→a τ = cT (D(a)) = t∗cD(a) = t∗〈μ, (T pa,Rq

a)〉.

Similarly, we see that

L−−→Bb(i)
cτ = t∗〈μ,Bb(i)〉, and L−−−→Bα( j)

cτ = t∗〈μ,Bα( j)〉.

By linearity, one has that L−→χ cτ = t∗〈μ, χ〉, for every χ ∈ �(AG). As G is source
connected (because G is, see Remark 2.1), the result follows from Proposition 3.5. ��
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4.4 Linear tensor fields

For the proof of Theorem 3.19, we will need to specialize our study of multiplicative
tensor fields to Lie groupoids given by vector bundles πE : E → M . As we already
saw, in this case the groupoid E = (⊕pT E) ⊕ (⊕qT ∗E) in (2.7) is a vector bundle
over M = (⊕pT M) ⊕ (⊕q E∗), with Lie algebroid AE given by E → M itself with
zero anchor and zero bracket. A tensor field τ ∈ �(∧pT ∗E⊗∧qT E) is multiplicative
if and only if the associated function cτ : E → R is fiberwise linear on E → M. For
this reason, we refer to multiplicative tensor fields on E → M also as linear. Our
goal here is to show how one can reconstruct linear tensor fields on E → M explicitly
from their infinitesimal components.

For a linear tensor τ ∈ �(∧pT ∗E ⊗ ∧qT E),

Acτ = cτ ,

noticing that since cτ is fiberwise linear on E → M, it can be seen as a section of
E

∗ → M, cf. Example 3.3. In particular, from (4.40), (4.41) and (4.42), we see that
the infinitesimal components (D, l, r) of a linear tensor τ satisfy

cl(u) ◦ γ(i,0) = (−1)i−1〈cτ ,Bu(i)〉, cr(α) ◦ γ(0, j) = (−1) j−1〈cτ ,Bα( j)〉, (4.43)

cD(u) = 〈cτ , (T pu,Rq
u)〉, (4.44)

for u ∈ �(E), α ∈ �1(M), and where γ(i,0), γ(o, j) are the projections in (4.11) and
(4.12).

Before presenting themain result of this subsection, we need two lemmas.We begin
with a useful property of multiplicative tensors on Lie groupoids with s = t, so in
particular linear ones.

Lemma 4.8 Let G ⇒ M be a Lie groupoid such that s = t. If τ ∈ �(∧pT ∗G⊗∧qTG)
is a multiplicative (q, p)-tensor field, then

i−→a i−→
b
τ = 0, (4.45)

it∗α it∗β τ = 0, (4.46)

i−→a it∗α τ = 0, (4.47)

for a, b ∈ �(A) and α, β ∈ �(T ∗M).

Proof As s = t, it follows from (3.6) that i−→a T (�) = 0 and it∗αT (�) = 0, for any
� ∈ �(∧•T ∗M ⊗ ∧•A). The result now follows from Theorem 3.11. ��

The following lemma shows how the infinitesimal components of linear tensors
can be obtained by means of pointwise evaluation of the tensor on special vectors and
covectors .
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Lemma 4.9 Let τ ∈ �(∧pT ∗E ⊗∧qT E) be a linear (q, p) tensor field. For (X , ϕ) ∈
Mx , u ∈ �(E) and α ∈ �1(M), define

U (i) = (T 0(X1), . . . , T 0(Xi−1), u(x), T 0(Xi+1), . . . , T 0(X p)) ∈ ⊕pT0x E

ξ
( j)

= (˜0ϕ1 , . . . ,˜0ϕ j−1 , α(m), ˜0ϕ j+1 , . . . ,
˜0ϕq ) ∈ ⊕qT ∗

0x E .

The infinitesimal components l : E → ∧p−1T ∗M ⊗ ∧q E, r : T ∗M → ∧pT ∗M ⊗
∧q−1E and D : �(E) → �(∧pT ∗M ⊗ ∧q E) satisfy

(a) D(u)(X , ϕ) = τ((Tu p,Rq)(X , ϕ))

(b) l(u)(γ(i,0)(X , ϕ)) = (−1)i−1τ(U (i),
˜0ϕ1 , . . . ,˜0ϕq )

(c) r(α)(γ(0, j)(X , ϕ)) = (−1) j−1τ(T 0(X1), . . . , T 0(X p), ξ ( j)
).

Proof From (4.44), it is clear that

D(u)(X , ϕ) = 〈cτ , (T pu,Rq
u)〉|(X ,ϕ)

= τ(Tu(X1), . . . , Tu(X p),Ru(ϕ1), . . . ,Ru(ϕq)),

which proves (a). Similarly, from the first equation in (4.43),

l(u)(γ(i,0)(X , ϕ)) = 〈cτ ,Bu(i)〉|(X ,ϕ)

= (−1)i−1τ(T 0(X1), . . . ,Bu(Xi ), . . . , T 0(X p),˜0ϕ1 , . . . ,˜0ϕq ).

But since Bu(Xi ) = T 0(Xi ) + u(m), we have that this last term equals

τ(T 0(X1), . . . , T 0(X p),˜0ϕ1 , . . . ,˜0ϕq )

+ τ(T 0(X1), . . . , T 0(Xi−1), u(m), T 0(Xi+1), . . . , T 0(X p),˜0ϕ1 , . . . ,˜0ϕq ).

To conclude that (b) holds, note that τ(T 0(X1), . . . , T 0(X p),˜0ϕ1 , . . . ,˜0ϕq ) = 0, as
τ is linear on E → M. The verification of (c) is similar. ��

We can now present the main result regarding linear tensor fields.

Proposition 4.10 A tensor τ ∈ �(∧pT ∗E ⊗ ∧qT E) is linear if and only if there exist
vector-bundle maps l : E → ∧p−1T ∗M ⊗ ∧q E and r : T ∗M → ∧pT ∗M ⊗ ∧q−1E
covering the identity, and D : �(E) → �(∧pT ∗M ⊗ ∧q E) satisfying the Leibniz
condition (3.9), such that, for U1, . . . ,Up ∈ TeE, ξ1, . . . , ξq ∈ T ∗

e E, e ∈ Ex ,

τ(U , ξ) = D(u)(X , ϕ) + (−1)i−1l(ei )(γ(i,0)(X , ϕ))

+ (−1) j−1r(β j )(γ(0, j)(X , ϕ)), (4.48)

where u ∈ �(E) is any section such that u(x) = e, Xi = TπE (Ui ), ϕ j = π̃E (ξ j ),
and ei ∈ Ex , β j ∈ T ∗

x M are defined by

〈ψ, ei 〉 = 〈Ui −p Tu(Xi ),˜0ψ 〉, 〈β j ,Y 〉 = 〈ξ j −p Ru(ϕ j ), T 0(Y )〉,
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for ψ ∈ E∗
x , Y ∈ TxM, and i = 1, . . . , p, j = 1, . . . , q. In this case, (D, l, r) are the

infinitesimal components of τ .

Proof First note that the right-hand side of formula (4.48) is well defined, in the
sense that it does not depend on the extension u. Indeed, let (uk)k=1,...,rank(E),
(αs)s=1,...,dim(M) be local frames of E and T ∗M respectively. One can write (see
notation in Remark 4.5)

Ui = tk · Tuk(Xi ) +p hik · Buk(Xi ), ξ j = tk · Ruk (ϕ j ) +p g js · Bαs(ϕ j ),

for tk, hik, g js ∈ R, where e = tkuk(x). For any section u = fkuk , f k ∈ C∞(M),
u(x) = e if and only if fk(x) = tk . Also,

ei = (hik − LXi fk)u
k, β j = g jsα

s + 〈ϕ j , u
k〉d fk .

So, by using the Leibniz condition (3.9), one can rewrite (4.48) as

τ(U , ξ) = tk D(uk)(X , ϕ) +
p

∑

i=1

(−1)i−1hik l(u
k)(γ(i,0)(X , ϕ))

+
q

∑

j=1

(−1) j−1g js r(α
s)(γ(0, j)(X , ϕ)).

Let us assume that τ ∈ �(∧pT ∗E ⊗ ∧qT E) is a linear tensor, and let (D, l, r) be its
infinitesimal components. One may directly check that

Ui = Tu(Xi ) +p (T 0(Xi ) + ei )
︸ ︷︷ ︸

Vi

and ξ j = Ru(ϕ j ) +p (˜0ϕ j + β j )
︸ ︷︷ ︸

ζ j

.

Since τ is linear, we have

τ(U , ξ) = τ(T pu(X),Rq(ϕ)) + τ(V , ζ ) = D(u)(X , ϕ) + τ(V , ζ ).

Now, using the multilinearity of the tensor τ , one can expand τ(V , ζ ) as a sum in
which every term is τ evaluated on a string involving T 0(Xi ), ei separatedly on the
T E part and˜0ϕ j , β j separatedly on the T ∗E part.

Claim The only non-zero terms on the expansion of τ(V , ζ ) as a sum are the ones in

which the (·) terms appear exactly once (counting both the T E and T ∗E parts). Indeed,
if they do not appear at all, one has τ(T 0(X1), . . . , T 0(X p),˜0ϕ1 , . . . ,˜0ϕq ) = 0,
because τ is linear on the fibers of E → M. If they appear twice or more, note that
ei = uvi (0m) and β j = (π∗

Eα j )(0m), where ui ∈ �(E) and α j ∈ �(T ∗M) satisfy
ui (m) = ei and α j (m) = β j . So, the claim follows from Lemma 4.8. Therefore,
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τ(U , ξ) = D(u)(X , ϕ)

+
p

∑

i=0

τ(T 0(X1), . . . , T 0(Xi−1), ei , T 0(Xi+1), . . . , T 0(X p),˜0ϕ1 , . . . ,˜0ϕq )

+
q

∑

j=0

τ(T 0(X1), . . . , T 0(X p),˜0ϕ1 , . . . ,˜0ϕ j−1 , β j ,˜0ϕ j+1 , . . .
˜0ϕq ).

Formula (4.48) now follows from Lemma 4.9.
Conversely, let us assume τ ∈ �(∧pT ∗E ⊗ ∧qT E) is a (q, p)-tensor field for

which (4.48) holds. It is straightforward to check that (4.48) is linear on the fibers of
E → M, so τ is linear. To prove that (D, l, r) are exactly the infinitesimal components
of τ , one proceeds as follows: first substitute (U , ξ) with (T pu(X),Ru(ϕ)). In this
case, ei = 0, β j = 0 and formula (4.48) becomes τ(T pu(X),Ru(ϕ)) = D(u)(X , ϕ).

By substituting (U , ξ) with (e1, T 0(X2), . . . , T 0(X p),˜0ϕ1 , . . . ,˜0ϕq ), one has that
X1 = 0, e2 = · · · = ep = 0, β j = 0 and, therefore, formula (4.48) becomes

τ(e1, T 0(X2), . . . , T 0(X p),˜0ϕ1 , . . . ,˜0ϕq ) = l(e1)(X2, . . . , X p, ϕ1, . . . , ϕq).

Finally, by substituting (U , ξ)with (T 0(X1), . . . , T 0(X p), β1,˜0ϕ2 , . . . ,˜0ϕq ), formula
(4.48) becomes

τ(T 0(X1), . . . , T 0(X p), β1,˜0ϕ2 , . . . ,˜0ϕq ) = r(β1)(X1, . . . , X p, ϕ2, . . . , ϕq).

The result now follows from Lemma 4.9. ��

As an immediate consequence, we have

Corollary 4.11 There is a one-to-one correspondence defined by (4.48) between linear
tensors τ ∈ �(∧pT ∗E ⊗ ∧qT E) and triples (D, l, r), where l : E → ∧p−1T ∗M ⊗
∧q E and r : T ∗M → ∧pT ∗M⊗∧q−1E are vector bundle maps covering the identity
and D : �(E) → �(∧pT ∗M ⊗ ∧q E) satisfies the Leibniz condition (3.9).

4.5 Proof of Theorem 3.19

We just saw in Corollary 4.11 how linear tensors τ on a vector bundle are described
in terms of triples (D, l, r). Let (A, [·, ·], ρ) be a Lie algebroid, and consider linear
tensors τ on A for which the corresponding fiberwise linear functions cτ : A → R are
Lie-algebroid cocycles. We now see how to express this additional cocycle property
in terms of (D, l, r).

Proposition 4.12 There is a one-to-one correspondence defined by (4.48) between
linear (q, p)-tensors τ ∈ �(∧pT ∗A ⊗ ∧qT A) for which cτ : A → R is a Lie-
algebroid cocycle and IM (q, p)-tensors (D, l, r) on A, as in Definition 3.17.
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Proof By definition, the cocycle condition dA cτ = 0 is equivalent to the equation

〈cτ , [U , V ]〉 = LρT(U )〈cτ , V 〉 − LρT(V )〈cτ ,U 〉 (4.49)

allU , V ∈ �(A). In order to prove that this equality holds, it suffices to considerU , V
varying on the set of generators given by Proposition 4.4, and this will be shown to be
equivalent to the set of IM-equations (IM1)–(IM6) in Definition 3.17. Let us first fix
U = (T pa,R q

a ), for a ∈ �(A). In the following, we shall use repeatedly the anchor
and Lie bracket equations (4.24), (4.25) for the Lie algebroid A → M.

Equation (IM1) Take V = (T pb,R q
b ), for b ∈ �(A). It follows from (4.44) that the

cocycle equation (4.49) is equivalent to

cD([a,b]) = L(ρ(a)T ,p,Hq
a )
cD(b) − L(ρ(b)T ,p,Hq

b )
cD(a)

= ca·D(b)−b·D(a),

where the last equality follows fromProposition 4.1. So, in this case (4.49) is equivalent
to (IM1).

Equations (IM2) and (IM3) Take V = Bb(i), 1 ≤ i ≤ p. From (4.43), it follows that
the cocycle equation (4.49) for this pair U , V can be rewritten as

(−1)i−1cl([a,b]) ◦ γ(i,0) = (−1)i−1LρT(T pa, R q
a )

(

cl(b) ◦ γ(i,0)
) − LρT(Bb(i)) cD(a)

= (−1)i−1
(

L(ρ(a)T ,p−1, H q
a ) cl(b)

)

◦ γ(i,0)−L(ρ(b)v,p
(i) ,0)

cD(a)

= (−1)i−1 ((

ca·l(b)
) ◦ γ(i,0) − c iρ(b)D(a) ◦ γ(i,0)

)

where γ(i,0) is the projection (4.11) and the last equality follows from Proposition 4.1.
So, for the given choices of U and V , (4.49) is equivalent to (IM2).

When V = Bα( j), 1 ≤ j ≤ q, for α ∈ �1(M), one can prove analogously that
(4.49) and (IM3) are equivalent.

Equations (IM4), (IM5) and (IM6)LetU = Ba(i) andV = Bb(k), for 1 ≤ i < k ≤ p.
As [Ba(i),Bb(k)] = 0, it follows from (4.43) that the cocycle equation (4.49) can be
rewritten as

0 = (−1)k−1(L
(ρ(a)v, p−1

(i) , 0)
cl(b)) ◦ γ(k,0) − (−1)i−1(L

(ρ(b)v, p−1
(k−1) , 0)

cl(a)) ◦ γ(i,0)

= (−1)i+k−2ciρ(b)l(a) ◦ γ
(p−1,q)
(i,0) ◦ γ(k,0) − (−1)i+k−3ciρ(a)l(b) ◦ γ

(p−1,q)
(k−1,0) ◦ γ(i,0)

= (−1)i+k−2
(

ciρ(b)l(a) ◦ γ
(p−1,q)
(i,0) ◦ γ(k,0) + ciρ(a)l(b) ◦ γ

(p−1,q)
(k−1,0) ◦ γ(i,0)

)

,

where in the second equality we have used Proposition 4.1. One can now directly
check that γ (p−1,q)

(i,0) ◦ γ(k,0) and γ
(p−1,q)
(k−1,0) ◦ γ(i,0) are the same projection from M

(p,q)

to M
(p−2,q), which forgets the i-th and the k-th components on T M . Hence, for these

choices of U and V , (4.49) is equivalent to (IM4).
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1526 H. Bursztyn, T. Drummond

In a similar way, one checks that, for U = Bα( j), V = Bβ(k), 1 ≤ j < k ≤ q,
one obtains the equivalence of (4.49) with (IM5), and for U = Ba(i), V = Bα( j),
1 ≤ i ≤ p, 1 ≤ j ≤ q, one has the equivalence of (4.49) with (IM6).

These 6 cases cover all possibilities ofU , V varying in the set of generators, so the
result follows. ��

Let now G ⇒ M be a Lie groupoid with Lie algebroid A → M . For amultiplicative
(q, p)-tensor field τ ∈ �(∧pT ∗G⊗∧qTG), consider the correspondingmultiplicative
function cτ ∈ C∞(G) on the groupoid (2.7). Let Acτ ∈ �(A∗) ⊆ C∞(A) be its
associated infinitesimal cocycle.

Lemma 4.13 The following holds:

(a) There is a linear tensor field τA ∈ �(∧pT ∗A ⊗ ∧qT A) such Acτ = cτA .
(b) The infinitesimal components (DA, lA, rA) of τA satisfy

DA(a)(X , ϕ) = (

L−→a τ
)

(X , ϕ)

lA(a)|γ(i,0)(X ,ϕ) = (

i−→a τ
) |π(i,0)(X ,ϕ)

rA(α)|γ(0, j)(X ,ϕ) = (it∗ατ) |π(0, j)(X ,ϕ),

where (X , ϕ) ∈ M, a ∈ �(A), α ∈ �1(M) and γ(i,0), γ(0, j), π(i,0) and π(0, j) are
the forgetful projections (4.11), (4.12), (4.32) and (4.33), respectively.

(c) The infinitesimal components (D, l, r) of τ coincide with those of τA.

Proof It follows from Proposition A.3 that Acτ : A → R is a componentwise linear
function which is antisymmetric on the T A components as well as on the T ∗A com-
ponents. Hence, there exists τA ∈ �(∧pT ∗A ⊗ ∧qT A) such that Acτ = cτA . This
proves (a).

By (3.2), (4.44) and Proposition 4.1,

DA(a)(X , ϕ) = 〈cτA , (T pa(X),Rq
a(ϕ))〉 = 〈Acτ , (T pa(X),Rq

a(ϕ))〉
= (L−−−−−−→

(T pa,Rq
a )
cτ )(X , ϕ) = (L(

−→a T ,p,Hq
a )
cτ )(X , ϕ)

= (L−→a τ)(X , ϕ).

Similarly,

(−1)i−1lA(a)(γ(i,0)(X , ϕ)) = 〈cτA ,Ba(i)(X , ϕ)〉 = 〈Acτ ,Ba(i)(X , ϕ)〉
= (L−−→Ba(i)

cτ )(X , ϕ) = (L(
−→a v,p

(i) ,0)
cτ )(X , ϕ)

= (−1)i−1(i−→a τ)(π(i,0)(X , ϕ)).

The equation involving rA follows similarly, and we conclude that (b) holds.
If we now let (D, l, r) be the infinitesimal components of τ , the equalities D = DA,

l = lA and r = rA follow from Theorem 3.11. ��
We can now finally proceed to the proof of our main result.
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Proof of Theorem 3.19 By Proposition 4.12, there exists a Lie algebroid (q, p) tensor
field τA having (D, l, r) as its infinitesimal components. The fact that cτA : AG → R

is a Lie algebroid cocycle and G is source 1-connected implies that there exists a
unique multiplicative function F : G → R satisfying AF = cτA . By Proposition A.3,
F is componentwise linear and anti-symmetric on both the TG and T ∗G components.
Therefore, F = cτ for a (unique) multiplicative tensor field τ ∈ �(∧pT ∗G ⊗∧qTG).
The fact that the infinitesimal components of τ are (D, l, r) follows fromLemma 4.13.

��

5 Multiplicative vector-valued forms

Given a manifold N , by a vector-valued form on N we mean an element of
�•(N , T N ) = �(∧•T ∗N ⊗ T N ). The space of vector-valued forms is a graded Lie
algebra with respect to the Frölicher–Nijenhuis bracket [24]. On a Lie groupoid, the
space of multiplicative vector-valued forms is closed under the Frölicher–Nijenhuis
bracket [6], so it is also a graded Lie algebra. We now identify its infinitesimal coun-
terpart, in the spirit of Remarks 3.23 and 3.27. Before discussing Lie groupoids, we
briefly recall vector-valued forms on manifolds.

5.1 The graded Lie algebra of vector-valued forms

Let�•(N ) be the graded algebra of differential forms on N . A degree k derivation of
�•(N ) is a linear map � : �•(N ) → �•+k(N ) such that �(α ∧ β) = �(α) ∧ β +
(−1)k jα ∧ �(β), for α ∈ � j (N ). Any vector-valued form K ∈ �(∧pT ∗N ⊗ T N )

gives rise to a degree (p − 1) derivation of �•(N ) by

iKω(X1, . . . , X p+ j−1)

= 1

p!( j − 1)!
∑

σ∈Sp+ j−1

sgn(σ ) ω(K (Xσ(1), . . . , Xσ(p)), Xσ(p+1), . . . , Xσ(p+ j−1)),

(5.1)

for ω ∈ � j (N ), X1, . . . , X p+ j−1 ∈ T N . It also gives rise to a degree p derivation of
�•(N ) via

LK = [iK , d] = iK d − (−1)p−1diK , (5.2)

where d is the exterior differential on N .
We extend iK to a contraction operation iK : �•(N , T N ) → �•+p−1(N , T N ) by

iK (ω ⊗ X) = (iKω) ⊗ X , ω ∈ �(N ), X ∈ X(N ). (5.3)

Given K ∈ �p(N , T N ) and L ∈ �p′
(N , T N ), their Frölicher–Nijenhuis bracket

[24] (see also [34, Ch. 2]) is the vector-valued form [K , L] ∈ �p+p′
(N , T N ) uniquely

defined by the condition
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1528 H. Bursztyn, T. Drummond

L[K ,L] = [LK ,LL ] = LKLL − (−1)pp
′LLLK . (5.4)

When K and L have degree zero (i.e., they are vector fields on N ), (5.4) agrees with
the usual Lie bracket of vector fields. More generally, for X ∈ X(N ),

[X , K ] = LX K .

The Frölicher–Nijenhuis bracket makes �•(N , T N ) into a graded Lie algebra. It
is a natural bracket in the following sense: for a smooth map F : N1 → N2 , let
Ki ∈ �p(Ni , T Ni ), Li ∈ �p′

(Ni , T Ni ), i = 1, 2, be such that K1 is F-related to
K2 and L1 is F-related to L2.4 Then [K1, L1] is F-related to [K2, L2]. There are
other important properties of the Frölicher–Nijenhuis bracket which will be recalled
in subsequent sections.

5.2 Infinitesimal description

Let G be a Lie groupoid. As seen in Proposition 3.9, a multiplicative vector-valued
form K ∈ �p(G, TG) as defined by [43] is exactly a multiplicative (1, p)-tensor field.
From Theorem 3.19, one obtains a bijective correspondence between multiplicative
vector-valued p-forms on a Lie groupoid G and IM (p, 1)-tensors on its Lie algebroid
A. For this reason, wewill refer to IM (p, 1)-tensors also as IM vector-valued p-forms.

We denote by �•
mult(G, TG) the space of multiplicative vector-valued forms on G.

In the following, we will also need the following result proven in [6, Thm. 4.3]:

Proposition 5.1 On a Lie groupoid G, �•
mult(G, TG) is closed under the Frölicher–

Nijenhuis bracket.

Hence �•
mult(G, TG) ⊆ �•(G, TG) is a graded Lie subalgebra. We now describe

the graded Lie bracket on IM vector-valued forms corresponding to the Frölicher–
Nijenhuis bracket on multiplicative vector-valued forms.

For a multiplicative vector-valued form K ∈ �p(G, TG), consider its infinitesimal
components D : �(A) → �(∧pT ∗M⊗ A), l : A → ∧p−1T ∗M⊗ A and r : T ∗M →
∧pT ∗M . Note that r can be seen alternatively as an element r ∈ �p(M, T M). As
such, Proposition 3.9 shows that K is s, t-related to r .

Using the �•(M)-module structure of �•(M, A) = �(∧•T ∗M ⊗ A), we extend l
to an operator l : ∧•T ∗M ⊗ A → ∧•+p−1T ∗M ⊗ A by

l(α ⊗ a) = α ∧ l(a),

and D to an operator D : � j (M, A) → �p+ j (M, A) by

D(α ⊗ a) = α ∧ D(a) + (−1) j (dα ∧ l(a) − (−1) j(p−1)Lrα ⊗ a), (5.5)

4 K1 ∈ �p(N1, T N1) is F-related to K2 ∈ �p(N2, T N2) if

K2(T F(X1), . . . , T F(Xk )) = T F(K1(X1, . . . , Xk )),

for all X1, . . . , Xk ∈ Tx N , and x ∈ N .
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with Lr as in (5.2). This extension for D is well-defined as a consequence of the
Leibniz rule (3.9). Moreover,

D(α ∧ η) = α ∧ D(η) + (−1)i+ j (dα ∧ l(η) − (−1)(i+ j)(p−1)Lrα ∧ η),

for α ∈ �i (M), and η ∈ � j (M, A).

Lemma 5.2 For η ∈ �•(M, A), we have iT (η)K = T (l(η)).

Proof For homogeneous η = α ⊗ a, one has that T (η) = t∗α ⊗ −→a . So, by definition
of the contraction (5.3),

iT (η)K = t∗α ∧ i−→a K = t∗α ∧ T (l(a)) = T (α ∧ l(a)) = T (l(α ⊗ a)).

��
Let us consider the operation [·, K ] : �•(G, TG) → �•+k(G, TG), where [·, ·] is

the Frölicher–Nijenhuis bracket. The following result shows that [·, K ] preserves the
image of T inside �•(G, TG).

Lemma 5.3 For η ∈ �•(M, A), we have [T (η), K ] = T (D(η)).

Proof If η = α ⊗ a, for α ∈ � j (M), then one has (see [34, Sec. 8.7]):

[t∗α ⊗ −→a , K ] = t∗α ∧ [−→a , K ] + (−1) j (t∗dα ⊗ i−→a K − (−1)( j−1)pLK (t∗α) ⊗ −→a )

= t∗α ∧ T (D(a)) + (−1) j (t∗dα ⊗ T (l(a)) − (−1) j(p−1)t∗(Lrα) ⊗ −→a
= T (α ∧ D(a) + (−1) j (dα ⊗ l(a) − (−1) j(p−1)Lrα ⊗ a))

= T (D(η)).

In the second equality, we have used the fact that K and r are t-related. ��
Proposition 5.4 Let K1 ∈ �p1(G, TG), K2 ∈ �p2(G, TG) be multiplicative vector-
valued forms, with infinitesimal components (D1, l1, r1) and (D2, l2, r2), respectively.
The infinitesimal components (D, l, r) of their Frölicher–Nijenhuis bracket [K1, K2]
are

D = [D2, D1] = D2 ◦ D1 − (−1)p1 p2D1 ◦ D2 (5.6)

l = [D2, l1] − (−1)p1 p2 [D1, l2], (5.7)

where the brackets on the right-hand side are the (graded) commutators of endomor-
phisms of �•(M, A), and

r = [r1, r2], (5.8)

where the last bracket is the Frölicher–Nijenhuis bracket of ri ∈ �pi (M, T M), i =
1, 2.
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Proof The equation (5.8) follows from the naturality of the Frölicher–Nijenhuis
bracket. As K1 is t-related to r1 and K2 is t-related to r2, it follows that [K1, K2]
must be t-related to [r1, r2]. The identity (5.6) for D follows from the Jacobi equation
for the Frölicher–Nijenhuis bracket. Indeed, using Lemma 5.3:

T (D(a)) = [−→a , [K1, K2]] = [[−→a , K1], K2] + [K1, [−→a , K2]]
= [T (D1(a)), K2] + [K1, T (D2(a))]
= T (D2(D1(a))) − (−1)p1 p2 [T (D2(a)), K1]
= T (D2(D1(a)) − (−1)p1 p2D1(D2(a))) = T ([D2, D1](a)).

Now, recall the following general property of the Frölicher–Nijenhuis bracket (see
Theorem 8.11 in [34]): for Ki ∈ �pi (N , T N ) and L ∈ �p′+1(N , T N ), i = 1, 2, we
have

iL [K1, K2] = [iL K1, K2] + (−1)p1 p
′ [K1, iL K2]

−
(

(−1)p1 p
′
i[K1,L], K2 − (−1)(p1+p′)p2 i[K2,L]K1

)

.

Using this identity and the previous lemmas, we obtain

i−→a [K1, K2] = [i−→a K1, K2] + (−1)p1 [K1, i−→a K2]
− ((−1)p1 i[K1,

−→a ] K2 − (−1)(p1−1)p2 i[K2,
−→a ] K1)

= [T (l1(a)), K2] + (−1)p1
(

−(−1)p1(p2−1)[T (l2(a)), K1]
)

+ ((−1)p1 iT (D1(a)) K2 − (−1)(p1−1)p2 iT (D2(a)) K1)

= T
(

D2(l1(a)) − (−1)p1 p2D1(l2(a)) + (−1)p1l2(D1(a)
)

− (−1)(p1−1)p2l1(D2(a)))

= T
(

[D2, l1](a) − (−1)p1 p2(D1(l2(a)) − (−1)p1(p2−1)l2(D1(a)))
)

= T
([D2, l1](a) − (−1)p1 p2 [D1, l2](a)

)

,

as we wanted to prove. ��

Corollary 5.5 The space of IM vector-valued forms is a graded Lie algebra with the
bracket defined by (5.6),(5.7) and (5.8):

[(D1, l1, r1), (D2, l2, r2)] = ([D1, D2], [l1, l2], [r1, r2]).

The correspondence established by Theorem 3.19 between multiplicative vector-
valued forms and IM vector-valued forms is a graded Lie algebra isomorphism.

This last result should be regarded as parallel to Remarks 3.27 and 3.23.
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6 Multiplicative (1, 1)-tensor fields

We will now focus on multiplicative vector-valued 1-forms, or (1, 1)-tensor fields.

6.1 Infinitesimal components

Let K ∈ �1(G, TG) be a multiplicative (1, 1)-tensor field, with infinitesimal compo-
nents

D : �(A) → �(T ∗M ⊗ A), l : A → A, r : T M → T M .

Note that we have dualized the r component. For X ∈ T M , we will use the notation

DX : �(A) → �(A), DX (a) = iX D(a).

The I M-equations satisfied by the triple (D, l, r) take the form

DX ([a, b]) = [a, DX (b)] − [b, DX (a)] + D[ρ(b),X ](a) − D[ρ(a),X ](b) (IM1*)

l([a, b]) = [a, l(b)] − Dρ(b)(a) (IM2*)

r([ρ(a), X ]) = [ρ(a), r(X)] − ρ(DX (a)) (IM3*)

r ◦ ρ = ρ ◦ l. (IM6*)

Proposition 6.1 Let K : TG → TG be a multiplicative (1, 1)-tensor field on the Lie
groupoid G, with infinitesimal components (D, l, r). Then Kn is also multiplicative,
and its infinitesimal components (D′, l ′, r ′) satisfy

l ′ = ln, r ′ = rn, D′(a) =
n

∑

j=1

l j−1 ◦ D(a) ◦ rn− j

Proof The equations for l ′ and r ′ are straightforward to check. As for the equation for
D′, the proof follows from an induction on n using the recursion formula

[−→a , Kn] = [−→a , Kn−1] ◦ K + Kn−1 ◦ [−→a , K ].

��
As a result, we obtain infinitesimal descriptions of multiplicative projections and

almost complex/product structures.

Corollary 6.2 Let K be a multiplicative (1, 1)-tensor field on a source-connected Lie
groupoid G ⇒ M with infinitesimal components (D, l, r). Then

123



1532 H. Bursztyn, T. Drummond

(a) K satisfies K 2 = K if and only if

l ◦ D(a) + D(a) ◦ r = D(a), l2 = l, r2 = r .

(b) K satisfies K 2 = ± idTG if and only if

l ◦ D(a) + D(a) ◦ r = 0, l2 = ± idA, r2 = ± idT M .

Proof In (a), the equations for (D, l, r) guarantee that the multiplicative (1, 1)-tensors
K 2 and K have the same infinitesimal components. As G has connected s-fibers, this
implies that K 2 = K . The sameargument holds for almost product and almost complex
structures. ��

Wewill now consider an additional integrability condition in terms of the Nijenhuis
torsion.

6.2 Nijenhuis torsion

Given a (1,1)-tensor field K on amanifold N , itsNijenhuis torsion is the vector-valued
2-form NK ∈ �2(N , T N ) given by

NK (X ,Y ) = [K (X), K (Y )] − K ([K X ,Y ] + [KY , X ]) + K 2[X ,Y ],

for X ,Y ∈ T N . The Nijenhuis torsion has a well-known relation with the Frölicher–
Nijenhuis bracket via

1

2
[K , K ] = NK . (6.1)

For a multiplicative (1,1)-tensor field on a Lie groupoid G ⇒ M , the following
description of the infinitesimal components of its Nijenhuis torsion is an immediate
consequence of this last formula and Propositions 5.1 and 5.4:

Corollary 6.3 Let K ∈ �1(G, TG) be multiplicative with infinitesimal components
(D, l, r). Then NK ∈ �2(G, TG) is multiplicative and its infinitesimal components
(D′, l ′, r ′) are

D′ = D2, l ′ = [D, l], r ′ = Nr .

It will be useful to have a more concrete expression for

D2 : �(A) → �(∧2T M ⊗ A).

Recall [34, Cor. 8.12] the following expression for the Frölicher–Nijenhuis bracket of
K1, K2 ∈ �1(G, TG):
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[K1, K2](U , V ) = [K1(U ), K2](V ) − [K1(V ), K2](U )

− K1([K2(U ), V ] − [K2(V ),U ])
+ (K2K1 + K1K2)([U , V ]).

Since [−→a , 1
2 [K , K ]] = [[−→a , K ], K ], by taking K1 = [−→a , K ] and K2 = K , and

letting U = X , V = Y be in T M , one readily obtains that

D2
(X ,Y ) = DY ◦ DX − DX ◦ DY − D[r(X),Y ] + D[r(Y ),X ] + l ◦ D[X ,Y ] + Dr([X ,Y ])

(6.2)

where both sides are seen as maps �(A) → �(A).
Corollary 6.3 gives a complete infinitesimal description of general multiplicative

Nijenhuis operators on Lie groupoids. In the next subsections, we will illustrate how
this general result can be specialized to various cases of interest.

6.3 Poisson quasi-Nijenhuis structures

Poisson–Nijenhuis structures [40,52] play a central role in the theory of integrable
systems. Their recent connections with Lie groupoids arose in quantization schemes
for Poisson manifolds, see e.g. [2]. In this section we revisit the more general Poisson
quasi-Nijenhuis structures [57]. We establish a link with the theory of IM (1, 1)-
tensors, which leads to an extension of the integration of Poisson quasi-Nijenhuis
structures in [57, Thm. 6.2] (originally based on the theory of Lie bialgebroids [37])
as a consequence of Theorem 3.19.

Given a Poisson manifold (M,�), consider its cotangent bundle T ∗M with the Lie
bracket [·, ·]� as in (3.18). We say that a (1,1) tensor r : T M → T M is compatible
with � if

�� ◦ r∗ = r ◦ �� (6.3)

(equivalently, r ◦ �� : T ∗M → T M is skew-symmetric) and the following equation
holds: for all α, β ∈ �1(M),

Cr
�(α, β) := [α, β]�r − ([r∗α, β]� + [α, r∗β]� − r∗([α, β]�)) = 0, (6.4)

where [·, ·]�r is the bracket (3.18) for the bivector field �r defined by r ◦ ��.

Remark 6.4 The conditionCr
� = 0 implies that [�,�r ] = 0 (here [·, ·] is the Schouten

bracket), but the converse does not hold in general; it does if� is symplectic, see e.g.
[58].

The following definition extends [57, Def. 3.3]:

Definition 6.5 A Poisson quasi-Nijenhuis structure is a pair (�, r), where � is a
Poisson bivector field, r : T M → T M is a (1, 1) tensor, such that � and r are
compatible and the following condition holds:
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N ∗
r ([α, β]�) = L��(α)N ∗

r (β) − i��(β)dN ∗
r (α) (6.5)

i��(α) N ∗
r (β) = −i��(β) N ∗

r (α), ∀α, β ∈ �1(M), (6.6)

where N ∗
r : T ∗M → ∧2T ∗M is the adjoint of the Nijenhuis torsion of r , given by

N ∗
r (α)(X ,Y ) = 〈α,Nr (X ,Y )〉. We refer to a symplectic quasi-Nijenhuis structure

when � is nondegenerate, i.e., a symplectic structure.

Note that (6.5) and (6.6) say that (N ∗
r , 0) defines an IM 3-form on T ∗M .

Remark 6.6 The Poisson quasi-Nijenhuis structures considered in [57, Def. 3.3] are
slightly more restricted than in our definition: they are required to satisfy the condition
N ∗

r (α) = −i��(α)φ, or, equivalently,

Nr (X ,Y ) = ��(φ(X ,Y , ·)), (6.7)

for a given closed 3-form φ ∈ �3(M). One may verify that this implies that N ∗
r

automatically satisfies (6.5) and (6.6). This difference in the definitions will become
more transparent whenwe talk about integration, see Theorem 6.11 and Corollary 6.12
below.

Following the previous remark, we shall refer to the structures satisfying (6.7)
as Poisson quasi-Nijenhuis structures relative to φ; we will specify them by triples
(�, r , φ) to make the dependence on the closed 3-form φ explicit.

The following proposition gives an alternative way to express the compatibility
between a (1,1)-tensor r and a Poisson structure � in terms of IM tensors. Let Dr :
�(T ∗M) → �(T ∗M ⊗ T ∗M) be defined by

〈Dr
X (α),Y 〉 = dα(X , r(Y )) − (Lrα)(X ,Y ), (6.8)

whereLr is the operator (5.2). (Note that (Dr , r∗, r) are the infinitesimal components
of the cotangent lift of r .)

Proposition 6.7 The (1, 1)-tensor r and the Poisson tensor � are compatible if and
only if the triple (Dr , r∗, r) is an IM (1, 1)-tensor on the Lie algebroid T ∗M (where
the bracket is defined by �).

Proof The Leibniz equation for Dr follows from the properties of d and Lr . So one
only needs to check that the IM-equations for (D, r , r∗) are equivalent to � and r
being compatible. The IM equations in this case are:

Dr
X ([α, β]�) = [α, Dr

X (β)]� − [β, Dr
X (α)]� + Dr

[��(β),X ](α) − Dr
[��(α),X ](β),

(6.9)

r∗([α, β]�) = [α, r∗(β)]� − Dr
��(β)

(α), (6.10)

r([��(α), X ]) = [��(α), r(X)] − ��(Dr
X (α)), (6.11)

r ◦ �� = �� ◦ r∗. (6.12)
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The compatibility equation (6.3) is exactly (6.12). Note that (6.10) is equivalent, for
d f , dg ∈ �1(M), to

r∗([d f , dg]�) = [d f , r∗(dg)]� − i��(dg)dr
∗(d f )

= [d f , r∗(dg)]� − L��(dg)r
∗(d f ) + di��(dg)r

∗(d f )
= [d f , r∗(dg)]� − (L��(dg)r

∗(d f ) − L��(r∗(d f ))dg − di��(dg)r
∗(d f ))

︸ ︷︷ ︸

[dg,r∗(d f )]�
− L��(r∗(d f ))dg.

Using that [dg, d f ]�r = −L��(r∗(d f ))dg, it follows that (6.10) is equivalent to (6.4).
So, � and r are compatible if and only if (6.10) and (6.12) hold. The remaining
equations follow from these two. Indeed, a long but straightforward computation
shows that (6.9) is equivalent, for α = d f and β = dg, to

d(Cr
�(d f , dg)) = 0.

Finally, the redundancies among the IM equations (see Remark 3.18) guarantee that
(6.11) holds. ��

From now on, let us assume that the Lie algebroid (T ∗M,��, [·, ·]�) integrates
to a source 1-connected symplectic groupoid (G, ω) (see Sect. 3.3). Let �ω be the
Poisson structure defined by ω, so that

��
ω : T ∗G → TG (6.13)

is the inverse map to TG → T ∗G, U �→ iUω. It follows from Theorem 3.19 and
Proposition 6.7 that any (1, 1) tensor r : T M → T M compatible with� corresponds
to a multiplicative (1, 1) tensor K : TG → TG on G integrating (Dr , r∗, r).

Lemma 6.8 Let r : T M → T M be a (1, 1) tensor compatible with �. One has that
(N ∗

r , 0) is an IM 3-form if and only if there exists a closed 3-form λ ∈ �3(G) such
that

NK (U , V ) = ��
ω(λ(U , V , ·)), ∀U , V ∈ X(G), (6.14)

where K : TG → TG is the multiplicative (1, 1) tensor integrating (Dr , r∗, r). In
this case, λ is the multiplicative 3-form integrating (−N ∗

r , 0).

Proof Following Corollary 6.3, the infinitesimal components ((Dr )2, [Dr , r∗],Nr ) of
the Nijenhuis torsion of K can be explicitly calculated using (6.2) and (6.8). Indeed,
using Cartan calculus and the Jacobi identity repeatedly, one may verify that, for
α ∈ �1(M), X ,Y ∈ X(M),

[Dr , r∗](α) = −N ∗
r (α),

〈(Dr )2(X ,Y )(α), Z〉 = −dN ∗
r (α)(X ,Y , Z) + dα(Z ,Nr (X ,Y )).
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Similarly, for any multiplicative closed 3-form λ ∈ �3(G), consider the multiplica-
tive (1, 2) tensor field τ ∈ �2(G, TG) defined by τ(U , V ) = �

�
ω(λ(U , V , ·)). Its

infinitesimal components ˜D : �(T ∗M) → �2(M, T ∗M),˜l : T ∗M → T ∗M ⊗ T ∗M
and r̃ : T ∗M → ∧2T ∗M are:

˜l = μ, r̃ = −μ, ˜D(X ,Y )(α) = dμ(α)(X ,Y , ·) + dα(μ(X ,Y )
︸ ︷︷ ︸

∈T M

, ·),

where μ : T ∗M → ∧2T ∗M is such that (μ, 0) is the IM 3-form corresponding to λ.
The result now follows from the fact that (6.14) holds if and only if r̃ = Nr ,˜l = −Nr ,
˜D = (Dr )2. ��

Our aimnow is to prove that�ω and K define a symplectic quasi-Nijenhuis structure
on G; the previous lemma shows that this structure will be of the more restricted type
of Remark 6.6. As �ω is symplectic, following Remark 6.4, it suffices to show that

��
ω ◦ K ∗ = K ◦ ��

ω, (6.15)

[�ω,�K ] = 0, (6.16)

where �K is the bivector field defined by K ◦ �
�
ω.

Integration of Poisson quasi-Nijenhuis structures We start by analyzing conditions
(6.15) and (6.16) in general. Our setting will be:

• a source 1-connected Poisson groupoid (H, ˜�) ⇒ N ;
• a multiplicative (1, 1)-tensor K : TG → TG with (D, l, r) as infinitesimal com-
ponents.

Let (A∗H, ρ∗, [·, ·]∗) be the corresponding Lie algebroid structure on A∗H and denote
by δ : �(∧•AH) → �(∧•+1AH) the 2-differential associated with ˜�. Define δK :
�(AH) → �(A∗H ⊗ A∗H) by the expression

δK (a)(μ1, μ2) := δ(a)(μ1, l
∗(μ2)) − 〈Dρ∗(μ1)(a), μ2〉, a ∈ �(AH), (6.17)

Lemma 6.9 One has that

K ◦ ˜�� = ˜�� ◦ K ∗ ⇐⇒
{

r ◦ ρ∗ = ρ∗ ◦ l∗
δK (μ1, μ2) = −δK (μ2, μ1).

In this case, the IM (0, 2)-tensor on AH corresponding to the multiplicative bivector
field ˜�K is given by l ◦ (ρ∗)∗ : T ∗N → AH and δK : �(AH) → �(∧2AH).

Proof Let τL , τR ∈ �(TH ⊗ TH) be (not necessarily skew-symmetric) tensor fields
onH defined by

τL(ξ1, ξ2) = 〈ξ2, K (��(ξ1))〉, τR(ξ1, ξ2) = −〈ξ1, K (��(ξ2))〉,
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for ξ1, ξ2 ∈ T ∗H. Note that K ◦ ˜�� = ˜�� ◦ K ∗ if and only if τL = τR . Now τL , τR
are multiplicative and, therefore, τL = τR if and only if

L−→a τL = L−→a τR
︸ ︷︷ ︸

(i)

, τL(t∗α, ·) = τR(t∗α, ·)
︸ ︷︷ ︸

(i i)

, and τL(· , t∗α) = τR(· , t∗α)
︸ ︷︷ ︸

(i i i)

,

α ∈ �(T ∗M),

using that H is source 1-connected (see Remarks 3.16 and 3.20). Since

τL(t∗α, ξ) = 〈˜t(ξ), l ◦ ρ∗∗(α)〉, τR(t∗α, ξ) = 〈˜t(ξ), ρ∗∗ ◦ r∗(α)〉,
τL(ξ2, ξ1) = −τR(ξ1, ξ2),

it follows that (ii) and (iii) hold if and only if r ◦ ρ∗ = ρ∗ ◦ l∗. Finally, from

(L−→a τL)(ξ1, ξ2) = 〈ξ2, [−→a , K ](��(ξ1))〉 + 〈ξ2, K ((L−→a �)�(ξ1)),

(L−→a τR)(ξ1, ξ2) = −〈ξ1, [−→a , K ](��(ξ2))〉 − 〈ξ1, K ((L−→a �)�(ξ2)),

one can substitute ξi = μi ∈ A∗H ⊂ T ∗H and use that ��|A∗H = −ρ∗ to show that
(i) holds if and only if δK is skew-symmetric. ��

Let us assume that K ◦ ˜�� = ˜�� ◦ K ∗. The IM (0, 2)-tensor on AH associated to
the multiplicative bivector field ˜�K defines a pre-Lie algebroid structure on A∗H. It
follows from (3.17) and (6.17) that the pre-Lie bracket is given by

[μ1, μ2]K = [l∗(μ1), μ2]∗ + [μ1, l
∗(μ2)]∗ − l∗([μ1, μ2]∗) + �(μ1, μ2),

where � ∈ �(∧2AH ⊗ A∗H) is defined by

〈�(μ1, μ2), a〉 = 〈Dρ∗(μ1)(a), μ2〉 + δ(a)(l∗(μ1), μ2) − δ(l(a))(μ1, μ2).

For any element � ∈ �(∧k AH ⊗ A∗H), one can define a contraction operator
i� : �(∧•AH) → �(∧•+k−1AH) exactly as in (5.1). It is a graded derivation of
degree k − 1 of the graded algebra �(∧•AH). Note that

δK = [il∗ , δ] + i�,

where [·, ·] is the commutator of derivations of �(∧•AH).

Lemma 6.10 The bivector fields ˜�, ˜�K satisfy [˜�, ˜�K ] = 0 if and only [δ, i�] = 0.

Proof It is shown in [57] that [˜�, ˜�K ] = 0 ⇔ [δ, δK ] = 0. The result then follows
from [δ, [il∗ , δ]] = 0. ��

We can now conclude the description of the integration of Poisson quasi-Nijenhuis
structures using Theorem 3.19:
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Theorem 6.11 Let (G, ω) be the source 1-connected symplectic groupoid integrating
a Poisson manifold (M,�). There is a one-to-one correspondence between Poisson
quasi-Nijenhuis structures (�, r) on M and symplectic quasi-Nijenhuis structures
(ω, K , λ) relative to λ, where K : TG → TG is the multiplicative (1, 1) tensor
integrating (Dr , r∗, r) and λ ∈ �3(G) is the multiplicative closed 3-form integrating
(−N ∗

r , 0).

Proof We know that �ω, the Poisson structure defined by ω, makes G into a Poisson
groupoid. The dual Lie algebroid in this case is A∗ = T M , with anchor ρ∗ = idTM
and bracket [·, ·]∗ given by the Lie bracket of vector fields. Note that δ = d is the de
Rham differential.

Let K : TG → TG be a multiplicative (1, 1) tensor on G and λ a multiplicative
closed 3-form. Consider the IM (1,1)-tensor (D, l, r) and the IM 3-form (μ, 0) asso-
ciated to K and λ, respectively. From Lemmas 6.9 and 6.10, one knows that K and�ω

are compatible if and only if l = r∗, δK in (6.17) is skew-symmetric and, by writing
δK = [ir , d] + i�, the condition [d, i�] = 0 holds (notice that this last condition says
that � = 0). Hence, using that [ir , d] = Lr and (6.17),

〈DX (α),Y 〉 = dα(X , r(Y )) − δK (α)(X ,Y ) = dα(X , r(Y )) − Lr (α)(X ,Y )

= 〈Dr
X (α),Y 〉.

Therefore K and �ω are compatible if and only if � and r are compatible and,
moreover, K is the (1,1) tensor integrating (Dr , r∗, r). Finally, from Lemma 6.8, the
equation NK (U , V ) = �

�
ω(λ(U , V , ·)) holds if and if (μ, 0) = (−N ∗

r , 0) is the IM
3-form associated to λ. ��

By restricting the previous correspondence to Poisson quasi-Nijenhuis structures
on M relative to closed 3-forms, we recover [57, Thm. 6.2] with a different viewpoint:

Corollary 6.12 Let (G, ω) be a source 1-connected symplectic groupoid integrating
the Poisson manifold (M,�). There is one-to-one correspondence between Poisson
quasi-Nijenhuis structures (�, r , φ) on M relative to a closed 3-formφ and symplectic
quasi-Nijenhuis structures (ω, K , λ) on G relative to λ = t∗φ − s∗φ such that K is
multiplicative.

Proof It follows from the fact that t∗φ − s∗φ is the multiplicative 3-form integrating
the IM 3-form (α �→ i��(α)φ, 0) (see Example 3.15). ��

Our methods also work, more generally, to describe the infinitesimal counterparts
of multiplicative Poisson–Nijenhuis structures on Lie groupoids, not necessarily sym-
plectic; here one obtains compatibilities between the IM (1,1)-tensor corresponding
to a Nijenhuis structure and the Lie bialgebroid associated with the Poisson groupoid.
We will discuss this case elsewhere.
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6.4 Multiplicative (almost) complex structures

Our general results on multiplicative (1,1) tensors in Sects. 6.1 and 6.2 can be readily
applied to the study of complex structures on Lie groupoids, giving another viewpoint
to results in [43] concerning their infinitesimal versions.

Recall that, for a (real) vector bundle E → M , a holomorphic structure is specified
by a triple (JE , JM ,∇), where JE : E → E is an endomorphism satisfying J 2E = −id
(whichmakes E into a complex vector bundle), JM is a complex structure onM , and∇
is a flat T (0,1)-connection on E , in such a way that holomorphic sections u : M → E
are characterized by ∇u = 0; see [56]. We shall call ∇ the Dolbeault connection on
E . More generally, we will be interested in holomorphic structures on Lie groupoids
and Lie algebroids.

A holomorphic structure on a Lie groupoid G ⇒ M is a multiplicative complex
structure; i.e., a multiplicative J ∈ �1(G, TG) such that J 2 = −id andNJ = 0. One
refers to (G, J ) as a complexLie groupoid. A holomorphic structure on a Lie algebroid
A → M is a holomorphic structure (JA, JM ,∇) on its underlying vector bundle such
that the following compatibility conditions are satisfied:

(H1) [·, ·] restricts to a Lie bracket [·, ·]hol on the holomorphic sections;
(H2) [·, ·]hol is C-linear.

As we will now see, the following correspondence, proven in [43, Thm. 3.17], is a
consequence of Theorem 3.19, along with Corollaries 6.2 and 6.3.

Corollary 6.13 Let G ⇒ M be source 1-connected. Then holomorphic structures on
G are in natural one-to-one correspondence with holomorphic structures on its Lie
algebroid A → M.

The remainder of this section proves this result. By Corollaries 6.2 and 6.3, we
immediately see that the correspondence in Theorem 3.19 restricts to a bijective cor-
respondence between holomorphic structures J on G ⇒ M and IM (1, 1)-tensors
(D, l, r) on A satisfying

l ◦ D(a) + D(a) ◦ r = 0, l2 = −idA, r2 = −idT M . (6.18)

and

D2 = 0, [D, l] = 0, Nr = 0. (6.19)

So we must verify that an IM (1, 1)-tensor (D, l, r), for which (6.18) and (6.19)
hold, is equivalent to a holomorphic structure on the Lie algebroid A. We start by
checking that (6.18) and (6.19) exactly say that the triple (D, l, r) defines a holomor-
phic structure on the vector bundle underlying A.

From (6.18), it is clear that r is an almost complex structure onM and l is a complex
structure on the fibres of A (so we regard A as a complex vector bundle). Defining
∇ : �(T 01) × �(A) → �(A) by

∇X+ir(X)(a) := −l(DX (a)), (6.20)
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we also see that the first equation in (6.18) says that

∇i(X+ir(X))a = i(∇X+ir(X)a).

Moreover, this last property along with the Leibniz rule for D imply that

∇X+ir(X) f a = f ∇X+ir(X)a + (LX+ir(X) f )a,

for real functions f ∈ C∞(M).
Let us now consider (6.19). The third condition says that r is a complex structure

on M , while the second says that ∇ is complex linear in A. It follows that T 01 is a
(complex) Lie algebroid and ∇ is a (complex) T 01-connection. Finally, using (6.2),
one can also check that the first equation in (6.19) amounts to ∇ being flat. In con-
clusion, conditions (6.18) and (6.19) say that (D, l, r) endow A with the structure of
a holomorphic vector bundle: JA = l, JM = r and ∇ given by (6.20). The result in
Corollary 6.13 now follows from

Lemma 6.14 The IM-equations for (D, l, r) are equivalent to conditions (H1) and
(H2) above.

Proof We saw that equations (6.18) and (6.19) say that (D, l, r) defines a holomorphic
structure on the vector bundle A; moreover, a section a ∈ �(A) is holomorphic if and
only if Da = 0.

(⇒): Note that (IM1*) implies that [·, ·] restricts to a Lie bracket [·, ·]hol on the
holomorphic sections of A, and (IM2*) implies that [·, ·]hol is C-linear.
(⇐:) Assume that (A, [·, ·], ρ) is a holomorphic Lie algebroid, and consider

El(a, b) := l([a, b]) − [a, l(b)] + Dρ(b)(a)

Er (a, X) := r([ρ(a), X ]) − [ρ(a), r(X)] + ρ(DX (a))

ED(a, b, X) := DX ([a, b]) − [a, DX (b)] + [b, DX (a)]
− D[ρ(b),X ](a) + D[ρ(a),X ](b).

One can check that El and Er are C∞(M)-linear on both components and ED is
anti-symmetric on the �(A)-components. Moreover, for f ∈ C∞(M),

ED(a, f b, X) = f ED(a, b, X) + (LX f )El(a, b) − (LEr (a,X) f )b. (6.21)

Note that [·, ·]hol being C-linear implies that El(a, b) = 0 for a, b ∈ �(A)
holomorphic. As �(A) is generated as a C∞(M)-module by the holomorphic sec-
tions, it follows that El ≡ 0. The redundancies discussed in Remark 3.18 imply
that ρ ◦ l = r ◦ ρ, so ρ is a complex vector-bundle morphism. Furthermore, note
that ρ : A → T M sends holomorphic sections to holomorphic sections. Indeed, if
h ∈ C∞(M,C) is a holomorphic function and u1, u2 ∈ �(A) are arbitrary holomor-
phic sections,

(Lρ(u2)h)u1 = h[u1, u2] − [u1, hu2] = h[u1, u2]hol − [u1, hu2]hol
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is a holomorphic section, which implies that ρ(u2) is a holomorphic section of T M .
Using the C∞(M)-linearity of Er , one can argue as above to prove that Er (a, X) = 0
for all a ∈ �(A) and X ∈ �(T M) (use that r = JM , the almost complex structure of
M , and that T M with the Lie bracket of vector fields and the identity as anchor is a
holomorphic Lie algebroid). Finally, from (6.21) it follows that ED is tensorial, and
the fact that [·, ·] restricts to [·, ·]hol on holomorphic sections implies, as before, that
ED ≡ 0. ��

As this section and Sect. 6.3 illustrate, Theorem 3.19 provides tools that can
be directly applied to treat multiplicative geometric structures on holomorphic Lie
groupoids, including holomorphic symplectic groupoids [42] or more general holo-
morphic Poisson groupoids, as well as multiplicative generalized complex structures
[31], offering complementary information about the latter in terms of infinitesimal
components. We will further discuss these cases in a separate work.

6.5 Multiplicative projections

For a Lie groupoid G ⇒ M with Lie algebroid A, we consider a multiplicative (1, 1)
tensor field K ∈ �1(G, TG) satisfying K 2 = K , referred to as a multiplicative
projection. In this section we apply our previous results to describe multiplicative
projections infinitesimally, making connections with the theory of matched pairs [39,
45,54].

We start by observing that projections can be used to treat other types of multi-
plicative (1, 1) tensors.

Example 6.15 Suppose that Q : TG → TG satisfies Q2 = id and is multiplicative;
i.e., Q is a multiplicative (almost) product structure on G. Then K := (Q + id)/2 is
a multiplicative projection.5

We know that a multiplicative projection K admits an infinitesimal description
by its infinitesimal components (D, l, r). We start by discussing alternative ways to
express the operator D, that will be convenient whenwe consider the Nijenhuis torsion
of K .

Since r2 = r : T M → T M and l2 = l : A → A (by Corollary 6.2), the bundles
T M and A decompose as

A = A0 ⊕ A1, T M = T 0 ⊕ T 1,

where A0, T 0 are the kernels of themaps l, r , and A1, T 1 are their images, respectively.

Lemma 6.16 One has that

ρ(A0) ⊂ T 0 and ρ(A1) ⊂ T 1. (6.22)

5 By working with complexifications, one can also cast (almost) complex structures as projections.
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Also, for a ∈ �(A),

DX (a) ∈ A1 = im(l), if X ∈ �(T 0),

DX (a) ∈ A0 = ker(l), if X ∈ �(T 1).

Proof The conditions in (6.22) follow from (IM6*) (Sect. 6.1), whereas the statements
about D follow from Corollary 6.2, part (a). ��

So, upon restriction, D gives rise to two operators:

D+ : �(A) → �(T 0 ∗ ⊗ A1), D− : �(A) → �(T 1 ∗ ⊗ A0).

Let us consider the operators

�+ = D+|�(A0), ∇+ = D+|�(A1) (6.23)

�− = D−|�(A1), ∇− = −D−|�(A0). (6.24)

Proposition 6.17 �+,�− are tensorial, whereas ∇+,∇− satisfy

∇+( f a) = f ∇+(a) + d f |T 0 ⊗ a,

∇−( f b) = f ∇−(b) + d f |T 1 ⊗ b,

for f ∈ C∞(M), a ∈ �(A0), b ∈ �(A1).

Proof This follows immediately from the Leibniz rule for D (3.9). ��

Vanishing of the Nijenhuis torsion Let NK ∈ �2(G, TG) be the Nijenhuis torsion of
K . We say that K is a flat projection if NK = 0. The next result gives an equivalent
description of the Nijenhuis vanishing condition.

Proposition 6.18 Let K ∈ �1(G, TG) be a multiplicative projection on a source-
connected Lie groupoid G ⇒ M. Then NK = 0 if and only if

• �+ = 0, �− = 0;
• T 0 and T 1 are involutive distributions;
• ∇+ is a flat T 0-connection, and ∇− is a flat T 1-connection.

Proof As G is source connected, the Nijenhuis torsion NK vanishes if and only if
its infinitesimal components (D2, [D, l], Nr ) are zero (see Corollary 6.3). A direct
verification shows that

[D, l]X (a) = DX (l(a)) − l(DX (a)) =
{

�+
X (l(a) − a), if X ∈ T 0,

�−
X (l(a)), if X ∈ T 1.
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Hence, [D, l] = 0 if and only if both �+ and �− vanish. Similarly, Nr = 0 is
equivalent to T 0 and T 1 being involutive.6 ByProposition 6.17,∇+ is a T 0-connection,
and ∇− is a T 1-connection. Using (6.2), we see that

D2
(X ,Y )(a) =

⎧

⎨

⎩

Curv+
(Y ,X)(a), if X ,Y ∈ �(T 0), a ∈ �(A1)

Curv−
(Y ,X)(a), if X ,Y ∈ �(T 1), a ∈ �(A0)

0, otherwise,

where Curv+ (resp. Curv−) is the curvature of ∇+ (resp. ∇−). Hence, D2 = 0 if and
only if both ∇+,∇− are flat. This concludes the proof. ��
Remark 6.19 A distribution � ⊂ TG is said to be multiplicative if � is a Lie sub-
groupoid. As observed in [6], a multiplicative projection is equivalent to a pair of
multiplicative distributions�1,�2 such that�1 ⊕�2 = TG. Also,NK = 0 is equiv-
alent to both distributions being involutive. In this context, Proposition 6.18 agrees
with the integrability criteria for multiplicative distributions given in [16,30].

Example 6.20 Following Example 6.15, consider a multiplicative Q : TG → TG
satisfying Q2 = id, and let K = (Q + id)/2 be the corresponding multiplicative
projection. Let (D, l, r) and (D′, l ′, r ′) be the infinitesimal components of K and Q,
respectively. Then

l = (l ′ + id)/2, r = (r ′ + id)/2, D = D′.

The bundles T 0, A0 (resp. T 1, A1) are now the−1 (resp.+1) eigenbundles of r ′ and l ′.
Also, D′ decomposes into tensors�+ ∈ �(T 0 ∗ ⊗ A0 ∗ ⊗ A1),�− ∈ �(T 1 ∗ ⊗ A1 ∗ ⊗
A0) and connections ∇+ : �(A1) → �(T 0 ∗ ⊗ A1), ∇− : �(A0) → �(T 1 ∗ ⊗ A0).
Noticing thatNK = 0 ⇔ NQ = 0, we see that Proposition 6.18 directly applies to Q
instead of K .

We now illustrate the infinitesimal components of a multiplicative projection in the
classical example of a projection defined by a connection on a principal bundle.

Example 6.21 Let P → M be a principal bundle for a Lie group G, and consider its
gauge groupoid G(P) := (P × P)/G ⇒ M (see e.g. [47, Sec, 1.1]). In [6], it is
shown that there is a one-to-one correspondence between principal connections θ ∈
�1(P, g) and multiplicative projections K : TG(P) → TG(P) such that im(K ) =
ker(T s) ∩ ker(T t). To explicitly describe this projection it is useful to identify the
tangent groupoid TG(P)with the gauge groupoidG(T P) = (T P×T P)/TG → T M
of the principal TG-bundle T P → T M . The quotient map T P × T P → G(T P) is
denoted by

6 In general, for a projection K ∈ �1(M, T M) a projection, the Nijenhuis torsion NK can be written
as NK = RK + RK , where RK , RK ∈ �2(M, T M) are the curvature and co-curvature of K given,
respectively, by

RK (X , Y ) = K ([(id − K )(X), (id − K )(Y )])
RK (X , Y ) = (id − K )([K (X), K (Y )]).

In particular, NK = 0 if and only if both ker(K ) and im(K ) are involutive distributions.
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(X ,Y ) �→ (X ,Y ).

The projection K is now defined as

K ((X ,Y )) = (θ(X)P , θ(Y )P ),

where uP denotes the infinitesimal generator on P corresponding to u ∈ g. One can
check (see [6]) that the Nijenhuis torsion of K is given by

NK = S(Fθ ) − T (Fθ ),

where Fθ ∈ �2(M, P×G g) is the curvature of θ , and the maps T and S are defined in
(3.6); here P ×G g is the associated bundle with respect to the adjoint representation,
and we are using the Atiyah sequence

0 −→ P ×G g −→ T P/G −→ T M −→ 0,

to view P ×G g as a subbundle of A(G(P)) = T P/G.
The infinitesimal components (D, l, r) of the multiplicative projection K are given

as follows: r = 0, while l : T P/G → P ×G g ⊂ T P/G is the map induced by
θ : T P → g, and D : �(T P/G) → �(T ∗M ⊗ T P/G) is given by

DX (Y ) = θ([XH ,Y ]),

where XH ∈ X(P) is the horizontal lift of X . Note that T 0 = T M , T 1 = 0, A0 =
H/G ∼= T M , A1 = P ×G g, where H = ker(θ) ⊂ T P is the horizontal distribution.
Under the splitting D = D+ + D−, one may directly check that D− = 0 and
∇+ : �(P ×G g) → �(T ∗M ⊗ P ×G g) is the natural connection on the associated
bundle P ×G g, whereas �+ : �(T M) → �(T ∗M ⊗ P ×G g) is

�+
X (Y ) = θ([XH ,YH ]) = −Fθ (X ,Y ).

Proposition 6.18 admits yet another geometric interpretation, that we discuss next.

Characterization via matched pairs In the remainder of this section we provide a
characterization of multiplicative flat projections using the theory of matched pairs of
Lie algebroids [54].

Definition 6.22 Let A, B → M be Lie algebroids. We say that (A, B) is a matched
pair if A has a representation on B, and B has a representation on A such that

[ρA(a), ρB(b)] = −ρA(∇b a) + ρB(∇a b), (6.25)

∇a [b1, b2] = [∇a b1, b2] + [b1,∇a b2] + ∇∇b2 a
b1 − ∇∇b1 a

b2, (6.26)

∇b [a1, a2] = [∇b a1, a2] + [a1,∇b a2] + ∇∇a2 b
a1 − ∇∇a1 b

a2. (6.27)

Here we denote both representations by ∇.
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Definition 6.23 A morphism of matched pairs from (A1, B1) to (A2, B2) is a pair of
Lie algebroid morphisms FA : A1 → A2, FB : B1 → B2 such that

∇FA(a) FB(b) = FB(∇a b), (6.28)

∇FB (b) FA(a) = FA(∇b a). (6.29)

A matched pair (A, B) is equivalent to a Lie algebroid structure on the Whitney
sum A⊕ B such that A and B are Lie subalgebroids, see [48,54]. From this viewpoint,
the representations are determined by the Lie bracket:

∇a b = prB([a, b]), ∇b a = prA([b, a]),

where prA : A⊕ B → A and prB : A⊕ B → B are the projections. In this context, a
morphism of matched pairs from (A1, A2) to (B1, B2) is equivalent to a Lie-algebroid
morphism F : A1 ⊕ B1 → A2 ⊕ B2 which restricts to Lie-algebroid morphisms from
A1 to A2, and from B1 to B2.

For a flat multiplicative projection K ∈ �1(G, TG), Proposition 6.18 implies that
the decomposition T M = T 0 ⊕ T 1 defines a matched pair (T 0, T 1). Also, for a, b ∈
�(A0), the condition

l([a, b]) = [a, l(b)] − Dρ(b)(a) = −�+
ρ(b)(a) = 0

implies that A0 ⊂ A is a subalgebroid. Similarly, one can check that A1 ⊂ A is a
subalgebroid. Thus, the decomposition A = A0⊕ A1 defines a matched pair (A0, A1).
For a ∈ �(A0), b ∈ �(A1), the representations are defined by

∇a b = l([a, b]), ∇b a = [a, b] − l([a, b]).

We obtain the following infinitesimal characterization of flat multiplicative projec-
tions:

Theorem 6.24 Let G be a source 1-connected groupoid. There is a one-to-one cor-
respondence between flat multiplicative projections on G and decompositions A =
A0 ⊕ A1 and T M = T 0 ⊕ T 1, where

(i) A0, A1 ⊂ A and T 0, T 1 ⊂ T M are Lie subalgebroids;
(ii) (A0, T 1) and (T 0, A1) are matched pairs;
(iii) The sides of the commutative square

(A0, A1)
(idA0 , ρ)−−−−−→ (A0, T 1)

(ρ, idA1 )
⏐

⏐

�

⏐

⏐

�
(ρ, idT 1 )

(T 0, A1) −−−−−→
(idT 0 , ρ)

(T 0, T 1)

are morphisms of matched pairs.
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Proof Consider decompositions A = A0 ⊕ A1 and T M = T 0 ⊕ T 1 for which (i),
(ii) and (iii) hold. We will prove that they define the infinitesimal components of a flat
multiplicative projection.

Define l : A → A (resp. r : T M → T M) to be the projection on A1 (resp.
T 1) along A0 (resp. T 0). Using that Ann(T 1) ∼= T 0 ∗ and Ann(T 0) ∼= T 1 ∗, define
D : �(A) → �(T ∗M ⊗ A) to be the map

D(a) = ∇+(l(a)) − ∇−(a − l(a)), (6.30)

where ∇+ : �(A1) → �(T 0 ∗ ⊗ A1), ∇− : �(A0) → �(T 1 ∗ ⊗ A0) are the flat con-
nections (i.e., representations) corresponding to the matched pairs (A0, T 1), (T 0, A1),
respectively. One may directly verify that D satisfies the Leibniz rule (3.9). We now
prove that the triple (D, l, r) satisfies the IM-equations (Sect. 6.1).

Equation (IM6*) From (iii), one has that ρ(A0) ⊂ T 0, ρ(A1) ⊂ T 1, which is
equivalent to ρ ◦ l = r ◦ ρ.

Equation (IM2*) The subbundle A0 ⊂ A is a Lie subalgebroid if and only if
l([a, b]) = 0, for a, b ∈ �(A0). As l(b) = 0 = Dρ(b)(a), this implies that

l([a, b]) = [a, l(b)] − Dρ(b)(a), ∀ a, b ∈ �(A0).

Similarly, one can check that (IM2*) holds for a, b ∈ �(A1) using that A1 ⊂ A is
a Lie subalgebroid. It remains to verify that (IM2*) holds for crossed terms. Using
(ii), let ∇+, bas : �(A1) × �(T 0) → �(T 0), ∇−, bas : �(A0) × �(T 1) → �(T 1) be
the representations of A1, A0 on T 0, T 1, respectively. For Eq. (6.25) to hold for the
matched pairs (A0, T 1), (T 0, A1), one must have that

∇+, bas
a X = [ρ(a), X ] + ρ(∇+

X a), (6.31)

∇−, bas
b Y = [ρ(b),Y ] + ρ(∇−

Y b). (6.32)

Now, (idA0 , ρ) : (A0, A1) → (A0, T 1) and (idA1 , ρ) : (A0, A1) → (T 0, A1) are
morphisms of matched pairs if and only if, for all a ∈ �(A0), b ∈ �(A1),

l([a, b]) = [a, b] − Dρ(b)(a) = [a, l(b)] − Dρ(b)(a),

l([b, a]) = −Dρ(a)(b) = [b, l(a)] − Dρ(a)(b),

respectively. Altogether, this proves that (IM2*) holds.

Equation (IM3*) Similarly to the previous case, one can check that (IM3*) follows
from T 0, T 1 being involutive and (ρ, idT 1) : (A0, T 1) → (T 0, T 1) and (idT 0 , ρ) :
(T 0, A1) → (T 0, T 1) being morphisms of matched pairs.

Equation (IM1*) We recall (IM1*) for convenience:

DX ([a, b]) = [a, DX (b)] − [b, DX (a)] + D[ρ(b),X ](a) − D[ρ(a),X ](b).

There are 6 cases to check by taking X in T 0 or T 1, and a, b in A0 or A1.
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(1) X ∈ �(T 0) and a, b ∈ �(A0),
(2) X ∈ �(T 0) and a, b ∈ �(A1),
(3) X ∈ �(T 0) and a ∈ �(A0), b ∈ �(A1).

The other 3 cases where X ∈ �(T 1) work analogously. For (1), both sides of (IM1*)
are trivially zero. For (2), using that D|T 1(a) = D|T 1(b) = 0, one can show that
(IM1*) is equivalent to (6.26) for the matched pair (T 0, A1). Finally, for (3), one has
that

DX ([a, b]) = −∇+
X l([b, a]) (IM2*)= −∇+

X

(

[b,����0
l(a)] − Dρ(a)(b)

)

= ∇+
X ∇+

ρ(a) b.

On the other hand, using that D|T 0(a) = 0, the RHS of (IM1*) simplifies to

[a, DX (b)] + Dr([ρ(b),X ])(a) − D[ρ(a),X ](b)
(IM3*)= [a, DX (b)] − Dρ(DX (b))(a) − ∇+

[ρ(a),X ] b
(IM2*)= l([a, DX (b)]) − ∇+

[ρ(a),X ] b.

Using (IM2*) once again, one can prove that

l([a, DX (b)]) = −l([DX (b), a]) = Dρ(a)DX (b) = ∇+
ρ(a)∇+

X b,

so the case (3) follows from the flatness of ∇+. Putting everything together, we have
proved that (D, l, r) defines an IM (1, 1)-tensor, so it integrates to a multiplicative
(1, 1) tensor K ∈ �1(G, TG) by Theorem 3.19. It then follows from Corollary 6.2
and Proposition 6.18 that K is a flat projection.

The converse, i.e., that the infinitesimal components of a multiplicative flat projec-
tion give rise to matched pairs as in the statement of the theorem, is proven by similar
arguments and is left to the reader. ��

Following Example 6.20, an analogous result holds for product structures; see [42,
Thm. 4.8] for a parallel result in the context of holomorphic structures.
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Appendix A Lie theory of componentwise linear functions

In this appendix, we study componentwise linear functions on Whitney sums of VB-
groupoids. We start by presenting a useful characterization of these functions.

Let Ei → M be vector bundles, i = 1, . . . , p, and let E = E1⊕· · ·⊕Ep. Consider
the multiplication by non-negative scalars h : R≥0 × E → E , hλ(e) = λe. We shall

123



1548 H. Bursztyn, T. Drummond

refer to h as the homogeneous structure on E . The next result gives a characterization
of componentwise linear functions on E in terms of its homogeneous structure. This
is an extension of the characterization of vector bundle maps in [25], for p = 1.

Proposition A.1 A smooth function F : E → R is componentwise linear if and only
if

(1) F ◦ hλ = λpF, for all λ ≥ 0,
(2) F ◦ 0i = 0,

where 0i : ⊕1≤ j �=i≤pE j → ⊕1≤ j≤pE j is the map

(v1, . . . , vi−1, vi+1, . . . , vp) �→ (v1, . . . , vi−1, 0, vi+1, . . . , vp), (A.1)

for i = 1, . . . , p.

Proof We will consider the case p = 2, the general case being a direct generalization.
By restricting F to the fibers of E1 and E2, we can assume that F : R

m × R
n → R

satisfies F(λx, λy) = λ2F(x, y), for all λ ≥ 0, and F(x, 0) = F(0, y) = 0. Note that
this implies that F(0, 0) = 0 and DF(0, 0) = 0. Now, one can use Taylor’s Theorem
and the homogeneity of F to prove that F(z) = ∑

1≤i, j≤m+n
∂2F

∂zi ∂z j
(0, 0)zi z j , for

z = (x, y) satisfying |z| = 1. Using the homogeneity once more, it is possible to
extend the equality to arbitrary z. The condition that F(x, 0) = F(0, y) = 0 implies
that the terms xi x j and yi y j do not appear in the sum. Hence F : R

m × R
n → R is

bilinear. This completes the proof. ��
We now consider VB-groupoids (see e.g. [47, Sec. 11.2] for details and original

references), following the viewpoint of [4].

Definition A.2 A VB-groupoid is a square

V G

E M,

whose horizontal sides are vector bundles, the vertical sides are Lie groupoids, satis-
fying the following compatibility condition: denoting by h and hE the homogeneous
structures on V and E , then, for each λ ≥ 0, hλ : V → V is a groupoid morphism
over hE

λ : E → E .

The Lie algebroid AV → E of a VB-groupoid inherits a vector bundle structure
over A by differentiation of hλ. If hA is the corresponding homogeneous structure,
then hA

λ : AV → AV is a Lie algebroid morphism over hλ for each λ.
In the following, we consider VB-groupoidsV1 ⇒ E1, . . . ,Vp ⇒ Ep over G ⇒ M

and their Whitney sum V = V1 ⊕ · · · ⊕ Vp (as vector bundles over G). This defines a
VB-groupoid V ⇒ E over G ⇒ M , whose Lie algebroid AV → E splits naturally as
a Whitney sum AV1 ⊕ · · · ⊕ AVp over AG.
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Proposition A.3 For a source 1-connected Lie groupoid G ⇒ M, a multiplicative
function F : V → R is componentwise linear if and only if so is AF : AV → R.
Moreover, in the case V1 = · · · = Vp, F is skew-symmetric if and only if so is AF.

Proof We will treat the case p = 2, the general case follows similarly. Consider

F ◦ hλ, λ2F : V → R and F ◦ 0Vi : Vi → R, i = 1, 2.

These aremultiplicative functions and their associated infinitesimal cocycles are: AF ◦
hA
λ , λ

2AF : AV → R and AF ◦ 0AVi : AVi → R, where 0AVi : AVi → AV is the
zero map (A.1) for the AV = AV1 ⊕ AV2, i = 1, 2. Note that 0Vi is a Lie groupoid
morphism and A(0Vi ) = 0AVi . The fact that G is source 1-connected implies that V
is source 1-connected (see Remark 2.1) and, therefore, by uniqueness of integration,
one has that

F ◦ hλ = λ2F ⇔ AF ◦ hA
λ = λ2AF

F ◦ 0Vi = 0 ⇔ AF ◦ 0AVi = 0.

So, it follows from Proposition A.1 that F is componentwise linear if and only if so
is AF .

When V1 = · · · = Vp, each permutation σ ∈ S(p) acts by groupoid morphism
on V via σ(v1, . . . , vp) = (vσ(1), . . . , vσ(p)). Applying the Lie functor, Aσ acts on
AV = AV1 ⊕ · · · ⊕ AV1 permuting the elements of AV1 by σ itself. Hence, for a
function F ∈ C∞(V),

A(pV (F)) = pAV (AF)

where pV , pAV are the projections (2.9) for V and AV , respectively. The result now
follows exactly as before using the uniqueness of integration. ��

Appendix B Right-invariant vector fields on cotangent Lie groupoids.

Let G ⇒ M be a Lie groupoid, with Lie algebroid πA : A → M . Consider the
cotangent Lie groupoid T ∗G ⇒ A∗. In this appendix, we prove formulas (4.28)
describing the right-invariant vector fields on T ∗G corresponding to sections of types
Ra and Bα, for a ∈ �(A), α ∈ �1(M) (see Lemmas B.2 and B.3). In the case of
Ra the formula follows directly from the description of the isomorphism between
A(T ∗G) and T ∗A coming from the symplectic groupoid structure of T ∗G obtained in
[49, §7], and that we briefly recall here. The case ofBα is more involved.We note that,
unlike for formulas (4.27) for the tangent groupoid, we could not find the analogous
formulas (4.28) for the cotangent groupoid in the literature.

Let ωcan be the canonical symplectic form on T ∗G. It well-known [12] that
(T ∗G, ωcan) is the symplectic groupoid integrating the linear Poisson structure of
A∗. In particular, ωcan is a multiplicative 2-form and its infinitesimal component
lcan : A(T ∗G) → T ∗(A∗), which satisfies
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ωcan(
−→χ , ·) =˜t∗lcan(χ), ∀χ ∈ �(A(T ∗G)), (B.1)

is a Lie algebroid isomorphism, where the Lie algebroid structure on T ∗(A∗) comes
from the linear Poisson structure �lin on A∗.

Recall the reversal isomorphism R : T ∗(A∗) → T ∗A (see (4.15)). We shall need
the following fact [49, Theorem 7.3]: the map

ϑ := R ◦ lcan : A(T ∗G) −→ T ∗A

is a Lie algebroid isomorphism from A(T ∗G) to the cotangent Lie algebroid.

Remark B.1 The isomorphism ϑ is used implicitly in §4.2 to talk about the right-

invariant vector fields corresponding to Ra and Bα, i.e. by −→Ra and
−→Bα we mean the

right-invariant vector fields of T ∗G ⇒ A∗ corresponding to ϑ−1(Ra) and ϑ−1(Bα),
for a ∈ �(A) and α ∈ �1(M), respectively.

Note that, from (4.16) and (4.18), one has that

ϑ−1(Ra) = l−1
can(d�a), and ϑ−1(Bα) = l−1

can(−π∗
A∗α),

where πA∗ : A∗ → M is the projection of the dual bundle.

Lemma B.2 For a ∈ �(A), consider �−→a ∈ C∞(T ∗G). One has

ωcan(
−→Ra, ·) = d�−→a = ωcan(

−→a T ∗
, ·), (B.2)

where −→a T ∗
is the cotangent lift of −→a (4.6). In particular,

−→Ra = −→a T ∗
.

Proof It is simple to check that the pull-back of the 1-form d�a ∈ �1(A∗) by the
target map˜t : T ∗G → A∗ is exactly d�−→a , i.e., d�−→a =˜t∗d�a . Then, by (B.1),

ωcan(
−→Ra, ·) =˜t∗lcan(l−1

can(d�a)) = d�−→a .

The second identity in (B.2) follows from the fact that the cotangent lift of a vector
field is exactly its Hamiltonian lift with respect to ωcan . The last statement follows
from the non-degeneracy of ωcan . ��

In the following, we shall need the useful relationship between the sum and multi-
plication on the cotangent bundle known as interchange law7:

(ξ1 + η1) • (ξ2 + η2) = (ξ1 • ξ2) + (η1 • η2), (B.3)

for ξ1, η1 ∈ T ∗
g1G, ξ2, η2 ∈ T ∗

g2G such that (ξ1, ξ2), (η1, η2) are composable pairs.

7 Interchange laws hold more generally for VB-groupoids, where they express the compatibility between
the vector bundle and groupoid structures. See Ref. [47].
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Lemma B.3 Given a 1-form α ∈ �1(M), we have that

−→Bα = (t∗α)v,

where the right-hand side is the vertical lift of t∗α ∈ �1(G).

Proof To simplify notation, denote t∗α by η. First note that s̃(η(g)) = 0, ∀ g ∈ G.
Indeed, for any a ∈ As(g), it follows from the definition of s̃ that

〈̃s(η(g)), a〉 = 〈α(t(g)), T t(←−a (g)) 〉 = 0.

Hence, for ξ ∈ T ∗
g G,

T s̃(ηv(ξ)) = d

dε

∣

∣

∣

∣

ε=0
s̃(ξ + εη(g)) = d

dε

∣

∣

∣

∣

ε=0
(̃s(ξ) + ε s̃(η(g))) = 0.

Also, one has that

η(g) = η(t(g)) • 0g. (B.4)

Indeed, for any U ∈ TgG, using (2.4), one obtains

〈η(t(g)) • 0g,U 〉 = 〈η(t(g)) • 0g, T t(U ) •U 〉 = 〈η(t(g)), T t(U )〉 = 〈η(g),U 〉.

Let us now prove that ηv is a right-invariant vector field. For ξ ∈ T ∗
g G,

ηv(ξ) = d

dε

∣

∣

∣

∣

ε=0
(ξ + ε η(g))

(B.4)= d

dε

∣

∣

∣

∣

ε=0
(˜1̃t(ξ) • ξ + ε η(t(g)) • 0g)

(B.3)= d

dε

∣

∣

∣

∣

ε=0
[(˜1̃t(ξ) + ε η(t(g))) • (ξ + 0g)] = dRξ [ηv(˜1̃t(ξ))].

This proves that ηv is right-invariant.

To conclude theproof,we just need toprove thatωcan(η
v(ϕ),ϒ) = ωcan(

−→Bα(ϕ),ϒ)

for any ϒ ∈ Tϕ A∗ ⊂ T (T ∗G), ϕ ∈ A∗
x , x ∈ M . Choose any projectable vector

field ˜ϒ ∈ X(T ∗G) extending ϒ , with respect to the cotangent bundle projection
pr : T ∗G → G. Recall that pr is a groupoid morphism covering πA∗ : A∗ → M . As
ωcan = −dθcan for the tautological 1-form θcan ∈ �1(T ∗G), one has that

ωcan(η
v(ϕ),ϒ) = −Lηvθcan(˜ϒ)|ϕ = − d

dε

∣

∣

∣

∣

ε=0
〈ϕ + ε η(x), T pr(˜ϒ(ϕ + ε η(x))〉

= −〈η(x), T pr(ϒ)〉,
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where we have used that θcan(ηv) = θcan([ηv, ˜ϒ]) = 0 and T pr(˜ϒ(ϕ + εη(x))) =
T pr(˜ϒ(ϕ)). The proof now follows from (B.1)

ωcan(
−→Bα, ·) = −˜t∗(π∗

A∗α) = −pr∗(t∗α).

��
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