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Abstract
In this short note, we study the behavior of Kähler–Ricci flow on Kähler manifolds
which contract divisors to smooth submanifolds. We show that the Kähler potentials
are Hölder continuous and the flow converges sequentially in Gromov–Hausdorff
topology to a compact metric space which is homeomorphic to the base manifold.

1 Introduction

The Ricci flow, introduced by Hamilton [6] in 1982, has been a powerful tool in
solving problems in geometry and analysis. It deforms any metric with positive Ricci
curvature in real 3-dimensional manifold to a metric with constant curvature [6]. By
performing surgery through singular times, Perelman [9] used Ricci flow to solve the
geometrization conjecture for 3-dimensional manifolds. On the complex aspect, the
Ricci flow preserves the Kähler condition [1] and is reduced to a scalar equation with
Monge–Ampère type, which after suitable normalization converges to a solution of the
Calabi conjecture [1,30]. The non-Kähler analogue of Ricci flow also generates much
interest recently, among them are the Hermitian curvature flows and the pluriclosed
flow [24,25], the Chern–Ricci flow [27], the Anomaly flow [14] and etc, and we refer
to [13] for a survey on the recent development of non-Kähler geometric flows.

The analytic minimal model program, laid out in [19], predicts how the Kähler–
Ricci flow behaves on a projective variety. It is conjectured that the Kähler–Ricci
flow will either collapse in finite time, or deform any projective variety to its minimal
model after finitely many divisorial contractions or flips in the Gromov–Hausdorff
(GH) topology. There are various results on the finite time collapsing of Kähler–Ricci
flow, see for example [12,17,23,28,29] and references therein. The behavior ofKähler–
Ricci flow on some small contractions is studied in [16,22] and it is shown that the
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1148 B. Guo

flow forms a continuous path in GH topology. In [20,21], Song and Weinkove study
the divisorial contractions when the divisor is contracted to discrete points, and it is
shown that the flow converges in GH topology to a metric space which is isometric to
the metric completion of the base manifold with the smooth limit of the flow outside
the divisor, and the flow can be continued on the new space. The main purpose of
this note is to generalize their results to divisorial contractions when the divisor is
contracted to a higher dimensional subvariety.

Let Y be a Kähler manifold and N ⊂ Y be a complex submanifold of codimension
k ≥ 1. Let X be the Kähler manifold obtained by blowing up Y along N , π : X → Y
be the blown-downmap and E = π−1(N ) be the exceptional divisor in X .We consider
the (unnormalized) Kähler–Ricci flow on X :

⎧
⎨

⎩

∂ω

∂t
= −Ric(ω),

ω(0) = ω0,

(1.1)

for a suitable fixed Kähler metric ω0 on X . We assume the limit cohomology class
satisfies [ω0]+ T K X = [π∗ωY ] for some Kähler metric ωY on Y , where the maximal
existence time (see [26]) of the flow (1.1) is given by

T = sup{t > 0 : [ω0] + t K X is Kähler} < ∞.

We define the reference metrics along the flow

ω̂t = T − t

T
ω0 + t

T
π∗ωY .

In the following for notational simplicity we shall denote ω̂Y = π∗ωY , which is a
nonnegative (1, 1)-form on X .

It is well-known that the flow (1.1) is equivalent to the following parabolic complex
Monge–Ampère equation

⎧
⎨

⎩

∂ϕ

∂t
= log

(ω̂t + i∂∂̄ϕ)n

�
,

ϕ(0) = 0,
(1.2)

where ω = ω̂t + i∂∂̄ϕ satisfies (1.1) and � is a smooth volume form satisfying
i∂∂̄ log� = 1

T (ω̂Y − ω0).
Our main theorem is on the behavior of the metrics ω(t) as t → T −.

Theorem 1.1 Let π : X → Y and ωt = ω0 + i∂∂̄ϕt be as above, then the following
hold: there exists a uniform constant C = C(n, ω0, ωY , π) > 0

(1) ϕt is uniformly Hölder continuous in (X , ω0), i.e. |ϕt (p)−ϕt (q)| ≤ Cdω0(p, q)δ ,

for any p, q ∈ X and some δ ∈ (0, 1), and ϕt
Cδ(X ,ω0)−−−−−→ ϕT ∈ P SH(X , π∗ωY )∩

Cδ(X , ω0). Moreover, ϕT descends to a function ϕ̄T ∈ P SH(Y , ωY )∩Cδ0(Y , ωY )

for some δ0 ∈ (0, 1).
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Kähler–Ricci flow on blowups along submanifolds 1149

(2) ωt converge weakly to ωT := π∗ωY + i∂∂̄ϕT as (1, 1)-currents on X and the
convergence is smooth and uniform on any compact subset K � X\E.

(3) diam(X , ωt ) ≤ C for any t ∈ [0, T ).
(4) for any sequence ti → T −, there exists a subsequence {ti j } such that (X , ωti j

) (as
compact metric spaces) converge in Gromov–Hausdorff topology to a compact
metric space (Z , dZ ).

(5) the metric completion of (Y\N , ωT ) is isometric to (Y , dT ), where the distance
function dT is induced from ωT and defined in (3.12). And there exists an open
dense subset Z◦ ⊂ Z such that (Y\N , dT ) and (Z◦, dZ ) are homeomorphic and
locally isometric. Furthermore (Z , dZ ) is homeomorphic to (Y , dT ).

The item (2) is known to hold for Kähler–Ricci flow for more general holomorphic
maps π : X → Y with dimY = dimX (see e.g. [11,20,26]). We include it in the
theorem just for completeness. We remark that Theorem 1.1 also holds if the base Y
has some mild singularities, for example, if the analytic subvariety N is locally of the
form C

k × (Cn−k/Zp), where Zp denotes the S1-action {e2lπ i/p}p
l=1 on C

n−k by

e2lπ i/p · (zk+1, . . . , zn) → (e2lπ i/pzk+1, . . . , e2lπ i/pzn).

The proof is by combining the techniques of [21] and this note, so we omit the details.
Lastly we mention that under the same set-up as in Theorem 1.1, the same and even

stronger results hold for Kähler metrics along continuity method. More precisely, let
ut ∈ P SH(X , ω̂Y + tω0) be the solution to the complex Monge–Ampère equations

ωn
t = (ω̂Y + tω0 + i∂∂̄ut )

n = ct e
Fωn

0 , sup ut = 0, t ∈ (0, 1], (1.3)

where F is a given smooth function on X and ct is a normalizing constant so that the
integral of both sides are the same. It has been shown in [3] that diam(X , ωt ) is bounded
by a constant C = C(n, ω0, ω̂Y , F) > 0 and the Ricci curvature of ωt is uniformly
bounded below. We can repeat almost identically the proof of Theorem 1.1 to the Eq.
(1.3) to get the same conclusions for ut as the ϕt in Theorem 1.1. Furthermore, along
the continuity method (1.3), we can improve the Gromov–Hausdorff convergence in
Theorem 1.1 in the sense that the full sequence (without the need of passing to a
subsequence) (X , ωt ) converges in GH topology to a compact metric space (Z , dZ )

which is isometric to the metric completion of (Y\N , ω̂0), where ω̂0 is the smooth
limit of ωt on X\π−1(N ) = Y\N . The main advantage in this case is that the Ricci
curvature has uniform lower bound so we can apply the argument in [2], in particular
the Gromov’s lemma to find an almost geodesic connecting any two points away from
the singular set π−1(N ).

2 Preliminaries

The following estimates are well-known [11,20,26,30], so we just state the results and
omit the proofs.

123



1150 B. Guo

Lemma 2.1 There exists a constant C > 0 depending only on (X , ω0), (Y , ωY ) such
that

(i) ‖ϕ‖L∞(X) ≤ C for all t ∈ [0, T ),
(ii) ϕ̇ := ∂ϕ

∂t ≤ C and this is equivalent to ωn ≤ C� from the Eq. (1.2).
(iii) as t → T −, ϕ converge to a bounded ω̂Y -PSH function ϕT and ω converge

weakly to ωT := ω̂Y + i∂∂̄ϕT as (1, 1)-currents on X.

Lemma 2.2 There exists a uniform constant C > 0 such that

(i) ω̂Y ≤ Cω for all t ∈ [0, T ),
(ii) for any compact subset K � X\E, there exists a constant C j,K > 0 such that

‖ϕ‖C j (K ,ω0)
≤ C j,K . Therefore the convergence ωt → ωT and ϕ → ϕT is

smooth on X\E, so ωT and ϕT are both smooth on X\E.

In the proof of Lemma 2.2, we need the following Chern–Lu inequality as in the
proof the parabolic Schwarz lemma [18]

(
∂

∂t
− �

)

log trω ω̂Y ≤ C trω ω̂Y ,

where C > 0 depends also on the upper bound of the bisectional curvature of (Y , ωY ).
In turn this implies the equation below which will be used later.

(
∂

∂t
− �

)

trω ω̂Y ≤ −|∇ trω ω̂Y |2
trω ω̂Y

+ C(trω ω̂Y )2 ≤ −c0|∇ trω ω̂Y |2 + C, (2.1)

where c0 = C−1 > 0 is the reciprocal of the constant C in (i) Lemma 2.2.

2.1 Kähler metrics from the blown up

Wewill construct a smooth function σY on Y such that σY = 0 precisely on N . Choose
a finite open cover {Vα}J

α=1 of N in Y and complex coordinates {wα,i }n
i=1 on Vα such

that N ∩ Vα = {wα,1 = · · · = wα,k = 0}. We also denote V0 = Y\ ∪α
1
2Vα and we

may also assume that V0 ∩ N = ∅. Take a partition of unity {θα}J
α=0 subordinate to

the open cover {Vα}J
α=0, and we define a smooth function

σY = θ0 · 1 +
J∑

α=1

θα ·
k∑

j=1

|wα, j |2 ∈ C∞(Y ),

and it is straightforward to see from the construction that σY vanishes precisely along
N . Since {wα,i }k

i=1 are defining functions of N , it follows that if Vα ∩ Vβ �= ∅, then
the function

fαβ :=
∑k

j=1 |wα, j |2
∑k

j=1 |wβ, j |2
, on Vα ∩ Vβ
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Kähler–Ricci flow on blowups along submanifolds 1151

is never-vanishing and bounded from above. Since the cover is finite we have

0 < c ≤ inf
α,β

inf
y∈Vα∩Vβ �=∅

fαβ(y) ≤ sup
α,β

sup
y∈Vα∩Vβ �=∅

fαβ(y) ≤ C < ∞. (2.2)

We denote σX = π∗σY to be the pull-back of σY to X .

Lemma 2.3 (see also [10]) There exists an ε0 > 0 such that for all ε ∈ (0, ε0] the
(1, 1)-form

ωε := π∗ωY + εi∂∂̄ log σX

is positive definite on X\E and extends to a smooth Kähler metric on X.

Proof We only need to prove the positivity of ωε near E , which is in fact local. So we
may assume the map π is defined from an open set U ⊂ X to Vα given by

wα,1 = z1, wα,2 = z1z2, . . . , wα,k = z1zk, wα,k+1 = zk+1, . . . , wα,n = zn,

where {zi } are the complex coordinates on U such that E ∩ U = {z1 = 0}. It loses no
loss of generality to assumeωY on Vα is just the EuclideanmetricωCn = ∑

j idwα, j ∧
dw̄α, j .

We note that on Vα

σY =
⎛

⎝
J∑

β=1,Vβ∩Vα �=∅
θβ fβα

⎞

⎠ ·
k∑

j=1

|wα, j |2 =: φα ·
k∑

j=1

|wα, j |2.

From (2.2), we know that φα is a smooth function with a strict positive lower bound
on Vα . In particular ωY + εi∂∂̄ logφα > 0 on Vα for any 0 < ε ≤ ε0 << 1.

We calculate

π∗ωY =
⎛

⎝1 +
k∑

j=2

|z j |2
⎞

⎠ dz1 ∧ dz̄1 +
k∑

j=2

(z1 z̄ j dz j ∧ dz̄1 + z̄1z j dz1 ∧ dz̄ j )

+ |z1|2
k∑

j=2

dz j ∧ dz̄ j +
n∑

j=k+1

dz j ∧ dz̄ j , (2.3)

and note that on U

log σX = logφα + log |z1|2 + log

⎛

⎝1 +
k∑

j=2

|z j |2
⎞

⎠ ,

so on U\E we have

i∂∂̄ log σX = i∂∂̄ logφα +
∑k

i, j=2((1 + |z′|2)δi j − z̄i z j )
√−1dzi ∧ dz̄ j

(1 + |z′|2)2 , (2.4)
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1152 B. Guo

where z′ = (z2, . . . , zk) and the second term on RHS is nonnegative in z′-directions,
which is just the Fubini-Study metric in the coordinates z′. By straightforward calcu-
lations, we see that if ε is small enough the (1, 1)-form π∗ωY +εi∂∂̄ log σX is positive
on X\E and extends to a Kähler metric on X . ��
Remark 2.1 Globally from the above calculations we see that

ωε = π∗ωY + εi∂∂̄ log σX − ε[E],

where [E] denotes the current of integration along E .

We will denote ωX = π∗ωY + ε0i∂∂̄ log σX − ε0[E] to be a fixed Kähler met-
ric obtained from the Lemma 2.3. The following inequality follows from the local
expression of π∗ωY as in the proof of Lemma 2.3.

Lemma 2.4 There exists a uniform constant C > 1 such that

C−1ω̂Y ≤ ωX ≤ C

σX
ω̂Y , (2.5)

where the second inequality is understood on X\E.

3 The proof of themain theorem

Now we are ready to derive the crucial estimates on ω along the Kähler–Ricci flow
(1.1).

Lemma 3.1 There exists uniform constants C > 0 and δ ∈ (0, 1) such that along the
flow (1.1) we have

ω ≤ C
ω0

σ 1−δ
X

, on X\E × [0, T ). (3.1)

The proof is almost the same as that of Lemma 2.5 in [20], with minor modification
using Lemma 2.3. For completeness, we provide a sketched proof.

Proof Fix an ε ∈ (0, 1) and define

Qε = log trω0 ω + A log σ 1+ε
X trω̂Y ω − A2ϕ,

where A > 0 is a constant to be determined later. First of all, Qε |t=0 ≤ C for a constant
C independent of ε ∈ (0, 1), which can be seen from (2.5). Observe that for each time
t0 ∈ (0, T ), maxX Qε can only be achieved on X\E , since Qε(x) → −∞ as x → E .
Thus we assume the maximum of Qε is obtained at (x0, t0) for some x0 ∈ X\E . From
the Chern–Lu inequality (e.g. Eq. (2.1)) the following holds on X\E

(
∂

∂t
− �

)

Qε ≤ C trω ω0 − A trω(Aω̂t + (1 + ε)i∂∂̄ log σX ) + A2 log
�

ωn
+ C,
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Kähler–Ricci flow on blowups along submanifolds 1153

where the constant C depends on the lower bound of the bisectional curvature of
(X , ω0) and the upper bound of bisectional curvature of (Y , ωY ). Since ω̂t ≥ c1ω̂Y

for a uniform c1 > 0 and any t ∈ [0, T ), by Lemma 2.3 for A > 0 large enough
Aω̂t + (1 + ε)i∂∂̄ log σX ≥ c2ω0 on X\E for some c2 > 0. If A > 0 is taken even
larger then at (x0, t0), we have

0 ≤
(

∂

∂t
− �

)

Qε ≤ −2 trω ω0 + A2 log
�

ωn
+ C ≤ − trω ω0 + C,

where in the last inequality we use

− trω ω0 + A2 log
�

ωn
≤ − trω ω0 + n A2 log trω ω0 + C ≤ C,

as log x ≤ εx + C(ε) for any x ∈ (0,∞). So we have trω ω0(x0, t0) ≤ C . Then

trω0 ω|(x0,t0) ≤ ωn

ωn
0
(trω ω0)

n−1|(x0,t0) ≤ C .

Observing that from (2.5), σX trω̂Y ω ≤ C trω0 ω on X\E , thus supX Qε ≤ C for some
uniform constant C > 0. Letting ε → 0, we get

log trω0 ω + A log σX trω̂Y ω ≤ C, on X\E × [0, T ).

Finally from C trω̂Y ω ≥ trω0 ω we see from the above that

log trω0 ω + log σ A
X (trω0 ω)A ≤ C,

so trω0 ω ≤ Cσ
−A/(1+A)
X on X\E , and we can then take δ = 1

1+A ∈ (0, 1). ��
Next we will show the distance function defined by ωt is Hölder-continuous with

respect to the fixed metric (X , ω0).

Lemma 3.2 There exists a uniform constant C > 0 such that for any p, q ∈ X, it
holds that

dωt (p, q) ≤ Cdω0(p, q)δ, ∀ t ∈ [0, T ),

where δ ∈ (0, 1) is the constant determined in Lemma 3.1.

Proof It suffices to prove the estimate near E , say on T (E), a tubular neighborhood
of E , since ωt is uniformly equivalent to ω0 outside T (E). Choose coordinates charts
{Uα} covering T (E) and local coordinates {zα,i }n

i=1 such that Uα ∩ E = {zα,1 =
0}. We may assume that the cover is fine enough such that any p, q ∈ T (E) with
dω0(p, q) ≤ 1

2 must lie in the sameUα . Since we have only finitely many such Uα , we
will work on one of them only and omit the subscript α for simplicity. Furthermore the
fixed Kähler metric ω0 is uniformly equivalent to the Euclidean metric ωCn on U , so
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1154 B. Guo

without loss of generality we assume ω0 = ωCn on U . Recall that Lemma 3.1 implies
that on U\E it holds that

ωt ≤ C
ωCn

|z1|2(1−δ)
, ∀t ∈ [0, T ), (3.2)

since σX ∼ |z1|2 on U .
Take any two points p, q ∈ U with dω0(p, q) = d < 1

4 . We will consider different
cases depending on the positions of p, q.

• Case 1 p, q ∈ E . Rotating the coordinates if necessary we may assume p = 0 and
q = (0, d, 0, . . . , 0). We pick two points p̃ = (d, 0, . . . , 0) and q̃ = (d, d, 0, . . . , 0)
as shown the picture below. From (3.2), we have

dωt (p, p̃) ≤ Lωt (p p̃) ≤ C
∫ d

0

1

r1−δ
dr ≤ Cdδ,

where p p̃ denotes the (Euclidean) line segment connecting p and p̃. Similarly
dωt (q, q̃) ≤ Cdδ . On the other hand,

dωt ( p̃, q̃) ≤ Lωt ( p̃q̃) ≤ C

d1−δ
LωCn ( p̃q̃) = Cdδ.

If we denote γ = p p̃ + p̃q̃ + qq̃ to be the piecewise line segment connecting p and
q, then we have

dωt (p, q) ≤ Lωt (γ ) ≤ Cdδ = Cdω0(p, q)δ.

We remark that γ ⊂ X\E , except the two end points p, q.

• Case 2 min(dω0(p, E), dω0(q, E)) ≤ d. The (Euclidean) projections of p, q to E ,
denoted by p′, q ′, respectively, must satisfy dω0(p′, q ′) ≤ d. From the assumption it
follows that dω0(p, p′) ≤ 2d and dω0(q, q ′) ≤ 2d. By similar arguments as above
using (3.2) we have
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Kähler–Ricci flow on blowups along submanifolds 1155

dωt (p, p′) ≤ Cdδ, dωt (q, q ′) ≤ Cdδ,

and by Case 1 dωt (p′, q ′) ≤ Cdω0(p′, q ′)δ ≤ Cdδ . By triangle inequality we get the
desired estimate dωt (p, q) ≤ Cdδ .

•Case 3min(dω0(p, E), dω0(q, E)) ≥ d. Every point in the (Euclidean) line segment
pq has norm of z1-coordinates no less than d, therefore

dωt (p, q) ≤ Lωt (pq) ≤ Cd−(1−δ)LωCn (p, q) = Cdδ.

Combining the all the cases above, we finish the proof of the lemma. ��
Next we will prove the Hölder continuity of ϕt with respect to (X , ω0). To begin

with, we first prove the gradient estimate of � := (T − t)ϕ̇ + ϕ with respect to the
evolving metrics (X , ωt ) (c.f. [3]).

Lemma 3.3 There exists a uniform constant C > 0 such that

sup
X

|∇ωt �|ωt ≤ C, ∀ t ∈ [0, T ).

Proof Taking ∂
∂t on both sides of (1.2), we get

∂

∂t
ϕ̇ = �ϕ̇ + 1

T
trω(ω̂Y − ω0) = �ϕ̇ + 1

T − t
trω ω̂Y + 1

T − t
�ϕ,

where we used the equation − 1
T trω ω0 = − n

T −t + t
T (T −t) trω ω̂Y + 1

T −t �ϕ. Then we
have the equation (

∂

∂t
− �

)

� = trω ω̂Y − n ≥ −n. (3.3)

By maximum principle, it follows that infX � ≥ −C for some constant depending
also on T . Recall � is also bounded above by Lemma 2.1. And combining (3.3) with
Bochner formula the following equation holds:

(
∂

∂t
− �)|∇�|2ω = −|∇∇�|2 − |∇∇̄�|2 + 2Re

〈∇�, ∇̄ trω ω̂Y
〉
.

Fix a constant B := supX×[0,T ) |�|+2. By direct calculations the following equation
holds

(
∂

∂t
− �

) |∇�|2
B − �

=
(

∂
∂t − �

)
|∇�|2

B − �
+

|∇�|2
(

∂
∂t − �

)
�

(B − �)2
+ 2Re

〈

∇ log(B − �), ∇̄ |∇�|2
B − �

〉

= −|∇∇�|2 − |∇∇̄�|2 + 2Re
〈∇�, ∇̄ trω ω̂Y

〉

B − �
+ |∇�|2(trω ω̂Y − n)

(B − �)2

+ 2Re

〈

∇ log(B − �), ∇̄ |∇�|2
B − �

〉

. (3.4)
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1156 B. Guo

From the Eq. (2.1), we have

(
∂

∂t
− �

)
trω ω̂Y

B − �

≤ −c0|∇ trω ω̂Y |2+C

B − �
+ trω ω̂Y (trω ω̂Y −n)

(B − �)2
+2Re

〈

∇ log(B − �), ∇̄ trω ω̂Y

B − �

〉

.

(3.5)
Denote

G = |∇�|2
B − �

+ A
trω ω̂Y

B − �
, where A = 10c−1

0 .

By (3.4), (3.5) and Cauchy–Schwarz inequality we have

(
∂

∂t
− �

)

G

≤ −|∇∇�|2 − |∇∇̄�|2 − 9|∇ trω ω̂Y |2
B − �

+ CG + C + 2Re
〈∇ log(B − �), ∇̄G

〉
.

Assuming the maximum of G is attained at (x0, t0), we may assume at this point
|∇�| ≥ A, otherwise we are done yet. Then at this point

(
∂
∂t − �

)
G ≥ 0 and

∇G = 0, hence we have 2|∇�| · ∇|∇�| = −G∇� − A∇ trω ω̂Y . Taking norm on
both side we get at (x0, t0)

|G∇� + A∇ trω ω̂Y |2
2|∇�|2 = 2|∇|∇�||2 ≤ |∇∇�|2 + |∇∇̄�|2, (3.6)

where we used the Kato’s inequality in the last inequality. Therefore at (x0, t0), we
have

0 ≤ (B − �)−1
(

− 1

2
G2 + AG

|∇ trω ω̂Y |
|∇�| + A2

2|∇�|2 |∇ trω ω̂Y |2 − 9|∇ trω ω̂Y |2
)

+ CG + C

≤ − G2

4(B − �)
+ CG + C,

so at (x0, t0), G ≤ C . From this we get the desired bound on |∇�|. ��

An immediate consequence of the gradient bound is the uniform Hölder continuity
of ϕt on (X , ω0).

Corollary 3.1 There exists a uniform constant C > 0 such that

|ϕt (p) − ϕt (q)| ≤ Cdω0(p, q)δ, ∀p, q ∈ X , and ∀t ∈ [0, T ),

where δ > 0 is the same constant as in Lemma 3.1.
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Kähler–Ricci flow on blowups along submanifolds 1157

Proof Recall the definition of �, that

�t = (T − t)ϕ̇ + ϕ = (T − t)2
∂

∂t

( ϕt

T − t

)
.

By the gradient bound in Lemma 3.3 and distance estimate in Lemma 3.2, for any
fixed points p, q ∈ X , we have

|�t (p) − �t (q)| ≤ Cdωt (p, q) ≤ Cdω0(p, q)δ.

So

∣
∣
∣
∂

∂t

( ϕt

T − t

)
(p) − ∂

∂t

( ϕt

T − t

)
(q)

∣
∣
∣ ≤ Cdω0(p, q)δ

(T − t)2
, (3.7)

integrating (3.7) over t ∈ [0, t1) we get by noting that ϕ0 ≡ 0 that

∣
∣ ϕt1(p)

T − t1
− ϕt1(q)

T − t1

∣
∣ ≤ Cdω0(p, q)δ

∫ t1

0

1

(T − t)2
dt = Cdω0(p, q)δ

t1
T (T − t1)

,

cancelling the common factor 1
T −t1

on both sides we get the desired estimate since
t1 ∈ (0, T ) is arbitrarily chosen. ��
Remark 3.1 By an argument in [8], theHölder continuity ofϕt implies that the distance
functions satisfy the estimate in Lemma 3.2.

Recall that the exceptional divisor E is a CP
k−1-bundle over N and we identify

N with the zero section of this bundle. Denote the bundle map by π̂ : E → N
which is the restriction of π : X → Y to E . From Corollary 3.1, we see that the
limit ϕT ∈ P SH(X , ω̂Y ) is also Hölder continuous in (X , ω0). Since ω̂Y |π̂−1(y) = 0
for any y ∈ N , we know that ϕT |π̂−1(y) = const for each y ∈ N since π̂−1(y) is
connected. Thus ϕT descends to a bounded function in P SH(Y , ωY ), which we will
still denote by ϕT . We shall show ϕT is also Hölder continuous in (Y , ωY ) with a
possible different Hölder component.

Lemma 3.4 There exists a uniform constant C > 0 such that

|ϕT (p) − ϕT (q)| ≤ CdωY (p, q)δY , ∀ p, q ∈ Y , (3.8)

where δY = min{δ(1 − δ), δ2} ∈ (0, 1).

Proof We denote the zero section of the CP
k−1-bundle π̂ : E → N by N̂ , and

it is well-known that N̂ ∼= N . It suffices to show (3.8) for p, q in a fixed tubular
neighborhood T (N ) of N , since on Y\T (N ) the metric π∗ωY = ω̂Y is equivalent to
ω0, and the estimate follows from Corollary 3.1.

Choose coordinates charts (Vα,wα, j ) covering T (N ) such that Vα ∩ N = {wα,1 =
· · · = wα,k = 0}. We also assume that any p, q ∈ T (N ) with dωY (p, q) ≤ 1 lie in
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1158 B. Guo

the same Vα , if the charts are chosen sufficiently fine. We will work in a fixed chart
(V , wi ), and omit the subscript α. On this open set ωY is equivalent to the Euclidean
metric ωCn in (Cn, wi ), so without loss of generality, we may assume ωY = ωCn on
V . The map π : U → V can be locally expressed as

w1 = z1, w2 = z1z2, . . . , wk = z1zk, wk+1 = zk+1, . . . , wn = zn, (3.9)

where (U , zi ) is an open chart on X . The zero section N̂ can be locally expressed as
N̂ ∩ U = {z1 = · · · = zk = 0}.

We consider different cases depending on the positions of p, q in V . Denote 0 <

d = dωY (p, q) ≤ 1/4.

• Case 1 we assume p, q ∈ N . Take the unique pre-images under p̂ of p, q in N̂ ,
p̂, q̂ , respectively. We know that ϕT (p) = ϕT ( p̂) and ϕT (q) = ϕT (q̂). The line
segment pq is contained in N and similarly p̂q̂ is contained in N̂ as well. From the
local expressions (2.3) and (2.4) of ωX := π∗ωY + ε0i∂∂̄ log σX , we conclude that
dωY (p, q) = LωY (pq) is comparable to LωX ( p̂q̂), which is no less than c1dω0( p̂, q̂),
for some uniform c1 > 0. Therefore

|ϕT (p) − ϕT (q)| =|ϕT ( p̂) − ϕT (q̂)| ≤ Cdω0( p̂, q̂)δ ≤ CdωY (p, q)δ,

as desired.

• Case 2 if 0 < min{dωY (p, N ), dωY (q, N )} ≤ 2d1−δ . Take the orthogonal pro-
jections of p and q to N , p′, q ′ respectively. In other words, p′ (q ′ resp.) has
the same (wk+1, . . . , wn)-coordinates as p (q resp.) but the first k-coordinates are
zero. From the assumption we know that dωY (p, p′) = LωY (pp′) ≤ 3d1−δ and
dωY (q, q ′) = LωY (qq ′) ≤ 3d1−δ . The pull-back of the line segment pp′ under π

is also a line segment π−1(p) p̂′ in (U , zi ) connecting π−1(p) and a unique point
p̂′ ∈ π̂−1(p′) ⊂ E , and p̂′ = (0, w2

w1
, . . . ,

wk
w1

, wk+1, . . . , wn), where w j denotes the
w j -coordinate at p. It holds that ϕT (p′) = ϕT ( p̂′) since p̂′ lies at the fiber over p′.
Again from the local expressions (2.3) and (2.4) ofωX , it follows that LωX (π−1(p) p̂′)
is comparable to the length of pp′ under ωY , therefore

dω0(π
−1(q), p̂′) ≤ C LωX (π−1(p) p̂′) ≤ C LωY (pp′) ≤ Cd1−δ,

from which we derive that

|ϕT (p) − ϕT (p′)| = |ϕT (π−1(p)) − ϕT ( p̂′)| ≤ Cdω0(π
−1(p), p̂′)δ ≤ CdδY .

Similar estimate also holds for |ϕT (π−1(q)) − ϕT (q ′)|. Since p′, q ′ ∈ E and
dωY (p′, q ′) ≤ d, by Case 1 we also have |ϕT (p′) − ϕT (q ′)| ≤ Cdδ . The desired
estimate (3.8) in this case then follows from triangle inequality.

•Case3min{dωY (p, N ), dωY (q, N )} > 2d1−δ . The line segmentγ (s) = pq is strictly
away from N , in fact, σY (γ (s)) ≥ d2(1−δ). Therefore the pull-back γ̂ (s) = π−1(γ (s))
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joins π−1(p) to π−1(q) and σX (γ̂ (s)) ≥ d2(1−δ). From (2.5) that ωX ≤ C π∗ωY
σX

on
X\E we have

dω0(π
−1(p), π−1(q)) ≤ C LωX (γ̂ ) ≤ C

d1−δ
LωY (γ ) ≤ Cdδ.

Therefore

|ϕT (p) − ϕT (q)| = |ϕT (π−1(p)) − ϕT (π−1(q))| ≤ Cdω0

(
π−1(p), π−1(q)

)δ ≤ Cdδ2 ≤ CdδY ,

as desired.
Combining the cases discussed above, we finish the proof of the lemma. ��
The positive (1, 1)-form ωT = ωY + i∂∂̄ϕT defines a Kähler metric gT on Y\N ,

with the associated function d̃T : Y\N × Y\N → [0,∞) defined by

d̃T (p, q) := inf
{ ∫

γ \N

√
gT (γ ′, γ ′)| γ ⊂ Y and γ joins p to q

}

for any p, q ∈ Y\N and γ is taken over all piecewise smooth curves in Y with only
finitely many intersections with N . With this distance function, (Y\N , d̃T ) becomes
a metric space, which may not be complete. We want to extend the distance function
to the whole Y . To begin with, we need a trick from [8].

Lemma 3.5 There exists a uniform constant C > 0 such that for any p ∈ Y\N and
rp = dωY (p, N ) > 0

d̃T (p, q) ≤ CdωY (p, q)δY /2, ∀q ∈ BωY (p, rp/2).

Proof The ball B := BωY (p, rp/2) is strictly away from N so ωT is smooth on B.
The function dp(x) = d̃T (p, x) is Lipschtiz continuous and satisfies |∇dp|ωT ≤ 1
a.e.. For any r ≤ rp

2 , we have

∫

BωY (p,r)

|∇dp|2ωY
ωn

Y ≤
∫

BωY (p,r)

|∇dp|2ωT
(trωY ωT )ωn

Y

≤
∫

BωY (p,r)

(n + �ωY ϕT )ωn
Y

≤ Cr2n +
∫

BωY (p,1.5r)

|ϕT (x) − ϕT (p)||�ωY η|ωn
Y

≤ Cr2n + Cr δY +2n−2 ≤ Cr2n−2+δY ,

where η is a standard cut-off function supported in BωY (p, 1.5r) and identically equal
to 1 on BωY (p, r), and it satisfies |�ωY η| ≤ Cr−2. Then by Poincare inequality and
Campanato’s lemma (see Theorem 3.1 in [7]) we get
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d̃T (p, q) = dp(q) = |dp(q) − dp(p)| ≤ CdωY (p, q)δY /2,

for any q ∈ BωY (p, rp/2). ��
Lemma 3.6 There exist constants C > 0 and δ0 ∈ (0, 1) such that

d̃T (p, q) ≤ CdωY (p, q)δ0 , ∀p, q ∈ Y\N . (3.10)

Proof We use the same notation as in the proof of Lemma 3.4. It suffices to show
(3.10) for p, q ∈ V where V is a fixed coordinate chart in Y and recall locally the
map π : U → V is given by (3.9). Let d = dωY (p, q) < 1/4.

In case min{dωY (p, N ), dωY (q, N )} > 2d, then q ∈ BωY (p, 1
2dωY (p, N )). By

Lemma 3.5, it follows that d̃T (p, q) ≤ CdδY /2. So it only remains to consider the case
when the minimum above is ≤ 2d. Let p′, q ′ ∈ N ∩ V be the orthogonal projection
(assumingωY = ωCn ) of p, q to N , respectively. Thenmax{dωY (p, p′), dωY (q, q ′)} ≤
3d and dωY (p′, q ′) ≤ d. Choose the unique pre-images p̂, q̂ ∈ N̂ ⊂ E in the zero
section N̂ of the bundle π̂ : E → N , of p′, q ′, i.e. π̂( p̂) = p′ and π̂(q̂) = q ′. From
the local expressions (2.3) and (2.4) of ωX = π∗ωY + ε0i∂∂̄ log σX , it can be shown
that dωX ( p̂, q̂) ≤ CdωY (p′, q ′) ≤ Cd. As in the proof of Case 1 in Lemma 3.2 with
p, q in that lemma replaced by p̂, q̂ here. Recall that the piecewise line segment γ

which connects p̂ and q̂ lies outside E , except the two end points. Furthermore γ is
chosen independent of t ∈ [0, T ) and we have

∫

γ

√
gt (γ ′, γ ′) = Lωt (γ ) ≤ CdωX ( p̂, q̂)δ ≤ Cdδ, (3.11)

since gt → gT (locally) smoothly on γ \{ p̂, q̂}, letting t → T − and applying Fatou’s
lemma to (3.11), we get

∫

γ

√
gT (γ ′, γ ′) ≤ Cdδ.

Denote the image curve γ0 = π(γ ) ⊂ Y which joins p′ to q ′ and is contained in
Y\N except the end points. It follows then that LωT (γ0) ≤ Cdδ . The line segment
γ1(s) = pp′ is given by

γ1(s) = (sw1(p), . . . , swk(p), wk+1(p), . . . , wn(p)), s ∈ [0, 1]

and its pull-back to X , γ̂1(s) = π−1(γ (s)) is locally given by

γ̂1(s) = (sw1(p),
w2(p)

w1(p)
, . . . ,

wk(p)

w1(p)
, wk+1(p), . . . , wn(p)), s ∈ [0, 1].

By the estimate in Lemma 3.1, it follows that

∫

γ̂1

√

gt (γ̂
′
1, γ̂

′
1) ≤ C

∫

γ̂1

√
gX (γ̂ ′

1, γ̂
′
1)

s2(1−δ)|w(p)|2(1−δ)
≤ C

∫

γ̂1

√
π∗ωY (γ̂ ′

1, γ̂
′
1)

s1−δ |w(p)|1−δ
≤ C |w(p)|δ ≤ Cdδ,
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where w(p) = (w1(p), . . . , wk(p)). By Fatou’s lemma and letting t → T −, we get

LωT (γ1) =
∫

γ̂1

√

gT (γ̂ ′
1, γ̂

′
1) ≤ Cdδ.

Similarly the line segment γ2 = qq ′ also have LωT (γ2) ≤ Cdδ . Now we define a
piecewise smooth curve

γ̄ = γ1 + γ0 + γ2,

which joins p to q and lies entirely outside N , except the two points p′ and q ′. And
combining the estimates above we get

LωT (γ̄ ) = LωT (γ1) + LωT (γ0) + LωT (γ2) ≤ Cdδ.

Then by definition

d̃T (p, q) ≤ LωT (γ̄ ) ≤ Cdδ = CdωY (p, q)δ.

From the discussions above, (3.10) follows for δ0 = min(δY /2, δ). ��
We now extend the distance function d̃T to Y , for any p ∈ Y\N and q ∈ N , we

define the distance
dT (p, q) := lim

i→∞ d̃T (p, qi ), (3.12)

where {qi } ⊂ Y\N is a sequence of points such that dωY (q, qi ) → 0. We need to
justify dT is well-defined, i.e. the limit exists and is independent of the choice of the
sequence {qi }.
Lemma 3.7 The limit in (3.12) exists and for any other sequence {q ′

i } ⊂ Y\N con-
verging to q in (Y , ωY ), the following holds

lim
i→∞ d̃T (p, qi ) = lim

i→∞ d̃T (p, q ′
i ).

Proof This is in fact an immediate consequence of Lemma 3.6. Observe that

|d̃T (p, qi ) − d̃T (p, q j )| ≤ d̃T (qi , q j ) ≤ CdωY (qi , q j )
δ0 → 0, as i, j → ∞.

Thus {d̃T (p, qi )}∞i=1 is a Cauchy sequence hence it converges. On the other hand,
similarly we have

|d̃T (p, qi ) − d̃T (p, q ′
i )| ≤ CdωY (qi , q ′

i )
δ → 0, as i → ∞,

and it then follows that the limit is independent of the choice of {qi } converging
to q. ��
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We then define the distance between points in N as follows: for any p, q ∈ N

dT (p, q) := lim
i→∞ d̃T (pi , qi ),

for two sequences Y\N ⊃ {pi } → p and Y\N ⊃ {qi } → q under dωY . It can be
checked similar as Lemma 3.7 that the limit exists and is independent of the choice of
sequences converging to p or q. Thus (Y , dT ) defines a compact metric space, since
dT (p, q) ≤ CdωY (p, q)δ0 for any p, q ∈ Y , which follows from Lemma 3.6.

We now turn to the Gromov–Hausdorff (GH) convergence of the flow. The proof
is motivated by [15] (see also [3,5,29]).

Lemma 3.8 For any ti → T −, there exists a subsequence which we still denote by {ti }
such that as compact metric spaces

(X , ωti )
dG H−−→ (Z , dZ )

for some compact metric space (Z , dZ ).

Proof For any ε > 0, we choose an ε-net {x j }Ni,ε
j=1 ⊂ (X , ωti ), in the sense that

dωti
(x j , x j ′) > ε and the open balls {Bωti

(x j , 2ε)} j cover (X , ωti ). From Lemma 3.2,
we have

ε < dωto
(x j , x j ′) ≤ Cdω0(x j , x j ′)

δ,

thus under the fixedmetric dω0 , each pair of points (x j , x j ′) from the ε-net has distance
at least C−1/δε1/δ , thus the balls {Bω0(x j , C−1/δε1/δ/2)} j are disjoint, so for some
c > 0

Ni,εcε1/δ
2n =

Ni,ε∑

j=1

cε1/δ
2n ≤

∫

∪ j Bω0 (x j ,C−1/δε1/δ/2)
ωn
0 ≤

∫

X
ωn
0 ,

from which we derive an upper bound of Ni,ε ≤ Nε , which is independent of i .
Then by Gromov’s precompactness theorem [4], there exists a compact metric space

(Z , dZ ), such that up to a subsequence (X , ωti )
dG H−−→ (Z , dZ ). ��

Lemma 3.9 There exists an open and dense subset Z◦ ⊂ Z such that (Z◦, dZ ) and
(Y\N , dT ) are homeomorphic and locally isometric.

Proof For notational convenience we denote Y ◦ = Y\N . The maps πi = π :
(X , ωti ) → (Y , ωY ) are Lipschitz by the estimate π∗ωY ≤ Cωti as in (ii) of
Lemma 2.2. The target space (Y , ωY ) is compact, so by Arzela–Ascoli theorem up

to a subsequence of {ti }, along the GH convergence (X , ωti )
dG H−−→ (Z , dZ ), the maps

πi
G H−−→ πZ , for some map πZ : (Z , dZ ) → (Y , ωY ), in the sense that for any

(X , ωti ) � xi
dG H−−→ z ∈ Z , πi (xi )

dωY−−→ πZ (z) in Y . πZ is also Lipschitz from (Z , dZ )
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to (Y , ωY ), i.e. dωY (πZ (z1), πZ (z2)) ≤ CdZ (z1, z2) for any z1, z2 ∈ Z . We denote
Z◦ = π−1

Z (Y ◦), and we will show that πZ |Z◦ : (Z◦, dZ ) → (Y ◦, dT ) is homeomor-
phic and locally isometric, and Z◦ ⊂ Z is open and dense. The openness of Z◦ ⊂ Z
follows from the continuity of the map πZ : (Z , dZ ) → (Y , dωY ) and the fact that
Y ◦ ⊂ Y is open.

• πZ |Z◦ is injective: suppose z1, z2 ∈ Z◦ = π−1
Z (Y ◦) are mapped to the same

point y ∈ Y ◦, πZ (z1) = πZ (z2) = y. Since (Y ◦, ωT ) is an incomplete smooth
Riemannian manifold and locally in Y ◦, dT is induced from the Riemannian met-
ric, we can find a small r = ry > 0 such that the metric ball (BωT (y, 2r), ωT ) is
geodesically convex. Choose two sequence of points z1,i , z2,i ∈ (X , ωti ) converg-

ing in GH sense to z1, z2 ∈ Z , respectively. From the convergence of πi
G H−−→ πZ ,

we obtain dωY (πi (z1,i ), πZ (z1))
i→∞−−−→ 0 and dωY (πi (z2,i ), πZ (z2))

i→∞−−−→ 0. By
Lemma3.6, the same limits holdwith dωY replaced by dT . In particular this implies that

dT (πi (z1,i ), πi (z2,i ))
i→∞−−−→ 0 and both πi (z1,i ) and πi (z2,i ) lie inside BωT (y, r/2)

when i is large enough. We can find ωT -geodesics γi ⊂ BωT (y, r) connecting
πi (z1,i ) and πi (z2,i ), and by the uniform and smooth convergence of ωti → ωT

on π−1(BωT (y, 2r)), it follows that

0 ≤ dωti
(z1,i , z2,i ) ≤ Lωti

(γ̂i ) ≤ LωT (γi ) + εi =dT (π(z1,i ), πi (z2,i )) + εi
i→∞−−−→ 0,

where γ̂i = π−1(γi ) is a curve joining z1,i to z2,i and {εi } is a sequence tending to
zero. From the definition of GH convergence we see that

dZ (z1, z2) = lim
i→∞ dωti

(z1,i , z2,i ) = 0.

Hence z1 = z2 and πZ |Z◦ is injective.

• πZ |Z◦ : (Z◦, dZ ) → (Y ◦, dT ) is a local isometry. We first explain what the local
isometry means. It says that for any z ∈ Z◦ and y = πZ (z) ∈ Y ◦, we can find open
sets z ∈ U ⊂ Z◦ and y ∈ V ⊂ Y ◦ such that πZ |U : (U , dZ ) → (V , dT ) is an
isometry.

There exists a small r = ry > 0 such that the metric ball (BωT (y, 3r), ωT ) ⊂ Y ◦
and is geodesically convex. Take U = (πZ |Z◦)−1(BωT (y, r)). Since BωT (y, r) is
also open in (Y , ωY ), it can be seen that U is open in Z◦ and is a neighborhood of
z ∈ Z◦. We will show πZ |U : (U , dZ ) → (BωT (y, r), ωT ) is an isometry, i.e. for any
z1, z2 ∈ U , and y1 = πZ (z1), y2 = πZ (z2), we have dZ (z1, z2) = dT (y1, y2).

We choose sequences of points z1,i , z2,i ∈ (X , ωti ) converging in GH sense to

z1, z2, respectively, as before. It then follows from πi
G H−−→ πZ and Lemma 3.6 that

dT (πi (za,i ), ya) → 0 as i → ∞, for each a = 1, 2. In particular when i is large
enough, πi (za,i ) ∈ BωT (y, 1.1r). Choose a minimal ωti -geodesic γ̂i joining z1,i to
z2,i , and we have

dωti
(z1,i , z2,i ) = Lωti

(γ̂i )
i→∞−−−→ dZ (z1, z2).
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Denote the image γi = πi (γ̂i )which is a continuous curve joining πi (z1,i ) to πi (z2,i ).
Ifγi ⊂ BωT (y, 3r) (for a subsequence of i), sinceωti converge smoothly anduniformly

to ωT on the compact subset π−1(BωT (y, 3r)), it follows

dT (πi (z1,i ), πi (z2,i )) ≤ LωT (γi ) ≤ Lωti
(γ̂i ) + εi

i→∞−−−→ dZ (z1, z2).

In case γi �⊂ BωT (y, 3r) for i large enough, we have

dT (πi (z1,i ), πi (z2,i )) ≤ 2.5r ≤ LωT (γi ∩ BωT (y, 3r))

≤ Lωti
(γi ) + εi

i→∞−−−→ dZ (z1, z2).

Observe that dT (πi (z1,i ), πi (z2,i ))
i→∞−−−→ dT (πZ (z1), πZ (z2)) = dT (y1, y2). So by

the discussion in both cases, it follows that dT (y1, y2) ≤ dZ (z1, z2). To see the reverse
inequality, by the geodesic convexity of (BωT (y, 3r), ωT ), we can find minimal ωT -
geodesics σi ⊂ BωT (y, 3r) connecting πi (z1,i ) and πi (z2,i ) for i large enough. The
pull-back σ̂i = π−1(σi ) ⊂ BωT (y, 3r) joins z1,i to z2,i , again by the local smooth
convergence of ωti to ωT , we have

dωti
(z1,i , z2,i ) ≤ Lωti

(σ̂i ) ≤ LωT (σi ) + εi

= dT (πi (z1,i ), πi (z2,i )) + εi
i→∞−−−→ dT (y1, y2),

letting i → ∞ we get dZ (z1, z2) ≤ dT (y1, y2). Thus we show that dZ (z1, z2) =
dT (y1, y2), as desired.

• πZ |Z◦ is surjective. This follows from the definition. Indeed, for any y ∈ Y ◦, take
z = zi = π−1(y) ∈ (X , ωti ), up to a subsequence zi

dG H−−→ z0 ∈ Z . Since πi
G H−−→ πZ ,

we get dωY (y, πZ (z0)) = dωY (πi (zi ), πZ (z0)) → 0 as i → ∞. So πZ (z0) = y and
z0 ∈ Z◦ is the pre-image of y under πZ |Z◦ .

Combining the discussions above, we see that πZ |Z◦ : (Z◦, dZ ) → (Y ◦, dT ) is a
bijection and thus a homeomorphism (noting that the continuity of the maps πZ |Z◦
and (πZ |Z◦)−1 follow from the local isometry property).

It only remains to show Z◦ ⊂ Z is dense. Suppose not, there exists a point z0 ∈
Z such that BdZ (z0, ε̄) ⊂ Z\Z◦ for some ε̄ > 0. Choose a sequence of points

xi ∈ (X , ωti ) such that xi
dG H−−→ z0. We claim that dωti

(xi , E) → 0 as i → ∞,
where E is the exceptional divisor of the blown-down map π : X → Y . If not, then
dωti

(xi , E) ≥ a0 > 0 for a sequence of large i’s, by Lemma 3.2, under the fixed

metric w0, dω0(xi , E) ≥ C−1/δa1/δ
0 > 0, thus {xi } ⊂ K , for some compact subset

K � X\E . It then follows that πi (xi ) ∈ π(K ) � Y ◦, and this contradicts the fact
that dωY (πi (xi ), πZ (z0)) → 0 and πZ (z0) /∈ Y ◦. Therefore, we may assume without
loss of generality that xi ∈ E for all i . Moreover, from Lemma 3.10 below, we may
replace xi ∈ E by the point in the same fiber as xi of the CPk−1-bundle π̂ : E → N
and the zero section N̂ . So we can assume in addition that xi ∈ N̂ . Denote the points
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yi = πi (xi ) ∈ N and y0 = πZ (z0) ∈ N . From πi
G H−−→ πZ and xi

dG H−−→ z0, we have
dωY (yi , y0) → 0 as i → ∞.

We may choose a coordinates chart (V , w j ) as before, which is centered at y0 and
contains all but finitely many yi , and N ∩ V = {w1 = · · · = wk = 0}. We take an
open set (U , z j ) over (V , w j ), such that the map π : U → V is expressed as in (3.9).
We fix a point p ∈ V \N whose w-coordinate is w(p) = (r , 0, . . . , 0) for some r > 0
to be determined. Take p̂ = π−1(p) and its z-coordinate is z( p̂) = (r , 0, . . . , 0).
The point(s) p̂i = p̂ ∈ (X , ωti ) converge (up to a subsequence) in GH sense to some
point pZ ∈ Z , and as above, we have dωY (p, πZ (pZ )) = dωY (πi ( p̂i ), πZ (pZ )) → 0
as i → ∞, so p = π(pZ ) ∈ Y ◦ and pZ ∈ Z◦. From the assumption we have
dZ (z0, pZ ) ≥ ε̄ > 0. On the other hand, by the local expressions (2.3) and (2.4) of
ωX = π∗ωY +ε0i∂∂̄ log σX , we find that line segments p̂ẑ0+ ẑ0xi in (U , z j ) haveωX -
length≤ Cr +εi for some sequence εi → 0, where we denote ẑ0 = π−1(p0)∩ N̂ , i.e.
ẑ0 is the origin in (U , z j ). Sodω0( p̂i , xi ) ≤ C(r+εi ) andbyLemma3.2,dωti

( p̂i , xi ) ≤
C(r + εi )

δ . Letting i → ∞ we get dZ (pZ , z0) ≤ Cr δ . If we choose r small such that
Cr δ = ε̄/2, we would get a contradiction. Therefore Z◦ ⊂ Z is dense. ��

By exactly the same proof of Lemma 3.2 in [20], we have

Lemma 3.10 There is a uniform constant C > 0 such that

diam(π̂−1(y), ωt ) ≤ C(T − t)1/3, ∀t ∈ [0, T ), and ∀y ∈ N .

That is to say, the diameters of the fibers of π̂ : E → N degenerate at a uniform rate
as O((T − t)1/3).

Lemma 3.11 The map πZ : (Z , dZ ) → (Y , dT ) is a homeomorphism.

Note that the target space is equipped with the metric dT , not the metric dωY .

Proof From Lemma 3.6, we get for any z1, z2 ∈ Z

dT (πZ (z1), πZ (z2)) ≤ CdωY (πZ (z1), πZ (z2))
δ0 ≤ CdZ (z1, z2)

δ0 ,

so the map πZ : (Z , dZ ) → (Y , dT ) is continuous.

• πZ is injective. Suppose z1, z2 ∈ Z satisfies πZ (z1) = πZ (z2) = y ∈ Y . If
y ∈ Y ◦, then z1, z2 ∈ Z◦, z1 = z2 by the injectivity of πZ |Z◦ . So we only need
to consider the case y ∈ Y\Y ◦ = N and thus z1, z2 ∈ Z\Z◦. Pick sequences of
points x1,i , x2,i ∈ (X , ωti ) converging in GH sense to z1, z2, respectively. By similar
arguments as in the proof of Lemma 2.3, without loss of generality we can assume
x1,i , x2,i ∈ N̂ ⊂ E . Denote y1,i = π(x1,i ) and y2,i = π(x2,i ). We then have

dωY (y1,i , y) = dωY (πi (x1,i ), πZ (z1))
i→∞−−−→ 0,

and similarly dωY (y2,i , y) → 0 as well, and this implies that dωY (y1,i , y2,i ) → 0.
Since x1,i and x2,i are both in the zero section N̂ , from the local expressions (2.3) and
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(2.4) of the metric ωX = π∗ωY + ε0i∂∂̄ log σX , we see that dωX (x1,i , x2,i ) → 0 as
i → ∞. Then by Lemma 3.2 again, we get dωti

(x1,i , x2,i ) ≤ CdωX (x1,i , x2,i )δ → 0.
Letting i → ∞ we get dZ (z1, z2) = 0, thus z1 = z2. This proves the injectivity of
πZ .

• πZ is surjective. This follows from the definition. In fact, we only need to show any
p ∈ Y\Y ◦ = N lies in the image of πZ . We fix the point p̂ ∈ N̂ with π̂( p̂) = p.
p̂i = p̂ ∈ (X , ωti ) converge up to subsequence in GH sense to a point pZ ∈ Z . Then

dωY (p, πZ (pZ )) = dωY (πi ( p̂i ), πZ (pZ )) → 0 by definition of πi
G H−−→ πZ . It then

follows that πZ (pZ ) = p.
Thus, πZ : (Z , dZ ) → (Y , dT ) is bijective and continuous. It is also a homeomor-

phism since (Z , dZ ) is compact. ��
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