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Abstract
We prove Fuglede’s conjecture in Qp which states that a Borel set of positive and
finite Haar measure in Qp is a spectral set if and only if it tiles Qp by translations.

Mathematics Subject Classification Primary 43A99; Secondary 05B45 · 26E30

1 Introduction

Let G be a locally compact abelian group and ̂G its dual group. Denote by m (some-
times by dx) the Haar measure on G. Consider a Borel measurable subset � in G
with 0 < m(�) < ∞. We say that � is a tile of G by translations if there exists a set
T ⊂ G of translates such that

∑

t∈T 1�(x − t) = 1 for almost all x ∈ G, where 1A
denotes the indicator function of a set A. The set T is then called a tiling complement
of � and (�, T ) is called a tiling pair.

In the case of G = R considered as an additive group, compact sets of positive
measure that tile R by translations were extensively studied [1,29,33]. The simplest
case concerns compact sets consisting of finite number of unit intervals all of whose
endpoints are integers. This tiling problem can be reformulated in terms of finite
subsets of Z which tile the group Z. See [37] for references on the study of tiling
problem in the group Z. There are also investigations on the existence of tiles having
infinitely many connected components. A large class of such tiles arises from self-
similar constructions by Bandt [4], Gröchenig and Haas [14], Kenyon [27], Lagarias
andWang [32] et al. A structure theorem for bounded tiles inR is obtained by Lagarias

Communicated by A. Venkatesh.

A. H. FAN was supported by NSF of China (Grant no. 11471132); S. L. FAN was supported by NSF of
China (Grant no. 11401236) and Fundamental Research Funds for the Central Universities (Grant no.
CCNU19QN076).

B Aihua Fan
ai-hua.fan@u-picardie.fr

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-019-01867-8&domain=pdf
http://orcid.org/0000-0001-6723-1362


316 A. Fan et al.

andWang in [33] where it is proved that all tilings of R by a bounded region (compact
set with zero boundary measure) must be periodic, and that the corresponding tiling
complements are rational up to affine transformations.

As we shall see, the tiles in the field Qp of p-adic numbers have relatively simple
structures. By an almost compact open set we mean a Borel set � ⊂ Qp such that
there exists a compact open set �′ satisfying

m(�\�′) = m(�′\�) = 0.

One of our main results, stated below, concerns with the structure of tiles in Qp.

Theorem 1.1 Assume that � ⊂ Qp is a Borel set of positive and finite Haar measure.
If � tiles Qp by translations, then it is an almost compact open set.

In [8], it is proved that any bounded tile of Qp is an almost compact open set. The
proof in [8] is different from the one in the present paper. Without using the theory of
distributions, that proof is more direct and easily understandable. But the boundedness
is assumed as an extra condition.

We say that a Borel set � ⊂ G of positive and finite Haar measure is a spectral set
if there exists a set � ⊂ ̂G which is an orthonormal basis of the Hilbert space L2(�).
Such a set � is called a spectrum of � and (�,�) is called a spectral pair.

When G = Rn , Fuglede [12] formulated the following conjecture: A Borel set
� ⊂ Rn of positive and finite Lebesguemeasure is a spectral set if and only if it is a tile.
Fuglede [12] proved the conjecture inRd under the extra assumption that the spectrum
or the tiling complement is a lattice of Rd . There are many positive results under
different extra assumptions before the work [39] where Tao gave a counterexample:
there exists a spectral subset of Rd with d ≥ 5 which is not a tile. After that, Matolcsi
[28], Matolcsi and Kolountzakis [22,23], Farkas and Révész [10], Farkas, Matolcsi
and Móra [11] gave a series of counterexamples which show that both directions
of Fuglede’s conjecture fail in Rd(d ≥ 3). However, the conjecture is still open in
low dimensions d = 1, 2. There has been an effort to prove or disprove Fuglede’s
conjecture in R and R2, or for special classes of subsets of Rn like unions of intervals
[5,6,30,31] and convex bodies [15,26].

The Fuglede’s conjecture can be generalized to locally compact abelian groups: A
Borel set � ⊂ G of positive and finite Haar measure is a spectral set if and only if it is
a tile. In its generality, this generalized conjecture is not true. We could rather ask for
which groups it holds. The question arises even for finite groups. The counterexamples
inRd , d ≥ 3 are actually constructed, based on counterexamples in finite groups. Some
substantial works have been done for some finite groups [2,13,16,24,25,35].

Let p ≥ 2 be prime and Qp be the field of p-adic numbers. In the present paper,
we will prove that Fuglede’s conjecture in Qp holds.

Theorem 1.2 Assume that � ⊂ Qp is a Borel set of positive and finite Haar measure.
Then � is a spectral set if and only if it is a tile of Qp.

In [9], the assertion in Theorem 1.2 was proved under the additional assumption
that � is a compact open set in Qp, and furthermore, the compact open spectral sets
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Fuglede’s conjecture holds inQp 317

were characterized by their p-homogeneity (see the definition of p-homogeneity in
Section 1 of [9]).

Theorem 1.3 [9, Theorem 1.1] Let � be a compact open set in Qp. The following
statements are equivalent:

(1) � is a spectral set;
(2) � tiles Qp by translations;
(3) � is p-homogenous.

Theorems 1.1 and 1.3 are two main steps towards the proof of Fuglede’s conjecture
in Qp. Actually, by Theorems 1.1 and 1.3, to prove Theorem 1.2, it suffices to prove
“� is a spectral set �⇒ � is a tile”.

As pointed out in [7, Proposition 3.1], which follows from [17], that (�,�) is a
spectral pair in Qp is equivalent to

∀ξ ∈ ̂Qp,
∑

λ∈�

|̂1�|2(ξ − λ) = m(�)2, (1.1)

where ̂1� is the Fourier transform of 1�. By definition, (�, T ) is a tiling pair of Qp

means that

∑

t∈T
1�(x − t) = 1, m-a.e. x ∈ Qp. (1.2)

A subset E ofQp is said to be uniformly discrete if E is countable and infx,y∈E |x−
y|p > 0, where | · |p denotes the p-adic absolute value on Qp. Remark that if E is
uniformly discrete, then Card(E ∩ K ) < ∞ for any compact subset K of Qp so that

μE =
∑

λ∈E
δλ (1.3)

defines a discrete Radon measure. Observe that both (1.1) and (1.2) are of the form

μE ∗ f = w, (1.4)

where f is a non-negative integrable function and w > 0 is a positive number. Actu-
ally, both spectrum � and tiling complement T in Qp are uniformly discrete (see
Proposition 2.3). The above convolution equation (1.4) will be our main concern.

Our proofs of Theorems 1.1 and 1.2 will be based on the analysis of the set of
zeros of the Fourier transforms μ̂� and μ̂T , where both μ� and μT are considered
as Bruhat–Schwartz distributions and their Fourier transforms μ̂� and μ̂T are also
Bruhat–Schwartz distributions.

The article is organized as follows. In Sect. 2, we present preliminaries on the field
Qp of p-adic numbers and on the Z-module generated by the pn-th roots of unity.
Some useful facts from the theory of Bruhat–Schwartz distributions are also presented.
It is proved that a particular structure is shared by the set of zeros of μ̂E for all uniform
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318 A. Fan et al.

discrete sets E . In Sect. 3, we study the functional equation μE ∗ f = 1 under the
assumption that E is uniformly discrete and f is a non null and non-negative integrable
function. Such a relation has strong constraints on f and on E . For example, we prove
that ̂f has compact support. Section 4 is devoted to the proof that tiles in Qp are all
almost compact open and spectral sets in Qp are all almost bounded. It is then proved
that tiles in Qp are spectral sets. The proof that spectral sets in Qp are tiles is given
in Sect. 5. In the last section, we prove the dual Fuglede’s conjecture in Qp and give
some remarks on the case of higher dimensions.

2 Preliminaries

Our study on the Fuglede’s conjecture on Qp is strongly related to the following
functional equation

μE ∗ f = 1 (2.1)

where E ⊂ Qp is a uniformly discrete set and f ∈ L1(Qp) is a non-negative integrable
function such that

∫

Qp
f dm > 0.

The convolution in (2.1) is understood as a convolution of Bruhat–Schwartz distri-
butions and even as a convolution in the Colombeau algebra of generalized functions.
One of reasons is that the Fourier transform of the infinite Radon measure μE is not
defined for the measure μE but for the distribution μE . Both spectral sets and tiles are
characterized by special cases of the equation (2.1). In fact, (1.1) means that a spectral
pair (�,�) is characterized by (2.1) with f = m(�)−2|̂1�|2 and E = �; (1.2) means
that a tiling pair (�, T ) is characterized by (2.1) with f = 1� and E = T .

In this section, after having presented some basic facts like the Lebesgue density
theorem, the uniform discreteness of spectrum and of tiling complement etc, we will
recall some result from [36] on the Z-module generated by pn-th roots of unity, which
is a key for our study. Thenwewill present someuseful facts from the theory ofBruhat–
Schwartz distributions and from the theory of the Colombeau algebra of generalized
functions. At the end, we will investigate the set of zeros of the Fourier transform μ̂E .

2.1 The fieldQp of p-adic numbers

Westartwith a quick recall of p-adic numbers. Consider the fieldQ of rational numbers
and a prime p ≥ 2. Any nonzero number r ∈ Q can be written as r = pv a

b where
v, a, b ∈ Z and (p, a) = 1 and (p, b) = 1 [here (x, y) denotes the greatest common
divisor of the two integers x and y]. We define |r |p = p−vp(r) for r �= 0 and |0|p = 0.
Then | · |p is a non-Archimedean absolute value. That means

(i) |r |p ≥ 0 with equality only when r = 0;
(ii) |rs|p = |r |p|s|p;
(iii) |r + s|p ≤ max{|r |p, |s|p}.
The field Qp of p-adic numbers is the completion of Q under | · |p. The ring Zp of
p-adic integers is the set of p-adic numbers with absolute value≤ 1. A typical element
x of Qp is of the form
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x =
∞
∑

n=v

an p
n (v ∈ Z, an ∈ {0, 1, . . . , p − 1} and av �= 0). (2.2)

Here, vp(x) := v is called the p-valuation of x .
A non-trivial additive character on Qp is defined by

χ(x) = e2π i{x}

where {x} = ∑−1
n=vp(x)

an pn is the fractional part of x in (2.2). From this character
we can get all characters χξ of Qp, by defining χξ (x) = χ(ξ x). We remark that

χ(x) = e2π ik/p
n
, if x ∈ k

pn
+ Zp (k, n ∈ Z), (2.3)

and
∫

p−nZp

χ(x)dx = 0 for all n ≥ 1. (2.4)

The map ξ �→ χξ from Qp to ̂Qp is an isomorphism. We write ̂Qp � Qp and
identify a point ξ ∈ Qp with the point χξ ∈ ̂Qp. For more information on Qp and
̂Qp, the reader is referred to the book [40].

The following notation will be used in the whole paper.

Notation:

• Z×
p := Zp\pZp = {x ∈ Qp : |x |p = 1}, the group of units of Zp.

• B(0, pn) := p−nZp, the (closed) ball centered at 0 of radius pn .
• B(x, pn) := x + B(0, pn).
• S(x, pn) := B(x, pn)\B(x, pn−1), a “sphere”.
• L := {{x} : x ∈ Qp}, a complete set of representatives of the cosets of the additive
subgroup Zp.

• Ln := p−nL.

The Lebesgue density theorem holds in Qp for the Haar measure.

Proposition 2.1 [34] Let � ⊂ Qp be a bounded Borel set such that m(�) > 0. Then

lim
n→∞

m(B(x, p−n) ∩ �)

m(B(x, p−n))
= 1, m-a.e. x ∈ �.

2.2 Fourier Transform

The Fourier transform of f ∈ L1(Qp) is defined to be

̂f (ξ) =
∫

Qp

f (x)χξ (x)dx (∀ξ ∈ ̂Qp � Qp).
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320 A. Fan et al.

A complex function f defined on Qp is called uniformly locally constant if there
exists n ∈ Z such that

f (x + u) = f (x) ∀x ∈ Qp,∀u ∈ B(0, pn).

The following proposition shows that for an integrable function f , having compact
support and being uniformly locally constant are dual properties for f and its Fourier
transform.

Proposition 2.2 Let f ∈ L1(Qp) be a complex-value integrable function.

(1) If f has compact support, then ̂f is uniformly locally constant.
(2) If f is uniformly locally constant, then ̂f has compact support.

Proof (1) Suppose that f is supported in B(0, pn). For any x ∈ Qp and any u ∈
B(0, p−n), we have

̂f (ξ + u) − ̂f (ξ) =
∫

B(0,pn)
f (y)χ(ξ y)(χ(uy) − 1)dy.

Notice that if y ∈ B(0, pn), we have |uy|p ≤ 1. So by (2.3),

χ(uy) − 1 = 0.

Therefore, ̂f (ξ + u) − ̂f (ξ) = 0 for all u ∈ B(0, p−n). Thus ̂f is uniformly
locally constant.

(2) Suppose that f (x + u) = f (x) for any x ∈ Qp and any u ∈ B(0, pn). Observing

Qp = Ln + B(0, pn) =
⋃

z∈Ln

B(z, pn),

we deduce

̂f (ξ) =
∑

z∈Ln

∫

B(z,pn)
f (y)χ(ξ y)dy =

∑

z∈Ln

f (z)
∫

B(z,pn)
χ(ξ y)dy.

By (2.4), we have
∫

B(z,pn) χ(ξ y)dy = 0 for |ξ |p > p−n . Therefore, ̂f (ξ) = 0 for

|ξ |p > p−n .
��

The above proposition is the key which will allow us to prove that a tile � in Qp

is an almost compact open set [see Theorem 4.1 (2)], by showing that the support of
̂1� is compact (see Proposition 3.3). Consequently, a tile is a spectral set by Theorem
1.3.

Now we prove that the spectra and tiling complements are always uniformly dis-
crete.
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Proposition 2.3 Let � ⊂ Qp be a Borel set of positive and finite Haar measure.

(1) If (�,�) is a spectral pair, then � is uniformly discrete.
(2) If (�, T ) is a tiling pair, then T is uniformly discrete.

Proof (1) By the fact ̂1�(0) = m(�) > 0 and the continuity of the function ̂1�, there
exists an integer n0 such that ̂1�(x) �= 0 for all x ∈ B(0, pn0). This, together with
the orthogonality

̂1�(λ − λ′) = 0 ∀ λ, λ′ ∈ � distinct,

implies that |λ − λ′|p > pn0 for different λ, λ′ ∈ �.
(2) Consider the continuous function on Qp defined by

f (x) := 1� ∗ 1−�(x) =
∫

Qp

1�(y)1�(y − x)dy = m(� ∩ (� + x)).

The fact f (0) = m(�) > 0 and the continuity of f imply that there exists an
integer n0 such that

m(� ∩ (� + t)) > 0, for t ∈ B(0, pn0). (2.5)

For different t ∈ T and t ′ ∈ T , the tiling property impliesm((�+t)∩(�+t ′)) = 0.
So

m(� ∩ (� + t − t ′)) = m((� + t) ∩ (� + t ′)) = 0

by the translation invariance of m. Thus we must have |t − t ′|p > pn0 , by (2.5).
��

2.3 Z-module generated by pn-th roots of unity

Let m ≥ 2 be an integer and let ωm = e2π i/m , which is a primitive m-th root of unity.
Denote by Mm the set of integral points (a0, a1, . . . , am−1) ∈ Zm such that

m−1
∑

j=0

a jω
j
m = 0.

The set Mm is clearly a Z-module. In the following we assume that m = pn is a
power of a prime number.

Lemma 2.4 [36, Theorem 1] If (a0, a1, . . . , apn−1) ∈ Mpn , then for any integer
0 ≤ i ≤ pn−1 − 1 we have ai = ai+ j pn−1 for all j = 0, 1, . . . , p − 1.

Lemma 2.4 has the following two special forms. The first one is an immediate
consequence.
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Lemma 2.5 Let (b0, b1, . . . , bp−1) ∈ Zp. If
∑p−1

j=0 e
2π ib j /pn = 0, then subject to a

permutation of (b0, . . . , bp−1), there exists 0 ≤ r ≤ pn−1 − 1 such that

b j ≡ r + j pn−1 (mod pn)

for all j = 0, 1, . . . , p − 1.

Lemma 2.6 [9, Lemma 2.5] Let C be a finite subset of Z. If
∑

c∈C e2π ic/p
n = 0,

then p |Card(C) and C is decomposed into Card(C)/p disjoint subsets C1,C2, . . . ,

CCard(C)/p, such that each C j consists of p points and

∑

c∈C j

e2π ic/p
n = 0.

Now applying Lemmas 2.5 and 2.6, we have the following lemma which will be
useful in the paper.

Lemma 2.7 Let C ⊂ Qp be a finite set.

(1) If
∑

c∈C χ(c) = 0, then p |Card(C) and
∑

c∈C χ(xc) = 0 for any x ∈ Z×
p (i.e.

|x |p = 1).
(2) If there exists ξ ∈ Qp such that

∑

c∈C χ(ξc) = 0, then for any c ∈ C, there exists
c′ ∈ C such that |c − c′|p = p/|ξ |p.

(3) If there exists a finite set I ⊂ Z such that

∑

c∈C
χ(pi c) = 0 for all i ∈ I, (2.6)

then pCard(I) |Card(C).

Proof (1) It is a direct consequence of Lemmas 2.5 and 2.6. See [9, Lemma 2.6] for
details.

(2) Let C = {c1, c2, . . . , cm}. Recall that χ(ξc) = e2π i{ξc}. There exist an integer n
and a subset {n1, n2, . . . , nm} of Z such that

χ(ξck) = e2π ink/p
n
, k = 1, 2, . . . ,m.

By Lemma 2.6, p|Card(C) and C is decomposed into Card(C)/p disjoint subsets
C1, . . . ,CCard(C)/p, such that each C j consists of p points and

∑

c∈C j

χ(ξc) = 0.

Without loss of generality, assume that c ∈ C1. By Lemma 2.5, we have

|c − c′|p = p

|ξ |p , if c′ ∈ C1\{c}.
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(3) Assume that I = {i1, i2, . . . , in} with i1 < i2 < · · · < in . By Lemma 2.6 and the
equality (2.6) with i = i1, we have p | Card(C) and C can be decomposed into
Card(C)/p subsets C1,C2, . . . ,CCard(C)/p such that each C j consists of p points
and

∑

c∈C j

χ(pi1c) = 0.

By Lemma 2.5, if c and c′ lie in the same C j , we have

|c − c′|p = p1+i1 . (2.7)

Now we consider the equality (2.6) when i = i2. Since i1 < i2, (2.7) and (2.3)
imply that the function

c �→ χ(pi2c)

is constant on eachC j . From eachC j , take one element c̃ j . Let ˜C be the set consisting
of these c̃ j .

Since each C j contains p elements, the equality (2.6) with i = i2 is equivalent to
∑

c̃∈˜C

χ(pi2c) = 0.

By Lemma 2.6, p | Card(˜C), which implies p2 | Card(C). By induction, we get
pn |Card(C). ��

2.4 Bruhat–Schwartz distributions inQp

Here we give a brief description of the theory of Bruhat–Schwartz distributions fol-
lowing [3,38,40]. Let E denote the space of the uniformly locally constant functions.
The space D of Bruhat–Schwartz test functions is, by definition, constituted of uni-
formly locally constant functions of compact support. Such a test function f ∈ D is a
finite linear combination of indicator functions of the form 1B(x,pk )(·), where k ∈ Z

and x ∈ Qp. The largest of such numbers k is denoted by 
 := 
( f ) and is called the
parameter of constancy of f . Since f ∈ D has compact support, the minimal number

′ := 
′( f ) such that the support of f is contained in B(0, p
′

) exists and will be
called the parameter of compactness of f .

Clearly, D ⊂ E . The space D is provided with a topology of topological vector
space as follows: a sequence {φn} ⊂ D is called a null sequence if there is a fixed pair
of l, l ′ ∈ Z such that each φn is constant on every ball of radius pl and is supported
by the ball B(0, pl

′
) and the sequence φn tends uniformly to zero.

A Bruhat–Schwartz distribution f on Qp is by definition a continuous linear func-
tional on D. The value of f at φ ∈ D will be denoted by 〈 f , φ〉. Note that linear
functionals onD are automatically continuous. This property allows us to easily con-
struct distributions. Denote by D′ the space of Bruhat–Schwartz distributions. The
space D′ is equipped with the weak topology induced by D.
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324 A. Fan et al.

A locally integrable function f is considered as a distribution: for any φ ∈ D,

〈 f , φ〉 =
∫

Qp

f φdm.

The discrete measure μE defined by (1.3) is also a distribution: for any φ ∈ D,

〈μE , φ〉 =
∑

λ∈E
φ(λ).

Here for each φ, the sum is finite because E is uniformly discrete and each ball
contains at most a finite number of points in E . Since the test functions in D are
uniformly locally constant and have compact support, the following proposition is a
direct consequence of Proposition 2.2 or of the fact (see also [7, Lemma 4]) that

1̂B(c,pk )(ξ) = χ(−cξ)pk1B(0,p−k )(ξ). (2.8)

Proposition 2.8 [38, Chapter II 3]The Fourier transform f �→ ̂f is a homeomorphism
from D onto D.

TheFourier transform of a distribution f ∈ D′ is a new distribution ̂f ∈ D′ defined
by the duality

〈 ̂f , φ〉 = 〈 f , ̂φ〉, ∀ φ ∈ D.

The Fourier transform f �→ ̂f is a homeomorphism of D′ onto D′ under the weak
topology [38, Chapter II 3].

2.5 Zeros of the Fourier transform of a discrete measure

Let f ∈ D′ be a distribution in Qp. A point x ∈ Qp is called a zero of f if there exists
an integer n0 such that

〈 f , 1B(y,pn)〉 = 0, for all y ∈ B(x, pn0) and all integers n ≤ n0.

Denote by Z f the set of all zeros of f . Remark that Z f is the maximal open set O on
which f vanishes, i.e. 〈 f , φ〉 = 0 for all φ ∈ D such that the support of φ is contained
in O .

The support of a distribution f is defined as the complementary set of Z f and is
denoted by supp( f ).

Let E be a uniformly discrete set in Qp. The following proposition characterizes
the structure of Zμ̂E , the set of zeros of the Fourier transform of the discrete measure
μE . It is bounded and is a union of spheres centered at 0.

Proposition 2.9 Let E be a uniformly discrete set in Qp.
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(1) If ξ ∈ Zμ̂E , then S(0, |ξ |p) ⊂ Zμ̂E .
(2) The set Zμ̂E is bounded.

Proof First remark that by using (2.8) we get

〈μ̂E , 1B(ξ,p−n)〉 = 〈μE , ̂1B(ξ,p−n)〉 = p−n
∑

λ∈E∩B(0,pn)

χ(ξλ). (2.9)

This expression will be used several times.

(1) By definition, ξ ∈ Zμ̂E implies that there exists an integer n0 such that

〈μ̂E , 1B(ξ,p−n)〉 = 0, ∀ n ≥ n0.

By (2.9), this is equivalent to

∑

λ∈E∩B(0,pn)

χ(ξλ) = 0, ∀ n ≥ n0. (2.10)

For any ξ ′ ∈ S(0, |ξ |p), we have ξ ′ = uξ for some u ∈ Z×
p . By Lemma 2.7 (1)

and the equality (2.10), we obtain

∑

λ∈E∩B(0,pn)

χ(ξ ′λ) =
∑

λ∈E∩B(0,pn)

χ(ξλ) = 0, ∀ n ≥ n0.

Thus, again by (2.9), 〈μ̂E , 1B(ξ ′,p−n)〉 = 0 for n ≥ n0. We have thus proved
S(0, |ξ |p) ⊂ Zμ̂E .

(2) Fix λ0 ∈ E . By the discreteness of E , there exists an integer n0 such that

∀λ ∈ E\{λ0}, |λ − λ0|p ≥ p−n0 .

Weare going to show thatZμ̂E ⊂ B(0, pn0+1), which is equivalent to that ξ /∈ Zμ̂E

when |ξ |p ≥ pn0+2. To this end, we will prove that for all integer n large enough
such that λ0 ∈ B(0, pn) and all ξ such that |ξ |p ≥ pn0+2, we have

〈μ̂E , 1B(ξ,p−n)〉 �= 0.

In fact, if this is not the case, then by (2.9),

∑

λ∈E∩B(0,pn)

χ(ξλ) = 0.

Thus, by Lemma 2.7 (2), for the given λ0, we can find λ ∈ E ∩ B(0, pn), such
that |λ − λ0|p = p/|ξ |p < p−n0 , a contradiction.

��
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Remark that n0 in the above proof depends only on the structure of E . Define

nE := max
λ,λ′∈E
λ�=λ′

vp(λ − λ′). (2.11)

According to the above proof of the second assertion of Proposition 2.9, we immedi-
ately get

Zμ̂E ⊂ B(0, pnE+1). (2.12)

2.6 Convolution andmultiplication of distributions

Denote

�k := 1B(0,pk ), θk := ̂�k = pk · 1B(0,p−k ).

Let f , g ∈ D′ be two distributions. We define the convolution of f and g by

〈 f ∗ g, φ〉 = lim
k→∞〈 f (x), 〈g(·),�k(x)φ(x + ·)〉〉,

if the limit exists for all φ ∈ D.

Proposition 2.10 [3, Proposition 4.7.3] If f ∈ D′, then f ∗ θk ∈ E with the parameter
of constancy at least −k.

We define the multiplication of f and g by

〈 f · g, φ〉 = lim
k→∞〈g, ( f ∗ θk)φ〉,

if the limit exists for all φ ∈ D. The above definition of convolution is compatible with
the usual convolution of two integrable functions and the definition of multiplication
is compatible with the usual multiplication of two locally integrable functions.

The following proposition shows that both the convolution and the multiplication
are commutative when they are well defined and the convolution of two distributions
is well defined if and only if the multiplication of their Fourier transforms is well
defined.

Proposition 2.11 [40, Sections 7.1 and 7.5] Let f , g ∈ D′ be two distributions. Then

(1) If f ∗ g is well defined, so is g ∗ f and f ∗ g = g ∗ f .
(2) If f · g is well defined, so is g · f and f · g = g · f .
(3) f ∗ g is well defined if and only ̂f · ĝ is well defined. In this case, we have

f̂ ∗ g = ̂f · ĝ and f̂ · g = ̂f ∗ ĝ.

The following proposition justifies an intuition.
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Proposition 2.12 Let f , g ∈ D′ be two distributions. If supp( f ) ∩ supp(g) = ∅, then
f · g is well defined and f · g = 0.

Proof Let φ ∈ D with parameter of constancy 
 and parameter of compactness 
′.
By the assumption supp( f ) ∩ supp(g) = ∅, the distance between the two compact

sets supp( f ) ∩ B(0, p
′
) and supp(g) ∩ B(0, p
′

) is strictly positive. So there exists
an integer n ≤ 
′ such that for any x ∈ supp( f ) ∩ B(0, p
′

), the ball B(x, pn) is
contained in Zg ∩ B(0, p
′

).
Therefore, the compact open set

X :=
⋃

x∈supp( f )∩B(0,p
′ )

B(x, pn)

satisfies supp( f ) ∩ B(0, p
′
) ⊂ X ⊂ Zg ∩ B(0, p
′

).
Define φ1(x) := φ(x) · 1X (x).
It follows that

supp(φ − φ1) ⊂ B(0, p
′
)\X ⊂ Z f ∩ B(0, p
′

).

Thus, we have

〈 f · g, φ〉 = 〈 f · g, (φ − φ1 + φ1)〉 = 〈 f · g, φ − φ1〉 + 〈 f · g, φ1〉
= lim

k→∞〈 f , (g ∗ θk)(φ − φ1)〉 + lim
k→∞〈g, ( f ∗ θk)φ1〉

= 0,

where the existence of the last two limits is due to

supp((g ∗ θk)(φ − φ1)) ⊂ supp(φ − φ1) ⊂ Z f ,

and

supp(( f ∗ θk)φ1) ⊂ suppφ1 ⊂ Zg.

��
The multiplication of some special distributions has a simple form. That is the case

for the multiplication of a uniformly locally constant function and a distribution.

Proposition 2.13 [40, Section 7.5, Example 2] Let f ∈ E and let G ∈ D′. Then for
any φ ∈ D, we have 〈 f · G, φ〉 = 〈G, f φ〉.

For a distribution f ∈ D′, we define its regularization by the sequence of test
functions [3, Proposition 4.7.4]

�k · ( f ∗ θk) ∈ D.
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The regularization of a distribution converges to the distribution with respect to the
weak topology.

Proposition 2.14 [3, Lemma14.3.1]Let f be a distribution inD′. Then�k ·( f ∗θk) →
f in D′ as k → ∞. Moreover, for any test function φ ∈ D we have

〈�k · ( f ∗ θk), φ〉 = 〈 f , φ〉, ∀k ≥ max{−
, 
′},

where 
 and 
′ are the parameter of constancy and the parameter of compactness of
the function φ defined in Sect. 2.4.

This approximation of distribution by test functions allows us to construct a space
which is bigger than the space of distributions. This larger space is the Colombeau
algebra, which will be presented below. Recall that in the space of Bruhat–Schwartz
distributions, the convolution and themultiplication are not well defined for all couples
of distributions. But in the Colombeau algebra, the convolution and the multiplication
are well defined and these two operations are associative.

2.7 Colombeau algebra of generalized functions

Consider the set P := DN of all sequences { fk}k∈N of test functions. We introduce an
algebra structure on P , defining the operations componentwise

{ fk} + {gk} = { fk + gk},
{ fk} · {gk} = { fk · gk},

where { fk}, {gk} ∈ P .
Let N be the sub-algebra of elements { fk}k∈N ∈ P such that for any compact set

K ⊂ Qp there exists N ∈ N such that fk(x) = 0 for all k ≥ N , x ∈ K . Clearly,N is
an ideal in the algebra P .

Then we introduce the Colombeau-type algebra

G = P/N .

The equivalence class of sequences which defines an element in G will be denoted by
f = [ fk], called a generalized function.

For any f = [ fk], g = [gk] ∈ G, the addition and multiplication are defined as

f + g = [ fk + gk], f · g = [ fk · gk].

Obviously, (G,+, ·) is an associative and commutative algebra.

Theorem 2.15 [3, Theorem 14.3.3] The map f �→ f = [�k( f ∗ θk)] from D′ to G is
a linear embedding.

Each distribution f ∈ D′ is embedded into G by the mapping which associates f
with the generalized function determined by the regularization of f . Thus we obtain
that the multiplication defined on D′ is associative in the following sense.
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Proposition 2.16 Let f , g, h ∈ D′. If ( f · g) · h and f · (g · h) are well defined as
multiplications of distributions, we have

( f · g) · h = f · (g · h).

3 Study on �E ∗ f = 1

In this section, we will study the following equation

μE ∗ f = 1 (3.1)

where 0 ≤ f ∈ L1(Qp) with
∫

Qp
f dm > 0, and E is a uniformly discrete subset of

Qp. Suppose that (E, f ) is a solution of (3.1). We will investigate the density of E
and even the distribution of E , and the supports of the Fourier transforms μ̂E and ̂f .

We say that a uniformly discrete set E has a bounded density if the following limit
exists for some x0 ∈ Qp

D(E) := lim
k→∞

Card(B(x0, pk) ∩ E)

m(B(x0, pk))
,

which is called the density of E . Actually, if the limit exists for some x0 ∈ Qp, then
it exists for all x ∈ Qp and the limit is independent of x . In fact, for any x0, x1 ∈ Qp,
when k is large enough such that |x0 − x1|p < pk , we have B(x0, pk) = B(x1, pk).

For a function g : Qp → R, denote

Ng := {x ∈ Qp : g(x) = 0}.

If g ∈ C(Qp) is a continuous function, then Ng is a closed set and Zg is the set of
interior points of Ng .

But, the support of g as a continuous function is equal to the support of g as a
distribution.

The following theorem gets together some properties of the solution (E, f ) of the
equation (3.1), which will be proved in this section.

Theorem 3.1 Let 0 ≤ f ∈ L1(Qp) with
∫

Qp
f dm > 0, and E be a uniformly discrete

subset of Qp. Suppose that the Eq. (3.1) is satisfied by f and E. Then the following
statements hold.

(1) The support of ̂f is compact.
(2) The set Zμ̂E is bounded and it is the union of the punctured ball B(0, p−n f )\{0}

and some spheres.
(3) The density D(E) exists and equals to 1/

∫

Qp
f dm. Furthermore, there exists an

integer n f ∈ Z such that for all integers n ≥ n f we have

∀ξ ∈ Qp, Card(E ∩ B(ξ, pn)) = pnD(E).
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Theorem 3.1 (1) and (2) will be proved in § 3.1, the distribution of E will be
discussed in Sect. 3.2 and the equality D(E) = 1/

∫

Qp
f dmwill be proved in Sect. 3.3.

3.1 Compactness of supp(̂f) and structure ofZ
̂�E

Our discussion is based on the functional equation ̂f · μ̂E = δ0, which is implied by
f ∗ μE = 1 (see Proposition 2.11).

Proposition 3.2 Let g ∈ C(Qp) be a continuous function and let G ∈ D′ be a distri-
bution. Suppose that the product H = g · G is well defined. Then

ZH ⊂ Ng ∪ ZG .

Consequently, if f ∗ μE = 1 with f ∈ L1(Qp), then Qp\{0} ⊂ N
̂f ∪ Zμ̂E , which is

equivalent to

{ξ ∈ Qp : ̂f (ξ) �= 0}\{0} ⊂ Zμ̂E . (3.2)

Proof The second assertion follows directly from the first assertion because ̂f · μ̂E =
δ0 and Zδ0 = Qp\{0}.

We now prove the first assertion. It suffices to prove ZH\Ng ⊂ ZG .

Take an arbitrary test function φ ∈ D such that

supp(φ) ⊂ ZH\Ng.

Since supp(φ) ⊂ {x : g(x) �= 0}, we can define the function

h(x) =
{

1
g(x) , for x ∈ suppφ,

0, elsewhere.

Since g is continuous, it is bounded away from 0 on suppφ. So, the function h is
bounded and compactly supported. Hence it belongs to L1(Qp). On the other hand,
we have h(x)g(x) = 1supp(φ)(x) ∈ D. Thus

〈G, φ〉 = 〈G, 1supp(φ) · φ〉 = 〈1supp(φ) · G, φ〉 = 〈(h · g) · G, φ〉

where we have used Proposition 2.13 for the second equality. Notice that supp(h) ⊂
ZH . By Proposition 2.12, h · H is well defined and h · H = 0. By the associativity of
the multiplication (see Proposition 2.16), we get

〈G, φ〉 = 〈h · H , φ〉 = 0.

Thus we have proved ZH\Ng ⊂ ZG . ��
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Notice that ̂f (0) = ∫

Qp
f dm > 0 and that ̂f is a continuous function. It follows

that there exists a small ball where ̂f is nonvanishing. Let

n f := min{n ∈ Z : ̂f (x) �= 0, if x ∈ B(0, p−n)}. (3.3)

Proposition 3.3 The Fourier transform ̂f has compact support. The set Zμ̂E is
bounded and

B(0, p−n f )\{0} ⊂ Zμ̂E . (3.4)

Proof The boundedness of Zμ̂E is already proved. See Proposition 2.9 (2). This
together with (3.2) implies the compactness of supp( ̂f ). We get (3.4) immediately
from (3.2). ��

3.2 Distribution of E

The uniformly discrete set E involved in Eq. (3.1) shares the following uniform dis-
tribution property.

Proposition 3.4 The cardinality of E ∩ B(ξ, pn f ) is independent of ξ ∈ Qp. Conse-
quently, the set E admits a bounded density D(E). Moreover, for all integers n ≥ n f ,
we have

∀ξ ∈ Qp, Card(E ∩ B(ξ, pn)) = pnD(E). (3.5)

Proof For simplicity, we denote

Eξ
n := E ∩ B(ξ, pn),

and write En := E ∩ B(0, pn) when ξ = 0. It suffices to prove

∀ξ ∈ Qp, Card(En f ) = Card(Eξ
n f

).

For any given ξ ∈ Qp, let k = −vp(ξ). If k ≤ n f , then En f = Eξ
n f . So obviously

Card(En f ) = Card(Eξ
n f ).

Now we suppose k > n f . Then, consider any η satisfying

B(η, p−k) ⊂ B(0, p−n f )\{0}.

By (3.4) in Proposition 3.3, we have 〈μ̂E , 1B(η,p−k )〉 = 0, which by (2.9), is equivalent
to

∑

λ∈Ek

χ(ηλ) = 0. (3.6)

Taking η = pk−1 in (3.6), we have
∑

λ∈Ek
χ(pk−1λ) = 0. Observe that

B(0, pk) =
p−1
⊔

i=0

B(i p−k, pk−1)
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and that the function χ(pk−1·) is constant on each ball of radius pk−1. So we have

0 =
∑

λ∈Ek

χ(pk−1λ) =
p−1
∑

i=0

χ
( i

p

)

Card
(

E
i
pk

k−1

)

.

Applying Lemma 2.4, we obtain

Card
(

E
i
pk

k−1

)

= Card
(

E
j
pk

k−1

)

, ∀ 0 ≤ i, j ≤ p − 1. (3.7)

Similarly, taking η = pk−2 in (3.6), we have

0 =
∑

0≤i, j≤p−1

χ
( i

p2
+ j

p

)

Card
(

E
i
pk

+ j
pk−1

k−2

)

.

Again, Lemma 2.4 implies

Card
(

E
i
pk

+ j
pk−1

k−2

)

= Card
(

E
i
pk

+ m
pk−1

k−2

)

∀ 0 ≤ i, j,m ≤ p − 1.

Since

p−1
∑

j=0

Card
(

E
i
pk

+ j
pk−1

k−2

)

= Card
(

E
i
pk

k−1

)

,

by (3.7), we get

Card
(

E
i
pk

+ j
pk−1

k−2

)

= Card
(

E
l
pk

+ m
pk−1

k−2

)

, ∀ 0 ≤ i, j, l,m ≤ p − 1.

We continue these arguments for all η = pk−1, . . . , pn f . By induction, we have

Card(Eξ1
n f

) = Card(Eξ2
n f

), ∀ ξ1, ξ2 ∈ Ln f ∩ B(0, pk). (3.8)

Since |ξ |p = pk , there exists ξ ′ ∈ Ln f ∩ B(0, pk), such that Eξ
n f = Eξ ′

n f . Thus by
(3.8),

Card(Eξ
n f

) = Card(Eξ ′
n f

) = Card(En f ).

The formula (3.5) follows immediately because each ball of radius pn with n ≥ n f

is a disjoint union of pn−n f balls of radius pn f so that

Card(En) = pn−n f Card(En f ).

��
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3.3 Equality D(E) = 1/
∫

QQQp
fdmmm

Proposition 3.5 The density D(E) of E satisfies

D(E) = 1
∫

Qp
f (x)dx

.

Proof By the integrability of f , the quantity

εn :=
∫

Qp\B(0,pn)
f (x)dx

tends to zero as the integer n → ∞. Integrating the equality (3.1) over the ball
B(0, pn), we have

m(B(0, pn)) =
∑

λ∈E

∫

B(0,pn)
f (x − λ)dx . (3.9)

Now we split the sum in (3.9) into two parts, according to λ ∈ E ∩ B(0, pn) or
λ ∈ E\B(0, pn). Denote I := ∫

Qp
f dm. For λ ∈ E ∩ B(0, pn), we have

∫

B(0,pn)
f (x − λ)dx =

∫

B(0,pn)
f (x)dx = I − εn .

It follows that

∑

λ∈E∩B(0,pn)

∫

B(0,pn)
f (x − λ)dx = Card(En) · (I − εn). (3.10)

Notice that
∫

B(0,pn)
f (x − λ)dx =

∫

B(−λ,pn)
f (x)dx . (3.11)

For λ ∈ E\B(0, pn), the ball B(−λ, pn) is contained in Qp\B(0, pn). We partition
the uniformly discrete set E\B(0, pn) into Pj ’s such that each Pj is contained in a
ball of radius pn in Qp\B(0, pn). Thus the integrals in (3.11) for the λ’s in the same
Pj are equal. Let λ j be a representative of Pj . Then we have

∑

λ∈E\B(0,pn)

∫

B(0,pn)
f (x − λ)dx =

∑

j

Card(Pj ) ·
∫

B(−λ j ,pn)
f (x)dx .

However, by (3.5) in Proposition 3.4, Card(Pj ) = D(E)m(B(0, pn)) if n ≥ n f . Thus,
for each integer n ≥ n f ,

∑

e∈E\B(0,pn)

∫

B(0,pn)
f (x − λ)dx = D(E)m(B(0, pn))

∑

j

∫

B(−λ j ,pn)
f (x)dx
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= D(E)m(B(0, pn))
∫

Qp\B(0,pn)
f (x)dx

= D(E)m(B(0, pn))εn . (3.12)

Thus from (3.9), (3.10) and (3.12), we finally get

∣

∣m(B(0, pn)) − Card(E ∩ B(0, pn)) · I ∣∣ ≤ 2D(E)m(B(0, pn))εn .

We conclude by dividing m(B(0, pn)) and then letting n → ∞. ��

4 Tiles are spectral sets

The key for the proof of the following theorem is the fact that the equationμE ∗ f = 1
imposes that the support of the Fourier transform ̂f is compact (Proposition 3.3).
We also use the fact that the Fourier transform of an integrable function with compact
support is uniformly locally constant (Proposition 2.2). The Lebesgue density theorem
(Proposition 2.1) is also used. We recall that a point x in a Borel set � satisfying the
equality in Proposition 2.1 is called a density point of �.

Theorem 4.1 Without distinguishing sets which are equal modulo a set of zero Haar
measure, we have the following assertions:

(1) If � is a spectral set in Qp, then it is bounded.
(2) If � is a tile in Qp, then it is compact and open.
(3) Tiles in Qp are spectral sets.

Proof Since we do not distinguish sets which are equal modulo a set of zero Haar
measure, we can assume that all the points in � are density points of �, according to
the Lebesgue density theorem (Proposition 2.1).

(1) Assume that (�,�) is a spectral pair in Qp, which is equivalent to

∀ξ ∈ ̂Qp, μ� ∗ |̂1�|2(ξ) = m(�)2.

By Proposition 3.3, |̂̂1�|2 has compact support. Observe that

|̂̂1�|2(ξ) = 1� ∗ 1−�(ξ) =
∫

Qp

1�(x)1�(x − ξ)dx = m(� ∩ (� + ξ)). (4.1)

We claim

supp(|̂̂1�|2) = � − �.

Since the inclusion supp(|̂̂1�|2) ⊂ � − � is obvious, we need only to show

� − � ⊂ supp(|̂̂1�|2). (4.2)
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In fact, let ξ ∈ � − �. Write ξ = z1 − z2 with z1, z2 ∈ �. By (4.1), we have

|̂̂1�|2(ξ) = m(� ∩ (� + z1 − z2)) = m((� − z1) ∩ (� − z2)).

Since z1, z2 are density points of �, 0 is a density point of both � − z1 and � − z2.
This fact implies

m((� − z1) ∩ (� − z2)) > 0.

Thus we have proved � − � ⊂ supp(|̂̂1�|2). Then (4.2) follows. Since supp(|̂̂1�|2)
is compact, the set � is bounded.

(2) The main argument is the same as in (1). Assume that (�, T ) is a tiling pair in
Qp, which means

μT ∗ 1�(x) = 1, m-a.e. x ∈ Qp.

By Proposition 3.3, ̂1� has compact support. Then by the first assertion of Propo-
sition 2.2, 1� is almost uniformly locally constant, i.e. � is, up to a zero measure
set, a union of balls with the same radius. Since � is of finite measure, the number
of these balls is finite. So, � is almost compact open.

(3) It is an immediate consequence of (2) and Theorem 1.3.

��
The above proof of the fact “tiles are spectral sets” is partially based on Theorem

1.3 and partially on “tiles are compact and open” [Theorem 4.1 (2)]. The proof of
“spectral sets are tiles” will be not based on Theorem 1.3. That means, we are not
going to show that a spectral set is a compact open set up to a set of zero measure. But
the boundedness of a spectral set [Theorem 4.1 (1)] will be used.

5 Spectral sets are tiles

In this section, we prove that a spectral set in Qp is a tile. Assume that (�,�) is a
spectral pair. The proof will be based on our knowledge on the set Zμ̂� . As we will
see in the proof, a tiling complement can be easily constructed.

Theorem 5.1 If � is a spectral set in Qp, then it is a tile.

Proof Suppose that (�,�) is a spectral pair. That means (see 1.1)

∑

λ∈�

|̂1�|2(x − λ) = m(�)2, m-a.e. x ∈ Qp.

In other words, μ� ∗ f = 1 where

f = |̂1�|2/m(�)2.
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Let n f be the integer defined by (3.3). Recall that B(0, p−n f ) is the biggest ball
centered at 0 over which ̂f does not vanish. We first remark that

∀n ≥ n f , Card(�n) = pnm(�) (5.1)

where

�n := � ∩ B(0, pn).

In fact, Plancherel Theorem implies
∫

Qp
f dm = 1/m(�).

So, by Proposition 3.5, the set � is of bounded density with density

D(�) = 1
∫

Qp
f dm

= m(�).

Thus (5.1) follows from (3.5) in Proposition 3.4.
By Theorem 4.1, the spectral set � is bounded, up to a Haar null measure set.

Without loss of generality, we assume that � ⊂ Zp. This is because we can scale �

by a factor, say, pn and the spectrum by p−n .
Recall that Zμ̂� has the following properties: every sphere S(0, p−n) either is

contained in Zμ̂� or does not intersect Zμ̂� (Lemma 2.9); all spheres S(0, p−n) with

n ≥ n f are contained in Zμ̂� (see 3.4). Note that n f ≥ 0 because of supp|̂̂1�|2 =
� − � ⊂ Zp. Let

I := {

0 ≤ n < n f : S(0, p−n) ⊂ Zμ̂�

}

,

J := {0 ≤ n < n f : S(0, p−n) ∩ Zμ̂� = ∅}.

Remark that I can be empty as well as J. For N
̂f , we claim

⋃

j∈J
S(0, p− j ) ⊂ N

̂f . (5.2)

In fact, otherwise for some ξ ∈ S(0, p− j ) with j ∈ J we have ̂f (ξ) �= 0. By (3.2)
and Proposition 2.9 (1),S(0, p− j ) ⊂ Zμ̂� . This contradicts the fact j ∈ J.

Observe that ̂f (ξ) = m(� ∩ (� + ξ))/m(�)2 (see 4.1) and that

(U −U )\{0} ⊂
⋃

j∈J
S(0, p− j )

where

U :=
⎧

⎨

⎩

∑

j∈J
α j p

j , α j ∈ {0, 1, . . . , p − 1}
⎫

⎬

⎭

.
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Then from (5.2), we get

(U −U )\{0} ⊂ {ξ ∈ Qp : m(� ∩ (� + ξ) = 0}. (5.3)

We claim that � is a tile of Zp with tiling complement U , so that � is a tile of Qp

with tiling complement U + L.
In fact, the disjointness (up to a set of zero measure) of � + ξ1 and � + ξ2 for

any two distinct ξ1, ξ2 ∈ U follows directly from (5.3) and the invariance of the Haar
measure.

So to show that � is a tile of Zp, it suffices to prove that the total measure of all
� + ξ with ξ ∈ U is equal to

m(� +U ) = Card(U ) · m(�) = 1. (5.4)

For i ∈ I, we have B(pi , p−n f ) ⊂ S(0, p−i ) so that B(pi , p−n f ) ⊂ Zμ̂� , which
implies

0 = 〈μ̂�, 1B(pi ,p−n f )
〉 = 〈μ�, ̂1B(pi ,p−n f )

〉 = p−n f
∑

λ∈�n f

χ(piλ).

By Lemma 2.7 (3),

pCard(I) ≤ Card(�n f ).

Then by the fact Card(U ) = pCard(J) and (5.1), we have

Card(U ) · m(�) = pCard(J) · Card(�n f )

pn f
≥ pCard(J) · pCard(I)

pn f
= 1.

Wecan now conclude (5.4) because�+U is contained inZp so thatm(�+U ) ≤ 1.
��

6 Some remarks

6.1 Dual Fuglede’s conjecture

Theorem 1.2 asserts that all spectral sets (equivalently tiles) in Qp are almost compact
open. What is the topological structure of the corresponding spectra and tiling com-
plements? This question has been answered by Theorem 1.2 of [9] for the compact
open spectral sets in Qp. Recall that the spectra and tiling complements of compact
open spectral sets are infinite p-homogeneous discrete sets � (see [9, Section 2.8])
such that there exists an integer N such that

(∞, N ] ∩ Z ⊂ I�, (6.1)
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where I� := {vp(x − y) : x, y ∈ � distinct}, called the set of admissible p-orders of
�. On the other hand, for any given infinite p-homogeneous discrete sets� satisfying
(6.1), we can construct two compact open sets�1 and�2 such that (�1,�) is a spectral
pair and (�2,�) is a tiling pair. For details, we refer the readers to [9, Theorems 1.2
and 5.1]. So the dual Fuglede’s conjecture holds inQp (see [18] for the dual Fuglede’s
conjecture in Rd ): a subset of Qp is a spectrum if and only if it is a tiling complement.

6.2 The density of E satisfying (2.1) inQd
p

Assume that E is a discrete subset in Qd
p such that Card(E ∩ K ) < ∞ for any

compact subset K of Qd
p. Then μE = ∑

λ∈E δλ defines a discrete Radon measure in
Qd

p. Remark that E is not necessarily assumed uniformly discrete. Suppose that E
satisfies the Eq. (2.1) with f ∈ L1(Qd

p) which is a non-negative integrable function
such that

∫

Qd
p
f dm > 0. Then for each x0 ∈ Qd

p, the limit

D(E) = lim
k→∞

Card(B(x0, pk) ∩ E)

m(B(x0, pk))

exists and

D(E) = 1
∫

Qd
p
f dm

.

This is similar to the real case, see [20] and [21, Lemma 2].

6.3 Tiles and spectral sets inQ2
p which are not compact open.

For a uniformly discrete set E in the higher dimensional space Qd
p with d ≥ 2,

the zero set of the Fourier transform of the measure μE is not necessarily bounded.
In other words, Proposition 2.9 does not hold in Qd

p with d ≥ 2. For example, let
E = {(0, 0), (0, 1), . . . , (0, p−1)}which is a finite subset ofQ2

p. One can check that

Zμ̂E = Qp × p−1Z×
p .

Bounded tiles ofQ2
p are not necessarily almost compact open. Let us construct such

a bounded tile ofQ2
p. We partitionZp into p Borel sets of sameHaar measure, denoted

by Ai (i = 0, 1, . . . , p − 1). We assume that one of Ai is not almost compact open.
For example, set S = ⋃∞

n=1 B(pn, p−n−1), which is a union of countable disjoint
balls. Let

A0 = S ∪ (B(1, p−1)\(1 + S)),

A1 = (B(0, p−1) ∪ B(1, p−1))\A0,
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Ai = B(i, p−1) for 2 ≤ i ≤ p − 1.

Then define

� :=
p−1
⋃

i=0

Ai × B(i, p−1) ⊂ Zp × Zp.

The set � is not almost compact open, because any small ball centered at (0, 0) meets
both � and (Zp × Zp\�) with positive measure. But it is a tile of Q2

p with tiling
complement

T = L × L−1.

Just like on Rd (see [12]), it can be proved that (�, L × L−1) is a tiling pair if and
only if (�, L × L1) is a spectral pair (see [19]).

6.4 Higher dimensional cases

However, the situation changes in higher dimension. In fact, it is proved in [2] that
there exist spectral sets which are not tiles in F5

p for all odd primes p and in F4
p for all

odd primes p such that p ≡ 3 mod 4, where Fp is the prime field with p elements.
This implies that there exist compact open spectral sets which are not tiles in Q5

p for
all odd primes p and in Q4

p for all odd primes p such that p ≡ 3 mod 4. Recently,
Ferguson and Sothanaphan [13] proved that for all odd primes p there are spectral sets
of F4

p that do not tile. So there is no need to distinguish the case p ≡ 3 mod 4.
For d = 3, there exists a spectral set in the finite group (Z/8Z)3 which is not a tile

[23]. This implies that there exists a compact open spectral set which is not a tile in
Q3

2.
Fuglede’s conjecture in Q2

p is open, even under the compact open assumption.
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