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Abstract
We study mean value properties of p-harmonic functions on the first Heisenberg
group H, in connection to the dynamic programming principles of certain stochastic
processes.We implement the approach of Peres andSheffield (DukeMath J 145(1):91–
120, 2008) to provide a game-theoretical interpretation of the sub-elliptic p-Laplacian;
and of Manfredi et al. (Proc Am Math Soc 138(3):881–889, 2010) to characterize its
viscosity solutions via asymptotic mean value expansions.

1 Introduction

In this paper, we are concerned with mean value properties of p-harmonic functions
on the Heisenberg group H, in connection to the dynamic programming principles
of certain stochastic processes. More precisely, we develop asymptotic mean value
expansions of the type:

Average(v, r)(q) = v(q) + cr2�N
H,pv(q) + o(r2) as r → 0+, (1.1)
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for the normalized version �N
H,p of the p-H-Laplacian �H,p in (1.4)–(1.5), for any

1 < p < ∞. The “Average” denotes here a suitable mean value operator, acting on
a given function v : H → R, on a set of radius r and centered at a point q ∈ H. This
operator may be either “stochastic”:

ffl
, or “deterministic”: 1

2 (sup+ inf), or it may be
given throughvarious compositions or further averages of such types.The averaging set
may be one of the following: the 3-dimensional Korányi ball Br (q); the 2-dimensional
ellipse in the tangent planeTq passing throughq,whose horizontal projection coincides
with the 2-dimensional Euclidean ball of radius r ; the 1-dimensional boundary of
such ellipse; or the 3-dimensional Korányi ellipsoid that is the image of Br (q) under
a suitable linear map.

For particular expansions in (1.1), we study solutions to the boundary value prob-
lems for the related mean value equations, posed on a bounded domain D ⊂ H, with
data F ∈ C(H):

Average(uε, ε) = uε in D, uε = F on H \ D. (1.2)

We identify the solution uε as the value of a process with, in general, both random and
deterministic components. The purely random component is related to the “stochastic”
averaging part of the operator Average as described above, whereas the deterministic
component is related to the “deterministic” part and can be interpreted as the Tug
of War game. Recall that the Tug of War is a zero-sum, two-players game process,
in which the position of the particle in D is shifted according to the deterministic
strategies of the two players. The players take turns with equal probabilities and strive
to maximize or minimize the game outcome given by the value of F at the particle’s
final (stopping) position.

We then examine convergence of the family {uε}ε→0. For domains with game-
regular boundary ∂D, we show the uniform convergence to the viscosity solution of
the Dirichlet problem:

�H,pu = 0 in D, u = F on ∂D. (1.3)

The definition of game-regularity is process-related, and it replaces the celebrated
Wiener capacitary criterion [16], in the probabilistic setting that we are pursuing.
Heuristically, game-regularity is equivalent to the equicontinuity of the family {uε}ε→0
on D̄, where the only obstruction is due to the possibly high probability of the event
where the particle exits a prescribed neighbourhood of a boundary point while still in
D. In particular, we show that this scenario cannot happenwhenD satisfies the exterior
H-corkscrew condition; indeed such domains are automatically game-regular.

The program outlined above, familiar in the linear setting of p = 2, where it
reflects the well-studied correspondence between the Laplace operator and the Brow-
nian motion [12], mimics the approach put forward in the seminal papers [31,32]
by Peres, Schramm, Sheffield and Wilson. There, the authors introduced the game-
theoretical interpretation of the ∞-Laplacian and the p-Laplacian in the Euclidean
geometry, and during the past decade many follow up works appeared in the litera-
ture [7,8,21–24,26,30]. In the present context of Heisenberg geometry—in relation to
the operators Average in (1.1) and their game-theoretical description—a preliminary

123



Randomwalks and random tug of war in the Heisenberg group 799

mean value characterization of viscosity p-H-harmonic functions appeared in [14] for
p ≥ 2, without addressing the issue of convergence. The contribution of this paper is
that we carry out the indicated program in full, including the general case of exponents
1 < p < ∞ and proving convergence, in relation to game-theoretical interpretation.
We also believe that our careful clarification of certain proofs in [32] (including the
inductive techniques in Lemma 8.4 and Theorem 14.1, and their application in the
proofs of Theorems 8.3, 14.2 and 14.5 ), albeit in the present sub-Riemannian context,
will benefit the reader less familiar with probability techniques.

1.1 The structure and results of this paper

Our contribution is divided into three parts.
Part I consists of four sections, inwhichwedevelop differentmean value expansions

(1.1). In Sect. 2 we begin with three averaging operators in connection to the linear
case exponent p = 2. The 1-dimensional and 2-dimensional expansions are proved
in Proposition 2.3; validity of the related mean value properties as in (1.2) is then
automatically equivalent toH-harmonicity. A similar statement for the 3-dimensional
average on Korányi balls, only holds in the viscosity sense (Proposition 2.5), and can
be seen as a counterpart to the Gauss–Koebe–Levi–Tonelli theorem [9], where the
average is taken with respect to a non-uniform probability measure.

In Sect. 3we treat the case of the fully nonlinear operator�H,∞, utilizing the “deter-
ministic” averaging rather than the “stochastic” ones as in Sect. 2. This description is
in agreement with the absolutely minimizing Lipschitz extension (AMLE) property of
the∞-harmonic functions u, which states that for every open subsetU , the restriction
u|U has the smallest Lipschitz constant among all the extensions of u|∂U on Ū (see
[1] for the Euclidean and [13] for the Heisenberg setting). In Sect. 4 we combine the
averages for p = 2 and p = ∞ and propose two mean value expansions for �H,p, via
superpositions that are both modeled on the interpolation property of �H,p in (1.6).
These expansions are relevant for p ≥ 2 because only then the related coefficients can
be interpreted as probabilities. Expansion (4.1) was already present in the Euclidean
setting in [26]. The general case of 1 < p < ∞ is treated in Sect. 5, where we follow
the Euclidean construction of [22], superposing the “deterministic” with “stochastic
averaging” on the Korányi ellipsoids whose orientations and aspects ratios vary within
the “deterministic averaging” sampling sets. The same expansions hold if we replace
the constant exponent p by a variable exponent p(·), pertaining to the so-called strong
p(·)-H-Laplacian, as pointed out in Remark 4.2.

Part II consists of four further sections, in which we display the stochastic inter-
pretation of the 2-dimensional mean value expansion (2.3)2 from Sect. 2. In Sect. 6
we define the 3-dimensional walk inH, whose increments are 2-dimensional, with the
third variable slaved to the first two via the Levy area process. Our process has infinite
horizon, but it almost surely accumulates on ∂D, whereas its expectation yields, in
the limit of shrinking sampling radii, an H-harmonic function. The convergence is
addressed in Sect. 7; in view of equiboundedness, it suffices to prove equicontinuity.
We first observe in Lemma 7.1, that this property is equivalent to the seemingly weaker
property of equicontinuity at the boundary. We then introduce the standard notion of
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walk-regularity of the boundary points, which turns out to be equivalent to the afore-
mentioned boundary equicontinuity. In Sect. 8 we show that domains satisfying the
exterior H-corkscrew condition are walk-regular. We prove in Sect. 9 that any limit
in question must be the viscosity solution to the H-harmonic equation with boundary
data F . By uniqueness of such solutions [5,6], we obtain the uniform convergence in
the walk-regular case.

In Part III, we follow the same outline as in Part II, but for the 3-dimensional
asymptotic expansion (4.2) and the nonlinear operator �H,p. In Sect. 10, we define
the related Tug of War game with noise and its upper and lower values. These values
turn out to be both equal, as shown inTheorem11.3 by a classicalmartingale argument,
to the unique, continuous solution of the mean value equation in Theorem 11.1. The
equation (11.1) can be hence seen as a finite difference approximation to the p-H-
Laplace Dirichlet problemwith boundary data F ; existence, uniqueness and regularity
of its solutions uε at each sampling scale ε, is obtained independently via analytical
techniques. In particular, each uε is continuous up to the boundary, where it assumes
the values of F . In Theorem12.1we show that for F that is already a restriction of some
p-H-harmonic function with non-vanishing gradient, the family {uε}ε→0 uniformly
converges to F at the rate that is of first order in ε. Our proof uses an analytical
argument and it is based on the observation that for s sufficiently large, the mapping
q �→ |q|sK yields the variation that pushes the p-H-harmonic function F into the
region of p-subharmonicity.

In Sect. 13we discuss equicontinuity (and thus convergence) of the family {uε}ε→0,
for general F . Similarly to Lemma 7.1, this property is equivalent to equicontinuity
at the boundary, which is shown in Theorem 13.1 through the analytical argument,
based on translation and well-posedness of (11.1). We proceed by defining the game-
regularity of the boundary points; Definition 13.2, Lemma 13.4 and Theorem 13.5
mimic the parallel statements in [32]. In Sect. 14 we argue that, similarly to Theorem
8.3, domains that satisfy the exterior H-corkscrew condition are game-regular. The
proof in Theorem 14.5 uses the concatenating strategies technique and the annulus
walk estimate taken from [32]. We again carefully provide the probabilistic details
omitted in [32], having in mind a reader whose training is more analytically-oriented.
In Sect. 13 we finally conclude that the family {uε}ε→0 converges uniformly to the
unique viscosity solution to (1.3), in the game-regular case.

We remark that identical constructions and results of Part III, can be carried out
for the process and the dynamic programming principle modelled on (5.4) rather than
(4.2), where the advantage is that it covers any exponent in the range 1 < p < ∞. We
indicate the necessary modifications in Remark 10.2 and leave further details to the
interested reader; in the Euclidean setting we point to the paper [22].

1.2 Notation and preliminaries on the Heisenberg groupH

Let H = (R3, ∗) be the first Heisenberg group, whose points we typically denote by:

q = (x, y, z) ∈ H.
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Randomwalks and random tug of war in the Heisenberg group 801

If needed, we also use the notation q = (q1, q2, q3) = (qhor , q3). The group operation
is:

q ∗ q ′ = (x, y, z) ∗ (x ′, y′, z′) =
(
x + x ′, y + y′, z + z′ + 1

2
(xy′ − yx ′)

)
,

and the Korániy metric d on H is given through the Korányi gauge |q|K in:

d(q, q ′) = |q−1 ∗ q ′|K , |q|K = ((x2 + y2)2 + 16z2
)1/4

.

The metric d is left-invariant and one-homogeneous with respect to the anisotropic
dilations:

ρλ(x, y, z) = (λx, λy, λ2z), ρλ : H → H, λ > 0.

By Br (q) = {q ′ ∈ H; d(q, q ′) < r} = q ∗ B1(0) we denote an open ball with respect
to the metric d, whereas the Euclidean balls in n = 2, 3 dimensions are denoted by
Bn
r (q). Both types of balls, viewed as subsets of R3, are convex sets.
The differential operators constituting a basis of the Lie algebra on H, are:

X = ∂x − y

2
∂z, Y = ∂y + x

2
∂z, Z = ∂z .

Operators X ,Y correspond to differentiating at q in the directions spanning the plane:

Tq = span
(
(1, 0,− y

2
), (0, 1,

x

2
)
)

=
( y
2
,− x

2
, 1
)⊥

.

The horizontal gradient and the sub-Laplacian of a function v : H → R are:

∇Hv = (Xv,Yv), �Hv = (X2 + Y 2)v.

We will be concerned with the so-called p-sub-Laplacian of v, with exponent p ∈
(1,∞):

�H,pv = X
(|∇Hv|p−2Xv

)+ Y
(|∇Hv|p−2Yv

)
, (1.4)

and with its normalized (sometimes called game-theoretical) version:

�N
H,pv = �H,pv

|∇Hv|p−2 , (1.5)

defined whenever ∇H,pv �= 0. Clearly, �H,2 = �N
H,2 = �H and it is also easy to

check that:

�H,pv = |∇Hv|p−2�N
H,pv = |∇Hv|p−2(�Hv + (p − 2)�H,∞v

)
, (1.6)
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where �H,∞ is the ∞-sub-Laplacian given by:

�H,∞v = 〈∇2
H
v :
( ∇Hv

|∇Hv|
)⊗2〉

. (1.7)

1.3 A brief review of results on nonlinear elliptic problems inH

Many techniques and results valid in the Euclidean case can be extended [36] in the
above context. We now indicate some general statements on the well-posedness of the
Dirichlet problem in H:

�H,pv = 0 in D, v − F ∈ HW 1,p
0 (D). (1.8)

This problem has a unique weak solution v ∈ HW 1,p(D), for every data function
F in the horizontal Sobolev space HW 1,p(D) = {v ∈ Lp(D); ∇Hv ∈ Lp(D,R2)}.
We also have existence and uniqueness of solutions to the corresponding obstacle
problem. The p-H-subsolutions and supersolutions, as well as the p-H-subharmonic
and superharmonic functions are defined in the usual manner. The p-H-subsolutions
have upper semicontinuous representatives that are p-H-subharmonic. Every bounded
p-H-subharmonic function has locally p-integrable horizontal derivatives; in fact it is
quasicontinuous.

It is known that the horizontal derivatives of a p-H-harmonic function are
Hölder continuous. More precisely: oscBr (q)∇Hv ≤ C

( r
R

)α( ffl
BR(q)

|∇Hv|p)1/p for
all Br (q) ⊂ BR/2(q) ⊂ BR(q) compactly contained in D, where α ∈ (0, 1) and C
depend only on p. This was proved for the range 4 < p < ∞ in [34], for 2 ≤ p < ∞
in [10], and for 1 < p < ∞ in [29].

The standard notion of capacity for the subelliptic setting is studied in [11]. This
notion coincides with the definition of capacity based on Radon measures associated
to p-H-subharmonic functions [36] in H. The Wolff potential estimate extends to the
subelliptic case, and yields a Wiener-type criterion for the attainment of the boundary
values for any F ∈ C(D̄) by Perron solutions to (1.8). We also have a version of
the Kellogg-type property stating that the set of irregular boundary points, where the
boundary value F is not attained, has zero capacity. Points satisfying the exterior H-
corkscrew condition in Definition 8.1 are regular [27] (in fact, we reprove a version
of this statement in Sect. 14).

Generalmetric spaceswith a doublingmeasure and supporting aPoincaré inequality
are considered in [20]. Perron solutions in such metric spaces are studied in [8], while
[7] contains the adequate notion and discussion of the balayage theory.

We remark that for elliptic symmetric equations in non-divergence form:

trace(A∇2
H
v) = 0 (1.9)

many results that are classical in the Euclidean setting, remain open in H. Let
A : D → R

2×2
sym be measurable, bounded and uniformly elliptic coefficient matrix.

It is not known whether a nonnegative smooth solution v to (1.9) is locally Hölder
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continuous (with exponent depending only on the ellipticity constant C0 of A and
‖v‖L∞

loc
). In the same context, the validity of the Krylov-Safonov-Harnack inequal-

ity: supBr (q) v ≤ C1 infBr (q) v, where C1 = C(C0, ‖v‖L∞(B2r (q))) is open. However,
similarly to the Euclidean case, the latter inequality implies the Hölder continuity via
a scaling argument. When the right hand side of (1.9) is replaced by f ∈ L4(D),
the following Alexandroff-Bakelman-Pucci inequality is expected: ‖v‖L∞(Br (q)) ≤
C2
( ffl

Br (q)
| f (q)|4 dq)1/4 withC2 = C(C0). Positive resolution of this problemwould

be a step towards establishing the Krylov–Safonov–Harnack inequality inH. We also
mention that there are further open questions regarding the isoperimetric inequality
and the uniqueness of the mean curvature flow in H.

PART I: The mean value expansions inH

2 The averaging operatorsAi and themean value expansions for 1H

Given a continuous function v : H → R and a radius r > 0, consider the averages at
q ∈ H:

A1(v, r)(q) =
 

∂B2
r (0)

v(q ∗ (a, b, 0)) dσ

=
 2π

0
v
(
q + r(cos θ, sin θ,

1

2
(x sin θ − y cos θ))

)
dθ,

A2(v, r)(q) =
 

B2
r (0)

v(q ∗ (a, b, 0)) d(a, b) =
 

B2
1 (0)

v
(
q + r(a, b,

1

2
(xb − ya))

)
d(a, b),

A3(v, r)(q) =
 

Br (q)

v(p) dp =
 

B1(0)
v(q ∗ ρr (p)) dp,

A3,K (v, r)(q) = 1
´
Br (0)

�(p) dp
·
ˆ

Br (q)

�(q−1 ∗ p)v(p) dp

= 4

π

ˆ

B1(0)
�(p)v(q ∗ ρr (p)) dp.

Above, � is the density in the Gauss–Koebe–Levi–Tonelli theorem [9, Theorem
5.6.3]:

�(q) = x2 + y2(
(x2 + y2)2 + 16z2

)1/2 = |(x, y, 0)|2K
|(x, y, z)|2K

for all q = (x, y, z) ∈ H \ {0}.

Other types of 3-dimensional averages where the ball Br (q) is replaced by its “ellip-
soidal” image under a linear map, will be considered in Sect. 5. Recall first the
fundamental relation between A3,K and H-harmonic functions:
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Theorem 2.1 ([9])

(1) Let v ∈ C2(H). Then for every q ∈ H there holds:

lim
r→0

1

r2

(
A3,K (v, r)(q) − v(q)

)
= π

24
�Hv(q).

(2) If v ∈ C2(D) satisfies �Hv = 0 in some open set D ⊂ H then:

v(q) = A3,K (v, r)(q) for all B̄r (q) ⊂ D. (2.1)

Conversely, if (2.1) holds for v ∈ C(D), then v ∈ C∞(D) and �Hv = 0 in D.

We now want to develop similar properties of the operators Ai , i ∈ {1, 2, 3}. Note
first that A2 averages the values of v on a 2-dimensional ellipse in the plane q + Tq ,
whose horisontal projection (i.e. projection along the normal direction e3 inR3) equals
B2
r (x, y). This ellipse coincideswith the intersection of q+Tq and Br (q). The operator

A1 averages v on the boundary of the aforementioned ellipse and it is also easy to
observe that:

A2(v, r)(q) = 2

r2

ˆ r

0
sA1(v, s)(q) ds. (2.2)

Remark 2.2 Functions q �→ Ai (v, r)(q) are continuous for v continuous. On the
other hand, taking v = 1{z>0} we get A1(v, ε)(0, 0, ·) = A2(v, ε)(0, 0, ·) = 1{z>0},
so in general A1 and A2 do not return a continuous function for v discontinuous.
Nevertheless, by a classical application of the monotone class theorem, it follows that
for any locally boundedBorel v, the functions q �→ A1(v, r)(q) and q �→ A2(v, r)(q)

are well defined and locally bounded Borel. Finally, since the operatorsA3 andA3,K
average on the solid 3-dimensional Korániy ball Br (q), they both return a continuous
function for every v ∈ L1

loc(H).

Our first observation is:

Proposition 2.3 Let v ∈ C2(H) and q ∈ H. We have the following expansions, as
r → 0:

A1(v, r)(q) = v(q) + r2

4
�Hv(q) + o(r2),

A2(v, r)(q) = v(q) + r2

8
�Hv(q) + o(r2).

(2.3)

In particular, validity of any of the mean value properties i ∈ {1, 2} in:

v(q) = Ai (v, r)(q) for all r ∈ (0, r0), (2.4)

implies �Hv(q) = 0. Conversely, if �Hv = 0 in some Br0(q), then (2.4) holds for
i ∈ {1, 2}.
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Proof For a fixed q ∈ H, let φ(r) = A2(v, r)(q). Clearly, φ ∈ C2(0,∞) and:

φ(r) =
 

B2
1 (0)

v(q ∗ r(a, b, 0)) d(a, b),

φ′(r) =
 

B2
1 (0)

〈
(a, b),∇H

〉
v(q ∗ r(a, b, 0)) d(a, b),

φ′′(r) =
 

B2
1 (0)

〈
(a, b)⊗2 : ∇2

H

〉
v(q ∗ r(a, b, 0)) d(a, b).

(2.5)

Passing to the limit, we obtain: lim
r→0

φ(r) = v(q), lim
r→0

φ′(r) = 0 and since
ffl
B2
1 (0)

a2 d(a, b) = 1
4 , it also follows that: limr→0

φ′′(r) = 1

4
�Hv(q). We thus conclude (2.3)2

by Taylor’s theorem at r = 0. A similar calculation applied to r �→ A1(v, r)(q) yields
(2.3)1. Assume now that �Hv = 0 in Br0(q). By the second formula in (2.5), we get:

φ′(r) =
 

B2
1 (0)

〈∇Hv(q ∗ r(a, b, 0)), (a, b)〉 d(a, b),

= 1

π

ˆ 1

0

ˆ

∂B2
s (0)

〈∇Hv(q ∗ r(a, b, 0)) ,
(a, b)

s

〉
s dσ(a, b)ds

= 1

π

ˆ 1

0
s
ˆ

B2
s (0)

div∇Hv(q ∗ r(a, b, 0)) d(a, b)ds

= 1

π

ˆ 1

0
rs
ˆ

B2
s (0)

�Hv(q ∗ r(a, b, 0)) d(a, b)ds = 0,

for all r ∈ (0, r0). Consequently, φ is constant so that: A2(v, r)(q) = φ(r) =
lim
r→0

φ(r) = v(q) as claimed in (2.4) with i = 2. Differentiating (2.2) further implies

(2.4) for i = 1. ��
In order to weaken the smoothness assumption in Proposition 2.3, recall the mol-

lification procedure in H. Let J ∈ C∞
0 (H) be a nonnegative test function, supported

in B1(0) and such that
´
H
J (p) dp = 1. For r > 0, define Jr = 1

r4
J ◦ ρ1/r that

is supported in Br (0) and still satisfying
´
H
Jr (p) dp = 1. Given v ∈ L1

loc(H) the
convolution with Jr is:

(vJr )(q) =
ˆ

H

v(p)Jr (q ∗ p−1) dp =
ˆ

Br (0)
v(p−1 ∗ q)Jr (p) dp.

Similarly as in the Euclidean case: vJr ∈ C∞(H). Also, the family vJε converges
as ε → 0 to v in L1

loc(H). When v ∈ C(H) then the convergence is locally uniform
and we also note that for all i ∈ {1, 2, 3, (3, K )}:

Ai (vJε, r) = Ai (v, r)Jε for all ε, r > 0. (2.6)
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Corollary 2.4 Let v ∈ C(D) on an open set D ⊂ H. Validity of any of the mean value
properties i ∈ {1, 2} in:

v(q) = Ai (v, r)(q) for all B̄r (q) ⊂ D

implies that v ∈ C∞(D) and �Hv = 0 in D.

Proof Fix an open set U , compactly contained in D. By (2.6) the smooth functions
vε = vJε satisfy the mean value property (2.4) for all r , ε small enough and all
q ∈ U . By Proposition 2.3, we thus obtain �Hvε = 0 inU . Consequently, (2.1) holds
on U for each vε and passing to the uniform limit with ε → 0, the same property is
valid for v as well. Applying Theorem 2.1 (2), the claim follows on U and thus also
on D. ��

For completeness, we now state the mean value property related to the operator
A3. We also observe the viscosity version of the same property, which will be used
for theA3-like averaging operator developed for the p-Laplacian in Sects. 4 and 5 . In
the Euclidean setting, viscosity solutions in the sense of means have been discussed
in [19].

Proposition 2.5 (a) Let v ∈ C2(H) and q ∈ H. We have the expansion, as r → 0:

A3(v, r)(q) = v(q) + r2

3π
�Hv(q) + o(r2). (2.7)

In particular, validity of v(q) = A3(v, r)(q) for r ∈ (0, r0) implies �Hv(q) = 0.
(b) Let v ∈ C(D) on an open set D ⊂ H. Validity of the mean value property (2.8) in

the viscosity sense, as defined below, at every q ∈ D, is equivalent to: v ∈ C∞(D)

and �Hv = 0 in D. Namely, we say that:

A3(v, r)(q)
visc= v(q) + o(r2) as r → 0, (2.8)

if and only if the following two conditions are satisfied: (1) for every φ ∈ C2(D)

such that φ(q) = v(q) and φ < v in D \ {q}, there holds: A3(φ, r)(q) − φ(q) ≤
o(r2) as r → 0; (2) for every φ ∈ C2(D) such that φ(q) = v(q) and φ > v in
D \ {q}, there holds: A3(φ, r)(q) − φ(q) ≥ o(r2) as r → 0.

Proof Expansion (2.7) follows in view of
ffl
B1(0)

a2 d(a, b, c) = 2/(3π), by an entirely
similar calculation as in Proposition 2.3 applied to ψ(r) = A3(v, r)(q).

The proof of (b) is quite standard, hence we only sketch it. Firstly, by the same
argument as in the proof of Theorem 15.2, condition (2.8) is equivalent to v being
viscosity H-harmonic; this statement is also a special case of the main result in [14].
Secondly, let B̄r (q0) ⊂ D and consider the H-harmonic extension u of v|∂Br (q0) on
Br (q0), namely the unique solution to:

�Hu = 0 in Br (q0), u = v on ∂Br (q0).
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We claim that v ≤ u. Indeed, if supBr (q0)(v−u) > 0 then also the perturbed difference
q �→ v(q) − (u(q) − ε|q − p0|4K ) attains its maximum in Br (q0), if only ε > 0
is sufficiently small. Here, p0 /∈ D̄ is some fixed point. Call the said maximum
q̄ ∈ Br (q0); using now φ(q) = u(q) − ε|q − p0|4K as a test function in the definition
of the viscosity solution, we obtain:

0 ≤ �Hφ(q̄) = −ε · 24∣∣(q̄ − p0)hor
∣∣2 < 0,

which is a contradiction, proving the claim. In a similar manner, it follows that v ≥ u.
Thus v = u is H-harmonic in Br (q0) and hence in the whole D. Thirdly, it is easy
to check that a classical H-harmonic function is viscosity H-harmonic. This ends the
proof. ��

3 Themean value expansion for 1H,∞

In this section, we develop the expansion similar to (2.7) but for the fully nonlinear
operator �H,∞ in (1.7) replacing the linear �H. The averaging in the left hand side
of (3.2) is then what we call the “deterministic averaging” 1

2 (sup+ inf), as it corre-
sponds to the two players’ choices of moves, in the Tug of War game modelled on the
expansion (3.2), which is then interpreted as the dynamic programming principle for
the related process. This construction is conceptually similar to having the “stochas-
tic averaging” A3 correspond to the Brownian motion. The proof of Theorem 3.1
is close to the arguments in [32] valid in the Euclidean case; here the application
of Lagrange multipliers yields the bound on the non-horizontal component of any
minimizer/maximizer of v on Br (q).

Given a function v ∈ C2(H), it is useful to observe the following Taylor expan-
sions. Firstly, one directly checks that 〈∇v(q), p− q〉 = 〈(∇H, Z)v(q), q−1 ∗ p〉 and
〈∇2v(q) : (p − q)⊗2〉 = 〈(∇H, Z)2v(q) : (q−1 ∗ p)⊗2〉. Consequently, there holds
as p → q:

v(p) = v(q) + 〈(∇H, Z)v(q), q−1 ∗ p〉 + 1

2

〈
(∇H, Z)2v(q) : (q−1 ∗ p)⊗2〉

+o(|p − q|2).

However, since (q−1 ∗ p)⊗2e3 = o(d(p, q)2) and also o(|p − q|2) ≤ o(d(p, q)2),
we obtain the reduced second order Taylor expansion, valid in H as p → q:

v(p) = v(q) + 〈(∇H, Z)v(q), q−1 ∗ p〉 + 1

2

〈∇2
H
v(q)sym : ((q − p)hor

)⊗2〉
+o(|q−1 ∗ p|2K ). (3.1)
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Theorem 3.1 Let v ∈ C2(H) and let q ∈ H. If∇Hv(q) �= 0, then we have the following
expansion as r → 0:

1

2

(
inf
Br (q)

v + sup
Br (q)

v
) = v(q) + r2

2
�H,∞v(q) + o(r2). (3.2)

Proof 1.Without loss of generality, we may assume that v(q) = 0 and |∇Hv(q)| = 1.
Consider an approximation of v given by its Taylor expansion in H:

u(p) = 〈a, q−1 ∗ p〉 + 1

2

〈
A : ((q − p)hor

)⊗2〉
,

where:

a=(∇H, Z)v(q)=(∇H, Z)u(q) ∈ R
3 and A = ∇2

H
v(q)sym = ∇2

H
u(q)sym ∈ R

2×2.

We denote a = (ahor , a3) and observe that in view of |ahor | = 1:

�H,∞u(q) = �H,∞v(q) = 〈A : (ahor )
⊗2〉.

Then by (3.1) it follows that ‖u − v‖C(Br (q)) = o(r2), and consequently:

∣∣ inf
Br (q)

u − inf
Br (q)

v
∣∣+ ∣∣ sup

Br (q)

u − sup
Br (q)

v
∣∣ = o(r2).

It hence suffices to prove (3.2) for the approximant u. For each r > 0 consider the
rescaling:

ur (p) = 1

r
u(q ∗ ρr (p)) = 〈a, (phor , r z)〉 + r

2
〈A : phor ⊗ phor 〉, (3.3)

defined for all p = (phor , z) = (x, y, z) ∈ H, and note that ∇Hur (p) = ∇Hu(q ∗
ρr (p)) and ∇2

H
ur (p) = r∇2

H
u(q ∗ δr (p)). We will prove that as r → 0:

1

2

(
inf
B1(0)

ur + sup
B1(0)

ur
) = r

2
〈A : (ahor )

⊗2〉 + o(r), (3.4)

which will imply (3.2) for the function u, in view of:

inf
Br (q)

u = r inf
B1(0)

ur , sup
Br (q)

u = r sup
B1(0)

ur and �H,∞u(q) = 1

r
�H,∞ur (0).

2. Let p̄r , pr ∈ B̄1(0) be such that ur ( p̄r ) = infB1(0) ur and ur (p
r ) = supB1(0) ur .

Then for every r > 0 such that r |A| < 1 it follows that ∇ur (p) = (ahor , ra3) +
r(Aphor , 0) �= 0 for p ∈ B1(0), so we actually have:

p̄r , pr ∈ ∂B1(0).
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The method of Lagrange multipliers implies that the following vectors are parallel:

∇ur (p
r ) ‖ (∇|p|4K )(pr ), ∇ur ( p̄

r ) ‖ (∇|p|4K )( p̄r ).

Writing pr = (prhor , z
r ) this yields: (ahor + r Aprhor , ra3) ‖ (|prhor |2 prhor , 8zr ) and

further:

prhor = |prhor |
|ahor + r Aprhor |

(ahor + r Aprhor ) and zr = 1

8
ra3

|prhor |3
|ahor + r Aprhor |

.

(3.5)

Consequently, we get:

|ahor − prhor | ≤ 4|A|r , |zr | ≤ 1

4
r |a3|,

which implies:

0 ≤ ur (p
r ) − ur ((ahor , 0))

= 〈ahor , prhor 〉 − 1 + ra3z
r + r

2
〈A : (prhor )

⊗2 − (ahor )
⊗2〉

≤ 〈ahor , prhor 〉 − 1 + 1

4
|a3|2r2 + r |A| · |prhor − ahor | ≤ (4|A|2 + 1

4
|a3|2
)
r2.

Likewise, for the minimizer p̄r (rather than the maximizer pr above) we have:

0 ≥ ur ( p̄
r ) − ur ((−ahor , 0)) ≥ (4|A|2 − 1

4
|a3|2
)
r2,

which results in (3.4) because ur ((ahor , 0)) + ur ((−ahor , 0)) = r〈A : (ahor )⊗2〉. ��

4 Twomean value expansions for 1H,p: p > 2

Combining the mean value expansions and the averaging operators developed for
�H in Sect. 2, and for �H,∞ in Sect. 3, we now state two mean value expansions
for �H,p. Heuristically, the first formula (4.1) below, views the normalisation �N

H,p
directly through the interpolation (1.6). The related averaging operator is then the
superposition of:

(1) “simple averaging” with prescribed weights αp, (1 − αp),
(2) “stochastic averaging” A3,
(3) “deterministic averaging” 1

2 (sup+ inf).

The expansion (4.1) holds for any p > 1, however the “simple averaging” coefficients
are feasible, in the sense that having αp ∈ [0, 1] allows for their interpretation as
probabilities of the stochastic versus deterministic sampling, only for p ≥ 2. In the
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810 M. Lewicka et al.

Fig. 1 The three averaging
contributions in the formula
(4.2)

B p (q)

B (p )

B (p )–

Euclidean setting, the parallel formula has been implemented as the dynamic pro-
gramming principle for Tug of War game with noise in [26].

Our second mean value expansion (4.2) reflects the uniform “simple averaging”
of: (1) “stochastic averaging” and (2) “deterministic averaging” applied to the further
stochastic one. The fact that the smoothing A3 is present in all three terms, results in
automatic continuity of solutions to the dynamic programming principle (see Sect. 11);
compare to the analysis in [26] that has been based on (4.1) and thus necessitated
measurable approximations. Again, the mean value expansion (4.2) works only in the
limited range of exponents p > 2. In Sect. 5 we will present yet another mean value
operator in the Heisenberg group, pertaining to the general case of p ∈ (1,∞) (Fig. 1).

Theorem 4.1 Let v ∈ C2(H) and let q ∈ H. If∇Hv(q) �= 0 then we have the following
expansions below, valid as r → 0:

(1) For p > 1 define αp = 3π

2(p − 2) + 3π
and βp = 2(p − 2)

2(p − 2) + 3π
. Then:

αpA3(v, r)(q)+βp

2

(
inf

p∈Br (q)
v(p) + sup

p∈Br (q)

v(p)
)

= v(q) + r2

2(p − 2) + 3π
· �H,pv(q)

|∇Hv(q)|p−2 + o(r2).

(4.1)

In particular, for p = 2 we recover the expansion (2.7).

(2) For p > 2 define γp = (p − 2

π

)1/2
. Then:

1

3
A3(v, r)(q)+1

3
inf

p∈Bγpr (q)
A3(v, r)(p) + 1

3
sup

p∈Bγpr (q)

A3(v, r)(p)

= v(q) + r2

3π
· �H,pv(q)

|∇Hv(q)|p−2 + o(r2).

(4.2)

Again, the harmonic expansion (2.7) is recovered asymptotically as p → 2+.
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Proof 1. Summing expansions (2.7) and (3.2) weighted with coefficients αp and βp,
we get:

αpA3(v, r)(q) + βp

2

(
inf
Br (q)

v + sup
Br (q)

v
)

= v(q) +
( αp

3π
�Hv(q) + βp

2
�H,∞v(q)

)
r2 + o(r2)

= v(q) + αpr2

3π

(
�Hv(q) + (p − 2)�H,∞v(q)

)
+ o(r2)

= v(q) + αpr2

3π
|∇Hv(q)|2−p�H,pv(q) + o(r2),

because 3πβp/(2αp) = p − 2 and αp + βp = 1, proving (4.1).

2. To show (4.2), consider the function u(p) = A3(v, r)(p) and note that since
∇Hv(q) �= 0 we also have: ∇Hu(q) = A3(∇Hv, r)(q) �= 0. We may thus apply (3.2)
to u and obtain:

1

2

(
inf

p∈Bγpr (q)
A3(v, r)(p) + sup

p∈Bγpr (q)

A3(v, r)(p)
)

= A3(v, r)(q) + 1

2
γ 2
p r

2�H,∞u(q) + o(r2).

Since:

�H,∞u(q) =
〈
A3(∇2

H
v, r)(q) :

( A3(∇Hv, r)(q)

|A3(∇Hv, r)(q)|
)⊗2〉 = �H,∞v(q) + o(1),

it follows in view of (2.7) that:

1

3
A3(v, r)(q) + 1

3
inf

Bγpr (q)
A3(v, r) + 1

3
sup

Bγpr (q)

A3(v, r)

= A3(v, r)(q) + γ 2
p r

2

3
�H,∞v(q) + o(r2)

= v(q) +
( 1

3π
�Hv(q) + γ 2

p

3
�H,∞v(q)

)
r2 + o(r2)

= v(q) + r2

3π

(
�Hv(q) + (p − 2)�H,∞v(q)

)
+ o(r2)

= v(q) + r2

3π
|∇H,pv(q)|2−p�H,pv(q) + o(r2),

because γ 2
pπ = p − 2. The proof is done. ��

Remark 4.2 Statement (1) of Theorem 4.1 also holds for p = 1, as noted by the
reviewers. The same expansion (4.2) holds if we replace the constant exponent p by a
variable exponent p(·) > 2, retaining the scaling factor γp = (p(·) − 2)/π

)1/2. This
formulation can be applied to the so-called strong p(·)-Laplacian:

�S
H,p(·)v(q) = |∇Hv(q)|p(q)−2(�Hv(q) + (p(q) − 2)�H,∞v(q)

)
.
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We remark that there are different and non-equivalent ways of extending the constant
exponent p-H-Laplacian �H,p to the variable exponent case [28]. The strong p(·)-
Laplacian was introduced in the Euclidean setting in [2], and for regular functions it
satisfies:

�S
H,p(·)v(q) = �H,p(·)v(q) − |∇Hv(q)|p(q)−2 log(|∇Hv(q)|)〈∇Hv(q),∇Hp(q)〉.

This connection has also been studied for weak solutions in the Euclidean case,
[35]. Here, �H,p(·) is a particular version of the p(·)-H-Laplacian, resulting by tak-
ing the Euler-Lagrange equation of the functional E(v) = ´

D
1

p(q)
|∇Hv(q)|p(q) dq,

namely:

�H,p(·)v(q) = divH
(|∇Hv(q)|p(q)−2∇Hv(q)

)
.

A version of random Tug of War game in the context of the parabolic strong p(x, t)-
equation in the Euclidean setting, has been developped in [30]. There, the process is
modelled on the asymptotic expansion (4.1) and results in the discontinuous approxi-
mations uε . In our work, the game values in (11.1), modelled on the expansion (4.2),
have boundary-implied regularity.

5 The anisotropic mean value expansion for 1H,p: 1 < p < ∞
We now propose another mean value expansion that, unlike (4.1) and (4.2), leads to
the dynamic programming principle that works for any exponent p ∈ (1,∞). The key
idea, developed in the Euclidean setting in [22], is to superpose:

(1) “deterministic averaging” 1
2 (sup+ inf) on Korányi balls, with

(2) “stochastic averaging” A3 on the “Korányi ellipsoids” defined as the images of a
unit ball under suitable linear transformations.

We begin by the counterpart of Proposition 2.3 on such ellipsoids, defined as follows.
For a radius r > 0, an aspect ratio α > 0 and an orientation vector ν = (νhor , ν3) ∈

H that we normalize to be of unit Euclidean length: |νhor |2 + ν23 = 1, we set the
Korányi ellipsoid centered at a given q ∈ H to be:

E(q, r;α, ν) = q ∗ ρr
{
p + (α − 1)〈p, ν〉ν; p ∈ B1(0)

}
. (5.1)

The open, bounded, smooth set E(q, r;α, ν) ⊂ H is thus obtained by applying the
linear map:

p �→ L(p;α, ν) = (p − 〈p, ν〉ν) + α〈p, ν〉ν

to the unit Korányi ball B1(0), then scaling via Heisenberg dilation ρr , and centering
the image at q by the group operation. Given a continuous function v ∈ C2(H), define
the average:
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A3(v, r;α, ν)(q) =
 

E(q,r;α,ν)

v(p) dp =
 

B1(0)
v
(
q ∗ δr L(p;α, ν)

)
dp.

Observe that E(q, r; 1, ν) = Br (q), so likewise: A3(v, r; 1, ν) = A3(v, r) for all
orientations ν.

Proposition 5.1 Let v ∈ C2(H) and q ∈ H. We have the following expansion, as
r → 0:

A3(v, r;α, ν)(q)

= v(q) + r2

3π

(
�Hv(q) + (α2 − 1)

〈∇2
H
v(q) : ν⊗2

hor

〉)+ o(r2). (5.2)

Proof As in the proof of Proposition 2.3, define the auxiliary function φ(r) =
A3(v, r;α, ν)(q). Then φ ∈ C2(0,∞) and it is easy to compute that:

φ(r) =
 

B1(0)
v
(
q ∗ (rphor + r(α − 1)〈p, ν〉νhor , r2 p3 + r2(α − 1)〈p, ν〉ν3

))
dp,

φ′(r) =
 

B1(0)

〈
phor + (α − 1)〈p, ν〉νhor ,∇H

〉
· v
(
q ∗ ρr L(p;α, ν)

)

+ 2r
(
p3 + (α − 1)〈p, ν〉ν3

) · Zv
(
q ∗ ρr L(p;α, ν)

)
dp.

Further, B1(0) being symmetric implies:

lim
r→0

φ′′(r) = lim
r→0

 

B1(0)

〈(
phor + (α − 1)〈p, ν〉νhor

)⊗2 : ∇2
H
v
(
q ∗ ρr L(p;α, ν)

)〉

+ 2
(
p3 + (α − 1)〈p, ν〉ν3

) · Zv
(
q ∗ ρr L(p;α, ν)

)
dp

=
〈 

B1(0)

(
phor + (α − 1)〈p, ν〉νhor

)⊗2 dp : ∇2
H
v(q)
〉
.

Expanding the first matrix expression in the right hand side above to:
 

B1(0)
p⊗2
hor dp + 2(α − 1)

 

B1(0)
〈p, ν〉(phor ⊗ νhor )sym dp + (α − 1)2

 

B1(0)
〈p, ν〉2 dp · ν⊗2

hor

and using
ffl
B1(0)

a2 d(a, b, c) = 2
3π with |ν| = 1, to compute

ffl
B1(0)

p⊗2
hor dp = 2

3π I d2,
and:

 

B1(0)
〈p, ν〉(phor ⊗ νhor )sym dp = 2

3π
ν⊗2
hor ,

 

B1(0)
〈p, ν〉2 dp = 2

3π
,

we conclude that:

lim
r→0

φ′′(r) = 2

3π

〈
I d2 + (α2 − 1)ν⊗2

hor : ∇2
H
v(q)
〉
.
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Fig. 2 The “stochastic sampling” domains, centered at various positions p within the “deterministic sam-
pling” domain at q, in the expansion (5.4)

As lim
r→0

φ(r) = v(q) and lim
r→0

φ′(r) = 0, the result follows by applying Taylor’s theo-

rem at r = 0. ��
It is clear that by choosing α = √

p − 1 and ν = ( ∇Hv(q)
|∇Hv(q)| , 0

)
, in virtue of the inter-

polation (1.6) we obtain: A3(v, r;α, ν) = v(q) + r2|∇Hv(q)|2−p

3π �H,pv(q) + o(r2).
In order to derive a mean value expansion where the left hand side averaging
does not require the knowledge of ∇Hv(q) and allows for the identification of
a p-H-harmonic function that is a priori only continuous, we need to addition-
ally average over all equally probable horizontal vectors νhor . Since only such
horizontal orientations are relevant, we observe that the related Korányi ellipsoid
in (5.1):

E(0, 1;α, (νhor , 0)) =
{(

phor + (α − 1)〈phor , νhor 〉νhor , p3
); p ∈ B1(0)

}
,

can be interpreted as the “Korányi lift” of the two-dimensional ellipse with radius
1:

{
phor + (α − 1)〈phor , νhor 〉νhor ; phor ∈ B2

1 (0)
}

⊂ R
2.

We remark that the expansion (5.4) is related to another interpolation property of
�H,p:

�H,pv = |∇v|p−2
(
|∇Hv|�H,1v + (p − 1)�H,∞v

)
,

which has first appeared, in the context of the applications of�p to image recognition,
in [18] (Fig. 2).

Theorem 5.2 Let v ∈ C2(H) and q ∈ H be such that∇Hv(q) �= 0. Given 1 < p < ∞,
let the scaling exponents sp, ap > 0 satisfy:

3π

2s2p
+ a2p = p − 1. (5.3)
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Then, the following expansion is valid as r → 0:

1

2

(
inf

p∈Br (q)
+ sup

p∈Br (q)

)
A3

(
v, spr; 1 + (ap − 1)

|(p − q)hor |2
r2

,
(p − q)hor

|(p − q)hor |
)
(p)

= v(q) + r2

p − 1
· �H,pv(q)

|∇Hv(q)|p−2 + o(r2). (5.4)

Proof 1. In the statement (5.4) and below, we often write νhor instead of (νhor , 0) ∈ H,
if no ambiguity arises. We define the following continuous function Br (q) � p �→
fr (p):

fr (p) = A3

(
v, spr; 1 + (ap − 1)

|(p − q)hor |2
r2

,
(p − q)hor

|(p − q)hor |
)
(p).

In particular, when (p − q)hor = 0, the above formula still makes sense and returns:
fr (p) = A3(v, spr)(p) = ffl

Bspr (p)
v. Applying Proposition 5.1 and the Taylor expan-

sion in (3.1), we get:

fr (p) = v(p) + r2s2p
3π

�Hv(p)

+ s2p(ap − 1)

3π

(
2 + (ap − 1)

|(p − q)hor |2
r2

)〈∇2
H

v(p) : (p − q)⊗2
hor

〉+ o(r2)

= v(q) + r2s2p
3π

�Hv(q) + 〈(∇H, Z)v(q), q−1 ∗ p
〉

+
(1
2

+ s2p(ap − 1)

3π

(
2 + (ap − 1)

|(p − q)hor |2
r2

))〈∇2
H

v(q) : (p − q)⊗2
hor

〉+ o(r2)

= f̄r (p) + o(r2),

because o(|q−1 ∗ p|2K ) can be replaced by o(r2) for p ∈ Br (q). The left hand side of
(5.4) is thus:

1

2

(
inf

p∈Br (q)
+ sup

p∈Br (q)

)
fr (p) = 1

2

(
inf

p∈Br (q)
+ sup

p∈Br (q)

)
f̄r (p) + o(r2). (5.5)

Observe that Lemma 3.1 cannot be used directly to find the principal term in the
expansion of the right hand side above, even though ∇H f̄r (q) = ∇Hv(q) �= 0,
simply because the function to be minimized/maximized depends on r . We may
however use the argument in the second step of proof of (3.2), as completed
below.
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Fig. 3 The two averaging contributions in the formula (5.4)

2. We write f̄r (q ∗ ρr (p)) = v(q) + r2s2p
3π �Hv(q) + rgr (p) for p ∈ B1(0), so

that:

gr (p) = 〈ahor , phor 〉 + r
(
a3 p3 + 〈A : p⊗2

hor 〉 + |phor |2〈B : p⊗2
hor 〉
)
,

where: a = (ahor , a3) = (∇H, Z)v(q) ∈ R
3,

and: A =
(1
2

+ 2s2p(ap − 1)

3π

)
∇2
H
v(q) ∈ R

2×2, B = s2p(ap − 1)2

3π
∇2
H
v(q) ∈ R

2×2.

(5.6)

Let p̄r , pr ∈ B̄1(0) be, respectively, a minimizer and a maximizer of gr on B̄1(0).
Since in view of ahor �= 0 there holds ∇gr �= 0 in B1(0) for all r sufficiently small,
it follows that p̄r , pr ∈ ∂B1(0). Further, the method of Lagrange multipliers yields:
∇gr (pr ) ‖ ∇(|p|4K )(pr ) so as in (3.5):

pr3 = 1

8
ra3

|prhor |3∣∣ahor + 2r
(
Aprhor + |prhor |2Bprhor + 〈B : (prhor )

⊗2〉prhor
)∣∣ .

In particular, for all r sufficiently small, we obtain (Fig. 3):

|pr3| ≤ 1

4
r |a3|. (5.7)

We now observe that:

0 ≤ gr (p
r ) − gr

( ahor
|ahor |
)

= 〈ahor , prhor 〉 − |ahor | + ra3 p
r
3
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Randomwalks and random tug of war in the Heisenberg group 817

+ r
〈
A : (prhor )

⊗2 − ( ahor|ahor |
)⊗2〉+ |prhor |2〈B : (prhor )

⊗2〉 − 〈B : ( ahor|ahor |
)⊗2〉

≤ 〈ahor , prhor 〉 − |ahor | + 1

4
r2a23 + 2r

(|A| + 2|B|)∣∣prhor − ahor
|ahor |
∣∣,

where we have used (5.7) and
∣∣|prhor |prhor − ahor|ahor |

∣∣ ≤ 2
∣∣prhor − ahor|ahor |

∣∣. It thus follows
that:

∣∣prhor − ahor
|ahor |
∣∣2 ≤ 1

2
r2

a23
|ahor | + 4

r

|ahor |
(|A| + 2|B|)∣∣prhor − ahor

|ahor |
∣∣,

resulting in:
∣∣prhor − ahor|ahor |

∣∣ ≤ Cr with C > 0 depending only on |A|, |B|, |a3|, 1
|ahor | .

In conclusion:

0 ≤ gr (p
r ) − gr

( ahor
|ahor |
) ≤ 1

4
r2a23 + Cr2

(|A| + 2|B|).

3. Likewise, for the maximizer p̄r of gr on B̄1(0), we get:

0 ≥ gr ( p̄
r ) − gr

(− ahor
|ahor |
) ≥ −1

4
r2a23 + Cr2

(|A| + 2|B|).
The two above inequalities imply:

1

2

(
inf

p∈B1(0)
+ sup

p∈B1(0)

)
gr (p) = 1

2

(
gr (p

r ) + gr ( p̄
r )
)

= 1

2

(
gr
( ahor
|ahor |
)

+ gr
(− ahor

|ahor |
))+ O(r2)

= r

|ahor |2 〈A + B : a⊗2
hor 〉 + O(r2) = r

(
1

2
+ s2p(a

2
p − 1)

3π

)
�H,∞v(q) + O(r2).

Consequently, recalling the definition of gr , we get:

1

2

(
inf

p∈Br (q)
+ sup

p∈Br (q)

)
f̄r (p) = v(q) + r2s2p

3π
�Hv(q)

+ r2
(
1

2
+ s2p(a

2
p − 1)

3π

)
�H,∞v(q) + o(r2)

= v(q) + r2s2p
3π

[
�Hv(q) +

(
3π

2s2p
+ a2p − 1

)
�H,∞v(q)

]
+ o(r2)

(5.8)

which directly yields (5.4) in virtue of (5.5) and (5.3). ��
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PART II: The H-Laplacian �H and random walks in H

6 Horizontal �-walk in the Heisenberg group

Let D ⊂ H be an open, bounded and connected set. In this section, we develop a
probability setting related to the expansion (2.3)2. The key role is played by the 3-
dimensional process {Qn}∞n=0, whose increments are 2-dimensional, with the third
variable slaved to the first two via the Levy area. We then apply the classical argument
and argue that {Qn} accumulates a.s. on ∂D, and that its expectation yields a H-
harmonic extension of a given boundary data F .

Let �1 = B2
1 (0) and define:

� = (�1)
N = {ω = {wi }∞i=1; wi = (ai , bi ) ∈ B2

1 (0) for all i ∈ N
}
.

The probability space (�,F ,P) is given as the countable product of (�1,F1,P1),
where:

P1(D) = |D|
|B2

1 (0)|
for all D ∈ F1

is the normalized Lebesgue measure on the σ -algebra F1 of Borel subsets of B2
1 (0).

For any n ∈ N, we also define the probability space (�n,Fn,Pn) as the product of n
copies of (�1,F1,P1). We always identify the σ -algebras Fn with the corresponding
sub-σ -algebras of F , consisting of sets of the form F ×∏∞

i=n+1 �1 for all F ∈ Fn .
Note that the sequence {Fn}∞n=0, where we set F0 = {∅,�}, is a filtration of F .

Given q0 ∈ D and a parameter ε ∈ (0, 1), we now recursively define the sequence
of random variables {Qε,q0

n : � → D}∞n=0, that will converge as n → ∞ to a limiting
random variable Qε,q0 . We use ε � 1 as ultimately we will consider the behavior of
Qε,q0 as ε → 0. Also, for simplicity of notation, we often suppress the superscripts ε

and q0 and write Qn or Q instead of Qε,q0
n or Qε,q0 , if no ambiguity arises. Define:

Q0 ≡ q0,

Qn(w1, . . . , wn) = qn−1 ∗ (ε ∧ d(qn−1, ∂D))(an, bn, 0)

= qn−1 + (ε ∧ d(qn−1, ∂D))
(
an, bn,

1

2
(xn−1bn − yn−1an)

)
,

where qn−1 = (xn−1, yn−1, zn−1) = Qn−1(w1, . . . , wn−1) and wn = (an, bn).

(6.1)

That is, the position qn−1 is advanced uniformly within the 2-dimensional Korániy
ellipse in Tqn−1 determined by the horizontal radius that is the minimum of ε and the
distance d(qn−1, ∂D) of the current position from the boundary of D.

Lemma 6.1 The sequence {Qn}∞n=0 is a martingale relative to the filtration {Fn}∞n=0
and it converges, pointwise a.s., to some random variable Q : � → ∂D.
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Proof The martingale property follows directly from the definition (6.1):

E(Qn | Fn−1)(w1, . . . , wn−1) =
ˆ

�1

Qn(w1, . . . , wn) dP1(wn)

= qn−1 + (ε ∧ d(qn−1, ∂D))

 

B2
1 (0)

(
an, bn,

1

2
(xn−1bn − yn−1an)

)
d(an, bn)

= qn−1 a.s. in �n−1,

because the added linear term integrates to 0 in all components on the symmetric
B2
1 (0).
Being a bounded martingale, the sequence {Qn}∞n=0 converges to some random

variable Q : � → D̄. It remains to show that P-a.s. we have: Q ∈ ∂D. To this end,
observe that:

{ lim
n→∞ Qn = Q} ∩ {Q ∈ D} ⊂

⋃
n∈N, δ∈(0,ε)∩Q

A(n, δ),

where A(n, δ) =
{
d(Qi , ∂D) ≥ δ and |Qi+1 − Qi | ≤ δ

2
for all i ≥ n

}
.

(6.2)

Also, if ω = {wi }∞i=1 ∈ A(n, δ) then for all i ≥ n we have:

δ

2
≥ |Qi+1(ω) − Qi (ω)| ≥ (ε ∧ d(qi , ∂D))|wi+1| ≥ (ε ∧ δ)|wi+1| = δ|wi+1|,

which implies: A(n, δ) ⊂ {ω = {wi }∞i=1 ∈ �; |wi | ≤ 1
2 for all i ≥ n}. We conclude

that:

P(A(n, δ)) ≤ lim
i→∞P1(B

2
1/2(0))

i−n = 0 for all n ∈ N and all δ ∈ (0, ε)

so that the event in the left hand side of (6.2) has probability 0 as well. ��
Given a continuous function F : ∂D → R, we define now:

uε(q) = E[F ◦ Qε,q ] = lim
n→∞E[F ◦ Qε,q

n ] for all q ∈ D, (6.3)

where in the last limiting expression above we have identified F with some continuous
extension of itself on D̄. Since for every n ∈ N the random variable F ◦Qε,q

n is jointly
Borel in the variables q and ω, it follows that uε : D → R is bounded (by ‖F‖C(∂D))
and Borel. It is also clear that this construction is monotone in F , in the sense that if
F1 ≤ F2 on ∂D then uε

F1
≤ uε

F2
, with obvious notation.

Lemma 6.2 The function uε satisfies:

uε(q) = A2(u
ε, ε ∧ d(q, ∂D))(q) for all q ∈ D. (6.4)

Moreover, the sequence {uε ◦Qn}∞n=0 is a martingale relative to the filtration {Fn}∞n=0.
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820 M. Lewicka et al.

Proof An application of Fubini’s theorem, in view of the definition in (6.1), gives
directly:

E[F ◦ Qn] =
ˆ

�1

E[F ◦ Qε,Q1(w1)
n−1 ] dP(w1),

which implies (6.4) by passing to the limit with n → ∞ and recalling the definitions
(6.3) and (6.1). To show the martingale property, we similarly check that for every
n ∈ N:

E(uε ◦ Qn | Fn−1) =
ˆ

�1

uε ◦ Qn dP1(wn)

=
ˆ

�1

uε(qn−1 ∗ (ε ∧ d(qn−1, ∂D))(wn, 0) dP1(wn) = uε(Qn−1)

is valid Pn−1-a.s. in �n−1. ��
Corollary 6.3 Assume that u ∈ C2(D) ∩ C(D̄) satisfies:

�Hu = 0 in D, u = F on ∂D. (6.5)

Then uε = u for all ε ∈ (0, 1). In particular, (6.5) has at most one solution.

Proof We first observe that the sequence {u ◦ Qn}∞n=0 is a martingale relative to the
filtration {Fn}∞n=0. This property follows by the same calculation as in the proof of
Lemma 6.2, where uε is now replaced by u and where (2.4) is used for u instead of
the averaging formula (6.4). Consequently, Doob’s theorem yields:

u = E[u ◦ Q0] = E[u ◦ Qn] for all n ∈ N.

The right hand side above converges to uε , as n → ∞, which proves the first claim.
For the second claim, recall that the functions uε depend only on the boundary

values F = u|∂D and not on their particular extension u on D̄. This yields uniqueness
of the harmonic extension in (6.5). ��

7 Convergence of u� as � → 0

In this section we are concerned with the limiting properties of the family {uε}ε→0.
Following [12], we will introduce the process-related definition of regularity of the
boundary points q ∈ ∂D, which is the notion essentially equivalent to that of conver-
gence to theH-harmonic functionwith prescribed boundary data. The first observation
is on transferring the estimate at the boundary of D to its interior, by walk-coupling.
This probabilistic technique utilizes translation invariance of solutions, similar to its
analytic counterpart presented in Sect. 12 in connection with the Tug of War with
noise, modelled on (4.2).
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Lemma 7.1 In the context of definition (6.3), assume that for every η > 0 there exist
δ, ε0 > 0 such that for all ε ∈ (0, ε0) there holds:

|uε(q ′) − uε(q)| ≤ η for all q, q ′ ∈ D
satisfying: d(q, ∂D) < δ, |q − q ′| ≤ δ. (7.1)

Then, the same uniformity property is likewise valid away from ∂D. Namely, for every
η > 0 there exist δ̂, ε̂ > 0 such that for all ε ∈ (0, ε̂) and all q, q ′ ∈ D satisfying
|q − q ′| ≤ δ, there holds: |uε(q ′) − uε(q)| ≤ η.

Proof Fix η > 0 and let δ > ε0 > 0 be as in (7.1). Given ε ∈ (0, ε0) and q =
(x, y, z), q ′ = (x ′, y′, z′) ∈ D such that:

d(q, ∂D), d(q ′, ∂D) ≥ δ, |q ′ − q| ≤ δ

1 + 1
2diamD ,

define the stopping time τ : � → N ∪ {∞} by:

τ(ω) = min
{
n ≥ 1; d(Qε,q

n (ω), ∂D) < δ or d(Qε,q ′
n (ω), ∂D) < δ

}
.

Indeed, τ is finite a.s. in� in virtue of Lemma 6.1. For a givenω ∈ �with τ(ω) < ∞,
assume without loss of generality that d(Qε,q(ω), ∂D) < δ. It is not hard to show (by
induction on i = 1 . . . τ ) that:

Qε,q ′
τ (ω) − Qε,q

τ (ω) = q ′ − q + ε
(
0, 0,

1

2

〈
(x ′ − x, y′ − y),

τ∑
i=1

w⊥
i

〉)

and ε

τ∑
i=1

wi = (xτ , yτ ) − (x, y),

where we write w⊥
i = (ai , bi )⊥ = (bi ,−ai ), and as usual: Qε,q

τ = (xτ , yτ , zτ ).
Consequently:

∣∣Qε,q ′
τ (ω) − Qε,q

τ (ω)
∣∣ ≤ |q ′ − q| + 1

2
|q ′ − q| · ∣∣ε

τ∑
i=1

wi
∣∣ ≤ (1 + 1

2
diamD)|q ′ − q| ≤ δ.

By Lemma 6.2, the sequence {uε ◦ Qε,q ′
n − uε ◦ Qε,q

n }∞n=0 is a bounded martingale, so
Doob’s theorem yields:

|uε(q ′) − uε(q)| = ∣∣E[uε ◦ Qε,q ′
τ − uε ◦ Qε,q

τ

]∣∣ ≤
ˆ

�

∣∣uε ◦ Qε,q ′
τ − uε ◦ Qε,q

τ

∣∣ dP ≤ η,

by (7.1). This concludes the proof, with ε̂ = ε0 and δ̂ = δ

1+ 1
2 diamD . ��

Definition 7.2 Consider the ε-walk in (6.1).
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(a) We say that a boundary point q0 ∈ ∂D is walk-regular if for every η, δ > 0 there
exists ˆδ ∈(0, δ) and ˆε ∈(0, 1) such that:

P
(
Qε,q ∈ Bδ(q0)

) ≥ 1 − η for all ε ∈ (0, ε̂) and q ∈ B
δ̂
(q0) ∩ D.

(b) We say that D is walk-regular if every q0 ∈ ∂D is walk-regular.

Observe that whenD is walk-regular, then (by compactness), δ̂ and ε̂ can be chosen
independently of q0 (i.e. they depend only on the prescribed thresholds η, δ).

The walk-regularity is essentially equivalent to the validity of (7.1) with q ∈ ∂D.

Theorem 7.3 (a) Assume that q0 ∈ ∂D is walk-regular. Then for every η > 0 there
exists ε̂, δ̂ > 0 such that for every ε ∈ (0, ε̂) there holds:

|uε(q) − F(q0)| ≤ η for all q ∈ B
δ̂
(q0) ∩ D.

(b) If q0 ∈ ∂D is notwalk-regular, then there exists a continuous function F : ∂D → R

such that:

lim
ε̂, ˆδ→0

sup
{|uε(q) − F(q0)|; ε ∈ (0, ε̂), q ∈ B

δ̂
(q0) ∩ D} > 0.

Proof To show (a), let η > 0, and choose δ > 0 so that |F(q ′
0) − F(q0)| ≤ η

2 for all

q ′
0 ∈ ∂D with d(q ′

0, q0) < δ. Further, choose δ̂, ε̂ in Definition 7.2 (a) corresponding
to η

4‖F‖C(∂D)+1 and δ. Then, for all q ∈ B
δ̂
(q0) ∩ D and ε ∈ (0, ε̂) we have:

|uε(q) − F(q0)| ≤
ˆ

�

∣∣F ◦ Qε,q − F(q0)
∣∣ dP ≤ P

(
Qε,q /∈ Bδ(q0)

) · 2‖F‖C(∂D) + η

2
≤ η.

For (b), define F(q) = d(q, q0) for allq ∈ ∂D. By assumption, there existsη, δ > 0
such that for some sequences εi → 0+ and D � qi → q0 we have:

P
(
Qεi ,qi /∈ Bδ(q0)

)
> η as i → ∞.

By nonnegativity of F , it follows that:

uεi (qi ) − F(q0) = uεi (qi ) =
ˆ

�

F ◦ Qεi ,qi dP ≥
ˆ

{Qεi ,qi /∈Bδ(q0)}
δ dP > ηδ,

proving the claim. ��
Theorem 7.4 Assume that D is walk-regular. Then every sequence in the family
{uε}ε→0 has a further subsequence that converges uniformly to a continuous func-
tion u ∈ C(D̄) such that u = F on ∂D.

Proof By Lemma 7.3 and the uniformity observation following Definition 7.2, we
obtain that for every η > 0 there exist ε̂, δ̂ > 0 such that for all ε ∈ (0, ε̂):

|uε(q) − F(q0)| ≤ η for all q0 ∈ ∂D, q ∈ B
δ̂
(q0) ∩ D. (7.2)
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Consequently, by uniform continuity of F on the compact metric space (∂D, d) it
follows that the assumption (7.1) of Lemma 7.1 is valid. Thus the equibounded family
{uε}ε→0 is also equi-oscillatory, so the Ascoli-Arzelà theorem implies existence of a
sequence that converges uniformly to some u ∈ C(D). By (7.2) we finally conclude
that u is continuous up the boundary where u|∂D = F . ��

We remark that the limit u above will be identified as the H-harmonic function in
Sect. 9.

8 The exteriorH-corkscrew condition implies walk-regularity

Definition 8.1 We say that a given boundary point q0 ∈ ∂D satisfies the exterior H-
corkscrew condition provided that there exists μ ∈ (0, 1) such that for all sufficiently
small r > 0 there exists a Korániy ball Bμr (p0) such that:

Bμr (p0) ⊂ Br (q0) \ D.

One can show (see [15, Theorem 1.3]) that every bounded domain D of Euclidean
regularity C1,1 satisfies Definition 8.1 at each boundary point q0. In fact, all C1,1
domains in Carnot groups of step 2, are NTA (non-tangentially accessible), which
means that they satisfy both the exterior and interior H-corkscrew condition, plus a
Harnack chain condition. This regularity is optimal, in the sense that C1,α domains,
for α < 1, do not in general satisfy even a one-sided H-corkscrew condition.

Example 8.2 Forα ∈ [0, 1), defineD = {q = (x, y, z) = (qhor , z) ∈ H; |qhor |1+α >

z
}
. Then the domain D is C1,α-regular, but the exterior H-corkscrew condition does

not hold at q0 = 0. Indeed, take any q /∈ D̄ and compute:

dist(q, ∂D) ≤ d
(
q,
(
z

1
1+α

qhor
|qtan|

, z
)) = ∣∣z 1

1+α − |qhor |
∣∣ < z

1
1+α .

Thus, if q ∈ Br (0), we obtain:

dist(q, ∂D) < Cr
2

1+α ,

with a universal constant C depending only on α. This contradicts dist(q, ∂D) > μr
for all μ > 0 as r → 0. ��

We also remark that (similarly to the Euclidean case) all bounded intrinsic Lipschitz
domains are NTA, and hence satisfy theH-corkscrew condition (see [15, Theorem 3]).
The intrinsic Lipschitz domains, studied in [15], are domains whose boundaries are
locally graphs of intrinsic Lipschitz functions acting between appropriate homoge-
neous subgroups of a Carnot group.

The main statement of this section is the following:

Theorem 8.3 If q0 ∈ ∂D satisfies the exterior H-corkscrew condition, then q0 is
walk-regular.
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Towards the proof we necessitate an inductive technique, see [32]:

Lemma 8.4 For a given q0 ∈ ∂D, assume that there exists a constant θ0 ∈ (0, 1) with
the property that for all δ > 0 there exists ˆδ ∈(0, δ) and ˆε ∈(0, 1) such that:

P
(∃n ≥ 0 Qε,q

n /∈ Bδ(q0)
) ≤ θ0 for all ε ∈ (0, ε̂), q ∈ B

δ̂
(q0) ∩ D. (8.1)

Then q0 is walk-regular.

Proof Fix η, δ > 0 and let m ∈ N be such that θm0 ≤ η. Define the tuples { ˆεk}mk=0,
{δ̂k}m−1

k=0 , {δk}mk=0 inductively, by setting:

δm = δ

2
, εm = 1,

δ̂k−1 ∈ (0, δk), εk−1 ∈ (0, εk) for all k = 1 . . .m

so that: P
(∃n ≥ 0 Qε,q

n /∈ Bδk (q0)
) ≤ θ0 for all ε ∈ (0, εk−1), q ∈ B ˆδk−1

(q0) ∩ D,

δk−1 ∈ (0, ˆδk−1) for all k = 2 . . .m. (8.2)

We finally set:

ε̂ = min
{
ε0, {|δk − δ̂k |}m−1

k=1

}
and δ̂ = δ̂0.

Fix q ∈ B
δ̂
(q0) ∩ D and ε ∈ (0, ε̂). Then the application of Fubini’s theorem yields:

P
(∃n ≥ 0 Qε,q

n /∈ Bδk (q0)
) ≤ θ0P

(∃n ≥ 0 Qε,q
n /∈ Bδk−1(q0)

)
for all k = 2 . . .m.

Together with the inequality in (8.2) for k = 1, the above bound results in:

P
(∃n ≥ 0 Qε,q

n /∈ Bδ(q0)
) ≤ P
(∃n ≥ 0 Qε,q

n /∈ Bδm (q0)
)

≤ θm−1
0 P
(∃n ≥ 0 Qε,q

n /∈ Bδ1(q0)
) ≤ θm0 ≤ η,

proving the validity of condition (a) in Definition 7.2. ��
Proof of Theorem 8.3 Fix δ > 0 sufficiently small and set ε̂ = 1, δ̂ = δ/4. By assump-
tion, there exists a subball B

μδ̂
(p0) ⊂ B

δ̂
(q0) \ D. We will show that condition (8.1)

holds, with constant θ0 = 1−μ2/4
1−μ2/9

∈ (0, 1), as identified below.

Fix now q ∈ B
δ̂
(q0) ∩ D and ε ∈ (0, ε̂). Since the function φ(p) = v(d(p, p0))

with v(t) = 1
t2

satisfies: �Hφ = 0 in H \ {p0}, the sequence of random variables

{v ◦d(Qε,q
n , p0)}∞n=0 is a martingale relative to the filtration {Fn}∞n=0. Define τ : � →

N ∪ {∞} by:

τ = inf
{
n ≥ 0; Qε,q

n /∈ Bδ(q0)
}
.

For every n ≥ 0, the random variable τ ∧ n is a bounded stopping time, so:

v
(
d(q, p0)

) = E
[
v ◦ d(Qε,q

n∧τ , p0)
]

for all n ≥ 0
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follows by Doob’s theorem. Passing to the limit with n → ∞ we obtain:

v(d(q, p0)) =
ˆ

{τ<∞}
v
(
d(Qε,q

τ , p0)
)
dP +

ˆ

{τ=∞}
v
(
d(Qε,q , p0)

)
dP.

Since d(Qε,q
τ , p0) ≥ d(Qε,q

τ , q0) − d(q0, p0) ≥ δ − δ̂ = 3δ̂ and d(Qε,q , p0) ≥ μδ̂,
together with d(q, p0) ≤ d(q, q0) + d(q0, p0) ≤ 2δ̂, the last displayed formula
becomes:

v(2δ̂) ≤ P(τ < ∞)v(3δ̂) + P(τ = ∞)v(μδ̂) = P(τ < ∞)
(
v(3δ̂) − v(μδ̂)

)+ v(μδ̂).

Equivalently:

P(τ < ∞) ≤ v(μδ̂) − v(2δ̂)

v(μδ̂) − v(3δ̂)
= 1/μ2 − 1/4

1/μ2 − 1/9
,

which ends the proof. ��

9 Identification of the limit u: a viscosity solutions proof

In this section we show that the uniform limit of the whole family {uε}ε→0, defined
in (6.3), coincides with the unique H-harmonic extension to the given continuous
data F , provided that D is walk-regular. We present a viscosity solutions proof of
this statement, expandable to the case of arbitrary exponent p ∈ (1,∞). Indeed, in
Sect. 15 we will carry out in detail the parallel construction for p > 2 in connection
to the mean value property (4.2). The construction for 1 < p < ∞, feasible in the
framework of (5.4), is conceptually identical and left as an exercise for an interested
reader; the details pertaining to the Euclidean case can be found in [22]. We point out
that another proof of Theorem 9.2 is available in connection with the discrete Levy
area process.

We start with a simple general lemma about theminima of uniform approximations:

Lemma 9.1 Assume that a sequenceof bounded functions {un : D̄ → R}∞n=1 converges
uniformly to some u ∈ C(D̄), as n → ∞. Then, for every sequence of positive numbers
{δn}∞n=1 converging to 0, every q0 ∈ D and every φ ∈ C2(D̄) such that:

φ(q0) = u(q0), φ < u in D̄ \ {q0}, (9.1)

there exists a sequence {qn ∈ D}∞n=1, satisfying:

lim
n→∞ qn = q0 and un(qn) − φ(qn) ≤ inf

D̄
(un − φ) + δn .
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Proof For every large integer j define η j > 0 and n j ∈ N such that:

η j = min
D̄\B3

1/ j (q0)
(u − φ) and sup

D̄
|un − u| ≤ 1

2
η j for all n ≥ n j .

Without loss of generality, the sequence {n j }∞j=1 is strictly increasing. Now, for all

n ∈ [n j , n j+1) let qn ∈ B3
1/ j (q0) satisfy:

un(qn) − φ(qn) ≤ inf
B3
1/ j (q0)

(un − φ) + δn . (9.2)

Observe that the following bound is valid for every q ∈ D̄ \ B3
1/ j (q0):

un(q) − φ(q) ≥ u(q) − φ(q) − sup
D̄

|un − u| ≥ η j − 1

2
η j ≥ sup

D̄
|un − u|

≥ un(q0) − φ(q0) ≥ inf
B3
1/ j (q0)

(un − φ).

This proves the claim in view of (9.2). ��

Theorem 9.2 The limit function u in Theorem 7.4 solves the Dirichlet problem (6.5).
Automatically, the whole family {uε}ε→0 converges uniformly to such unique solution
u, provided that D is walk-regular.

Proof Let εi → 0+ be such that {uεi }∞i=1 converges uniformly to u on D̄. Fix q0 ∈
D and take φ ∈ C2(D̄) satisfying (9.1). Choose a sequence {qi ∈ D}∞i=1 with the
properties guaranteed by Lemma 9.1 when applied to the error sequence δi = ε3i .
Recalling (6.4) we obtain:

A2(φ, εi )(qi ) ≤ A2(u
εi , εi )(qi ) − (uεi (qi ) − φ(qi )

)+ ε3i = φ(qi ) + ε3i .

From (2.3)2 we thus conclude: φ(qi ) + ε2i
8 �Hφ(qi ) ≤ φ(qi ) + o(ε2i ), which upon

passing to the limit i → ∞ implies: �Hφ(q0) ≤ 0.
By a symmetric reasoning, we get that if φ ∈ C2(D̄) satisfies: φ(q0) = u(q0)

and φ > u in D̄ \ {q0}, then �Hφ(q0) ≥ 0. Finally, the same arguments as in the
second part of the proof of Proposition 2.5 imply that u coincides with its own H-
harmonic extension in any B̄r (q0) ⊂ D. Therefore, u is the H-harmonic extension
of the continuous boundary data F = u|∂D and as such it is unique, completing the
proof. ��
PART III: The p-H-Laplacian �H,p and the random Tug of Wars in H
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10 The random Tug ofWar game in the Heisenberg group

In this section we develop the probability setting similar to that of Sect. 6, but related
to the expansion (4.2) rather than (2.3)2. We remark that an identical construction can
be carried out for the dynamic programming principle modelled on (5.4), where the
advantage is that it covers any exponent 1 < p < ∞, see Remark 10.2. We leave the
details to the interested reader; in the Euclidean setting we point to the paper [22].
Here, we always assume that p > 2, whereas parallel statements for p = 2 follow by
approximation p → 2+.

1. Let �1 = B1(0) × {1, 2, 3} × (0, 1) and define:

� = (�1)
N = {ω = {(wi , si , ti )}∞i=1;

wi = (ai , bi , ci ) ∈ B1(0), si ∈ {1, 2, 3}, ti ∈ (0, 1) for all i ∈ N
}
.

The probability space (�,F ,P) is given as the countable product of (�1,F1,P1).
Here, F1 is the smallest σ -algebra containing all products D × S × B where
D ⊂ B1(0) ⊂ H and B ⊂ (0, 1) are Borel, and S ⊂ {1, 2, 3}. The probabil-
ity measure P1 is given as the product of: the normalized Lebesgue measure on
B1(0), the uniform counting measure on {1, 2, 3} and the Lebesgue measure on
(0, 1):

P1(D × S × B) = |D|
|B1(0)| · |S|

3
· |B|.

For each n ∈ N, we consider the probability space (�n,Fn,Pn) that is the product of n
copies of (�1,F1,P1). The σ -algebrasFn is always identified with the corresponding
sub-σ -algebra of F , consisting of sets of the form A ×∏∞

i=n+1 �1 for all A ∈ Fn .
The sequence {Fn}∞n=0, where we set F0 = {∅,�}, is a filtration of F .

2. Given are two family of functions σI = {σ n
I }∞n=0 and σI I = {σ n

I I }∞n=0, defined
on the corresponding spaces of “finite histories” Hn = H × (H × �1)

n :

σ n
I , σ n

I I : Hn → B1(0) ⊂ H,

assumed to be measurable with respect to the (target) Borel σ -algebra in B1(0) and
the (domain) product σ -algebra on Hn . For every q0 ∈ H and ε ∈ (0, 1) we now
recursively define the sequence of random variables:

{
Qε,q0,σI ,σI I

n : � → H
}∞
n=0.

For simplicity of notation, we often suppress some of the superscripts ε, q0, σI , σI I

and write Qn (or Qq0
n , or QσI ,σI I

n , etc) instead of Qε,q0,σI ,σI I
n , if no ambiguity arises.

Let:
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Q0 ≡ q0,

Qn
(
(w1, s1, t1), . . . , (wn, sn, tn)

) = qn−1 ∗

⎧⎪⎨
⎪⎩

ργpε
(
σ n−1
I (hn−1)

) ∗ ρε(wn) for sn = 1

ργpε
(
σ n−1
I I (hn−1)

) ∗ ρε(wn) for sn = 2
ρε(wn) for sn = 3

where qn−1 = (xn−1, yn−1, zn−1) = Qn−1
(
(w1, s1, t1), . . . , (wn−1, sn−1, tn−1)

)
and hn−1 = (q0, (q1, w1, s1, t1), . . . , (qn−1, wn−1, sn−1, tn−1)

) ∈ Hn−1.

(10.1)

In this “game”, the position qn−1 is first advanced (deterministically) according to
the two players’ “strategies” σI and σI I by a shift in Bγpε(0), and then (randomly)
uniformly by a further shift in the 3-dimensional Korániy ball Bε(0). The deterministic
shifts ργpε ◦ σ n−1

I and ργpε ◦ σ n−1
I I are activated according to the value of the equally

probable outcomes sn ∈ {1, 2, 3}. Namely, sn = 1 results in activating σI and sn = 2
in activating σI I , whereas sn = 3 corresponds to not activating any of these strategies.

3. The auxiliary variables tn ∈ (0, 1) serve as a threshold for reading the eventual
value from the prescribed boundary data. Let D ⊂ H be an open, bounded and
connected set. Define the random variable τ ε,q0,σI ,σI I : � → N ∪ {∞} in:

τ ε,q0,σI ,σI I
(
(w1, s1, t1),(w2, s2, t2), . . .

)
= min

{
n ≥ 1; tn > dε(qn−1)

}
(10.2)

where:

dε(q) = 1

ε
min
{
ε, dist(q,H \ D)

}

is the scaled Korániy distance from the complement of the domain D. As before, we
drop the superscripts andwrite τ instead of τ ε,q0,σI ,σI I if there is no ambiguity. Clearly,
τ is F-measurable and, in fact, it is a stopping time relative to the filtration {F}∞n=0
because:

Proposition 10.1 In the above setting: P(τ < ∞) = 1.

Proof Consider the following set of “advancing” shifts: Dadv = {w = (a, b, c) ∈
B1(0); a > 1

2 }. Since D is bounded, there exists n ≥ 1 (depending on ε) such that:

q0 ∗ ρε(w1) ∗ . . . ∗ ρε(wn) /∈ D for all q0 ∈ D and w1 ∈ Dadv, i = 1 . . . n.

Define η =
( |Dadv|
|B1(0)| · 1

3

)n
> 0 and note that:

P(τ ≤ n) ≥ P

((
Dadv ×

{
1

3

}
× (0, 1)

)n ×
∞∏

i=n+1

�1

)
= η.

It follows by induction that: P(τ > kn) ≤ (1 − η)k for all k ∈ N. The proof is

concluded by observing: P(τ = ∞) = P
( ∞⋂
k=1

{τ > kn}) = lim
k→∞P(τ > kn) ≤

lim
k→∞(1 − η)k = 0. ��
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Remark 10.2 For 1 < p < ∞, one can easily construct a similar process as in
(10.1), modelled on the expansion (5.4). In this case, the position of the token qn−1
is first advanced deterministically according to the strategies σI or σI I by a shift
ρε(y) ∈ Bε(0), and then randomly uniformly by a shift in the Korániy ellipsoid

ρε

(
E
(
0, sp, 1 + (ap − 1)|yhor |2, yhor

|yhor |
))
. The deterministic shifts ρε ◦ σ n−1

I and

ρε ◦σ n−1
I I are activated according to the value of the sequence of i.i.d. random variables

sn ∈ {1, 2}. The random stopping time τ = τ ε,q0,σI ,σI I is defined as in (10.2) through
the auxiliary variables tn . One can check that sufficient conditions on the admissible
parameters ap and sp in (5.3) in order to have P(τ < ∞) = 1 are:

ap ≤ 1 and spap > 1 or ap ≥ 1 and sp > 1.

The proof can be adapted from the Euclidean case (see Lemma 4.1 in [22]) by not-
ing that the projection of a Korániy ellipsoid onto the horizontal plane reduces to a
Euclidean ellipse.

4. Given the data F ∈ C(H), define the functions:

uε
I (q) = sup

σI

inf
σI I

E

[
F ◦ (Qε,q,σI ,σI I

)
τ ε,q,σI ,σI I −1

]
,

uε
I I (q) = inf

σI I
sup
σI

E

[
F ◦ (Qε,q,σI ,σI I

)
τ ε,q,σI ,σI I −1

]
.

(10.3)

The main result in Theorem 11.3 will show that for each ε � 1 we have: uε
I =

uε
I I ∈ C(H) coincide with the unique solution to the dynamic programming principle

in Sect. 11, modelled on the expansion (4.2). It is also clear that the values of uε
I ,I I

depend only on the values of F in the (γp + 1)ε-neighbourhood of ∂D. In Sect. 13
we will prove that as ε → 0, the uniform limit of uε

I ,I I that depends only on F|∂D, is
p-H-harmonic in D and coincides with F on ∂D.

11 The dynamic programming principle modelled on (4.2)

Let D ⊂ H be an open, bounded, connected domain and let F ∈ C(H) be a bounded
data function. We have the following:

Theorem 11.1 For every ε ∈ (0, 1) there exists a unique function u : H → R (denoted
further by uε), automatically continuous and bounded, such that:

u(q) = dε(q)

(
1

3
A3(u, ε)(q) + 1

3
inf

p∈Bγpε (q)
A3(u, ε)(p) + 1

3
sup

p∈Bγpε (q)

A3(u, ε)(p)

)

+ (1 − dε(q)
)
F(q) for all q ∈ H.

(11.1)

The solution operator to (11.1) is monotone, i.e. if F ≤ F̄ then the corresponding
solutions satisfy: uε ≤ ūε .
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Proof 1. We remark that by continuity of: the averaging operator p �→ A3(u, ε)(p),
the weight function dε and the data F , the solution of (11.1) is indeed automatically
continuous. Define the operators T , S : C(H) → C(H) in:

(Sv)(q) = 1

3
A3(u, ε)(q) + 1

3
inf

Bγpε (q)
A3(u, ε) + 1

3
sup

Bγpε (q)

A3(u, ε),

T v = dεSv + (1 − dε)F .

Clearly S (and likewise T ) is monotone, namely: Sv ≤ Sv̄ if v ≤ v̄. Observe further
that:

|Sv(q) − Sv̄(q)| ≤ 1

3

(
|A3(v − v̄, ε)(q)| + | inf

Bγpε (q)
A3(v, ε) − inf

Bγpε (q)
A3(v̄, ε)|

+ | sup
Bγpε (q)

A3(v, ε) − sup
Bγpε (q)

A3(v̄, ε)|
)

≤ 1

3
A3(|v − v̄|, ε)(q) + 2

3
sup

Bγpε (q)

A3(|v − v̄|, ε) ≤ sup
Bγpε (q)

A3(|v − v̄|, ε).

(11.2)

The solution u of (11.1) is obtained as the limit of iterations un+1 = Tun , where we
set u0 ≡ const ≤ inf F . Since u1 = Tu0 ≥ u0 onH and in view of the monotonicity
of T , the sequence {un}∞n=0 is non-decreasing. It is also bounded (by ‖F‖C(H)) and
thus it converges pointwise to a (bounded) limit u : H → R. By the calculation in
(11.2), u must be a fixed point of T , hence a solution to (11.1). We also remark that
the monotonicity of S yields the monotonicity of the solution operator to (11.1).

2. It remains to show uniqueness. If u, ū both solve (11.1), then define M =
supq∈H |u(q) − ū(q)| = supq∈D |u(q) − ū(q)| and consider any maximizer q0 ∈ D,
where |u(q0) − ū(q0)| = M . By (11.2) we obtain:

M = |u(q0) − ū(q0)| = dε(q0)|Su(q0) − Sū(q0)|
≤ dε(q0)

3
A3(|u − ū|, ε)(q0) + 2dε(q0)

3
sup

Bγpε (q0)
A3(|u − ū|, ε) ≤ dε(q0)M ≤ M,

yielding A3(|u − ū|, ε)(q0) = M . Consequently, Bε(q0) ⊂ DM = {|u − ū| = M}
and hence the set DM is open inH. Since DM is obviously closed and nonempty, there
must be DM = H and since u − ū = 0 on H \D, it follows that M = 0. Thus u = ū,
proving the claim. ��
Remark 11.2 It is not hard to observe that the sequence {un}∞n=1 in the proof of Theo-
rem 11.1 converges to u = uε uniformly. In fact, the iteration procedure un+1 = Tun
started by any bounded and continuous function u0 converges uniformly to the unique
solution uε .

Theorem 11.3 For every ε ∈ (0, 1), let uε
I , u

ε
I I be as in (10.3) and uε as in Theo-

rem 11.1. Then:

uε
I = uε = uε

I I .
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Proof 1.We drop the sub/superscript ε for notational convenience. To show that uI I ≤
u, fix q0 ∈ H and η > 0. We first observe that there exists a strategy σ0,I I where
σ n
0,I I (hn) = σ n

0,I I (qn) satisfies for every n ≥ 0 and hn ∈ Hn :

A3(u, ε)
(
qn ∗ ργpε(σ

n
0,I I (qn))

) ≤ inf
Bγpε (qn)

A3(u, ε) + η

2n+1 . (11.3)

Indeed, it suffices to show, in view of continuity of A3(u, ε), that given v ∈ C(H)

and r , η > 0, there exists an infimizing-related Borel measurable “selection” function
σ : H → H such that v(σ (q)) < infBr (q) v + η and σ(q) ∈ Br (q) for all q ∈ H.
Using continuity of v and a localisation argument, if necessary, we note that there
exists δ > 0 such that:

∣∣ inf
Br (q)

v − inf
Br (p)

v
∣∣ < η

2
for all |p − q| < δ.

Let {B3
δ (pi )}∞i=1 be a locally finite covering of H. For each i = 1 . . . ∞, choose

qi ∈ Br (pi ) satisfying: | infBr (pi ) v − v(qi )| <
η
2 . Finally, define:

σ(q) = qi for q ∈ B3
δ (pi ) \

i−1⋃
j=1

B3
δ (p j ).

Clearly, the piecewise constant function σ is Borel regular and infimizing-related with
the prescribed parameters r , η.

2. Fix a strategy σI and consider the following sequence of random variables Mn :
� → R:

Mn = (u ◦ Qn)1τ>n + (F ◦ Qτ−1)1τ≤n + η

2n
.

We show that {Mn}∞n=0 is a supermartingale with respect to the filtration {Fn}∞n=0.
Clearly:

E
(
Mn | Fn−1

) = E
(
(u ◦ Qn)1τ>n | Fn−1

)+ E
(
(F ◦ Qn−1)1τ=n | Fn−1

)
+ E
(
(F ◦ Qτ−1)1τ<n | Fn−1

)+ η

2n
a.s.

(11.4)

We readily observe that: E
(
(F ◦ Qτ−1)1τ<n | Fn−1

) = (F ◦ Qτ−1)1τ<n . Further,
writing 1τ=n = 1τ≥n1tn>dε (qn−1), it follows that:

E
(
(F ◦ Qn−1)1τ=n | Fn−1

) = E
(
1tn>dε (qn−1) | Fn−1

) · (F ◦ Qn−1)1τ≥n

= P1
(
tn > dε(qn−1)

) · (F ◦ Qn−1)1τ≥n

= (1 − dε(qn−1)
)
(F ◦ Qn−1)1τ≥n a.s.
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Similarly, since 1τ>n = 1τ≥n1tn≤dε (qn−1), we get in view of (11.3):

E
(
(u ◦ Qn)1τ>n | Fn−1

) =
ˆ

�1

u ◦ Qn dP1 · dε(qn−1)1τ≥n

=
(
A3(u, ε)(qn−1) + A3(u, ε)(qn−1 ∗ ργpε(σ

n−1
I ))

+ A3(u, ε)(qn−1 ∗ ργpε(σ
n−1
0,I I ))
)dε(qn−1)

3
1τ≥n

≤ ((Su) ◦ Qn−1 + η

2n
)
dε(qn−1)1τ≥n a.s.

Concluding, by (11.1) the decomposition (11.4) yields:

E
(
Mn | Fn−1

) ≤(dε(qn−1)
(
(Su) ◦ Qn−1

)+ (1 − dε(qn−1))
(
F ◦ Qn−1

))
1τ≥n

+ (F ◦ Qτ−1)1τ≤n−1 + η

2n−1 = Mn−1 a.s.

3. The supermartingale property of {Mn}∞n=0 being established, we conclude that:

u(q0) + η = E
[
M0
] ≥ E
[
Mτ

] = E
[
F ◦ Qτ−1

]+ η

2τ
.

Thus:

uI I (q0) ≤ sup
σI

E
[
F ◦ (QσI ,σI I ,0)τ−1

] ≤ u(q0) + η.

As η > 0 was arbitrary, we obtain the claimed comparison uI I (q0) ≤ u(q0). For the
reverse inequality u(q0) ≤ uI (q0), we use a symmetric argument, with an almost-
maximizing strategy σ0,I and the resulting submartingale M̄n = (u ◦ Qn)1τ>n +
(F ◦ Qτ−1)1τ≤n − η

2n , along a given yet arbitrary strategy σI I . The obvious estimate
uI (q0) ≤ uI I (q0) concludes the proof. ��

12 The first convergence theorem

We prove the first convergence result below, via an analytical argument, although a
probabilistic one is possible aswell, in viewof the interpretation of uε in Theorem11.3.
Our proof mimics the construction for the Euclidean case in [22], which is based on
the observation that for s sufficiently large, the mapping q �→ |q|sK yields the variation
that pushes the p-H-harmonic function F into the region of p-H-subharmonicity.

Theorem 12.1 Let F ∈ C2(H) be a bounded data function that satisfies on some open
set U, compactly containing D:

�H,pF = 0 and ∇HF �= 0 in U . (12.1)
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Then the solutions uε of (11.1) converge to F uniformly in H, namely:

‖uε − F‖C(D) ≤ Cε as ε → 0, (12.2)

with a constant C depending on F, U, D and p, but not on ε.

Proof 1. We first note that since uε = F on H \ D by construction, (12.2) indeed
implies the uniform convergence of uε in H. Also, by applying a left translation it
not restrictive to assume that U does not intersect the interior of the cylinder {q =
(x, y, z) = (qhor , z) ∈ H : |qhor |2 = x2 + y2 ≤ 1}. In particular, this implies
|q|K ≥ 1 for all q ∈ D.

We now show that there exists s ≥ 4 and ε̂ > 0 such that the following functions:

vε(q) = F(q) + ε|q|sK
satisfy, for every ε ∈ (0, ε̂):

∇Hvε �= 0 and �H,pvε ≥ εs · |∇Hvε |p−2 in D̄. (12.3)

Fix q ∈ D̄, ε ∈ (0, 1) and denote a = ∇Hvε(q) and b = ∇HF(q). By (12.1) it follows
that:

�H,pvε(q) = |∇Hvε(q)|p−2 (I + I I + I I I ) , (12.4)

where:

I = ε�H(|q|sK ),

I I = ε(p − 2)
〈∇2

H
(|q|sK ) : a

|a| ⊗ a

|a|
〉
,

I I I = (p − 2)
〈∇2

H
F(q) : a

|a| ⊗ a

|a| − b

|b| ⊗ b

|b|
〉
.

Denoting ξ = |qhor |2qhor + 4zq⊥
hor = (x(x2 + y2) − 4yz, y(x2 + y2) + 4xz

) ∈ R
2,

a further computation shows that:

∇H(|q|sK ) = s|q|s−4
K ξ,

�H(|q|sK ) = s(s + 2)|qhor |2|q|s−4
K ,

∇2
H
(|q|sk) = s|q|s−8

K

(
(s − 4)ξ ⊗ ξ + 3|qhor |2|q|4K Id2

)
.

Consequently, we have:

〈∇2
H
(|q|sK ) : a

|a| ⊗ a

|a|
〉 = s|q|s−8

K

(
(s − 4)

〈
ξ ⊗ ξ : a

|a| ⊗ a

|a|
〉+ 3|qhor |2|q|4K

)

≥ 3s|qhor |2|q|s−4
K .
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Also, since |ξ | = |qhor ||q|2K ≤ |qhor |2|q|2K , observe that:

∣∣∣〈∇2
H
F(q) : a

|a| ⊗ a

|a| − b

|b| ⊗ b

|b|
〉∣∣∣ ≤ 4|∇2

H
F(q)| |a − b|

|b| ≤ 4εs|ξ | |q|s−4
K

|∇2
H
F(q)|

|∇HF(q)|
≤ 4εs|qhor |2 · |q|s−2

K

|∇2
H
F(q)|

|∇HF(q)|

We gather the estimates above to get, in view of (12.4):

�H,pvε(q) ≥ |∇Hvε(q)|p−2εs · |qhor |2|q|s−4
K

×
(
(s + 2) + 3(p − 2) − 4(p − 2)|q|2K · |∇2

H
F(q)|

|∇HF(q)|
)
,

It is clear that for s large enough, the quantity in parentheses above is uniformly
bounded from below by 1 on D̄. This justifies the second bound in (12.3), since
|q|K , |qhor | ≥ 1 on D̄. Finally, choosing ε̂ sufficiently small we ensure that∇Hvε �= 0
in D̄ for ε ∈ (0, ε̂).

2. We claim that s and ε̂ in step 1 can further be chosen in a way that for all
ε ∈ (0, ε̂):

vε ≤ Sεvε in D̄. (12.5)

Indeed, a careful analysis of the remainder terms in Taylor’s expansion (4.2) reveals
that:

Sεvε(q) = vε(q) + r2

3π
· �H,pvε(q)

|∇Hvε(q)|p−2 + R2(ε, q), (12.6)

where:

|R2(ε, q)| ≤ Cpε
2oscBε (q)(|∇2

H
vε | + |Zvε |) + Cε3.

Above, we denoted by Cp a constant depending only on p, whereas C is a constant
depending only on the quantities |∇Hvε(q)| and ‖∇2vε‖C(Bε (q)), that remain uniformly
bounded in q ∈ D̄ for small ε. Since vε is the sum of the smooth on U function q �→
ε|q|sK , and a p-harmonic function u that is also smooth in virtue of its non vanishing
horizontal gradient (see [33]), we obtain that: oscBε (q)(|∇2

Hvε | + |T vε |) ≤ Cuε, with
Cu depending only on the third derivatives of u (and on D). In conclusion, (12.6) and
(12.3) imply (12.5) for s sufficiently large, because:

vε(q) − Sεvε(q) ≤ − ε2

3π

�H,pvε(q)

|∇Hvε(q)|p−2 + ε3(CpCu + C) ≤ ε3
(

− s

3π
+ CpCu + C

)
≤ 0.
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3. Let A be a compact set in: D ⊂ A ⊂ U . Fix ε ∈ (0, ε̂) and for each q ∈ A
consider:

φε(q) = vε(q) − uε(q) = F(q) − uε(q) + ε|q|sK .

By (12.5) and (11.1) we get:

φε(q) = dε(q)(vε(q) − Sεuε(q)) + (1 − dε(q))(vε(q) − F(q))

≤ dε(q)(Sεvε(q) − Sεuε(q)) + (1 − dε(q))(vε(q) − F(q))

≤ dε(q)
(1
3
A3(φε, ε)(q) + 2

3
sup

B(1+γp)ε (q)

φε

)
+ (1 − dε(q))

(
vε(q) − F(q)

)
.

(12.7)

Define:

Mε = max
A

φε.

We claim that there exists q0 ∈ A with dε(q0) < 1 and such that φε(q0) = Mε . To
prove the claim, define Dε = {q ∈ D; dist(q, ∂D) ≥ ε}. We can assume that the
closed set Dε ∩ {φε = Mε} is nonempty; otherwise the claim would be obvious. Let
Dε

0 be a nonempty connected component of Dε and denote Dε
M = Dε

0 ∩ {φε = Mε}.
Clearly, Dε

M is closed in Dε
0; we now show that it is also open. Let q ∈ Dε

M . Since
dε(q) = 1 from (12.7) it follows that:

Mε = φε(q) ≤ 1

3
A3(φε, ε)(q) + 2

3
sup

B(1+γp)ε (q)

φε ≤ Mε .

Consequently, A3(φε, ε)(q) = Mε , implying φε ≡ Mε in Bε(q) and thus openness
of Dε

M in Dε
0. In particular, Dε

M contains a point q̄ ∈ ∂Dε . Repeating the previous
argument for q̄ results in φε ≡ Mε in Bε(q̄), proving the claim.

We now complete the proof of Theorem 12.1 by deducing a bound on Mε . If
Mε = φε(q0) for some q0 ∈ D̄ with dε(q0) < 1, then (12.7) yields: Mε = φε(q0) ≤
dε(q0)Mε + (1 − dε(q0))

(
vε(q0) − F(q0)

)
, which implies:

Mε ≤ vε(q0) − F(q0) = ε|q0|sK .

On the other hand, if Mε = φε(q0) for some q0 ∈ A \ D, then dε(q0) = 0, hence
likewise: Mε = φε(q0) = vε(q0) − F(q0) = ε|q0|sK . In either case:

max
D̄

(F − uε) ≤ max
D̄

φε + Cε ≤ 2Cε

where C = maxq∈U |q|sK is independent of ε. A symmetric argument applied to −u
after noting that (−u)ε = −uε gives: minD̄(u − uε) ≥ −2Cε. The proof is done. ��
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13 Convergence of u� and game-regularity

Towards checking convergence of {uε}ε→0, we first prove a counterpart of Lemma 7.1
for the case of p > 2. Namely, we will show that equicontinuity of {uε}ε→0 on H is a
consequence of equicontinuity “at ∂D”. This last property will be, in turn, implied by
the “game-regularity” condition, whichmimics the “walk-regularity” Definition 7.2 in
the context of the stochastic Tug of War as in Sect. 10. The aforementioned condition,
given in Definition 13.2, and the following Lemma 13.4 and Theorem 13.5 are adapted
from the same statements in the seminal paper [32], where another Tug of War was
proposed in the Euclidean setting, for p ∈ (1,∞).

LetD ⊂ H be an open, bounded, connected domain and let F ∈ C(H) be a bounded
data function. We have the following:

Theorem 13.1 Let {uε}ε→0 be the family of solutions to (11.1). Assume that for every
η > 0 there exists δ > 0 and ˆε ∈(0, 1) such that for all ε ∈ (0, ε̂) there holds:

|uε(q
′
0) − uε(q0)| ≤ η for all q ′

0 ∈ D, q0 ∈ ∂D
satisfying |q0 − q ′

0| ≤ δ. (13.1)

Then the family {uε}ε→0 is equicontinuous in D̄.

Proof 1.We present an analytical proof. A probabilistic argument is available as well,
based on a game translation argument as in the proof of Lemma 7.1. For every small

δ̂ > 0 the set Dδ̂ below is open, bounded and connected, where we define:

Dδ̂ = {q ∈ D; dist(q,H \ D) > δ̂
}

and d δ̂
ε (q) = 1

ε
min{ε, dist(q,H \ Dδ̂)}.

Fix η > 0. In view of (13.1) and since without loss of generality the data function
F is constant outside of some large bounded superset of D in H, there exists δ̂ > 0
satisfying:

|uε(w ∗ q) − uε(q)| ≤ η for all q ∈ H \ Dδ̂ , |w| ≤ δ̂, ε ∈ (0, ε̂). (13.2)

Further, let δ ∈ (0, δ̂) be such that:

|q ′
0 ∗ q−1

0 | ≤ δ̂ and |q−1 ∗ q ′
0 ∗ q−1

0 ∗ q|K ≤ δ̂

2
for all q ∈ D and all q0, q

′
0 ∈ D̄ satisfying |q0 − q ′

0| ≤ δ.

(13.3)

Fix q0, q ′
0 ∈ D̄ as above and let ε ∈ (0, δ̂

2 ). Consider the following function ũε ∈
C(H):

ũε(q) = uε(q
′
0 ∗ q−1

0 ∗ q) + η.
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ThenA3(ũε, ε)(q) = A3(uε, ε)(q ′
0∗q−1

0 ∗q)+η and inf
Bγpε (q)

A3(ũε, ε) = inf
Bγpε (q ′

0∗q−1
0 ∗q)

A3(uε, ε) + η, with the same identity valid for the supremum as well. Consequently:

(Sε ũε)(q) = 1

3
A3(ũε, ε)(q) + 1

3
inf

Bγpε (q)
A3(ũε, ε) + 1

3
sup

Bγpε (q)

A3(ũε, ε)

= (Sεuε)(q
′
0 ∗ q−1

0 ∗ q) + η = uε(q
′
0 ∗ q−1

0 ∗ q) + η = ũε(q) for all q ∈ Dδ̂ .

(13.4)

Indeed, in view of q ∈ Dδ̂ and (13.3) we have:

d(q ′
0 ∗ q−1

0 ∗ q,H \ D) ≥ d(q,H \ D) − d(q ′
0 ∗ q−1

0 ∗ q, q) ≥ δ̂ − δ̂

2
= δ̂

2
> ε.

2. It follows now from (13.4) that for all ε ∈ (0, δ̂
2 ) and all q0, q ′

0 ∈ D̄ satisfying
|q0 − q ′

0| ≤ δ:

ũε = d δ̂
ε (Sε ũε) + (1 − d̃ δ̂

ε

)
ũε in q ∈ H.

On the other hand, uε itself similarly solves the same problem above, subject to its

own data uε on H \ Dδ̂ . Since for every q ∈ H \ Dδ̂ we have: ũε(q) − uε(q) =
uε(q ′

0 ∗ q−1
0 ∗ q) − uε(q) + η ≥ 0 in view of (13.2) and (13.3), the monotonicity

property in Theorem 11.1 yields:

uε ≤ ũε in H.

Thus, in particular: uε(q0) − uε(q ′
0) ≤ η. Exchanging q0 with q ′

0 we get the opposite
inequality, and hence |uε(q0) − uε(q ′

0)| ≤ η, establishing the claimed equicontinuity
of {uε}ε→0 in D̄. ��

Following [32] we introduce the following definition. A point q0 ∈ ∂D will be
called game-regular if, whenever the game starts near q0, one of the “players” has a
strategy for making the game terminate near the same q0, with high probability. More
precisely:

Definition 13.2 Consider the Tug of War game with noise in (10.1) and (10.3).

(a) We say that a point q0 ∈ ∂D is game-regular if for every η, δ > 0 there exist
ˆδ ∈(0, δ) and ˆε ∈(0, 1) such that the following holds. Fix ε ∈ (0, ε̂) and p0 ∈
B

δ̂
(q0); there exists then a strategy σ0,I with the property that for every strategy

σI I we have:

P
(
Qτ−1 ∈ Bδ(q0)

) ≥ 1 − η. (13.5)

(b) We say that D is game-regular if every boundary point q0 ∈ ∂D is game-regular.
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Remark 13.3 As in Definition 7.2 of walk-regularity, if condition (b) holds, then δ̂ and
ε̂ in part (a) can be chosen independently of q0. Also, game-regularity is symmetric
with respect to σI and σI I .

Lemma 13.4 Assume that for every bounded data F ∈ C(H), the family of solutions
{uε}ε→0 of (11.1) is equicontinuous in D̄. Then D is game-regular.

Proof Fix q0 ∈ ∂D and let η, δ ∈ (0, 1). Define the data function: F(q) =
−min

{
1, d(q, q0)

}
. By assumption and since uε(q0) = F(q0) = 0, there exists

δ̂ ∈ (0, δ) and ε̂ ∈ (0, 1) such that:

|uε(p0)| < ηδ for all p0 ∈ B
δ̂
(q0) and ε ∈ (0, ε̂).

Consequently:

sup
σI

inf
σI I

E
[
F ◦ (Qε,p0)τ−1

] = uε
I (p0) > −ηδ,

and thus there exists σ0,I with the property that: E
[
F ◦ (Qε,p0,σ0,I ,σI I )τ−1

]
> −ηδ

for every strategy σI I . Then:

P
(
Qτ−1 /∈ Bδ(q0)

) ≤ −1

δ

ˆ

�

F(Qτ−1) dP < η,

proving (13.5) and hence game-regularity of q0. ��
Theorem 13.5 Assume that D is game-regular. Then, for every bounded data F ∈
C(H), the family {uε}ε→0 of solutions to (11.1) is equicontinuous in D̄.

Proof In virtue of Theorem 13.1 it is enough to validate the condition (13.1). To this
end, fix η > 0 and let δ > 0 be such that:

|F(p) − F(q0)| ≤ η

3
for all q0 ∈ ∂D and p ∈ Bδ(q0). (13.6)

By Remark 13.3 and Definition 13.2, we may choose δ̂ ∈ (0, δ) and ε̂ ∈ (0, δ) such
that for every ε ∈ (0, ε̂), every q0 ∈ ∂D and every p0 ∈ B

δ̂
(q0), there exists a strategy

σ0,I I with the property that for every σI there holds:

P
(
(Qε,p0,σI ,σ0,I I )τ−1 ∈ Bδ(q0)

) ≥ 1 − η

6‖F‖C(H) + 1
. (13.7)

Let q0 ∈ ∂D and q ′
0 ∈ D satisfy |q0 − q ′

0| ≤ δ̂. Then:

uε(q
′
0) − uε(q0) = uε

I I (q
′
0) − F(q0) ≤ sup

σI

E
[
F ◦ (Qε,q ′

0,σI ,σ0,I I )τ−1 − F(q0)
]

≤ E
[
F ◦ (Qε,q ′

0,σ0,I ,σ0,I I )τ−1 − F(q0)
]+ η

3
,
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for some almost-supremizing strategy σ0,I . Thus, by (13.6) and (13.7):

uε(q
′
0) − uε(q0) ≤

ˆ

{Qτ−1∈Bδ(q0)}
|F(Qτ−1) − F(q0)| dP

+
ˆ

{Qτ−1 /∈Bδ(q0)}
|F(Qτ−1) − F(q0)| dP + η

3

≤ η

3
+ 2‖F‖C(H)P

(
Qτ−1 /∈ Bδ(q0)

)+ η

3
≤ η.

The remaining inequality uε(q ′
0) − uε(q0) > −η is obtained by a reverse argument.

��

14 Concatenating strategies, the annulus walk and the exterior
H-corkscrew condition as sufficient for game-regularity

Westartwith a result on concatenating strategies,which contains a condition equivalent
to the game-regularity criterion in Definition 13.2 (a). This is similar to the proof of
Theorem 14.1, both derived from the construction in [32] for Euclidean setting. Let
D ⊂ H be an open, bounded connected domain.

Theorem 14.1 For a given q0 ∈ ∂D, assume that there exists θ0 ∈ (0, 1) such that

for every δ > 0 there exists δ̂ ∈ (0, δ) and ε̂ ∈ (0, 1) with the following property. Fix
ε ∈ (0, ε̂) and choose an initial position p0 ∈ B

δ̂
(q0); there exists a strategy σ0,I I

such that for every σI we have:

P
(∃n < τ Qn /∈ Bδ(q0)

) ≤ θ0. (14.1)

Then q0 is game-regular.

Proof 1. Under condition (14.1), construction of an optimal strategy realising the
(arbitrarily small) threshold η in (13.5) is carried out by concatenating the m optimal
strategies corresponding to the achievable threshold η0, on m concentric balls, where
(1 − η0)

m = 1 − θm0 ≥ 1 − η.
Fix η, δ > 0. We want to find ε̂ and δ̂ such that (13.5) holds. Observe first that for

θ0 ≤ η the claim follows directly from (14.1). In the general case, let m ∈ {2, 3, . . .}
be such that:

θm0 ≤ η. (14.2)

Below we inductively define the radii {δk}mk=1, together with the quantities {δ̂(δk)}mk=1,{ε̂(δk)}mk=1 from the assumed condition (14.1). Namely, for every initial position in
B

δ̂(δk )
(q0) in the Tug of War game with step less than ε̂(δk), there exists a strategy

σ0,I I ,k guaranteeing exiting Bδk (q0) (before the process is stopped) with probability at
most θ0. We set δm = δ and find δ̂(δm) ∈ (0, δ) and ε̂(δm) ∈ (0, 1), with the indicated
choice of the strategy σ0,I I ,m . Decreasing the value of ε̂(δm) if necessary, we then set:

δm−1 = δ̂(δm) − (1 + γp)ε̂(δm) > 0.
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Similarly, having constructed δk > 0, we find δ̂(δk) ∈ (0, δk) and ε̂(δk) ∈ (0, ε̂(δk+1))

and define:

δk−1 = δ̂(δk) − (1 + γp)ε̂(δk) > 0.

Eventually, we call:

δ̂ = δ̂(δ1), ε̂ = ε̂(δ1).

To show that the condition of game-regularity at q0 is satisfied, we will concatenate
the strategies {σ0,I I ,k}mk=1 by switching to σ0,I I ,k+1 immediately after the token exits
Bδk (q0) ⊂ B

δ̂(δk+1)
(q0). This construction is carried out in the next step.

2. Fix p0 ∈ B
δ̂
(q0) and let ε ∈ (0, ε̂). Define the strategy σ0,I I :

σ n
0,I I = σ n

0,I I

(
q0, (q1, w1, s1, t1), . . . , (qn, wn, sn, tn)

)
for all n ≥ 0,

separately in the following two cases.

Case 1. If qk ∈ Bδ1(q0) for all k ≤ n, then we set:

σ n
0,I I = σ n

0,I I ,1

(
q0, (q1, w1, s1, t1), . . . , (qn, wn, sn, tn)

)
.

Case 2. Otherwise, define:

k
.= k(x0, x1, . . . , xn) = max

{
1 ≤ k ≤ m − 1; ∃ 0 ≤ i ≤ n qi /∈ Bδk (q0)

}

i
.= min

{
0 ≤ i ≤ n; qi /∈ Bδk (q0)

}
.

and set:

σ n
0,I I = σ n−i

0,I I ,k+1

(
qi , (qi+1, wi+1, si+1, ti+1), . . . , (qn, wn, sn, tn)

)
.

It is not hard to check that each σ n
0,I I : Hn → B1(0) ⊂ H is Borel measurable, as

required. Let σI be now any opposing strategy. Then, a classical argument via Fubini’s
theorem, gives:

P
(∃n < τ Qn /∈ Bδk (q0)

) ≤ θ0P
(∃n < τ Qn /∈ Bδk−1(q0)

)
for all k = 2 . . .m,

so consequently:

P
(∃n < τ Qn /∈ Bδ(q0)

) ≤ θm−1
0 P
(∃n ≤ τ Qn /∈ Bδ1(q0)

) ≤ θm0 .

This yields the result by (14.2) and completes the proof. ��
The proof of game-regularity in what follows will be based on the concatenating

strategies technique above and the analysis of the annuluswalk below.Namely, wewill
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derive an estimate on the probability of exiting a given annular domain D̃ through the
external portion of its boundary. We show that when the ratio of the annulus thickness
and the distance of the initial token position q0 from the internal boundary is large
enough, then this probability may be bounded by a universal constant θ0 < 1. When
p ≥ 4, then θ0 converges to 0 as the indicated ratio goes to ∞.

Theorem 14.2 For given radii 0 < R1 < R2 < R3, consider the annulus D̃ =
BR3(0)\ B̄R1(0) ⊂ H. For every ξ > 0, there exists ε̂ ∈ (0, 1) depending on R1, R2, R3

and ξ, p, such that for every p0 ∈ D̃ ∩ BR2(0) and every ε ∈ (0, ε̂), there exists a
strategy σ̃0,I I with the property that for every strategy σ̃I there holds:

P

(
Q̃ τ̃−1 /∈ B̄R3−ε(0)

)
≤ v(R2) − v(R1)

v(R3) − v(R1)
+ ξ. (14.3)

Here, v : (0,∞) → R is given by:

v(t) =
{
sgn(p − 4) t

p−4
p−1 for p �= 4

log t for p = 4,
(14.4)

and {Q̃n = Q̃
ε,p0,σ̃I ,σ̃0,I I
n }∞n=0 and τ̃ = τ̃ ε,p0,σ̃I ,σ̃0,I I denote, as usual, the random

variables corresponding to positions and stopping time in the Tug of War game (10.1)
on D̃.

Proof Consider the radial function u : H \ {0} → R given by u(q) = v(|q|K ), where
v is as in (14.4). Recall that:

�H,pu = 0 and ∇Hu �= 0 in H \ {0}. (14.5)

Let ũε be the family of solutions to (11.1) with the data F given by a smooth and
boundedmodificationofu outside of the annulus B2R3(0)\B̄R1/2(0). ByTheorem12.1,
there exists a constant C > 0, depending only on p, u and D̃, such that:

‖ũε − u‖C(D̃)
≤ Cε as ε → 0.

For a given q0 ∈ D̃ ∩ BR2(0), there exists thus a strategy σ̃0,I I so that for every σ̃I

we have:

E
[
u ◦ (Q̃ε,q0,σ̃I ,σ̃0,I I )τ̃−1

]− u(q0) ≤ 2Cε. (14.6)

We now estimate:

E
[
u ◦ Q̃ τ̃−1

]− u(q0) =
ˆ

{Q̃ τ̃−1 /∈B̄R3−ε (0)}
u(Q̃ τ̃−1) dP +

ˆ

{Q̃ τ̃−1∈BR1+ε (0)}
u(Q̃ τ̃−1) dP − u(q0)

≥ P
(
Q̃ τ̃−1 /∈ B̄R3−ε(0)

)
v
(
R3 − ε

)
+
(
1 − P
(
Q̃ τ̃−1 /∈ B̄R3−ε(0)

))
v
(
R1 − γpε

)− v(R2),
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where we used the fact that v in (14.4) is an increasing function. Recalling (14.6), this
implies:

P
(
Q̃ τ̃−1 /∈ B̄R3−ε(0)

) ≤ v(R2) − v(R1 − γpε) + 2Cε

v(R3 − ε) − v(R1 − γpε)
. (14.7)

The proof of (14.3) is now complete, by continuity of the right hand side with respect
to ε. ��

By inspecting the quotient in the right hand side of (14.3) we obtain:

Corollary 14.3 The function v in (14.4) satisfies, for any fixed 0 < R1 < R2:

(a) lim
R3→∞

v(R2) − v(R1)

v(R3) − v(R1)
=
⎧⎨
⎩ 1 −

( R2

R1

) p−4
p−1

for 2 < p < 4

0 for p ≥ 4,

(b) lim
M→∞

v(MR1) − v(R1)

v(M2R1) − v(R1)
=
{ 1

2
for p = 4

0 for p > 4.

Consequently, the estimate (14.3) can be replaced by:

P
(
Q̃ τ̃−1 /∈ B̄R3−ε(0)

) ≤ θ0 (14.8)

valid for any θ0 > 1−
(
R2
R1

) p−4
p−1

if p ∈ (2, 4), and any θ0 > 0 if p ≥ 4, upon choosing

R3 sufficiently large with respect to R1 and R2. Alternatively, when p > 4, the same
bound can be achieved by setting R2 = MR1, R3 = M2R1 with the ratio M large
enough.

The results of Theorem 14.2 and Corollary 14.3 are invariant under scaling (Fig.
4), i.e.:

Remark 14.4 The bounds (14.3) and (14.8) remain true if we replace R1, R2, R3 by
r R1, r R2, r R3, the domain D̃ by ρr D̃ and ε̂ by r ε̂, for any r > 0.

Theorem 14.5 Let q0 ∈ ∂D satisfy the exterior H-corkscrew condition, as in Defini-
tion 8.1. Then q0 is game-regular.

Proof With the help of Theorem 14.2, we will show that the assumption of Theo-
rem 14.1 is satisfied, with probability θ0 < 1 depending only on p > 2 and μ ∈ (0, 1)
in Definition 8.1. Namely, set R1 = 1, R2 = 2

μ
and R3 > R2 according to Corollary

14.3 (a) in order to have θ0 = θ0(p, R1, R2) < 1. Further, set r = δ
2R3

. Using the
corkscrew condition, we obtain:

B2r R1(q
′
0) ⊂ Bδ/(μR3)(q0) \ D̄,
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Fig. 4 The concentric balls and the annuli in the proof of Theorem 14.5

for some q ′
0 ∈ H. In particular: d(q0, q ′

0) < r R2, so q0 ∈ Br R2(q
′
0) \ B̄2r R1(q

′
0). It

now easily follows that there exists ˆδ ∈(0, δ) with the property that:

B
δ̂
(q0) ⊂ Br R2(q

′
0) \ B̄2r R1(q

′
0).

Finally, we observe that Br R3(q
′
0) ⊂ Bδ(q0) because r R3 + r R2 < 2r R3 = δ.

Let ε̂/r > 0 be as in Theorem 14.2, applied to the annuli with radii R1, R2, R3,
in view of Remark 14.4. For a given p0 ∈ B

δ̂
(q0) and ε ∈ (0, ε̂), let σ̃0,I I be the

strategy ensuring validity of the bound (14.8) in the annulus walk on q ′
0 ∗ D̃. For a

given strategy σI there clearly holds:

{
ω ∈ �; ∃n < τε,p0,σI ,σ0,I I (ω) Q

ε,p0,σI ,σ0,I I
n (ω) /∈ Bδ(q0)

}

⊂
{
ω ∈ �; Q̃

ε,p0,σ̃I ,σ̃0,I I
τ̃−1 (ω) /∈ Br R3−ε(q

′
0)
}
.

The final claim follows by (14.8) and by applying Theorem 14.1. ��

Remark 14.6 By Corollary 14.3 (b) and adjusting the arguments in [32] to the Heisen-
berg group geometry, one can show that every open, boundedD ⊂ H is game-regular
for p > 4. This will be the content of a separate work.
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15 Uniqueness and identification of the limit u in Theorem 13.5

Let F ∈ C(H) be a bounded data function and let D be open, bounded and game-
regular. In virtue of Theorem 13.5 and the Ascoli-Arzelà theorem, every sequence
in the family {uε}ε→0 of solutions to (11.1) has a further subsequence converging
uniformly to some u ∈ C(H) and satisfying u = F on H \D. We will show that such
limit u is in fact unique.

Recall first the definition of the p-H-harmonic viscosity solution, that should be
compared with the definition in the statement of Proposition 2.5, valid for p = 2.

Definition 15.1 We say that u ∈ C(D̄) is a viscosity solution to the following problem:

�H,pu = 0 in D, u = F on ∂D, (15.1)

if the latter boundary condition holds and if:

(1) for every q0 ∈ D and every φ ∈ C2(D̄) such that:

φ(q0) = u(q0), φ < u in D̄ \ {q0} and ∇Hφ(q0) �= 0, (15.2)

there holds: �H,pφ(q0) ≤ 0,
(2) for every q0 ∈ D and every φ ∈ C2(D̄) such that:

φ(q0) = u(q0), φ > u in D̄ \ {q0} and ∇Hφ(q0) �= 0,

there holds: �H,pφ(q0) ≥ 0.

Theorem 15.2 Assume that the sequence {uε}ε∈J ,ε→0 of solutions to (11.1) with a
bounded data function F ∈ C(H), converges uniformly as ε → 0 to some limit
u ∈ C(H). Then u must be the viscosity solution to (15.1).

Proof Fix q0 ∈ D and let φ be a test function as in (15.2). Using the same argument
as in the proof of Lemma 9.1, we observe that there exists a sequence {qε}ε∈J ∈ D,
such that:

lim
ε→0,ε∈J

qε = q0 and uε(qε) − φ(qε) = min
D̄

(uε − φ). (15.3)

Since by (15.3) we have: φ(q) ≤ uε(q) + (φ(qε) − uε(qε)
)
for all q ∈ D̄, it follows

that:

1

3

(
A3(φ, ε)(qε) + inf

Bγpε (qε )
A3(φ, ε) + sup

Bγpε (qε )

A3(φ, ε)
)

− φ(qε)

≤ 1

3

(
A3(uε, ε)(qε) + inf

Bγpε (qε )
A3(uε, ε) + sup

Bγpε (qε )

A3(uε, ε)
)

+ (φ(qε) − uε(qε)
)− φ(qε) = 0,

(15.4)
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for all ε small enough to guarantee that dε(qε) = 1. On the other hand, (4.2) yields:

1

3

(
A3(φ, ε)(qε) + inf

Bγpε (qε )
A3(φ, ε) + sup

Bγpε (qε )

A3(φ, ε)
)

− φ(qε)

= ε2

3π
· �H,pφ(qε)

|∇Hφ(qε)|p−2 + o(ε2),

for ε small enough to get ∇Hφ(qε) �= 0. Combining the above with (15.4) gives:

�H,pφ(qε) ≤ o(1).

Passing to the limit with ε → 0, ε ∈ J establishes the desired inequality�H,pφ(q0) ≤
0 and proves part (1) of Definition 15.1. The verification of part (2) is done along the
same lines. ��

Since the viscosity solutions u ∈ C(D̄) of (15.1) are unique [6], in view of Theo-
rems 15.2 and 13.5 we obtain:

Corollary 15.3 Let F ∈ C(H) be a bounded data function and letD be open, bounded
and game-regular. The family {uε}ε→0 of solutions to (11.1) converges uniformly in
D̄ to the unique viscosity solution of (15.1).
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