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Abstract
We study local regularity properties of a weak solution u to the Cauchy problem of the
incompressible Navier–Stokes equations. We present a new regularity criterion for the
weak solution u satisfying the condition L∞(0, T ; L3,w(R3)) without any smallness
assumption on that scale, where L3,w(R3) denotes the standard weak Lebesgue space.
As an application, we conclude that there are at most a finite number of blowup points
at any singular time t .

Mathematics Subject Classification 35Q35 · 35D30 · 35B65

1 Introduction

In this paper, we consider the Cauchy problem for the incompressible Navier–Stokes
equations

(∂t − Δ)u + (u · ∇)u + ∇ p = 0

div u = 0 (1)
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618 H. J. Choe et al.

in QT := R
3×(0, T ) and T > 0with a smooth and rapidly decaying solenoidal initial

vector field u(x, 0) = u0(x) inR3. The state variables u and p denote the velocity field
of the fluid and its pressure. Leray [1] proved that the Cauchy problem has a unique
smooth solution for a short time. He also proved that there exists at least one global
weak solution satisfying an energy inequality. Hopf [2] extended the result in the case
of bounded domains with a modern concept of weakly differentiable functions. The
weak solution u lies in the space

V 2
σ (QT ) := L∞(0, T ; L2

σ (R3)) ∩ L2(0, T ;W 1,2
σ (R3)), (2)

but uniqueness and regularity of the weak solution are still open problems. The exact
concept of weak solutions and notations will be given in the next section.

Since there are plenty of important contributions for the regularity question of
the Navier–Stokes equations, we briefly describe a few of them closely related to
our results. To guarantee the regularity of weak solutions, one of the most important
conditions is the so-called Ladyzhenskaya–Prodi–Serrin [3–5] condition, that is,

u ∈ Ll(0, T ; Ls(R3)) (3)

for some s and l satisfying

3

s
+ 2

l
= 1, 3 < s ≤ ∞.

Under this condition, the weak solution u to the Cauchy problem (1) is unique and
smooth. Later, Escauriaza–Sergin–Šverák [6] proved that the regularity of a weak
solution can also be assured by the marginal case,

u ∈ L∞(0, T ; L3(R3)). (4)

However, we do not know yet that kinds of higher integrability hold for weak solutions.
By standard embeddings of the solution space (2), any weak solution satisfy the mixed
integrability condition with the range of integrability exponents

3

s
+ 2

l
= 3

2
, 2 ≤ s ≤ 6.

There is a considerable gap compared with the Ladyzhenskaya–Prodi–Serrin condi-
tion.

To guarantee the local regularity of weak solutions, there are other conditions the so
called ε regularity conditions. For theCauchy problemof theNavier–Stokes equations,
there is a natural scaling structure

u(x, t) → λu(λx, λ2t),

p(x, t) → λ2 p(λx, λ2t).
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Regularity of the Navier–Stokes equations 619

Many of the local regularity results have been established under the various small-
ness assumptions on some scaling invariant quantities. We denote by Σ the set of
possible singular points for the weak solution u. Utilizing regularity criteria, one can
estimate the size of Σ by means of some fractal measures and extract some geo-
metric information of Σ . In this direction, Scheffer [7,8] introduced the concept of
suitable weak solutions for the Navier–Stokes equations and then gave partial regular-
ity results. Caffarelli–Kohn–Nirenberg [9] further strengthened Scheffer’s results and
gave an improved bound for theHausdorff dimension ofΣ . Lin [10] presented a greatly
simplified proof. Ladyzhenskaya–Seregin [11] gave more details and considered the
case that external forces lie in some Morrey spaces. Choe–Lewis [12] presented an
improved estimate of Σ in terms of general Hausdorff measures. Gustafson–Kang–
Tsai [13] unified several known regularity criteria. For the case (4), Neustupa [14]
investigated the structure of Σ and then Escauriaza–Sergin–Šverák [6] resolved the
regularity qestion.

In this paper, we shall present a new regularity criterion for weak solutions to the
Cauchy problem (1) satisfying the condition

u ∈ L∞(0, T ; L3,w(R3)) (5)

where L3,w(R3) denotes the weak Lebesgue space. Because the condition (5) is sig-
nificantly weaker than the condition (4) encompassing type I singularity, the regularity
question under that condition draws many mathematicians’ attention. However, in the
authors knowledge, all results were established under the smallness assumption on
that scale (5). See, for example, [15–17] and the references therein .

We shall use the following notation.

Notation 1 We denote the space ball of radius r and center x by B(x, r) := {y ∈ R
3 :

|y − x | < r} and the space-time cylinder at z = (x, t) by

Q(z, r) := B(x, r) × (t − r2, t).

If the center is at the origin, we simply put Br = B(0, r) and Qr = Q(0, r).

The following theorem is our new regularity criterion.

Theorem 1 For each M > 0 there exists a positive number ε(M) < 1/4 such that if
a weak solution u ∈ V 2

σ (QT ) to the Cauchy problem (1) satisfies the conditions

ess sup
0≤t≤T

‖u‖L3,w(R3) ≤ M (6)

and for some z0 = (x0, t0) ∈ QT and 0 < r ≤ √
t0

1

r3
m

{
x ∈ B(x0, r) : |u(x, t0)| >

ε

r

}
≤ ε, (7)

where m(E) denotes the Lebesgue measure of the set E, then u is bounded in the
space-time cylinder Q(z0, εr).
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620 H. J. Choe et al.

As an application of this criterion, we are able to estimate the size of possible
singular points at a singular time t , denoted by

Σ(t) = {x : (x, t) ∈ Σ}.

We know that the Hausdorff dimension of the possible singular time is at most 1/2.
Many researchers have been investigating the size of Σ(t) at the singular time t under
various conditions on u. Seregin [18] obtained a result on estimating Σ(t) under the
slightly weaker condition than (4). A unifying results on the number of singular points
under the Ladyzhenskaya–Prodi–Serrin type conditions can be found in [17].

Utilizing Theorem 1, we can obtain the following theorem which shows that the
number of possible singular points at any singular time t is at most finite.

Theorem 2 Suppose u ∈ V 2
σ (QT ) is a weak solution to the Cauchy problem (1) and

satisfies the condition (6) for some M > 0. Then there exist at most finite number
N (M) of singular points at any singular time t.

At each singular time t , only a few singular points exist, yet we do not know that
blowup points are of type I or not.

2 Preliminaries

Throughout the paper, we shall use the following notation.

Notation 2 We denote A � B if there exists a generic positive constant C such that
|A| ≤ C |B|. We denote the average value of f over the set E by

〈 f 〉E :=
 
E
f := 1

m(E)

ˆ
E
f (8)

wherem(E) denotes the Lebesguemeasure of the set E.We shall use the same notation
m for the space sets in R

3 and the space-time sets R3 × (0, T ) and it will be clearly
understood in the contexts.

Wenowrecall the definition of theweakLebesgue spaces. For ameasurable function
f on R

3, its level set with the height h is denoted by

E(h) = {x ∈ R
3 : | f (x)| > h}. (9)

The Lebesgue integral can be expressed by the Riemann integral of such level sets. In
particular, for 0 < q < ∞

ˆ
| f (x)|qdx =

ˆ ∞

0
qhq−1m(E(h))dh. (10)
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Regularity of the Navier–Stokes equations 621

Definition 1 The weak Lebesgue space Lq,w(R3) is the set of all measurable function
such that the quantity

‖ f ‖q,w := sup
h>0

[
hm(E(h))1/q

]
(11)

is finite.

As the usual convention, two functions are considered the same if they are equal
almost everywhere. In fact, ‖ f ‖p,w is not a true norm since the triangle inequality
fails. But, it is easy to see that for any 0 < r < q the following expression

‖ f ‖ := sup
0<m(E)<∞

m(E)1/q
( 

E
| f |r

)1/r

(12)

is comparable to ‖ f ‖q,w, (see [19] for example). Moreover, ‖ f ‖ satisfies the triangle
inequality if 1 ≤ r < q and hence it plays the role of true norm for q > 1. Further-
more, the weak Lebesgue spaces are Banach spaces and coincide with the Lorentz
(Marcinkiewicz) spaces Lq,∞.

Remark 3 Using (12) one can easily see that

Lq,w(R3) ⊂
⋂

1≤r<q

L
r ,3−3r/q
loc (R3).

where L r ,λ
loc (R3) denotes the local Morrey space.

The next remark shows that there is no nonzero harmonic function in L3,w(R3).
This fact will be used in the proof of our main theorem.

Remark 4 It is easy to see that if f ∈ L3,w(R3) is harmonic, then f = 0. Indeed,
using the mean value property, we have for all x0 ∈ R

3 and R > 0

|∇ f (x0)| � 1

R4

ˆ
B(x0,R)

| f (x)|dx

� 1

R4

ˆ ∞

0
m(B(x0, R) ∩ E(h))dh

� 1

R4

(ˆ H

0
R3dh +

ˆ ∞

H
h−3dh

)

for all H > 0. Taking H = R−1 we get |∇ f (x0)| � R−2 for all x0 ∈ R
3 and

R > 0. Letting R → ∞, we conclude that ∇ f = 0 and hence f is constant. Since
f ∈ L3,w(R3), it should be identically zero.

We denote by Lq(R3) and Wk,q(R3) the standard Lebesgue and Sobolev spaces,
and we omit these standard definitions. We denote byDσ (R3) the set of all solenoidal
vector fields φ ∈ C∞

c (R3). We define L2
σ (R3) to be the closure of Dσ (R3) in L2(R3)

and W 1,2
σ (R3) to be the closure of Dσ (R3) in W 1,2(R3).
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622 H. J. Choe et al.

We now recall the concept of local pressure projection (cf. [20]). Given a bounded
C2-domain G ⊂ R

n , n ∈ R
n , we define the operator

E∗
G : W−1, s(G) → W−1, s(G). (13)

Appealing to the L p-theory of the steady Stokes system (cf. [21]), for any F ∈
W−1, s(G) there exists a unique pair (v, p) ∈ W 1, s

0,σ (G) × Ls
0(G) which solves in

the weak sense the steady Stokes system

−Δv + ∇ p = F in G,

div v = 0 in G,

v = 0 on ∂G.

Then we set E∗
G(F) := ∇ p, where ∇ p denotes the gradient functional in W−1, s(G)

defined by

〈∇ p, ϕ〉 =
ˆ
G
p∇ · ϕdx, ϕ ∈ W 1, s′

0 (G). (14)

Here we have denoted by Ls
0(G) the space of all f ∈ Ls(G) with

´
G f dx = 0.

Remark 5 1. The operator E∗
G is bounded fromW−1, s(G) into itself with E∗

G(∇ p) =
∇ p for all p ∈ Ls

0(G). The norm of E∗
G depends only on s and the geometric

properties of G, and independent on G, if G is a ball or an annulus, which is due
to the scaling properties of the Stokes equation.

2. In case F ∈ Ls(G) using the canonical embedding Ls(G) ↪→ W−1, s(G) and the
elliptic regularity we get E∗

G(F) = ∇ p ∈ Ls(G) together with the estimate

‖∇ p‖s,G ≤ c‖F‖s,G , (15)

where the constant in (15) depends only on s and G. In case G is a ball or an
annulus this constant depends only on s (cf. [21] for more details). Accordingly
the restriction of E∗

G to the Lebesgue space Ls(G) defines a projection in Ls(G).
This projection will be denoted still by E∗

G .

Next, we introduce the notion of weak solutions and local suitable weak solutions.

Notation 3 We denote by dz the space-time Lebesgue measure dxdt.

Definition 2 We say that u is a Leray–Hopf weak solution to (1) if the velocity field
u lies in the space V 2

σ (QT ) = L∞(0, T ; L2
σ (R3)) ∩ L2(0, T ;W 1,2

σ (R3)), there exists
a distribution p such that (u, p) solves the Navier–Stokes equations in the sense of
distributions, and u satisfies the energy inequality for almost all s ∈ (0, T )

ˆ
R3

|u(s)|2dx + 2
ˆ s

0

ˆ
R3

|∇u|2dz ≤
ˆ
R3

|u(0)|2dx .

We say that u is a local suitable weak solution to (1) if for every ball B ⊂ R
3 the

following local energy inequality the following local energy inequality holds for almost
all s ∈ (0, T ) and for all non negative φ ∈ C∞

c (B × (0, T )),
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Regularity of the Navier–Stokes equations 623

ˆ
|v(s)|2φ(s)dx + 2

ˆ s

0

ˆ
|∇v|2φdz

≤
ˆ s

0

ˆ
|v|2(∂t + Δ)φdz +

ˆ s

0

ˆ
|v|2(v − ∇ ph) · ∇φdz

+2
ˆ s

0

ˆ
(v ⊗ v − v ⊗ ∇ ph : ∇2 ph)φdz + 2

ˆ s

0

ˆ
(p1,B + p2,B)v · ∇φdz,

(16)

where v = u + ∇ ph,B , and

∇ ph,B = −E∗
B(u),

∇ p1,B = −E∗
B(∇ · (u ⊗ u)),

∇ p2,B = E∗
B(Δu).

Remark 6 If a weak solution u is in L∞(0, T ; L3,w(R3)), then u lies in L4(QT ) by
an interpolation. Thus, the function |u|2|∇u| is integrable on QT , which justifies the
integration by parts and one can show that u becomes a local suitable weak solution,
too.

Using a standard iteration method one can observe that boundedness of a certain
scaling invariant quantity essentially implies the boundedness of many of other scaling
invariant quantities. The following form of the Caccioppoli-type inequality is conve-
nient in that purpose.

Lemma 7 (Lemma2.6 in [22]) If u is a suitable weak solution to (1), then for all
Q(z0, r) ⊂ QT

r−1
(ˆ

Q(z0,r/2)
|u|10/3dz

)3/5

+ r−1
ˆ
Q(z0,r/2)

|∇u|2dz

�
(
r−5

ˆ t0

t0−r2

(ˆ
B(x0,r)

|u|2dx
)3

dt

)1/3

+ r−5
ˆ t0

t0−r2

(ˆ
B(x0,r)

|u|2dx
)3

dt

(17)

where the implied constant is absolute.

We end this section by giving the following version of the local regularity criterion.
We include its proof at the end of this paper, Appendix A.

Lemma 8 [23] There exists an absolute positive number ζ such that if a local suitable
weak solution u ∈ V 2

σ (Q(z0, ρ)) to the Navier–Stokes equations satisfies the condition

ρ−2
ˆ
Q(z0,ρ)

|u|3dz ≤ ζ 3 (18)
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624 H. J. Choe et al.

for some z0 = (x0, t0) ∈ QT and 0 < ρ ≤ √
t0, then

u ∈ L∞(Q(z0, ρ/2)),

and the following estimate holds true

‖u‖L∞(Q(z0,ρ/2)) ≤ C

( 
Q(z0,ρ)

|u|3dz
)1/3

+C ess sup
t∈(t0−ρ2,t0)

( 
B(x0,ρ)

|u(t)|2dx
)1/2

(19)

where C is an absolute positive constant.

3 Proof of Theorem 1

Due to Lemma 8, it suffices to show that the following lemma holds true.

Lemma 9 For each M > 0 there exists a positive number ε(M) < 1/4 such that if a
weak solution u ∈ V 2

σ (QT ) to the Navier–Stokes equations satisfies the condition

ess sup
0≤t≤T

‖u‖L3,w(R3) ≤ M (20)

and for some z0 = (x0, t0) ∈ QT and 0 < r ≤ √
t0

r−3m{x ∈ Br (x0) : |u(x, t0)| > r−1ε} ≤ ε, (21)

then there exists ρ ∈ [2εr ,√t0] such that

ρ−2
ˆ
Q(z0,ρ)

|u|3dz ≤ ζ 3 (22)

where ζ is the same number in Lemma 8.

We divide the proof of Lemma 9 into several steps.

Step 1 We first observe that the condition (20) yields

u ∈ C([0, T ]; L2(R3)).

Indeed, (20) implies that for almost all 0 ≤ t ≤ T and all h > 0

h3m(Et (h)) ≤ M3 (23)

where Et (h) denotes the level set

Et (h) := {x : |u(x, t)| > h}.
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Regularity of the Navier–Stokes equations 625

By the Chebyshev inequality we also have

h6m(Et (h)) ≤ ‖u(t)‖6L6 . (24)

Using the two estimates (23) and (24), we obtain that for any H > 0

ˆ
R3

|u(x, t)|4dx = 4
ˆ ∞

0
h3m(Et (h))dh

�
ˆ H

0
M3dh +

ˆ ∞

H
h−3‖u(t)‖6L6dh

� M3H + ‖u(t)‖6L6H
−2.

Taking H = M−1‖u(t)‖2
L6 we get

ˆ
R3

|u(x, t)|4dx � M2‖u(t)‖2L6 .

Hence u ∈ L4(QT ) and so |u|2|∇u| ∈ L1(QT ). This justifies the required
integration by parts to be a local suitable weak solution and also implies the
global energy equality so that u is in C([0, T ]; L2(R3)).

Step 2 We next claim that the condition (20) also yields that for all Q(z0, r) ⊂ QT

r−1
(ˆ

Q(z0,r/2)
|u|10/3dz

)3/5

+ r−1
ˆ
Q(z0,r/2)

|∇u|2dz � M2 + M6. (25)

Due to the Caccioppoli–type inequality (17), it suffices to estimate

ˆ
B(x0,r)

|u(x, t)|2dx .

Using the estimate (23), we obtain that for almost all 0 ≤ t ≤ T and all
h > 0

ˆ
B(x0,r)

|u(x, t)|2dx = 2
ˆ ∞

0
hm[B(x0, r) ∩ Et (h)]dh

�
ˆ H

0
hr3dh +

ˆ ∞

H
h−2M3dh

� r3H2 + M3H−1.

Taking H = Mr−1 we get for almost all 0 ≤ t ≤ T

ˆ
B(x0,r)

|u(x, t)|2dx � M2r . (26)
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626 H. J. Choe et al.

Putting this bound into the right side of the inequality (17), we get the
estimate (25).

Step 3 Wenowprove Lemma 9 by using an indirect argument. Assume the assertion
of the lemma is not true, that is, there exist a positive number M , sequences
εk ∈ (0, 1/4), Tk ∈ (0,∞), zk = (xk, tk) ∈ QTk , rk ∈ (0,

√
tk], and a

sequence of weak solutions uk ∈ V 2
σ (QTk ) such that εk → 0 as k → ∞ and

for all k ∈ N

ess sup
0≤t≤Tk

‖uk‖L3,w(R3) ≤ M,

r−3
k m{x ∈ B(xk, rk) : |uk(x, tk)| > r−1

k εk} ≤ εk, (27)

and for all ρ ∈ (2εkrk,
√
tk]

ρ−2
ˆ
Q(zk ,ρ)

|uk |3dz > ζ 3. (28)

We define for (y, s) ∈ R
3 × (−1, 0)

Uk(y, s) = rkuk(xk + rk y, tk + r2k s),

Pk(y, s) = r2k pk(xk + rk y, tk + r2k s).

Then (Uk, Pk) is a weak solution to the Navier–Stokes equations in R
3 ×

(−1, 0) and satisfies

ess sup
−1≤s≤0

‖Uk‖L3,w(R3) ≤ M .

Thanks to (25) and (26), we have for all k ∈ N, z0 = (x0, 0) and 0 < ρ ≤ 1

ρ−1
(ˆ

Q(z0,ρ/2)
|Uk |10/3dz

)3/5

+ ρ−1
ˆ
Q(z0,ρ/2)

|∇Uk |2dz � M2 + M6 (29)

and

ρ−1 sup
−ρ2≤s≤0

ˆ
B(x0,ρ)

|Uk(s)|2dx � M2. (30)

Furthermore, from (27) and (28), we also have for all k ∈ N

m{x ∈ B1 : |Uk(x, 0)| > εk} ≤ εk (31)

and for all ρ ∈ [εk, 1]

ρ−2
ˆ
Q(0,ρ)

|Uk |3dz > ζ 3. (32)
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Regularity of the Navier–Stokes equations 627

Using a standard reflexivity argument along with Cantor’s diagonaliza-
tion principle and passing to a subsequence from (29) we eventually
get U ∈ L10/3(−1, 0; L10/3

loc (R3)) with ∇U ∈ L2(−1, 0; L2
loc(R

3)) and

H ∈ L5/3(−1, 0; L5/3
loc (R3)) such that for every 0 < R < ∞

Uk → U weakly in L10/3(BR × (−1, 0))

∇Uk → ∇U weakly in L2(BR × (−1, 0))

Uk ⊗Uk → H weakly in L5/3(BR × (−1, 0)) (33)

as k → ∞. Hence, U appears to be a distributional solution to

∂tU − ΔU + ∇ · H = −∇P in R
3 × (−1, 0). (34)

According to the weakly lower semi-continuity of the norm we get from
(29) and (30) along with (33) for all 0 < ρ ≤ 1

ρ−1
(ˆ

Q(z0,ρ)

|U |10/3dyds
)3/5

+ ρ−1
ˆ
Q(z0,ρ)

|∇U |2dyds � M2 + M6 (35)

and

ρ−1 sup
−ρ2≤s≤0

ˆ
B(x0,ρ)

|U (s)|2dy � M2. (36)

Step 4 Let s0 ∈ [−1, 0]. Since u ∈ C∗
w([0, T ]; L3,w(R3)), we have u(·, tk+r2k s0) ∈

L3,w(R3) and

‖u(·, tk + r2k s0)‖L3,w(R3) = ‖Uk(·, s0)‖L3,w(R3).

This shows that {Uk(·, s0)} is a bounded sequence in L3,w(R3). On the other
hand, the predual of L3,w(R3) is the Lorentz space L3/2,1(R3). By means
of the Banach–Alaoglu theorem we get a subsequence {Uk j (·, s0)} and a
function η ∈ L3,w(R3) such that

Uk j (·, s0) → η weakly∗ in L3,w(R3) as j → +∞. (37)

Thus, from (34) we infer that for all ϕ ∈ C∞
c (R3 × (−1, 0)) with ∇ ·ϕ = 0

ˆ s0

−1

ˆ
R3

−U · ∂tϕ + ∇U : ∇ϕ − H : ∇ϕdz = −
ˆ
R3

η · ϕ(s0)dx .

In case s0 is a Lebesgue point of U with respect to time, we argue that for
all ψ ∈ C∞

c,œ(R3)

ˆ
R3

(U (s0) − η) · ψdx = 0
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628 H. J. Choe et al.

which shows thatU (s0)−η is a gradient field. Together with∇ ·(U (s0)−η)

in the sense of distributions we see thatU (s0)−η is harmonic. Recalling that
U (s0) − η ∈ L3,w(R3), it follows that η = U (s0) by Remark 4 in Section
2. Consequently, (37) yields

Uk(·, s0) → U (s0) weakly∗ in L3,w(R3) as k → +∞.

Furthermore, we get

‖U (s0)‖L3,w(R3) ≤ ‖u‖L∞(0,T ;L3,w(R3)).

In particular, U ∈ L∞(0, T ; L3,w(R3)).
Step 5 Next, let s0 ∈ [−1, 0]. Then we may choose sm ∈ (0, T ) in the set of

Lebesgue points such that sm → s0 as m → +∞. Then as above we get a
subsequence {sm j } and η ∈ L3,w(R3) such that

U (·, sm j ) → η weakly∗ in L3,w(R3) as j → +∞.

In addition, we easily verify that the following identity holds for every ϕ ∈
C∞(R3 × (−1, 0)) with div ϕ = 0

ˆ s0

−1

ˆ
R3

−U · ∂tϕ + ∇U : ∇ϕ − H : ∇ϕdz = −
ˆ
R3

η · ϕ(s0)dx . (38)

Arguing as above, we see that this limit is unique, and will be denoted by
U (s0). Note that (38) holds true for η = U (s0). We now repeat the same
argument as above to prove that for all s0 ∈ [−1, 0]

Uk(·, s0) → U (s0) weakly∗ in L3,w(R3) as k → +∞ (39)

U (·, s) → U (s0) weakly∗ in L3,w(R3) as s → s0. (40)

This leads to U ∈ C∗
w([−1, 0]; L3,w(R3)).

Step 6 We shall verify the strong convergence ofUk in L2(BR × (−1, 0)). For this
purpose, we define the local pressure introduced in [20],

∇Ph,k,R = −E∗
BR

(Uk),

∇P1,k,R = −E∗
BR

(∇ ·Uk ⊗Uk),

∇P2,k,R = E∗
BR

(ΔUk)

and

∇Ph,R = −E∗
BR

(U ),

∇P1,R = −E∗
BR

(∇ · H),

∇P2,R = E∗
BR

(ΔU )

123



Regularity of the Navier–Stokes equations 629

(For the definition of E∗
BR

see Appendix B of this paper).
Step 7 We set Vk = Uk + ∇Ph,k,R , and V = U + ∇Ph,R . Then Vk solves

∂t Vk − ΔUk + ∇ · (Uk ⊗Uk) = −∇(P1,k,R + P2,k,R) in BR × (−1, 0),

while V solves

∂t V − ΔU + ∇ · H = −∇(P1,R + P2,R) in BR × (−1, 0).

By using a standard compactness argument due to Lions-Aubin we see that

Vk → V in L2(BR × (−1, 0)) as k → +∞.

By passing to a subsequence we may also assume that

Vk → V a. e. in BR × (−1, 0) as k → +∞.

Arguing as in [23], by the aid of (40), and noting that Ph,k,R is harmonic,
we also find that

∇Ph,k,R → ∇Ph,R a. e. in BR × (−1, 0) as k → +∞.

This leads to the a. e. convergence of Uk which allows to apply Lebesgue’s
dominated convergence theorem. Accordingly,

Uk → U in L3(BR × (−1, 0)) as k → +∞.

This also shows that H = U ⊗U and thereforeU solves the Navier-Stokes
equations.

Step 8 In (32) letting k → +∞, we obtain for every 0 < ρ ≤ 1

ρ−2
ˆ
Q(0,ρ)

|U |3dz ≥ ζ 3. (41)

It remains to carry out the passage to the limit k → +∞ in (31). Without
loss of generality we may assume εk ≤ 2−k . Let

A :=
∞⋂

m=1

∞⋃
k=m

{x ∈ B1 : |Uk(x, 0)| > εk}.

Then according to (31) we have

∞∑
k=1

m{x ∈ B1 : |Uk(x, 0)| > εk} ≤
∞∑
k=1

εk < ∞.
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Hence the Borel–Cantelli lemma yields m(A) = 0. In other words, for each
x ∈ B1\A, there exists m ∈ N such that for all k ≥ m

|Uk(x, 0)| ≤ εk .

Accordingly, Uk(x, 0) → 0 for almost all x ∈ B1. In view of (39) we
conclude that

U (0) = 0 on B1. (42)

Step 9 Next, we set ρk = 2−k and define for (x, t) ∈ R
3 × (−1, 0)

Ũk(x, t) = ρkU (ρk x, ρ
2
k t),

P̃k(x, t) = ρ2
k P(ρk x, ρ

2
k t).

Again (Ũk, P̃k) is a solution to the Navier-Stokes equation in R3 × (−1, 0).
Observing (35) and (36), we find for all z0 = (x0, 0)

(ˆ
Q(z0,1)

|Ũk |10/3dz
)3/5

+
ˆ
Q(z0,1)

|∇Ũk |2dz � M2 + M6, (43)

and

sup
−1≤t≤0

ˆ
B(x0,1)

|Ũk(t)|2dx � M2. (44)

On the other hand, (42) and (41) yield Ũk(0) = 0 on B2k and

16
ˆ
Q(0,1/4)

|Ũk |3dz > ζ 3. (45)

Arguing as in Step 3, we get a solution

Ũ ∈ C∗
w([−1, 0]; L3,w(R3)) ∩ L2(−1, 0;W 1,2

loc (R3))

to the Navier-Stokes equations. Furthermore, (43), (44), and (45) yield for
all z0 = (x0, 0)

(ˆ
Q(z0,1)

|Ũ |10/3dz
)3/5

+
ˆ
Q(z0,1)

|∇Ũ |2dz ≤ C0,

sup
−1≤t≤0

ˆ
B(x0,1)

|Ũ (t)|2dx ≤ C0, (46)

Ũ (0) = 0 in R3, and

16
ˆ
Q(0,1/4)

|Ũ |3dyds ≥ ζ 3. (47)
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Step 10 By the Fubini theorem, we have

m{(x, t) ∈ R
3 × (−1, 0) : |Ũ (x, t)| ≥ 2−5ζ }

=
ˆ 0

−1
m{x ∈ R

3 : |Ũ (x, t)| ≥ 2−5ζ }dt
≤ 215ζ−3‖Ũ‖3L∞(−1,0;L3,w(R3))

< ∞.

Hence, for each η > 0 there is a radius R = R(η) > 0 such that

m{(x, t) ∈ (R3\BR) × (−1, 0) : |Ũ (x, t)| ≥ 2−5ζ } ≤ η.

Choose
η = 2−10C−15

0 ζ 30, (48)

where C0 is the constant in (46). Then for any x0 ∈ R
3\B(0, R + 1), we

obtain, by Hölder’s inequality, (46), and (48), that

ˆ
Q(z0,1)

|Ũ |3dz ≤ (2−5ζ )3m(Q(z0, 1)) +
ˆ
Q(z0,1)∩{|Ũ |≥2−5ζ }

|Ũ |3dz

≤ ζ 3

2
+ η1/10

(ˆ
Q(z0,1)

|Ũ |10/3dz
)9/10

≤ ζ 3

2
+ 2−1C−3/2

0 ζ 3C3/2
0

≤ ζ 3.

Thus, appealing to Lemma8, and making use of (46), we get for all x0 ∈
R
3\B(0, R + 1)

‖Ũ‖L∞(Q(z0,1/2)) ≤ C‖Ũ‖L3(Q(z0,1)) + C‖Ũ‖L∞(−1,0;L2(B(x0,1))) ≤ C(ζ + C0).

(49)
This shows that Ũ is bounded in R3\B(0, R + 1) × (−1/4, 0).

Step 11 Using a standard bootstrapping argument, we obtain the higher regularity

∇Ũ ∈ L∞ (
R
3\B(0, R + 2) × (−1/4, 0)

)
.

Taking the curl operator to the Navier–Stokes equations, we see that Ω̃ :=
∇ × Ũ solves the heat equation

∂tΩ̃ − ΔΩ̃ = Ω̃ · ∇Ũ − Ũ · ∇Ω̃

in R3 × (−1, 0). Hence
∣∣∣∂tΩ̃ − ΔΩ̃

∣∣∣ ≤ ‖∇Ũ‖∞|Ω̃| + ‖Ũ‖∞|∇Ω̃|
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in R
3\B(0, R + 2) × (−1/16, 0). Verifying that Ω̃(0) = 0, we are in a

position to apply the backward uniqueness of [6] to conclude that Ω̃ ≡ 0
in R

3\B(0, R + 2) × (−1/16, 0). By the spatial analyticity of Ũ we get
the spatial analyticity of Ω̃ which shows that Ω̃ ≡ 0 in R

3 × (−1/16, 0).
Recalling that div Ũ = 0 it follows that Ũ is harmonic in R3 × (−1/16, 0),
and thus Ũ must be identically zero in R

3 × (−1/16, 0). However this
contradicts to (47). Therefore the assertion of Lemma 9 must be true.

This completes the proof of Lemma 9. By combining Lemma 8 we obtain
Theorem 1. ��

4 Proof of Theorem 2

We divide the proof of Theorem 2 into a few steps.

Step 1 Let C(x0, r) denote the closed cube of a side-length r and the center x0. We
may replace the condition (7) in Theorem 1 by using cubes, that is,

r−3m{x ∈ C(x0, r) : |u(x, t0)| > r−1ε} ≤ ε. (50)

Then the conclusion also be changed with u ∈ L∞(Q̃(z0, εr)) where

Q̃(z0, εr) := C(x0, r) × (t0 − r2, t0).

In fact, ε should be changed by a multiplication of some constant which
depends only on the volume ratio of the ball of a radius r and the cube of a
side-length r . For convenience we just use the same letter ε.

Step 2 We shall proceed with an algorithm based on a dyadic decomposition argu-
ment. We say that two cubes E and E ′ meet if E ∩ E ′ has nonempty interior.
Let C = [0, 1]3 denote the unit cube in R

3. We define for k = 0, 1, 2, . . .
the following covers

Ck := {2−k(ε j + C) : j ∈ Z
3},

which has finite overlapping property. Indeed, each fixed cube inCk canmeet
ε−3 number of cubes in Ck . We pick a sub-family

F0 := {E ∈ C0 : m{x ∈ E : |u(x, t0)| > ε} > ε}. (51)

If F0 has no element, then we have m{x ∈ E : |u(x, t0)| > ε} ≤ ε for all
E ∈ C0. Hence we conclude that there is no singularity at all at the moment
t0 due to Theorem 1.
Next, we claim that F0 has at most a finite number of members, which
is bounded by a number depending only on M and ε. Suppose that
E1, E2, . . . , EN ∈ F0 don’t meet each other. Then for j = 1, 2, . . . , N

ε < m{x ∈ E j : |u(x, t0)| > ε}.
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Summing both sides for j = 1, 2, . . . , N yields

Nε < m

⎧⎨
⎩x ∈

N⋃
j=1

E j : |u(x, t0)| > ε

⎫⎬
⎭ ≤ ε−3M3.

The last inequality follows from the fact ‖u(t0)‖L3,w(R3) ≤ M . This implies
that the number of maximal disjoint cubes in F0 is finite and hence F0 has
at most finite members. If we denote by Nd

0 the number of maximal disjoint
cubes in F0, then we should have

Nd
0 ≤ ε−4M3.

Let N0 denote the number of cubes in F0. Then, from the finite overlapping
property of C0, we have

ε3N0 ≤ Nd
0 ≤ N0.

Hence
N0 ≤ ε−3Nd

0 ≤ ε−3(ε−4M3) = ε−7M3. (52)

We define G0 to be the union of F0 and the cubes E ∈ C0 which meet some
element of F0. Theorem 1 implies that if (x, t0) /∈ ⋃

E∈G0
E , then (x, t0) is

a regular piont, that is, possible singularities can only occur in some element
of G0.

Step 3 Wenow inductively construct two families of cubes {Fk} and {Gk}. For k ≥ 1
we define Fk to be the family of cubes E ∈ Ck satisfying E ⊂ E ′ for some
E ′ ∈ Gk−1 and

m{E : |u(x, t0)| > 2kε} > 2−3kε. (53)

Let Nk denote the number of cubes in Fk and let Nd
k denote the number of

maximal disjoint cubes in Fk . By the same reasoning Nk and Nd
k are finite

numbers and have the same bounds. Indeed, since each fixed cube in Fk can
meet at most ε−3 number of cubes in Fk , we have

ε3Nk ≤ Nd
k ≤ Nk .

By the same way in the previous step, we obtain

Nd
k 2

−3kε ≤ m{x ∈ R
3 : |u(x, t0)| > 2kε} ≤ (2kε)−3M3.

Therefore,
Nk ≤ ε−3Nd

k ≤ ε−3(ε−4M3) = ε−7M3. (54)

We define Gk to be the union of Fk and the cubes E ∈ Ck which meet some
element of Fk . Theorem 1 implies that if (x, t0) /∈ ⋃

E∈Gk
E , then (x, t0) is a
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regular piont, that is, the possible singularities can only occur in the elements
of Gk .

Step 4 Finally, we construct nested sequences {Ek} of closed cubes satisfying Ek ∈
Gk . Fix an element Ek in Gk . If E ∈ Gk+1, then E ⊂ Ek or E does not
meet Ek by the dyadic construction. If there is no E ∈ Gk+1 which meet
Ek , then each interior point of Ek is a regular point. In this case, we stop to
choose next elements. Otherwise, there is an element E ∈ Gk+1 such that
E ⊂ Ek . Then we pick E and name it as Ek+1. The cardinality of each setGk

is bounded by ε−7M3 + ε−3 from (54) and the finite overlapping property.
The number of such choices is also always bounded by ε−7M3 + ε−3. After
the construction, we only have at most ε−7M3 + ε−3 number of sequences
{Ek}. If the sequence {Ek} is finite, then each interior point of Ek is regular.
If the sequence {Ek} is infinite, then

Ek+1 ⊂ Ek, diam Ek+1 ≤ 1

2
diam Ek .

where diam E denote the diameter of the set E . Since diam Ek goes to 0 as
k → ∞,

∞⋂
k=1

Ek = (x, t0)

for some x ∈ R
3. This point might be a singular point. Therefore, the number

of such possible singularities is at most

N (M) := ε−7M3 + ε−3 (55)

at the time t0. We note that ε actually depends only on M , and hence the
number of possible singularities is bounded by the uniform norm of the
weak Lebesgue space.

This completes the proof of Theorem 2. ��
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A Proof of Lemma 8

The proof of Lemma 8 relies on the following proposition.

Proposition 10 Let u ∈ V 2(Q1) be a local suitable weak solution to the Navier-Stokes
equations. We define v = u + ∇ ph, where ∇ ph = −E∗

B3/4
(u). There exist absolute

positive numbers K∗ and ζ such that if
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ˆ
Q1

|u|3dz ≤ ζ 3 (56)

then for all z0 ∈ Q1/2 and for all natural number k ≥ 2

 
Q(z0,rk )

|v|3dz ≤ K 3∗
ˆ
Q1

|u|3dz (57)

where rk = 2−k .

We postpone the proof of Proposition 10 at Appendix B. Suppose the proposition
holds true. Then using the Lebesgue differentiation theorem and (57) we obtain that
for almost all z0 = (x0, t0) ∈ Q1/2

|v(x0, t0)| ≤ K∗
(ˆ

Q1

|u|3dz
)1/3

. (58)

Using the triangular inequality and the mean value property of harmonic functions,
we conclude that for almost all (x0, t0) ∈ Q(0, 1/2)

|u(x0, t0)| ≤ |v(x0, t0)| + |∇ ph(x0, t0)|

≤ K∗
(ˆ

Q1

|u|3dz
)1/3

+ c‖u(t0)‖L2(B1).

≤ K∗
(ˆ

Q1

|u|3dz
)1/3

+ c ess sup
t∈(−1,0)

‖u(t)‖L2(B1),

and hence

‖u‖L∞(Q1/2) ≤ K∗
(ˆ

Q1

|u|3dz
)1/3

+ c ess sup
t∈(−1,0)

‖u(t)‖L2(B1). (59)

Now, the assertion (19) in Lemma 8 follows from (59) by a routine scaling argument.
This completes the proof of Lemma 8. ��

B Proof of Proposition 10

We finally present the proof of Proposition 10. The proof is divided into several steps.

Step 1 We shall prove the key inequality (57) in Proposition 10 by using a strong
induction argument on k. Let K∗ > 1 be a constant wihch will be specified
at the final moment. From the definition of a local suitable weak solution
the following local energy inequality holds true for every nonnegative φ ∈
C∞
c (B3/4 × (−9/16, 0]) and almost all s ∈ (−9/16, 0]
ˆ

|v(s)|2φ(s)dx + 2
ˆ s

−r23

ˆ
|∇v|2φdz
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≤
ˆ s

−r23

ˆ
|v|2(∂t + Δ)φdz +

ˆ s

−r23

ˆ
|v|2(v − ∇ ph) · ∇φdz

+2
ˆ s

−r23

ˆ
(v ⊗ v − v ⊗ ∇ ph : ∇2 ph)φdz

+2
ˆ s

−r23

ˆ
(p1 + p2)v · ∇φdz (60)

where

∇ p1 = −E∗
B3/4(div(u ⊗ u)), ∇ p2 = E∗

B3/4(Δu).

Note that v = u − ∇ ph and so

u ⊗ u = v ⊗ v − v ⊗ ∇ ph − ∇ ph ⊗ v + ∇ ph ⊗ ∇ ph (61)

almost everywhere in Q3/4.
Step 2 It is readily seen that (56) holds for k = 2. Assume (57) is true for k =

2, . . . , n. Let z0 ∈ Q1/4 be arbitrarily chosen and

rn+1 ≤ r ≤ r3.

Using the Cauchy–Schwarz inequality, the inductive assumption, and the fact
that ph is harmonic, we get

 
Q(z0,r)

|v|3/2|∇ ph |3/2dz ≤
( 

Q(z0,r)
|v|3dz

)1/2 ( 
Q(z0,r)

|∇ ph |3dz
)1/2

� r−5/2K 3/2∗
(ˆ

Q1

|u|3dz
)1/2 (ˆ

Q(z0,r)
|∇ ph |3dz

)1/2

� r−1K 3/2∗
ˆ
Q1

|u|3dz. (62)

Furthermore, applying the Poincaré inequality and using properties of har-
monic functions, we find

 
Q(z0,r)

|∇ ph ⊗ ∇ ph − 〈∇ ph ⊗ ∇ ph〉B(x0,r)|3/2dz

� r−5+3/2
ˆ
Q(z0,r)

|∇ ph |3/2|∇2 ph |3/2dz

� r−1/2
ˆ
Q(0,3/4)

|∇ ph |3dz

� r−1/2
ˆ
Q1

|u|3dz. (63)
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Using the identity (61) and combining the inductive assumption (57) with
the estimates (62) and (63), we obtain that for all rn+1 ≤ r ≤ 1

ˆ
Q(z0,r)

|u ⊗ u − 〈u ⊗ u〉B(x0,r)|3/2dz � K 3∗r4
ˆ
Q1

|u|3dz.

Applying Lemma2.8 in [22], we find that for all rn+1 ≤ r ≤ r2

ˆ
Q(z0,r)

|p1 − 〈p1〉B(x0,r)|3/2dz � K 3∗r4
ˆ
Q1

|u|3dz. (64)

Step 3 We denote by Ψn+1 the fundamental solution of the backward heat equation
having its singularity at (x0, t0 + r2n+1). More precisely, for (x, t) ∈ R

3 ×
(−∞, t0 + rn+1)

Ψn+1(x, t) = c0
(r2n+1 − t + t0)3/2

exp

{
− |x − x0|2
4(r2n+1 − t + t0)

}
.

Taking a suitable cut off function χ ∈ C∞(Rn) for Q(z0, r4) ⊂ Q(z0, r3),
we may insert Φn+1 := Ψn+1χ into the local energy inequality (60) to get
for almost all s ∈ (t0 − r23 , t0)

ˆ
B(x0,r3)

Φn+1(s)|v(s)|2dx + 2
ˆ s

t0−r23

ˆ
B(x0,r3)

Φn+1|∇v|2dz

≤
ˆ s

t0−r23

ˆ
B(x0,r3)

|v|2(∂t + Δ)Φn+1dz

+
ˆ s

t0−r23

ˆ
B(x0,r3)

|v|2(v − ∇ ph) · ∇Φn+1dz

+ 2
ˆ s

t0−r23

ˆ
B(x0,r3)

(v ⊗ v − v ⊗ ∇ ph : ∇2 ph)Φn+1dz

+ 2
ˆ s

t0−r23

ˆ
B(x0,r3)

(p1 + p2)v · ∇Φn+1dz.

Arguing as in [9], we obtain from the above inequality that

ess sup
s∈(t0−r2n+1,t0)

 
B(x0,rn+1)

|v(s)|2dx + r−3
n+1

ˆ
Q(z0,rn+1)

|∇v|2dz

�
ˆ
Q(z0,r3)

|v|2|(∂t + Δ)Φn+1|dz +
ˆ
Q(z0,r3)

|v|2(|v| + |∇ ph |)|∇Φn+1|dz

+
ˆ
Q(z0,r3)

|v|(|v| + |∇ ph |)|∇2 ph |Φn+1dz +
ˆ
Q(z0,r3)

(p1 + p2)v · ∇Φn+1dz

=: I1 + I2 + I3 + I4. (65)
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Step 4 In this step we shall estimate the integrals I1, I2, and I3. They can be handled
by the similar way.
Obviously, we have |(∂t + Δ)Φn+1| ≤ C in Q(z0, r3) so that

I1 ≤ C‖v‖2L3(Q(z0,r3)
�

(ˆ
Q1

|u|3dz
)2/3

.

Using |∇Φn+1| ≤ Cr−4
k in Q(z0, rk)\Q(z0, rk+1) for all k = 2, . . . , n and

the inductive assumption (57), we obtain

ˆ
Q(z0,r3)

|v|3|∇Φn+1|dz

=
n∑

k=3

ˆ
Q(z0,rk )\Q(z0,rk+1)

|v|3|∇Φn+1|dz +
ˆ
Qrn+1 (z0)

|v|3|∇Φn+1|dz

� K 3∗
n∑

k=2

r−4
k r5k

ˆ
Q1

|u|3dz � K 3∗
ˆ
Q1

|u|3dz.

Similarly,

ˆ
Q(z0,r3)

|v|2|∇ ph ||∇Φn+1|dz

=
n∑

k=3

ˆ
Q(z0,rk )\Q(z0,rk+1)

|v|2|∇ ph ||∇Φn+1| +
ˆ
Q(z0,rn+1)

|v|2|∇ ph ||∇Φn+1|

� K 2∗
n∑

k=1

r−4
k r13/3k

ˆ
Q1

|u|3dz � K 3∗
ˆ
Q1

|u|3dz.

Hencewe have I2 � K 3∗
´
Q1

|u|3dz and the implied constant does not depend
on n.
Using Φn+1 ≤ Cr−3

k in Q(z0, rk)\Q(z0, rk+1) for all k = 1, . . . , n + 1, the
inductive assumption (57), and the properties of harmonic functions, we get

ˆ
Q(z0,r3)

|v|2|∇2 ph |Φn+1dz

=
n∑

k=3

ˆ
Q(z0,rk )\Q(z0,rk+1)

|v|2|∇2 ph |Φn+1dz +
ˆ
Q(z0,rn+1)

|v|2|∇2 ph ||Φn+1|dz

� K 2∗
n∑

k=2

r−3
k r13/3k

ˆ
Q1

|u|3dz � K 3∗
ˆ
Q1

|u|3dz.
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Similarly,

ˆ
Q(z0,r3)

|v||∇ ph ||∇2 ph |Φn+1dz

=
n∑

k=3

ˆ
Q(z0,rk )\Q(z0,rk+1)

|v||∇ ph ||∇2 ph |Φn+1dz

+
ˆ
Q(z0,rn+1)

|v||∇ ph ||∇2 ph |Φn+1dz

� K∗
n∑

k=2

r−3
k r11/3k

ˆ
Q1

|u|3dz � K 3∗
ˆ
Q1

|u|3dz.

Hencewe have I3 � K 3∗
´
Q1

|u|3dz and the implied constant does not depend
on n.

Step 5 In this step we estimate the last integral I4 in (65). We argue as in [9].
Let χk denote cut-off functions, suitable for Q(z0, rk+1) ⊂ Q(z0, rk), k =
3, . . . , n + 1. Since v is divergence free, we can subtract an average from p2
and use the partition of unity so that

ˆ
Q(z0,r3)

p2v · ∇Φn+1dz

=
n∑

k=3

ˆ
Q(z0,rk )\Q(z0,rk+2)

(p2 − 〈p2〉B(x0,rk ))v · ∇(Φn+1(χk − χk+1))

+
ˆ
Q(z0,r2)

p2v · ∇(Φn+1(1 − χ3))

+
ˆ
Q(z0,rn+1)

(p2 − 〈p2〉B(x0,rn+1))v · ∇(Φn+1χn+1)

=: J1 + J2 + J3.

As |∇(Φn+1(χk − χk+1))| ≤ Cr−4
k for k = 1, . . . , n, applying Poincaré’s

inequality, using the fact that p2 is harmonic, together with (57)k and (17)
we see that

ˆ
Q(z0,rk )\Q(z0,rk+2)

(p2 − 〈p2〉B(x0,rk ))v · ∇(Φn+1(χk − χk+1))

� K∗r−4
k r5k

(ˆ
Q1

|u|3dz
)1/3

(ˆ
Q1/2

p22dz

)1/2

� K∗rk
(ˆ

Q1

|u|3dz
)1/3

(ˆ
Q3/4

|∇u|2dz
)1/2
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� K∗rk
(ˆ

Q1

|u|3dz
)2/3

.

Summation from k = 3 to n yields

J1 � K∗
(ˆ

Q1

|u|3dz
)2/3

.

Similarly, we can make

J2 + J3 � (1 + rn+1)K∗
(ˆ

Q1

|u|3dz
)2/3

.

Thus,

ˆ
Q(z0,r3)

p2v · ∇Φn+1dz � K∗
(ˆ

Q1

|u|3dz
)2/3

.

Finally, arguing in the same way and making use of (64), we can get

ˆ
Q(z0,r3)

p1v · ∇Φn+1dz � K 3∗
ˆ
Q1

|u|3dz

and therefore

I4 � K 3∗
ˆ
Q1

|u|3dz + K∗
(ˆ

Q1

|u|3dz
)2/3

.

Step 6 Inserting the estimates of I1, I2, I3, and I4 into the right-hand side of (65),
we obtain that for some absolute constant C1 > 0, independently of n,

ess sup
s∈(t0−r2n+1,t0)

 
Brn+1 (x0)

|v(s)|2 + r−3
n+1

ˆ
Q(z0,rn+1)

|∇v|2dz

≤ C1

(
K 3∗

ˆ
Q1

|u|3dz + K∗
(ˆ

Q1

|u|3dz
)2/3

)

=
(
C1K∗E + C1

K∗

)
K 2∗ E2

where E =
(´

Q1
|u|3dz

)1/3
.

On the other hand, using a standard interpolation, we obtain that
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Q(z0,rn+1)

|v|3dz

≤ C2

⎛
⎝ ess sup

s∈(t0−r2n+1,t0)

 
B(x0,rn+1)

|v(s)|2 + r−3
n+1

ˆ
Q(z0,rn+1)

|∇v|2
⎞
⎠

3/2

for some absolute constant C2 > 1 and hence

 
Q(z0,rn+1)

|v|3dz ≤
(
C2C1K∗E + C2C1

K∗

)3/2

K 3∗E3.

Note that neither C1 nor C2 depend on the choice of K∗. Thus, we may set

K∗ = 2C1C2, ζ = 1

4C2
1C

2
2

so that if E ≤ ζ , then

 
Q(z0,rn+1)

|v|3 ≤ K 3∗E3 = K 3∗
ˆ
Q1

|u|3dz.

Hence (57) is true for k = n + 1.

This completes the proof of Proposition 10. ��
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