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Abstract
We give a short and purely bilinear proof of the fact that two chains of p-elementary
lattices with quadratic form or alternating bilinear form have common hyperbolic
bases. This fact, which is useful for the study of Bruhat–Tits buildings, has been
proven before with different methods by Abramenko and Nebe and by Frisch.

Mathematics Subject Classification 11E95 · 20G25 · 11E57

1 Introduction

Let R be a complete discrete valuation ring with field of fractions F , p a prime
element in R. Let V be a finite dimensional vector space over F with a non degenerate
alternating or symmetric bilinear form b. In the symmetric case we assume b to be
associated to a quadratic form Q on V satisfying b(x, y) = Q(x+ y)−Q(x)−Q(y),
we have then b(x, x) = 2Q(x) for all x ∈ V . In the alternating case we set Q ≡ 0.
A vector x ∈ V is called isotropic if x �= 0, Q(x) = 0, a nonzero subspace or R-
submodule X is called totally isotropic if Q(x) = b(x, y) = 0 holds for all x, y ∈ X , it
is called anisotropic if Q(x) �= 0 for all x ∈ X \{0}. An R-latticeΛ ofmaximal rank on
V is called pr -maximal if it ismaximal among the lattices satisfying Q(Λ) ⊆ pr R and
b(Λ,Λ) ⊆ pr R, for r = 0 we say that the lattice is maximal. If (V , Q) is anisotropic
there is a unique pr -maximal lattice on V , namely {x ∈ V | Q(x) ∈ pr R}, see [6,
16.1].

It is well known (see e.g. [3,7] for the symmetric case) that any two pr1 resp. pr2

maximal latticesΛ1,Λ2 have a commonhyperbolic basis, i.e., there are vectors {ei , fi }
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of V with b(ei , e j ) = b( fi , f j ) = 0, b(ei , f j ) = δi j such that suitable multiples of
the ei , fi together with a basis of a maximal lattice on an anisotropic kernel of V form
bases of Λ1 and Λ2. As explained in [5], in the theory of Bruhat–Tits buildings one
needs the even sharper statement that such common bases exist for pairs of certain
chains of lattices. Proofs of such statements have been given in [1] using the theory of
hereditary orders and in [4] using the concept of p-adic norms from [2]. The purpose
of this note is to give a short elementary proof of this fact using only the quadratic and
bilinear forms. It is easy to generalize our argument to the case of hermitian forms,
we leave the details of this to the reader.

2 Lattice chains

Definition 2.1 Let Λ be a lattice on V (or a subset of a lattice spanning V ). The dual
lattice of Λ is Λ# := {x ∈ V | b(x,Λ) ⊆ R}. The lattice is called p-elementary if
Λ# ⊇ Λ ⊇ pΛ# holds. It is called pr -modular if Λ = prΛ# holds.

Remark 2.2 It is well known that Λ# is a lattice on V and that (Λ#)# = Λ holds.
The lattice is p-elementary if and only if pR ⊆ b(x,Λ) ⊆ R holds for all primitive
vectors x ∈ Λ.

We need a few preparations for the case of a symmetric bilinear form.

Definition 2.3 Let (V , Q) be a regular quadratic space over F and Λ a lattice on V .

(a) Λ is called integral if b(Λ,Λ) ⊆ R, even if in addition Q(Λ) ⊆ R holds, totally
even if it is integral and Q(x) ∈ b(x,Λ) holds for all x ∈ Λ.

(b) We say that the lattice Λ is almost p-elementary totally even (or of p-elementary
totally even type) if V has a Witt decomposition V = V hyp ⊥ V an, where V hyp

is a sum of hyperbolic planes and V an is anisotropic, such that Λ = Λ ∩ V hyp ⊥
Λ ∩ V an with Λhyp := Λ ∩ V hyp totally even and p-elementary and Λan :=
Λ ∩ V an = {x ∈ V an | Q(x) ∈ R} the unique R-maximal lattice on V an.

(c) If Λ is almost p-elementary totally even, the modified dual Λ∗ is {x ∈ Λ# |
pQ(x) ∈ R} with the quadratic form Q∗ := pQ and the bilinear form b∗ := pb.

Remark 2.4 (a) Part (c) of this definition is a slight modification of the one given by
Frisch [4], who also proved a version of the next two lemmata.

(b) In particular, a maximal lattice on V is almost p-elementary totally even.
(c) If we set Q = 0 for an alternating bilinear form b, the definition of almost p-

elementary totally even above coincides with p-elementary. We will use “almost
p-elementary totally even” for both types of b in what follows.
We also use some more terminology from the symmetric case in the alternating
case as well. In particular we generalize the notion of dual lattice and pr -modular
lattice to the alternating case in the obvious way and call a lattice Rx + Ry with
Q(x) = Q(y) = 0, b(x, y) = pr a pr -modular hyperbolic plane.

Lemma 2.5 Themodified dual (Λ∗, Q∗) of an almost p-elementary totally even lattice
is almost p-elementary totally even and one has

((Λ, Q)∗)∗ = (p−1Λ, p2Q) ∼= (Λ, Q).
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Proof WewriteΛ = Λhyp ⊥ Λan and haveΛ# = (Λhyp)# ⊥ (Λan)# with pQ(x) ∈ R
for all x ∈ (Λhyp)# and therefore Λ∗ = (Λhyp)# ⊥ {x ∈ (Λan)# | pQ(x) ∈ R}.
Obviously, (Λhyp)#, equipped with pQ, pb, is p-elementary totally even. For the
anisotropic part, the set {x ∈ (Λan)# | pQ(x) ∈ R} is a lattice which clearly is
contained in the unique maximal lattice on (V an, pQ). For the reverse inclusion, let
x ∈ V an with Q(x) ∈ p−1R. If one had x /∈ (Λan)# there would exist y ∈ Λan with
b(x, y) = p−1, hence Q(x) = −b(x, ay) with a ∈ R. This gives Q(x + ay) ∈ R,
hence x + ay ∈ Λan ⊆ (Λan)#, which contradicts x /∈ (Λan)#, and we see that the
maximal lattice on (V an, pQ) is indeed contained in {x ∈ (Λan)# | pQ(x) ∈ R}.

Finally, the same argument shows that (Λ∗, pb)∗ = p−1Λhyp ⊥ {x ∈ V an |
p2Q(x) ∈ R} = p−1Λ with p−1Λ equipped with p2Q. ��
In what follows we will identify (p−1Λ, p2Q) with (Λ, Q) and will therefore write
(Λ∗)∗ = Λ. We will also treat both cases of b (symmetric or alternating) at the same
time in what follows.

Lemma 2.6 Let Λ be an almost p-elementary totally even lattice on V and let J ⊆ Λ

be a unimodular or p-modular hyperbolic plane which splits Λ, i.e., Λ = J ⊥ Λ1.
Then Λ1 is almost p-elementary totally even.

Proof By definition we have Λ = Λ′ ⊥ Λ′′, where V hyp = V ′ = FΛ′ is a sum
of hyperbolic planes, V an = V ′′ = FΛ′′ is anisotropic, and Λ′ is totally even p-
elementary on V ′. Λ′ has a splitting Λ′ = K1 ⊥ · · · ⊥ Ks into binary lattices
Ki which are unimodular or p-modular hyperbolic planes. At least one of the Ki is
unimodular if and only if there exists an isotropic vector x ∈ Λ with b(x,Λ) = R,
in particular, if J is unimodular, at least one of the Ki , say K1, is unimodular. By [6,
Folgerung 4.4] there exists σ ∈ O(Λ) with σ(J ) = K1 and hence σ(Λ1) = K⊥

1 , the
latter one being almost p-elementary totally even. Hence Λ1 is almost p-elementary
totally even too.

If J is p-modular, J ∗ is unimodular and splits Λ∗. By the first case, the orthogonal
complement Λ2 of J ∗ in Λ∗ is almost p-elementary totally even, which implies that
Λ1 = (Λ2)

∗ is almost p-elementary totally even. ��
Lemma 2.7 Let Λ = Λhyp ⊥ Λan be an almost p-elementary totally even lattice
containing isotropic vectors.

(a) If the hyperbolic part Λhyp of Λ is not a sum of p-modular hyperbolic planes or
Λ = Λhyp holds, Λ is generated by its isotropic vectors.

(b) IfΛhyp is a sumof p-modular hyperbolic planes, the isotropic vectors ofΛgenerate
the sublattice {x ∈ Λ | Q(x) ∈ pR}.

(c) One has {z ∈ p{x ∈ Λ | Q(x) ∈ pR}# | Q(z) ∈ R} ⊆ Λ.

Proof The first two assertions follow from the fact that Λhyp is obviously generated
by its isotropic vectors and that for any vector x ∈ Λ satisfying Q(x) ∈ Q(Λhyp)

one can find y ∈ Λhyp with Q(x + y) = 0. For the last part of the lemma the set
{x ∈ Λ | Q(x) ∈ pR} generates Λ if Λhyp is not a sum of p-modular hyperbolic
planes and is equal to {x ∈ Λ | Q(x) ∈ pR} = Λhyp ⊥ {x ∈ V an | Q(x) ∈ pR}
otherwise. Taking duals and multiplying by p we obtain the assertion. ��
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326 R. Schulze-Pillot

Definition 2.8 Let n denote the Witt index of V , i.e., the dimension of a maximal
totally isotropic subspace.

A maximal admissible lattice chain L in (V , Q) is a chain of lattices Λmax =
Λ(0) � Λ(1) · · · � Λ(n) = Λ(min), where Λ(0) is a maximal lattice on V , n is the Witt
index of V , and each Λ( j) is almost p-elementary totally even.

Remark 2.9 The last lattice Λmin of a maximal admissible lattice chain is the orthogo-
nal sum of p-modular hyperbolic planes and amaximal lattice on an anisotropic space,
whereas in Λmax the hyperbolic planes occurring are all unimodular. Moreover, we
have pΛmax ⊆ Λmin.

3 Hyperbolic bases

Theorem 3.1 Let Λ ⊆ V be an almost p-elementary totally even R-lattice on V .
Let X be a maximal totally isotropic submodule of Λ. Then there are a basis

(e1, . . . , en) of X and vectors f1, . . . , fn ∈ Λ generating a totally isotropic submodule
of Λ and satisfying b(ei , f j ) ∈ {δi j , pδi j } such that

Λ =
n⊕

i=1

Rei ⊕
n⊕

i=1

R fi ⊥ K , (3.1)

where K is the unique maximal lattice on an anisotropic subspace FK of V .

Proof We use induction on n = rk(X). For n = 0 the space V is {0} in the alternating
case, {0} or anisotropic in the symmetric case, and the assertion is trivial.

Let n ≥ 1 and assume the assertion to be true for rk(X) < n.
If b(X ,Λ) = R we choose x ∈ X , y ∈ Λ with b(x, y) = 1. Replacing y by

y − Q(y)x if necessary we may assume y to be isotropic so that Rx + Ry is a
unimodular hyperbolic plane. We can then splitΛ as (Rx + Ry) ⊥ Λ′, withΛ′ ∩ X =
{z ∈ X | b(z, y) = 0} maximal totally isotropic in Λ′ of rank n− 1, and the induction
hypothesis implies the assertion in this case.

If b(X ,Λ) = pR we have p−1X ⊆ Λ∗ with b∗(p−1x,Λ∗) = R for all primitive
vectors x ∈ X , in particular we see that p−1X is primitive and hence maximal totally
isotropic in Λ∗.

Using the first case we find a basis (p−1e1, . . . , p−1en) of p−1X and vectors
f ∗
1 , . . . , f ∗

n ∈ Λ∗ generating a totally isotropic submodule of Λ∗ and satisfying
b(ei , f ∗

j ) ∈ {δi j , pδi j } such that

Λ∗ =
n⊕

i=1

Rp−1ei ⊕
n⊕

i=1

R f ∗
i ⊥ K , (3.2)

where K is the unique maximal lattice on an anisotropic subspace FK of V . Since we
have b(ei ,Λ∗) = b∗(p−1ei ,Λ∗) = R for all i we see that the case b(ei , f ∗

i ) = p can
not occur. We set fi = p f ∗

i for all i and obtain the assertion by taking the modified
dual of both sides of the last equation. ��
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An obvious consequence is:

Corollary 3.2 WithΛ, b, Q as in the proposition all maximal totally isotropic submod-
ules of Λ are in the same orbit under the action of the isometry group of (Λ, b, Q).

In particular, in the alternating case the symplectic group of (Λ, b) (also called a
local paramodular group of level p if Λ has both unimodular and p-modular com-
ponents ) acts transitively on the set of maximal totally isotropic submodules, a fact
which is well known for the integral symplectic group.

Theorem 3.3 Let Λmax
ν = Λ

(0)
ν ⊇ · · · ⊇ Λ

(n)
ν = Λmin

ν for ν = 1, 2 be two maximal
admissible lattice chains on V .

Then there exist isotropic vectors e1, . . . , en, f1, . . . , fn ∈ Λ
(0)
1 with b(ei , e j ) =

0 = b( fi , f j ), b(ei , f j ) = δi j such that

Λ
(0)
1 =

n⊕

i=1

Rei ⊕
n⊕

i=1

R fi ⊥ K , (3.3)

where K is the unique maximal lattice on the anisotropic orthogonal complement of
the space generated by the ei , fi , and such that

Λ( j)
ν =

n⊕

i=1

Rpr
(ν, j)
i ei ⊕

n⊕

i=1

Rps
(ν, j)
i fi ⊥ K (3.4)

holds with certain integers r (ν, j)
i , s(ν, j)

i for ν = 1, 2 and 0 ≤ j ≤ n.

Proof We prove the assertion by induction on theWitt index n of V . The case n = 0 is
trivial, so we assume for the rest of the argument n > 0. In that case we notice first that
Λmax

ν is generatedby its isotropic vectors byLemma2.7 and thatb(x,Λmax
ν ) = R holds

for each primitive isotropic vector x ∈ Λmax
ν . On the other hand, b(x,Λmin

ν ) = pR
holds for all primitive isotropic x ∈ Λmin

ν .
There exists r ∈ N with prΛmax

1 ⊆ Λmin
2 , prΛmax

2 ⊆ Λmin
1 , without loss of gener-

ality we may assume pr−1Λmax
1 � Λmin

2 . SinceΛmax
1 is generated by isotropic vectors

we find x ∈ Λmax
1 isotropic such that pr x is primitive in Λmin

2 . As noticed above we
must have b(pr x,Λmin

2 ) = pR.
Assume that x can be chosen such that pr x is primitive in Λmax

2 . One has then

b(pr x,Λmax
2 ) = R, and there is 0 ≤ j < nwithb(pr x,Λ( j)

2 ) = R, b(pr x,Λ( j+1)
2 ) =

pR. We choose then x with pr x primitive in Λmax
2 such that the largest integer k with

x ∈ Λ
(k)
1 is as large as possible.

Choose y ∈ Λ
( j)
2 with b(pr x, y) = 1, we have then py primitive in Λ

( j+1)
2 and

py ∈ Λmin
2 , moreover b(py,Λmax

2 ) = pR and hence b(Rpr x + Rpy,Λ(i)
2 ) = pR for

all i > j . This implies that Rpr x + Rpy splits off orthogonally in Λ
( j+1)
2 , . . . , Λmin

2 ,

whereas Rpr x + Ry splits off orthogonally in Λmax
2 , . . . , Λ

( j)
2 .

If x could be chosen to be inΛmin
1 we can split off Rx+Rpr y orthogonally in allΛ(i)

1

and proceed by induction on n. Otherwise there is 0 ≤ k < n with x ∈ Λ
(k)
1 and px
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primitive inΛ
(k+1)
1 .With y as above the unimodular hyperbolic plane Rx+Rpr y splits

off orthogonally inΛmax
1 , . . . , Λ

(k)
1 . If b(pr y,Λ(k+1)

1 ) = pR holds, Rpx+Rpr y splits

off orthogonally in Λ
(k+1)
1 , . . . , Λmin

1 , and we can proceed by induction. Otherwise

there exists x ′ ∈ Λ
(k+1)
1 with b(pr x ′,Λmax

2 ) = R, hence pr x ′ primitive in Λmax
2 ,

which contradicts our choice of x , so this situation can not occur and we are done with
the case that pr x can be chosen to be primitive in Λmax

2 .
We are left with the case that pr x can not be chosen to be primitive in Λmax

2 , hence
pr−1x ∈ Λmax

2 for all isotropic x ∈ Λmax
1 , which implies pr−1Λmax

1 ⊆ Λmax
2 . If one

has pr−1Λmax
2 � Λmax

1 we may interchange the two chains and reduce to the previous
case, so we may assume that pr−1Λmax

2 ⊆ Λmax
1 holds as well.

Since pr−1Λmax
1 � Λmin

2 holds by assumption and pr−2x ∈ Λmax
2 implies pr−1x ∈

Λmin
2 we can choose x ∈ Λmax

1 isotropic with pr−1x primitive in Λmax
2 . Among such

x we choose one for which the largest integer k with x ∈ Λ
(k)
1 is maximal. If we have

k = n there exists 0 ≤ i < n such that we can choose x ∈ p(Λ(i+1)
1 )∗ ⊆ Λmin

1 and

we impose the additional condition that the least integer i with x ∈ p(Λ(i+1)
1 )∗ is

minimal. We fix these integers i, k for the rest of the proof.
We notice that if k < n holds for the maximal k above, pr−2x ∈ Λmax

2 holds for
all isotropic x ∈ Λmin

1 , and we obtain

pr−1Λmax
2 = pr−1{z ∈ (Λmax

2 )# | Q(z)∈ R} ⊆ p{x ∈ Λmin
1 | Q(x) ∈ pR}# ⊆ Λmin

1

by dualizing and applying Lemma 2.7. Moreover, if k = n holds we have similarly

pr−2 p(Λ(i)
1 )∗ ⊆ Λmax

2 , pr−1Λmax
2 ⊆ Λ

(i)
1 .

Ifwehave pr−1x ∈Λmin
2 the primitivity of pr−1x inΛmax

2 impliesb(pr−1x,Λ( j)
2 ) =

R, b(pr−1x,Λ( j+1)
2 ) = pR for some 0 ≤ j < n. We choose y ∈ Λ

( j)
2 isotropic

with b(pr−1x, y) = 1 and have py primitive in Λ
( j+1)
2 , . . . , Λmin

2 . The unimodu-

lar hyperbolic plane Rpr−1x + Ry then splits off orthogonally in Λmax
2 , . . . , Λ

( j)
2

and the p-modular hyperbolic plane Rpr−1x + Rpy splits off orthogonally in
Λ

( j+1)
2 , . . . , Λmin

2 .
If on the other hand pr−1x /∈ Λmin

2 holds there exists 0 ≤ j < n with pr−1x ∈
Λ

( j)
2 , pr−1x /∈ Λ

( j+1)
2 . Since pr x is primitive in Λ

( j+1)
2 with b(pr x,Λ( j+1)

2 ) =
pR, we have pr x ∈ p(Λ( j+1)

2 )∗ primitive and find isotropic y′ ∈ (Λ
( j+1)
2 )∗

with b∗(pr−1x, y′) = 1. With y = py′ ∈ Λmin
2 we have b(pr x, y) = p and

b(y,Λ( j+1)
2 ) = pR, and the p-modular hyperbolic plane Rpr x+Ry splits off orthog-

onally in Λ
( j+1)
2 , . . . , Λmin

2 , whereas the unimodular hyperbolic plane Rpr−1x + Ry

splits off orthogonally in Λmax
2 , . . . , Λ

( j)
2 .

In both cases, by our assumptions we have pr−1y ∈ Λmax
1 . If in addition pr−1y ∈

Λmin
1 holds, the unimodular hyperbolic plane Rx + Rpr−1y splits off orthogonally in

Λmax
1 , . . . , Λ

(k)
1 . If we had b(pr−1y,Λ(k+1)

1 ) = R this would imply k+1 < n and the

existence of a vector x ′ ∈ Λ
(k+1)
1 with b(pr−1x ′,Λmax

2 ) = R, which contradicts the
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maximality property of k. The p-modular hyperbolic plane Rpx + Rpr−1y therefore
splits off orthogonally in Λ

(k+1)
1 , . . . , Λmin

1 .
If pr−1y /∈ Λmin

1 holds we have seen that we must have k = n and hence

x ∈ p(Λ(i+1)
1 )∗ ⊆ Λmin

1 and b(x,Λ(i)
1 ) = R, pr−1Λmax

2 ⊆ (Λ
(i)
1 ), hence pr−1y ∈

Λ
(i)
1 . From b(x, pr−1y) = 1 we see that y /∈ Λ

(i+1)
1 so that pr y is primitive in

Λ
(i+1)
1 , . . . , Λmin

1 .
The unimodular hyperbolic plane Rx + Rpr−1y then splits off orthogonally in

Λmax
1 , . . . , Λ

(i)
1 , whereas the p-modular hyperbolic plane Rx+Rpr y splits off orthog-

onally in Λ
(i+1)
1 , . . . , Λmin

1 , and we can again reduce the Witt index n by 1 and obtain
the assertion from the induction hypothesis. ��
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